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GENERALIZED POWER POMPEIU TYPE INEQUALITIES FOR

LOCAL FRACTIONAL INTEGRALS WITH APPLICATIONS TO

OSTROWSKI’S INEQUALITY

S. ERDEN1, M. Z. SARIKAYA2, S. S. DRAGOMIR3, §

Abstract. We establish some generalizations of power Pompeiu’s inequality for local
fractional integral. Afterwards, these results gave some new generalized Ostrowski type
inequalities. Finally, some applications of these inequalities for generalized special means
are obtained.
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1. Introduction

In 1938, it was obtained the following result by Ostrowski in [8].

Theorem 1.1. Let f : [a, b]→ R be a differentiable mapping on (a, b) whose derivative

f
′

: (a, b)→ R is bounded on (a, b), i.e., ‖f ′‖∞ = sup
t∈(a,b)

|f ′(t)| < ∞. Then, the following

inequality holds:∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
[

1

4
+

(x− a+b
2 )2

(b− a)2

]
(b− a)

∥∥f ′∥∥∞ (1)

for all x ∈ [a, b]. The constant 1
4 is the best possible.

Inequality (1) has wide applications in numerical analysis and in the theory of special
means; estimating error bounds for mid-point, trapezoid and Simpson rules and other quad-
rature rules, etc. It has attracted considerable attention and interest from mathematicians
and other researchers as shown by hundreds of papers published in the last decade. As a
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result of these studies, one can find by making a simple search in the MathSciNet database
of the American Mathematical Society.

In 1946, Pompeiu [9] derived a variant of Lagrange’s mean value theorem, now known as
Pompeiu’s mean value theorem. It can be stated as follows:

Theorem 1.2. For every real valued function f differentiable on an interval [a, b] not
containing 0 and for all pairs x1 6= x2 in [a, b], there exist a point ξ between x1 and x2 such
that

x1f(x2)− x2f(x1)

x1 − x2
= f(ξ)− ξf ′(ξ).

It has been obtained the following Pompeiu type inequality by Dragomir in [4].

Theorem 1.3. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b) with
[a, b] not containing 0. Then for any x ∈ [a, b] , we have the inequality∣∣∣∣∣∣a+ b

2

f(x)

x
+

1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣
≤ b− a
|x|

[
1

4
+

(x− a+b
2 )2

(b− a)2

]∥∥f − lf ′∥∥∞ .
where l(t) = t for all t ∈ [a, b] . The constant 1

4 is sharp in the sense that it cannot be
replaced by a smaller constant.

Many researcher studied on inequailities by using Pompeiu mean value theorem. For
example, it is established OStrowski type inequalities via Pompeiu mean value theorem
in [1], [2], [4], [5], [10], [12]. Furthermore, Sarikaya obtained an inequality of Grüss type
via variant Pompeiu mean value theorem in [11]. Also, a large number of Pompeiu type
inequalities have been studied by mathematicians.

2. Preliminaries

Recall the set Rα of real line numbers and use the Gao-Yang-Kang’s idea to describe the
definition of the local fractional derivative and local fractional integral, see [14, 16] and so
on.

Recently, the theory of Yang’s fractional sets [14] was introduced as follows.
For 0 < α ≤ 1, we have the following α-type set of element sets:
Zα : The α-type set of integer is defined as the set {0α,±1α,±2α, ...,±nα, ...} .
Qα : The α-type set of the rational numbers is defined as the set {mα =

(
p
q

)α
: p, q ∈ Z,

q 6= 0}.
Jα : The α-type set of the irrational numbers is defined as the set {mα 6=

(
p
q

)α
: p, q ∈ Z,

q 6= 0}.
Rα : The α-type set of the real line numbers is defined as the set Rα = Qα ∪ Jα.
If aα, bα and cα belongs the set Rα of real line numbers, then
(1) aα + bα and aαbα belongs the set Rα;
(2) aα + bα = bα + aα = (a+ b)α = (b+ a)α ;
(3) aα + (bα + cα) = (a+ b)α + cα;
(4) aαbα = bαaα = (ab)α = (ba)α ;
(5) aα (bαcα) = (aαbα) cα;
(6) aα (bα + cα) = aαbα + aαcα;
(7) aα + 0α = 0α + aα = aα and aα1α = 1αaα = aα.
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The definition of the local fractional derivative and local fractional integral can be given
as follows.

Definition 2.1. [14] A non-differentiable function f : R → Rα, x → f(x) is called to be
local fractional continuous at x0, if for any ε > 0, there exists δ > 0, such that

|f(x)− f(x0)| < εα

holds for |x− x0| < δ, where ε, δ ∈ R. If f(x) is local continuous on the interval (a, b) , we
denote f(x) ∈ Cα(a, b).

Definition 2.2. [14] The local fractional derivative of f(x) of order α at x = x0 is defined
by

f (α)(x0) =
dαf(x)

dxα

∣∣∣∣
x=x0

= lim
x→x0

∆α (f(x)− f(x0))

(x− x0)α
,

where ∆α (f(x)− f(x0)) =̃Γ(α+ 1) (f(x)− f(x0)) .

If there exists f (k+1)α(x) =

k+1 times︷ ︸︸ ︷
Dα
x ...D

α
xf(x) for any x ∈ I ⊆ R, then we denote f ∈

D(k+1)α(I), where k = 0, 1, 2, ...

Lemma 2.1. [15] Suppose that f(x) ∈ Cα [a, b] and f(x) ∈ Dα(a, b), then for 0 < α ≤ 1
we have a α−differential form

dαf(x) = f (α)(x)dxα.

Lemma 2.2. [15] Let I be an interval, f, g : I ⊂ R → Rα (I◦ is the interior of I) such
that f, g ∈ Dα(I◦). Then, the following differentiation rules are valid.

(1) dα[f(x)±g(x)]
dxα = f (α)(x)± g(α)(x);

(2) dαf(x)g(x)
dxα = f (α)(x)g(x) + f(x)g(α)(x);

(3)
dα

(
f(x)
g(x)

)
dxα = f (α)(x)g(x)−f(x)g(α)(x)

[g(x)]2
where g(x) 6= 0;

(4) dα[cf(x)]
dxα = cf (α)(x) where c is a constant;

(5) If y(x) = (f ◦ g) (x), then

dαy(x)

dxα
= f (α)(g(x))

(
g(1)(x)

)α
.

Theorem 2.1 (Generalized mean value theorem). [18]Suppose that f(x) ∈ Cα [a, b] , f (α)(x) ∈
C (a, b) , then we have

f(x)− f(x0)

(x− x0)α
=

f (α)(ξ)

Γ(α+ 1)

where a < x0 < ξ < x < b.

Definition 2.3. [14] Let f(x) ∈ Cα [a, b] . Then the local fractional integral is defined by,

aI
α
b f(x) =

1

Γ(α+ 1)

b∫
a

f(t)(dt)α =
1

Γ(α+ 1)
lim

∆t→0

N−1∑
j=0

f(tj)(∆tj)
α,

with ∆tj = tj+1 − tj and ∆t = max {∆t1,∆t2, ...,∆tN−1} , where [tj , tj+1] , j = 0, ..., N − 1
and a = t0 < t1 < ... < tN−1 < tN = b is partition of interval [a, b] .

Here, it follows that aI
α
b f(x) = 0 if a = b and aI

α
b f(x) = −bIαa f(x) if a < b. If for any

x ∈ [a, b] , there exists aI
α
x f(x), then we denoted by f(x) ∈ Iαx [a, b] .
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Lemma 2.3. [14]

(1) (Local fractional integration is anti-differentiation) Suppose that f(x) = g(α)(x) ∈
Cα [a, b] , then we have

aI
α
b f(x) = g(b)− g(a).

(2) (Local fractional integration by parts) Suppose that f(x), g(x) ∈ Dα [a, b] and f (α)(x),

g(α)(x) ∈ Cα [a, b] , then we have

aI
α
b f(x)g(α)(x) = f(x)g(x)|ba −a I

α
b f

(α)(x)g(x).

Lemma 2.4. [14] We have

i)
dαxkα

dxα
=

Γ(1 + kα)

Γ(1 + (k − 1)α)
x(k−1)α;

ii)
1

Γ(α+ 1)

b∫
a
xkα(dx)α =

Γ(1 + kα)

Γ(1 + (k + 1)α)

(
b(k+1)α − a(k+1)α

)
, k ∈ R.

Lemma 2.5 (Generalized Hölder’s inequality). [14] Let f, g ∈ Cα [a, b] , p, q > 1 with
1
p + 1

q = 1, then

1

Γ(α+ 1)

b∫
a

|f(x)g(x)| (dx)α ≤

 1

Γ(α+ 1)

b∫
a

|f(x)|p (dx)α


1
p
 1

Γ(α+ 1)

b∫
a

|g(x)|q (dx)α


1
q

.

Theorem 2.2 (Generalized Ostrowski inequality). [13]Let I ⊆ R be an interval, f : I0 ⊆
R → Rα (I0 is the interior of I) such that f ∈ Dα(I0) and f (α) ∈ Cα [a, b] for a, b ∈ I0

with a < b Then. for all x ∈ [a, b] , we have the inequality∣∣∣∣f(x)− Γ (1 + α)

(b− a)α
aI
α
b f(t)

∣∣∣∣
≤ 2α

Γ (1 + α)

Γ (1 + 2α)

 1

4α
+

(
x− a+b

2

b− a

)2α
 (b− a)α

∥∥∥f (α)
∥∥∥
∞
.

In [6], Erden and Sarikaya proved the following identity and also they established the
following inequality by using this identity.

Theorem 2.3 (Generalized Pompeiu’s mean value theorem). Let f : [a, b] ⊆ R → Rα be
a mapping such that f ∈ Dα(a, b), with [a, b] not containing 0 and for all pairs x1 6= x2 in
[a, b], there exist a point ξ in (x1, x2) such that the following equality holds:

xα1 f(x2)− xα2 f(x1)

(x1 − x2)α
= f(ξ)− ξα

Γ (1 + α)
f (α)(ξ).

Theorem 2.4. Let f : [a, b] ⊆ R → Rα be a mapping such that f ∈ Cα [a, b] and f ∈
Dα(a, b), with [a, b] not containing 0. Then for any x ∈ [a, b] , we have the inequality∣∣∣∣ Γ(1 + α)

Γ(1 + 2α)

f(x)

xα
(a+ b)α − 1

(b− a)α
aI
α
b f(t)

∣∣∣∣
≤ 2αΓ(1 + α)(b− a)α

Γ(1 + 2α) |x|α

[
1

4α
+

(
x− a+b

2

)2α
(b− a)2α

]∥∥∥f − lf (α)
∥∥∥
∞

where l(t) = tα

Γ(1+α) , t ∈ [a, b] , and
∥∥f − lf (α)

∥∥
∞ = sup

ξ∈(a,b)

∣∣f(ξ)− lf (α)(ξ)
∣∣ <∞.
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The interested reader is invited to look over the references [3], [7], [14]-[19] for local
fractional theory. Also, many researcher studied on generalized Ostrowski type inequalities
for local fractions integrals (see, [13]). In addition, Erden and Sarikaya give generalized
Pompeiu mean value theorem and some generalized Pompeiu type inequalities for local
fractional calculus in [6].

In this study, some generalization of power Pompeiu’s type inequalities involving local
fractional integrals are obtained and also some new generalized Ostrowski type inequalities
are obtained. Finally, applications of these inequalities for special means are also given.

3. Generalized Power Pompeiu’s Type Inequalities

Generalized Ostrowski type inequalities can be derived using the following inequality.

Corollary 3.1 (Generalized Pompeiu’s Inequality). With the assumptions of Theorem 2.3

and if
∥∥f − lf (α)

∥∥
∞ = sup

t∈(a,b)

∣∣f(t)− lf (α)(t)
∣∣ <∞ where l(t) = tα

Γ(1+α) , t ∈ [a, b] , then

|tαf(x)− xαf(t)| ≤
∥∥∥f − lf (α)

∥∥∥
∞
|x− t|α

for any t, x ∈ [a, b] .

We can generalize the above inequality for the power function as follows.

Theorem 3.1. Let f : [a, b] → Rα be f ∈ Dα(a, b) and f ∈ Cα [a, b] , b > a > 0. If r ∈ R,
r 6= 0, then for any x ∈ [a, b] , we have the inequality

|trαf(x)− xrαf(t)| ≤ 1

|r|α
|xrα − trα|

∥∥∥lf (α) − rαf
∥∥∥
∞

(2)

where l(t) = tα

Γ(1+α) , t ∈ [a, b] and
∥∥lf (α) − rαf

∥∥
∞ = sup

s∈[a,b]

∣∣f (α)(s)l(s)− rαf(s)
∣∣ .

Proof. Because of f ∈ Dα(a, b) and f ∈ Cα [a, b] , H ∈ Dα(a, b) and H ∈ Cα [a, b] defined

as H(s) = f(s)
srα . Then, for any t, x ∈ [a, b] with x 6= t, we have

1

Γ(α+ 1)

x∫
t

H(α)(s)(ds)α =
f(x)

xrα
− f(t)

trα
. (3)

On the other side, using the second and fifth items of Theorem 2.2, we obtain

H(α)(s) =
f (α)(s)sα − rαΓ(1 + α)f(s)

s(r+1)α
. (4)

From (3) and (4), we get

trαf(x)− xrαf(t) = xrαtrα
Γ(α+ 1)

Γ(α+ 1)

x∫
t

f (α)(s) sα

Γ(1+α) − r
αf(s)

s(r+1)α
(ds)α. (5)

Taking the modulus in (5), we have

|trαf(x)− xrαf(t)| (6)

≤ xrαtrαΓ(α+ 1)

Γ(α+ 1)

∣∣∣∣∣∣
x∫
t

∣∣f (α)(s)l(s)− rαf(s)
∣∣

s(r+1)α
(ds)α

∣∣∣∣∣∣
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and therefore we get the inequality

|trαf(x)− xrαf(t)|

≤ xrαtrαΓ(α+ 1)

Γ(α+ 1)

∣∣∣∣∣∣
x∫
t

1

s(r+1)α
(ds)α

∣∣∣∣∣∣ sup
s∈[x,t]([t,x])

∣∣∣f (α)(s)l(s)− rαf(s)
∣∣∣ .

Applying Lemma 2.4(ii), we can write

|trαf(x)− xrαf(t)| ≤ 1

|r|α
xrαtrα

∥∥∥lf (α) − rαf
∥∥∥
∞

∣∣∣∣ 1

trα
− 1

xrα

∣∣∣∣
which competes the proof. �

Theorem 3.2. Let f : [a, b] → Rα be f ∈ Dα(a, b) and f ∈ Cα [a, b] , b > a > 0. If r ∈ R,
r 6= 0, then for any x ∈ [a, b] , we have

|trαf(x)− xrαf(t)| ≤ xrαtrαΓ(α+ 1)

min
{
x(r+1)α, t(r+1)α

} ∥∥∥lf (α) − rαf
∥∥∥

1

where l(t) = tα

Γ(1+α) , t ∈ [a, b] , and
∥∥lf (α) − rαf

∥∥
1

is defined by

∥∥∥lf (α) − rαf
∥∥∥

1
=

1

Γ(α+ 1)

x∫
t

∣∣∣f (α)(s)l(s)− rαf(s)
∣∣∣ (ds)α.

Proof. If we utilize the inequality (6), then we obtain the inequality

|trαf(x)− xrαf(t)|

≤ xrαtrαΓ(α+ 1)

Γ(α+ 1)

∣∣∣∣∣∣
x∫
t

∣∣f (α)(s)l(s)− rαf(s)
∣∣

s(r+1)α
(ds)α

∣∣∣∣∣∣
≤ xrαtrαΓ(α+ 1)

∣∣∣∣∣∣ 1

Γ(α+ 1)

x∫
t

∣∣∣f (α)(s)l(s)− rαf(s)
∣∣∣ (ds)α

∣∣∣∣∣∣
× sup
s∈[x,t]([t,x])

{
1

s(r+1)α

}

=
xrαtrαΓ(α+ 1)

min
{
x(r+1)α, t(r+1)α

} ∥∥∥lf (α) − rαf
∥∥∥

1
.

The proof is thus completed. �

Now, we prove a generalized power Pompeiu type inequality for p−norm.
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Theorem 3.3. Let f : [a, b] → Rα be f ∈ Dα(a, b) and f ∈ Cα [a, b] , b > a > 0. If r ∈ R,
r 6= 0 and r 6= −1

p ,
1
p + 1

q = 1 with p > 1, then for any x ∈ [a, b] , we have the inequality

|trαf(x)− xrαf(t)|

≤ xrαtrαΓ(α+ 1)
1
p

|1− q (r + 1)|
α
q

∣∣∣x(1−q(r+1))α − t(1−q(r+1))α
∣∣∣ 1q ∥∥∥lf (α) − rαf

∥∥∥
p
,

where l(t) = tα

Γ(1+α) , t ∈ [a, b] , and
∥∥lf (α) − rαf

∥∥
p

is defined by

∥∥∥lf (α) − rαf
∥∥∥
p

=

 1

Γ(α+ 1)

x∫
t

∣∣∣f (α)(s)l(s)− rαf(s)
∣∣∣p (ds)α

 1
p

.

Proof. Utilizing the inequality (6) and Hölder’s integral inequality, we deduce

|trαf(x)− xrαf(t)| ≤ xrαtrαΓ(α+ 1)

Γ(α+ 1)

∣∣∣∣∣∣
x∫
t

∣∣f (α)(s)l(s)− rαf(s)
∣∣

s(r+1)α
(ds)α

∣∣∣∣∣∣
≤ xrαtrαΓ(α+ 1)

∣∣∣∣∣∣ 1

Γ(α+ 1)

x∫
t

1

sq(r+1)α
(ds)α

∣∣∣∣∣∣
1
q

×

∣∣∣∣∣∣ 1

Γ(α+ 1)

x∫
t

∣∣∣f (α)(s)l(s)− rαf(s)
∣∣∣p (ds)α

∣∣∣∣∣∣
1
p

.

Afterwards, should we apply Lemma 2.4(ii), then we get the inequality

|trαf(x)− xrαf(t)|

≤ xrαtrαΓ(α+ 1)
1
p

|1− q (r + 1)|
α
q

∥∥∥lf (α) − rαf
∥∥∥
p

∣∣∣x(1−q(r+1))α − t(1−q(r+1))α
∣∣∣ 1q ,

which completes the proof. �

4. Generalized Ostrowski Type Results

We give several Ostrowski type inequalities involving local fractional integral.

Theorem 4.1. Let f : [a, b] → Rα be f ∈ Dα(a, b) and f ∈ Cα [a, b] , b > a > 0. If r ∈ R,
r 6= 0 and r 6= −1, then for any x ∈ [a, b] , we have∣∣∣∣∣Γ(1 + rα)

(
br+1 − ar+1

)α
Γ(1 + (r + 1)α)

f(x)− xrα aI
α
b f(t)

∣∣∣∣∣ (7)

≤
∥∥lf (α) − rαf

∥∥
∞

|r|α
×
{
Mr(x), if r > 0
−Mr(x), if r ∈ (−∞, 0) \ {−1}

where l(t) = tα

Γ(1+α) , t ∈ [a, b] and
∥∥lf (α) − rαf

∥∥
∞ = sup

t∈[a,b]

∣∣f (α)(t)l(t)− rαf(t)
∣∣ , and Mr(x)

is defined by

Mr(x) =
Γ(1 + rα)

[
2αx(r+1)α −

(
ar+1 + br+1

)α]
Γ(1 + (r + 1)α)

+
2αx(r+1)α − (a+ b)α

Γ(α+ 1)
.
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Proof. Integrating both sides of (2) with respect to t from a to b for local fractional integrals,
we obtain ∣∣∣∣∣Γ(1 + rα)

(
br+1 − ar+1

)α
Γ(1 + (r + 1)α)

f(x)− xrα aI
α
b f(t)

∣∣∣∣∣
≤
∥∥lf (α) − rαf

∥∥
∞

|r|α Γ(α+ 1)

b∫
a

|xrα − trα| (dt)α.

Should we take r > 0, then we have

1

Γ(α+ 1)

b∫
a

|xrα − trα| (dt)α

=
1

Γ(α+ 1)

x∫
a

(xrα − trα) (dt)α +
1

Γ(α+ 1)

b∫
x

(trα − xrα) (dt)α

=
Γ(1 + rα)

Γ(1 + (r + 1)α)

[(
ar+1 + br+1

)α − 2αx(r+1)α
]

+
2αx(r+1)α − (a+ b)α

Γ(α+ 1)
.

On the other side, if we take r ∈ (−∞, 0) \ {−1} , then we have the equality

1

Γ(α+ 1)

b∫
a

|xrα − trα| (dt)α

=
1

Γ(α+ 1)

x∫
a

(trα − xrα) (dt)α +
1

Γ(α+ 1)

b∫
x

(xrα − trα) (dt)α

=
Γ(1 + rα)

Γ(1 + (r + 1)α)

[
2αx(r+1)α −

(
ar+1 + br+1

)α]
+

(a+ b)α − 2αx(r+1)α

Γ(α+ 1)
.

The proof is thus completed. �

Theorem 4.2. Let f : [a, b] → Rα be f ∈ Dα(a, b) and f ∈ Cα [a, b] , b > a > 0. If r ∈ R,
r 6= 0 and r 6= 1, then for any x ∈ [a, b] , we have∣∣∣∣f(x)

xrα
(b− a)α − aI

α
b

f(t)

trα

∣∣∣∣
≤ 1

|r|α

∥∥lf (α) − rαf
∥∥
∞

Γ(α+ 1)
×
{
Sr(x), if r ∈ (0,∞) \ {1}
−Sr(x), if r < 0

where l(t) = tα

Γ(1+α) , t ∈ [a, b] and
∥∥lf (α) − rαf

∥∥
∞ = sup

t∈[a,b]

∣∣f (α)(t)l(t)− rαf(t)
∣∣ and Sr(x)

is defined by

Sr(x) =
2αx(1−r)α −

(
a1−r + b1−r

)α
Γ(α+ 1) (1− r)α

+
(a+ b)α − 2αxα

Γ(α+ 1)xrα
.
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Proof. Dividing both sides of (2) with trαxrα and integrating over t ∈ [a, b] for local frac-
tional integrals, we obtain∣∣∣∣f(x)

xrα
(b− a)α − aI

α
b

f(t)

trα

∣∣∣∣ ≤ 1

|r|α

∥∥lf (α) − rαf
∥∥
∞

Γ(α+ 1)

b∫
a

∣∣∣∣ 1

trα
− 1

xrα

∣∣∣∣ (dt)α.
For r ∈ (0,∞) \ {1} , we observe that

1

Γ(α+ 1)

b∫
a

∣∣∣∣ 1

trα
− 1

xrα

∣∣∣∣ (dt)α

=
1

Γ(α+ 1)

x∫
a

(
1

trα
− 1

xrα

)
(dt)α +

1

Γ(α+ 1)

b∫
x

(
1

xrα
− 1

trα

)
(dt)α.

Also, using the Lemma 2.4(ii), we can write

1

Γ(α+ 1)

b∫
a

∣∣∣∣ 1

trα
− 1

xrα

∣∣∣∣ (dt)α
=

2αx(1−r)α −
(
a1−r + b1−r

)α
Γ(α+ 1) (1− r)α

+
(a+ b)α − 2αxα

Γ(α+ 1)xrα

for any x ∈ [a, b] .
On the other side, for r < 0, we also have

1

Γ(α+ 1)

b∫
a

∣∣∣∣ 1

trα
− 1

xrα

∣∣∣∣ (dt)α
=

(
a1−r + b1−r

)α − 2αx(1−r)α

Γ(α+ 1) (1− r)α
+

2αxα − (a+ b)α

Γ(α+ 1)xrα

for any x ∈ [a, b] .
The proof is thus completed. �

5. Applications For Some Special Means

Let us recall some generalized means:

Aα(a, b) =
aα + bα

2α
;

Ln(a, b) =

[
Γ (1 + nα)

Γ (1 + (n+ 1)α)

[
b(n+1)α − a(n+1)α

(b− a)α

]] 1
n

, n ∈ Z\ {−1, 0} , a, b ∈ R, a 6= b.

Now, let us reconsider the inequality (7):∣∣∣∣∣Γ(1 + rα)
(
br+1 − ar+1

)α
Γ(1 + (r + 1)α)

f(x)− xrα aI
α
b f(t)

∣∣∣∣∣
≤
∥∥lf (α) − rαf

∥∥
∞

|r|α
×
{
Mr(x), if r > 0
−Mr(x), if r ∈ (−∞, 0) \ {−1}



618 TWMS J. APP. ENG. MATH. V.9, N.3, 2019

where Mr(x) is defined by

Mr(x) =
Γ(1 + rα)

[
2αx(r+1)α −

(
ar+1 + br+1

)α]
Γ(1 + (r + 1)α)

+
2αx(r+1)α − (a+ b)α

Γ(α+ 1)
.

Consider the mapping f : (0,∞) → Rα, f(t) = tnα, n ∈ Z\ {−1, 0} . Then, 0 < a < b,
we have

f

(
a+ b

2

)
= [Aα(a, b)]n

and
1

(b− a)α
aI
α
b f(t) = [Ln(a, b)]n .

Now, should we use the Lemma 2.4, we obtain

∥∥∥lf (α) − rαf
∥∥∥
∞

=


∣∣∣ Γ(1+nα)

Γ(1+α)Γ(1+(n−1)α) − r
α
∣∣∣ bnα, n > 1∣∣∣ Γ(1+nα)

Γ(1+α)Γ(1+(n−1)α) − r
α
∣∣∣ anα, n ∈ (−∞, 1]\ {−1, 0}

and then we can write the inequality∣∣∣∣∣Γ(1 + rα)
(
br+1 − ar+1

)α
Γ(1 + (r + 1)α)

[Aα(a, b)]n − (b− a)α [Aα(a, b)]r [Ln(a, b)]n

∣∣∣∣∣
≤ 2αδn(a, b)

|r|α
×
{
Mr(x), if r > 0
−Mr(x), if r ∈ (−∞, 0) \ {−1}

where δn(a, b) is defined by

δn(a, b) =


∣∣∣ Γ(1+nα)

Γ(1+α)Γ(1+(n−1)α) − r
α
∣∣∣ bnα, n > 1∣∣∣ Γ(1+nα)

Γ(1+α)Γ(1+(n−1)α) − r
α
∣∣∣ anα, n ∈ (−∞, 1]\ {−1, 0}

and Mr(x) is defined as

Mr(x) =
Γ(1 + rα)

[
[Aα(a, b)](r+1) −Aα(ar+1, br+1)

]
Γ(1 + (r + 1)α)

+
[Aα(a, b)](r+1) −Aα(a, b)

Γ(α+ 1)
.
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