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 Abstract 

Comprehensive scrutiny is necessary to achieve an optimised set of operating conditions for a 
pyrolysis reactor to attain the maximum amount of the desired product. To reach this goal, a 
computational fluid dynamic (CFD) model is developed for biomass fast pyrolysis process and it is 
validated using the experiment of a standard lab-scale bubbling fluidised bed reactor. This is followed 
by a detailed CFD parametric study. Key influencing parameters investigated are operating 
temperature, biomass flow rate, biomass and sand particle sizes, carrier gas velocity, biomass injector 
location, and pre-treatment temperature. Machine learning algorithms (MLAs) are then employed to 
predict the optimised conditions that lead to the maximum bio-oil yield. For this purpose, support 
vector regression with particle swarm optimisation algorithm (SVR-PSO) is developed and applied 
to the CFD datasets to predict the optimum values of parameters. The maximum bio-oil yield is then 
computed using the optimum values of the parameters. The CFD simulation is also performed using 
the optimum parameters obtained by the SVR-PSO. The CFD results and the values predicted by the 
MLA for the product yields are finally compared where a good agreement is achieved. 

Keywords: Support Vector Regression (SVR), Particle Swarm Optimisation (PSO), computational 
fluid dynamic (CFD) simulation, bubbling fluidised bed reactor, fast pyrolysis process 

1. Introduction 

Environmental concern about global warming and climate change, as well as energy crisis such as 
the depletion of fossil fuels, have encouraged researchers to develop eco-friendly energy sources [1]. 
An alternative sustainable source of energy is biomass which significantly produces lower sulfur 
dioxides (SO2) and particulate matter (PM) as well as less carbon dioxide (CO2) due to its carbon 
neutrality [2]. Biomass can be obtained from various natural sources such as agricultural products 
and waste [3-6], forest residue [7], land and aquatic animals and it has a high conversion capability 
to other forms of energy, i.e. thermochemical conversions such as direct combustion, gasification, 
and pyrolysis process [8]. Products generated by pyrolysis processes have some benefits over other 
thermochemical conversion processes in term of their applications. For instance, bio-oil as liquid fuel 
can be a source of high-value chemicals, solid biochar is a source for adsorbent, soil amendment, 
and/or catalyst, while biogases are commonly employed for energy recovery [9-12]. There are three 
main types of pyrolysis processes; slow, fast, and flash pyrolysis. Solid biochar is the main product 
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of slow pyrolysis [13] whereas, fast and flash pyrolysis are favourable for the production of liquid 
bio-oil. Co-generation of heat and power in boilers, supplementary fuel in gas turbines and diesel 
engines are some of the applications of pyrolysis bio-oil [10, 14]. 

Pyrolysis process is the oxygen-free thermal decomposition of biomass. Generally, fast pyrolysis 
process occurs in a few seconds at moderate temperatures (about 500 °C). During the past years, fast 
pyrolysis process has been studied by many researchers experimentally [3, 15-18] and numerically 
using Computational Fluid Dynamics [19-24]. Although experimental studies are highly valuable, 
they are expensive, time-consuming and limited due to the shortage of measurements in severe reactor 
conditions (high temperature and pressure). Alternatively, CFD can provide a detailed understanding 
of complex physical phenomena inside the reactor with a relatively lower cost. Many types of 
research have focused on CFD simulations of the pyrolysis process [24-28] and studied the effects of 
different operating factors on the product yields [25]. A parametric study has confirmed that the 
optimum temperature for the production of bio-oil is in the range of 500–525 °C. Shorter residence 
time at higher temperatures reduces chances for the secondary crack of condensable vapours to non-
condensable gases which is favourable to achieve higher bio-oil yields. Two options are proposed for 
having shorter residence time, these options are higher nitrogen velocities and higher biomass injector 
heights.  

Another important parameter is the particle sizes. The intraparticle temperature gradient is higher for 
larger biomass particle sizes, leading to accumulation of unreacted biomass inside the reactor. The 
use of larger sand particles requires higher carrier gas velocity for efficient particle fluidisation which 
results in a higher rate of bio-oil productions. Niemelä et al.  [29] suggest that while using large scale 
CFD simulation, considering the whole size distribution results in more accurate devolatilisation 
schemes. To address the effect of the biomass size on the devolatilisation scheme, ground and sieved 
biomass particles with three different size ranges are considered; small (112-125 µm), medium (500-
600 µm) and large (800-1000 µm) fractions. While faster devolatilisation is predicted for small 
particles, medium and large particles show similar mass loss behaviour. The difference between the 
chemical kinetics of small particles and medium/large ones are explained by the compensation of the 
internal heat transfer resistance which is neglected in the isothermal assumption. 

Preheating the biomass up to the temperature of 400 K also leads to increased bio-oil yields. A higher 
rate of the bio-oil yield production is expected from the feedstocks that have higher contents of 
cellulose and hemicellulose. The highest amount of bio-oil is expected from pyrolysis of pure 
cellulose feedstock [25, 26]. When lignin is considered as a feedstock, the temperature has a minor 
effect on the bio-oil yield for values higher than 530 ºC. The molecular weight of bio-oil is a key 
feature for the upgrading of the oil to chemicals and/or fuels and it is managed with pressure when 
different types of lignins with various molecular weight are utilised [30].  

In the previous work by Jalalifar et al. [25], effects of various operating parameters on product yields 
variations were separately studied by varying only one parameter while other parameters were 
maintained matching the base condition [25]. However, in reality, operating parameters are not 
independent and considering a variation of all the parameters simultaneously is essential to effectively 
optimise the process. Such CFD analysis requires a high number of simulations which is 
computationally expensive. Alternatively, machine learning algorithms (MLAs) can be applied to 
predict the optimised condition by considering a set of parameters to achieve the maximum 
favourable product.  
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The substantial advancement of MLAs has spanned the application of this data-driven approach in 
science and engineering. Recently, MLAs have been introduced in gasification and pyrolysis 
processes. Çepelioğullar et al. [26] employed MLAs to predict the thermal behaviour of refuse-
derived fuel (RDF) as heterogeneous fuel at the heating rates where the experimental data was not 
available. Mutlu and Yucel [31] considered two types of machine learning classifiers to estimate the 
gas composition and its calorific value obtained by gasification of woody biomass in a downdraft 
gasifier. The non-linear relationship between kinetic parameters and biomass components has 
encouraged the application of MLAs for analysing such complex relationships [32]. In a study by 
Sunphorka et al. [33], MLA was applied to obtain the correlation between biomass components, 
including cellulose, hemicellulose, and lignin, and the kinetic parameters such as activation energy 
(Ea), pre-exponential factor (k0) and reaction order (n). They found the highest values of all kinetic 
parameters occurred for cellulose. Hough et al. [34] presented MLAs and decision trees to reduce the 
computational cost of using detailed kinetic models in simulations. Sun et al. [35] applied MLAs to 
study effects of operating temperature, biomass particle size, and space velocity on predicting the 
yield of the gas products from pyrolysis of pine sawdust which is a typical industrial biomass waste.  

Machine learning techniques use various regressions such as Linear Regression (LR), Least Absolute 
Shrinkage and Selection Operator (LASSO), Least Angle Regression (LARS) and SVR to analyse 
the relationship between a dependent variable and a set of independent variables [36, 37]. While LR, 
LASSO and LARS are linear methods and suitable for linear data, SVR performs more effectively 
for non-linear datasets. In the present study, SVR is applied because our CFD dataset showed a non-
linear complex trend. Particle Swarm Optimisation (PSO) algorithm is also employed to find an 
optimum value after data modelling by SVR. The implementation of the PSO algorithm is relatively 
easy and it requires a fewer number of particles to be tuned [38]. In this study, data materials are 
small and not diverse, which may reduce the generalisation of the regressor [39]. However, the use 
of SVR model diminishes this issue due to its appealing property and high capacity for generalisation 
with a relatively small number of training data. SVR minimises the generalised error bound and 
includes the combination of the training error and a regularisation term. A regularised term controls 
the complexity of the hypothesis space that achieves a generalised performance instead of only 
minimising the observed training error. Moreover, unlike Simple Linear Regression (SLR) in which 
the results depend on Gauss-Markov assumptions, SVR is a non-parametric technique. Hence, the 
model output does not rely on distributions of the underlying dependent and independent variables 
but it is affected by kernel functions [40, 41]. 

This paper first presents the CFD model for a 2-D standard lab-scale bubbling fluidised bed reactor. 
A parametric study is then conducted to address the effect of the most important influential parameters 
on the product yields in the process. It is followed by the development of a hybrid SVR-PSO model 
to predict an optimised set of parameters that achieve the maximum bio-oil yield. The model is trained 
using the datasets provided by the CFD analysis. The set of parameters attained by the SVR-PSO 
model are then applied to the CFD simulation to compute new values of product yields. Finally, the 
values obtained from MLAs and CFD are statistically compared to analyse the accuracy of the SVR-
PSO model. 

2. Methodology 

As illustrated in Fig.1, the overall methodology can be divided into three steps. In the first step, the 
CFD code reads the input data such as initial mass and volume fractions, temperature, pressure, and 
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inlet velocity. All the flow variables including velocity, pressure, temperature, and the volume 
fraction of each phase are then computed by solving the governing equations. Similarly, the species 
mass fractions are obtained using the chemical reactions and species transport equations. Once the 
statistically steady state condition is achieved for the outflow variables, including the outflow 
temperature and the product outflux, the yield of the products is calculated. In the second step, the 
MLA model takes the simulation parameters and the product yields obtained using the CFD (totalling 
82 datasets) as the input. The MLA model is initially trained by the CFD data, and then the SVR is 
applied to estimate the values for points which are not available in the input CFD datasets. This is 
followed by fitting the best function to the given data. In the next sub-step, the PSO algorithm is 
employed to find an optimum set of parameters based on the defined fitness function. When the 
optimum set of parameters for having maximum condensable yield is obtained, all the product yields 
will be recalculated. In the third step, the obtained optimum values for a set of parameters are given 
to the CFD code as the input. The CFD simulations will run until the statistically steady state condition 
is achieved and consequently, the product yield is computed. Finally, the obtained product yields 
using the MLA and the CFD are evaluated and compared. The optimum values are determined if the 
deviation between MLA and CFD results is less than 5%. Details of the CFD simulation and the MLA 
model are described in the following sections. 

Fig.1. Developed methodology for obtaining an optimised solution of the pyrolysis reactor 
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2.1. Computational Fluid Dynamics 

A numerical analysis of a pyrolysis process includes modelling of reacting multi-phase flow dynamics 
that solves the fundamental governing equations including the continuity, momentum, energy, and 
species mass fraction. The eulerian-granular approach is adopted for modelling the multi-phase flow 
dynamics. A coupled Multi-Fluid Model (MFM) and a chemical solver are employed to describe fast 
pyrolysis of biomass. When the thermal decomposition process which a single biomass particle 
undertake in the absence of oxygen is known, the chemical reactions are considered in the phase 
interactions and coupled with the MFM model. The MFM and chemical kinetics are briefly discussed 
in the following sections. 

2.1.1. Multi-fluid model 

The MFM treats all phases as inter-penetrating continua. In the present study, the MFM consists of 
the gaseous phase as the primary phase and two solid phases as the secondary phases (see Fig. 2). 
The conservation equations (mass, momentum, energy, and species) for each separate phase are 
solved using phase volume fraction. The governing equations also consider the stress-strain tensor in 
the momentum equation, the conductive heat flux in energy equations, and the diffusive flux in 
species transport equations. In addition to the aforementioned equations, models for phase interaction 
terms are required. This includes the empirical correlations for drag force and heat transfer as well as 
the Kinetic Theory of Granular Flow (KTGF) [42], which provides granular temperature, pressure, 
and viscosity. The reader is referred to the literature for further details [22, 43-45]. 

 

Fig. 2. Chemical reactions and exchange of mass, momentum, and heat between phases. 
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2.1.2. Chemical kinetics 

Development of the detailed decomposition scheme of the biomass pyrolysis process is very 
challenging. It is common to adopt methods such as a lumped global kinetics which is able to address 
the devolatilisation and the secondary cracking due to involving many unknown elementary reactions 
[46], and formation of compounds for a specific feedstock [47]. Shafizadeh and Chin [48] first 
proposed a single-component single-step reaction scheme for thermal deterioration of wood, yet their 
model was unable to predict the secondary cracking [49]. Later it was proposed that biomass is first 
devolatilised to reach the activated state [50]. Then they proposed single-component multistep 
reaction kinetics to address this issue [48]. Later, multicomponent single-step reaction kinetics was 
proposed to account for the effects of biomass components such as cellulose, hemicellulose and lignin 
[51]. Ultimately, multicomponent multistep reaction kinetics, which is believed to be the most 
practicable method, was introduced by researchers such as Ward and Braslaw [52], Koufopanos et al. 
[53, 54], Orfao et al. [55], and Miller and Bellan. [56]. More sophisticated schemes are also available 
in the literature that considers more reactions in the mechanism [57, 58].  

In this study, lignocellulosic biomass is considered for the feedstock. Thus, a superimposed reactions 
method, based on the multicomponent multistep reaction kinetics, is a suitable approach for the fast 
pyrolysis of the biomass. The lignocellulosic biomass can be expressed by Equation (1).  

Biomass = α Cellulose + β Hemicellulose + γ Lignin, (1) 

where (α,β,γ) represents the initial mass composition of biomass. As shown in Fig. 2, in the first 
reaction step, virgin biomass is converted into the active biomass and then reacts and produces 
condensable vapours, non-condensable gases and biochar. At higher temperatures, condensable may 
react and form non-condensable as a result of the secondary reaction. Eleven different species are 
involved in the process. The gas phase consists of condensable vapours, non-condensable gases, and 
nitrogen (three species). The biomass phase is made up of virgin cellulose, virgin hemicellulose, 
virgin lignin, active cellulose, active hemicellulose, active lignin, and biochar (seven species) while 
the sand phase includes one species. The sand phase and nitrogen are inert and hence they do not 
participate in the chemical reactions. However, the amount of nitrogen will affect the partial pressure 
of the gas phase and the reaction rate constants. The reaction rates are computed using Equation (2). 

ki=Ai exp[-Eai/(RT)], (2) 

where ki is the rate constant for reaction “i”, and Ai and Eai are the associated Arrhenius constant and 
activation energies, respectively, “T” is the temperature and “R” is the gas constant. Table 1 illustrates 
the values of the kinetic parameters of the reaction scheme. The formation ratio for the char 
component, Y, is 0.35, 0.6, and 0.75 for cellulose, hemicellulose, and lignin, respectively [45]. Table 
2 provides the thermo-physical properties of the species. The density of gaseous species and the 
viscosity of the solid species are computed using the incompressible ideal gas model and the granular 
models, respectively. 
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Table 1. Pre-exponential factors and activation energies for the biomass component [45]. 
Components Reaction A(s-1) E(MJ/kmol) Heat release, Δh (MJ/kmole) 
Cellulose k1C 

k2C 
k3C 

2.8×1019 

3.28×1014 

1.3×1010 

242.4 
196.5 
150.5 

0 
41.35 
-3.24 

     
Hemicellulose k1H 

k2H 
k3H 

2.1×1016 

8.75×1015 

2.6×1011 

186.7 
202.4 
145.7 

0 
33.69 
-2.64 

     
Lignin  k1L 

k2L 
k3L 

9.6×108 

1.5×109 

7.7×106 

107.6 
143.8 
111.4 

0 
53.09 
-4.16 

     
Tar k4 4.25×106 108.0 -4.2 

Table 2. Thermo-physical properties of species [59]. 

Species 
Density 

ρ (kg/m3) 

Particle 
diameter 

ds (m) 

Molecular 
weight 

(g/mol) 

Heat capacity 

Cp (J/kg K) 

Dynamic viscosity 

µ (kg/ms) 

Thermal 
conductivity  

k (J/kg K) 

Condensable  - - 100 2500  3×10-5 2.577×10-2 

Non-condensable - - 30 1100 3×10-5 2.577×10-2 

N2 - - 28 1121 3.58×10-5 5.63×10-2 

Biomass 400 4×10-4 * 2300 - 0.3 

Biochar 2333 4×10-4 12.01 1100 - 0.1 

Sand 2649 5.2×10-4 60.08 800 - 0.27 

*Molecular weight of the biomass components are 162.14, 132.11, and 208.21 (g/mol) for cellulose, hemicellulose, and 
lignin, respectively. 

2.1.3. The CFD validation 
The experiment of Xue et al. [39] focusing on a lab-scale bubbling fluidised bed reactor is selected 
for case study validation. Any pre-processing activities, such as the preparation of the feedstock, 
biomass grinding and dehydration, and post-processing activities including biochar removal, bio-oil 
catches and upgrading, are beyond the scope of the current work as it mainly focuses on the modelling 
of the reactor itself. Fig. 3 shows the 2-D geometry and the computational domain. The selected initial 
and boundary conditions are illustrated in Table 3.  

The CFD simulations are conducted using ANSYS FLUENT V18.00 and run on a high-performance 
computing (HPC) system supported by Tasmanian Partnership for Advanced Computing. The 
computations are carried out using Xeon (R) E5-2620 processor with 14 CPUs. After the steady state 
condition is achieved, the data is collected over 20 seconds of physical time which is about 336 CPU-
hours for each second to compute the average yield products. The computational time to achieve the 
steady state condition varies between 2352 CPU-hours to 4707 CPU-hours, depending on the values 
of influential parameters. It was found that the initial transient period is longer for cases with higher 
temperatures. 
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The maximum Reynolds number in a studied range of parameters (carrier gas velocity and 
temperature) is Re=595.7. In addition, Gao et.al [60] verified that not only both laminar and turbulent 
models are appropriate for predicting the hydrodynamics of gas-solid flow behaviour in fluidized bed 
reactor, but also laminar model presents a better hydrodynamics prediction than the turbulent model. 
Therefore, the multi-phase laminar flow is modelled using the Eulerian-Granular approach. Both 
energy and species transport equations are also solved to compute chemical reactions and heat transfer 
between phases. The solution includes two fractional steps. Firstly, the multiphase species are solved 
only spatially by setting the reaction terms to zero. Secondly, the reactions terms in each cell are 
integrated by applying a stiff Ordinary Differential Equation (ODE) solver. A second-order implicit 
method is adopted for the time discretisation. The least-square cell-based is used for the pressure-
based solver that uses SIMPLE-algorithm for the pressure-velocity coupling. The second-order 
(upwind) method is adopted for the discretisation of the convection term in the momentum, energy 
and species equations. The QUICK algorithm is applied for the volume fraction calculations. Finally, 
a hybrid initialisation is applied for each phase, particularly for the sand phase by considering the 
initial packing limit. To avoid numerical instability, the simulations start with a time step size of 
1 × 10-4 s. Then, depending on the mesh size, the time step is adjusted. The sum of the species mass 
fraction values must be equal to 1. Therefore, the mass fraction for Nth species is determined as one 
minus the sum of the N-1 solved species mass fractions. To minimise the numerical error, it is more 
efficient if the Nth species is selected as the species with the overall largest mass fraction. 

 
Fig 3. (a) Schematic geometry and (b) computational domain of the 2-D model of bubbling fluidised bed 
reactor
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Table 3. Boundary and initial conditions 
Biomass Inlet 

Temperature: 300 K 
Diameter: 0.4 mm 
Feed rate: 100 g/h 

Nitrogen Inlet 
Velocity: 0.36 m/s 
Temperature: 773 K 

Outlet 
Outflow boundary condition 

Wall 
No-slip velocity condition for solid walls 
The constant temperature of 800 K up to a height of 8 cm. 

Initial conditions 
Sand diameter: 0.52 mm  
Initial packing limit height: 5.5 cm  
Sand Porosity: 0.41 
Bed temperature: 773 K 
Biomass initial mass fraction: (α, β,γ) = (0.41, 0.32, 0.27) 

Four different mesh resolutions are considered for the grid dependency study. The maximum sand 
particle size is 1 mm and the mesh size is 7.62, 3.81, 2.54, and 1.91 mm, for cases 1 to 4, respectively. 
The size of the cells, even the smallest ones are still larger than the size of the particles. For Cases 1 
to 4, the number of cells is 225, 910, 2055, 3640, respectively. Fig. 4 shows that along the centreline 
of the reactor at statistically steady state condition. It is worth noting that the feedstock that has been used 
for the mesh dependence study is pure cellulose. It can be seen that the temperature initially changes as 
the mesh resolution increases while further mesh refinement marginally changes the results, 
confirming Case 3 with 2055 cells provide an acceptable level of accuracy. Temperature distribution 
along the centreline of the reactor at statistically steady state condition. It is worth noting that the 
feedstock ben used for the mesh dependence study is pure cellulose. It can be seen that the temperature 
initially changes as the mesh resolution increases while further mesh refinement marginally changes 
the results, confirming Case 3 with 2055 cells provide an acceptable level of accuracy. 

 
Fig. 4. The gas temperature along the axial direction for different grid sizes. case 1: 225 cells, case 2: 910 

cells, case 3: 2055 cells, and case 4: 3640 cells. 
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The product yields are obtained by the time integration at the reactor outlet after the statistically 
steady state condition is achieved. For instance, the condensable yield is computed by using Equation 
(9). 

[ ]∫ ∫∫ ∫
++

+++=
Δtt

t
outlet ubbcbbbnccggg

Δtt

t
outlet cgggecondensabl

sss

sss

sss

sss

dA dt)Y(YUρε)Y(YUρεdA dt)YUρ(εη    (9) 

where ε, ρ, U are the volume fraction, the density, and the velocity of each phase, respectively. tsss 
represents the time when statistically steady state condition is achieved and Δt=20 s is taken here. Y 
refers to the species mass fraction and the subscript g, c, nc, bc, ub denote gas phase, condensable, 
non-condensable, biochar, and unreacted biomass, respectively. The computed results for product 
yields are compared to the measurements [44] in Table 4. The predicted results demonstrate good 
agreement with the experimental data for product yield. The percentage of the discrepancies between 
the experiment and the simulation results for condensable, non-condensable, biochar, and operating 
temperature are 13, 17.6, 13.8, and 1.4, respectively. 

Table 4. Comparison of product yield for red oak pyrolysis (wt %) between simulation and experiment 

Components Condensable Non-condensable Biochar Unreacted biomass 

Experiment [44] 71.7±1.4 20.5±1.3 13±1.5 - 

Current study 62.4 16.9 11.2 9.5 

Percentage of difference 13.0 17.6 13.8 - 

2.2. Machine Learning Algorithms 

The present study aims to apply machine learning techniques to determine the relationship between 
different parameters affecting the product yields in the pyrolysis process. The SVR algorithm is 
adopted here due to its ability with complex and non-linear systems. By training the SVR with the 
data obtained from the CFD simulations, the model is developed which has a capacity to predict the 
product yields when a new set of data are available. The concept of Genetic Algorithms (GAs) can 
then be employed for the optimisation. GAs are adaptive heuristic search algorithms based on the 
idea of natural selection and genetics. Among GAs, the PSO algorithm contains a more efficient 
search ability to solve multidimensional optimisation [61], enabling us to use an intelligent method 
for estimation of the desired values. In this section, the SVR and the PSO are first described and then 
the methodology developed for integrating them is presented. 

2.2.1. SVR model 
Various regressions including Linear Regression (LR), Least Absolute Shrinkage and Selection 
Operator (LASSO), Least Angle Regression (LARS) and SVR can be used to analyse the relationship 
between a dependent variable and a set of independent variables [36, 37]. While LR, LASSO and 
LARS are linear methods and suitable for linear data, SVR performs more effectively for non-linear 
datasets and is applied in this paper since the CFD dataset showed a non-linear complex trend. Particle 
Swarm Optimisation (PSO) algorithm is also employed to find an optimum value after data modelling 
by SVR.  
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Support Vector Machines (SVMs) are used for non-linear modelling by transforming the original 
space into a higher dimensional feature space. SVMs have been developed based on statistical 
learning theory and have been designed as a classification technique by Vapnik and colleagues [47, 
62]. SVR later applies the margin concept to solve regression problems with the help of e-insensitive 
loss functions.  

The SVR model considers x1 ... xn Є R as a set of training input, and y Є R as a training output. The 
linear regression can be presented in the high dimensional space using the inner product function of 
the mapping inputs into a high-dimensional plane. The inner product of two vectors 𝑥𝑥 and 𝜔𝜔 is defined 
by Equation (3).  

bω,xf(x)= + , (3) 

where 𝜔𝜔 is a weight vector and 𝑏𝑏 is a scalar bias. The objective of the SVR is to minimise the 
regression risk by considering equations (4) and (5). 
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where C > 0 is the penalty or regularisation term that controls the trade-off between the model 
complexity and data training error, l is the number of samples, and 𝜉𝜉𝑖𝑖 and 𝜉𝜉𝑖𝑖∗ indicate the upper and 
lower training errors, respectively. Equation (4) is solved by a dual optimisation that uses the 
Lagrange function expressed as equation (6). 
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where 𝜂𝜂𝑖𝑖 , 𝜉𝜉𝑖𝑖, 𝜂𝜂𝑖𝑖∗, 𝜉𝜉𝑖𝑖∗ indicate the Lagrange multipliers which are non-negative real numbers. 

2.2.2. PSO algorithm 
The PSO algorithm is a population-based search optimisation technique developed by Kennedy and 
Eberhart [63]. There are many similarities between the PSO method and other evolutionary 
computation techniques such as Genetic Algorithms (GA). However, the PSO model updates each 
candidate solution using a velocity rather than the evolutionary operators like selection, crossover 
and mutation. Compared to the GA algorithm, the PSO method is relatively easier to implement and 
requires fewer number of parameters to be adjusted. It has also demonstrated good convergence and 
better performance.  

The PSO algorithm is inspired by social behaviour observed in nature such as bird flocking and fish 
schooling. Initially, PSO, like other GAs, starts with a population of random particles (solutions). It 
then organises a swarm moving in the search space looking for the best solution. In an iteration, each 
particle is updated by following two “best” values known as pbest and gbest. pbest is the best solution 
(fitness) which is achieved so far while gbest is a global best obtained so far by any particle in the 
population. After finding these two best values, velocity and positions of the particles are updated 
according to equations (7) and (8).  
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V[ ] = V[ ] + c1 * rand( ) * (pbest[ ] - present[ ]) + c2 * rand( ) * (gbest[ ] - present[ ]) (7) 
Present[ ] = present[ ] + V[ ] (8) 

where V[ ] is the particle velocity, present[ ] is the current particle (solution), rand ( ) is a random 
number between (0,1), and c1 and c2 are the learning factors. 

2.2.3. SVR-PSO combined model 
The SVR-PSO strategy is employed to obtain optimal values of the considered parameters to 
maximise the condensable yield. The SVR-PSO algorithm includes the following steps: 

1. The SVR is initially trained by the CFD datasets to predict the condensable yield. 

2. The initial particle swarm is created and the fitness function is evaluated. Lower and upper 
bands are adopted for each parameter to reduce the search space. Eventually, the next 
generation is produced until the stopping criterion is satisfied. 

3. Finally, the SVR-PSO gives the condensable for the optimal values of the dataset. 

3. Results and discussions 

This section presents the results obtained using both CFD and MLAs. The validated numerical 
simulations are followed by the parametric study. The optimised operating parameters and the 
relevant yields obtained using the SVR-PSO model are then presented. Finally, the optimised set of 
parameters is integrated into the CFD simulation, and the results are compared with the MLA outputs.  

3.1. Parametric study 

Seven different influential parameters are considered here; operating temperature, biomass flow rate, 
biomass and sand particle sizes, carrier gas velocity, biomass injector location and pre-treatment 
temperature. For the parametric study, a single influential parameter varies in the given range while 
other parameters are set as the base condition. Table 5 shows the variation range considered for each 
parameter whereas the base values are the same as those in the experiment [39] (see Table 3). 

The Thermogravimetric analysis (TGA) by Yang et al. [64] reveals that the three components of 
lignocellulosic biomass show different behaviours during the pyrolysis process. Hemicellulose 
decomposes easily and most of the weight loss occurs in the temperature range of 220–315°C. The 
maximum loss rate (0.95 wt.%/°C) occurs at 268°C, and even at 900°C, about 20% of solid residue 
is left. Cellulose pyrolysis arises at a higher temperature range of 315–400°C with the maximum 
weight loss rate (2.84 wt.%/°C) reached at 355°C. At higher temperature (>400°C), almost all 
cellulose content is decomposed thermally whereas only a very small percentage of solid residues is 
left (~6.5 wt.%/°C). Among the three components, lignin has the highest resistance to degradation. 
Although it pyrolyses gradually under the whole temperature range from ambient to 900°C, the mass-
loss rate is as low as (<0.14 wt.%/°C) and the solid residue left is the highest (~45.7 wt.%). The TGA 
results, therefore, justify why the temperature range of 400-675 °C is chosen for parametric study. In 
addition, as long as the biomass preheating temperature is under 220 °C, no reaction will occur outside 
the reactor bed that we don’t have any control over it. Hence, for example, the effect of preheating in 
the temperature range of 300-400 K is investigated. The specified range for sand and biomass particle 
sizes are selected based on the experimental test of the lab-scale bubbling fluidised bed reactor [22, 
44]. The adopted carrier gas velocity primarily depends on particle sizes. Larger sand particle sizes 
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are more resistant to fluidisation [65]. Hence, a minimum fluidisation velocity (MFV) is defined as a 
function of particle size to ensure the fluidisation occurs. On the other hand, higher carrier gas 
velocities shorten the residence time of condensable vapour. This reduces the possibility of the 
secondary crack of condensable vapours to non-condensable gases and consequently increases the 
bio-oil yield. However, there are upper limits for the carrier gas velocities. If the nitrogen velocity is 
exceeded by a certain limit, which is called maximum effective velocity (MEV), the sand particles 
will be thrown out of the reactor bed by the carrier gas. It has a negative effect on the mixing of sand 
and biomass particles. It has been demonstrated that for enhanced heat transfer it is much more 
efficient when the cold virgin biomass particles are surrounded by hot sand particles of larger size 
[65]. High carrier gas velocities may also push the small and low-density biomass particles out of the 
reactor bed. Hence, it is important to effectively select the carrier gas velocity, otherwise adequate 
time will not be provided for mixing the sand and biomass particles, the biomass particles will leave 
the reactor exit unreacted, and the most importantly the sand particles that play an important role as 
a heat carrier will be lost. The higher the position of the biomass injector, the lower the residence 
time of condensable vapours, resulting in fewer secondary reactions. However, the upper limit of the 
biomass injector location is restricted by the initial packing limit of the sand particles. The initial 
packing limit is 55 mm, and the biomass injector diameter is 7.3 mm, therefore the maximum 
allowable biomass injector height is defined as 55-7.3=47.7. That is why 47 mm is selected for the 
upper limit of the biomass injector height. Study of biomass feed rate is also required to find its 
optimum value for reducing heat energy consumption. Certainly, it is expected to have fewer product 
yields when the biomass feed rate increases. However, the objective is to find out how much feed can 
be added to the biomass without the need to consume excessive heat to have maximum product yields. 

Table 5. Range of operating parameters’ variation for parametric study 

Operating Conditions Range of variation 

Operating Temperature (°C) 400-675 

Sand Particle Size (mm) 0.4-1 

Nitrogen Velocity (m/s) 0.3-1 

Biomass Particle Size (mm) 0.2-1 

Biomass feed rate (kg/hr) 0.1-1.3 

Pre-treatment Temperature (K) 300-400 

Biomass Injector Height (mm) 12-47 

A summary of the CFD parametric study is shown in Fig 5, presenting the product yields versus the 
influential parameters. Fig 5(a) shows the effects of the operating temperature. The two main factors 
affecting the amount of product yields due to temperature rise are the devolatilisation and the 
secondary crack. Increasing the temperature accelerates the devolatilisation of biomass as well as the 
primary reaction rates. However, at temperatures above 525 °C, the secondary crack occurs which 
converts condensable vapours to non-condensable gases. Consequently, by increasing the operating 
temperature, non-condensable yield uniformly rises whereas unreacted biomass, condensable and 
biochar yield decrease. The influence of biomass flow rate on product yields is illustrated in Fig. 5(b). 
At higher biomass feed rates, the supplied heat is insufficient for biomass particles to react. As a 
result, although the changes are minor the product yields, particularly the condensable yield reduce 
as the biomass feed rate increases. 
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Effects of the biomass and sand particle sizes are depicted in Fig 5(c) and 5(d), respectively. It can 
be seen that the condensable yield slightly decreases as the biomass particle size increases. The use 
of coarse biomass particles is acceptable if the provided heat is sufficient for biomass particles and 
they are surrounded by sand particles of the same size or larger. Despite the increased costs for 
grinding, it is more efficient to use smaller biomass particles due to lower intraparticle temperature 
gradients. On the other hand, the use of very fine biomass particles may cause the carrier gas to throw 
the unreacted biomass out of the reactor bed. The feeder size limits the biomass particle size since 
coarse particles may clog the feeder. Larger sand particles necessitate higher carrier gas velocity to 
achieve an effective fluidisation. Thus, the residence time reduces and it consequently minimises the 
secondary crack of condensable vapours to non-condensable gases. The results confirm that the 
efficiency increases if biomass particles are surrounded by larger sand particles since it enhances the 
heat transfer supported by hot sand particles. Consequently, various parameters are important to 
determine the optimum size for sand and biomass particles. As shown in Fig. 5(e), the higher the 
carrier gas velocity, the higher the condensable yield, and the lower the non-condensable yield due to 
shorter residence time and less chance of secondary crack. The minimum fluidisation velocity, which 
is a function of the sand particle size, determines the lower limits for nitrogen velocity. On the other 
hand, the carrier gas velocity can be increased if the unreacted biomass and sand particles are not 
thrown out of the reactor. Therefore, the optimal nitrogen velocity is primarily a function of the 
particles size. Fig. 5(f) shows the effects of the biomass injector location. As the elevation of the 
injector increases, the residence time becomes shorter, and hence there is a lesser chance of the 
secondary crack of condensable vapours to non-condensable gases. Consequently, the yield of 
condensable vapours is higher. It is worth noting that the optimal height for the biomass injector also 
depends on how high the sand particles are initially packed.  
 
Finally, the effects of biomass preheat are illustrated in Fig. 5(g). Preheating the biomass accelerates 
the time taken to reach to the active state. By providing the same amount of heat, the primary reaction 
rates are larger due to the shorter time interval. Therefore, a larger proportion of biomass is converted 
to the products whereas biochar yield remains stable. Consequently, more product yields are expected 
in the gaseous phase including condensable and non-condensable components. In the meantime, 
higher condensable but lower non-condensable yields are expected as the time taken to reach the 
active state is faster, and hence the secondary crack is lower at the shorter residence time, becoming 
less dominant at temperatures below 525 °C. Thus, considering all these phenomena, preheating has 
a favourable effect on condensable yields whereas non-condensable yields remain unaffected. It may 
be concluded that preheating maximises the bio-oil yield as long as the virgin biomass is preheated 
below the threshold temperature for initiating the reaction. 

As mentioned, the described parametric study only analysed one parameter at the time while others 
were kept constant - same as the experimental values. The parametric study is extended by variations 
of different parameters, simultaneously. For this purpose, 23 other CFD simulations are conducted 
where the influential parameters are randomly selected in the given ranges. The new simulated data 
are added to the CFD dataset which will be used as an input for the MLA modelling. However, 
unrelated data points, are first removed from the CFD dataset. As discussed in Fig. 5, the temperature 
ranges can be filtered and only the temperatures from 450 to 550 °C are considered. Similarly, it is 
not necessary to consider the values for biomass flow rate higher than 1 kg/h. A summary of the final 
CFD dataset is presented in Table 6 shows the range of influential parameters as well as product 
yields which will be the input for the MLA modelling. 
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Fig. 5. Product yields’ variation with respect to 
(a) Biomass feed rate (b) Biomass particle size 
(c) Sand particle size (d) Biomass injector height 
(e) Carrier gas velocity (f) Operating temperature 
(g) Pre-treatment temperature 
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Table 6. Dataset for the MLA modelling 

Variables Range of variation 

Operating Temperature (°C) 450-550 

Sand Particle Size (mm) 0.4-1 

Nitrogen Velocity (m/s) 0.3-1 

Biomass Particle Size (mm) 0.2-1 

Biomass feed rate (kg/hr) 0.1-1 

Pre-treatment Temperature (K) 300-400 

Biomass Injector Height (mm) 12-47 

Condensable yield  53.3-71 

Non-condensable yield  10.7-24.5 

Biochar yield 10.3-17.1 

Unreacted biomass  2.3-19 

3.2. Machine Learning Algorithms 

To obtain the optimised condition, the MLA analysis is conducted using MATLAB 2015b Linux 
Mint operating system with 32G RAM, Intel (R) Core (TM) i7-6700K CPU and NVIDIA GeForce 
GTX 1070 graphics card. The datasets are provided by the CFD results. 70% of the datasets are 
allocated for the training purpose while 30% of the datasets are used for the prediction purpose. The 
training dataset builds the SVR model and it requires the allocation of the trade-off for different 
parameters. In this study, three common kernel functions, Linear, Polynomial and Gaussian (radial 
basis function) are considered (see Table 7). The predicted data are evaluated with the statistical 
parameters consisting of the mean square error (MSE), the root mean square error (RMSE), and the 
correlation coefficient (R) as defined  
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where n is the number of data points. ix , iy , are the observed and the predicted values while x , y  
are the mean values for the observed and the predicted data, respectively. As can be seen in Table 8, 
the proposed model has a diverse performance when using different kernels. The results demonstrate 
that the Gaussian kernel has a better performance compared to other kernels by maximising R and 
minimising MSE and RMSE for the test data. 
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Table 7. Kernel functions 

Kernel Function Kernel parameter 

Linear ),(),( jiji xxxxK =  - 

Polynomial ( )djiji xxxxK 1),(),( +=  d 
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Table 8. Effect of different kernels on the SVR-PSO performance. Errors calculated on condensable parameter 

Kernel MSE R RMSE 
Train Test Train Test Train Test 

Linear 17.1622 345.2164 0.0826 0.0594 4.1427 18.58 

Polynomial 9.2192 930.86 0.0634 0.0224 3.0363 30.51 

Gaussian (RBF) 2.0195 4.321 0.9771 0.9213 1.4211 2.21 

After determining the type of Gaussian function, different aspects of designer-determined parameters 
were analysed for the SVR model. The first parameter is “C” that shows the trade-off between the 
training error and the flatness of the solution. The larger values of “C” result in lower final training 
error. However, too much increment of “C” leads to the risk of losing the generalisation properties of 
the classifier, since it tries to fit in the best possible way for all the training points. If “C” is small, 
then the classifier is flat. A value for “C” should be found that keeps the training error small but also 
generalises well. The second parameter is “ε” that controls the width of the ε-insensitive zone, used 
to fit the training data. The value of “ε” can affect the number of support vectors used to construct 
the regression function. Increasing the “ε” values, reduces the number of support vectors. A large 
enough value of “ε” will lead to a constant regression function. And finally, the value of “σ” that 
controls the width of the Gaussian function. If “σ” is very small, the radius area of influence of the 
support vectors only includes the support vector itself and no amount of regularisation with “C” will 
be able to prevent overfitting. When “σ” is too large, the model is too constrained and cannot capture 
the complexity of the data. Table 9 shows two optimum parameters that were obtained from the 
model. It can be seen that these values of parameters show the best correlation coefficient and 
minimum values of error. The obtained optimised values for operating parameters by adjusting the 
SVR model with C=5.26, ɛ= 0.52, σ=1.99 are illustrated in Table 10. Based on the obtained set of 
parameters, the predicted values by MLAs and the ones calculated by CFD for the product yields are 
presented in Table 11. It is worth noting that in this study our favourable product is condensable, and 
the discrepancy for condensable yields between the predicted results by MLAs and CFD is 3.7 %. 
The unreacted biomass is computed as the leftover percentage of the three by-products. 
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Table 9. Design parameters of SVR model. 
 MSE R RMSE 

Train Test Train Test Train Test 

C=5.26, ɛ=0.52, σ=1.99 1.9511 3.11 0.9971 0.9444 1.8731 1.3 

C=5.11, ɛ=0.51, σ=175.4 2.0195 4.321 0.9771 0.9213 1.4211 2.21 

Table 10. Base and optimised parameters 

Operating parameter Base Optimised  

Operating Temperature (°C) 500 498 

Sand Particle Size (mm) 0.52 0.832 

Nitrogen Velocity (m/s) 0.36 0.76 

Biomass Particle Size (mm) 0.4 0.463 

Biomass feed rate (kg/hr) 0.1 0.15 

Pretreatment Temperature (K) 300 400 

Biomass Injector Height (mm) 17 47 

Fig. 6 shows the CFD results for condensable and non-condensable yields for two different datasets; 
the base parameters that are used in the experiment [39] and the optimised values obtained by MLAs. 
These values are presented in Table 11. As illustrated in Fig. 6, using optimised values of the 
parameters for CFD simulation lead to more condensable and lower non-condensable yield in the 
temperature range of 450-550 °C. This means that, in addition to the temperature, which is the most 
influential parameter in the products yields, impact of other parameters can also be of great value in 
minimising the secondary crack of condensable vapours to non-condensable gases and finally 
optimising the process. The most important factor to maximise bio-oil production is to keep the 
operating temperature at about 500 °C. For this purpose, heat transfer from carrier gas to sand 
particles was facilitated. The heat must then be transferred from hot sand particles to the cold virgin 
biomass particles. Things that have been done to improve the heat transfer are using larger hot sand 
particles than cold virgin biomass particles to increase heat transfer area, preheating the biomass and 
effective mixing of sand and biomass particles. Nitrogen has the role of carrier gas in addition to 
mixing the solid particles. Increasing the carrier gas velocity up to a certain extent which is called 
maximum effective velocity (MEV) reduces the condensable vapour residence time and secondary 
reactions. Exceeding the MEV has a negative effect on the product yields since it causes the sand 
particles and unreacted biomass to be thrown out of the reactor bed. Another option that has been 
taken to reduce the residence time is moving the biomass injector to a higher level. 
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Table 11. Comparison of the results between MLAs and CFD  

Product yield (%) MLAs CFD Discrepancy (%) 

Condensable yield  70.7 73.4 3.7 

Non-condensable 11.9 11.9 0 

Biochar yield 12.2 12.4 1.6 

Unreacted biomass  5.2 2.3 55.8 

 

Fig. 6. Condensable and non-condensable yields for the base and optimised parameters 

4. Conclusion 

• The CFD results are compared and validated with experimental data where a good agreement 
is witnessed. 

• A parametric study is performed to address the effect of seven operating factors on the product 
yields. The parameters that are considered are operating temperature, biomass flow rate, 
biomass and sand particle size, carrier gas velocity, biomass injector location and pre-
treatment temperature. 

• Created dataset by parametric CFD results is then utilised as an input variable in a developed 
SVR-PSO algorithm to predict and optimise the bio-oil yield considering the operating 
conditions. The optimum set of operating parameters received by the developed algorithm are 
used as an input in CFD simulation validating the obtained results received from MLAs.  

• The optimum operating conditions achieved by MLAs are for the simulated case study: 
operating temperature = 498 ºC, biomass pre-treatment temperature = 400 K, nitrogen velocity 
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= 0.76 m/s, sand particle size = 832 µm, biomass particle size = 463 µm, biomass feed rate = 
0.15 kg/h, and biomass injector height = 47 mm. Based on the optimum set of parameters, the 
predicted values for condensable yield by MLAs and those calculated by CFD are 70.7 and 
73.4 respectively with only 3.7% discrepancy.  

• The CFD results for condensable and non-condensable yields showed that application of 
optimised parameters raises the condensable yield and reduces the non-condensable yield in 
other temperature ranges.  

5. References 

1. Blin, J., et al., Biodegradability of biomass pyrolysis oils: Comparison to conventional 
petroleum fuels and alternatives fuels in current use. Fuel, 2007. 86(17-18): p. 2679-2686. 

2. Panwar, N., R. Kothari, and V. Tyagi, Thermo chemical conversion of biomass–Eco friendly 
energy routes. Renewable and Sustainable Energy Reviews, 2012. 16(4): p. 1801-1816. 

3. Tsai, W., M. Lee, and Y. Chang, Fast pyrolysis of rice straw, sugarcane bagasse and coconut 
shell in an induction-heating reactor. Journal of analytical and applied pyrolysis, 2006. 76(1-
2): p. 230-237. 

4. Lajili, M., et al., Fast pyrolysis and steam gasification of pellets prepared from olive oil mill 
residues. 2018. 150: p. 61-68. 

5. Cai, W., L. Dai, and R.J.E. Liu, Catalytic fast pyrolysis of rice husk for bio-oil production. 
2018. 154: p. 477-487. 

6. Yang, S., M. Wu, and C.J.E. Wu, Application of biomass fast pyrolysis part I: Pyrolysis 
characteristics and products. 2014. 66: p. 162-171. 

7. Kim, S.-S., et al., Pyrolysis kinetics and decomposition characteristics of pine trees. 
Bioresource technology, 2010. 101(24): p. 9797-9802. 

8. Panwar, N. and N. Rathore, Potential of surplus biomass gasifier based power generation: A 
case study of an Indian state Rajasthan. Mitigation and adaptation strategies for global 
change, 2009. 14(8): p. 711. 

9. Goyal, H., D. Seal, and R. Saxena, Bio-fuels from thermochemical conversion of renewable 
resources: a review. Renewable and sustainable energy reviews, 2008. 12(2): p. 504-517. 

10. Balat, M., et al., Main routes for the thermo-conversion of biomass into fuels and chemicals. 
Part 1: Pyrolysis systems. Energy Conversion and Management, 2009. 50(12): p. 3147-3157. 

11. Chen, J., D. Fang, and F.J.A.e. Duan, Pore characteristics and fractal properties of biochar 
obtained from the pyrolysis of coarse wood in a fluidized-bed reactor. 2018. 218: p. 54-65. 

12. Wang, W., et al., Formate-assisted analytical pyrolysis of kraft lignin to phenols. 2019. 
13. Zhang, H., et al., Effect of feedstock and pyrolysis temperature on properties of biochar 

governing end use efficacy. 2017. 105: p. 136-146. 
14. DEMİRBAŞ, A., Hydrocarbons from pyrolysis and hydrolysis processes of biomass. Energy 

sources, 2003. 25(1): p. 67-75. 
15. Anca-Couce, A., P. Sommersacher, and R. Scharler, Online experiments and modelling with 

a detailed reaction scheme of single particle biomass pyrolysis. Journal of analytical and 
applied pyrolysis, 2017. 127: p. 411-425. 

16. Rezaei, H., S. Sokhansanj, and C.J. Lim, Minimum fluidization velocity of ground chip and 
ground pellet particles of woody biomass. Chemical Engineering and Processing-Process 
Intensification, 2018. 124: p. 222-234. 

17. Guizani, C., et al., Biomass fast pyrolysis in a drop tube reactor for bio oil production: 
Experiments and modeling. Fuel, 2017. 207: p. 71-84. 



21 
 

18. Park, J.-W., et al., Fast pyrolysis of acid-washed oil palm empty fruit bunch for bio-oil 
production in a bubbling fluidized-bed reactor. 2019. 

19. Hu, C., et al., CFD-DEM Investigation on the Biomass Fast Pyrolysis: The Influences of 
Shrinkage Patterns and Operating Parameters. Industrial & Engineering Chemistry 
Research, 2018. 

20. Liu, B., et al., CFD modelling of particle shrinkage in a fluidized bed for biomass fast 
pyrolysis with quadrature method of moment. Fuel Processing Technology, 2017. 164: p. 51-
68. 

21. Cardoso, J., et al., Improved numerical approaches to predict hydrodynamics in a pilot-scale 
bubbling fluidized bed biomass reactor: A numerical study with experimental validation. 
Energy Conversion and Management, 2018. 156: p. 53-67. 

22. Xiong, Q., S. Aramideh, and S.-C. Kong, Modeling effects of operating conditions on biomass 
fast pyrolysis in bubbling fluidized bed reactors. Energy & Fuels, 2013. 27(10): p. 5948-5956. 

23. Mellin, P., E. Kantarelis, and W. Yang, Computational fluid dynamics modeling of biomass 
fast pyrolysis in a fluidized bed reactor, using a comprehensive chemistry scheme. Fuel, 2014. 
117: p. 704-715. 

24. Xiong, Q., et al., Coupling DAEM and CFD for simulating biomass fast pyrolysis in fluidized 
beds. Journal of Analytical and Applied Pyrolysis, 2016. 117: p. 176-181. 

25. Jalalifar, S., et al., Parametric analysis of pyrolysis process on the product yields in a bubbling 
fluidized bed reactor. Fuel, 2018. 234: p. 616-625. 

26. Jalalifar, S., et al. Numerical modelling of a fast pyrolysis process in a bubbling fluidized bed 
reactor. in IOP Conference Series: Earth and Environmental Science. 2017. IOP Publishing. 

27. Blanco, A. and F. Chejne, Modeling and simulation of biomass fast pyrolysis in a fluidized 
bed reactor. Journal of analytical and applied pyrolysis, 2016. 118: p. 105-114. 

28. Hejazi, B., et al., Coupled reactor and particle model of biomass drying and pyrolysis in a 
bubbling fluidized bed reactor. Journal of Analytical and Applied Pyrolysis, 2016. 121: p. 
213-229. 

29. Niemelä, N.P., et al., CFD based reactivity parameter determination for biomass particles of 
multiple size ranges in high heating rate devolatilization. 2017. 128: p. 676-687. 

30. Marathe, P., R. Westerhof, and S.J.A.e. Kersten, Fast pyrolysis of lignins with different 
molecular weight: Experiments and modelling. 2019. 236: p. 1125-1137. 

31. Mutlu, A.Y. and O.J.E. Yucel, An artificial intelligence based approach to predicting syngas 
composition for downdraft biomass gasification. 2018. 165: p. 895-901. 

32. Saleem, M. and I. Ali, Machine Learning Based Prediction of Pyrolytic Conversion for Red 
Sea Seaweed. 

33. Sunphorka, S., B. Chalermsinsuwan, and P.J.F. Piumsomboon, Artificial neural network 
model for the prediction of kinetic parameters of biomass pyrolysis from its constituents. 2017. 
193: p. 142-158. 

34. Hough, B.R., et al., Application of machine learning to pyrolysis reaction networks: Reducing 
model solution time to enable process optimization. 2017. 104: p. 56-63. 

35. Sun, Y., et al., Pyrolysis products from industrial waste biomass based on a neural network 
model. 2016. 120: p. 94-102. 

36. Tibshirani, R., Regression shrinkage and selection via the lasso. Journal of the Royal 
Statistical Society. Series B (Methodological), 1996: p. 267-288. 

37. Efron, B., et al., Least angle regression. The Annals of statistics, 2004. 32(2): p. 407-499. 
38. Kennedy, J., Particle swarm optimization, in Encyclopedia of machine learning. 2011, 

Springer. p. 760-766. 
39. Zhang, Y. and C. Ling, A strategy to apply machine learning to small datasets in materials 

science. npj Computational Materials, 2018. 4(1): p. 25. 



22 
 

40. Pal, M. and P. Mather, Support vector machines for classification in remote sensing. 
International Journal of Remote Sensing, 2005. 26(5): p. 1007-1011. 

41. Bishop, C., Pattern Recognition and Machine Learning (Information Science and Statistics), 
chapter 3, pages 138--147. 2006, Springer-Verlag New York, Inc. 

42. Gidaspow, D., Multiphase flow and fluidization: continuum and kinetic theory descriptions. 
1994: Academic press. 

43. Xiong, Q., et al., BIOTC: an open-source CFD code for simulating biomass fast pyrolysis. 
Computer Physics Communications, 2014. 185(6): p. 1739-1746. 

44. Xue, Q., et al., Experimental validation and CFD modeling study of biomass fast pyrolysis in 
fluidized-bed reactors. Fuel, 2012. 97: p. 757-769. 

45. Xue, Q., T. Heindel, and R. Fox, A CFD model for biomass fast pyrolysis in fluidized-bed 
reactors. Chemical Engineering Science, 2011. 66(11): p. 2440-2452. 

46. Demirbaş, A., Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy 
conversion and management, 2000. 41(6): p. 633-646. 

47. Van de Velden, M., et al., Fundamentals, kinetics and endothermicity of the biomass pyrolysis 
reaction. Renewable energy, 2010. 35(1): p. 232-242. 

48. Shafizadeh, F. and P.P. Chin. Thermal deterioration of wood. in ACS Symposium Series 
American Chemical Society. 1977. 

49. Han, J., H.J.R. Kim, and s.e. reviews, The reduction and control technology of tar during 
biomass gasification/pyrolysis: an overview. 2008. 12(2): p. 397-416. 

50. Authier, O., et al., Solid Pyrolysis Modelling by a Lagrangian and Dimensionless Approach-
-Application to Cellulose Fast Pyrolysis. 2010. 8(1). 

51. Yang, H., et al., In-depth investigation of biomass pyrolysis based on three major components: 
hemicellulose, cellulose and lignin. 2006. 20(1): p. 388-393. 

52. Ward, S., J.J.C. Braslaw, and flame, Experimental weight loss kinetics of wood pyrolysis 
under vacuum. 1985. 61(3): p. 261-269. 

53. Koufopanos, C., A. Lucchesi, and G.J.T.C.J.o.C.E. Maschio, Kinetic modelling of the 
pyrolysis of biomass and biomass components. 1989. 67(1): p. 75-84. 

54. Koufopanos, C., et al., Modelling of the pyrolysis of biomass particles. Studies on kinetics, 
thermal and heat transfer effects. 1991. 69(4): p. 907-915. 

55. Orfao, J., F. Antunes, and J.L.J.F. Figueiredo, Pyrolysis kinetics of lignocellulosic materials—
three independent reactions model. 1999. 78(3): p. 349-358. 

56. Miller, R.S., J.J.C.s. Bellan, and technology, A generalized biomass pyrolysis model based on 
superimposed cellulose, hemicelluloseand liqnin kinetics. 1997. 126(1-6): p. 97-137. 

57. Ranzi, E., et al., Chemical kinetics of biomass pyrolysis. 2008. 22(6): p. 4292-4300. 
58. Matta, J., et al., Comparison of multi-component kinetic relations on bubbling fluidized-bed 

woody biomass fast pyrolysis reactor model performance. 2017. 210: p. 625-638. 
59. Lathouwers, D. and J. Bellan, Yield optimization and scaling of fluidized beds for tar 

production from biomass. Energy & Fuels, 2001. 15(5): p. 1247-1262. 
60. Gao, J., et al., CFD modeling and validation of the turbulent fluidized bed of FCC particles. 

2009. 55(7): p. 1680-1694. 
61. Chuang, L.-Y., et al., Correlation-based gene selection and classification using Taguchi-

BPSO. Methods of information in medicine, 2010. 49(03): p. 254-268. 
62. Vapnik, V., The nature of statistical learning theory. 2013: Springer science & business 

media. 
63. Kennedy, R. J. and Eberhart, Particle swarm optimization. in Proceedings of IEEE 

International Conference on Neural Networks IV, pages. 1995. 
64. Yang, H., et al., Characteristics of hemicellulose, cellulose and lignin pyrolysis. 2007. 86(12-

13): p. 1781-1788. 



23 
 

65. Jalalifar, S., et al., Parametric analysis of pyrolysis process on the product yields in a bubbling 
fluidized bed reactor. 2018. 234: p. 616-625. 

  



24 
 

Appendix 

Matlab Code will be added later 
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