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Abstract: Hyperglycaemia has a toxic effect on blood vessels and promotes coronary artery disease.
It is unclear whether the dysfunction caused by hyperglycaemia is blood vessel specific and whether
the dysfunction is exacerbated following an atherogenic diet. Abdominal aorta, iliac, and mesenteric
arteries were dissected from New Zealand White rabbits following either a 4-week normal or
atherogenic diet (n = 6–12 per group). The arteries were incubated ex vivo in control or high
glucose solution (20 mM or 40 mM) for 2 h. Isometric tension myography was used to determine
endothelial-dependent vasodilation. The atherogenic diet reduced relaxation as measured by area
under the curve (AUC) by 25% (p < 0.05), 17% (p = 0.06) and 40% (p = 0.07) in the aorta, iliac,
and mesenteric arteries, respectively. In the aorta from the atherogenic diet fed rabbits, the 20 mM
glucose altered EC50 (p < 0.05). Incubation of the iliac artery from atherogenic diet fed rabbits
in 40 mM glucose altered EC50 (p < 0.05). No dysfunction occurred in the mesentery with high
glucose incubation following either the normal or atherogenic diet. High glucose induced endothelial
dysfunction appears to be blood vessel specific and the aorta may be the optimal artery to study
potential therapeutic treatments of hyperglycaemia induced endothelial dysfunction.
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1. Introduction

Type 2 diabetes is a major risk factor for cardiovascular complications, including atherosclerosis and
subsequently coronary artery disease (CAD) [1,2]. Whilst diabetes and CAD can occur independently,
diabetes often accelerates atherosclerosis development, increasing the risk of adverse cardiovascular
events such as myocardial infarction [1]. The devastating effect of diabetes on the vascular system
is caused, in part, by hyperglycaemia, which is characterised by toxic levels of circulating blood
glucose [3,4].

Endothelial dysfunction is the first detectable sign of atherogenesis [5] and is a significant predictor
of future cardiovascular events [6]. The impairment of nitric oxide (NO) mediated endothelial
dependant vasodilation is a hallmark and one of the earliest indications of endothelial dysfunction [5].
Hyperglycaemia promotes endothelial dysfunction via a number of pathways, each of which are
associated with a common link, the generation of reactive oxygen species (ROS), and oxidative/nitrative
stress [7]. Specifically, hyperglycaemia induced mitochondrial electron transport system overproduction
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of superoxide binds with NO to produce peroxynitrite, reducing the bioavailability of NO and promoting
endothelial dysfunction [8,9].

Acute elevations in circulating blood glucose, such as that which occurs in the post-prandial state,
are a major risk factor for diabetes-induced endothelial dysfunction [10,11], perhaps more so than
fasting blood glucose and haemoglobin A1c (HbA1c) [12]. A number of studies have reported that
acute (2 to 6 h) ex vivo high glucose incubations can reduce endothelial-dependent vasodilation in
arteries of rabbits [13–15] and rats [16–19]. However, no previous studies have completed high glucose
incubations following a diet that mimics an atherosclerotic milieu, which is important to understand
the effects of acute hyperglycaemia in a disease state. Furthermore, a study from our laboratory has
shown that different vascular beds (thoracic aorta, renal, carotid, and iliac arteries) respond differently
to hormonal stimulus, indicating that vascular beds are not homogeneous in their responses [20].

As such, the aim of this study was to determine if acute ex vivo high glucose incubations would
impair endothelial function in aorta, iliac, and mesenteric arteries and whether the impairment
would be exacerbated by an atherogenic diet. We hypothesised that high glucose incubations would
reduce endothelium-dependant relaxation and that the impairment would be aggravated following an
atherogenic diet.

2. Materials and Methods

2.1. Ethical Approval

This study was approved by the Victoria University Animal Ethics Committee (#14/005) and
complied with the Australian National Health and Medical Research Council code for the care and use
of animals for scientific purposes (8th edition).

2.2. Animal Model

Male New Zealand White rabbits (n = 6–12) at 3 months of age were randomly allocated into
two groups and were fed a normal chow diet (Specialty Feeds, Glen Forrest, WA, Australia) or an
atherogenic diet (a normal diet combined with 1% methionine, 0.5% cholesterol, and 5% peanut oil;
SF00-218, Specialty Feeds, Glen Forrest, WA, Australia) for 4 weeks [21]. The animals were housed
in separate cages on a 12 h light/dark cycle at a constant temperature of 21 ◦C. Food and water were
supplied ad libidum.

2.3. Isometric Tension Myography

Following the 4-week diet, the rabbits were sedated with medetomidine (0.25 mL/kg), anaesthetised
with 4% isoflurane, and exsanguinated via severing the inferior vena cava. The arterial system was
immediately flushed with ice cold Krebs ((mM) 118 NaCl; 4.7 KCl; 1.2 MgSO4·7H2O; 1.2 KH2PO4;
25 NaHCO3; 1.25 CaCl and 11.7 glucose). The abdominal aorta (2 to 3 cm below the diaphragm),
external iliac artery (immediately after the aortic bifurcation), and main mesenteric artery were excised,
cleaned of connective tissue and fat, and cut into 3 mm rings. Blood vessel reactivity was measured
via an isometric tension organ bath system (Zultek Engineering, Melbourne, Australia), as previously
described [22,23]. Briefly, each vessel was incubated in physiological Krebs solution warmed to 37 ◦C
and bubbled with 95% oxygen and 5% carbon dioxide. Following 30 min acclimatisation, the rings
were strung up between 2 metal hooks attached to a force transducer to measure the tension of the
vessel. Each vessel was passively stretched to a tension comparative to its size—the abdominal aorta
to 2 g, the iliac artery to 1 g, and the mesenteric artery to 0.5 g. After 30 min, the vessels were again
stretched to their respective tension for a further 30 min. Subsequently, the vessels were incubated in
Krebs (11 mM glucose) or high glucose Krebs (20 mM or 40 mM glucose). Vasodilation of blood vessels
in 11 mM glucose has previously been shown to cause relaxation equivalent to incubation in 5 mM
glucose [14]. The respective Krebs solutions were refreshed every 30 min and incubated for a total
of 2 h. Following the incubation, blood vessels were pre-contracted with 3 × 10−7 M phenylephrine
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(aorta and iliac artery) or 3 × 10−7 M cirazoline (mesenteric artery). Once the contraction reached a
plateau, endothelium-dependant vasodilation was determined via a cumulative dose response curve
to acetylcholine (ACh) in half-log increments (10−8 M to 10−5 M). Maximal relaxation (Emax) was
determined as the maximal dilation below the phenylephrine/cirazoline plateau. The log dose of ACh
that produced half the maximal relaxation was reported as EC50. The area under the curve (AUC) was
determined as the total area of relaxation below the phenylephrine/cirazoline plateau. Endothelial
dysfunction was considered when there was an alteration to one or a combination of Emax, EC50, and
AUC that represented a reduction in the vasodilation of the blood vessels. All chemicals and reagents
were supplied by Sigma Aldrich, St. Louis, MO, USA unless otherwise specified.

2.4. Immunohistochemistry (IHC)

The blood vessel rings were placed into 4% paraformaldehyde, left overnight, and then
transferred into 1× phosphate buffered saline (PBS) at 4 ◦C. This was followed by paraffin processing
(Microm STP120, Thermo Scientific, Waldorff, Germany) and embedding in paraffin blocks. Sections
were cut at 5 µm, deparaffinised in xylene, rehydrated, and blocked with 1% goat serum in 10 mm TrisCl
(pH 7.4) for 20 min. Primary mouse monoclonal anti-bodies Anti-3-Nitrotyrosine [39B6] (Abcam 61392)
and eNOS type III (BD Biosciences 610296) at 1:100 dilution were applied overnight. A no primary
antibody control was completed to detect non-specific protein binding. Samples were subsequently
incubated with anti-mouse IgG for 1 h (Immpress HRP reagent kit, MP-7452 Vector laboratories).
Diaminobenzidine (DAB) (BD Biosciences 550880) was applied as a chromogen before counterstaining
with hematoxylin, dehydration, and mounting in Dibutylphthalate Polystyrene Xylene (DPX) [24].

2.5. IHC Semiquantification

Images of each vessel were taken at 40× magnification (Leica DFC 450F, Leica Microsystems,
Wetzlar, Germany). The endothelium was traced and the degree of staining (brown from DAB) was
quantified using the MCID programme (MCID 7.0, Interfocus, Linton, UK). Researchers were blinded
to the samples for quantification, using methods previously established [25–30]. The proportional
intensity (arbitrary unit) of staining was calculated as a ratio of colour intensity to proportional area,
normalised to the no primary antibody control. Finally, the immunoreactivity of each protein was
calculated based on a fold change from the respective control vessel (the control ring from the normal
diet or atherogenic diet groups).

2.6. Statistical Analysis

All results were expressed as mean ± standard error of the mean (SEM). Unpaired Student’s
t test was used for comparison between the diets. A one-way analysis of variance (ANOVA) was
used to analyse the comparison between glucose incubations and Post-hoc analysis was completed
using Fisher’s least significance difference (LSD) test to identify the differences between groups. Data
was analysed in Graphpad prism (version 7.1, Graphpad Software, San Diego, CA, USA). p < 0.05
was considered statistically significant, trends were reported when p = 0.05–0.099, and >0.099 was
considered not significant (n/s). Effect sizes are commonly used to study the clinical relevance of an
intervention and show the magnitude of the effect that it is producing [31–33]. The Cohen’s d (d)
equation was used to examine the magnitude of the effect of the high glucose incubations on blood
vessel relaxation and immunohistochemistry results. A large effect is considered when d is >0.8,
a medium effect between 0.5 and 0.79, and a small effect between 0.2 and 0.49 [34].

3. Results

The atherogenic diet significantly reduced the relaxation of the abdominal aorta as measured
by AUC (25%, p < 0.05) and EC50 (p < 0.05) compared to the normal diet (Figure 1A,B). In the iliac
artery, the atherogenic diet reduced EC50 (p < 0.05) and there was a strong trend for a reduction in
AUC (17%, p = 0.06) compared to the normal diet (Figure 1C,D). Similarly, in the mesenteric artery, the
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atherogenic diet shifted EC50 to the right (p < 0.05) and there was a strong trend for a reduction in
AUC (40%, p = 0.07) (Figure 1E,F).
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not significant (p > 0.1) (Figure 2A,C, Table 1). Incubation of the aorta in 20 mM glucose for the 
atherogenic diet fed rabbits caused a shift to the right of the dose response curve reducing EC50 (p < 
0.05) (Figure 2B and Table 1). No dysfunction was caused in the iliac artery following the normal diet, 
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Figure 1. Ach-induced dose response curves in abdominal aorta (A), iliac artery (C), and mesenteric
artery (E) incubated ex vivo for 2 h. Comparison between normal diet (closed circles) and atherogenic
diet (open circles). Inset: EC50 and Emax statistical significance (p) and effect size (d) between diets.
AUC in abdominal aorta (B), iliac artery (D), and mesenteric artery (F) presented as arbitrary values;
numbers above columns represent the statistical significance (p) and effect size (d) between diets.
n = 7–12 per group. All data mean ± SEM. * p < 0.05 ND vs. AD, ** p < 0.01 ND vs AD, ˆ p 0.05–0.09
ND vs. AD. ND: normal diet; AD: atherogenic diet; Con: normal Krebs, AUC: area under the curve, d:
Cohen’s d.

For the rabbits who were fed a normal diet, incubation of the aorta in 20 mM glucose produced
a strong trend towards a reduction in AUC (18%, p = 0.08) and Emax was reduced by 10%, but this
was not significant (p > 0.1) (Figure 2A,C, Table 1). Incubation of the aorta in 20 mM glucose for
the atherogenic diet fed rabbits caused a shift to the right of the dose response curve reducing EC50

(p < 0.05) (Figure 2B and Table 1). No dysfunction was caused in the iliac artery following the normal
diet, irrespective of glucose incubation (Figure 2D,F). Whereas, relaxation of the iliac artery from the
atherogenic diet fed animals altered EC50 in the 40 mM (p < 0.05) incubated group (Figure 2E and
Supplementary Table S1). Endothelial dependent relaxation of the mesenteric artery was not negatively
affected by the high glucose incubations following either the normal or atherogenic diet (Figure 2G–I
and Supplementary Table S1).
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Figure 2. Ach-induced endothelium-dependent dose response curves in abdominal aorta (A,B),
iliac artery (D,E), and mesenteric artery (G,H) incubated ex vivo for 2 h in respective solution.
Comparison between Con (circles + line), 20 mM (squares + dashes), and 40 mM (triangles + dots).
AUC (C,F,I) presented as arbitrary values. n = 6–12 per group. All data mean ± SEM. Con: normal
Krebs; 20 mM: 20 mM glucose Krebs; 40 mM: 40 mM glucose Krebs; ND: normal diet; AD: atherogenic
diet; AUC: area under the curve; Ach: acetylcholine.

Table 1. Log EC50, Emax and AUC results from ND and AD fed rabbits incubated ex vivo for 2 h in
control, 20 mM, or 40 mM glucose solution.

Abdominal
Aorta n Log EC50 ±

SEM
p vs.
Con

p vs.
Con

Emax ±
SEM

p vs.
Con

d vs.
Con

AUC ±
SEM

p vs.
Con

d vs.
Con

ND Con 7 −7.59 ± 0.12 −81 ±13 196 ± 18
ND 20 mM 7 −7.43 ± 0.09 n/s 0.54 −70 ± 11 n/s 0.32 160 ± 11 0.08 ˆ 0.92
ND 40 mM 7 −7.65 ± 0.1 n/s 0.18 −73 ± 2 n/s 0.29 177 ± 12 n/s 0.48

AD Con 10 −7.10 ± 0.13 −70 ± 2 146 ± 13
AD 20 mM 11 −6.81 ± 0.06 0.03 * 0.88 −78 ± 3 0.04 * 0.97 141 ± 9 n/s 0.13
AD 40 mM 11 −6.93 ± 0.07 n/s 0.52 −71 ± 3 n/s 0.18 138 ± 10 n/s 0.21

ND: normal diet; AD: atherogenic diet; Con: normal Krebs; 20 mM: 20 mM glucose Krebs; 40 mM: 40 mM glucose
Krebs; 2 h: 2 h incubation; AUC: area under the curve; d: Cohen’s d; n = number of rabbits. Statistical significance
(p) and effect size (Cohen’s d) in comparison to the control group for each diet. * p < 0.05 vs. control, ˆ p 0.05–0.99
vs. control.
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Representative images of IHC stained vessels are presented in Figure 3. The incubation of blood
vessels in 20 mM and 40 mM glucose for 2 h did not significantly affect the immunoreactivity of eNOS
and NT in any group. NT was increased in the 40 mM glucose normal diet group by 0.9 fold compared
to the control, which had a trend towards significance (p = 0.9) and a large effect (d = 0.99) (Figure 4A).
A medium to large effect (d) was present in a number of groups, but this was not associated with
statistical significance (Figure 4A–F).
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Figure 3. Representative images of immunohistochemistry stained blood vessels; abdominal aorta
(A–C), iliac (D–F), and mesentery (G–I) from normal diet fed rabbits. No primary antibody control
(A,D,G), nitrotyrosine (NT) (B,E,H), and endothelial nitric oxide synthase (eNOS) (C,F,I) taken at
40× magnification. Inset—image of whole vessel taken at 4× magnification (abdominal aorta) or
10×magnification (iliac and mesentery).
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Figure 4. Immunoreactivity of NT and eNOS in abdominal aorta (A,B), iliac artery (C,D), and mesenteric
artery (E,F). Immunoreactivity is calculated based on the intensity of the staining present on the
endothelium, which is an arbitrary unit and expressed as fold change from the respective control.
Numbers above columns represent the statistical significance (p) and effect size (d) in comparison to
the control group for each diet. ˆ p 0.05–0.99 vs. control. Con: normal Krebs; 20 mM: 20 mM glucose
Krebs; 40 mM: 40 mM glucose Krebs; ND: normal diet; AD: atherogenic diet; NT: nitrotyrosine; eNOS:
endothelial nitric oxide synthase.

4. Discussion

We report for the first time that high glucose-induced endothelial dysfunction is blood vessel
specific. The abdominal aorta is the most susceptible to high glucose induced dysfunction, with the
iliac artery affected to a lesser degree, and the mesenteric artery exhibited no signs of dysfunction.

High fat diets are commonly used to study the development of endothelial dysfunction and
atherosclerosis in animals. The 4-week atherogenic diet used in this study has previously been shown
to exhibit endothelial dysfunction in abdominal aorta of rabbits [21]. We confirm the findings of
atherogenic diet induced endothelial dysfunction in the aorta and demonstrate endothelial dysfunction
in the peripheral iliac and mesenteric arteries. Altogether, this suggests that the atherogenic diet
functions systemically to cause dysfunction.

Hyperglycaemia is a major clinical risk factor for the development of endothelial dysfunction,
atherosclerosis, and CAD. This is the first study to examine the effect of high glucose incubations
on endothelial function of blood vessels in various locations. We demonstrate that the abdominal
aorta is the artery that is most prone to developing endothelial dysfunction following both the
normal and atherogenic diet. This confirms findings from several previous studies, which reported
endothelial dysfunction in rat and rabbit aorta following acute high glucose incubations [13,16,35].
The iliac artery exhibited minor high glucose-induced dysfunction following the atherogenic diet,
but not following the normal diet. As such, the iliac artery appears to be more susceptible to
developing high glucose-induced dysfunction in a disease state and not in a healthy environment.
Alternatively, the mesenteric artery did not develop any signs of endothelial dysfunction. Susceptibility
to atherosclerosis can depend on haemodynamic factors such as shear stress and oscillating flow, which
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can vary between vascular sites depending on the location of arterial branches or bifurcations [36]. The
exposure of the endothelium to low shear stress is one of the most important factors in atherosclerosis
development and is an important consideration when examining endothelial dysfunction in vivo [37].
Furthermore, endothelial dysfunction is not a systemic condition and some blood vessels can often
resist the development of dysfunction more than others [38]. For example, vascular beds such as
the internal mammary artery and other conduit arteries have increased NO production, decreased
vasoconstriction, and have higher shear stress than other vessels [38,39]. Overall, there is variance
in the effect of the high glucose incubations on endothelial function in different blood vessels, which
may be explained, at least in part, by variations in the structure, physiological effects, and disease
susceptibility of each vessel.

In this study, the development of endothelial dysfunction to high glucose incubation was not
dose-dependent. The 20 mM glucose incubation caused the largest reduction in endothelium dependent
vasodilation in the aorta from both the normal diet fed and atherogenic diet fed rabbits. This finding is
in contrast with a previous study, which reported that incubation of rabbit aorta in 44 mM glucose
aggravated dysfunction compared to the 20 mM incubation [13]. Similarly, the relaxation of the third
order branches of the mesenteric artery from female Wistar rats following incubations in 20 mM
and 45 mM glucose solution for 2 h elicited a dose-dependent reduction in endothelial-dependent
vasodilation [19]. The conflicting results in this study possibly occurred as a result of species or
methodological differences. Taken together, this study demonstrates endothelial dysfunction in the
aorta following 2 h high glucose incubations in the normal and atherogenic diets. The dysfunction
caused by the 2 h 20 mM glucose incubation provides a model for studying high glucose-induced
blood vessel dysfunction that mimics an acute post-prandial response.

In a normal physiological environment, eNOS synthesises NO, which has a number of
anti-atherogenic functions including vasodilation [40]. An acute state of hyperglycaemia can reduce
eNOS expression and subsequently NO bioavailability, resulting in endothelial dysfunction [41].
Hyperglycaemia also promotes electron transport system overproduction of superoxide anion and
via signalling pathways, produces peroxynitrite, a potent ROS [42]. Mechanistically, NT is used as
a marker of peroxynitrite production, indicating the presence of nitrative stress [42]. Although not
significant, the increase in NT observed in the aorta following high glucose incubations suggests
the presence of nitrative stress in the current study—an effect that has previously been reported in
rabbit aorta in a disease state [43]. Several recent studies, in both human and animal models, have
identified that increased fasting glucose levels as a result of a high fat diet cause reductions in eNOS
and plasma nitrate [44,45]. Overall, the evidence suggests that an increase in oxidative/nitrative stress
and a reduction in eNOS are characteristic of hyperglycaemia-induced dysfunction. In this study, we
did not find any significant alterations in NT or eNOS, but moderate to large changes in the effect size
suggests that future research should examine this in more detail.

A potential limitation of the current study is that superoxide anion or other ROS forms were
not directly measured to determine the exact mechanistic effect of the high glucose incubations.
Furthermore, NT alone may not provide the most accurate representation of hyperglycaemia induced
oxidative stress as it may be influenced by other factors including the atherogenic diet [46]. We examined
total eNOS expression in combination with NT as an indirect measure of superoxide overproduction
and peroxynitrite induced oxidative stress.

In conclusion, the effect of acute high glucose incubations on blood vessel function is blood
vessel specific and in some cases, is aggravated by an atherogenic diet. The abdominal aorta may be
the optimal artery to study potential therapeutic treatments of hyperglycaemia-induced endothlial
dysfunction and CAD in rabbit models.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/12/7/2108/s1.
Table S1: Log EC50, Emax and AUC results from ND and AD fed rabbits incubated ex vivo for 2 hr in control,
20 mM or 40 mM glucose solution.
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