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ABSTRACT
Impact loading plays a key role in the pathophysiology of running-related injuries. Providing real-time 
feedback may be an effective strategy to reduce impact loading; however, it is currently unclear what an 
effective training method to help runners achieve a habitual low loading rate is. We subjected 20 healthy 
non-runners to a structured sequence of direct and indirect biofeedback designed to facilitate broader 
exploration of neuro-mechanical workspace for potential movement solutions (indirect feedback on 
cadence and foot-strike angle) and to refine and converge upon an optimal sub-set of that space to 
match the task goal (direct feedback on loading rate). While indirect biofeedback on foot-strike angle 
yielded a lower impact load than providing direct biofeedback on loading rate, compared to indirect 
biofeedback on foot-strike angle, providing direct feedback on loading rate statistically increased (+58%, 
p = 0.007) the range of goal-relevant solutions participants used to lower their impact loading. Results 
showed that structured feedback was effective in increasing the range of input parameters that match 
the task goal, hence expanding the size of goal-relevant solutions, which may benefit running perfor-
mance under changing environmental constraints.
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Introduction

Compiling evidence indicates that ground-to-limb impact load-
ing plays a key role in the pathophysiology of running-related 
injuries (Bredeweg et al., 2013; Pohl et al., 2009; Zadpoor & 
Nikooyan, 2011; Zifchock et al., 2008). This impact load, caused 
by the decelerating limb rapidly changing its momentum at 
initial contact, reaches up to three times the weight (Nigg, 
1997) and generates a transient force that is transmitted 
along the musculoskeletal system. Many retrospective studies 
(Milner et al., 2006; Pohl et al., 2009; Zadpoor & Nikooyan, 2011; 
Zifchock et al., 2008) have shown a correlation between repe-
titive high loading rates experienced while running and lower 
extremity overuse injuries. For instance (Zifchock et al., 2008) 
showed that the injured leg displayed higher loading than the 
non-injured leg during running. In a recent prospective study, 
Davis, et al. (Davis et al., 2015) reported that high loading rates 
distinguish between runners that would not get injured and 
those that would acquire a positive diagnosis of a running- 
related injury. These examples underpin a widely accepted 
theory, that minimizing impact load will help reduce 
a runner’s risk of injury. However, determining an effective 
training method to help runners achieve a habitual low loading 
rate requires more research.

Control of impact load is a challenge for runners due to its 
transient nature, however, receiving real-time biofeedback of 
associated biomechanical measurements can enable self- 
regulation of this task-goal. This biofeedback information 

can express the quantity of a parameter that has either 
a direct, or an indirect, association with the task goal. As an 
example of goal-indirect feedback, research has shown that 
parameters such as cadence (Clarke et al., 1985; Heiderscheit 
et al., 2011; Samaan et al., 2014) and foot-strike angle (Cheung 
& Davis, 2011; Giandolini et al., 2013; Shih et al., 2013) cause 
an effect on loading rate. The biomechanical explanation is 
that a high cadence will typically reduce the flight trajectory 
of the body centre-of-mass and cause load reduction, while an 
increased inclination of the foot angle at impact will reduce 
limb stiffness and likewise cause load reduction. Here, we use 
a mathematical model to provide the metalanguage that 
clarifies this cause–effect relationship within the locomotor 
control system (Karnaukhov, 2006). For example, cadence 
and foot-strike angle are the input parameters of some func-
tion [i.e., F(input) + ɛ = output], while the output is the 
loading rate, and “ɛ” is a random error due to the inherent 
nature of an open nondeterministic locomotor system. In 
accordance with the concept of motor equifinality, multiple 
motor inputs can form a goal-relevant set of solutions with 
a target output (Cusumano & Cesari, 2006). Hence, the loco-
motor control system can receive direct feedback of the out-
put (effect) and attempt to learn the inputs (causes), or 
alternatively, receive indirect feedback of selected inputs 
(causes) and attempt to learn how they influence the output. 
Because limitations are inherent to both feedback approaches, 
it may be an insufficient method to prescribe only one form of 
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feedback. Therefore, when the locomotor control system 
attempts to learn an effective map between cadence and 
foot-strike angle (input) on loading rate (output), it should 
benefit from a two-way approach, where it finds forward 
solutions by employing an indirect mapping process, and it 
finds an inverse solution by employing a direct mapping 
process. For a runner, the benefits of an indirect feedback 
approach can offer tangible access to technique-related infor-
mation by self-regulating movement patterns using a target 
goal (i.e., control of the input parameters); thereby, the runner 
explores and experiences a broad range of initial conditions 
without knowing the effect. In contrast, the benefit of direct 
biofeedback is that it requires a more active process to self- 
discover the optimal set of initial conditions that cause the 
reduction in loading rate (output) (Lauber et al., 2013; Maia 
Pacheco et al., 2019; Mulloy et al., 2019). When feedback 
structure is designed to facilitate broader exploration of 
neuro-mechanical workspace for potential movement solu-
tions (indirect feedback); then, there appears to be greater 
success when attempting to refine and converge upon an 
optimal sub-set of that space to match the task goal (direct 
feedback) (Richards et al., 2018). This feedback approach is 
claimed to increase the range of input parameters that match 
the task goal, hence expanding the size of goal-relevant solu-
tions (Wu & Latash, 2014). Recently, Baggaley, et al. (Baggaley 
et al., 2017) investigated the effect of direct and indirect 
biofeedback on the loading rate. They adopted 
a randomized feedback approach and concluded that indirect 
feedback of foot-strike angle was more effective at reducing 
average loading rate than either cadence or average loading 
rate. These results indicate that foot-strike angle is a more 
critical input parameter than cadence when the system solves 
the forward problem (i.e., indirect control overloading rate is 
achieved by controlling the input). Furthermore, the locomo-
tor system was comparably less effective at solving the inverse 
problem of direct control over loading rate (output). However, 
for the case of loading rate training, it is unknown whether 
preliminary indirect feedback conditions will enhance the 
effect of direct feedback.

Therefore, the aim of this study was to structure the 
sequence of indirect and direct biofeedback to assess the mer-
its of direct feedback. We used the same biofeedback para-
meters as (Baggaley et al., 2017), but we sequenced the order of 
biofeedback: (i) loading rate 1 (direct), (ii) step cadence (indir-
ect), (iii) foot-strike angle (indirect), and (iv) loading rate 2 
(direct). We quantified the set of goal-relevant solutions by 
projecting a set of bi-varying points in tri-variate space (i.e., 
loading rate, cadence and foot-strike angle) onto a manifold 
space that represents the task goal (Müller & Sternad, 2004). 
Since, by definition, every point in the task manifold corre-
sponds to biomechanical state that optimizes loading rate, 
the area of the projected points will give us a metric to express 
the size of goal-relevant solutions. Based on previous results 
(Baggaley et al., 2017) our first hypothesis is that providing 
indirect biofeedback on foot-strike angle will be more effective 
compared to direct biofeedback of loading rate. The second 
hypothesis is that the second direct biofeedback will result in 
a larger area of goal-relevant solutions of foot strike and 
cadence compared to indirect biofeedback of foot-strike 

angle. The third hypothesis is that the first direct biofeedback 
will be less effective at solving the inverse problem compared 
to the second direct feedback.

Methods

Participants

Twenty healthy male participants (age 28.1 ± 2.8 years, height 
176 ± 1.3 cm weight 75.8 ± 5.7 kg) were recruited from a popu-
lation of active people not participating in construct running 
training, but had experience with treadmill running. No parti-
cipant was previously exposed to real-time biofeedback proto-
cols or had been involved in studies requiring adjustment of 
running form. A priori power calculation (GPower) based on 
Baggaley et al. 2017 (d = 0.87; f = 0.435), alpha = 0.05, power 
80% gave a total sample size of 18 participants, and 2 extra 
participants (10% of required sample size) were recruited to 
account for attrition. Participants were fully informed of the 
risks involved in participating in the experiment and they pro-
vided written consent to participate. Study received ethical 
approval by the research team’s University Ethics Committee 
(ref 24315).

Experimental protocol

Forty-one reflective markers were used to track the position 
and orientation of the trunk (3 markers), pelvis (4 markers), 
thighs (5 markers each), shanks (5 markers each), and feet 
(7markers each). Digitized landmarks were created to define 
the knee and ankle position, with functional movements defin-
ing the axis of rotation of the knee and the hip joint centre 
(Besier et al., 2003) (for details of the model see Appendix A). All 
participants wore the same shoe model (Merrell®, Rockford, 
Michigan, USA), defined as “neutral” by the Minimalist index 
scale (Esculier et al., 2015). After model calibration, participants 
underwent a warm-up on an instrumented treadmill (DBCEEWI, 
AMTI, USA) with incremental speed: starting from 6 km/h 
(1.66 m/s) for two minutes, speed was then increased to 
8 km/h (2.22 m/s) for two minutes, 9 km/h (2.5 m/s) for two 
minutes, and 11 km/h (3.05 m/s – testing speed) for the last 
three minutes of the warm-up. This running speed was chosen 
as it has been found in a pilot study to be biomechanically 
comfortable enough to allow maximal focus on the real-time 
biofeedback.

After a four-minute break, participants began with the test-
ing protocol, which comprised 5 four-minute running trials at 
11 km/h interspersed with four-minute breaks. Participants 
started with the baseline condition (BSL) during which they 
were not required to follow any biofeedback. After BSL, parti-
cipants performed the four experimental conditions in the 
following order: loading rate (LOAD1), two biofeedback condi-
tions on the secondary variables – cadence (CAD) and foot- 
strike angle (FSA) – presented in a (selected at priori) randomly 
order, and a second loading rate (LOAD2). In each condition, 
cadence (in step/min), foot-strike angle (in degrees), and load-
ing rate (in BW/s) were recorded over the 4 minutes of running.

Real-time biofeedback was presented on a 50” TV screen 
placed 2 m in front of the treadmill at eye level. During CAD 
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a vertical bar graph represented the cadence signal streamed in 
real-time with a range fixed between +10% and +15% from the 
mean cadence recorded at BSL, this range was chosen based on 
past findings that such increase in cadence substantially 
reduces tibial acceleration (Derrick et al., 1998; Hamill et al., 
1995; Heiderscheit et al., 2011; Hobara et al., 2012). Participants 
were instructed to “keep the vertical bar within the range”. 
During FSA the biofeedback was a continuous signal represent-
ing the angle between the treadmill floor and the foot segment 
(both left and right) on the sagittal plane (dorsi-plantarflexion), 
and a range was fixed between 0 and −10 degrees of dorsi-
flexion, consistent with a previously published procedure 
(Baggaley et al., 2017). Participants were instructed to “keep 
the peaks within the range”. During LOAD1 and LOAD2, 
a vertical bar graph was displayed representing the computed 
loading rate for each step. Participants were instructed to “keep 
the vertical bar as low as possible”. CAD, FSA and LOAD2 
conditions were preceded by a one-minute reference condition 
(REF) during which participants were asked to run without any 
biofeedback. REF trials were designed to ensure running pat-
terns reversed back to baseline before commencing a new 
experimental trial. At the end of each trial, the rate of perceived 
exertion scale (RPE) was administered to participants. Overall, 
the protocol had 30 minutes of running (warm-up included).

Data processing

While cadence and foot-strike angle were directly computed 
and displayed in real-time through the Visual3D Real-time tab 
(C-Motion, Inc., Rockville, MD, USA), for the loading signal, we 
accessed the vertical component (Fz) of the analogue output of 
the force plate amplifier (AMTI Gen5). This output was fed into 
an analogue input of a microcontroller (PIC). Two analogue 
thresholds were programmed into the firmware of the PIC, in 
this case, corresponding to 20% and 100% of body weight (BW). 
These are common thresholds used to compute average load-
ing rate (Milner et al., 2006). The 16-bit timer in the PIC was then 
used to measure the time taken for the force to rise from 20% 
to 100% BW. The time resolution of the complete process was 
240 μs (4 kHz). Immediately after the timer has been read, 
floating point mathematics in the PIC computed a digital 

value for the loading rate dividing the fixed normalized force 
value (80% BW) by the change in time. This value was sent to 
a digital-to-analogue converter for generating the analogue 
output that was fed back into the motion capture system 
(Nexus, Vicon Motion Systems, UK). Analogue signal was then 
streamed through the V3DServer (C-Motion, Inc., Rockville, MD, 
USA) into the V3D Real-time tab (C-Motion, Inc., Rockville, MD, 
USA) for displaying (Figure 1). Post-processing, all signals were 
exported in Visual3DTM software (C-Motion, Inc., Rockville, MD, 
USA) in order to compute mean cadence, mean foot-strike 
angle, and mean loading rate for each trial: BSL, CAD, FSA, 
LOAD1-2, and REF1-3. Kinematic and kinetic data were filtered 
at 15 Hz and 35 Hz, respectively, while no filter was applied to 
the loading rate signal. Foot-strike angle was the angle 
between foot and treadmill deck at foot contact event. This 
event was identified as the first instance the vertical compo-
nent of the ground reaction force passed a minimum threshold 
of 20 N. Cadence was defined on a step-by-step basis using the 
formula CAD = 60/step time; while the loading rate value at 
each step was obtained by reading the loading rate signal at 
a time between two consecutive foot contact events.

Data analysis

For each participant, the mean and standard deviation for 
loading rate, cadence, and foot-strike angle metrics were 
obtained from a set of 350 strides, from each test condition. 
Step-by-step time series data for cadence and foot-strike angle 
were exported to Matlab (The Matworks®, Inc., Natick, 
Massachusetts, United States), where data from each partici-
pant were concatenated in one vector per variable. Each value 
within the vector was transformed by its magnitude from the 
minimum value and relative to the data range, forming 
a rescaled vector set [0 1], using the formula: 

Xr ¼
Xi � min Xð Þ

max Xð Þ � min Xð Þ
(1) 

where Xi is the i value of the time series X, and Xr is the rescaled 
value i. Data was then separated back into independent condi-
tions. This procedure ensured normalization of the data and it 
simplified comparisons between individuals. The task manifold 

Figure 1. Schematic representation of the components and process of how direct feedback on loading rate was computed and presented.
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is a quasi-measure of motor equifinality (Cusumano & Dingwell, 
2013), defined as a planar sub-space where co-varying cadence 
and foot-strike angle correspond with a loading rate lower than 
the mean loading rate value for the baseline condition minus 
one standard deviation (Figure 2). The area covered by the 
projected set of bi-varying points onto the manifold space 
was then computed for each experimental condition using 
the boundary function in Matlab (The Matworks®, Inc., Natick, 
Massachusetts, United States), with a default shrink factor of 
0.5, and reported as arbitrary units (a.u.) squared.

Statistical analysis

A repeated-measures ANOVA with condition (BSL, CAD, FSA, 
LOAD1, LOAD2) as fixed factor was performed on cadence, 
loading rate, foot-strike angle and RPE values separately. The 
analysis was performed on the participants’ means and stan-
dard deviations of the dependent variables. Multiple compar-
isons with Bonferroni adjustment, and mean difference 
between conditions along with 95% confidence interval were 
calculated. Furthermore, a repeated-measures ANCOVA with 
condition (BSL, CAD, FSA, LOAD2) as fixed factor was computed 
on loading rate using the average loading rate on LOAD1 as 
covariate, to test whether a participant’s intrinsic ability to 
lower the load influenced loading rate in the other conditions. 
Prior to conducting ANOVAs, the assumption of normality was 
checked through the analysis of skewness and kurtosis of the 
data distribution and visual inspection of boxplots. Data asso-
ciated with skewness less than 2 and kurtosis less than 9 were 
evaluated as normally distributed (Schmider et al., 2010). 
Considering the within-participant analysis, the assumption of 
homogeneity of variance was not needed. A paired sample 
t-test on the area defined by the combinations of foot-strike 
angle and cadence able to decrease loading rate compared to 
baseline was performed to analyse goal-relevant solutions. We 
also performed a linear multiple regression to identify the 
contribution of foot-strike angle and cadence in explaining 
variance in loading, and Pearson correlation coefficient deter-
mined whether a correlation existed between loading rate and 
foot-strike angle. All statistical analyses were run using SPSS 

(version 25.0. Armonk, NY: IBM Corp.). Significance was set at 
p < 0.05 for all the analyses and the magnitude of changes was 
assessed using Effect Sizes (ηp

2) and defined as follows: <0.01 
trivial, 0.01–0.06 small, 0.06–0.14 moderate, and >0.14 large 
(Cohen, 1988).

Results

The assumption of the normal distribution of the data was met 
in all the analyses (skewness = 0.08 to 1.9; kurtosis = 0.24 to 
5.58). Means and standard deviations of loading rate, cadence, 
and foot-strike angle in all five conditions are presented in 
Figure 3.

Loading rate

There was a statistically significant effect of condition in loading 
rate (F[4,17] = 21.28, p < 0.01, ηp

2 = 0.56). The multiple compar-
isons analysis showed that loading rate in BSL was significantly 
higher than FSA (p < 0.01, delta = 62 [LI = 39, UI = 86]), LOAD1 
(p < 0.01, delta = 35 [LI = 7, UI = 63]) and LOAD2 (p < 0.01, 
delta = 54 [LI = 28, UI = 80]); loading rate in FSA was signifi-
cantly lower than CAD (p = 0.01, delta = −37 [LI = −67, UI = −7]) 
and LOAD1 (p < 0.01, delta = −27 [LI = −47, UI = −8]). 
Furthermore, while not being statistically significant, a close 
inspection of confidence interval suggests that loading rate in 
CAD was meaningfully lower than BSL (p = 0.057, delta = −25 
[LI = −51, UI = 0.5]), LOAD2 was meaningfully lower than CAD 
(p = 0.056, delta = −29 [LI = −58, UI = 0.5]) and LOAD1 
(p = 0.053, delta = −19 [LI = −38, UI = 0.1]). There was no 
statistically significant difference between FSA and LOAD2 
conditions.

ANCOVA showed a significant effect of condition (F[3, 
17] = 7.46, p < 0.01, ηp

2 = 0.32). Multiple comparisons analysis 
showed that loading rate in BSL was higher than CAD (p < 0.01, 
delta = 25 [LI = 6, UI = 45]), FSA (p < 0.01, delta = 62 [LI = 40, 
UI = 84]), and LOAD2 (p < 0.01, delta = 54 [LI = 30, UI = 79]); 
loading rate in CAD was significantly higher than FSA (p < 0.01, 
delta = 37 [LI = 14, UI = 60]) and LOAD2 (p < 0.01, delta = 29 

Figure 2. Illustration of how the three variables co-vary in a cloud of data points. A task manifold (2D plane) defines the surface containing all possible combinations of 
cadence and foot-strike angle with a corresponding loading rate lower than the mean loading rate value for the baseline condition minus one standard deviation. The 
fitted ellipse area of projected points on the manifold defines the size of goal-relevant solutions.
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[LI = 3, UI = 54]); no statistical difference between FSA and 
LOAD2.

The result from multiple regression shows that foot-strike 
angle and cadence statistically significantly predict loading 
rate, F(2,87) = 54.5, p < 0.01, R2 =.556. Only foot-strike angle 
added statistically significantly to the prediction, p < 0.01 
(Appendix B).

Cadence

There was a statistically significant effect of condition in 
cadence (F[4,17] = 26.3, p < 0.01, ηp

2 = 0.61). The multiple 
comparisons analysis showed that cadence in CAD was signifi-
cantly higher than BSL (p < 0.01, delta = 18 [LI = 15, UI = 21]), 
FSA (p < 0.01, delta = 13 [LI = 6, UI = 20]), and LOAD1 (p < 0.01, 
delta = 15 [LI = 11, UI = 20]); cadence in LOAD2 was significantly 
higher than BSL (p < 0.01, delta = 12 [LI = 3, UI = 20]) and 
LOAD1 (p < 0.01, delta = 9 [LI = 3, UI = 16]); there was no 
significant difference in cadence between CAD and LOAD2, 
LOAD2 and FSA, FSA and BSL, and LOAD1 and BSL.

Foot-strike angle

There was a statistically significant effect of condition in foot- 
strike angle (F[4,17] = 25.8, p < 0.01, ηp

2 = 0.60). The multiple 
comparisons analysis showed that foot-strike angle in BSL was 
significantly higher than CAD (p < 0.01, delta = 7 [LI = 2, 
UI = 11]), FSA (p < 0.01, delta = 15 [LI = 11, UI = 19]), and 
LOAD2 (p < 0.01, delta = 10 [LI = 5, UI = 16]); foot-strike angle in 
FSA was significantly lower than CAD (p < 0.01, delta = −8 
[LI = −14, UI = −3]), LOAD1 (p < 0.01, delta = −10 [LI = −16, 
UI = −4]), and LOAD2 (p = 0.03, delta = −5 [LI = −9, UI = −0.4]); 
foot-strike angle in LOAD2 did not significantly differ to CAD 
and LOAD1, foot-strike angle in CAD did not significantly differ 
to LOAD1.

There were no statistical differences (p > 0.05) between any 
of the REF conditions and baseline for either foot-strike angle, 
cadence, or average loading rate, ensuring that all runners 
reverted back to baseline state before commencing a new 
feedback condition.

Goal-relevant solution

The range of goal-relevant solutions that participants were able 
to use during LOAD2 was statistically (p = 0.007) larger (+58%) 
than the solutions found during FSA condition (35.8 vs 18.5 a.u. 
(Bredeweg et al., 2013) respectively, Figure 4).

Discussion

This study provides new evidence on how real-time visual bio-
feedback can be used to reduce the impact load during running. 
Our first hypothesis was partially confirmed, where indirect bio-
feedback on foot-strike angle would yield a lower impact load 
than providing direct biofeedback (LOAD1 or LOAD2). LOAD1 
condition was not different from CAD in mean loading rate, and 
higher than FSA and LOAD2 conditions. Both FSA and LOAD2 
conditions were effective at lowering the loading rate to less 
than half (−58%) of the baseline value, which was a larger reduc-
tion compared to Baggaley, et al. ( 2017). The decreased loading 
rate in the FSA condition is consistent with a decreased ankle 

Figure 3. Mean and SD for foot strike (A), cadence (B), and loading rate (C) among 
baseline (BSL) and all experimental conditions in which participants were asked 
to control a specific variable: cadence (CAD), foot-strike angle (FSA), loading rate 
pre (LOAD1), and loading rate post (LOAD2). * indicates statistically significant 
differences (p < 0.05). α indicates meaningful differences.
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joint stiffness (Garofolini et al., 2019) and leg stiffness (Shih et al., 
2019). However, although mechanically sound, using an 
increased plantarflexed foot strike as an isolated strategy may 
not be sufficient and functionally limiting. Over time this strategy 
may be dangerous for the body, possibly leading to injurious 
consequences (Wheat, 2005) such as patellofemoral pain 
(Kulmala et al., 2013).

The second hypothesis that the second direct biofeedback 
(LOAD2) will result in a larger area of goal-relevant solutions of 
foot strike and cadence compared to indirect biofeedback of 
foot-strike angle (FSA) was confirmed. Despite lowering load 
similarly, LOAD2 resulted in a larger area of goal-relevant solu-
tions than FSA (+58%; Figure 4). This may promote adaptability 
to changing task and environmental constraints, as runners will 
have a larger repertoire of solutions to “choose” from, and 
a higher likelihood to satisfy the new task demands. While this 
may suggest that using direct biofeedback on loading rate is 
beneficial, this result is conditional to the provision of informa-
tion (third hypothesis). Providing participants with information 
about functional movements has been shown to facilitate learn-
ing (Kernodle & Carlton, 1992; Newell et al., 1990) beyond the 
presentation of a feedback variable alone. In fact, instructing the 
runner to decrease loading rate, which can be ambiguous to 
non-runners and non-biomechanists, was somewhat effective 
the first time (LOAD1), but less effective than LOAD2. After 
runners had access to technique-related information like 
increasing cadence and changing their foot-strike pattern in 
CAD and FSA, when they were given the direct biofeedback 
again (LOAD2), they knew alternative movement strategies to 
modify this ambiguous metric and their performance improved. 
Therefore, in agreement with our third hypothesis, self- 
regulation in LOAD1 did not enable participants to fully explore 
the space of candidate solutions to match the task goal (Newell, 
1991). Thus, direct biofeedback on load should be preceded by 
indirect biofeedback on the main strategies (Richards et al., 
2018) (i.e., decrease foot strike, increase cadence); this will chan-
nel the search towards a set of co-varying states that may be 

a more optimal match for the task goal. Indirect biofeedback can 
be provided both explicitly – by verbally instructing the partici-
pant – or, as we did, implicitly by making the participant experi-
encing the effect of decreased foot-strike angle, and increased 
cadence on loading rate. Despite not testing this hypothesis, we 
consider the former strategy to be less effective because verbal 
instructions do not inform the participant on how to navigate 
through the space to find goal-relevant solutions (P. L. Laguna, 
2008; P. Laguna, 2004). Previous research has also shown that 
implicit learning is more robust under changing task and envir-
onmental constraints than explicit learning (Masters et al., 2008); 
we therefore suggest implicit strategies to be used by 
practitioners.

The main limitation of the study is that we tested recrea-
tional runners. While results may be generalized to a wide 
group of runners, more experienced runners may already be 
familiar with the concept of loading rate and the functional 
strategies that can be used to lower it. In this and previous 
studies (Baggaley et al., 2017; Crowell et al., 2010; Van den 
Noort et al., 2015; Wood & Kipp, 2013), experiments were run 
indoor, on a treadmill, in standardized and controlled condi-
tions, and the issue of adapting solutions to reduce load 
according to changes in task constraints was trivial. However, 
task and environmental conditions do change in outdoor 
running, and learning to reduce loading rate by following 
the indirect and direct method of biofeedback may be advan-
tageous. We suggest future research addressing this issue – 
how to provide direct and indirect feedback outdoor – which 
has important practical implications for coaches and runners, 
using, for example, accelerometer data (Chan et al., 2020). 
Moreover, this was an acute intervention and we did not 
examine the learning effect via retention or transfer tests. 
This limitation was accepted, as the research question related 
to complex, multiple interactions. However, in future studies, 
it will be important to test the persistence of performance 
under the same conditions as the biofeedback training (reten-
tion), and persistence of performance under different 

Figure 4. Distribution of functional combinations of cadence and foot strike (normalized values). Comparison is between the FSA condition (grey) and LOAD2 condition 
(white).
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conditions from training (transfer) using measurements of 
stability and/or adaptability (Margill, 2003) to determine the 
effectiveness of the biofeedback. In addition, although we 
argued that direct biofeedback on loading can be a valid 
option when it comes to “teach” or “retrain” people on redu-
cing the impact load during running (Crowell & Davis, 2011; 
Crowell et al., 2010; Ericksen et al., 2015; Wood & Kipp, 2013), 
a randomized controlled trial is needed to confirm if this kind 
of biofeedback may be more beneficial, and less limiting, for 
training and retrain purposes than providing indirect biofeed-
back on secondary variables – foot-strike angle and cadence. 
Lastly, the basic idea of task manifold and goal-relevant solu-
tions underpins multiple methods of covariance analysis 
(Latash et al., 2002; Müller & Sternad, 2004; Scholz & 
Schöner, 1999; Schöner & Scholz, 2007; Sternad et al., 2011). 
In contrast to more complex analysis (i.e., uncontrolled mani-
fold analysis) using the same basic idea, our approach was 
simpler and did not (did not need to) meet some of the 
assumptions that are required in such complex analytical 
methods.

Perspective

Previous work demonstrated that multiple strategies can 
lower the loading rate (Baggaley et al., 2017). However, it is 
still unclear whether it is possible to reduce the load by 
changing foot strike while keeping a constant cadence; 
hence, the effect of reduced foot strike boasted as “the solu-
tion” (Davis et al., 2017) may be partially explained by an 
increased cadence. It will be naïve to disregard cadence con-
trol as ineffective without acknowledging that a complicated 
relationship exists between foot-strike angle and cadence, so 
that it is very unlikely that someone running at constant 
speed is able to change foot strike without changing cadence 
and vice versa (unless forced to do so). Our results revealed 
that the interactive effect of cadence and foot-strike angle is 
only partially explaining variance in loading rate; thus, other 
gait variables such as leg stiffness (Shen & Seipel, 2018, 2015) 
may be responsible for loading control and ultimately the 
development of running-related injuries (Granata et al., 2002; 
Williams et al., 2003). In future studies, long-term effects of 
training intervention using direct biofeedback on loading 
should be evaluated, and the essential properties of the 
embodied neuro-musculoskeletal system that influence the 
leg force-length dynamics during loading more deeply 
considered.

Conclusion

Loading rate can be effectively reduced using both direct and 
indirect visual biofeedback. The use of direct biofeedback on 
loading, as opposed to indirect biofeedback on cadence or foot- 
strike angle, may unable the participants to explore a larger set 
of goal-relevant solutions. However, this requires precondition-
ing (informing either implicitly or explicitly) on what kinematic 
strategies are functional to the task. We proposed a structured 
sequence of direct and indirect biofeedback to facilitate the 
adoption of goal-relevant solutions, which may benefit running 

performance under changing environmental constraints.
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