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Abstract

The stability of arches is a classical mechanics and pragmatic engineering problem

that has been extensively studied by many researchers over the years. Despite the

comprehensive construction and research of arches throughout history, their complex

behaviour still presents a challenge to engineers and ensures they are the subject of

continual investigation. The problem of arch stability is of contemporary relevance

due to the surging popularity of concrete-filled steel tubular (CFST) arch bridges.

Hence, due to the inherent complex structural function of arches when coupled with

the increasing construction of CFST arches, research into the response and stability

of CFST arches under all possible environmental conditions is necessitated. However,

investigations into the effects of extreme temperatures on concrete and CFST arches

have not been conducted.

This thesis presents a comprehensive analytical and numerical investigation into the

stability of circular concrete and CFST arches subjected to combined mechanical and

thermal loading. Original models are derived for the non-linear prebuckling and buck-

ling analysis including closed-form solutions for the in-plane elastic buckling loads of

concrete and CFST arches, and non-discretisation mechanically-based numerical mod-

els for their elastic and inelastic analysis prebuckling analysis. Additionally, a numerical

methodology to determine the elastic flexural-torsional buckling loads of CFST arches

is proposed. Furthermore, a novel fractional viscoelastic creep law is developed for

concrete at elevated temperatures in order to analyse the significance of basic creep

strain on thermal response and stability boundaries. The fractional-derivative creep

law proves to be a robust and compact method of modelling basic creep strain under

stress and temperature varying conditions. Finite difference schemes are employed to

numerically approximate the fractional derivative and incorporate basic creep into the
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prebuckling and stability analyses. Finite Element (FE) models are developed to ver-

ify the derived models and to also investigate the inelastic buckling strength and fire

performance of concrete and CFST arches.

The findings of this study provide a detailed understanding of the fundamental thermo-

mechanical behaviour and failure modes of concrete and CFST arches. Consequently,

engineers may utilise the results detailed herein to assess and improve the fire resis-

tance of concrete and CFST arch structures. Additionally, the developed creep law

has widespread application in the analysis of concrete structures under elevated tem-

peratures. The proposed inelastic numerical models also provide efficient tools for the

analysis of other structures such as steel arches and beams.
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1. Y. Bouras, D. Zorica, T.M. Atanacković and Z. Vrcelj. 2018. A non-linear thermo-

viscoelastic rheological model based on fractional derivatives for high temperature

creep in concrete. Applied Mathematical Modelling, 55, pp.551-568.

2. Y. Bouras, and Z. Vrcelj. 2017. Non-linear in-plane buckling of shallow con-

crete arches subjected to combined mechanical and thermal loading. Engineering

Structures, 152, pp.413-423.

3. Y. Bouras, and Z. Vrcelj. 2019. In-plane stability of shallow concrete arches under

fire. Journal of Structural Fire Engineering, DOI: 10.1108/JSFE-11-2018-0039.

4. Y. Bouras, and Z. Vrcelj. 2020. Thermal in-plane stability of concrete-filled steel

tubular arches. International Journal of Mechanical Sciences, 163, p.105130.

5. Y. Bouras, and Z. Vrcelj. 2020. Out-of-plane stability of concrete-filled steel

tubular arches at elevated temperatures. Submitted to International Journal of

Mechanical Sciences, Under Review.

v



Conference Papers

1. Y. Bouras and Z. Vrcelj. 2016. Effect of transient thermal strain on the stability

of shallow concrete arches. In Mechanics of Structures and Materials XXIV:

proceedings of the 24th Australian Conference on the Mechanics of Structures and

Materials (ACMSM24, Perth, Australia, 6-9 December 2016 (pp. 963-970). CRC

Press.

2. Y. Bouras, E. Torres-Don and Z. Vrcelj. 2017. Thermal in-plane buckling of

concrete-filled steel tubular arches. In Tubular Structures XVI: Proceedings of the

16th International Symposium for Tubular Structures (ISTS 2017, 4-6 December

2017, Melbourne, Australia) (p. 101). CRC Press.

Y.Bouras: Thermal stability of concrete and concrete-filled steel tubular arches vi



Y.Bouras: Thermal stability of concrete and concrete-filled steel tubular arches vii



Contents

Abstract i

Declaration iii

Acknowledgements iv

List of Publications vi

Details of Included Papers: Thesis by Publication viii

1 Introduction 1

1.1 Structural Arches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Fractional Calculus and Viscoelasticity . . . . . . . . . . . . . . . . . . 4

1.3 Research Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Research Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature Review 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Theory of Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Elastic stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Inelastic stability . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Elastic buckling of arches . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 In-plane stability . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Out-of-plane stability . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Inelastic buckling of arches . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 In-plane stability . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Out-of-plane stability . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Thermal buckling of arches . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 In-plane stability . . . . . . . . . . . . . . . . . . . . . . . . . . 36

viii



Contents

2.5.2 Out-of plane stability . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Creep buckling of arches . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6.1 In-plane stability . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6.2 Out-of-plane stability . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6.3 Temperature-time coupling . . . . . . . . . . . . . . . . . . . . . 48

2.6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Basic creep in concrete at elevated temperatures 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 A non-linear thermo-viscoelastic rheological model based on fractional

derivatives for high temperature creep in concrete . . . . . . . . . . . . 58

3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 In-plane thermo-elastic buckling of shallow concrete arches 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Effect of transient thermal strain on the stability of shallow concrete arches 83

4.4 Non-linear in-plane buckling of shallow concrete arches subjected to com-

bined mechanical and thermal loading . . . . . . . . . . . . . . . . . . . 89

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Inelastic buckling of shallow concrete arches under fire loading 102

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 In-plane stability of shallow concrete arches under fire . . . . . . . . . . 106

5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Y.Bouras: Thermal stability of concrete and concrete-filled steel tubular arches ix



Contents

6 Thermal in-plane stability of concrete-filled steel tubular arches 129

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3 Thermal in-plane buckling of concrete-filled steel tubular arches . . . . 135

6.4 Thermal in-plane stability of concrete-filled steel tubular arches . . . . 143

6.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7 Thermal out-of-plane stability of concrete filled steel tubular arches 160

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.2 Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.3 Out-of-plane stability of concrete-filled steel tubular arches at elevated

temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8 Conclusions 194

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.2 Novel Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.3 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

References 200

Y.Bouras: Thermal stability of concrete and concrete-filled steel tubular arches x



Chapter 1

Introduction

1.1 Structural Arches

Arches are a historic construction form which originated in second century B.C and

flourished during the rule of the Roman Empire. A structural arch is a member curved

in elevation, loaded in its plane and features a radius that is large relative to the cross-

section depth [1]. Differentiation between arches and curved beams may be made based

on the degree of freedom at the arch ends; supports that are free to move apart can be

classed as curved beams due to the greater significance of bending actions and reduced

in-plane stiffness and strength [2]. The popularity of arches arose as a structural member

due to their ability to resist loads primarily in compression consequently resulting in
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Chapter 1. Introduction

a high in-plane strength and stiffness, which made them ideal for masonry materials.

Despite their use since antiquity, arches are still commonly utilised in modern society for

the construction of tunnels, bridges and building structures for this very same reason.

The safe design and maintenance of arch structures is thus of vital importance for public

safety, in addition to the associated historical and economical significance.

Despite featuring a high in-plane strength, arches are subject to instability. An arch

sufficiently restrained in the lateral direction exhibits the possibility of stability loss

in its plane of loading. Two in-plane buckling modes exist which include the anti-

symmetric bifurcation buckling mode and the symmetric snap-through type, both de-

picted in Figure 1.1. Classical or bifurcation buckling is categorised as a transition from

a pre-buckled equilibrium configuration to an adjacent, or infinitesimally close, buckled

equilibrium configuration as the load passes through the critical level [3]. Symmet-

ric snap-through buckling or limit instability is defined as a sudden jump to another

non-adjacent equilibrium configuration which features noticeably greater deformations

then the initial position. Additionally, an arch featuring a large free standing portion

may buckle out-of-plane in a flexural-torsional type mode. Flexural-torsional bifur-

cation buckling of arches involves the rapid out-of-plane deformation from an initial

pre-buckled state caused by in-plane loading. The associated deformations include

lateral displacements and twist rotations.

Y.Bouras: Thermal stability of concrete and concrete-filled steel tubular arches 2



Chapter 1. Introduction

Figure 1.1: Symmetric instability (top) and anti-symmetric bifurcation buckling (bot-
tom) [4]

This problem of arch stability is becoming of increasing relevance and importance in

modern engineering. Circular concrete-filled steel tubular (CFST) arch bridges have

recently surged in popularity with over 400 constructed worldwide [5], 300 built in

China alone in the last 20 years [6]. The increased construction of CFST arches can

be attributed to the superior performance of CFST members when compared to their

reinforced concrete and steel counterparts. In addition to many other benefits, CFST

members feature enhanced compressive strength often resulting in the use of slender

members. As arches experience primarily compression, the use of slender elements

significantly increases the possibility of stability loss. Even if deemed stable, CFST

arches may also buckle in time due to creep of the concrete core. The viscoelastic

behaviour of the concrete core further convolutes the non-linear behaviour of arches

and significantly reduces the their load carrying capacity. It is thus of paramount

importance that design engineers understand the complex behaviour of arches and

adopt accurate methodologies for analysis of their stability.

Y.Bouras: Thermal stability of concrete and concrete-filled steel tubular arches 3



Chapter 1. Introduction

1.2 Fractional Calculus and Viscoelasticity

Fractional calculus is the study of performing integration or differentiation to a degree

of non-integer (real) value. For example, consider a function f(x) = x3 with the

derivative of the function being denoted as dn

dxnf(x). The first order derivative (n = 1)

is simply d
dx
f(x) = 3x2 and the second order derivative d2

dx2f(x) = 6x. However if

0 < n < 1, the solution is no longer as simple and commonly recognized as if it were

an integer. The physical meaning and practical application of such an operation is

also questioned. Fractional calculus owes its origin to a question raised by L’Hopital in

1695 and presented to Leibniz. L’Hopital asked what would be the result of dn

dxnf(x) =

x if n = 1/2. Leibniz’s response was ”an apparent paradox, from which one day

useful consequences will be drawn” [7]. Many famous mathematicians including Euler,

Laplace, Riemann and Liouville have since contributed to its development and formed

multiple varying definitions. The Riemann-Liouville and Caputo definitions of the

derivative are the most commonly adopted and will be defined herein.

Let the fractional integration of a function f(x) be denoted as cD
−v
x f(x) where v is

a positive real number and the subscripts c and x are the limits of integration. The

Riemann-Liouville fractional integral of order v is defined as;

cD
−v
x f(x) =

1

Γ(v)

∫ x

c

(x− t)v−1f(t) dt, (1.2.1)

where x ∈ R+ and Γ(x) is the Gamma function (generalisation of the factorial for all

real numbers) known as;

Γ(x) =

∫ ∞
0

e−ttx−1 dt. (1.2.2)

Y.Bouras: Thermal stability of concrete and concrete-filled steel tubular arches 4



Chapter 1. Introduction

The fractional derivative of a function f(x) of order u is defined as;

Du
xf(x) = Dn[D−vf(x)], (1.2.3)

where cD
u
xf(x) represents the fractional derivative of real order u > 0, v = n − u

satisfying 0 < v < 1 and n is the smallest integer greater than u. The Caputo definition

of the fractional derivative is known as;

Du
xf(x) =

1

Γ(1− u)

∫ x

0

D1
t f(t)

(x− t)u dt. (1.2.4)

Despite being considered an old problem, it is only in the last 100 years that the most

significant applications of fractional calculus in engineering and scientific applications

have been found [8]. Some of these include inverse mechanical problems, motion in

viscous fluids, biophysics, medicine and astrophysics. Another major application of

fractional calculus is in the theory of Viscoelasticity. Viscoelastic materials can be

defined as exhibiting both viscous and elastic properties during deformation. Tradi-

tional viscoelastic models, including the Kelvin-Voigt, Maxwell and Zener, consist of

an arrangement of elastic springs and viscous dampers in series and/or parallel, see

Figure 1.2. Despite their common adoption, these models cannot accurately describe

the dynamic behaviour of real materials [9]. The cause for the inaccuracy lies in the

linear differential stress-strain equation being of integer order. High levels of accuracy

can be obtained when viscoelastic chains are employed to describe material behaviour.

However, the required multitude of viscoelastic elements results in a great number of

material parameters to be characterised which can convolute analytical and numeri-

cal modelling [10]. In fractional rheology, the spring-dashpot models of viscoelasticity

are generalised by adopting fractional order derivatives in place of the integer ones in

the constitutive stress-strain equations. For example, the stress-strain relation for the

Y.Bouras: Thermal stability of concrete and concrete-filled steel tubular arches 5



Chapter 1. Introduction

Maxwell model which consists of a spring and dashpot in series is;

D1
t ε(t) =

1

E
D1

t σ(t) +
σ(t)

η
. (1.2.5)

where E is the elastic modulus of the spring and η is the dynamic viscosity of the

dashpot. By replacing the first order derivative in Eq.(1.2.5) with real order 0 < u < 1,

the fractional maxwell model is obtained as;

Du
t ε(t) =

1

E
Du

t σ(t) +
σ(t)

η
. (1.2.6)

where the fractional derivative operatorDu
t () can be defined using the Riemann-Liouville

or Caputo definition. Fractional viscoelastic models have proven to robust descriptors

of material behaviour [11] whilst featuring a small number of parameters to be charac-

terized.

Figure 1.2: Kelvin-Voigt (a), Maxwell (b) and Zener (c) viscoelastic models.

1.3 Research Significance

The common construction of arches in building, tunnel and bridge applications makes

their performance during elevated temperatures, as caused by fire exposure, of high

importance. Commonly occurring building fires represent a danger to steel arches

Y.Bouras: Thermal stability of concrete and concrete-filled steel tubular arches 6
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used in roofing applications. Vehicle accidents and gasoline burning [12], gas pipe

explosions [13] and terrorist attacks are existing possibilities which may expose tunnel or

bridge arches to high levels of heat. In the paper published by the New York Department

of Transportation [14], it was reported that 50 bridges have collapsed in the past 50

years in the U.S.A due to fire exposure. This averages to one bridge failure per year,

a result greater than that of seismic related collapses. In Australia, 78 vehicle fires

were reported in major road tunnels between 1992 and 2016 [15]. The safety of tunnels

in fires is of increasing importance as the average distance Australians are travelling

through road tunnels is climbing annually.

The stability of steel arches subject to elevated temperatures have been thoroughly

investigated, however research on concrete and CFST arches under such conditions

has not been conducted. Due to the accelerating construction of circular CFST arch

bridges, it is paramount that the their behaviour under both typical and extreme load-

ing and environments be thoroughly investigated. Studies of concrete arches subject to

such loading scenarios are also required due to their frequent use for tunnels and bridge

applications. This is convoluted by the geometric non-linearity of arches which require

non-linear methodologies for their analysis. Additional complexities arise when con-

sidering the material non-linearities of steel, concrete and composite CFST structures

which consist of yielding, plasticity, confinement and contact.

In addition to thermal expansion and instantaneous mechanical strain, deformations

also experienced by steel at high temperatures, concrete experiences elevated basic

creep and transient thermal strain (TTS), often referred to as transitional thermal

creep. TTS is irrecoverable and only occurs during virgin heating. Furthermore, TTS

only manifests in concrete members mechanically loaded prior to heating. It is thus

a consequence of the coupling effect of thermo-mechanical loading. Despite causing

significant deformations in concrete members, the effects of elevated creep and TTS on

Y.Bouras: Thermal stability of concrete and concrete-filled steel tubular arches 7
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arch stability are yet to be reported. This research seeks to address this knowledge gap

through investigation of the behaviour and stability boundaries of concrete and CFST

arches subject to combined mechanical and thermal while considering creep and TTS.

Hence, the stability and integrity of concrete and CFST arches when exposed to elevated

temperatures caused by fires represents an important engineering problem. Design

engineers require feasible models and methodologies for the analysis of behaviour and

stability of concrete and circular CFST arches subjected to thermal loading in order to

ensure safety requirements are satisfied.

1.4 Research Aims

The aim of this research is to investigate the non-linear elastic and inelastic responses

and stability boundaries of concrete and CFST arches subjected to combined mechanical

and thermal loading. Extreme elevated temperatures will be the primary focus of

this work, that is temperatrues exceeding 100◦C. This will be achieved through the

derivation of novel analytical and numerical models, and Finite Element (FE) analysis.

Additionally, a fractional viscoelastic model will be proposed to incorporate basic creep

into the analyses and assess its influence on behaviour and buckling loads. Closed-form

solutions and non-discretisation based numerical techniques will be derived to solve pre-

buckling equilibrium configurations and buckling loads for the simplified cases of elastic

material behaviour and/or uniform thermal loading. FE models will be developed to

analyse the more convoluted scenarios of inelastic buckling and non-uniform thermal

loading.

The aims of the research can be stated as follows:

Y.Bouras: Thermal stability of concrete and concrete-filled steel tubular arches 8
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1. To develop a novel creep law based on the theory of fractional viscoelasticity for

concrete under extreme elevated temperatures;

2. To investigate the non-linear elastic pre-buckling behaviour and in-plane buckling

loads of shallow concrete arches subjected to combined mechanical and uniform

thermal loading whilst considering basic creep and TTS;

3. To study the non-linear inelastic response and in-plane failure modes of mechan-

ically pre-loaded shallow concrete arches under fire loading;

4. To analyse the non-linear elastic and inelastic pre-buckling behaviour and in-

plane stability boundaries of CFST arches under mechanical loading and elevated

temperature fields; and

5. To examine the effects of thermal loading on the elastic and inelastic flexural-

torsional buckling loads of CFST arches.

6. To provide design recommendations for concrete and CFST arches susceptible to

high temperature environments or fire exposure by determining key parameters

influencing buckling strength and fire resistance time.

This research will provide an in-depth understanding of the effects of high temperature

conditions on the behaviour and failure modes of mechanically loaded concrete and

CFST arches. These developed models will aid the practising structural engineer to

safely design arch structures against fire loading and to simulate the performance of

existing arches when exposed to elevated temperature fields. Moreover, the developed

models may be utilised for the assessment fire-damaged arches. The development of

novel fractional-derivative based viscoelastic models for high temperature creep defor-

mations of concrete is not limited to fire related studies and has widespread application.

These models may be applied to analyse long-term behaviour of concrete under high

temperature working conditions, such as in nuclear reactor vessels. Generalisations

Y.Bouras: Thermal stability of concrete and concrete-filled steel tubular arches 9



Chapter 1. Introduction

such as incorporation of humidity variations can be made in future research projects.

Furthermore, the proposed inelastic numerical models provide efficient tools for the

analysis of other structures such as steel arches and beams.

1.5 Thesis Layout

This thesis consists if eight chapters. This first chapter has provided an introduction

to arch stability and the theory of fractional viscoelasticity, in addition to stating the

research aims and highlighting the practical significance of the project. Chapter 2

presents an extensive review of pertinent literature surrounding the stability of arch

structures. The literature review is segmented into four primary categories consisting

of elastic buckling, inelastic strength, thermal stability and creep buckling of arches.

These four groups are further divided into studies analysing in-plane stability and out-

of-plane stability. Limitations in the current state of the art are subsequently discussed

and areas requiring research focus are highlighted.

In Chapter 3, a novel rheological creep law is developed for concrete at extreme ele-

vated temperatures based on the theory of fractional viscoelasticity. Model parameters,

including the dynamic viscosities and the fractional exponents, are calibrated based on

temperature level in order to map the creep compliance functions of the springpots

with existing experimental data. As the fractional exponent is a function of tempera-

ture, under time-varying temperature conditions, a variable-order fractional differential

equation is formulated. Numerical approximations of the fractional differential creep

laws are made using a finite difference scheme. The result is a compact method for ana-

lytically and numerically modelling creep strain for cases of time-varying stress and/or

temperature level. This is demonstrated by applying the developed model to determine

Y.Bouras: Thermal stability of concrete and concrete-filled steel tubular arches 10
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axial deformations in columns and transverse deflections in beams.

Chapter 4 presents analytical investigations into the elastic prebuckling behaviour and

in-plane stability of circular shallow concrete arches subjected to uniformly distributed

radial loading and time-varying uniform temperature fields with pinned or fixed end

supports. Creep strain is modelled using the fractional viscoelastic rheological model

developed in Chapter 3. The principle of virtual work is employed to derive the non-

linear equations of equilibrium and the first correspondence principle is invoked. The

first correspondence principle, or elastic-viscoelastic analogy, allows the problem to be

treated statically, with the viscoelastic solution being obtained by replacing the elastic

modulus in the corresponding elastic solution with the creep operator. An in-plane

buckling analysis is then performed and closed form solutions for the anti-symmetric

bifurcation and symmetric snap-through buckling loads are presented.

In Chapter 5, the inelastic response and in-plane failure modes of mechanically preloaded

shallow concrete arches subjected to fire loading are numerically studied. A three-

dimensional FE model is first constructed which considers geometric and material non-

linearities. To verify the FE model, a non-discretisation mechanical-based numerical

method is derived for the non-linear inelastic analysis of shallow concrete arches sub-

jected to uniformly distributed radial loading and uniform temperature fields. Further

verification of the FE model is made by comparison to the inelastic buckling loads of

concrete arches predicted using the tangent modulus theory. Subsequently, an extensive

parametric study is conducted which illustrates the governing failure mode of concrete

arches under mechanical and fire loading, and the effect of various parameters including

arch included angle, concrete compressive strength, cross-section size, mechanical load

level and fire type on fire resistance time.

Chapter 6 provides elastic and inelastic prebuckling and in-plane buckling analyses
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of circular shallow and deep CFST arches under uniformly distributed radial loading

and elevated temperature fields. The effect of thermal loads on the response of CFST

arches with pinned, fixed and crown-pinned support cases are analysed. Closed-form

solutions are presented for the elastic anti-symmetric bifurcation loads of CFST arches

and the effect of temperature level on both anti-symmetric buckling and symmetric

snap-through buckling loads demonstrated. Inelastic in-plane buckling strength is in-

vestigated through the development of a FE model which is verified by comparison to

models derived herein and existing in the literature. Additionally, detailed parametric

studies and sensitivity analyses illustrate the influence of various parameters on critical

buckling loads and fire resistance time of CFST arches.

Elastic and inelastic flexural-torsional buckling of CFST arches subjected to combined

mechanical and thermal loading is investigated in Chapter 7. A numerical model to

determine the elastic out-of-plane buckling loads of CFST arches at elevated tempera-

tures is derived using energy methods and is shown applicable to the mechanical loading

cases of uniformly distributed and central concentrated loads, and for pinned or fixed

end supports. The impact of thermal loading on elastic flexural-torsional buckling

loads is examined in addition to assessing the significance of basic creep strain on the

thermo-elastic pre-buckling response. Additionally, FE analysis is employed to study

the inelastic lateral buckling strength of CFST arches under uniform temperature field

or fire loading. The FE model is validated by comparison to the elastic out-of-plane

buckling loads predicted by the numerical methodology derived herein. Parametric

and sensitivity analyses are then presented to highlight the significance of numerous

parameters on lateral buckling strength.

The eighth chapter concludes the thesis by presenting the current study’s major find-

ings, novel contributions and the associated practical implications. Furthermore, rec-

ommendations for future research works on the thermal stability of arches are provided.
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Chapter 2

Literature Review

2.1 Introduction

The aim of this chapter is to present the state-of-the-art on the stability of arches

under static loading. First, a brief discussion on the theory of stability for elastic and

inelastic bodies is presented. Subsequently, literature on arch stability is considered and

is segmented into four categories; elastic buckling, inelastic buckling, thermal buckling

and creep buckling. Further classifications are made into in-plane and out-of-plane

buckling. Analytical, numerical and experimental studies are all considered. Detailed

descriptions of the mathematical components of various studies will not be provided,

with a focus instead on the discussion of arch behaviour and methodology of analysis.

13
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A summary is provided highlighting identified gaps in the literature to promote areas

in need of research focus.

2.2 Theory of Stability

2.2.1 Elastic stability

Failures of structural elements is caused by either material failure or structural insta-

bility. The former is governed by material strength and is generally independent of

the geometry of the structure. However, loss of stability is less dependant on mate-

rial strength is primarily influenced by the material stiffness and structural geometry,

mostly slenderness [10]. Stability can be defined, in basic terms, as the ability of the

properties of a mechanical system to remain unchanged, or to change in a small quan-

tity, when subject to perturbations [16]. Alternatively, stability loss can be said to have

occurred when a structure changes from one deformation pattern to an adjacent one [3].

Analysing infinitesimally close equilibrium configurations is the oldest method of sta-

bility analysis and has many names including the classical, equilibrium, Euler and

bifurcation method. This static analysis is based on the fact that under given loading

and boundary conditions, a structure could have more then one equilibrium configura-

tion. In this case, a state of equilibrium is defined as stable if under given boundary

and loading conditions, there are no adjacent equilibrium positions. This is illustrated

using the common example of a straight column in pure compression which suddenly

changes (bifurcates) to a deformed equilibrium configuration of combined bending and

compression as the applied load reaches the critical value. At the critical load level, the
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structure contains multiple configurations where equilibrium can be maintained.

Analysis of static stability can also be conducted using the potential energy method.

This method is based on the energy stability criteria for conservative mechanical sys-

tems with finite number of degrees of freedom. This can be expressed in the form of

the Lagrange-Dirichlet theorem which states that a basic equilibrium configuration of

a conservative system is stable if it has a minimum in terms of potential energy when

compared to adjacent configurations. Adjacent positions differ from the basic configu-

ration in finite virtual displacements. Thus, a structure subjected to conservative loads

can be defined as stable if the total potential energy of the equilibrium configuration

assumes a local minimum in the class of virtual displacements that satisfy geometric

constraints.

The dynamic or kinematic definition of stability will now be discussed. This method

involves the assessment of the equations governing free vibrations of a structure caused

by external conditions. The equilibrium configuration is said to be stable if small

disturbances to the initial conditions causes movements which are close to the original

position for all of time. As unstable configuration is defined as when any disturbances

to initial conditions or velocities cause a finite deviation from the initial position and

increasing amplitudes of vibration with time.

As stated before, a structure is said to be unstable when the applied load reaches a

critical value where multiple adjacent equilibrium positions exist simultaneously. A

structure buckles if it moves from the initial equilibrium position to an adjacent one.

This type of buckling is defined as bifurcation buckling. Two other primary types of

buckling exist and include snap-through buckling and finite-disturbance buckling. Snap-

through buckling involves a structure noticeably jumping from an initial equilibrium

state to a non-adjacent equilibrium position where the displacements are significantly
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larger [3]. Finite-disturbance buckling occurs when there is a great loss of stiffness due

to buckling, and in order to maintain equilibrium in the buckled state, the load level

significantly reduces. Of relevance to stability of arches is bifurcation and snap-through

buckling.

2.2.2 Inelastic stability

In the preceding discussion, structural failure was stated to be caused by either mate-

rial failure or instability failure. However, in reality a combination of the two failure

modes is likely to occur in most structures. The high load levels required to induce

buckling in non-slender structures may exceed the elastic range. Furthermore, inelas-

tic deformations may destabilise a structure. The energy method of stability analysis

requires the existence of the potential energy function. This is inapplicable to inelastic

bodies which are non-conservative. Therefore, other methods of stability analysis must

be employed when considering plasticity. Two methods of time-independent inelastic

stability analysis of structures will be discussed; the reduced modulus method and the

tangent modulus method.

At the commencement of column buckling, one side of the column is subjected to

additional compressive loading and axial shortening. Whilst the other side experiences

unloading assuming a constant axial force during buckling [10]. For an inelastic stress-

hardening material, the shortening side of the column will be governed by the tangent

modulus Et and the extending side will behave according to the unloading modulus Eu.

The original elastic modulus E > Et and Eu > Et. This difference in moduli in the

cross-section causes a bi-linear stress distribution in the column. Upon obtaining the

bending moment in the cross-section based, one may derive the critical buckling load
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which is dependant on the reduced modulus Er which is a function of Et and Eu. For

smooth non-linear stress-strain curves, Er is a function of normal stress and is therefore

solved iteratively.

The reduced modulus theory tends to over predict the real buckling load of plastic

columns [10]. This is due to the possibility of columns deflecting prior to the critical

reduced modulus load. Therefore, the buckling load is not constant, and unloading

caused by buckling deflections is compensated for by further increases in axial load

level. Thus, at the onset of buckling, the strain distribution across the cross-section is

constant and governed by Et for both non-linear and bi-linear elasto-plastic behaviour.

The tangent modulus buckling load is obtained by replacing E in the elastic solution

with Et. This also obtained iteratively due to the dependence of Et on the stress level.

2.3 Elastic buckling of arches

2.3.1 In-plane stability

The elastic in-plane stability of arches is a classical mechanics and pragmatic engineering

problem that has been extensively studied by many researchers over the years and

continues to be an area of great research focus. Early analytical studies on the in-plane

elastic stability of arches include the works of Timoshenko and Gere [17], Vlasov [18],

Gjelsvik and Bodner [19], Austin [20], Simitses and Hutchinson [21], Schreyer and

Masur [22] and Dickie and Broughton [23]. The results of early research on arch stability

have been summarised in the Guide to Stability Design of Metal Structures [1,24,25], the

Handbook of Structural Stability [26] and by DaPeppo and Schmidt [27]. Fukumoto [28]
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presented a state of the art of the elastic and inelastic stability of arches in 1996. This

review will hence focus on more recent research.

In these early investigations on the elastic stability of arches [17–23], classical buckling

theory was adopted. However, it was later shown experimentally [19, 23] and numeri-

cally [29] that the classical theory was inaccurate, caused by simplifying assumptions

made regarding the pre-buckling behaviour [29, 30]. Classical buckling theory ignores

the effects of pre-buckling deformations on displacements and geometrical stiffness, and

linearises stress resultants. These assumptions result in a linearised buckling solution

which prevents a post-buckling analysis [29,30]. Classical theory only provides accurate

solutions for deep arches, as the rise of the arch is much greater than the magnitude of

pre-buckling deformations [29]. Conversely in shallow arches, the pre-buckling defor-

mations are significant and highly non-linear. As a result, the linear resultants for axial

compressive force N ≈ qR and bending moment M ≈ 0 prior to buckling, where q and

R are the uniformly distributed radial load and arch radius respectively, do not hold

true for shallow arches. The use of classical theory for the analysis of shallow arches

leads to an overestimation of the bucking strength, thus the elastic buckling load of a

shallow arch must be obtained using non-linear methods.

The use of numerical and FE schemes to investigate arch stability then became popular

among researchers [31–37]. However, these early numerical models generated for the

non-linear analysis of elastic arches did not fully account for strain non-linearity, as

bending strains were assumed linear and the influence of axial deformations on curvature

were not considered. Additionally, pre-buckling deformations were ignored in the study

by Kang and Yoo [37]. Pi and Trahair [38] incorporated higher-order curvature terms

caused by bending actions, in addition to the effects of pre-buckling deformations, into

a FE model developed for the non-linear analysis of arches. This model was extended

to analyse in-plane buckling and post-buckling behaviour by the authors in [29]. The
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higher order bending strains were found to have a profound effect on the stability of

deep arches.

Research analytically investigating the in-plane elastic stability of arches, while con-

sidering the effects of pre-buckling deformations, will now be discussed. The in-plane

elastic stability of a circular elastic arch under uniform radial load and with an arbitrary

cross section was investigated by Pi et al. [30] and Pi and Bradford [39]. Geometric

non-linearity was considered by adopting the following non-linear longitudinal normal

strain formulation;

ε = w′ − v +
1

2
(v′)2 − yv

′′

R
, (2.3.1)

where ε is the total strain at an arbitrary point in the cross section, w = ŵ/R, v =

v̂/R, ŵ and v̂ are the axial and radial displacements respectively, y is the vertical

coordinate of the point, R is the arch radius, ( )′ = d( )/dθ, ( )′′ = d2( )/dθ2 and θ

is the angular coordinate. The third term of Equation (2.3.1) accounts for geometric

non-linearity. Energy methods were employed to derive the non-linear equilibrium and

buckling equilibrium equations, for both pinned-ended and fixed boundary conditions.

For the case of a uniform radial load, the principle of virtual work requires that;

δΠ =

∫
V

σδε dV −
∫ Θ

−Θ

qR2δv dθ = 0, ∀ δv, δv′, δv′′, δw, δw′ (2.3.2)

where V is the volume of the arch, Θ is half the included angle and δv, δv′, δv′′, δw and

δw′ are kinematically admissible variations of displacements. By integrating Equation

(2.3.2) by parts, the non-linear equations of equilibrium for a shallow arch are derived;

N ′ = 0, (2.3.3)

−M ′′ +NRv′′ +NR− qR2 = 0, (2.3.4)

where N is the axial force and M the bending moment. Buckling equilibrium equations
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were subsequently derived by performing the second variation of the potential energy

function. The critical axial loads for anti-symmetric buckling was obtained as;

Np =
π2EI

(S/2)2
for pinned ends, Np =

(1.4303π)2EI

(S/2)2
for fixed ends. (2.3.5)

The resulting closed-form and approximate solutions for the elastic buckling loads were

verified via FE analysis. Additionally, criteria for classifying buckling behaviour was

provided based on arch slenderness and arch rise-to-span ratio. These two studies

analytically proved that classical buckling solutions are valid only for deep arches.

Building on this, Bradford et al. [40] investigated the generalised case of a central

concentrated load Q. For this case, the potential energy function becomes;

∫
V

σδε dV − Q

2
δv0 = 0, ∀ δv, δv′, δv′′, δw, δw′. (2.3.6)

which upon integration over half the larch length gives the following non-linear equilib-

rium equations;

N ′ = 0, (2.3.7)

−M ′′ +NR (1 + v′′) = 0. (2.3.8)

Analytical solutions were then obtained using energy methods for the anti-symmetric

bifurcation and symmetric snap-through buckling modes for pin-ended and fixed shallow

arches. Approximations for the symmetric buckling loads of fixed non-shallow arches

and for the anti-symmetric buckling loads of pinned arches were also presented and

verified via FE analysis. It was found that symmetric buckling dominates fixed arches,

and the existence of bifurcation buckling is not a sufficient condition for its occurrence

[29, 40]. Rubin [41] applied the theory of a Cosserat Point to the elastic buckling

problem of a circular fixed arch subject to a central concentrated load. It was shown

that the deformations and critical loads can be accurately predicted for elastic arches

using the aforementioned theory, as existing test results covering a range of geometries
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were found to be in excellent agreement. Furthermore, it was shown that buckling loads

are highly influenced by variations in arch thickness.

Hodges [42] analysed the in-plane deformation and buckling behaviour of deep circular

arches subjected to a distributed load acting normal to the reference line of the deformed

axis, a close representation of hydrostatic loading. A geometrically exact theory was

adopted for the description of non-linear strains. The in-plane stability of circular arches

under hydrostatic loading and uniformly distributed loading directed towards the arch

center was studied by Simitses and Hodges [3]. Gengshu et al. [43] investigated buck-

ling of deep circular arches under constant-directed uniformly distributed radial load.

Non-linear equilibrium equations were derived based on the principle of virtual work

while considering the non-linear effects of longitudinal, shear and transverse stresses in

addition to pre-buckling deformations. Buckling equations were obtained through lin-

earisation and new solution for the anti-symmetric buckling load of a simply-supported

arch was developed. The shear forces, bending moments and pre-buckling deformations

were found not to have a significant impact on the buckling loads of deep arches. These

results were compared to those obtained by other researchers [17,18,21,30,37,42,44,45].

Variations among solutions were attributed to contrasting stress and strain formulations

and the use of different analysis methodologies. Furthermore, the commonly adopted

axial in-extensibility assumption was examined and found to violate axial equilibrium,

with valid applicability only in the case of hydrostatic loading. Although shear ef-

fects were incorporated into the model developed in [43], displacements associated with

shear were not. Attard et al. [46] developed a finite strain formulation for the in-

plane buckling analysis of elastic deep circular arches that included the effects of shear

deformations. Timoshenko beam theory was adopted for the incorporation of shear de-

formations and a hyper-elastic constitutive equation was employed for the stress-strain

description. Closed-form buckling solutions were developed and verified with existing

results in the literature and by FE analysis. The authors extended this study to nu-
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merically investigate the effect of shear deformations on the buckling and post-buckling

behaviour of circular arches with varied loading and boundary conditions [47]. In ad-

dition to the slenderness ratio and included angle, the axial-to-shear rigidity ratio was

found to influence the buckling behaviour. The critical loads decreased with an increase

of axial-to-shear rigidity ratio. Furthermore, shear deformations were found to signifi-

cantly effect the buckling loads and modes. Zhu et al. [48] conducted a similar study

for funicular arches.

The in-plane elastic stability of shallow pin-ended parabolic arches under vertically

distributed loads were analysed by Moon et al. [49]. A generic non-linear equilibrium

equation was adopted in order to derive the load-displacement relationship, which was

used to determine the thresholds of different buckling modes in terms of the dimen-

sionless rise parameter. The critical load for symmetric buckling was determined using

the equilibrium equation and an assumed shape of the buckling form. The results were

verified using FE analysis and found to be in good agreement. However, inaccuracies

occurred at interaction buckling, that is at threshold boundaries. The in-plane elastic

stability of a fixed parabolic arch was investigated by Cai et al. [50]. Analytical solutions

for the symmetric limit point and anti-symmetric bifurcations buckling loads were ob-

tained using the principle of virtual work. A cable system was suggested to increase the

buckling loads which increased in effectiveness with slenderness ratio. Recently, Brad-

ford et al. [51] examined the accuracy of the common simplifying assumption, adopted

by many researchers [49,50,52–55] when analysing stability of parabolic arches, that the

derivative of the vertical coordinate with respect to the horizontal (dy/dz)2 << 1. The

analytical solutions for the elastic in-plane buckling of pin-ended and fixed parabolic

arches produced via this assumption were compared with FE results. The aforemen-

tioned assumption was found applicable only in the case of extremely shallow parabolic

arches, specifically when the rise-to-span ratio f/l < 0.08. The critical buckling loads

are overestimated for greater rise-to-span ratios and the errors increase with rise-to-
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span ratio. The authors concluded that the effect of the simplifying assumption on

the in-plane buckling analyses of high arch arches and on flexural-torsional buckling

behaviour requires further investigation.

Arch structures can be realistically modelled by horizontal springs at the supports which

replicate the behaviour of typical engineering foundations such as rock [52] or adjacent

structures [56]. Shallow arches experience high levels of compressive force which results

in large horizontal reactions (thrust) at the supports causing relative movement in

the embedded foundation. The in-plane elastic stability of shallow parabolic arches

subject to uniform vertical loading and supported by elastic springs was studied in

[52]. Accounting for pre-buckling deformations, a non-linear buckling analysis was

performed which provided accurate closed-form solutions for critical loads causing snap-

though and bifurcation buckling. The elastic springs significantly influenced both the

buckling load and the parameters determining buckling mode. A decrease in spring

stiffness reduces the critical load and increases the modified slenderness for buckling

mode characterisation. Critical load for a tied-arch was also determined and the tie

stiffness that delineates buckling and stability was provided. The companion paper

[57] experimentally validated the analytical solutions. Two shallow reinforced concrete

arches were loaded until failure in a short time frame to avoid the viscoelastic effects of

creep and shrinkage. Pi et al. [56] analytically investigated non-linear behaviour and in-

plane buckling of elastically supported circular arches subjected to uniformly distributed

radial loads. As with the study by Bradford et al. [52] for parabolic arches, it was found

that critical loads decreased with increasing flexibility of the elastic restraints, and that

the criteria delineating between buckling modes was influenced by stiffness of the elastic

end supports.

Supporting action provided by foundations or adjacent structures may also be modelled

as elastic rotational end restraints. Pi et al. [58] studied the in-plane stability boundaries
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for a pin-ended circular arch under a central concentrated load with elastic rotational

end restraints. It was found that the stiffness of the rotational restraints influence

the buckling loads and the buckling and post-buckling behaviour. The critical loads

increase with the stiffness of rotational restraints, and become that for a pin-ended

arch when rotational stiffness is zero, and that for a fixed-ended arch for an infinitely

stiff restraint. Furthermore, the slenderness parameter delineating between buckling

modes increases with the stiffness of the rotational restraint. The buckling of these

arches under uniform radial loading was analysed by Pi and Bradford [59] who derived

buckling loads, limit points and the post-buckling equilibrium paths. Kiss [60] furthered

these studies by presenting an analysis of rotationally restrained shallow circular arches

under concentrated loads and arbitrary distributed loads, while accounting for cross-

section heterogeneity. Pi et al. [61, 62] studied the in-plane buckling of circular arches

subjected to central concentrated loads with unequal rotational end restraints. The

equilibrium equations were derived using the theory of stationary potential energy.

The non-linear behaviours were observed to be of greater complexity when compared

to the cases with equal rotational end restraints. Moreover, it was found that arches

with unequal rotational restraints cannot buckle in a bifurcation mode, as is typical in

arches with symmetrical supports, and that failure only occurs in a limit point stability

mode.

The in-plane stability of arches with supports that stiffen under compression have been

investigated [54, 63, 64]. Plaut [63] studied the in-plane stability of sinusoidal arches

under uniformly distributed load. The arch ends were immovable and rotationally

retrained with elastic springs. The stiffness of the springs increased with the distributed

load. Additionally, the case of unequal spring stiffness was explored. However, pre-

buckling deformations were not incorporated in the analysis. This was done by Cai

and Feng [54] in their buckling analysis of shallow parabolic arches subject vertically

distributed loading. As is to be expected, buckling loads were sensitive to spring stiffness
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and were found to increase with initial stiffness and stiffening rate. This effect being

more significant in relation to anti-symmetric buckling. The authors extended this

study to investigate the centrally loaded parabolic arch in [64].

2.3.2 Out-of-plane stability

In addition to the possibility of in-plane stability loss, an arch may suddenly displace

laterally and twist out of plane when subject to in-plane bending and/or compression in

a flexural-torsional type buckling mode [65], see Figure 2.1. Classic studies investigating

elastic flexural-torsional buckling of arches include the work of Timoshenko and Gere

[17], who developed closed form solutions for simply supported arches of rectangular

cross section under uniform compression and bending, and Vlasov [18] who extended

Timoshenko and Gere’s study to mono-symmetric cross sections. Since these works,

many researchers have investigated elastic flexural-torsional buckling of arches [2, 37,

44, 45, 66–68]. As with in-plane stability analysis, out-of-plane buckling problems have

been investigated using two methods which include the static equilibrium and energy

methods, adopted in [17,18] and [2,17,37,44,45,66–68] respectively. Critical reviews of

these studies were conducted by Papangelis and Trahair [44] and Kang and Yoo [37].

Therefore the proceeding discussion will focus on research conducted after this time.

Pi et al. [65] investigated elastic flexural-torsional buckling of circular arches when

subjected to uniform bending and uniform compression, caused by hydrostatic loads

or distributed radial loads directed to the arch center, using both energy and static

equilibrium methods. Particular emphasis was provided to the discrepancies found in

existing solutions [2, 17, 18, 37, 44, 45, 66, 67] for the buckling moment in arches under

uniform bending. The contrasting solutions available in the literature were attributed
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Figure 2.1: Flexural-torsional buckling of CFST arch

to the use of the analogy of curved members to straight members, which neglects certain

coupling terms, and due to the varying derivations of longitudinal and uniform torsional

shear strains. The lateral components of hydrostatic loads were found to increase the

buckling loads of arches in uniform compression. These results were initially questioned

on the basis that hydrostatic, or follower forces, are non-conservative. This concern was

addressed in [69] and will not be discussed further. For further studies conducted on the

elastic flexural-torsional buckling of arches subjected to hydrostatic pressure, see [70].

Furthermore, it was concluded in [65] that only first-order buckling deformations are

required in the use of static equilibrium approaches, whilst energy methods require the

use of correct non-linear second-order strains.

The aforementioned studies focused primarily on the stability of simply-supported

arches. The lack of research on the lateral buckling of fixed arches motivated Pi and

Bradford [71] and Bradford and Pi [72] to their development. Using energy methods,

the authors developed closed-form solutions for the flexural-torsional buckling of circu-

lar arches under uniform bending and compression. The potential energy of an elastic
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arch under uniform bending in a flexural-torsional buckled state was expressed as;

Π =

∫
V

1

2
(Eε2ss +Gγ2

x +Gγ2
y) dV −

2∑
i=1

Miθi. (2.3.9)

where εss is the longitudinal normal strain, γx and γy are the shear strains, G is the

shear modulus, M1 and M2 are the end moments and θ1 and θ2 are the rotation con-

jugates of the end moments. The buckling moment can then be derived by setting the

second variation of the potential energy function to zero for all possible perturbations

of displacements. It was found that increasing the included angle of a fixed arch under

uniform positive bending results in an increase of the first mode critical moment, which

contrasts the reduction in second mode buckling moment observed in pinned arches.

This effect increases with slenderness. When subjected to negative moment, laterally

fixed and pinned arches show an increase buckling moment with included angle. A

complexity arising in the analysis of the flexural-torsional buckling of fixed arches is

the accurate prediction of the buckling shape [73]. Dou et al. [73] studied the elastic

flexural-torsional buckling mode shapes of fixed arches under uniform compression and

bending using FE analysis in conjunction with an eigenvalue analysis. The authors

derived analytical solutions for the flexural-torsional buckling loads of fixed arches and

proposed simplified approximate solutions. It was found that by increasing the rise-to-

span ratio, the buckling shapes of fixed arches become more convoluted than beams and

shallow arches thus requiring more terms in the Fourier trigonometric series describing

the buckling shape. Moreover, the effective length approach, commonly adopted for

the buckling analysis of columns, was determined to be inaccurate for arches.

All of the studies mentioned so far have focused on arches featuring constant curvature,

typically circular. Very limited research has been conducted on the flexural-torsional

buckling of arches with a varying curvature, such as parabolic arches. Research in this

area includes the work of Tokarz and Sandhu [74], Tufekci and Dogruer [75] and Moon
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et al. [76]. Tokarz and Sandhu [74] derived buckling equations for pin-ended and fixed

parabolic arches subject to uniformly distributed loading. Tufekci and Dogruer [75]

studied the out-of-plane buckling of arches with varying curvature and cross section.

Moon et al. [76] derived buckling equations for arches with varying curvatures subject

to uniform compression and bending, and used these to determine the buckling loads

for parabolic arches. The buckling loads for circular and parabolic arches are similar

for low rise-to-span ratios, however diverge at higher rise-to-span ratios.

Arches are commonly connected with other structural members which provide restrain-

ing actions, consequently influencing lateral buckling resistance [77, 78]. When the re-

straining members are not closely spaced, they may be considered as discrete restraints,

resisting deformations at the connection points between the arch and the member.

Bradford and Pi [77] studied the effects of discrete elastic restraints located at the

arch crown on the buckling loads of arches in uniform compression and bending. The

effectiveness of the lateral translational restraints were found to be greater in arches

than in columns when under uniform compression. Similarly, the effect of rotational re-

straints during uniform bending are more significant in arches than in beams. Discrete

restraints may completely prevent buckling deformations at the point at which they

act, if completely rigid. Rigid restraints fragment the arch into individual segments

joined at the points of restraint. These arch sections may laterally buckle if the length

between elastic restraints is large [79]. The adjoining segments however provide a form

of elastic restraint at the ends of the unsupported segment, resulting in an increased

buckling moment.

Guo et al. [79] studied the out-of-plane elastic buckling of circular arch segments of

doubly symmetric cross-section supported with elastic end restraints. Approximate out-

of-plane elastic buckling loads were derived for arch segments featuring elastic rotational

and/or warping restraints of equal and unequal magnitudes. The threshold stiffness for
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discrete lateral braces, that is the stiffness required to prevent lateral buckling, was

investigated by Guo et al. [80], where analytical solutions were derived for circular

steel arches under uniform compression. The minimum number of restraints required

and maximum arch segment spans were determined. Connecting members may also

provide continuous buckling restraint to an arch. The behaviour and elastic out-of-

plane stability of arches continuously restrained were studied by Pi and Bradford [78].

Continuous elastic restraints were found to significantly influence the flexural-torsional

buckling behaviour. The authors obtained closed-form solutions using energy methods

for the flexural-torsional buckling moments and buckling loads for arches subjected

to uniform bending and compression respectively. Torsional buckling moments were

obtained for both bending and compressive arches. The buckling modes were found

to be highly sensitive to the properties and types of restraint. For a greater level of

discussion on buckling modes dependence on restraints, see [78].

In the previously discussed studies on the out-of-plane stability of arches, classical buck-

ling method was used to obtain the critical load, thus the effects of in-plane pre-buckling

deformations were ignored. In-plane pre-buckling deformations alter the curvature of

an arch, which significantly influences the out-of-plane buckling resistance [81]. The

effect of pre-buckling deformations on the elastic lateral-torsional buckling of simply

supported arches subjected to uniform bending were studied in [66,67,81]. To consider

prebuckling deformations, the potential energy function is generalised as (assuming

uniform bending);

Π =

∫
V

1

2
(Eε2ss +Gγ2

x +Gγ2
y) + σ0εss,0 dV −

2∑
i=1

Miθi. (2.3.10)

where σ0 and εss,0 denote the constant prebuckling longitudinal stress and strain. In

these works, the in-plane pre-buckling deformations were found to increase the moments

causing lateral instability. Furthermore, Pi et al. [81] discovered that incorporating pre-
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buckling deformations in stability analyses allows torsional buckling to occur, in the

case when lateral displacements are fully restrained. As the lateral buckling behaviour

of fixed arches differs from that of simply-supported arches, the pre-buckling effects

on buckling of fixed arches cannot be assumed the same as for pinned arches [82].

Under uniform positive bending, the pre-buckling deformations reduce the moments

causing lateral instability in fixed arches, contrasting the increase observed in pinned

arches [82]. These effects are magnified with an increasing included angle and out-

of plane slenderness ratio. When an arch is subjected to negative bending, the pre-

buckling deformations cause a reduction in critical moment when the included arch

angle is small. However, an increase in buckling moment occurs when the included

angle exceeds a specific value and continues to rise with an increasing included angle.

For a greater level of discussion regarding the effects of pre-buckling deformations on the

flexural-torsional buckling of fixed arches, see [82]. The effects of in-plane pre-buckling

deformations on the elastic lateral stability of arches are significant and thus cannot

be ignored. Although researchers and designers may adopt a conservative approach

and ignore them due to the resulting increase in buckling moment in pinned arches,

particular care should be taken as torsional buckling is still possible, and a decrease in

buckling moment can occur in fixed arches.

The influence of pre-buckling deformations on the flexural-torsional buckling behaviour

of arches under uniformly distributed radial loads has been researched [83–85]. Pi and

Bradford [83] generated a three-dimensional curved beam FE model for the numerical

determination of flexural-torsional buckling loads and post-buckling analysis of circular

thin-walled simply-supported shallow arches. Analytical solutions for arches subjected

to the same conditions were produced by Pi et al. [84]. In these studies, it was found that

the flexural-torsional buckling loads may be underestimated if in-plane pre-buckling

behaviour is ignored [83, 84]. Generalisations to in-plane fixed supports and variable

load height was made by Bradford and Pi [85]. The use of in-plane fixed connections
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greatly increase the lateral buckling load of the arch. The height of load application

also significantly influences stability boundaries.

Arches under a central concentrated load experience combined axial compression and

bending moment, which are dependent on arch slenderness and included angle and vary

throughout the length of the arch [86]. The buckling analysis of such arches is compli-

cated and highly dependent on pre-buckling stresses. Pi et al. [86] developed the first

analytical solutions to the elastic lateral-torsional buckling problem of a circular arch

subjected to a central concentrated load by using the principle of virtual work and the

Rayleigh-Ritz method. The in-plane fixed and out-of-plane pinned cases were analysed,

in addition to investigating the effects of load position. As with the uniformly dis-

tributed case, both in-plane boundary conditions and load application position greatly

influenced critical loads. Building on this study, Pi and Bradford [87] investigated the

generalised case of rotational end restraints, where the sensitive relationship between

buckling load and rotational restraint stiffness was analytically derived. The results

for both studies [86, 87] were verified by FE analysis and a curved beam element code

developed by the authors in [88].

2.4 Inelastic buckling of arches

The in-plane failure modes of arches consist of buckling of slender arches, and the

plastic collapse of stocky arches. Generally, in-plane failure will involve an interaction

between stability loss and material yielding, which is governed by the arch’s loading and

geometrical configuration, residual stresses and geometric imperfections [89]. Although

research on the inelastic buckling and strength of arches is less comprehensive than

elastic buckling, the subject has been explored in several studies.
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2.4.1 In-plane stability

Mirmiran and Amde [90] studied inelastic buckling and post-buckling of pre-stressed

homogeneous and sandwich using a non-linear FE model. Non-linear inelastic analysis

of in-plane buckling and strength of circular steel I-section arches subjected to various

loading cases was numerically investigated by Pi and Trahair [91]. The influence of

initial crookedness, rise-to-span ratio, residual stresses, and ratio of dead load to total

load on the behaviour, stability and strength of steel arches were analysed. Moon et

al. [92] conducted an inelastic buckling analysis of parabolic arches for various loading

cases and proposed new design methodologies.

Pi and Trahair [93] developed a non-linear FE model to investigate the inelastic in-plane

buckling of pin-ended circular shallow and deep arches in uniform compression. It was

found that classical buckling theory overestimates anti-symmetric bifurcation and sym-

metric snap-through buckling loads of shallow arches. As a result, the use of straight

beam-column interaction equations for arch design are restricted to deep arches. Fur-

thermore, straight beam-column interaction equations assume uniform compression or

bending, which may lead to conservative arch design as moment and axial force vary

throughout the arch length when under transverse loads. Novel interaction equations

were proposed which consider distribution of bending moment and axial compression

throughout the arch length and moment redistribution for shallow and deep arches

subjected to uniform compression and combined compression and bending. The au-

thors generalised this work to fixed circular steel arches in [94]. Design equations were

proposed for fixed arches under uniform compression and combined compression and

bending, which consider the effects of residual stresses, initial in-plane geometric im-

perfections and non-uniform distributions of bending moments and axial compressive

forces.
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2.4.2 Out-of-plane stability

Pi and Trahair [95] investigated the out-of-plane inelastic buckling strength of circular

I-section steel arches in uniform compression and bending through the development of

a non-linear three dimensional FE model. In-plane curvature, included angle, initial

geometric imperfections, large deformations residual stresses and material inelasticity

were all considered. The effects of in-plane curvature and included angle were found

to substantially influence the buckling strength of the arches. An increase in arch

angle and curvature results in a decreased flexural-torsional buckling strength. Initial

geometric imperfections, including crookedness and twist, also greatly influenced the

strengths of arches in both uniform compression and bending. The effects of residual

stresses were found prominent in compression arches and less so in bending arches. This

model was extended to account for general loading scenarios including concentrated

loads and uniformly distributed transverse loads by the authors in [96]. It was found

that the buckling moments under central concentrated loads were generally less than

for arches under a quarter point concentrated load. Similarly, buckling loads of arches

subjected to uniformly distributed loading over their entire length were less than when

loaded with a uniformly distributed load over half the arch. Pi and Bradford [97]

conducted a similar study for fixed I-section arches subject to uniform compression,

uniform bending and combined compression and bending. Design equations for pin-

ended arches were deemed insufficient for use on fixed arches and hence novel design

equations were proposed for fixed arches. The out-of-plane strength of high strength

steel arches was analysed in [98] where design recommendation were proposed for the

cases of uniform compression, uniform bending and combined compression and bending.

The inelastic flexural-torsional buckling and strength of circular steel arches with cen-

tral elastic-torsional restrains was studied in [99]. Central torsional restraint were found
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to increase the strength of steel arches. However, this improvement in strength reduces

with decreasing arch slenderness. The stiffness of the central rotational restraint was

determined to reach a threshold value at which further increases in stiffness did not

strengthen the arch. Slenderness and included angle were found to be the key fac-

tors influencing the threshold stiffness. Furthermore, the threshold stiffness is less for

arches that fail inelastically, then that for arches buckling elastically. Wu et al. [100]

investigated the elastic and elastic-plastic buckling of fixed parabolic CFST arches and

developed a novel method for predicting the in-plane strength, and Pi et al. [101] pro-

posed design equations considering non-linear bending actions.

Pi and Bradford [102] proposed a three-dimensional curved beam element model for

the non-linear elastic-plastic flexural-torsional buckling and post-buckling analysis of

circular steel arches under a central concentrated which accounts for large twist rota-

tions. The included angle, arch slenderness, torsional parameter and material yielding

were found to greatly influence buckling behaviour. Stocky arches featuring low in-

cluded angles fail in an elastic-plastic mode. For the case when stocky arches feature

large included angles, the elastic-plastic and elastic buckling loads for pin-ended arches

are identical, whilst for fixed arches, the elastic-plastic critical load is smaller than the

elastic buckling load. The elastic-plastic and elastic buckling loads for slender arches

are equal as the arch lose stability prematurely. The load carrying capacity decreases

as the arch deforms during elastic-plastic post-buckling, while it increases during elas-

tic post-buckling. Compressive forces relax during elastic post-buckling buckling, and

when the arch is fixed at its ends, moment redistribution occurs.

A state of the art of experimental work on the flexural-torsional buckling of arches was

recently provided by La Poutre et al. [103] and will thus not be recounted here. The

work by La Poutre et al. [103] and experiments conducted since [104, 105] will only be

discussed. In the experiments by La Poutre et al. [103], 15 roller-bent circular I-section
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steel arches were loaded at the crown till flexural-torsional elastic-plastic buckling oc-

curred. Geometric imperfections were measured prior to testing and showed large vari-

ability. All arches featured subtended angle between 90◦ and 180 ◦. At approximately

60% of the ultimate load, the arches begun exhibiting non-linear behaviour. When ap-

proaching the ultimate load, sections of the arch showed significant deformations, twists

and yielding. Dou et al. [104] experimentally investigated the flexural-torsional buck-

ling resistance of in-plane pinned and out-of-plane semi-restrained circular steel arches.

Three arches were tested; the first arch consisted of a rise-to span ratio of 0.15 and a

radius of 5.45 meters, while the second and third arches featured rise-to span ratios of

0.3 and radii of 3.4 meters. The first and second arches were loaded symmetrically with

three point loads. Two point loads were applied to the third arch in an asymmetric

fashion. All arches failed in and out-of-plane mode in an asymmetric S-shape. The

geometric imperfections, out-of-plane boundary conditions and loading conditions were

found to greatly influence the buckling modes and loads. Further experimental work

was conducted by Guo et al. [105] to assess the effects of initial geometric imperfections

and non-symmetric loading on the lateral inelastic buckling strength of fully fixed steel

arches. Four circular I-section arches were tested, each featuring a span of 6 meters and

a rise-to-span ration of 0.3. Two of the arches were loaded with three point loads in a

symmetric fashion, whilst the remaining two were subjected to two point loads asym-

metrically. Each arch featured varying initial out-of-plane imperfections. The loads

were applied monotonically and removed once the arches reached their out-of-plane in-

elastic strength. Initial geometric imperfections were found to reduce buckling strength

and influence inelastic buckling modes. Furthermore, asymmetrically loaded arches

featured lower out-of-plane strengths when compared to their symmetrically loaded

counterparts.
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2.5 Thermal buckling of arches

Thermal loads may induce stability loss of important load bearing elements subse-

quently causing structural collapse. Research conducted on thermal buckling of steel

and FGM arches will now be discussed.

2.5.1 In-plane stability

The in-plane thermoelastic behaviour of a circular steel arch subjected to a uniform

temperature field supported by longitudinal elastic springs attached to end rollers was

studied by Bradford [106]. Consideration of a uniform thermal strain εth results in the

following definition of non-linear longitudinal strain;

ε =
σ

E
+ εth = w′ − v +

1

2
(v′)2 − yv

′′

R
, (2.5.1)

The thermal strain is assumed constant and therefore vanishes in the potential energy

function. Therefore, the same non-linear pre-buckling and buckling equilibrium equa-

tions are derived as when elevated temperatures are not considered. The changes are

seen in the constitutive material relations for axial force, which is defined as;

N = −
∫
A

σ dA = EA

(
εth − w′ + v − 1

2
(v′)2

)
. (2.5.2)

The authors found that steel arches deflect upwards with increasing temperature, see

Figure 2.2, and that the end-restrained axial expansion caused by thermal straining

resulted in equal and opposite support reactions. Compressive forces and bending mo-

ments are produced due to this restrained thermal expansion and the arch experiences
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Figure 2.2: Effect of temperature on the radial deflections of a steel arch [109]

a state of compressive stress. However, as the arch displaces upwards, its length subse-

quently increases resulting in the formation of tensile strains [107], which may reduce

axial compressive stress. Furthermore, thermoelastic buckling of arches was determined

to possible only under the following two scenarios; when the arch was completely flat

and thus behaves as a column, or when the arch was pinned at its ends, obtained when

the stiffness of elastic springs approach infinity. This study was extended to the tubular

steel arch with rotational end restraints by Pi and Bradford [108]. In this paper, an ap-

proximate thermoelastic analysis of a tubular steel arch under uniform thermal loading

was conducted assuming a constant axial compressive force throughout the arch length.

This simplifying assumption was found to yield accurate results when compared with

an exact analysis. A linear analysis of pin-ended and fixed circular steel arches under

uniform thermal loading was presented by Pi and Bradford [107]. Thermal stresses and

strains in shallow arches were observed to be substantially greater then those in deep

arches. Additionally, the authors conducted a classical buckling analysis for shallow

arches and found that violation of serviceability criteria or material yielding is likely to

precede buckling due to the high temperatures required to induce stability loss.

Symmetric or anti-symmetric buckling may be triggered in arches when subjected to

combined mechanical and thermal loading [4,55,110]. Thermal loads increase the axial
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force produced by the mechanical load and the magnitude of displacements and bending

moments, which are typically reverse in direction. Cai et al. [55] performed a thermo-

elastic stability analysis of steel parabolic arches subject to central concentrated loads

and elevated temperatures. Critical loads for symmetric and anti-symmetric buckling

and criteria delineating buckling modes were analytically derived. The buckling loads

were significantly effected by thermal loading, displaying an increase with temperature

in an approximately linear fashion. Additionally, the influence of temperature on the

critical load increases with greater arch span-rise ratio, i.e temperature effects are more

pronounced in shallow arches. This result was also obtained in the study by Pi and

Bradford [4] where an elastic circular arch was subjected to a uniformly distributed

radial load and uniform temperature field. The derived critical axial forces for anti-

symmetric buckling were the same as Equations (2.3.5). This is due to the uniform

thermal strain not influencing the equilibrium and buckling equilibrium equations as

discussed earlier. However, the anti-symmetric buckling loads are impacted by temper-

ature level due to the constitute material equation, see Equation (2.5.2). The non-linear

behaviour and stability boundaries of crown-pinned arches are similarly effected by the

coupling of thermal and mechanical loading [111]. For this case, the utilisation of linear

analysis results in the temperature field causing no additional stresses and strains in

the arch. The importance of non-linear methods in the analysis of crown-pinned arches

is thus emphasized. Furthermore, crown-pinned arches may only buckle in a symmetric

fashion.

In reality, arch structures would experience a temperature distribution or gradient

through the cross section in a elevated temperature environment. This typically oc-

curs in building and tunnel fires as the concave side of the arch heats is exposed and

therefore heats more rapidly than the convex side. Temperature gradients result in

both axial expansion and curvature changes in the arch. Assuming a linear tempera-

ture gradient through the cross-section, the constitutive material relations for an elastic
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material become;

N = −
∫
A

σ dA = EA

(
εth,ave − w′ + v − 1

2
(v′)2

)
. (2.5.3)

M =

∫
A

σ y dA = −EIx
(
v′′

R
+
α∆T

h

)
. (2.5.4)

where εth,ave is the average thermal strain in the cross-section, α is the coefficient of

thermal expansion and ∆T is the temperature difference between the extremes of the

cross-section. A study on the non-linear thermoelastic stability of shallow steel circu-

lar arches with pined ends subjected to thermal gradients was conducted by Pi and

Bradford [112]. The authors discovered that arches may experience snap-through or bi-

furcation buckling when subjected to a thermal gradient, due to the increasing bending

and axial compression caused by curvature changes and axial expansion respectively.

The bending actions produced by the temperature gradients are complex [112], due

to the resulting opposing deformations. The bending actions created by end reactions

cause the arch to deflect in the convex direction, whilst bending produced by temper-

ature differential result in concave deflections. Furthermore, it was determined that

anti-symmetric buckling was the dominant failure mode and symmetric buckling could

only occur for slender shallow arches. The non-linear thermoelastic stability of shal-

low steel parabolic arches subject to combined mechanical and thermal loading, in the

form of thermal gradients and uniformly distributed loading, was investigated by Cai

et al. [113]. Pin-ended and rotationally restrained arches via elastic springs were con-

sidered. As with previously mentioned studies, the effects of temperature variations

significantly effected the critical loads for symmetric and anti-symmetric buckling and

the post-buckled behaviour. It was found the critical loads increased with an increasing

uniform temperature field. Conversely, the critical loads decreased with an increasing

temperature gradient. The effects of uniform temperature fields increased with the

rotational spring stiffness. However this increase in spring stiffness caused a reduction

in the effects of temperature gradients. Bradford [53] conducted a non-linear thermoe-
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lastic analysis of a long-span shallow steel arch subjected to fire loading. The arch

featured elastically restrained pinned ends and was supported by a cable tie. The anal-

ysis permitted any type of temperature distribution through the cross-section depth,

however was assumed constant along the length of the arch. The effect of spring and

cable tie stiffness were found to greatly influence the response of the arch to thermal

loading. It was also found that symmetric buckling was the dominant buckling mode,

and anti-symmetric bifurcation buckling was highly unlikely.

Heidarpour et al. [114] proposed a generic mechanical based model for the non-linear

thermoelastic analysis of steel circular arches with translational and rotational elastic

restraints acted on by uniformly distributed loads and non-uniform elevated temper-

atures. The model considered geometrical non-linearities, and was verified using FE

analysis. The authors extended the model in [109] to incorporate inelastic behaviour.

Heidarpour et al. [115] developed an analytical model to analyse the non-linear ther-

moelastic behaviour of a composite steel-concrete arch subject to the same loading and

boundary conditions as the aforementioned studies. Partial interaction and variation

of axial force were considered, however, the effects of concrete creep and shrinkage were

not. These three models were not developed for analysis of stability.

A non-linear thermoelastic and buckling analysis was conducted for functionally graded

material (FGM) shallow arches by Asgari et al. [116]. Using the method of virtual

work and accounting for non-linear pre-buckling deformations, the authors presented

analytical solutions for pin-ended FGM arches subjected to a uniform temperature

field. The effect of various parameters on the critical buckling were numerically studied

which included the power-law index of the constituent volume fraction, included arch

angle and length-thickness ratio. The critical temperature was found to be sensitive

to the power-law index and featured a non-uniform relationship. Critical buckling

temperatures generally increased with included angle and decreased with an increasing
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length-thickness ratio. The critical temperatures for arches featuring a smaller length-

thickness ratio were found to be extremely high, thus it was concluded that material

failure will likely precede stability loss. Linear thermal gradients were applied to shallow

circular FGM arches in the work of Asgari and Eslami [117]. Closed form solutions for

the critical buckling temperatures were derived using the adjacent equilibrium method.

The effect of thermal gradients and mechanical loading on the stability of FGM arches

have also been the subject of recent research [118]. Bateni and Eslami [118] studied

the stability of pin-ended shallow FGM arches subjected to uniformly distributed loads,

concentrated loads and a linear temperature gradient. The bifurcation buckling loads

increases with thermal gradient.

Song and Li [119] analysed the in-plane stability of FGM shallow arches with fixed

ends subjected to uniformly distributed follower force and elevated temperature. Anti-

symmetric bifurcation buckling was observed to precede symmetric snap-through buck-

ling and hence defined as the governing failure mode. A non-linear analysis of FGM

shallow arches with pinned ends supported on a non-linear elastic Pasternak foundation

and subjected to uniformly distributed lateral pressure and elevated temperatures was

conducted by Babaei et al. [120]. The third-order deformation of von Karman type was

employed to derive the non-linear equilibrium equations. Analytical solutions were for-

mulated by employing a two-step perturbation technique for the maximum deflection.

The authors generalised the study to fixed-ends in [121]. Li et al. [122] conducted an

elastic anti-symmetric buckling analysis on FGM shallow arches when under combined

in-plane pressures and uniform thermal loads. The obtained analytical solutions for

the buckling loads were validated using FE analysis. It was found that thermal loads

induced upward displacements consequently increasing the elastic buckling strength,

whilst simultaneously decreasing the critical load due to a deteriorating elastic modu-

lus. This is response aligns with that of homogeneous arches such as steel. Reversing the

material distribution in FGM arches gives inverted or optimised FGM arches, which
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show a significant increase in buckling strength for the same volume portion of the

material constituents [123].

The stability of a FGM shallow arch rigidly confined and subjected to a external pressure

was analytically and numerically studied by Li et al [124]. Confinement effects were

found to substantially increase buckling pressures. Conversely, a reduction in buckling

strength was obtained when increasing the volume fraction exponent. Yang et al. [125]

analysed in-plane stability of shallow functionally graded graphene reinforced composite

arches with fixed ends and subjected to mechanical and thermal loading. The arches

were composed of multiple graphene platelet reinforced composite (GPLRC) layers. The

principle of virtual work was adopted to obtain the non-linear equilibrium equations

and the Halpin-Tsai micromechanics model was adopted for materials properties of the

GPLRC layer. Analytical solutions were formulated for the limit point and bifurcations

buckling loads, and it was demonstrated that great increases in buckling resistance can

be achieved by increasing graphene platelets filler content.

2.5.2 Out-of plane stability

Upon reaching a critical temperature, an arch may buckle laterally in a flexural-torsional

mode due to the increased axial compression and bending moments. However, this

phenomenon has received far less research attention when compared to in-plane thermo-

elastic buckling. The work by Heidarpour et al. [126] appears to be the only work on

this subject. Adopting the non-discretisation mechanical based method developed in

[114] to model the non-linear pre-buckling behaviour, the critical temperatures causing

elastic flexural-torsional buckling in circular steel arches with doubly symmetric I-shape

cross-sections were determined using classical buckling theory. A parametric study was
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then performed to investigate the effect of multiple parameters on critical buckling

temperatures which included the included angle, slenderness ratio and imposed load for

pinned, fixed and spring supported arches. Similarly to in-plane stability, an increase in

included angle and stockiness of the member resulted in a higher magnitude of buckling

temperature. In addition, the influence of the ratio of the temperature in the top fibre

of the cross section to the temperature in the bottom fibre on the critical temperatures

was analysed and deemed significant. Conversely, the size of external load was found to

have a smaller impact on critical temperatures. Post-yield behaviour of the steel was

not considered, with the yielding point determined via the von Mises’ yield criterion.

2.5.3 Discussion

The effects of elevated temperatures on the behaviour and stability of steel and FGM

arches have been extensively studied through analytical and numerical means. Various

support conditions including pin-ended, fixed and crown-pinned arches and loading

scenarios including uniform temperature fields and temperature gradients have been

analysed. Although the developed analytical models have commonly been verified by

FE analysis, it appears that no experimental testing has been performed. Although

the large expenses associated with such experiments is recognised [126], the literature

would greatly benefit from experimental data. Various assumptions made by researchers

including thermoelastic behaviour could be further verified. Complex heating scenarios

such as localised fires, which are difficult to model analytically, could also be performed.

In addition, it is evident that studies on the thermal stability of damaged steel arches

have yet to be conducted. Yang and Bradford [127] analysed the thermoelastic buckling

and post-buckling of damaged steel columns. Buckling temperature was found to be

substantially influenced by weakening of the column. The significance of damage on

the thermal stability of steel arches is yet to be investigated.
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2.6 Creep buckling of arches

The viscoelastic effects of creep and shrinkage in concrete structures have been exten-

sively researched over the years. The phenomenon of creep buckling has however not

received the same attention [128]. Time-dependent deformations can significantly re-

duce the long-term load carrying capacity of compression members including columns

and arches, and hence must be carefully considered in engineering practice, especially

when designing slender elements. Creep buckling problems can be classified into two

main categories [10]: loss of stability induced by increasing deflections under sustained

load, typically expressed as critical buckling time, and instability caused by instanta-

neous overload. The proceeding discussion reviews studies on time-dependant stability

of concrete and CFST arches. Additionally, relevant research relating to creep mod-

elling in arches is examined, with focus on the temperature dependence of creep and

the subsequent effect on arch behaviour.

2.6.1 In-plane stability

Wang et al. [128] analytically and experimentally studied the long-term in-plane sta-

bility of elastically restrained shallow parabolic concrete arches subjected to sustained

uniformly distributed vertical loading. The creep was modelled using the commonly

adopted age-adjusted effective modulus method [129], and the time-dependant equilib-

rium and buckling equilibrium equations were formulated using the principle of virtual

work. Therefore, the governing equations of equilibrium and constitutive material rela-

tions remain the same as those presented in Equations (2.3.3), (2.3.4) and (2.3.5), with

the exception that the elastic modulus is time dependant and governed by the age-
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adjusted effective modulus. Results show that concrete arches experience an increasing

axial compressive force, bending moment and axial and radial displacements in time,

due to creep and shrinkage strains. The changing equilibrium configuration of the arch

may reach an unstable position at which symmetric or anti-symmetric buckling is pos-

sible. Furthermore, critical snap-through and bifurcation buckling loads were found to

decrease with time. Experimental tests were conducted to validate the proposed ana-

lytical models. Three concrete arches were tested, with each arch featuring a 4.25 m

span and rectangular cross section. All arches failed within several months due to time

effects, with each arch buckling in an anti-symmetric fashion. The critical buckling

times predicted by the analytical models agreed well with the experimental behaviour.

Despite representing a significant structural engineering problem, the work by Wang

et al. [128] appears to be the only research on stability loss due to viscoelasticity in

concrete arches.

The time-dependent behaviour and stability of CFST arches have however received

greater research focus in recent times [5, 130–134], with all studies belonging to the

first kind of creep buckling problem - sustained loading. Bradford et al. [5] analytically

studied long term in-plane behaviour of circular CFST arches, and creep buckling of

deep circular CFST arches, subjected to sustained uniformly distributed loading. The

creep was modelled using the age-adjusted effective modulus method. It was shown

that as the concrete core deforms in time, stress redistribution occurs between the steel

tube and concrete. The time-dependent deformations cause the compressive forces

in the steel tube to increase, whilst the confinement provided by the steel tube de-

creases compression in the concrete, due to the application of tensile forces [130], see

Figure 2.3. Additionally, the bending moment and radial and axial displacements sig-

nificantly increase with time. The limit point and bifurcation buckling loads are also

time-dependant, and may in time become equal to the sustained load. At this point

in the time domain, limit point and bifurcation buckling is possible for a CFST arch.
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Figure 2.3: Redistribution of stress between concrete core and steel tube through time
[5]

Creep buckling of shallow circular CFST arches was then the subject of analysis in

the works by Pi et al. [130] and Luo et al. [131, 132] for the loading cases of uniformly

distributed loads and central concentrated point loads respectively. These studies an-

alytically investigated the significance of geometric non-linearity on the long-term re-

sponse and time-dependant stability boundaries. It was found that non-linear analysis

predicted greater time dependant deformations and stresses than when compared to

those predicted by linear analysis. Thus, non-linear methods for the long-term analysis

of shallow CFST arches are required.

The long-term behaviour and in-plane stability of crown-pinned CFST arches subject to

sustained concentrated point loading were investigated by Bradford and Pi [133,134]. In

both these studies, the creep was modelled using the age-adjusted effective modulus and

the long-term equilibrium equations were derived using the principle of virtual work.

It was found that crown-pinned CFST arches may only buckle in time in a symmetric

snap-through mode, and that geometric non-linearity substantially increases the long-

term deformations, internal compressive forces and bending moments in both deep and

shallow crown-pinned arches.
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Figure 2.4: Pre-buckled life for a pin-ended CFST arch [130]

The influence of steel ratio and initial loading age on the long-term in-plane stability

of CFST arches are significant [6, 130]. As is to be expected, a increase in the long-

term buckling load is achieved through the increase of steel in the cross section, see

Figure 2.4. Moreover, the critical load is found to decrease in a log-linear fashion

when increasing the initial loading age. This result satisfies intuitive expectations as

majority of deformations caused by creep and shrinkage occur within the first month

for CFST elements [135], and are further influenced by the presence of loading [136].

However from the perspective of construction, the delay of load application may not be

pragmatic.

2.6.2 Out-of-plane stability

In contrast to in-plane creep buckling, studies on the out-of-plane stability loss caused

by viscoelastic effects in CFST arches are rare in the open literature. Jiang and Lu

[137] studied the reliability and sensitivity of the out-of-plane buckling loads of CFST

arches while considering creep effects using a time-integrated approach and the FE
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reliability method. More recently, Geng et al. [138] developed a three-dimensional FE

model to numerically investigate the effects of pre-buckling deformations induced by

creep and shrinkage on the out-of-plane stability of fixed-ended parabolic CFST arches

subjected to instantaneous overload. The FE model was validated by comparison to the

experimental results reported by [139] for out-of-plane buckling loads of CFST arches.

Through an extensive parametric study, it was found that up to a 18% reduction in

out-of-plane buckling loads can be caused by creep and shrinkage. Additionally, time

effects were more pronounced in arches with higher strength concretes, lower steel yield

strengths and higher sustained load levels.

2.6.3 Temperature-time coupling

Temperature substantially influences the creep behaviour of concrete elements [136].

Therefore, in order to realistically model the long-term behaviour of concrete and CFST

arches, temperature changes caused by typical daily and seasonal variations must be

considered. No studies so far have analysed the long-term stability of concrete or

CFST arches subject to altering temperature or humidity. The long-term behaviour of

a crown-pinned circular CFST arch subjected to a constant temperature change was

analysed by Luo et al. [140] to investigate the significance of the coupling effects between

time and temperature. The temperature change was found to greatly increase the long-

term deformations and internal forces in the arch. Wang et al. [141] studied the effect

of non-constant temperatures on the creep behaviour of a CFST arch bridge. This was

achieved through the incorporation of the micro-prestress solidification theory [142], the

age-adjusted effective modulus and an average temperature history into a FE program.

The Yajisha bridge in China was replicated in the program and results were verified from

measurements taken of the bridge one year after construction. The results indicated

that the increase in creep caused by temperature variations are not negligible. The dif-
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ferences in creep deformations and stresses at midspan when considering temperature

variations were found to be 9% and 7-18% respectively. These findings indicate that

the long-term behaviour and stability of arches must incorporate temperature changes

in order for accurate and safe results to be obtained. Significant complications however

manifest when attempting to incorporate the effect of temperature into the long-term

analysis of CFST arches. Temperature fields throughout the cross section due to ambi-

ent temperature and solar radiation must be accurately modelled. Fluctuating ambient

temperatures and position of the sun thus require consideration.

2.6.4 Discussion

As creep significantly impacts the long-term behaviour and stability of concrete and

CFST arches, accurate modelling of creep is of paramount importance. A review on

creep in CFST arches was conducted by Shrestha et al. [135]. The authors indicated

that although multiple creep prediction models currently exist in the literature, a robust

method for modelling the time dependent behaviour of CFST arches is still in urgent

requirement. For example, Jiang and Lu [6] compared the pre-buckling life of circular

CFST arches when adopting two different creep laws; the simplified Arutyunyan-Maslov

method and Age-adjusted effective modulus method. Differences were found between

the results produced by both models. Creeping mechanics of arches are further convo-

luted by temperature changes, which have proven to significantly influence long-term

behaviour. Thus, further research is required in creep modelling in concrete and CFST

arches in order to allow accurate and safe analysis of long-term behaviour and stability.

Additionally, the study by Geng et al. [138] appears to be the only research available

on creep buckling of CFST arches due to instantaneous overload, for both in-plane and

out-of-plane stability.
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2.7 Future research

The ubiquitous use of arches in civil and structural engineering applications, in addi-

tion to their inherent complex behaviour, results in a heightened importance of accurate

analysis and design practices. It is thus paramount that research on the behaviour and

stability of arches continues in an attempt to develop accurate and efficient analysis

methodologies which address all possible mechanical and environmental conditions, in-

cluding typical and extreme events. In order to achieve such an objective, the following

areas require research attention:

• The accuracy of the assumption that the derivative of the vertical coordinate with

respect to the horizontal (dy/dz)2 << 1 when analysing in-plane stability of deep

parabolic arches and lateral buckling of parabolic arches requires investigation.

• Experiments on the thermal buckling of steel arches do not appear to have been

conducted. Although many analytical and numerical models currently exist, the

literature would greatly benefit from experimental data.

• Investigations into the thermal buckling of damaged steel arches are needed. Such

damage may occur as a result of corrosion, impact or fatigue.

• Studies on the behaviour and stability of concrete and CFST arches when ex-

posed to extreme temperatures are required. Although the behaviour of steel

arches under such conditions have been thoroughly investigated, the behaviour of

concrete greatly differs from that of steel during fire. The effects of elevated creep

and TTS, occurring in concrete under high temperatures, on the behaviour and

stability of concrete arches are not currently known.

• Research on the long-term stability of concrete and CFST arches when consid-
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ering typical temperature conditions is limited. As creep is greatly influenced

by temperature and temperature variations, the stable life of an arch may be

overestimated if ignored.

• Out-of-plane stability loss induced by viscoelastic effects in CFST arches has not

been extensively studied. More research is required on varied cross-section shapes,

arch profiles and loading conditions.

• Further investigations into creep buckling of CFST arches due to instantaneous

overloading are required for both in-plane and out-of-plane stability in order for

the formulation of comprehensive design methodologies.

2.8 Conclusion

A state of the art report has been presented on the static in-plane and out-of-plane

stability of arches which includes reviews on research investigating buckling induced by

time and temperature effects. It can be concluded that despite the extensive research

over many years on arch stability, they are not completely understood and still present

a challenge to researchers and engineers. A high level of caution is advised when deter-

mining the in-plane and out-of-plane critical loads for arches, as they are sensitive to

loading conditions, boundary supports and geometrical configuration. Non-linear meth-

ods which include the effects of in-plane pre-buckling deformations must be adopted

for both the in-plane and out-of-plane stability analysis of shallow arches. Classical

buckling methods may however be utilised for studies of deep arches. Assumptions

regarding axial-extensibility, shear deformations and geometrical non-linearities should

also be made with care.
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An arch may be subjected to thermal loads during fire exposure. Elevated temperatures

increase the axial compression and bending moments in a steel arch, and upon reaching

a critical value, can cause symmetric snap-through or bifurcation type buckling. Ther-

mal behaviour must therefore be considered for arches constructed in areas where fire

exposure is a possibility. The performance of concrete and CFST arches during fire are

however yet to be investigated.

The long-term stability of concrete and CFST arches, especially when slender, must be

considered by structural designers due to the viscoelastic effects of creep and shrink-

age. This problem of creep buckling is becoming more relevant due to the increasing

popularity of CFST arch bridges. Despite the sensitivity of creep to temperature, the

coupling effects of time and temperature on long-term stability of concrete and CFST

arches have not yet been investigated and thus require research attention.
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Basic creep in concrete at elevated temperatures

3.1 Introduction

In this chapter, a novel fractional viscoelastic law is developed to model basic creep

in concrete at extreme elevated temperatures. The rheological model consists of two

springpots placed in series; one which models linear creep strain and the other for

non-linear creep which is triggered in high stress and/or temperature loading condi-

tions. Springpots contain fractional-order of derivatives in the governing stress-strain

equations in place of the first-order derivative of classical Newtonian fluids (dashpots).

Hence, the theories of fractional calculus and fractional viscoelasticity are central to

the analysis and model development presented in this chapter. Two model parame-
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ters for each springpot require characterization. These include the dynamic viscosity

and the fractional exponent (order of derivative). This is achieved by calibrating the

creep compliance function to existing experimental data of basic creep. The exper-

imental results reported by Gillen [143] were utilised where the basic creep strain in

pre-heated concrete cylinders was measured under constant stress and temperature con-

ditions over a range of 22 ◦C to 649 ◦C for expanded shale lightweight, calcareous and

siliceous aggregates. An accurate representation of creep strain is achieved which is

further highlighted upon comparison to the experimental data recorded by Cruz [144].

For the case of time-varying temperature, concrete creep is governed by a variable-order

fractional differential equation due to the temperature dependency of the order of dif-

ferentiation. A finite difference scheme is then derived to numerically approximate the

creep strain for cases of varying stress and temperature, and for when adopting two

different definitions of the fractional derivative; one which considers the history of the

order of differentiation and one which does not.

The power law form of the creep compliance allowed an accurate representation of

creep strain to be obtained with few model parameters. Additionally, the fractional

derivative-based creep law proves to be an efficient method of modelling creep strain in

concrete structures for time-varying stress and/or temperature conditions. Hence, the

developed model will be employed in Chapter 4 to incorporate basic creep strain in the

prebuckling and in-plane stability analyses of concrete arches when subjected to me-

chanical and thermal loading, and in Chapter 7 to assess the significance of viscoelastic

effects on the thermal response of CFST arches.

The following paper is included in this chapter;

1. Y. Bouras, D. Zorica, T.M. Atanacković and Z. Vrcelj. 2018. A non-linear thermo-
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viscoelastic rheological model based on fractional derivatives for high temperature

creep in concrete. Applied Mathematical Modelling, 55, pp.551-568.
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a b s t r a c t 

In this paper, a novel non-linear thermo-viscoelastic rheological model based on fractional 

derivatives for high temperature creep in concrete is proposed. The rheological model con- 

sists of a linear springpot unit placed in series with a second springpot used for non-linear 

creep which activates under high stress and temperature. The model parameters which in- 

clude the dynamic viscosities of the springpots and the fractional exponent are calibrated 

using existing experimental data of basic creep strain in concrete under constant stress 

and temperatures for various aggregate types. The power law form of the naturally re- 

sulting creep compliance allows an accurate representation of experimental data with the 

use of only a few model parameters. Furthermore, the variable-order fractional differential 

stress-strain equation provides a compact method for analytical and numerical modelling 

of basic creep under conditions of time-varying stress and temperature. In addition, appli- 

cations of the proposed model to determine axial deformations in columns and transverse 

deflections in beams under constant and varying temperatures are demonstrated. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The macroscopic deformations experienced in loaded concrete when subjected to a transient temperature increase in- 

clude an instantaneous mechanical strain, shrinkage and drying shrinkage, thermal dilatation and transient thermal strain. 

In addition, a time-dependant creep strain is exhibited under constant stress, moisture and temperature conditions. The 

literature divides studies on basic creep at elevated temperatrues into two categories; moderate elevated temperatures less 

then 100 °C and extreme temperatures greater then 100 ◦C . 

At moderate elevated temperatures ( < 100 ◦C ), two processes are responsible for influencing creep in concrete. One 

of which is the acceleration of bond breakage which increases creep rate. Conversely, the second process decreases 

creep rate as the heightened temperature ages the concrete due faster cement hydration [1] . Bažant et al. [2] ex- 

tended the microprestress-solidification theory, developed in [3,4] , to capture the effect of moderate temperatures on con- 

crete creep. In addition to transient thermal strain and the drying creep effect, this model considers the duality of the 
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temperature effect on basic creep and thus remains the most complete concrete creep model at moderate temperatures 

albeit numerically intensive. 

Basic creep is greatly accelerated at extreme temperatures ( > 100 ◦C ) which may result in significant short term defor- 

mations [5] . In addition to bond ruptures, creep strain rate is further accelerated in this temperature range due to mois- 

ture movement and possible dehydration [1,6] ; opposite to the hydration effect observed at temperatures less then 100 ◦C . 

Though dehydration is typically insignificant below 400 ◦C [1] . The basic creep of concrete at extreme temperatures has been 

experimentally investigated with few results existing in the literature [7–14] . Stress level, temperature, humidity content 

and concrete mix are the key factors governing the magnitude and nature of creep strain. Variables including age at load- 

ing, specimen size and initial compressive strength have proven to be less influential. Discrepancies however exist within 

available experimental data which can be attributed to non-uniform testing standards [15,16] . Consequently, the develop- 

ment of a constitutive creep model which accurately reflects a wide range of experimental data is convoluted. In the case 

of sustained mechanical loading and short-term temperature increases, transient thermal and mechanical strains dominate 

behaviour and greatly exceed the magnitude of basic creep, leading many authors to consider it implicitly [17] or neglect 

it completely [18] . However, explicit basic creep models are necessitated by conditions of coupled non-linear structural be- 

haviour and high stresses and temperatures, despite the transient nature of the thermal load. 

Multiple high temperature creep models have been proposed which can be categorized as: purely phenomenological 

models derived from observation of experimental data and the rate-type viscoelastic models [19] . The disadvantages associ- 

ated with the former are their restriction to the experimental data utilised for model construction. Furthermore, generaliza- 

tions to variable stress and temperature lead to stress-strain relations in integral form. Time-step integral creep laws require 

the values of stress and strain to be stored and applied in following time steps, thus storage requirements and computation 

times for large structures become problematic [20] . This issue of history dependence is avoided when adopting rate-type 

creep laws. Bazant [1,21] proposed rate-type Kelvin and Maxwell viscoelastic chains for high temperature creep in concrete. 

In order to achieve high levels of accuracy, a large number of elements in the chain are typically required. Complexities arise 

due to the multitude of material parameters to be characterised [22] , ultimately requiring intensive numerical simulations 

and comprehensive experimental data sets. As a result, the practicality of employing viscoelastic chains in both analytical 

and numerical investigations is diminished. 

The aforementioned disadvantages associated with viscoelastic chain models may be averted through the use of fractional 

calculus based viscoelastic laws. Fractional viscoelastic models are generalisations of existing viscoelastic models where the 

integer based order of derivative in the constitutive stress-strain equation is replaced by a fractional, or real, order. Frac- 

tional viscoelastic models, such as the fractional Kelvin-Voigt (FKV), fractional Maxwell and fractional Zener, have proven 

to be robust descriptors of material behaviour [23] , as experimental data can be accurately reflected with a minimal num- 

ber of material parameters. Papoulia et al. [24] proved that the models of fractional viscoelasticity are obtained when the 

number of units in a generalised viscoelastic chain approach infinity. Successful applications of fractional viscoelastic models 

to time-dependant behaviour of real materials in the structural and civil engineering fields include creep in rocks [25–27] , 

foundation settlement [28] and the dynamic behaviour of bituminous binders [29] and viscous dampers [30–32] . Despite the 

evident power of fractional viscoelasticity, its application to time-dependent studies of concrete is limited to a few recent 

studies [33–36] . Barpi and Valente [33] combined a micro-mechanical model and fractional viscoelastic element to investi- 

gate crack propagation in concrete and Katicha and Flintsch [35] employed fractional viscoelastic models to characterize the 

time-dependent properties of asphalt concrete. 

In this paper, a novel creep law is proposed based on the fractional derivative models of viscoelasticity for modelling ba- 

sic creep strain in concrete at elevated temperatures. The model parameters are calibrated using existing experimental data 

of short-term creep in concrete of various aggregate types under constant temperature and stress levels. Two applications of 

the model are presented in order to demonstrate its practicality for use in analytical and numerical studies. Studies of con- 

crete in fire and under high temperature working conditions, such as nuclear reactor vessels, represent possible applications 

of the model. 

2. Introduction to fractional viscoelasticity 

2.1. Fractional calculus definitions 

Multiple definitions of the fractional derivative exist [37] . The left-sided Riemann–Liouville fractional integral of a func- 

tion f of order α > 0 is defined as 

D 

−α
t f (t) = 

1 

�(α) 

∫ t 

0 

(t − τ ) α−1 f (τ ) dτ. (1) 

The left-sided Riemann–Liouville fractional derivative of a function f of order 0 ≤α ≤ 1, is given as 

D 

α
t f (t) = 

1 

�(1 − α) 
D 

1 
t 

∫ t 

0 

f ( τ ) 

( t − τ ) α
dτ, (2) 

where � denotes the Gamma function defined as 

�(α) = 

∫ ∞ 

0 

e −t t α−1 dt, (3) 
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and D 

1 
t f (t) = df (t ) /dt . The left-sided Caputo definition of the fractional derivative is defined as 

D 

α
t f (t) = 

1 

�(1 − α) 

∫ t 

0 

D 

1 
t f ( τ ) 

( t − τ ) α
dτ. (4) 

2.2. Fractional viscoelasticity 

It is well known that ideal fluid behaves according to Newtons law σ (t) = η d ε(t) /d t = η D 

1 
t ε(t) and the ideal solid 

is governed by Hook’s law σ (t) = Eε(t) = E D 

0 
t ε(t) . Replacing the order of derivative in the stress-strain equation for the 

Newtonian fluid with a fractional order α leads to 

σ (t) = η D 

α
t ε(t) (5) 

where 0 ≤ α ≤ 1 and the unit of the dynamic viscocity η is Pa · s α . The literature refers to an element governed by a stress- 

strain relation of the type shown in Eq. (5) fractional dashpot, springpot, Abel dashpot, fractional soft-matter element and 

Scotts-Blair element [38] . Both the Reimann–Liouville and Caputo fractional derivatives in the limiting cases of α become 

the classical definitions. Hence, if α = 0 , Eq. (5) reverts to that of the ideal solid, and if α = 1 , Newtons law is obtained. 

Thus material exhibiting both viscous and elastic properties can be described by Eq. (5) . 

The creep equation εcr for a springpot is obtained as 

εcr (t ) = 

σ0 

η

t α

�(α + 1) 
, (6) 

by solving the fractional differential Eq. (5) under constant stress 

σ (t) = σ0 H(t) , (7) 

where H is the Heaviside function. Similarly, the stress-relaxation function 

σsr (t) = ηε0 
t −α

�(1 − α) 
, (8) 

is obtained under constant strain 

ε(t) = ε0 H(t) . (9) 

The power law form of Eqs. (5) and (8) accurately reflect the behaviour of real materials including the increasing creep 

strain as time t → ∞ . This is not captured by traditional viscoelastic models due to the presence of exponential operators 

resulting in the creep strain taking an asymptotic value. Moreover, only two parameters are required to fully character- 

ize the time-dependent behaviour of springpots; the dynamic viscosity η and the order of derivative in the stress-strain 

equation α. 

The Maxwell and Kelvin-Voigt models of viscoelasticity may be generalised by replacing the Newtonian dashpots in the 

mechanical analogues with springpots [39,40] . Thus, the stress–strain equation for the fractional Maxwell model, consisting 

of a spring and springpot in series, is obtained as 

D 

αε(t) = 

1 

E 
D 

α
t σ (t) + 

σ (t) 

η
. (10) 

Solving Eq. (10) with stress defined by Eq. (7) , yields the creep function 

εcr (t ) = 

σ0 

E 
+ 

σ0 

η

t α

�(1 + α) 
. (11) 

By placing an elastic spring and springpot in parallel, the fractional Kelvin-Voigt (FKV) model is obtained with the constitu- 

tive stress-strain equation defined by 

σ (t) = Eε(t) + η D 

α
t ε(t) , (12) 

and the resulting creep function given as 

εcr (t) = 

σ0 

E 

(
1 − E α

[
−
(

Et 

η

)α
])

. (13) 

In Eq. (13) , E α is the Mittag–Leffler function defined as 

E α(x ) = 

∞ ∑ 

n =0 

x n 

�(αn + 1) 
. (14) 

It is noted that the solutions to Eqs. (10) and (12) are independent of the definition of fractional derivative. The viscoelastic 

models discussed thus far have been restricted to constant orders of differentiation in time. A viscoelastic material exhibit- 

ing time-varying properties, such as solidification, may be described by a variable-order fractional viscoelastic stress-strain 

equation: 

σ (t) = η D 

α(t) 
t ε(t) , (15) 
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Fig. 1. Rheological model. 

where α is a known function [41,42] . Variable order fractional differential equations and their numerical approximation are 

discussed in Section 5.2 . 

3. Experimental data 

The experimental data obtained by Gillen [11] is utilised for the model development, where five hour creep tests were 

conducted on pre-heated concrete cylinders subjected to three different stresses; 0 . 3 f ′ c , 0 . 45 f ′ c and 0 . 6 f ′ c over a temperature 

range of 22 °C to 649 °C, with f ′ c denoting cold compressive strength of concrete. The temperature was maintained constant 

and the static load was applied after the cylinder reached the desired temperature. In addition, three aggregate types were 

tested which included expanded shale lightweight, calcareous and siliceous aggregates, which featured cold compressive 

strengths of 24.0 MPa, 23.2 MPa and 22.2 MPa respectively. The concrete cylinders measured 51 × 102 mm. 

The creep data at 93 °C is ignored due to the extremely high magnitudes of creep strains observed, higher than the those 

at 204 °C. This increase is caused by moisture migration occurring near the boiling temperature of water [11] . Effects of 

moisture content and moisture migration are not incorporated into the model proposed in this paper. 

Tests were also conducted on larger, older and stronger specimens in order to evaluate the influence of size, age and 

compressive strength on creep respectively. The effects of size and age were generally deemed insignificant and hence are 

not considered in this paper. Similarly, creep of higher strength concrete at elevated temperatures was found comparable to 

standard strength concrete for both the siliceous ( f ′ c = 41 . 7 MPa ) and calcareous ( f ′ c = 42 . 4 MPa ) aggregate types. Thus, for 

application to higher strength concretes, the viscosity parameter η must be scaled by the ratio of the concrete compressive 

strength used for parameter calibration and the actual compressive strength. 

4. Model development 

4.1. Rheological model 

The thermo-viscoelastic rheological model proposed herein consists of a linear fractional dashpot placed in series with 

a non-linear dashpot, see Fig. 1 . The second element is utilised to model non-linear creep occurring at high stresses and/or 

temperatures. Prior to the onset of non-linear behaviour, a single springpot will describe the creep strain. During this linear 

range, only two model parameters require calibration at each temperature level; the dynamic viscosity η and the fractional 

exponent α. Thus, the parameters are dependant on temperature and it can be stated that η = η(T ) and α = α(T ) . When 

considering non-linear behaviour, the creep strain for the rheological model depicted in Fig. 1 is given as 

εcr (t ) = 

σ

η

t α

�(α + 1) 
, σ < σN , 

εcr (t ) = 

σ

η

t α

�(α + 1) 
+ [ σ − σN ] 

1 

ηN 

t α

�(α + 1) 
, 

σ > σN , 

(16) 

where σ N is the stress at which non-linear strain manifests and ηN denotes the dynamic viscosity of the non-linear spring- 

pot. Both element feature the same fractional exponent and thus only a single additional parameter requires calibration 

when in the non-linear range. Knowledge of the activation stress σ N is however required, traditionally taken as a percent- 

age of the temperature reduced compressive strength f ′ cT . 

4.2. Parameter calibration 

The method of least squares was employed to fit the creep compliance functions to the experimental data and to de- 

termine model parameters. This fitting procedure was completed for the three aggregate types at each temperature level. 

As stated previously, the model parameters are assumed to be dependant only on temperature regardless of the applied 
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Table 1 

Model parameters. 

Calcareous Expanded shale Siliceous 

Temperature ( °C) α η ηN α η ηN α η ηN 

22 0.450 80.0 0.290 36.0 0.250 40.0 

204 0.385 24.5 0.345 15.0 0.377 15.5 

316 0.410 15.5 0.330 10.5 

427 0.460 10.5 0.400 6.5 0.345 4.9 5.5 

538 0.420 7.8 1.2 0.368 6.5 0.46 0.260 1.9 1.8 

649 0.373 2.8 4.2 0.432 4.0 3.2 

η and ηN = ×10 4 MPa · min 
α

Fig. 2. Relationship between fractional exponent α and temperature T ( °C). 

stress. However, due to inherent variable nature of experimental data, and possible stress dependency, the model parame- 

ters were adjusted so as to provide the best average result across the three stress levels. Stress dependant parameters would 

significantly convolute the model, which is not warranted due to the small variations observed. 

During the model parameter calibration, it was found that the majority of the experimental data could be accurately 

described using the linear springpot. However, deviations from linearity manifested at combinations of high stress and high 

temperatures. For the calcareous and lightweight aggregates, non-linear behaviour was observed at temperatures exceeding 

538 °C, when the applied stress was σ = 0 . 6 f ′ c . The activation stress for the calcareous and lightweight aggregates was thus 

estimated as σN = 0 . 75 f ′ cT . Non-linear creep strain occurred in the siliceous concrete specimens when the applied stress was 

σ = 0 . 6 f ′ c at a temperature of 427 °C, and for stress σ = 0 . 45 f ′ c at a temperature level of 538 °C. Based on this observation, 

it was approximated that σN = 0 . 6 f ′ 
cT 

for the siliceous aggregate concrete. The relationships proposed by Knaak [43] were 

adopted to determine the temperature reduced compressive strength f ′ cT . 

The results of the parameter calibration are shown in Table 1 and Fig. 2 , with the experimental data and model pre- 

dictions graphically shown in Figs. 3 –10 . It can be seen that the dynamic viscosities η generally decreased with increasing 

temperatures in a decaying type fashion which can be attributed to reduction in material stiffness. The only exception is 

the viscosities of the expanded shale aggregate remaining constant between 427 °C and 538 °C. Conversely, an increase in 

the viscosity ηN with temperature was obtained for the non-linear springpot of the calcareous and lightweight aggregates. 

Non-monotonic relationships between the order of derivative α and temperature are observed, see Fig. 2 . Additionally, this 

relationship is unique for each of the three aggregate types. 

The proposed model accurately reflects the experimental data at elevated temperatures. However the model does not 

agree well with the creep data at 22 °C. The creep strains at room temperature are highly variable due to parameters not 

considered, such as moisture content and age at loading, therefore inaccuracies at this temperature are expected and deemed 

insignificant due to their small magnitudes. Additionally, anomalies appear in the result set. The creep curve of the calcare- 

ous aggregate concrete cylinder at 427 °C under a stress of σ = 0 . 45 f ′ c shows atypical behaviour, as the initial creep rate is 

comparable to that of the stress level σ = 0 . 6 f ′ c . In addition, the creep data for the siliceous aggregate concrete subjected 

to a stress of σ = 0 . 6 f ′ c and temperature of 204 °C is significantly smaller than is expected according to the assumption of 

linearity, consequently the model overestimates the creep strain. 
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Fig. 3. Creep strains for lightweight aggregate concrete. T = 649 ◦C (left) and T = 538 ◦C (right). 

Fig. 4. Creep strains for lightweight aggregate concrete. T = 427 ◦C (left) and T = 316 ◦C (right). 

Fig. 5. Creep strains for lightweight aggregate concrete. T = 204 ◦C (left) and T = 22 ◦C (right). 

4.3. Comparison to additional experimental data 

Cruz [7] conducted 5 hour creep tests at constant stress and temperature levels for a carbonate aggregate concrete with 

compressive strength f ′ c = 28 MPa . The temperatures ranged from 24 °C to 650 °C and the applied stress was σ = 0 . 439 f ′ c . 

Three tests were performed at the lower temperature levels (24, 149 and 316 °C) and five at the higher temperatures 

(482 and 649 °C). The results for each temperature level were averaged, and then compared with the predictions of the 

fractional dashpot model, see Fig. 11 . The model provides a good estimation of the experimental data. 

Discrepancies exist with the remaining experimental data available in the literature. The rapid increase in creep, or onset 

of non-linear behaviour, was recorded by [9,10,13] as approximately 400 °C. Khoury et al. [12] recorded this temperature as 
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Fig. 6. Creep strains for siliceous aggregate concrete. T = 538 ◦C (left) and T = 427 ◦C (right). 

Fig. 7. Creep strains for siliceous aggregate concrete. T = 204 ◦C (left) and T = 22 ◦C (right). 

Fig. 8. Creep strains for calcareous aggregate concrete. T = 649 ◦C (left) and T = 538 ◦C (right). 

350 °C and 600 °C for gravel and lightweight concrete respectively. Additionally, the creep strains at temperatures less than 

400 °C are greater in the results of Cruz [7] and Gillen [11] than those reported by [9,10,12,13] . An experimental anomaly 

also appears exclusive to the data reported by Gillen [11] . The creep curves at temperatures of 427 °C and 538 °C and stress 

levels of 0 . 3 f ′ c and 0 . 45 f ′ c for the calcareous and lightweight aggregates are practically identical; no increase in creep with 

temperature is observed. This stabilization of creep has not been reported by any other researchers, and thus it may be 

justifiable to ignore the characterized model parameters at 427 °C. 

Variations in experimental data can be attributed to the different concrete mixes and aggregate types tested. It is there- 

fore recommended that the springpot model parameters be calibrated for application to contrastive concretes. 
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Fig. 9. Creep strains for calcareous aggregate concrete. T = 427 ◦C (left) and T = 316 ◦C (right). 

Fig. 10. Creep strains for calcareous aggregate concrete. T = 204 ◦C (left) and T = 22 ◦C (right). 

4.4. Long-term creep 

It is well known that the creep rate of concrete significantly decays with time, which also holds true at elevated tem- 

peratures [8,9,12] . Application of the springpot for long durations does not mirror this behaviour, resulting in a significant 

overestimation of creep. The FKV model of viscoelasticity yields a greater representation of behaviour for longer time pe- 

riods whilst still able to mirror short-term creep. However, an additional elastic spring requires characterization. The creep 

deformations predicted by the springpot and FKV models for a period of 10 days are depicted in Fig. 12 . It can be seen 

that the results produced by the two models are initially similar, but diverge at approximately two days of loading, as 

the decay of creep rate is greater in the FKV model. In this example the model parameters for the sprinpot are α = 0 . 345 

and η = 450 0 0 MPa · min 

α
, and for the FKV model α = 0 . 4 , η = 56294 MPa · min 

α and E = 10 0 0 MPa . These parameters are 

calibrated using the experimental results of Gillen [11] for siliceous aggregate concrete. 

The long term creep predictions of the FKV are significantly influenced by the modulus of the elastic spring, despite 

having a small effect in the short term. Consequently, multiple combinations of model parameters may reflect a given creep 

curve for short durations. Therefore, long term creep data is required for model parameter characterization. Thus, it is rec- 

ommended that the springpot model be employed for short term creep modelling and the FKV for longer durations. 

5. Variable stress and temperature 

5.1. Time-varying stress 

The stress in a concrete member subject to elevated temperatures is not likely to remain constant in time as a conse- 

quence of the creep, transient and expansion or shrinkage strains. This is especially true in cases of time-varying tempera- 

ture; a more accurate representation of real conditions. Non-constant stresses and temperatures significantly influence basic 

creep strain. The fractional differential form of the proposed viscoelastic model provides a compact method of determining 

basic creep under conditions of time-varying stress and temperature. 
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Fig. 11. Averaged creep results of Cruz [7] and springpot model. 

Fig. 12. Comparison of springpot and FKV models for longer term creep. σ = 0 . 3 f ′ c and T = 427 ◦C . 
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Fig. 13. Creep strains of calcareous aggregate subject to varying stress levels. α = 0 . 4379 and η = 87602 MPa · min 
α

. 

For the case of a known stress history σ = σ (t) and constant temperature, the creep strain can be expressed in fractional 

differential form as 

D 

α
t ε(t) = 

σ (t) 

η
, (17) 

or in integral 

ε(t) = 

∫ t 

0 

εcr (t − τ ) D 

1 
t σ (τ ) dτ, (18) 

where εcr is the creep compliance of the viscoelastic model. 

Consider a stress history of σ (t) = 0 . 2 f ′ c for t = 0 − 40 min , followed by a stress of σ (t) = 0 . 6 f ′ c when 40 < t < 80 mins 

and a stress of σ = 0 . 4 f ′ c at t > 80. For this loading profile, the creep strain is derived using Eqs. (18) and (6) as 

ε(t) = 

1 

η�(α + 1) 

[
0 . 2 f ′ c t 

α + 0 . 4 f ′ c (t − 40) αH(t − 40) 

−0 . 2 f ′ c (t − 80) αH(t − 80) 
]
. (19) 

The model predictions are depicted in Fig. 13 for a compressive strength of f ′ c = 24 MPa and temperature of 500 °C. 

Very few experimental results have been reported in the literature on the basic creep strain in concrete subject to non- 

constant stress at temperatures greater than 100 °C. The spring-pot model agrees with the experimental results reported in 

[13] during the increasing stress period, when t < 80 min . Contrasting behaviour however exists when the stress is reduced 

( t > 80). Greater recovery is predicted by the fractional dashpot model then in the experimental results, which show no 

decrease of creep. 

The nature and magnitude of creep recovery at elevated temperatures is not well represented in the literature and var- 

ious assumptions were made when modelling its effect on creep. Anderberg and Thelandersson [10] accepted decreasing 

creep due to stress and temperature reductions over small time periods, whereas Guo and Shi [16] proposed that the creep- 

time curve should remain horizontal. For small stress and temperature reductions, either method may be adopted, however 

the validity of these assumptions in cases of large decreases in stress and temperatures requires further experimental inves- 

tigation. 

5.2. Time-varying temperature 

If the temperature varies with time, it can be stated that T = T (t) , consequently the dynamic viscosity η = η ( T (t) ) and 

fractional exponent α = α ( T (t) ) . Thus, the fractional derivative stress-strain equation becomes of variable order, and can 
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Fig. 14. Creep strains of calcareous aggregate subject to increasing temperature. 

be expressed as 

D 

α (T (t)) 
t ε(t) = 

σ (t) 

η (T (t)) 
. (20) 

Various definitions of the variable order fractional derivative exist [42,44] . Adopting the Caputo type of fractional derivative, 

the variable order derivative of a function f is defined as 

D 

α (t) 
t f (t) = 

1 

�(1 − α(t)) 

∫ t 

0 

D 

1 f ( τ ) 

( t − τ ) α(t) 
dτ. (21) 

In this definition, the memory effect changes in time and is determined at the current time instant [45] . Alternatively, the 

variable order fractional derivative of Caputo type may be expressed as 

D 

α (t) 
t f (t) = 

∫ t 

0 

D 

1 
t f (τ ) 

�[1 − α(t − τ )](t − τ ) α(t−τ ) 
dτ. (22) 

Eq. (22) possesses a memory of the order of differentiation, as the order α is dependent on the kernel τ , which is not 

contained in Eq. (21) . The difference in results when adopting Eq. (21) or Eq. (22) on the predicted creep strain is shown in 

Figs. 14 and 15 . 

The relationships between the order of derivative and temperature can be derived using the calibrated material pa- 

rameters found in Table 1 for a given aggregate type. Assuming calcareous, the following equation is obtained ( T in 

Fahrenheit °F ) 

α (T ) = −5 . 36 × 10 

−10 (T − 759 . 6741) 3 − 7 . 849 × 10 

−11 T 2 

+ 0 . 0 0 0253 T + 0 . 257 , T < 60 0 

◦F , 

α (T ) = 1 . 73 × 10 

−9 (T + 931 . 86) 3 − 1 . 01 × 10 

−5 T 2 

+ 0 . 0 0 057883 T − 2 . 5093 , T > 60 0 

◦F . (23) 
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Fig. 15. Creep strains of siliceous aggregate subject to increasing temperature. 

Similarly, the dynamic viscosity is determined as 

η (T ) = 2 . 3382 (T − 596 . 2261) 2 + 1 . 55 × 10 

5 , 

T < 600 

◦F , 

η (T ) = 9 . 3568 × 10 

−4 (T − 900) 3 − 127 . 43333 T + 206400 , 

T > 600 

◦F . (24) 

The temperature dependence of the fractional exponent and viscosity for siliceous concrete are obtained as 

α (T ) = 5 . 7323 × 10 

−11 (T − 677 . 8124) 3 − 5 . 9015 × 10 

−7 T 2 

+ 6 . 3136 × 10 

−4 T + 0 . 2201 (25) 

and 

η (T ) = 495020 e −0 . 0029 T , T < 800 

◦F , 

η (T ) = 0 . 1985(T − 1270) 2 + 50 0 0 , T > 80 0 

◦F , 
(26) 

respectively. For a given temperature history, the variable order fractional differential Eq. (20) with known model parameters 

can be numerically solved. In this example, a solution is obtained by discretization of (21) and (22) , see Appendix for details. 

A similar approach has been adopted in studies by [45,46] . 

The effect of increasing temperature on the basic creep strain of a calcareous concrete subject to constant stress of 0 . 3 f ′ c 

is depicted in Fig. 14 . Initial temperature is 22 °C and increases at a rate of 1.95 °C/min over a period of 5 h. Both definitions 

of the variable order fractional derivative yield similar results. When Eq. (22) is adopted, the creep rate increases throughout 

the loading period. A short decrease in creep rate is however observed in the temperature range 427 ( °C) ≤ T ≤ 536 ( °C), when 

the fractional derivative is defined using Eq. (21) . This can be attributed to the comparable experimental creep curves at 

the temperatures extremes ( Figs. 8 and 9 ). The case of siliceous aggregate concrete under a constant stress of σ = 0 . 3 f ′ c 

and heating rate of 1.67 °C/min, with an initial temperature of 22 °C, is shown in Fig. 15 . Both definitions of the fractional 

derivative yield increasing creep rates with temperature. Throughout majority of the heating period, a greater creep strain is 

obtained when history of α is not considered. However, this is not the case in the higher temperature range. This behaviour 

is also seen in the calcareous case. 

Experimental verification of the effect of time-varying temperatures on basic creep is convoluted due to the manifestation 

of transient thermal strain which inhibits the isolation of basic creep. The results predicted by the variable order spring- 
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Fig. 16. Column loading and geometrical configuration. 

pot model do however satisfy intuitive expectations. As both definitions of the variable order fractional derivative produce 

comparable results, for practical applications either may be adopted. 

6. Applications 

6.1. Axial strain in columns 

The fractional derivative creep law will now be applied to model the axial deformations in a concrete column. Consider 

a simply-supported concrete column of length L subjected to an axial concentrated load of intensity F , which induces a 

compressive stress −σ, and to a time-varying uniform temperature field T = T (t) , see Fig. 16 . As one of the supports permits 

horizontal displacements, additional axial stress will not be generated due to restrained thermal expansion. The total strain 

ε in a concrete member subject to a compressive load and temperature increase is 

ε (σ, t, T ) = e el (t, T ) + εcr (σ, t, T ) + e th (T ) + e tr (σ, T ) , (27) 

where e el is the instantaneous elastic strain, e th is the thermal strain and e tr is the transient thermal strain. The elastic strain 

is known as 

e el = 

σ

E(T ) 
, (28) 

where E is the temperature dependent elastic modulus, which will be modelled using the following relationship proposed 

by Nielsen [47] 

E(T ) = E 0 

(
1 − �T 

10 0 0 

)2 

, 0 ≤ �T ≤ 10 0 0 , (29) 

where E 0 denotes the initial elastic modulus of the concrete and �T = T − 20 ◦C . The thermal strain is defined as 

e th = a �T , (30) 

where a is the coefficient of thermal expansion. The Nielsen model of transient thermal strain will be employed, given as 

e tr = 

σ

f ′ c (Aθ2 + Bθ ) , θ < θtr , 

e tr = 

σ

f ′ c [ C(θ − θtr ) 
2 + Aθtr (2 θ − θtr ) + B (θ − θtr )] , 

θ > θtr , (31) 

where A, B and C are free model parameters assumed as 0 . 5 × 10 −3 , 0 . 7 × 10 −3 and 20 × 10 −3 respectively and θ tr is the 

transition temperature (defined at 470 °C) using the following reduced temperature scale 

θ = 

�T 

100 

= 

T − 20 

◦C 

100 

. (32) 

The constitutive stress-strain equation for the basic creep strain is defined by Eq. (20) . 

The aforementioned numerical routine is adopted to determine basic creep strain, which is then added to the remaining 

strain components in order to determine the total axial strain. Eqs. (23) and (24) are adopted for the model parameters. 

The total axial strains for a concrete column subject to various stress levels and an increasing temperature are depicted in 

Fig. 17 . The initial temperature is 22 °C and increases at a rate of 2.09 °C/min. 

6.2. Beam deflections 

The transverse creeping deflections of a simply-supported concrete beam of length L subjected to a constant uniformly 

distributed load w and time-varying temperature T , depicted in Fig. 18 , will now be modelled. As with the example in 

Section 6.1 , axial forces will not be generated by restrained thermal expansion due to the simply-supported boundary con- 

ditions. Paola et al. [48] proved that the two correspondence principles hold for fractional viscoelastic beams. Of relevance 

is the first principle, which states that the stresses in a viscoelastic beam subjected to constant loading applied at initial 

time are the same as those in the elastic case. Whilst the strains and displacements are time dependant and are obtained 
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Fig. 17. Total axial strain in concrete column subject to constant load and increasing temperature. f ′ c = 32 MPa , E 0 = 30 , 100 MPa and a = 10 × 10 −6 ◦C −1 . 

Fig. 18. Beam loading and geometrical configuration. 
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Fig. 19. Deflections of concrete beam subject to uniformly distributed load w = 15 kPa and uniform temperature field of 649 °C. E 0 = 30 , 100 MPa , I = 

6 × 10 7 mm 

4 and L = 30 0 0 mm . 

Fig. 20. Deflections of concrete beam subject to uniformly distributed load w = 10 kPa and increasing temperature field. E 0 = 30 , 100 MPa , I = 6 × 10 7 mm 

4 

and L = 30 0 0 mm . 

by replacing the elastic modulus with the inverse of the creep function in the elastic solution. Thus, for the described beam 

the bending moment is independent of time and temperature. 

The elastic solution V for transverse deflection is simply 

V (x ) = − wx 

24 EI 
(x 3 − 2 Lx 2 + L 3 ) , (33) 

where x is the coordinate along the beam axis and I is the second moment of area of the beams cross-section. Ignoring 

transient thermal strain, the total bending strains e B in the concrete beam consist of the sum of the instantaneous elastic 

strain e el and the creep strain e cr , thus the mechanical analogue is the fractional Maxwell model. The creep compliance for 

the fractional Maxwell model is given by Eq. (11) . In accordance with the correspondence principle, the transverse deflection 
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equation for the beam under constant stress and temperature becomes 

V (x, t) = − wx 

24 I 

(
x 3 − 2 Lx 2 + L 3 

)[ 1 

E 
+ 

1 

η

t α

�(1 + α) 

] 
(34) 

The deflections for a concrete beam subject to a uniform temperature field of 649 °C for a duration of 5 h are depicted in 

Fig. 19 . For the case of variable temperature, the deflection equation is derived as 

V (x, t) = − wx 

24 I 

(
x 3 − 2 Lx 2 + L 3 

)[ 1 

E( T ) 
+ εcr 

] 
, (35) 

where εcr is the creep compliance determined by numerically solving Eq. (20) . 

A numerical solution is obtained using the aforementioned method. The results for an initial temperature of 22 °C which 

increases at a rate of 2.09 °C/min for a five hour period are shown in Fig. 20 . 

7. Conclusion 

A novel non-linear creep law based on the fractional derivative models of viscoelasticity for application to concrete sub- 

ject to short-term high temperature conditions is developed in this paper. The rheological model consists of two springpots 

placed in series; the second modelling non-linear creep which manifests at high stresses and temperatures. The temperature 

dependent model parameters were calibrated using benchmark experimental data of creep in concrete cylinders subject to 

constant stress and temperatures for various aggregate types. The developed model provides good agreement with experi- 

mental results at elevated temperatures, however is less accurate at ambient conditions. The advantages of the developed 

model include the use of few model parameters and simple employability to problems involving variable stress and tem- 

peratures, thus averting complexities caused by existing models. Two example applications are presented which include 

modelling the axial deformations in columns and transverse deflections in beams. 

It was shown that the model parameters show significant variation for the three aggregate types investigated. Therefore, 

parameter calibration is advised for application of the fractional model to different concrete mixes. Further generalisations 

include incorporating the effects of moisture migration and analysis of model performance over longer periods. Moreover, 

further research on the application of fractional viscoelastic models to concrete creep at ambient and lower temperatures is 

required. 
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Appendix A 

A1. Discretisation of Eq. (21) 

The variable-order fractional derivative, for the case when the memory of the order of derivative is not considered, is 

discretised as follows 

D 

α (t) 
t y (t) = 

1 

�(1 − α(t)) 

∫ t 

0 

y ′ (τ ) 

(t − τ ) α(t) 
dτ

≈ 1 

�(1 − αn ) 

n −1 ∑ 

j=0 

∫ ( j+1)�t 

j�t 

y ′ (τ ) 

(t − τ ) αn 
dτ

= 

1 

�(1 − αn ) 

n −1 ∑ 

j=0 

∫ ( j+1)�t 

j�t 

y j+1 −y j 
�t 

(t − τ ) αn 
dτ

= 

1 

�(1 − αn ) 

n −1 ∑ 

j=0 

y j+1 − y j 

�t 

∫ ( j+1)�t 

j�t 

dτ

(t − τ ) αn 

= 

1 

�(2 − αn ) (�t) 
αn 

n −1 ∑ 

j=0 

(y j+1 − y j )[(n − j) 1 −αn − (n − j − 1) 1 −αn ] 

= 

1 

�(2 − αn ) (�t) 
αn 

n −2 ∑ 

j=0 

(y j+1 − y j )[(n − j) 1 −αn − (n − j − 1) 1 −αn ] 

+ 

y n − y n −1 

�(2 − αn )(�t) αn 
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where �t is the time step, t = n �t, n = 2 . . . t f / �t, t f is the final time, τ = j�t and ( ′ ) n = ( ′ ) (n �t) . The creep strain ε for 

the fractional dashpot model of viscoelasticity is hence determined as 

εn = εn −1 −
n −2 ∑ 

j=0 

(ε j+1 − ε j )[(n − j) 1 −αn − (n − j − 1) 1 −αn ] 

+ 

σn 

ηn 
� (2 − αn )( �t ) αn 

with the creep strain at n = 1 derived as 

ε1 = 

σ1 

η1 

� (2 − α1 )( �t ) α1 + ε0 (36) 

and ε0 = 0 . 

A2. Discretisation of Eq. (22) 

Adopting the same notation and approach as in Section A.1 , the variable order differential equation with memory of 

order is discretised as 

D 

α (t) 
t y (t) = 

∫ t 

0 

y ′ (τ ) 

�[1 − α(t − τ )](t − τ ) α(t−τ ) 
dτ

≈
n −1 ∑ 

j=0 

y j+1 − y j 

�(1 − αn − j )�t 

∫ ( j+1)�t 

j�t 

dτ

(t − τ ) αn − j 

= 

n −1 ∑ 

j=0 

y j+1 − y j 

�(1 − αn − j ) 
(�t) αn − j [(n − j) 1 −αn − j − (n − j − 1) 1 −αn − j ] 

= 

n −2 ∑ 

j=0 

y j+1 − y j 

�(1 − αn − j ) 
(�t) αn − j [(n − j) 1 −αn − j − (n − j − 1) 1 −αn − j ] 

+ 

y n − y n −1 

�(2 − α1 )(�t) α1 
(37) 

where αn − j = α(n �t − j�t) . Upon application to the springpot model, the creep strain is obtained as 

εn = εn −1 − �(2 − α1 )(�t) α1 

n −2 ∑ 

j=0 

ε j+1 − ε j 

�(2 − αn − j ) 

×[(n − j) 1 −αn − j − (n − j − 1) 1 −αn − j ] + 

σn 

ηn 
� (2 − α1 )(�t) α1 (38) 

with the creep strain at n = 1 obtained as 

ε1 = 

σ1 

η1 

� (2 − α0 )( �t ) α0 + ε0 (39) 

and ε0 = 0 . 
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Chapter 3. Basic creep in concrete at elevated temperatures

3.4 Concluding Remarks

This chapter presented the derivation of a novel viscoelastic rheological model for ele-

vated temperature creep in concrete based on fractional derivatives. The model param-

eters consisting of the dynamic viscosity of the dashpot and fractional exponent were

calibrated using existing experimental data. In summary, the following contributions

are made in this chapter;

1. A novel non-linear fractional viscoelastic creep law is developed for short-term

high temperature creep in concrete;

2. An accurate representation of benchmark experimental data is achieved with only

few model parameters;

3. Dynamic viscosity and fractional exponent of the springpots are found to vary

with temperature level and concrete aggregate type; and

4. Efficient numerical solutions for creep strain are presented by employing a finite

difference scheme to approximate the variable-order fractional differential equa-

tion for cases of time-varying stress and temperature.
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Chapter 4

In-plane thermo-elastic buckling of shallow concrete

arches

4.1 Introduction

In this chapter, the thermo-elastic prebuckling behaviour and in-plane stability of cir-

cular shallow concrete arches subjected to uniformly distributed radial loading and

uniform temperature fields are analytically investigated. Total longitudinal strain is

considered as the sum of the instantaneous elastic strain, thermal expansive strain, ba-

sic creep strain and TTS. The virtual work principle is invoked to derive the non-linear

equations of equilibrium, and an in-plane buckling analysis is performed resulting in

77
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closed form solutions for the elastic anti-symmetric and symmetric buckling loads for

pin-ended and fixed ended arches. The concrete arches are assumed to be mechanically

pre-loaded so that TTS can be incorporated in the analysis. Subsequently, basic creep

strain is considered. To analyse the thermal response and effect of temperature on

buckling loads when considering creep, the elastic-viscoelastic analogy was employed

which allows the elastic modulus in the elastic solution to be replaced by a creep op-

erator. Creep is modelled using the fractional derivative-based creep law developed in

Chapter 3. Additionally, the factors governing in-plane buckling mode are analytically

defined.

The following papers are included in this chapter;

1. Y. Bouras and Z. Vrcelj. 2016. Effect of transient thermal strain on the stability

of shallow concrete arches. In Mechanics of Structures and Materials XXIV:

proceedings of the 24th Australian Conference on the Mechanics of Structures and

Materials (ACMSM24, Perth, Australia, 6-9 December 2016 (pp. 963-970). CRC

Press.

2. Y. Bouras, and Z. Vrcelj. 2017. Non-linear in-plane buckling of shallow con-

crete arches subjected to combined mechanical and thermal loading. Engineering

Structures, 152, pp.413-423.
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a b s t r a c t

In this paper, non-linear elastic pre-buckling and in-plane buckling analysis for a circular shallow con-
crete arch subjected to a uniformly distributed load and time-varying uniform temperature field is per-
formed. Transient thermal strain and basic creep strain are considered, the latter modelled using a
fractional derivative creep law, to investigate the coupling effects of time, temperature and geometric
non-linearity on mechanical behaviour and stability boundaries. The first correspondence principle is
invoked allowing the problem to be treated elastically and statically, with the non-linear equilibrium
equations derived using the principle of virtual work. Numerical solutions to the variable order fractional
derivatives are obtained through a finite-difference based discretisation scheme. Results show that the
coupling effect between transient thermal strain and geometric non-linearity is significant as it influ-
ences pre-buckling behaviour and reduces buckling strength. Basic creep strain is less influential, causing
a slight enhancement of the effects of transient thermal strain.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

As linear analyses of shallow arches lead to an over-estimation
of anti-symmetric bifurcation and symmetric snap-through
buckling loads, caused by geometric non-linearity, non-linear
methods are required for their analysis. Due to the common
application of shallow arches in civil engineering, coupling effects
of this inherent geometric non-linearity and additional complexi-
ties, including temperature changes and viscoelasticity, require
research attention.

The effects of uniform thermal loading on the behaviour and
in-plane elastic stability of shallow steel arches were investigated
[1–3]. Elevated temperatures induce compressive stresses in
arches due to end restrained thermal expansion and cause upward
deflections. These thermal induced stresses and displacements are
enhanced in shallow arches due to geometric non-linearity. Addi-
tionally, uniform temperature loading may cause anti-symmetric
bifurcation buckling or symmetric limit instability failure. When
shallow steel arches are subjected to combined mechanical and
uniform temperature loading, additional axial compressive forces
are generated and the radial deflections are reduced [4–8]. Further-
more, the critical in-plane buckling loads increase with tempera-
ture. Pi and Bradford [9] studied the thermoelastic stability of

shallow steel circular arches subjected to thermal gradients. The
authors discovered that arches may experience snap-through or
bifurcation buckling when subjected to a thermal gradient due to
increasing bending and axial compression caused by curvature
changes and axial expansion respectively. Furthermore, it was
found that anti-symmetric buckling is the dominant case and sym-
metric buckling can only occur for slender shallow arches. Cai et al.
[10] investigated the stability of shallow steel parabolic arches
subjected to temperature gradients and mechanical loading.
Results showed that critical buckling loads increased with an
increasing uniform temperature field. Conversely, the critical loads
decreased with an increasing temperature gradient. However, less
work has been completed on the behaviour and stability of con-
crete arches at elevated temperatures. Bouras and Vrcelj [11] con-
ducted a pre-buckling and stability analysis of shallow circular
concrete arches subjected to combined mechanical and thermal
loading in order to analyse the effect of transient thermal strain
(TTS). It was found that when considering TTS, axial compressive
force increased with temperature and the arch deflected down-
wards. Moreover, TTS significantly magnified the reduction in
buckling strength of concrete arches at elevated temperatures.
Basic creep strain was not considered.

Concrete and concrete-filled steel tubular (CFST) arches deform
in time due the viscoelastic effects of creep and shrinkage. These
quasi-static changes in the non-linear equilibrium configuration
may induce loss of stability under the sustained load, despite

https://doi.org/10.1016/j.engstruct.2017.09.029
0141-0296/� 2017 Elsevier Ltd. All rights reserved.
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initially being deemed as stable. The phenomenon of creep buck-
ling has received research attention for both concrete [12] and
CFST [13–16] arches. Axial force, bending moment and displace-
ments increase with time due to creep and shrinkage. Subse-
quently, the creep strain is magnified due to the increased stress
levels, causing the deformations and stresses to continually grow
and reach an unstable equilibrium configuration at which buckling
is possible [12]. The significance of this behaviour is magnified in
shallow arches due to geometric non-linearities. As the creep beha-
viour of concrete is sensitive to temperature variations [17], typical
daily and seasonal fluctuations should be considered in long-term
analyses of concrete and CFST structures. Luo et al. [18] investi-
gated the time-dependent behaviour of a crown-pinned circular
CFST arch under constant temperature change and found that the
coupling between creep, shrinkage and temperature significantly
influenced the long-term deformations and internal forces. Wang
et al. [19] studied the effect of temperature fluctuations on the
creep behaviour of a CFST arch bridge. Using the micro-prestress
solidification theory [20] and the age-adjusted effective modulus
method, they found that creep deformations and stresses at the
arch mid-span increased by 9% and 7–18% respectively, when tem-
perature changes were considered. These findings emphasize the
importance of temperature-time coupling in arch structures. How-
ever, these two studies were restricted to low temperature varia-
tions (not exceeding 100 �C) and not extended to analyse stability.

Despite not accurately reflecting the behaviour of real materials
[21], viscoelastic models have been widely adopted for the consti-
tutive relation of materials exhibiting time-dependent properties.
The inaccuracy is due to the linear differential stress-strain equa-
tion being of integer order. To overcome this, viscoelastic chains
are constructed which consist of a multitude of viscoelastic units
placed in series or parallel. However, as complexities arise due
to the myriads of material parameters to be characterised [22],
intensive numerical simulations and comprehensive experimental
data sets are required. Hence, the practicality of employing vis-
coelastic chains in both analytical and numerical investigations
is diminished. The inherent disadvantages associated with vis-
coelastic models are overcome using fractional calculus, which is
a branch of mathematical analysis concerned with performing
integration or differentiation to a degree of real value [23–25].
Despite the formulation of fractional calculus in the 17th century,
the most significant developments in engineering and scientific
applications have been found only in the last 100 years [23]. With
fractional calculus, the spring-dashpot models of viscoelasticity
may now be generalised by replacing the integer order of deriva-
tive in the constitutive stress-strain equation with a real order.
Fractional viscoelastic models, such as the fractional Kelvin-
Voigt, fractional Maxwell and fractional Zener, have proven to be
robust descriptors of material behaviour [26], as experimental data
can be accurately reflected with the use of a minimal number of
material parameters. Papoulia et al. [27] proved that the models
of fractional viscoelasticity are obtained when the number of units
in a generalised viscoelastic chain approach infinity. Additional
applications of fractional viscoelasticity to model the dynamic
behaviour of concrete includes the work of Barpi and Valente
[28], who combined a micro-mechanical model and fractional vis-
coelastic element to investigate crack propagation in concrete, and
Katicha and Flintsch [29] who employed fractional viscoelastic
models to characterize the time-dependent properties of asphalt
concrete. More recently, Bouras et al. [30] developed a fractional
calculus based viscoelastic model for high temperature creep in
concrete.

In the present study, an elastic in-plane buckling analysis of a
shallow plain concrete arch subjected to a uniformly distributed
radial load and time-varying uniform temperature field, for both
pinned and fixed ends, is undertaken. The arch is assumed to be

mechanically pre-loaded, so TTS will manifest when the concrete
arch is heated. Basic creep strain is considered and modelled using
the aforementioned variable order fractional derivative creep law.
The influence of both transient thermal strain and basic creep
strain on the behaviour and stability boundaries of shallow con-
crete arches under short-term temperature increases, are the focus
of the investigation. Although creep strain is often neglected in
studies of concrete under transient temperature increases such
as those caused by fire, it warrants investigation in shallow arches
due to their geometric non-linearities and increasing temperature-
dependent stresses and deflections.

2. Material model

The total strain � in pre-loaded concrete members subjected to
an elevating temperature, a function of time t, stress r ðtÞ and tem-
perature T ðtÞ, is defined as

� ðr; t; TðtÞ Þ ¼ e ðrðtÞ; TðtÞ Þ þ ecr ðrðtÞ; TðtÞ; tÞ þ eth ðTðtÞ Þ
þ etr ðrðtÞ; TðtÞ Þ; ð1Þ

where e is the instantaneous mechanical strain, ecr is the basic creep
strain, eth is the thermal strain and etr denotes TTS. Thermal strain is
known as

eth ¼ aDT; ð2Þ
with a representing the coefficient of thermal expansion, assumed
constant at 8� 10�6=

�C, and DT ¼ T � T0, where T0 is the initial
temperature. Considering only elastic behaviour, the instantaneous
mechanical strain can be expressed as

eel ¼ r
EðTÞ ; ð3Þ

where EðTÞ is the temperature dependent elastic modulus which
will be modelled using the Eurocode 2 formulation [31]. The Ander-
berg model of TTS [32] is adopted and defined as

etr ¼ r
f 0c
baDT: ð4Þ

where f 0c denotes the cold compressive strength and the constant
b ¼ 2:35. This model has been employed as the TTS is linear propor-
tional to stress which simplifies the analytical analysis, and due to
its common application in fire investigations. Adopting other TTS
models does not qualitatively change behaviour however may
cause quantitative differences in results, see [11].

A rheological model consisting of a fractional dashpot (spring-
pot) unit will be employed to model the basic creep strain which
is governed by the following variable order fractional derivative
equation, see [30],

Da ðTÞ
t ecr ¼ r

g ðTÞ : ð5Þ

In Eq. (5), Da ðTÞ
t is the operator of the fractional derivative of variable

order a ðTÞwith respect to time t, satisfying 0 < a < 1 and t > 0, and
g ðTÞ is the temperature dependent dynamic viscosity. These param-
eters are available in Appendix A.1. Two definitions of the variable-
order fractional derivative are adopted and subsequently examined;
the Caputo fractional derivative of a function f ðtÞ known as

Da ðtÞ
t f ðtÞ ¼ 1

Cð1� aðtÞÞ
Z t

0

D1 f ðsÞ
ðt � sÞaðtÞ

ds; ð6Þ

and the memory of order definition

Da ðtÞ
t f ðtÞ ¼

Z t

0

D1 f ðsÞ
C½1� aðt � sÞ�ðt � sÞaðt�sÞ

ds; ð7Þ
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where D1 is the first order differential operator. In Eq. (7) the frac-
tional exponent a is dependent on the kernel s. The latter possesses
a memory of the order of differentiation which is not considered in
Eq. (6). The significance of the definition of the variable-order frac-
tional derivative in non-linear pre-buckling and buckling behaviour
will be a subject of analysis. For the case of time-invariant temper-
ature, Eq. (5) reverts to constant order fractional derivative equa-
tion, allowing the basic creep strain to be expressed in integral
form;

ecr ¼ 1
g
J�at r ¼ 1

gCðaÞ
Z t

0
ðt � sÞa�1rðsÞ ds: ð8Þ

The Reimann-Louville definition of the fractional integral is adopted
in Eq. (8) and J�at denotes the operator of the fractional integral of
order a. The Gamma function CðaÞ is defined as

CðaÞ ¼
Z 1

0
e�tta�1 dt: ð9Þ

Upon substitution of (2)–(4) into (1), it is obtained that

r
Ê
þ ecr ¼ �� aDT; ð10Þ

where the parameter Ê is defined as

Ê ¼ Eþ f 0c
baDT

ð11Þ

and ecr is the solution to the variable-order fractional derivative Eq.
(5). The elastic-viscoelastic analogy [22,33], often called the corre-
spondence principle, is utilized for the analysis. It allows the solu-
tion of a linear creep problem to be obtained by replacement of
the modulus E in the corresponding elastic problem by a creep
operator E defined as,

E�1r ¼ r
Ê
þ ecr: ð12Þ

This method is applicable to cases of time-variant creep, such as due
to non-constant temperature or ageing effects. Additionally, the
creep operator can be manipulated according to the laws of algebra.
Thus, Eq. (10) may be rewritten as

E�1r ¼ �� aDT: ð13Þ
The definitions of axial compressive force N and bending momentM

N ¼ �
Z
A
r dA; M ¼

Z
A
ry dA; ð14Þ

used in conjunction with (13), yield the constitutive equations for
axial force

E�1N ¼ N=Êþ ecrðNÞ ¼ AðaDT � �mÞ; ð15Þ
and moment curvature

E�1M ¼ M=Êþ ecrðMÞ ¼ � Iv 00

R
ð16Þ

with I and R representing the second moment of area of the cross
section and the arch radius respectively.

3. In-plane equilibrium

3.1. Non-linear equations of equilibrium

Consider a shallow circular arch, pinned or fixed at its ends,
subjected to a uniformly distributed radial load q and a time-
variant uniform temperature field T ðtÞ depicted in Fig. 1. The origin
o is taken at the arch centroidal axis, with the axis oy always direc-
ted towards the center of the arch as its direction changes along
the circumference and the axis os coinciding with the arches cen-
troidal axis. In order to consider geometric non-linearity, the fol-
lowing non-linear formulation of longitudinal normal strain is
adopted [34,35];

� ¼ �m þ �b ð17Þ
where �m and �b are the membrane and bending strains respec-
tively, defined as

�m ¼ w0 � v þ 1
2
ðv 0Þ2; �b ¼ �y

v 00

R
; ð18Þ

and � is the total strain at an arbitrary point P in the arch cross sec-
tion. In Eq. (18) w ¼ ŵ=R;v ¼ v̂=R; ŵ and v̂ are the axial and radial
displacements respectively, y is the coordinate of the point

P; ð Þ0 ¼ dð Þ=dh; ð Þ00 ¼ d2ð Þ=dh2 and h is the angular coordinate.
Expression of the constitutive material model by using the

elastic-viscoelastic analogy allows the pre-buckling analyses to
be treated elastically and statically. The non-linear in-plane equi-
librium equations are derived using the principle of virtual work,
where it is required that

dP ¼
Z
V
rd� dV �

Z H

�H
qR2dv dh ¼ 0; 8dv ; dv 0; dv 00; dw; dw0 ð19Þ

where V is the volume of the arch, H is half the included angle and
dv; dv 0; dv 00; dw and dw0 are kinematically admissible variations of

Fig. 1. Arch loading and geometrical configuration.
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displacements. Substituting Eq. (18) into (19), and integrating by
parts yields the non-linear equations of equilibrium,

N0 ¼ 0; ð20Þ
in the axial direction,

�M00 þ NRv 00 þ NR� qR2 ¼ 0; ð21Þ
in the radial direction, and to the static boundary condition for a
pin-ended arch

v 00ðHÞ ¼ v 00ð�HÞ ¼ 0: ð22Þ
The geometrical boundary conditions are known as

vðHÞ ¼ vð�HÞ ¼ wðHÞ ¼ wð�HÞ ¼ 0; ð23Þ
for a pin-ended arch, and

vðHÞ ¼ vð�HÞ ¼ v 0ðHÞ ¼ v 0ð�HÞ ¼ wðHÞ ¼ wð�HÞ ¼ 0; ð24Þ
for an arch fixed at its ends.

Upon substitution of Eq. (16) into (21), the differential equation
of equilibrium in the radial direction is obtained as

v 0000

l2 þ v 00 ¼ P; ð25Þ

where the axial force parameter l is defined as

l2 ¼ E�1N
R2

I
; ð26Þ

and P denotes the dimensionless load parameter

P ¼ qR� N
N

: ð27Þ

Solving differential equation of equilibrium (25) by using the
boundary conditions given in (22) and (23) for pinned arches and
(24) for fixed arches, yields the dimensionless radial displacement

v ¼ P
l2

U½cosðlhÞ � cosðlHÞ�
cosðlHÞ þ 1

2
ðl2h2 � l2H2Þ

� �
: ð28Þ

where the parameter U is defined as

U ¼ 1 for pin-ended arches;
U ¼ lH= tanðlHÞ for fixed arches:

ð29Þ

The non-linear equilibrium equation relating the axial compressive
force parameter l and the dimensionless load P is obtained by sub-
stituting Eqs. (18), (28) and (23) or (24) into (15), yielding

B1P
2 þ B2P þ B3 ¼ 0; ð30Þ

where

B1 ¼ U2

4l2H2 1� tanðlHÞ
lH

þ tan2ðlHÞ
� �

þ U

l2H2 1� tanðlHÞ
lH

� �
þ 1
6
;

ð31Þ

B2 ¼ U

l2H2 1� tanðlHÞ
lH

� �
þ 1
3
; ð32Þ

B3 ¼ l2H2

k2
� aDTS2

4k2r2x
; ð33Þ

with the arch geometric parameter k defined as

k ¼ RH2=rx ¼ SH=2rx: ð34Þ
Thus, for a given distributed load q and temperature history T ðtÞ,
the time-dependent axial force N ðtÞ can be obtained by solving
Eq. (30), subsequently allowing the dimensionless displacement

v ðtÞ and bending Moment M ðtÞ to be obtained by solving (28)
and (16) respectively.

3.2. Numerical methodology

The axial force parameter l is dependent on the integer opera-
tor E�1 which is governed by a constant-order fractional integral in
the case of time-invariant temperature, and a variable-order frac-
tional differential equation when the temperature field varies with
time. A finite-difference based discretisation method is utilised for
the numerical approximation of the fractional creep laws.

3.2.1. Time-invariant temperature
For the case of constant temperature in time, the creep strain

can be expressed in the form of Eq. (8), hence l can be written as

l2 ¼ NR2

ÊI
þ R2

g I
J�at N: ð35Þ

The fractional integral is approximated as

ðJ�at NÞn ¼ ðDtÞa
Cðaþ 1Þ

Xn�1

j¼0

Nj ½ðn� jÞa � ðn� j� 1Þa� ð36Þ

where Dt is the time step size, t ¼ nDt;n ¼ 1;2;3 . . .X;X ¼ tf =Dt; tf
is the loading duration and s ¼ jDt. The derivation of Eq. (36) is pro-
vided in Appendix A.2. The notation ð0Þn and ð0Þj denote ð0ÞðnDtÞ and
ð0ÞðjDtÞ respectively. The axial force parameter l thus becomes

l2 ¼ NR2

ÊI
þ R2ðDtÞa
g ICðaþ 1Þ

Xn�1

j¼0

Nj ½ðn� jÞa � ðn� j� 1Þa�: ð37Þ

Using (36), Eq. (30) is solved at each time step beginning with n ¼ 1.
The algorithm however requires the initial axial force Nðt ¼ 0Þ to be
predetermined. This is achieved by simply solving the correspond-
ing elastic problem, l2ð0Þ ¼ Nð0ÞR2=EI.

3.2.2. Time-variant temperature
When time-varying temperature is considered, the axial force

parameter is given as

l2 ¼ NR2

ÊI
þ R2

I
ecrðNÞ; ð38Þ

where the creep strain ecr is governed by the fractional differential
equation

Da ðTÞ
t ecr ¼ N

g ðTÞ : ð39Þ

When adopting Eq. (6) for the definition of the variable-order
derivative, the creep strain is numerically approximated as

ecr;n ¼ ecr;n�1 �
Xn�2

j¼0

ðecr;jþ1 � ecr;jÞ½ðn� jÞ1�an � ðn� j� 1Þ1�an �

þ Nn

gn
C ð2� anÞDan

t : ð40Þ

The numerical algorithm begins at time step n ¼ 2, therefore the
creep strain at t ¼ 1 is required and is derived as

ecrð1Þ ¼ N1

g1
C ð2� a1ÞðDtÞa1 þ ecrð0Þ; ð41Þ

where the initial creep strain has the obvious value ecrð0Þ ¼ 0. The
values of N are also required at the initial time steps of n ¼ 0 and
n ¼ 1. These are obtained individually by solving Eq. (30) with

l2ð0Þ ¼ Nð0ÞR2=Êð0ÞI and l2ð1Þ ¼ Nð1ÞR2=Êð1ÞI þ R2ecrð1Þ=I
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respectively. The creep strain is also discretised when adopting Eq.
(7) for the definition of the variable-order differential equation;

ecr;n ¼ ecr;n�1 � Cð2� a1ÞDta1
Xn�2

j¼0

ecr;jþ1 � ecr;j
Cð2� an�jÞ

� ðn� jÞ1�an�j � ðn� j� 1Þ1�an�j
h i

þ Nn

gn
C ð2� a1ÞDta1 ð42Þ

with the creep strain at t ¼ 1 obtained as

ecrð1Þ ¼ N1

g1
C ð2� a0ÞDa0

t þ ecrð0Þ ð43Þ

and ecrð0Þ ¼ 0. A disadvantage of Eqs. (40) and (42) is the depen-
dency on both stress and strain history at each time step. Conse-
quently computation times are significantly higher when
compared to Eq. (36) which requires only stress history. Therefore
it would be beneficial if the order of derivative did not vary with
temperature, allowing the creep strain to be expressed in fractional
integral form with only a temperature-dependent viscosity. In this
case, the axial force parameter becomes

l2
n ¼ NnR

2

ÊnI
þ R2ðDtÞa
ICðaþ 1Þ

Xn�1

j¼0

Nj

gj
½ðn� jÞa � ðn� j� 1Þa�: ð44Þ

It would be shown in the following section, that the order of deriva-
tive may be assumed constant and still provide practically the same
solution as if it were variable.

3.3. Pre-buckling behaviour

The time and temperature evolution of the axial force N can be
obtained from Eq. (30) for a given distributed load q and tempera-
ture history T ðtÞ. Figs. 2 and 3 depict the effect of linearly increas-
ing temperature in time on the axial force for fixed and pinned
ended arches respectively. The arches feature an included angle
H ¼ 34:3775�, slenderness ratio S=r ¼ 155:523, geometric parame-
ter k ¼ 46:6568, cold compressive strength f 0c ¼ 32 MPa, an initial
elastic modulus E0 ¼ 30;100 MPa, are subject to a uniformly dis-
tributed radial load of q ¼ 25 kN=m and are heated at a rate of
1:67 �C=min from an initial temperature of 22 �C. The axial force
increases with time and/or temperature and shows rapid jump as

the limit instability point is reached. As expected when neglecting
creep strain, the rate of change in axial force is reduced and the
arch reaches the limit instability point later in time. Anti-
symmetric buckling is however the dominant buckling mode in
shallow arches, therefore the limit instability point will not be
reached except for very shallow arches [5].

The dimensionless radial deflections and bending moments at
various time intervals are shown in Figs. 4 and 5 for pinned and
fixed arches respectively. Definition (6) of the variable order frac-
tional derivative is adopted. In both pinned and fixed ended arches,
the radial deflection continues in the downward direction as time
and temperature increase. As the critical time for limit instability is
approached, a change in direction of displacement occurs in the
outer regions of the arch. For the pin-ended case this occurs at
approximately t ¼ 135 mins and for the fixed arch at
t ¼ 180 mins, see Figs. 4 and 5. This shape change may be consid-
ered as a form of stability loss. It is however likely that anti-
symmetric buckling will occur first as the deflected shape begins
to change near the symmetric snap-through point. This manifesta-
tion of new modes is seen clearly in the moment evolution dia-
grams. For pinned arches (Fig. 4(b)), the bending moment
reduces in time throughout the arch length. However, as the direc-
tion of displacement in the arch ends is reversed, the bending
moment in the central region of the arch begins to increase and
development of negative moment occurs in the outer segments.
Similar behaviour is observed in fixed arches (Fig. 5(b)) albeit at
a higher mode due to the existence of end moments which increase
in time.

It has been found that practically no difference in results is
obtained when adopting Eq. (6) or (7) for the definition of the
variable order fractional derivative, as seen in Figs. 2 and 3.
Thus the additional computation time and memory required
by definition (7), due to the dependence of the history of
aðTÞ, is not warranted. A significant reduction in computation
times may also be obtained when the order of derivative is
assumed constant, in this case a ¼ 0:4. This value is determined
by fitting the creep curve obtained for constant order to those
obtained with a variable order and subjected to the same stress.
Thus the constant value of the order of the fractional exponent
is dependent on heating rate and is only applicable for uniform
heating cases.

Fig. 2. Effect of increasing temperature on axial force (fixed ends).

Y. Bouras, Z. Vrcelj / Engineering Structures 152 (2017) 413–423 417



Fig. 3. Effect of linearly increasing temperature in time on axial force (pinned ends).

Fig. 4. Effect of linearly increasing temperature in time on deflection (a) and bending moment (b) for a pin-ended arch.

Fig. 5. Effect of linearly increasing temperature in time on deflection (a) and bending moment (b) for a fixed-ended arch.
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4. Buckling analysis

4.1. Buckling equilibrium differential equations

Upon reaching a critical time or temperature, the arch may
transition from a pre-buckled equilibrium configuration to an adja-
cent buckled equilibrium position characterised by N ¼ N þ Nb;

M ¼ M þMb; �v ¼ v þ vb, and �w ¼ wþwb, where Nb;Mb;vb and
wb denote perturbations. Substituting the perturbed quantities
into the pre-buckled equilibrium Eqs. (20) and (21), and neglecting
higher order terms, yields the buckled equilibrium equations,

N0
b ¼ 0; ð45Þ

and

RNv 00
b þ RNbð1þ v 00Þ �M00

b ¼ 0; ð46Þ
and the buckled constitutive equations.

E�1Nb ¼ �Aðw0
b � vb þ v 0v 0

bÞ; ð47Þ
and

E�1Mb ¼ � Iv 00
b

R
: ð48Þ

when substituted into Eqs. (15) and (16). The static boundary con-
ditions are similarly obtained as

wbðHÞ ¼ wbð�HÞ ¼ vbðHÞ ¼ vbð�HÞ ¼ v 00
bðHÞ ¼ v 00

bð�HÞ ¼ 0;

ð49Þ
for pin-ended arches and

wbðHÞ ¼ wbð�HÞ ¼ vbðHÞ ¼ vbð�HÞ ¼ v 0
bðHÞ ¼ v 0

bð�HÞ ¼ 0;

ð50Þ
for fixed arches.

4.2. Anti-symmetric bifurcation buckling

The anti-symmetric nature of bifurcation buckling results in the
buckling displacement vb being anti-symmetric. The derivative of
the pre-buckling displacement v 0 is also anti-symmetric as v is
symmetric prior to buckling. Thus when integrating Eq. (47)
throughout the arch length, the terms vb and v 0 vanish, producing

E�1Nb ¼ N=Êþ ecrðNbÞ ¼ 0; ð51Þ
which has the solution

Nb ¼ 0: ð52Þ
Substituting Eqs. (48) and (52) into (46) gives the linear homoge-
neous differential equation for bifurcation buckling

v 0000
b

l2 þ v 00
b ¼ 0: ð53Þ

Solving Eq. (53) yields

vb ¼ C1 sinðclhÞ þ C2 cosðclhÞ þ C3hþ C4; ð54Þ
where C1 . . .C4 are undetermined coefficients. For the existence of
non-trivial coefficients, the first determinant of the coefficient
matrix must vanish, leading to the following characteristic equa-
tions, as originally obtained by Pi et al. [35],

sinðclhÞ cosðclhÞ ¼ 0 for pinned arches
½lH cosðlHÞ � sinðlHÞ� sinðclhÞ ¼ 0 for fixed arches:

ð55Þ

The lowest solutions of characteristic Eqs. (55) when the first terms
vanish are lh ¼ p for pin-ended arches, and lH ¼ 1:4303p for fixed

arches. Substituting these solutions into Eq. (26) yields the critical
axial force

E�1Np ¼ p2I

ðS=2Þ2
for pinned arches

E�1Np ¼ ð1:4303pÞ2I
ðS=2Þ2

: for fixed arches

ð56Þ

The numerical methods presented in Section 3.2 are then utilised
for solving Eq. (56). Substituting (56) into (30) yields

D1P
2
b þ D2Pb þ D3 ¼ 0 ð57Þ

where

D1 ¼ 15þ 2p2; D2 ¼ 12þ 4p2; D3 ¼ 12p4

k2
� 3aDTS2p2

k2r2
; ð58Þ

for pinned arches, and

D1 ¼ 5; D2 ¼ 4; dD3 ¼ 12ð1:4303pÞ2
k2

� 3aDTS2

k2r2
; ð59Þ

for arches with fixed ends. The critical anti-symmetric buckling load
is obtained at a given point in time by solving Eq. (58) for pin-ended
arches or (59) for fixed arches, with the corresponding critical axial
force being predetermined using Eq. (56).

The anti-symmetric bifurcation loads qcr for pin-ended and
fixed-ended arches are shown in Fig. 6. A heating rate of
1:67 �C=min is applied to the arches with initial temperature being
ambient (T ðt ¼ 0Þ ¼ 22 �C). Both creep and TTS are analysed to
determine their significance in relation to buckling strength. TTS
drastically reduces the critical bifurcation loads of arches with
pinned or fixed ends. When TTS is not considered, a small increase
of buckling resistance is observed at low temperatures, in this case
when T < 100 �C. A consequence of the Eurocode 2 model for
instantaneous elastic modulus which assumes no reduction in
the elastic modulus in this temperature range. Hence the arch dis-
places upwards due to thermal strain causing an increase in qcr .
However, as the elastic modulus degrades at higher temperatures,
so does the buckling strength.

Further reduction in buckling strength occurs due to the basic
creep strain albeit with less significance then when compared to
TTS. Practically the same results are obtained for anti-symmetric
buckling loads when adopting definition (6) or (7) for the fractional
derivative, or when assuming the order of derivative as a constant
of a pre-determined value (a ¼ 0:4 for results presented in Fig. 6).
As the magnitude of basic creep strain is small when compared to
TTS in the short-term, the obtained results satisfy intuitive expec-
tations. Thus, as with other structural members such as beams and
columns, the basic creep may also be neglected in the analysis of
shallow concrete arches subject to transient temperature
increases.

4.3. Symmetric buckling

In addition to anti-symmetric buckling, a shallow arch may fail
in a symmetric snap-through mode. It was shown that for shallow
arches, symmetric buckling is equivalent to limit instability [5]. For
this case, the displacements vb and v 0 do not vanish when inte-
grated, resulting in the differential equation as shown

v 0000
b

l2 þ v 00
b ¼ �Nb

N
ð1þ v 00Þ: ð60Þ

Upon solving Eq. (60), substituting the solution vb into (47) and
integrating over the arch length, the equilibrium equation for limit
instability is obtained as

C1P
2 þ C2P þ C3 ¼ 0; ð61Þ
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where

C1 ¼ 2B1 þ C4; C2 ¼ 4B1 C3 ¼ B2 � l2H2

k2
; ð62Þ

and

C4 ¼ 15
8l2H2 �

15 tanðlHÞ
8l3H3 � tanðlHÞ

4lH cos2ðlHÞ þ
7 tan ðlHÞ2

8l2H2

for pinned arches

C4 ¼ lH
4 tanðlHÞ sin2ðlHÞ

þ 3

8 sin2ðlHÞ
þ 3
8lH tanðlHÞ �

1
l2H2

for fixed arches ð63Þ
Eq. (61) may also be obtained through implicit differentiation of Eq.
(30), where the load q can be expressed as an implicit function of
the axial force parameter l, requiring that

� @F=@l
@F=@q

¼ 0: ð64Þ

The symmetric snap-through loads are obtained when Eqs. (30) and
(61) yield the same solutions at the same point in time.

It can be seen in Figs. 2 and 3 that basic creep strain signifi-
cantly reduces the critical time to limit instability failure for both
pinned and fixed arches. Creep is more influential in symmetric
failure compared to bifurcation buckling as anti-symmetric stabil-
ity loss occurs early, thus reducing the time required for creep
development. Hence for arches failing in the symmetric snap-
through mode, basic creep strain should be considered.

4.4. Lowest buckling loads

When cosðclhÞ ¼ 0 in characteristic Eq. (55), the lowest solu-
tion are clh ¼ p=2 for pinned arches and clh ¼ p for fixed arches,
which upon substitution in Eq. (26), yield

E�1N ¼ p2I

S2
for pinned arches;

E�1N ¼ p2I

ðS=2Þ2
for fixed arches:

ð65Þ

Pi and Bradford [35] found that the lowest critical buckling load is
equal to the axial force, thus it can be stated that

qR ¼ N ¼ E
p2I

S2
for pinned arches;

qR ¼ N ¼ E
p2I

ðS=2Þ2
for fixed arches:

ð66Þ

4.5. Limiting arch geometric parameters

The existence of a real solution to the central radial displace-
ment Eq. (28), when clh ¼ p=2 and clh ¼ p for pinned and fixed
arches respectively, leads to the limiting arch geometry parameter
ks defining a switch between buckling and no buckling, originally
obtained in [5], which is defined as

ks ¼ p3

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aDT

p2

S
r

� �2
s

for pinned arches;

ks ¼ p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aDT

2p2

S
r

� �2
s

for fixed arches:

ð67Þ

When the arch slenderness k is less than ks, buckling is not possible.
However, it is most likely that an arch experiencing increasing tem-
perature, such as during a fire, will feature a slenderness k > ks as ks
decreases with increasing temperature. Moreover, ks is independent
of basic creep and TTS. It is also noted that lowest buckling load is a
special case, only occurring when the slenderness of the arch satis-
fies Eq. (67).

Eqs. (57)–(59) lead to the arch geometric parameters kb which
determine a switch between symmetric and anti-symmetric buck-
ling, originally obtained in [5],

kb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p2 þ 15

p

2p2 þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12p4 � 3p2aDT

S
r

� �2
s

for pinned arches;

kb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15 ð1:4303pÞ2 � ð15aDT=4Þ S

r

� �2
s

for fixed arches:

ð68Þ

If the arch slenderness satisfies ks < k < kb, symmetric snap-
through is the dominant buckling mode. When the arch slenderness
k > kb, the arch generally buckles in an anti-symmetric bifurcation
mode. However, this bifurcation point may occur on the descending
branch of the equilibrium path. For further discussion of this phe-
nomenon, the reader is referred to [5]. TTS and creep strains have
no effect on the geometric parameter kb, consequently the parame-
ters governing the buckling mode for circular shallow steel arches
under uniformly distributed radial loading and uniform tempera-
ture field are identical for concrete arches, see [5]. Thus, anti-
symmetric bifurcation buckling is the dominant buckling mode
for concrete arches subject to uniformly distributed radial loading
and uniform thermal loading, and symmetric buckling is only pos-
sible in very shallow arches. Additionally, the dominant buckling
mode may transition from symmetric to anti-symmetric for arches

Fig. 6. Anti-symmetric buckling loads for fixed (a) and pinned (b) arches subjected to a heating rate of 1:67 �C=min.
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under increasing temperature as kb decreases with increasing
temperature.

5. Discussion

5.1. Validation of assumption of elasticity

The maximum normal stress to temperature reduced compres-
sive strength ratio f 0c=f

0
c;T at initial loading and at the critical bifur-

cation times for two arch geometrical configurations when both
pinned or fixed supported are depicted in Figs. 7 and 8. Arch 1 fea-
tures a height of 1 m, a width of 8 m, a radius of 8.5 m and an
included angle of 56.14�. The height, width, radius and included
angle for arch 2 is 1 m, 6 m, 5 m and 73:74� respectively. Both
arches feature a cross-section with and depth of 300 mm an
200 mm respectively, an initial elastic modulus E0 ¼ 30;100 MPa
and were heated at a rate of 1.67 �C=min. It is shown that in three
out of the four cases tested, the stress to temperature reduced
compressive strength ratio remains under 0.5 when initially loaded
to less then approximately 45% of the cold compressive strength. In
the case of the fixed arch with the higher included angle, see
Fig. 8b, the stress to strength ratio reached a maximum of 0.57,
which exceeds the assumed elastic limit of 0.5. Buckling strength

increases with included angle, and as the Anderberg model does
not consider the great increase in TTS at approximately 450 �C,
the elastic range was exceeded as the compressive strength of
the concrete substantially deteriorated at the high temperature
required to induce stability loss. It is expected that adopting
another TTS model the would result in anti-symmetric buckling
failure prior to plastic straining.

Cracking would occur if the arch was initially loaded to a state
of tensile stress, or if during the heating period the stress transi-
tioned from compressive to tensile. However, this is only probable
in very shallow arches which behave more beam like and with-
stand large bending moments relative to the axial compressive
force. These arches would require reinforcement, and the assump-
tion of elasticity rendered invalid. It is shown in Figs. 4 and 5 that a
transition from a compressive to tensile stress state during heating
is unlikely as the compressive force increases with temperature/-
time, and the magnitude of the bending moments decrease
throughout most of the heating period. Bifurcation buckling will
occur prior to the large increase in bending moment which occurs
as the arch approaches limit instability failure. Only very shallow
arches are governed by symmetric buckling, which, as aforemen-
tioned, would likely require reinforcement and hence not behave
elastically to begin with.

Fig. 7. Stress to compressive strength ratio at initial and critical bifurcation time in arch 1. q ¼ 80 kN=m.

Fig. 8. Stress to compressive strength ratio at initial and critical bifurcation time in arch 2. q ¼ 150 kN=m.
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Thus, this study is restricted in its application to concrete arches
loaded in the working range; total stresses less than approximately
45% of the compressive strength. Though caution is advised for
very shallow arches which may feature an initial state of tensile
stress, and stocky fixed arches with high included angles.

5.2. Effect of reinforcement

Concrete arches typically feature steel reinforcement despite
the possible lack of tensile stress regions which has not been
considered herein. Studies on the fire resistance of reinforced
concrete columns have shown that incorporating and increasing
the level of steel reinforcement does not noticeably influence
the critical buckling temperature [36,37]. However, for concrete
columns governed by material failure, the steel ratio plays a
greater role in fire resistance time [38]. Assuming that steel
reinforcement would similarly impact arch behaviour, it can
be said that the inclusion of reinforcement would only slightly
effect the pre-buckling behaviour and thermo-elastic buckling
temperatures/times.

6. Conclusion

The non-linear pre-buckling behaviour and elastic stability
boundaries of pinned and fixed shallow concrete arches sub-
jected to uniformly distributed loading and time-varying tem-
peratures were analytically and numerically investigated.
Coupling effects of time and temperature with geometric non-
linearity was the focus of the investigation. Basic creep strain
was considered and modelled using a fractional derivative based
law. The elastic-viscoelastic analogy was utilised in order to
treat the problem elastically, and the principle of virtual work
was employed for the derivation of the non-linear equilibrium
equations. Numerical solutions were obtained by discretising
the variable-order fractional derivatives using a finite-
difference based approach. It was found that TTS interacts with
geometric non-linearity and significantly influences pre-buckling
behaviour and symmetric snap-through and anti-symmetric
buckling loads, with basic creep strain magnifying its effects.
Examination of the time and temperature evolution of radial
deflections demonstrated symmetric shape changes manifesting
at high times and temperatures prior to the symmetric snap-
through point; causing substantial alterations to the bending
moment. Additionally, TTS causes great reductions in the buck-
ling resistance of both pinned and fixed concrete arches and
hence must be considered in the analysis of pre-loaded shallow
concrete arches subject to temperature increases. Basic creep
further reduces the stability boundaries, however for most
arches which fail in an anti-symmetric buckling mode, the
effects of basic creep strain may be considered negligible for
transient temperature increases.
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Appendix A

A.1. Spring-pot parameters

The parameters a and g are adopted from [30] for calcareous
aggregate. The dependence of the order of derivative a on T is (T
in Fahrenheit �F)

a ¼ �5:36� 10�10ðT � 759:6741Þ3 � 7:849� 100�11T2

þ 0:000253T þ 0:257 for T < 600 �F

a ¼ 1:73� 10�9ðT þ 931:86Þ3 � 1:01� 10�5T2

þ 0:00057883T � 2:5093 for T > 600 �F: ð69Þ
and the dynamic viscosity g (MPa.mina)

g ¼ 2:3382 ðT � 596:2261Þ2 þ 1:55� 105 for T < 600 �F;

g ¼ 9:3568� 10�4 ðT � 900Þ3 � 127:43333T þ 206400
for T > 600 �F:

ð70Þ

A.2. Discretisation of fractional creep laws

A.2.1. Discretisation of fractional integral

J�at f ðtÞ ¼ 1
CðaÞ

Z t

0
ðt � sÞa�1f ðsÞ ds: ð71Þ

� 1
Cðaþ 1Þ

Xn�1

j¼0

f j

Z ðjþ1ÞDt

jDt
ðt � sÞa�1 ds: ð72Þ

¼ ðDtÞa
Cðaþ 1Þ

Xn�1

j¼0

f j ½ðn� jÞa � ðn� j� 1Þa� ð73Þ

A.2.2. Discretisation of variable-order fractional derivative without
memory of order

The variable-order fractional derivative, for the case when the
memory of the order of derivative is not considered, is discretised
as follows

Da ðtÞ
t f ðtÞ ¼ 1

Cð1� aðtÞÞ
Z t

0

f 0ðsÞ
ðt � sÞaðtÞ

ds

� 1
Cð1� anÞ

Xn�1

j¼0

Z ðjþ1ÞDt

jDt

y0ðsÞ
ðt � sÞan ds

¼ 1
Cð1� anÞ

Xn�1

j¼0

Z ðjþ1ÞDt

jDt

yjþ1�yj
Dt ðsÞ

ðt � sÞan ds

¼ 1
Cð1� anÞ

Xn�1

j¼0

yjþ1 � yj
Dt

Z ðjþ1ÞDt

jDt

ds
ðt � sÞan

¼ 1
Cð2� anÞDtan

Xn�1

j¼0

ðyjþ1 � yjÞ½ðn� jÞ1�an � ðn� j� 1Þ1�an �

¼ 1
Cð2� anÞDtan

Xn�2

j¼0

ðyjþ1 � yjÞ½ðn� jÞ1�an � ðn� j� 1Þ1�an �

þ yn � yn�1

Cð2� anÞDtan

where Dt is the time step, t ¼ nDt;n ¼ 2 . . . tf =Dt; tf is the final time,
s ¼ jDt and ð0Þn ¼ ð0Þ ðnDtÞ. The creep strain � for the fractional dash-
pot model of viscoelasticity is hence determined as

�n ¼ �n�1 �
Xn�2

j¼0

ð�jþ1 � �jÞ½ðn� jÞ1�an � ðn� j� 1Þ1�an �

þ rn

gn
C ð2� anÞDan

t

with the creep strain at t ¼ 1 derived as
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�1 ¼ r1

g1
C ð2� a1ÞDa1

t þ �0 ð74Þ

and �0 ¼ 0.

A.2.3. Discretisation of variable-order fractional derivative with
memory of order

The variable order differential Eq. (7) is discretised as

Da ðtÞ
t yðtÞ ¼

Z t

0

y0ðsÞ
C½1� aðt � sÞ�ðt � sÞaðt�sÞ

ds ð75Þ

�
Xn�1

j¼0

yjþ1 � yj
Cð1� an�jÞDt

Z ðjþ1ÞDt

jDt

ds
ðt � sÞan�j

¼
Xn�1

j¼0

yjþ1 � yj
Cð1� an�jÞDt

an�j ðn� jÞ1�an�j � ðn� j� 1Þ1�an�j

h i

¼
Xn�2

j¼0

yjþ1 � yj
Cð1� an�jÞDt

an�j ðn� jÞ1�an�j � ðn� j� 1Þ1�an�j

h i

þ yn � yn�1

Cð2� a1ÞDta1

where an�j ¼ aðnDt � jDtÞ. Upon application to the springpot model,
the creep strain is obtained as

�n ¼ �n�1 � Cð2� a1ÞDta1
Xn�2

j¼0

�jþ1 � �j
Cð2� an�jÞ

� ðn� jÞ1�an�j � ðn� j� 1Þ1�an�j

h i
þ rn

gn
C ð2� a1ÞDta1 ð76Þ

with the creep strain at t ¼ 1 obtained as

�1 ¼ r1

g1
C ð2� a0ÞDa0

t þ �0 ð77Þ

and �0 ¼ 0.
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Chapter 4. In-plane thermo-elastic buckling of shallow concrete arches

4.5 Concluding Remarks

This chapter presented the derivation of analytical models for the thermo-elastic re-

sponse and in-plane stability boundaries of pinned or fixed shallow concrete arches

under combined mechanical and thermal loading. The effect of temperature on the

prebuckling repsonse and buckling loads formed the focus of the investigation. This

chapter provides an insight into the fundamental behaviour of shallow concrete arches

in thermal environments, and outlines the overall significance of TTS and creep on

behaviour. In summary, the following conclusions are drawn from this chapter;

1. Thermal loading increases the axial force and radial deflections in concrete arches,

which rise exponentially as limit instability is approached;

2. Bending moment generally decreases in magnitude with temperature increase,

though a great jump is observed as the arch begins to symmetrically change

shape prior to instability failure;

3. Elevated temperature fields significantly reduce the in-plane elastic anti-symmetric

and symmetric buckling loads of pinned and fixed concrete arches;

4. The effect of thermal loading is drastically enhanced when TTS is considered, and

adopting different TTS models quantitatively influences results;

5. Basic creep strain increases the effects of thermal loading though to a much lesser

extant then TTS. Hence, creep strain can be neglected for arches governed by

anti-symmetric buckling when subjected to transient heating;

6. The definition of fractional derivative adopted for the creep strain equation has a

negligible effect on arch behaviour;
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Chapter 4. In-plane thermo-elastic buckling of shallow concrete arches

7. Anti-symmetric bifurcation buckling is the governing failure mode for concrete

arches under elevated temperature fields, with limit instability only possible in

very shallow arches; and

8. The factors delineating between buckling modes are temperature dependant and

thus governing failure mode may change during heating.
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Chapter 5

Inelastic buckling of shallow concrete arches under

fire loading

5.1 Introduction

In this chapter, the in-plane failure modes and fire resistance times of shallow concrete

arches are numerically investigated using FE analysis. The arches are first mechanically

loaded prior to heating where the fire load is assumed to act on the underside of the

arch. Inelastic material models are adopted which consider TTS implicitly. In-plane

anti-symmetric geometric imperfections are incorporated into the model by conducting

an eigenvalue buckling analysis and subsequently reforming the arch geometry. This
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Chapter 5. Inelastic buckling of shallow concrete arches under fire loading

is required for anti-symmetric bifurcation buckling to occur upon reaching a critical

temperature distribution. Validation of the FE model is made by comparison to a

novel non-discretisation numerical method derived for the non-linear inelastic analysis

of shallow concrete arches subjected to uniformly distributed radial loading and uniform

temperature fields. The non-linear equilibrium equations of shallow arches are coupled

with an inelastic concrete material model to form a system of six first-order differential

equations which can be numerically solved as a boundary-value problem (BVP) given

the end restraints of pinned or fixed supports. Additionally, verification is made by

examining the inelastic buckling loads predicted by the FE model and the tangent

modulus theory; employed using the derived model and the analytical expressions for

the elastic buckling load obtained in Chapter 4. The FE model is then utilised to

conduct an extensive parametric study which highlights the effect of various parameters

on fire resistance time and deduces the governing failure mode of shallow concrete arches

under fire loading. By considering inelastic material behaviour and simulating fire

loading, this chapter builds upon the results detailed previously which were limited to

elastic response and uniform temperature fields. Thus, a more realistic understanding

of the effect of thermal (fire) loading on the stability of concrete arches is obtained.

The following paper is included in this chapter;

1. Y. Bouras, and Z. Vrcelj. 2020. In-plane stability of shallow concrete arches under

fire. Journal of Structural Fire Engineering, DOI: 10.1108/JSFE-11-2018-0039.
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In-plane stability of shallow concrete arches under fire

Yanni Bouras, Zora Vrcelj 1

College of Engineering and Science, Victoria University, Melbourne, VIC, Australia

Abstract

Concrete arch structures are commonly constructed for various civil engineering applications. Despite their frequent

use, there is a lack of research on the response and performance of concrete arches when subjected to fire loading.

Hence, this paper investigates the response and in-plane failure modes of shallow circular concrete arches subjected

to mechanical and fire loading through the development of a three-dimensional finite element (FE) model. The FE

model is verified by comparison to a non-discretisation numerical model derived herein and the tangent modulus

buckling theory, both utilised for the non-linear inelastic analysis of shallow concrete arches subjected to uniformly

distributed radial loading and uniform temperature field. Both anti-symmetric and symmetric buckling modes are

examined, with analysis of the former requiring geometric imperfection obtained by an eigenvalue buckling analysis.

The FE results show that anti-symmetric bifurcation buckling is the dominant failure mode in shallow concrete arches

under mechanical and fire loading. Additionally, parametric studies are presented which illustrate the influence of

arch included angle, concrete compressive strength, cross-section size, mechanical load level and fire type on the fire

resistance time.

1. Introduction

Arches are a historic construction form still commonly utilised in modern civil engineering projects including

the construction of bridges and buildings. The popularity of arches can be attributed to their ability to resist loads

primarily in compression, making them more efficient structural members than straight beams. However, compressive

action introduces the problem of stability. Three buckling modes exist for arches: the anti-symmetric bifurcation

and symmetric snap though in-plane modes, and the out-of-plane flexural-torsional mode. The stability of arches is a

classical problem that has been extensively studied over the years for both in-plane [1, 2, 3, 4, 5, 6, 7] and out-of-plane

buckling [8, 9, 10, 11, 12, 13, 14]. In the early analytical studies on the stability of elastic arches classical buckling

theory was adopted. This was later proven, experimentally [3, 7] and numerically [15], to be inaccurate due to simpli-

fying assumptions made regarding the pre-buckling behaviour [15, 16]. Classical buckling theory ignores the effects

of pre-buckling deformations on displacements and geometrical stiffness, and linearises stress resultants. Classical

theory only provides accurate solutions for deep arches, as the rise of the arch is much greater than the magnitude

of pre-buckling deformations [15]. Conversely in shallow arches, the pre-buckling deformations are significant and

highly non-linear. The use of classical theory for the analysis of shallow arches leads to an overestimation of the
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buckling strength, thus the elastic buckling load of a shallow arch must be obtained using non-linear methods. Arches

are delineated between shallow and deep based on their included angle (2Θ); arches with 2Θ > 90◦ are classed as

deep and are otherwise considered as shallow [16].

The ubiquitous use of arches makes their performance at elevated temperatures of high importance as thermal

loading, such as caused by fire exposure, may induce stability loss. The effects of elevated temperature fields on

the response and stability of shallow steel arches have been thoroughly investigated [17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27]. Uniform temperature fields and temperature differentials induce compressive stresses and bending

moments in arches due to the end restrained thermal expansion and curvature changes respectively. Furthermore,

in-plane anti-symmetric bifurcation buckling and limit instability loads increase with uniform temperature fields.

Conversely, in-plane critical buckling loads decrease with an increase in temperature gradient. For the case of out-

of-plane stability of steel arches, mechanical loads are less influential with stability being governed primarily by the

critical buckling temperature [24]. Despite the extensive research conducted on thermal stability of steel arches, less

work has been completed on the response of concrete and composite steel-concrete arches at elevated temperatures.

Bouras and Vrcelj [28] conducted a pre-buckling and in-plane stability analysis of shallow circular concrete arches

subjected to combined mechanical and thermal loading in order to analyse the influence of basic creep and Transient

Thermal Strain (TTS); a strain thought to originate in the cement paste due to thermo-mechanical interaction which

only manifests in mechanically pre-loaded concrete upon first time heating and is irreversible [29, 30, 31]. It was

found that when considering TTS, axial compressive forces further increased with temperature and the concrete arch

deflected downwards. Moreover, TTS significantly magnified the reduction in buckling strength of concrete arches

at elevated temperatures. However, this study was limited to the simplifying assumptions made which include elastic

material behaviour and uniform temperature loading. This appears to be the only study investigating the stability

of concrete arches at extreme temperatures. Heidarpour et al. [32] analytically investigated the in-plane non-linear

elastic behaviour of a composite steel-concrete arch under mechanical and non-uniform thermal loading. Luo et

al. [33] studied the long-term behaviour of crown-pinned concrete-filled steel tubular (CFST) arches subjected to

a uniform and constant temperature change in order to analyse the significance of time-temperature coupling. The

non-linear elastic and inelastic in-plane buckling strength of CFST arches subjected to uniformly distributed radial

loading and elevated temperature fields was investigated by the authors in [34]. It was found that thermal loading

substantially influenced stability boundaries and that the inelastic buckling strength in stocky arches was governed by

yielding of the steel tube.

Due the limited available research on the thermal stability of concrete arches, the significance of the problem can

by highlighted by considering studies of reinforced concrete columns. Arches and columns share similar mechanical

behaviour as both carry loads predominately as an axial compressive force, which if large enough, may cause bifur-

cation buckling. The critical axial force for a pinned or fixed-ended shallow arch in uniform compression is the same

for an equivalent length column, which can be derived by stability analyses typically consisting of generalisations

of those applied to straight members. As with arches, elevated temperature fields may cause instability in columns
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[35, 36, 37, 38]. Although commonly governed by material strength, reinforced concrete columns are not exempt

from the problem of instability when subjected to combined mechanical and thermal loading due to severe reductions

in stiffness caused by high temperatures. A major contributor to stiffness degradation, and thus buckling load, is TTS.

Few studies explicitly analyse the effect of fire loading on the stability of loaded concrete columns when considering

TTS. Examples include the work by Franssen and Dotreppe [39], Bratina et al. [40], Huang et al. [35] and Bajc et

al. [38]. Huang et al. [35] conducted an inelastic buckling analysis of reinforced concrete columns subjected to fire

loading using Shanleys inelastic buckling theory and Finite Element (FE) analysis. It was found that global buck-

ling is the dominant failure mode for slender reinforced concrete columns, and the reductions in buckling strength

at elevated temperatures are significantly greater when considering TTS. Furthermore, the steel reinforcement ratio

marginally increased critical buckling temperature. This result was also obtained by Bajc et al. [38] who proposed a

semi-analytical model for the inelastic buckling analysis of concrete columns subjected to fire loading. Exposure time

and slenderness were deduced as the critical factors behind fire resistance time.

Motivated by the adverse effect fire loading has on the critical buckling loads of reinforced concrete columns, and

by the lack of research on concrete arches under the same conditions, the present study investigates the response and

failure modes of shallow circular plain concrete arches subjected to fire loading through the development of a 3D Finite

Element (FE) model using the commercially available software package ANSYS [41]. The large expenses associated

with conducting full-scale experimental tests, in addition to the complexity of developing prescriptive methods, has

led to performance-based numerical analysis, particularly FE, becoming the preferred fire engineering design tool for

concrete structures [42, 43, 44]. Plain concrete arches are studied as stability is the primary concern. Concrete arches

typically feature steel reinforcement uniformly distributed through the cross-section. However, as discussed earlier,

studies on the fire resistance of reinforced concrete columns have shown that increasing the level of steel reinforcement

does not noticeably influence the critical buckling temperature [35, 38]. However, for concrete columns governed by

material failure, the steel ratio plays a greater role in fire resistance time [37]. Assuming that steel reinforcement

would similarly impact arch behaviour, it can be said that the inclusion of reinforcement would only slightly influence

their fire resistance. The FE model is validated by comparison to a non-discretisation based numerical model derived

herein for the non-linear inelastic analysis of shallow concrete arches subjected to uniformly distributed radial loads

and uniform temperature fields. In the FE model, a transient thermal analysis is first conducted where it is assumed

that the temperature is constant through the length of the arch. Subsequently, two non-linear structural analyses are

performed for each arch in order to investigate both anti-symmetric and symmetric buckling failure. Analysis of anti-

symmetric buckling requires geometric imperfection in the FE model which is obtained via an eigenvalue buckling

analysis. Geometrical and material non-linearities are both considered. Through the consideration of plasticity and

adoption of non-uniform temperature distributions, this paper builds upon the work completed by the authors in [28].

Hence, a more realistic and pragmatic understanding of the effect of fire loading on the pre-buckling behaviour and

in-plane stability of shallow concrete arches is obtained. The findings herein may be adopted in the fire design of

shallow concrete arches.
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2. Material properties and constitutive models

2.1. Compression Models

Three concrete material models are considered in this study: the Eurocode 2 (EC2) [45], the ASCE [46] model for

normal-strength concrete (NSC) and the Kodur [47] model for high-strength concrete (HSC). The EC2 stress-strain

relationship of concrete at a given elevated temperature T for the ascending portion is defined as

σ

f ′c,T
=

3εch

εEC2[2 + (εch/εEC2)3]
, (1)

where σ is the stress, f ′c,T = f ′c,T (T ) is the temperature reduced compressive strength, εch is the mechanical strain and

εEC2 = εEC2 (T ) is the peak stress strain (PSS). Eq.(1) is applicable to both NSC and HSC. Transient thermal strain is

considered in this model, however due to the implicit nature of its incorporation [48] it is recoverable and independent

on the order of heating and loading. These limitations are considered acceptable for the present analysis as all arches

will be pre-loaded before being subjected to increases in temperature, and the temperature-time curves modelled do

not feature cooling branches. The ASCE concrete model for NSC is defined as

σ = f ′c,T

1 −
(
εch − εmax

εmax

)2 , (2)

where εmax = εmax (T ) is the temperature dependent PSS. The relationship between compressive strength and temper-

ature for the ASCE model is

f ′c,T =



f ′c for 22◦C ≤ T ≤ 450◦C,

f ′c [2.011 − 2.353(T − 20) × 10−3] for 450◦C ≤ T ≤ 874◦C,

0 for 874◦C < T.

(3)

The Kodur concrete model for HSC is defined as

σ = f ′c,T

1 −
(
εmax − εch

εmax

)H , (4)

where H = 2.28 − 0.012 f ′c , and

f ′c,T =



f ′c [1.0 − 0.003125 (T − 20)] for T < 100◦C,

0.75 f ′c for 100◦C ≤ T ≤ 400◦C,

f ′c [1.33 − 0.00145 T ] for 400◦C < T.

(5)

2.2. Tensile Strength

Although arches are typically subjected to compression, regions of tensile stress may develop in the case of thermal

loading due to great increases in bending moment. In order to account for this possibility, the EC2 relation between

tensile strength and temperature is adopted, defined as:

fck,t (T ) =


fck,t for 20◦C ≤ T ≤ 100◦C,

fck,t[1.0 − (T − 100)/500] for 100◦C ≤ T ≤ 600◦C,
(6)

where fck,t is the cold tensile strength of concrete, available in the EC2.
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3. Finite Element Model

This section details the FE model developed in ANSYS. Two separate analyses are conducted for each loading

and geometrical configuration; one with anti-symmetric geometric imperfection, referred to as the anti-symmetric

analysis, and the other without, now defined as the symmetric analysis. The formation of a new geometry with an

anti-symmetric geometric imperfection can be conducted using the UPGEOM command following an eigenvalue

buckling analysis. Geometric imperfections are required to trigger anti-symmetric bifurcation buckling upon reaching

a critical temperature distribution. An imperfection size of arch length S/1000 is adopted. The symmetric analysis is

conducted to obtain symmetric failure times. This is the first component of the anti-symmetric analysis. Subsequently,

the transient thermal analysis is conducted, followed by the non-linear stress analysis.

3.1. Material Properties

The thermal and mechanical properties will be taken from the EC2 for siliceous concrete, which include thermal

strain, thermal conductivity, density and specific heat. All parameters were tabulated in ANSYS for an ambient

temperature of 22◦C and for temperatures ranging from 100◦C to 1100◦C in increments of 100◦C. ANSYS employs

linear interpolation for material parameters at intermediate temperatures.

The available Drucker-Prager plasticity (DP) model was employed to incorporate the stress-strain characteristics

of concrete. A yield stress of 0.4 f ′c,T was selected with the elastic modulus calculated as the tangent at the yield stress.

The DP model features two yield surfaces, one for compressive stress and one for tensile or tensile-compressive

loading. Behaviour in tension is modelled as an elastic-perfectly plastic material with the yield stress defined by

Eq.(6). A constant value of 0.18 is adopted for Poisson’s ratio.

3.2. Geometrical configuration

Due to symmetry, only half the arch length is required in the symmetric analysis. To ensure continuity at the mid-

span, the cross-section of the arch is restrained from axial displacements. The break of symmetry associated with anti-

symmetric buckling disables the ability to analyse only half the arch, and thus the full length must be examined. Both

models are depicted in Figure 1. All arches featured rectangular cross-sections and fixed-fixed supporting conditions.

An element thickness of 50mm was decided to provide the best compromise between accuracy and computation time.
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Figure 1: Discretisation of arch for anti-symmetric analysis (left) and symmetric analysis (right) with corresponding buckled shapes

3.3. Transient Thermal Analysis

Solid70 elements were employed to mesh the structure and conduct the transient thermal analysis. These elements

were selected due to their equivalence with Solid186 elements, which are utilised in the following non-linear structural

analysis. Solid70 elements feature 8 nodes per element, with each node possessing a single degree of freedom;

temperature. The thermal loading is assumed to act on the underside of the arch and be uniform through the arch

length and cross-section width. The underside is subjected to radiation, with the surface emissivity of concrete taken

as 0.7, and convection, with the convection coefficient taken as 25 W/m2 K and 50 W/m2 K for standard ISO-834 and

hydrocarbon (HC) fires respectively. The time-temperature curves for hydrocarbon and standard ISO-834 fires are

Tg = 20 + 1080
(
1 − 0.325e−0.167t − 0.675e−2.5t

)
, (7)

and

Tg = 20 + 345 log(8t + 1), (8)

respectively, see Figure 2. An analysis period of 3 hrs is adopted, with the minimum and maximum time steps defined

as 1s and 50s respectively. The initial time step was also taken as 1s. The surface temperature for a 200 mm deep

cross-section is shown in Figure 2 with the temperature distribution at various time intervals depicted in Figure 3.

3.4. Temperature-stress Analysis

The final component of the analysis consists of the non-linear temperature-stress analysis. The arches are subjected

to the mechanical loads and temperature history in two load steps, ensuring the arch is mechanically pre-loaded prior

to heating. A non-linear static analysis is conducted at varying time intervals throughout the fire loading, with the

initial, minimum and maximum time steps being identical to the transient thermal analysis. Geometric non-linearity

is incorporated by activating the large deflection option and the existence of geometric imperfections allow anti-

symmetric bifurcation buckling to occur upon reaching a critical state in time.

The structures were meshed using Solid186 elements which are a higher-order 3D element defined by 20 nodes

with each node free to translate in three nodal directions; x, y and z. The element is capable of plastic, hyperelastic

and creep straining. Additionally, the element supports stress stiffening, large deflections and strains.
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Figure 2: Gas and surface temperatures of a concrete section with a 200 mm depth for Hydrocarbon (HC) and standard ISO-834 fires

Figure 3: Temperature distribution through a 200 mm deep section exposed to ISO-834 fire
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4. Inelastic pre-buckling and buckling analysis

In order to validate the FE model, a novel non-discretisation mechanical based method is derived for the non-linear

inelastic analysis of a shallow CFST arch subjected to a uniformly distributed radial load and uniform temperature

field. Due to the lack of experimental data, mechanically based analytical and numerical models have become the

preferred methodology of analysis of arches at elevated temperatures. The present analysis generalises existing studies

on the response of shallow circular arches under uniform temperature field and uniformly distributed loading [22, 28]

by adopting an inelastic concrete material model. The analysis is based on the following assumptions:

• The arch is assumed to behave according to the Euler-Bernoulli hypothesis, i.e plane sections before deforma-

tion remain plane after deformation.

• The temperature field is uniform through the cross-section and through the arch length.

• Thermal expansions of the cross-section are small and thus negligible.

• Sufficient lateral restraints exist so as to prevent flexural-torsional buckling failure of the arch.

4.1. Pre-buckling Analysis

Consider a shallow circular concrete arch, pinned or fixed at its ends, subjected to a uniformly distributed radial

load q and a non-uniform temperature field T , see Figure 4. The origin O is taken at the arch centroidal axis, with the

axis oy always directed towards the centre of the arch as its direction changes along the circumference and the axis

os coinciding with the arches centroidal axis. In order to consider geometric non-linearity, the following non-linear

formulation of longitudinal normal strain is adopted [15, 16];

ε = εm + εb = εch + εth, (9)

where εm and εb are the membrane and bending strains respectively, defined as

εm = w′ − v +
1
2

(v′)2, εb = −y
v′′

R
, (10)

ε is the total strain at an arbitrary point P in the arch cross section, and εth is the thermal strain. In Eq. (10) w = ŵ/R,

v = v̂/R, ŵ and v̂ are the axial and radial displacements respectively, y is the coordinate of the point P, R is the arch

radius, ( )′ = d( )/dθ, ( )′′ = d2( )/dθ2 and θ is the angular coordinate. The total axial force N is defined as

N = −
∫

A
σ dA, (11)

with the bending moment M given by

M =

∫

A
σ y dA, (12)
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where A is the cross-sectional area. Combining Eqs. (9)-(12) with constitutive Eq.(2) yields the equations for axial

force N

N =
f ′c
ε2

max

(
(v′′)2 I

R2 + ε2
th A + 2A εth εmax + A ε2

m

)
− εm

[
2 A f ′c
εmax

(
1 +

εth

εmax

)]
, (13)

and bending moment

M = −2 Ic f ′c v′′

R ε2
max

(εmax − εm + εth). (14)

Figure 4: Arch loading and geometrical configuration

The non-linear in-plane equilibrium equations for a shallow arch are derived using the principle of virtual work

[1], which requires that ∫

V
σδε dV −

∫ Θ

−Θ

qR2δv dθ = 0, ∀ δv, δv′, δv′′, δw, δw′ (15)

where V is the volume of the arch, Θ is half the included angle and δv, δv′, δv′′, δw and δw′ are kinematically admis-

sible variations of displacements. Substituting Eqs. (10), (11) and (12) into (15), and integrating by parts yields the

non-linear equations of equilibrium,

N′ = 0, (16)

in the axial direction, and

−M′′ − qR2 + NR (1 + v′′) = 0, (17)

in the radial direction.

Hence, a system of ordinary differential equations defined by equilibrium Eqs. (16) and (17) and constitutive Eqs.

(13) and (14) is obtained. A set of dependent variables are introduced:

x1 = v, x2 = v′, x3 = M, x4 = M′, x5 = N, x6 = w, (18)

and upon differentiation yield,

x′1 = x2, (19)

9



x′2 =
−x3 ε

2
max

2 Ic f ′c (εmax − εm + εth)
, (20)

x′3 = x4, (21)

x′4 = −qR2 + x5 (1 + x′2), (22)

x′5 = 0, (23)

x′6 = εmax + εth + x1 − 0.5 x2
2 −

√
ε2

max

(
1 +

x5

f ′c A

)
+

Ic (v′′)2

A R2 . (24)

Note that when solving quadratic Eq. (13) for the membrane strain x6, the lower solution was adopted which otherwise

would lead to a membrane strain εm exceeding the maximum strain εmax. Eqs.(19)-(24) form a system of first-order

ordinary differential equations which can be numerically solved with prescribed boundary conditions. For a pin-ended

arch, the boundary conditions are given as

x1 (Θ) = x1 (−Θ) = x3 (Θ) = x3 (−Θ) = x6 (Θ) = x6 (−Θ) = 0, (25)

and for a fixed arch are known as

x1 (Θ) = x1 (−Θ) = x2 (Θ) = x2 (−Θ) = x6 (Θ) = x6 (−Θ) = 0. (26)

As the boundary conditions are known at the arch ends, a boundary-value-problem (BVP) is formed. The software

package MATLAB [49] is adopted to obtain numerical solutions to system (19)-(24) using the in-built BVP solver

bvp4c. No convergence issues were experienced, and the model was found to be insensitive to initial guess values.

4.2. In-plane Buckling Analysis

The tangent modulus theory [12, 50] will be adopted to approximate the in-plane buckling loads of inelastic

concrete arches. This theory states that the inelastic buckling load can be approximated by substituting the tangent

modulus in place of the elastic modulus in the elastic buckling load solution. The tangent modulus corresponds to the

average stress level, in this case obtained from solving system (19)-(24) for a given load and temperature.

The elastic anti-symmetric buckling load qcr for a concrete arch under uniformly distributed radial loading and a

uniform temperature field can be obtained by solving the following equation [28]:

D1

(
qcrR − Np

Np

)2

+ D2

(
qcrR − Np

Np

)
+ D3 = 0 (27)

where

D1 = 15 + 2π2, D2 = 12 + 4π2, D3 =
12π4

λ2 −
3εthS 2π2

λ2r2 , (28)

for pinned arches, and

D1 = 5, D2 = 4, D3 =
12(1.4303π)2

λ2 − 3εthS 2

λ2r2 , (29)
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for fixed arches. The critical axial force Np is given as

Np =
π2EI

(S/2)2 for pinned arches

Np =
(1.4303π)2EI

(S/2)2 . for fixed arches
(30)

with E denoting elastic modulus, rx is the radius of gyration of the cross-section about the major axis and λ is the arch

slenderness defined as

λ =
R Θ2

rx
(31)

As the anti-symmetric buckling load is dependent on the initial load, instability only occurs when they coincide.

4.3. Comparison with Finite Element Model

The developed FE model (symmetric) is now compared to the numerical method derived in the previous section.

In the FE model, Eq. (2) was adopted for the concrete stress-strain, for consistency with system (19)-(24), and no

lateral restraints were imposed. The radial deflections v̂ and axial force at the end fixed supports N determined by

both models are depicted in Figure 5 at various temperature levels. It can be seen that an excellent agreement exists

between the two models.

Figure 5: Comparison between system (19)-(24) and FE model for radial deflections (left) and axial force (right) at various temperature levels.

2Θ = 73.74◦, R = 5 m, B = 300 mm, D = 200 mm, q = 200 kN/m and f ′c (T = 22◦C) = 32 MPa

Comparisons between the anti-symmetric buckling loads as predicted by the anti-symmetric FE model and the

tangent modulus theory are depicted in Figure 6. As with the pre-buckling analysis, the results produced by both

methods are very similar and within a 10% variation.
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Figure 6: Comparison between tangent modulus theory and FE model for anti-symmetric buckling loads in Arch 3 at various temperature levels.

f ′c (T = 22◦C) = 32 MPa

5. Parametric Study

Seventeen geometrical configurations were subjected to various loading parameters and analysed in accordance

with the aforementioned routine. Table 1 lists the geometry of each arch tested, including the arch height H, width

W, radius R, arch length S , cross-section width B, cross-section depth D, subtended angle of the arch measured at the

circular centre 2Θ and slenderness λ. All geometrical parameters are measured to the centre of the arch, see Figure 4.

The uniformly distributed radial pressure q, concrete compressive strength, ratio of maximum stress prior to heating

σmax to compressive strength, anti-symmetric failure time tA, symmetric failure time tS and failure mode (FM) for

each arch tested are displayed in Table 2 for ISO fires, and Table 3 for HC fires. B denotes buckling failure.

5.1. General Behaviour

The behaviour of a pre-loaded concrete arch subjected to thermal loading is dependant on the initial state of

stress. When the mechanical load is low, upward displacements are observed throughout the heating period as the

thermal expansive strain is greater than the mechanical and thermo-mechanical strains and thus governs behaviour.

Conversely, at higher mechanical loads, concrete arches may begin to displace downwards throughout the heating

period, or after an initial upward displacement, as the mechanical and transient thermal strains exceed the thermal

strain due to a state of high compressive stress. The rate of change of deflection increases throughout the heating

period for both upward and downward motion and rapidly increases as the arch approaches limit instability failure,

see Figure 7. Opposite deflections may occur at the arch ends. This behaviour is qualitatively consistent with that

as predicted by the analytical results for the simplified case of an elastic concrete arch under uniform temperature

loading [28].
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Table 1: Arch geometries

Arch I.D H (m) W (m) R (m) S (m) 2Θ (◦) λ B D (mm)

1 1.0 5 3.625 5.517 87.206 36.362 300 200

2 1.0 6 5.000 6.435 73.740 40.985 300 175

3 1.0 6 5.000 6.435 73.740 35.862 300 200

4 1.0 6 5.000 6.435 73.740 31.877 300 225

5 1.0 6 5.000 6.435 73.740 28.689 300 250

6 1.0 6 5.000 6.435 73.740 35.862 200 200

7 1.0 6 5.000 6.435 73.740 35.862 250 200

8 1.0 7 6.625 7.735 63.782 40.628 300 175

9 1.0 7 6.625 7.735 63.782 35.549 300 200

10 1.0 7 6.625 7.735 63.782 35.549 200 200

11 1.0 7 6.625 7.735 63.782 35.549 250 200

12 1.0 10 13.000 11.035 45.237 35.095 300 200

13 1.0 10 13.000 11.035 45.237 28.076 300 250

14 1.0 10 13.000 11.035 45.237 23.396 300 300

15 0.8 8 10.400 8.212 45.237 28.076 300 200

16 0.8 8 10.400 8.212 45.237 22.461 300 250

17 0.5 8 16.250 8.083 28.500 17.410 300 200

Compressive stresses increase and redistribute in concrete arches when subjected to fire loading. For upward-

displacing arches, the axial compressive force increases due to the end restrained thermal expansion. This also holds

for arches that deflect downwards, though it is caused by contraction. Additionally, bending moments are generated

by the non-uniform temperature distribution through the cross-section. Prior to heating, the uniformly distributed

radial load produces the greatest longitudinal normal stress in the extreme concave fibre at the arch ends due to the

negative bending moment reactions at the fixed supports. As the underside of the arch is subjected to the thermal

load directly, it heats rapidly. Consequently, the stresses degrade at the arch underside due to a decreasing ultimate

strength, hence plastic straining increases drastically. Due to the significant decrease in concrete strength at the arch

underside in addition to the increasing strains, stresses rapidly increase in the middle of the arch cross-section. These

stresses will continue to grow through the cross-section until material failure or instability. Furthermore, the bending

moment reactions at the fixed supports increase greatly during fire exposure and as a result typically transition from

negative to positive bending. The central bending moment increases during heating, following an initial reduction in

magnitude. The evolution of the central and end bending moments are depicted in Figure 8. Smaller variations to axial

force are observed, which generally increase throughout fire loading and do so exponentially near the limit instability
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point, see Figure 9.

Figure 7: Central deflections in Arch 17 subjected to ISO-834 fire. f ′c (T = 22◦C) = 40 MPa

Figure 8: Bending moment in Arch 17 subjected to ISO-834 fire (symmetric analysis). q = 200 kPa and f ′c (T = 22◦C) = 40 MPa
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Figure 9: Central axial force in Arch 12 subjected to ISO-834 fire (symmetric analysis). q = 200 kPa and f ′c (T = 22◦C) = 40 MPa

5.2. Buckling

Upon reaching a critical temperature distribution during the fire loading, shallow concrete arches may transition

from a pre-buckled equilibrium configuration to an adjacent buckled configuration. If the anti-symmetric failure time

occurred noticeably earlier than the symmetric one, the arch failed by anti-symmetric buckling. This was found to be

the dominant failure mode as all tested configurations displayed this behaviour. The failure mode for the symmetric

analysis was determined by examining the state of stress at the critical time. The normal stress at the critical time

for an arch failing by symmetric instability is depicted in Figure 10. It can be seen the normal stress does not exceed

the compressive strength. A small tensile stress zone occurs in the extreme convex fibres in the region of maximum

(upward) displacement. Although symmetric snap-through buckling was observed in the symmetric analyses, it never

preceded anti-symmetric buckling. Symmetric buckling is only possible in very shallow arches, and due to possible

states of complete tensile stress caused by large bending moments, material failure in tension is likely.
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Table 2: Failure times and modes for standard ISO-834 fires

I.D Fire f ′c (MPa) q (kPa) σmax/ f ′c tA (mins) FM tS (mins) FM
1 ISO 32 900 0.64 - -
1 ISO 32 1000 0.70 161.72 B -
1 ISO 32 1100 0.74 130.29 B -
1 ISO 40 1000 0.60 - -
1 ISO 40 1100 0.66 - -
1 ISO 40 1200 0.73 - -
2 ISO 32 750 0.34 33.6 B 74.09 B
3 ISO 32 500 0.53 - -
3 ISO 32 600 0.60 167.4 B -
3 ISO 32 750 0.71 101.09 B -
4 ISO 32 750 0.72 - -
6 ISO 32 750 0.75 110.97 B -
7 ISO 32 900 0.84 57.43 B -
8 ISO 32 500 0.69 40.71 B 96.08 B
9 ISO 32 400 0.55 156.92 B -
9 ISO 32 500 0.65 106.92 B -
9 ISO 32 750 0.87 16.94 B 31.94
9 ISO 40 400 0.46 - -
9 ISO 40 500 0.56 157.31 B -

10 ISO 32 500 0.65 130.31 B -
10 ISO 32 750 0.87 17.77 B 31.94 B
11 ISO 32 500 0.65 106.92 B -
11 ISO 32 600 0.74 56.57 B 121.92 B
12 ISO 32 150 0.41 107.76 B -
12 ISO 32 200 0.52 74.42 B 151.09 B
12 ISO 32 250 0.61 40.26 B 101.92 B
12 ISO 40 150 0.36 115.43 B -
12 ISO 40 200 0.45 96.75 B -
12 ISO 40 250 0.54 73.59 B 151.09 B
12 ISO 50 250 0.43 96.73 B -
12 ISO 50 450 0.69 22.76 B 63.59 B
12 ISO 80 450 0.48 59.42 B 133.59 B
13 ISO 32 250 0.58 - -
13 ISO 32 300 0.66 132.76 B -
14 ISO 32 250 0.50 - -
15 ISO 32 150 0.48 - -
15 ISO 32 200 0.48 159.06 B -
15 ISO 32 250 0.56 132.40 B -
15 ISO 40 250 0.48 158.34 B -
15 ISO 40 300 0.56 137.40 B -
16 ISO 32 200 0.48 - -
17 ISO 32 100 0.31 47.16 B 161.09 B
17 ISO 40 100 0.31 30.85 B -
17 ISO 40 150 0.31 49.25 B 133.59 B
17 ISO 40 200 0.31 25.74 B 80.74 B
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Table 3: Failure times and modes for HC fires

I.D Fire f ′c (MPa) q (kPa) σmax/ f ′c tA (mins) FM tS (mins) FM

1 HC 40 1000 0.60 - -

1 HC 40 1100 0.66 - -

1 HC 40 1200 0.73 - -

3 HC 32 500 0.53 - -

3 HC 32 600 0.60 141.28 B -

3 HC 32 750 0.71 86.02 B -

3 HC 40 600 0.51 - -

3 HC 40 750 0.61 142.62 B -

3 HC 40 900 0.69 85.12 B -

3 HC 50 750 0.51 - -

3 HC 50 900 0.59 158.44 B -

3 HC 50 1000 0.64 124.29 B -

3 HC 80 1000 0.44 - -

3 HC 80 1500 0.64 94.86 B -

3 HC 80 1700 0.71 64.03 B -

4 HC 40 900 0.66 - -

5 HC 40 900 0.58 - -

9 HC 40 400 0.46 178.90 B -

9 HC 40 500 0.56 132.77 B -

9 HC 50 500 0.46 177.97 B -

9 HC 50 600 0.53 139.37 B -

15 HC 40 300 0.48 60.63 B -

5.2.1. Load level

Generally, an increase in mechanical load level leads to a lower fire resistance time. This was observed in majority

of the cases analysed. However, the expected inverse relationship between load and buckling time does not always

hold true. The critical anti-symmetric fire resistance times for Arch 17 when subjected to ISO fire at q = 100 kPa

is less than the resistance observed at the load level of q = 150 kPa. This surprising result can be attributed to the

opposing directions of deflection, see Figure 7. At lower loads, the arches displace upwards which triggers an earlier

anti-symmetric buckling failure. As the load increases, greater mechanical strains manifest which impose a greater

resistance on the thermal strain reducing the deflection. However, above a certain load level, the mechanical strains

dominate behaviour and further increase in load reduces the fire resistance time.
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5.2.2. Included angle

The arch included angle proved to be one of the primary factors behind the fire resistance time. Fire resistance

time significantly increases with included angle. This is clearly seen when comparing the failure times for Arches 1,

3, 11, 12 and 17, all which feature the same cross-section dimensions, when loaded to approximately the same ratio

of maximum stress to compressive strength.

5.2.3. Compressive strength

To assess the influence of concrete compressive strength, simulations were conducted at strengths of 32, 40, 50 and

80 MPa. Numerical tests were also performed when the arches of different strengths were loaded at approximately the

same ratio of maximum stress to compressive strength. The results show that when under the same mechanical load,

a higher compressive strength typically increases the buckling resistance. A significant increase in fire resistance time

is achieved in arches with higher included angles, see results for Arches 1,3, and 9. Though in Arch 17, an increase

in compressive strength decreased the fire resistance time. This surprising result can be elucidated with the same

discussion as the influence of mechanical load level. Furthermore, when loaded to the same ratio of maximum stress

to compressive strength, the higher strength concrete fails by buckling much more rapidly than when compared to

lower strength concrete.

5.2.4. Cross-sectional area

Increasing the cross-section depth proved to be the most effective method of increasing fire resistance time. As

only the arch underside was heated, the cross-section depth plays a thermal, as well as a mechanical role. Great gains

in fire resistance time can therefore be achieved by increasing the cross-section depth by small amounts. Increasing

the cross-section width also positively impacted fire resistance time when under the same load, albeit to a lesser extent

then the cross-section depth.

5.2.5. Fire load

As to be expected, the adopted time-temperature curve significantly influences the critical failure time. HC fires

induce anti-symmetric failure earlier than ISO fires. In addition to the higher rates of heating, these results can be

attributed to the larger curvatures produced by greater temperature differentials in the arch cross-section.

6. Sensitivity analysis

6.1. Material Models

The difference in fire resistance times when adopting the EC2 and ASCE or Kodur concrete models are compared

in Table 4. The failure mode was the same across all models tested. For NSC, the ASCE model gives higher buckling

failure times. This is due to the slower reduction in compressive strength with rise in temperature. Upon comparison

of the fire resistance times for HSC, it can be seen that the EC2 and Kodur models lead to very similar fire resistance

times. This is due to stability governing failure in high-strength slender structures.
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Figure 10: State of stress at critical times in Arch 17 displaying limit instability. q = 100 kPa, f ′c (T = 22◦C) = 32 MPa

6.2. Mesh Size

The influence of smaller mesh sizing on model performance has been analysed with the results shown in Table 5.

Both the anti-symmetric and symmetric analyses were conducted for two arch geometries at various mesh sizes. It

can be seen that adopting a smaller sized mesh has negligible effect on fire resistance.

7. Conclusion

The effects of fire loading on the behaviour and in-plane stability boundaries of shallow concrete arches were

numerically investigated using FE analysis. The FE model was validated by comparison to a non-discretisation based

numerical model derived herein for the non-linear inelastic analysis of shallow concrete arches under uniform thermal

loading and the tangent-modulus buckling theory. Two simulations were conducted for each arch geometrical and

loading configuration; one incorporating anti-symmetric geometric imperfection, obtained via an eigenvalue buckling

analysis, and the second without initial deformation. The former allowing the transition from a pre-buckled equi-

librium configuration to an adjacent anti-symmetric buckled equilibrium state upon reaching a critical time during

thermal loading, with the results from the latter used to analyse general behaviour and to obtain symmetric buck-

ling times. It has been observed that the direction of displacement is dependent on the level of mechanical loading;

concrete arches with low levels of preheating stress deflect upwards, and concrete arches subjected to high loading

displace downwards. The rate of change of deflection increases with time. Furthermore, the results show that fire

loading may induce anti-symmetric buckling in shallow concrete arches, and that anti-symmetric buckling always

preceded symmetric instability. Parametric investigations were conducted to assess the effects arch slenderness and

included angle, fire type, mechanical loads and concrete compressive strength on failure times and mode. Fire resis-

tance times noticeably increased with arch included angle and to a lesser extent with compressive strength. The impact

of compressive strength was greater in arches with higher included angles. Increasing the mechanical load level did
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not always reduce fire resistance times, as in some cases upward displacements induced earlier anti-symmetric buck-

ling. Additionally, the difference in general behaviour and fire resistance time when adopting the EC2 and ASCE or

Kodur concrete models was analysed, where it was observed that the ASCE model leads to higher fire resistance times

when compared to the EC2 model for NSC, and that the HSC models give similar failure times.

Table 4: Effect of material models on anti-symmetric failure times

Arch I.D Material model Fire f ′c (Mpa) q kPa tA (mins)

3 EC2 ISO 32 600 167.40

3 EC2 ISO 32 750 101.09

3 ASCE ISO 32 600 -

3 ASCE ISO 32 750 123.64

3 EC2 HC 80 1000 -

3 EC2 HC 80 1500 94.86

3 EC2 HC 80 1700 64.03

3 Kodur HC 80 1000 -

3 Kodur HC 80 1500 98.80

3 Kodur HC 80 1700 61.27

12 EC2 ISO 32 200 74.42

12 EC2 ISO 32 250 40.26

12 ASCE ISO 32 200 91.09

12 ASCE ISO 32 250 56.09

12 EC2 ISO 80 450 59.42

12 Kodur ISO 80 450 48.76

Table 5: Effect of mesh size on fire resistance times

I.D Fire f ′c (MPa) q (kPa) Mesh Size (mm) tA (mins) FM tS (mins) FM

2 ISO 32 750 30 37.76 B 80.26 B

2 ISO 32 750 40 35.26 B 76.92 B

2 ISO 32 750 50 33.6 B 74.09 B

12 ISO 80 450 30 60.26 B 133.59 B

12 ISO 80 450 40 55.05 B 129.42 B

12 ISO 80 450 50 59.42 B 127.76 B
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[40] S. Bratina, B. Čas, M. Saje, I. Planinc, Numerical modelling of behaviour of reinforced concrete columns in fire and comparison with

eurocode 2, International Journal of Solids and Structures 42 (21) (2005) 5715–5733.

[41] ANSYS Workbench, Release 17.2, Ansys Inc, Canonsburg, PA, 2016.

[42] W. Gao, J.-G. Dai, J. Teng, G. Chen, Finite element modeling of reinforced concrete beams exposed to fire, Engineering structures 52 (2013)

488–501.

[43] P. Bamonte, F. L. Monte, Reinforced concrete columns exposed to standard fire: Comparison among different constitutive models for concrete

at high temperature, Fire Safety Journal 71 (2015) 310–323.

[44] S. Albrifkani, Y. C. Wang, Explicit modelling of large deflection behaviour of restrained reinforced concrete beams in fire, Engineering

Structures 121 (2016) 97–119.

[45] EN 1992 1-2, Eurocode 2: Design of concrete structures, Part 1-2, Structural fire design, European Committee for Standardization, 2004.

[46] Lie, T.T, Structural fire protection, American Society of Civil Engineers (ASCE), 1992.

[47] V. Kodur, T. Wang, F. Cheng, Predicting the fire resistance behaviour of high strength concrete columns, Cement and Concrete Composites

26 (2) (2004) 141–153.

[48] T. Gernay, J.-M. Franssen, A comparison between explicit and implicit modelling of transient creep strain in concrete uniaxial constitutive

relationships, in: Proceedings of the fire and materials 2011 conference, Interscience Communications Ltd, 2011, pp. 405–416.

[49] MATLAB Users Guide, Version 7, The MathWorks Inc.
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Chapter 5. Inelastic buckling of shallow concrete arches under fire loading

5.4 Concluding Remarks

This chapter presented a numerical study into the inelastic in-plane failure modes of

shallow concrete arches subjected to combined mechanical and fire loading. The results

detailed herein outline the governing failure mode of shallow concrete arches under fire

loading and highlight the key parameters governing fire resistance time. These findings

can be used to improve the design of concrete arches that may be exposed to fire

loading. Furthermore, a novel non-discretisation mechanical-based numerical method

for the non-linear inelastic analysis of shallow concrete arches at elevated temperatures

was derived. In summary, the following conclusions are drawn from this chapter;

1. Fire loading may trigger anti-symmetric bifurcation buckling in shallow concrete

arches which is also the governing in-plane failure mode;

2. The mechanical load level influenced the direction of displacement. Low loads

resulted in upward displacement throughout the heating period with higher loads

causing downward deflections during fire exposure;

3. Increasing the mechanical load level did not always decrease fire resistance time

as some upward displacing arches displayed anti-symmetric buckling earlier than

when mechanically loaded to a higher level;

4. Increasing compressive strength at the same mechanical load level improved fire

resistance time with this gain increasing with included angle. However, when

loaded to the same ratio of maximum longitudinal stress to compressive strength,

fire resistance times decreases at higher strengths; and

5. The arch included angle and cross-sections depth proved to significantly influence

fire resistance time.
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Chapter 6

Thermal in-plane stability of concrete-filled steel

tubular arches

6.1 Introduction

In this chapter, the in-plane elastic and inelastic prebuckling and buckling behaviour

of circular CFST arches under uniformly distributed radial loading and elevated tem-

perature fields are analytically and numerically investigated. Closed-form solutions are

derived using energy methods for the thermo-elastic prebuckling behaviour and in-plane

anti-symmetric bifurcation buckling loads of shallow CFST arches with pinned or fixed

ends. Additionally, a numerical technique if formulated in the form of a BVP which
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can be employed to solve the elastic or inelastic prebuckling response of shallow and

deep CFST arches under mechanical and thermal loading, which is applicable to fixed,

pinned and crown-pinned boundary conditions. The inelastic in-plane buckling strength

of CFST arches under uniform temperature fields and fire loading is then investigated

through the development of a three-dimensional FE model. Verification of the FE model

is achieved by comparison to analytical and numerical models derived for the elastic

and inelastic analyses. Parametric studies and sensitivity analyses presented depict the

influence of numerous parameters on critical buckling loads and fire resistance times.

The following papers are included in this chapter;

1. Y. Bouras, E. Torres-Don and Z. Vrcelj. 2017. Thermal in-plane buckling of

concrete-filled steel tubular arches. In Tubular Structures XVI: Proceedings of the

16th International Symposium for Tubular Structures (ISTS 2017, 4-6 December

2017, Melbourne, Australia) (p. 101). CRC Press.

2. Y. Bouras, and Z. Vrcelj. 2019. Thermal in-plane stability of concrete-filled steel

tubular arches. International Journal of Mechanical Sciences, 163, p.105130.
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a b s t r a c t 

This paper analytically and numerically investigates the pre-buckling response and in-plane stability boundaries 

of circular concrete-filled steel tubular (CFST) arches subjected to combined thermal and mechanical loading. The 

governing non-linear equations of equilibrium are obtained using energy methods and both elastic and inelastic 

material behaviour is considered. A novel mechanically derived non-discretisation numerical method is proposed 

for the pre-buckling analysis. The stress-strain relation of the confining steel tube is described using a bi-linear 

plasticity model, and an inelastic material model is adopted for the concrete core which considers the effects of 

confinement and transient thermal strain. The result is a system of first-order differential equations which can 

be numerically solved with known boundary conditions including fixed ends, pinned ends or crowned-pinned 

cases. Closed-form solutions are presented for the elastic anti-symmetric bifurcation loads, whilst the inelastic 

anti-symmetric buckling strength was studied using finite element (FE) analysis. The FE model is verified by 

comparison to the derived analytical and numerical models which show a high level of agreement. Additionally, 

a sensitivity analysis is conducted which explores the influence of the constitutive material law for the concrete 

core and contact model for the steel-concrete interface on critical buckling loads. 

1. Introduction 

Concrete-filled steel tubular (CFST) arches are commonly con- 

structed in civil engineering projects. Their popularity can be attributed 

to the structural benefits associated with the mechanical function of 

arches, and of composite steel-concrete sections. However, as arches 

are typically loaded to a state of compressive stress, the problem of sta- 

bility must be carefully considered. Arches may buckle in their plane 

of loading in an anti-symmetric or symmetric fashion, and out of their 

plane of loading in a flexural-torsional buckling mode. Further complica- 

tions arise in the analysis and design of arches due to geometrical non- 

linearities which convolute the stability analysis and reduce buckling 

strength. Due to the inherent complex nature of arches, it is paramount 

that the behaviour of CFST arches under all possible mechanical and 

environmental environments be thoroughly investigated. 

Elevated temperatures are a frequently occurring example of envi- 

ronmental loading which threatens existing structures. Thermal effects 

on the elastic behaviour and in-plane stability boundaries of steel arches 

have been extensively studied. Analytical solutions have been presented 

in [1–3] for the case of uniform thermal loading and in [4–8] for arches 

under mechanical and thermal loading. Elevated temperature fields may 

induce in-plane buckling in steel arches and leads to an increase in crit- 

ical anti-symmetric and symmetric mechanical buckling loads. Pi and 

Bradford [9] derived closed-form solutions for the thermo-elastic in- 
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plane buckling loads of shallow circular arches subjected to thermal 

gradients, and Cai et al. [10] analytically investigated in-plane buck- 

ling of shallow parabolic arches subjected to uniformly distributed load- 

ing and to temperature gradients. It was shown that buckling loads 

reduce with an increasing temperature gradient. A non-discretisation 

mechanical-based model was proposed by Heidarpour et al. [11] for 

the non-linear thermo-elastic analysis of steel circular arches under uni- 

formly distributed loads and non-uniform temperature fields. The au- 

thors extended the numerical model in [12] to incorporate inelastic 

behaviour. However, the models proposed in [11,12] were not devel- 

oped for analysis of stability. In addition to in-plane buckling, elevated 

temperatures may trigger lateral buckling in arches. However, the phe- 

nomenon of thermal induced flexural-torsional buckling has received far 

less research attention when compared to in-plane buckling. The study 

by Heidarpour et al. [13] appears to be the only research on this sub- 

ject, wherein the numerical method developed in [11] was employed 

to model the non-linear pre-buckling behaviour and the thermo-elastic 

flexural-torsional buckling loads in circular steel arches with doubly 

symmetric I-shape cross-sections. In contrast to in-plane buckling, it 

was found that lateral stability boundaries were governed primary by 

the critical buckling temperature and not greatly influenced by the me- 

chanical load. 

The thermal response of Functionally Graded (FG) arches have 

also received research interest. A non-linear thermoelastic and in-plane 

buckling analysis was conducted for functionally graded material (FGM) 
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shallow arches subjected to a uniform temperature field by Asgari et al. 

[14] . The effect of linearly varying temperature profiles on the stability 

of shallow FGM arches was studied in the work of Asgari and Eslami 

[15] . In both these studies, energy methods were adopted to derive the 

non-linear equilibrium equations, and analytical solutions for the criti- 

cal buckling temperatures were derived using the adjacent equilibrium 

method. It was found that the critical buckling temperature varied non- 

monotonically with power-law index, and that material failure was the 

likely failure mode due to the high temperatures required to induce 

stability loss. Bateni and Eslami [16] analysed the in-plane stability 

of pin-ended shallow FGM arches subjected to a linear thermal gradi- 

ent and lateral applied uniformly distributed loads and central concen- 

trated loads. An increase of the bifurcation buckling load with thermal 

gradient was observed. Song and Li [17] investigated the stability of 

fixed-fixed FGM shallow arches under thermal loading and a uniformly 

distributed follower force. As with steel arches, anti-symmetric bifurca- 

tion buckling was found to precede symmetric snap-through buckling. 

A large deflection analysis of pin-ended FGM shallow arches on non- 

linear Pasternak elastic foundation subjected to thermal loading and 

uniformly distributed lateral pressure was conducted by Babaei et al. 

[18] . The non-linear equilibrium equations were derived using third- 

order shear deformation theory of von Krmn type of strain-displacement 

relation. Closed-form solutions for the maximum deflection dependant 

on the applied load or temperature level was obtained by employing 

a two-step perturbation technique. The case of fixed ends was solved 

by the authors in [19] . Li et al. [20] conducted a thermo-elastic anti- 

symmetric buckling analysis on FGM shallow arches when subjected to 

combined in-plane external pressures and uniform temperature fields. 

The derived closed-form expressions for the critical buckling pressure 

were numerically validated via two-dimensional finite element analy- 

sis. Elevated temperatures were found to cause upward displacements 

consequently increasing the buckling pressure, and simultaneously re- 

ducing the Elastic modulus, which decreases the critical load. This is 

identical to the thermo-elastic response of homogeneous arches such as 

steel or concrete. Optimised or inverted FGM arches are obtained by 

reversing the material distribution in conventional FGM arches. These 

inverted FGM arches show a significant increase in buckling pressure 

when compared to conventional FGM arches with the same volume 

portion of the material constituents [21] . The problem of stability of 

a rigidly-confined FGM shallow arch under external pressure was an- 

alytically and numerically investigated by Li et al. [22] . Confinement 

effects were found to be beneficial and led to a great increase in sta- 

bility boundaries of FGM arches, whilst increasing the volume frac- 

tion exponent reduced buckling strength. Yang et al. [23] investigated 

the non-linear in-plane buckling of fixed shallow functionally graded 

graphene reinforced composite arches subjected to mechanical and ther- 

mal loading. The arches consisted of multiple graphene platelet rein- 

forced composite (GPLRC) layers. The principle of virtual work was em- 

ployed to derive the equilibrium equations whilst describing the mate- 

rials properties using the Halpin-Tsai micromechanics model for GPLRC 

layer, and closed-form solutions were derived for the limit point and 

bifurcations buckling loads. It was shown that great increases in buck- 

ling resistance can be achieved by increasing graphene platelets filler 

content. 

CFST columns subjected to combined mechanical and thermal load- 

ing have been investigated analytically [24–26] , numerically [27–

30] and experimentally [31–33] . The fire response of CFST columns 

can be described as a four-stage sequence [27] . The first step involves 

the rapid rise in temperature in the steel tube when initially exposed 

to fire which causes it to expand and separate from the concrete core. 

Consequently, the axial load is primarily resisted by the steel tube as 

the concrete loses contact with the loading plate. The steel tube sup- 

ports the load until a critical temperature is reached causing the steel to 

yield locally and contract. Yielding of the steel tube is defined as the sec- 

ond stage. As the column shortens, the stress is progressively transferred 

to the concrete which becomes the primary supporting element in the 

column. The continual shortening of the column is known as the third 

stage. Eventually, the fourth and final step is reached which consists of 

the failure of the concrete core due to reduction of strength and stiffness 

casued by elevated temperatures. In addition to material failure, CFST 

columns may also experience loss of stability when subjected to heat- 

ing [24,27,28,30] . A major contributor to stiffness degradation in the 

concrete core is transient thermal strain (TTS); a strain thought to origi- 

nate in the cement paste due to thermo-mechanical interaction. Unique 

properties of TTS include its irreversibility, and its exclusive manifesta- 

tion in mechanically pre-loaded concrete upon first time heating. The 

reductions in buckling strength of CFST in fire are significantly greater 

when considering TTS [28] . 

The aforementioned studies on thermal effects in arches were re- 

stricted to steel and FG arches. Fewer works are available in the open lit- 

erature on concrete and composite steel-concrete arches. In addition to 

mechanical strain and thermal expansion, concrete experiences elevated 

creep and transient thermal strain (TTS) when subject to mechanical 

loading and temperature changes. Bouras and Vrcelj [34] performed an 

in-plane pre-buckling and buckling analysis of shallow concrete arches 

under mechanical loading and elevated temperatures whilst consider- 

ing TTS and basic creep. TTS was found to magnify the reduction in 

buckling loads of concrete arches at high temperatures. This work was 

however limited to elastic material behaviour and uniform temperature 

fields. Heidarpour et al. [35] developed an analytical model to analyse 

the non-linear thermo-elastic behaviour of a composite steel-concrete 

arch with partial interaction subjected to mechanical and non-uniform 

thermal loading. The time-dependant response of crown-pinned CFST 

arches exposed to a constant temperature reduction was analytically 

analysed by Luo et al. [36] in order to study the coupling effects between 

time and temperature. The temperature change was found to greatly in- 

crease the time-varying deformations and forces. The influence of non- 

constant temperatures on the creeping mechanics of a CFST arch was 

investigated by Wang et al. [37] using a finite element model. This was 

achieved through the incorporation of the micro-prestress solidification 

theory [38] , the age-adjusted effective modulus and an average temper- 

ature history into a finite element model. The Yajisha bridge in China 

was replicated in the program and results were verified from measure- 

ments taken of the bridge one year after construction. The results indi- 

cated that the increase in creep caused by temperature variations are not 

negligible. As the motivation behind the studies of Luo et al. [36] and 

Wang et al. [37] was the long-term response of CFST arches, the devel- 

oped models were designed for temperature loads not exceeding 100 ∘C. 

The response and failure modes of shallow fixed circular CFST arches 

subjected to mechanical and fire loading were numerically investigated 

by Bouras et al. [39] through the development of a finite element (FE) 

model in ANSYS. The simulations show that material failure is the dom- 

inant failure mode, with symmetric buckling governing failure in very 

shallow arches. It appears that this is the only study investigating the 

effects of extreme thermal loads (temperatures greater then 100 ∘C) on 

CFST arches. However, the scope of this study was restricted to shal- 

low arches with fixed ends and FE methods of analysis, with results 

presented as fire resistance times and not buckling loads. Consequently, 

more research, particularly analytical and numerical studies, on this sub- 

ject is necessitated. 

This study seeks to address the limited research on the effects of el- 

evated temperature on the response and buckling loads of CFST arches 

by undertaking a non-linear pre-buckling and in-plane buckling anal- 

ysis of circular CFST shallow and deep arches subjected to uniformly 

distributed radial loads and elevated temperature fields. Pinned, fixed 

and crown-pinned boundary conditions are considered. The delineating 

total included angle distinguishing between shallow and deep arches is 

defined herein as 2 𝜃 < 90 ∘, with very shallow arches categorised as total 

included angles of 2 𝜃 < 20 ∘. The analysis first considers the elastic case, 

which results in the derivation of a numerical model for pre-buckling 

response and analytical solutions for the anti-symmetric buckling loads. 

Subsequently, the numerical model is generalised to incorporate inelas- 
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tic material behaviour for both the steel tube and concrete core. These 

analyses are governed by the following assumptions: 

• The arch is assumed to behave according to the Euler-Bernoulli hy- 

pothesis, i.e plain sections before deformation remain plane after 

deformation 
• The temperature field is symmetrically distributed about both axes 

through the cross-section and is uniform trough the arch length 
• Thermal expansions of the cross-section are small and thus negligi- 

ble. 
• Sufficient lateral restraints exist so as to prevent flexural-torsional 

buckling failure of the arch 
• A perfect bond exists between the concrete core and confining steel 

tube. Hence the longitudinal strains are equal at the interface for 

both materials. 

Finally, the inelastic in-plane buckling loads are investigated through 

the development of a Finite Element (FE) model. Comparisons are made 

between the FE model and the derived analytical and numerical mod- 

els. The validity of assuming a perfect bond between the steel tube and 

concrete core is explored by conducting a sensitivity analysis using the 

developed FE model. 

2. Material models 

2.1. Steel 

The total strain in the outer steel tube of the CFST cross section is 

defined as; 

𝜖 = 𝜖𝑐ℎ + 𝜖𝑠,𝑡ℎ , (1) 

where 𝜖ch represents the mechanical strain and 𝜖s,th is the steel thermal 

strain. The bi-linear stress-strain formulation proposed by Lie [40] is 

adopted in this paper to model the temperature dependent deformation 

properties of steel, defined as 

𝜎𝑠 = 

{ 

𝐸 𝑠,𝑇 𝜖𝑐ℎ for 𝜖𝑐ℎ ≤ 𝜖𝑝 
( 𝑐 1 𝜖𝑐ℎ + 𝑐 2 ) 𝜎𝑦,𝑇 − 𝑐 3 𝜎

2 
𝑦,𝑇 

∕ 𝐸 𝑠,𝑇 for 𝜖𝑐ℎ > 𝜖𝑝 , 
(2) 

where the yield strain is 

𝜖𝑝 = 

𝑐 2 𝜎𝑦,𝑇 − 𝑐 3 𝜎
2 
𝑦,𝑇 

∕ 𝐸 𝑠,𝑇 

𝐸 𝑠,𝑇 − 𝑐 1 𝜎𝑦,𝑇 
, (3) 

and the coefficients 𝑐 1 = 12 . 5 , 𝑐 2 = 0 . 975 and 𝑐 3 = 12 . 5 . When 𝜖ch ≤ 𝜖p , 

the steel is in the linear elastic region, and if 𝜖ch > 𝜖p , inelastic behaviour 

occurs. The temperature dependent elastic modulus E s,T , yield strength 

𝜎y,T and thermal strain 𝜖s,th are obtained from the Eurocode 3 (EC3) 

[41] . 

2.2. Concrete 

Three models for the stress-strain relation of concrete are considered; 

one elastic and two inelastic. The linear elastic concrete material model 

defines the total strain as the sum of the elastic mechanical strain, the 

thermo-mechanical TTS and the thermal strain; 

𝜖 = 

𝜎𝑐 
𝐸 𝑐,𝑇 

+ 𝜖𝑡𝑟 + 𝜖𝑐,𝑡ℎ , (4) 

where the TTS is modelled using the explicit Eurocode 2 (EC2) formu- 

lation [42] : 

𝜖𝑡𝑟 = 

𝜎𝑐 
𝑓 ′𝑐 
𝜙 ( 𝑇 ) = 

2 𝜎𝑐 
3 𝑓 ′𝑐 

( 

𝜖𝑚𝑎𝑥 − 𝜖𝑚𝑖𝑛 
𝑓 ′
𝑐,𝑇 

∕ 𝑓 ′𝑐 

) 

, (5) 

in which E c,T is the temperature reduced elastic modulus, 𝜖c,th is the ther- 

mal strain in the concrete, 𝑓 ′𝑐 is the cold concrete compressive strength, 

𝑓 ′
𝑐,𝑇 

is the temperature reduced compressive strength, 𝜖max is the peak 

stress strain (PSS) accounting for TTS and 𝜖min denotes the minimum 

PSS obtained from steady state tests (thus not considering TTS). These 

parameters are obtained from the EC2 [43] (siliceous concrete). Com- 

bining Eqs. (4) and (5) yields 

𝜖 = 

𝜎𝑐 

𝐸̂ 𝑐,𝑇 

+ 𝜖𝑐,𝑡ℎ = 𝜎𝑐 

( 

1 
𝐸 𝑐,𝑇 

+ 

𝜙 ( 𝑇 ) 
𝑓 ′𝑐 

) 

+ 𝜖𝑐,𝑡ℎ . (6) 

The ASCE [25,40] concrete model is one of the inelastic models adopted 

defined as 

𝜎 = 𝑓 ′𝑐 

[ 

1 − 

( 

𝜖 − 𝜖𝑚𝑎𝑥 
𝜖𝑚𝑎𝑥 

) 2 
] 

, (7) 

where 𝜖max is the temperature dependent PSS. The relationship between 

compressive strength and temperature for the ASCE model is 

𝑓 ′𝑐,𝑇 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑓 ′𝑐 for 22 ◦C ≤ 𝑇 ≤ 450 ◦C , 

𝑓 ′𝑐 [2 . 011 − 2 . 353( 𝑇 − 20) × 10 −3 ] for 450 ◦C ≤ 𝑇 ≤ 874 ◦C , 

0 for 874 ◦C < 𝑇 . 

(8) 

The ASCE model for concrete in CFST sections at elevated temperatures 

considers the effects of confinement and implicitly considers transient 

thermal strain. The EC2 stress-strain relationship of concrete is also con- 

sidered and is defined as, 

𝜎

𝑓 ′
𝑐,𝑇 

= 

3 𝜖
𝜖𝑚𝑎𝑥 [2 + ( 𝜖∕ 𝜖𝑚𝑎𝑥 ) 3 ] 

, (9) 

Although arches are typically subjected to compression, regions of 

tensile stress may develop due to thermal loading. Hence, tempera- 

ture dependent tensile strength is considered with the EC2 formulation 

adopted: 

𝑓 𝑐𝑘,𝑡 ( 𝑇 ) = 

{ 

𝑓 𝑐𝑘,𝑡 for 20 ◦C ≤ 𝑇 ≤ 100 ◦C , 

𝑓 𝑐𝑘,𝑡 [1 . 0 − ( 𝑇 − 100)∕500] for 100 ◦C ≤ 𝑇 ≤ 600 ◦C , 

(10) 

where f ck,t is the cold tensile strength of concrete, available in the EC2. 

Modelling of concrete in tension is relevant to the FE model developed 

and discussed in Section 6 . 

3. Non-linear elastic analysis 

3.1. Non-linear equations of equilibrium 

The geometrical and loading configuration adopted herein consists 

of a circular CFST arch loaded with a uniformly distributed radial me- 

chanical load q and symmetrical thermal load T ( y ). The origin o is posi- 

tioned at the geometrical arch center. The axis oy alters direction along 

the arch circumference and always is directed to the arch center. The 

axis os aligns centroidal axis of the arch. Fig. 1 depicts the arch config- 

uration. The non-linear longitudinal normal strain equation, proposed 

by Pi and Trahair [44] and Pi et al. [45] , is adopted to incorporate ge- 

ometric non-linearity into the analysis. This is defined as, 

𝜖 = 𝜖𝑚 + 𝜖𝑏 (11) 

where 𝜖m 

is the membrane strain and 𝜖b denotes the bending strains, 

known as 

𝜖𝑚 = 𝑤 

′ − 𝑣 + 

1 
2 
( 𝑣 ′ + 𝑤 ) 2 , 𝜖𝑏 = − 

𝑦 

𝑅 

( 𝑣 ′′ + 𝑤 

′) . (12) 

In Eq. (11) , 𝜖 represents the total strain at a point  in the CFST cross 

section. In Eq. (12) , 𝑤 = 𝑤̂ ∕ 𝑅, 𝑣 = 𝑣̂ ∕ 𝑅, 𝑤̂ is the axial displacement, 𝑣̂ 

is the radial deflection, y is the vertical coordinate of  , ( ) ′ = 𝑑( )∕ 𝑑𝜃, 
( ) ′′ = 𝑑 2 ( )∕ 𝑑𝜃2 and 𝜃 is the angular coordinate. 

The non-linear equations of equilibrium are obtained by employing 

the virtual work principle which states that 

∫𝑉 𝑠 𝜎𝑠 𝛿𝜖 𝑑𝑉 𝑠 + ∫𝑉 𝑐 𝜎𝑐 𝛿𝜖 𝑑𝑉 𝑐 − ∫
Θ

−Θ
𝑞 𝑅 

2 𝛿𝑣 𝑑𝜃 = 0 , ∀ 𝛿𝑣, 𝛿𝑣 ′, 𝛿𝑣 ′′, 𝛿𝑤, 𝛿𝑤 

′

(13) 
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Fig. 1. CFST arch loading and geometrical configuration. 

where V s and V c are the volumes of the steel tube and concrete core 

respectively, Θ is half the total included angle and 𝛿v, 𝛿v ′ , 𝛿v ″ , 𝛿w and 

𝛿w ′ are kinematically admissible displacement variations. The total axial 

force N is defined as 

𝑁 = − ∫𝐴 𝑐 𝜎𝑐 𝑑 𝐴 𝑐 − ∫𝐴 𝑠 𝜎𝑠 𝑑 𝐴 𝑠 , (14) 

with the bending moment M given by 

𝑀 = ∫𝐴 𝑐 𝜎𝑐 𝑦 𝑑𝐴 𝑐 + ∫𝐴 𝑠 𝜎𝑠 𝑦 𝑑𝐴 𝑠 , (15) 

where A c and A s are the cross-sectional areas of the concrete core and 

steel tube respectively. Integrating Eq. (13) by parts, considering strain 

formulation (11) and definitions (14) and (15) , gives the equations of 

non-linear equilibrium, 

𝑁 

′𝑅 + 𝑀 

′ − 𝑁 ( 𝑤 + 𝑣 ′) = 0 , (16) 

− 𝑀 

′′ + 𝑁𝑅 (1 + 𝑣 ′′ + 𝑤 

′) + 𝑁 

′𝑅 ( 𝑣 ′ + 𝑤 ) − 𝑞𝑅 

2 = 0 , (17) 

in the axial and radial directions respectively. This also yields the static 

boundary condition for an arch with pinned-ends 

𝑣 ′′(Θ) = 𝑣 ′′(−Θ) = 0 . (18) 

The known geometrical boundary conditions are 

𝑣 (Θ) = 𝑣 (−Θ) = 𝑤 (Θ) = 𝑤 (−Θ) = 0 , (19) 

for a simply-supported arch, and 

𝑣 (Θ) = 𝑣 (−Θ) = 𝑣 ′ (Θ) = 𝑣 ′ (−Θ) = 𝑤 (Θ) = 𝑤 (−Θ) = 0 , (20) 

for a arch with fixed supports. If considering a crown-pin, the virtual 

work principles is only applied to half the arch through its length. This 

gives the static boundary conditions for singly and three-pinned arches 

𝑀 

′(0) + 𝑁(0) 𝑅 𝑣 ′(0) = 0 , and 𝑀(0) = 0 , (21) 

and 

𝑀 (Θ) = 0 , (22) 

for three-pinned arches. These adjoin the known kinematic boundary 

conditions for a three-pinned arch 

𝑣 (Θ) = 𝑤 (Θ) = 𝑤 (0) = 0 , (23) 

and for a singly-pinned arch 

𝑣 (Θ) = 𝑣 ′ (Θ) = 𝑤 (Θ) = 𝑤 (0) = 0 . (24) 

Combining Eqs. (2) and (6) with (14) yields the constitutive equation 

for axial force: 

𝑁 = 

̂𝐸𝐴 𝑠 𝜖𝑠,𝑡ℎ + 

̂𝐸𝐴 𝑐 𝜖𝑐,𝑡ℎ − 𝜖𝑚 ( ̂𝐸𝐴 𝑠 + ̂𝐸𝐴 𝑐 ) , (25) 

where the thermal section properties for the steel tube are 

̂𝐸𝐴 𝑠 𝜖𝑠,𝑡ℎ = ∫𝐴 𝑠 𝐸 𝑠,𝑇 𝜖𝑠,𝑡ℎ 𝑑 𝐴 𝑠 , and , 𝐸 𝐴 𝑠 = ∫𝐴 𝑠 𝐸 𝑠,𝑇 𝑑 𝐴 𝑠 , (26) 

and are defined for the concrete core as 

̂𝐸𝐴 𝑐 𝜖𝑐,𝑡ℎ = ∫𝐴 𝑐 𝐸̂ 𝑐,𝑇 𝜖𝑐,𝑡ℎ 𝑑 𝐴 𝑐 and , 𝐸 𝐴 𝑐 = ∫𝐴 𝑐 𝐸̂ 𝑐,𝑇 𝑑 𝐴 𝑐 . (27) 

The constitutive moment-curvature relationship for the confining tube 

is obtained by substituting Eqs. (2), (6) and (12) into (15) : 

𝑀 = − 

( 𝑣 ′′ + 𝑤 

′) 
(
𝐸𝐼 𝑠 + ̂𝐸𝐼 𝑐 

)
𝑅 

, (28) 

where the thermal properties 

𝐸𝐼 𝑐 = ∫𝐴 𝑐 𝐸̂ 𝑐,𝑇 𝑦 
2 𝑑 𝐴 𝑐 , and 𝐸 𝐼 𝑠 = ∫𝐴 𝑠,𝑒 𝐸 𝑠,𝑇 𝑦 

2 𝑑 𝐴 𝑠,𝑒 , (29) 

are the second moment of areas for the concrete core and steel area 

respectively. The integrals (26), (27) and (29) can be numerically solved 

simply using the Adaptive Quadrature technique. 

The problem to be solved is a system of ordinary differential equa- 

tions defined by equilibrium Eqs. (16) and (17) and constitutive Eqs. 

(25) and (28) subjected to boundary conditions (19), (20), (23) or (24) . 

To solve this, a set of dependent variables are introduced: 

𝑥 1 = 𝑣, 𝑥 2 = 𝑣 ′, 𝑥 3 = 𝑀, 𝑥 4 = 𝑀 

′, 𝑥 5 = 𝑁, 𝑥 6 = 𝑤, (30) 

and upon differentiation yield, 

𝑥 ′1 = 𝑥 2 , (31) 

𝑥 ′2 = 

− 𝑥 3 𝑅 

𝐸𝐼 𝑠 + ̂𝐸𝐼 𝑐 
− 𝑥 ′6 , (32) 

𝑥 ′3 = 𝑥 4 , (33) 

𝑥 ′4 = 𝑥 5 𝑅 (1 + 𝑥 ′2 + 𝑥 ′6 ) + 𝑥 ′5 𝑅 ( 𝑥 2 + 𝑥 6 ) − 𝑞𝑅 

2 , (34) 

𝑥 ′5 = 𝑥 5 ( 𝑥 6 + 𝑥 2 ) − 

𝑥 3 
𝑅 

, (35) 

𝑥 ′6 = 

̂𝐸𝐴 𝑠 𝜖𝑠,𝑡ℎ + 

̂𝐸𝐴 𝑐 𝜖𝑐,𝑡ℎ − 𝑥 5 

𝐸𝐴 𝑠 + ̂𝐸𝐴 𝑐 

+ 𝑥 1 − 0 . 5 ( 𝑥 2 + 𝑥 6 ) 2 . (36) 

System (31)–(36) contains first-order ordinary differential equations 

which can be numerically solved given the boundary conditions 

𝑥 1 (Θ) = 𝑥 1 (−Θ) = 𝑥 3 (Θ) = 𝑥 3 (−Θ) = 𝑥 6 (Θ) = 𝑥 6 (−Θ) = 0 , (37) 
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Fig. 2. Effect of temperature on central radial deflection for fixed-ended (a) and pin-ended (b) arches. 2Θ = 120 , 𝑞 = 450 kN/m , 𝑅 = 5000 mm , 𝜎𝑦 = 350 MPa , 𝐸 𝑐 = 
32 , 800 MPa , 𝐷 = 300 m and 𝑡 = 10 mm. 

for a pin-ended arch, and 

𝑥 1 (Θ) = 𝑥 1 (−Θ) = 𝑥 2 (Θ) = 𝑥 2 (−Θ) = 𝑥 6 (Θ) = 𝑥 6 (−Θ) = 0 , (38) 

for an arch with fixed ends, and 

𝑥 1 (Θ) = 𝑥 3 (Θ) = 𝑥 3 (0) = 𝑥 6 (Θ) = 𝑥 6 (0) = 𝑥 4 (0) + 𝑥 5 (0) 𝑥 2 (0) 𝑅 = 0 , (39) 

for three-pinned arch, and 

𝑥 1 (Θ) = 𝑥 2 (Θ) = 𝑥 3 (0) = 𝑥 6 (Θ) = 𝑥 6 (0) = 𝑥 4 (0) + 𝑥 5 (0) 𝑥 2 (0) 𝑅 = 0 , (40) 

for a singly-pinned arch. 

3.2. Pre-buckling elastic behaviour 

System (31)–(36) is first solved for the case of a uniform temperature 

field in order to demonstrate the thermal response of CFST arches. The 

arch features a radius 𝑅 = 5 m, steel yield strength 𝜎𝑦 = 350 MPa , an 

initial elastic modulus of concrete of 𝐸 𝑐 = 32 , 800 MPa , a diameter 𝐷 = 

300 mm and a steel tube thickness 𝑡 𝑡 = 10 mm. The central deflections, 

axial forces, bending moments and longitudinal stresses in the concrete 

core at various temperature levels are shown in Figs. 2–5 respectively 

for a shallow and deep arches with pin-ended, fixed ended, three-pinned 

and singly-pinned supports. 

CFST arches deflect upwards with a rise in temperature in an ap- 

proximately linear fashion. Evolution of axial force with temperature 

was found to be dependant on the arch included angle and boundary 

conditions. Small changes to axial force was observed for the deep arch, 

which slightly increased or decreased with temperature, see Fig. 3 . For 

the case of the shallow arch, temperature level noticeably influenced ax- 

ial force. This effect was substantially greater for arches with fixed ends. 

Thermal loading causes a reversal and subsequent increase in maximum 

bending moment. It can be seen that the change in maximum moments 

is significant for all cases analysed. However, as with axial force, the 

effect is greatest in shallow fixed arches. The stress levels in the con- 

crete core generally decrease, and remain low, throughout the heating 

period as shown in Fig. 5 . Regions of tensile stress may develop when 

due to the large increases in bending moment. This is likely in shallow 

arches with fixed ends, due to the large end moment reactions and great 

increase of moments with thermal load. Deep and pin-ended arches are 

typically exempt from this problem due to the smaller magnitude of 

bending moments. 

The pre-buckling response of CFST arches to non-uniform thermal 

loading is also analysed. Three radially distributed temperature profiles 

through the CFST cross section are considered, see Fig. 6 . Labels A-D 

are given to each temperature profile, including no thermal load, for 

referencing in the proceeding results. The temperatures are highest at 

the confining steel tube and degrade curvilinearly toward the concrete 

centre. The effect of the combined non-uniform thermal loads and me- 

chanical loading on the radial deflections and bending moments through 

the arch length are shown in Figs. 7 for fixed-ended arches. The response 

for the case of radially distributed temperature through the cross-section 

qualitatively follows behaviour as when under uniform thermal loading; 

the arch deflects upwards with temperature rise in the steel tube, bend- 

ing moment distribution reverses and increases at higher temperature 

levels and changes to axial force are small in the case of deep arches. 

However, the stress distribution through the concrete core varies non- 

linearly with y due to temperature dependant elastic modulus and ther- 

mal strain. In cases of great temperature differentials across the cross- 

section, tensile stress may develop in the inner core due to the assump- 

tion of equal membrane strain across the steel and concrete and low 

thermal strain in the concrete. Hence in these cases, an elastic analysis 

may not be not valid. The problem of rapid heating of the outer tube 

and possible tensile stress is considered in Section 6 . 

4. Elastic buckling analysis 

4.1. Anti-symmetric buckling analysis 

A CFST arch can move from a pre-buckled state of equilibrium to a 

buckled state when reaching a critical combination of mechanical load 

level and temperature profile. This adjacent buckled configuration is de- 

fined by 𝑁̄ = 𝑁 + 𝑁 𝑏 , 𝑀̄ = 𝑀 + 𝑀 𝑏 , 𝑣̄ = 𝑣 + 𝑣 𝑏 , and 𝑤̄ = 𝑤 + 𝑤 𝑏 , where 

N b , M b , v b and w b are perturbations. The perturbed quantities are sub- 

stituted into the equilibrium equations derived for a shallow arch (see 

Appendices) giving the buckled equilibrium equations when ignoring 

higher order terms; 

𝑁 

′
𝑏 = 0 , (41) 

and 

𝑅𝑁𝑣 ′′𝑏 + 𝑅𝑁 𝑏 (1 + 𝑣 ′′) − 𝑀 

′′
𝑏 = 0 . (42) 

The buckled variations of the constitutive equations are similarly ob- 

tained as: 
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Fig. 3. Effect of temperature on axial force for fixed (a) and pinned (b) arches with 2Θ = 73 . 74 and fixed arches (c) and pinned arches (d) with 2Θ = 120 . 𝑞 = 450 kN/m , 

𝑅 = 5000 mm , 𝜎𝑦 = 350 MPa , 𝐸 𝑐 = 32 , 800 MPa , 𝐷 = 300 m and 𝑡 𝑡 = 10 mm. Dashed line depicts FE results. 

Fig. 4. Effect of temperature on maximum bending moment for fixed arches (a) and pinned and crown-pinned arches (b). 2Θ = 120 , 𝑞 = 450 kN/m , 𝑅 = 5000 mm , 𝜎𝑦 = 
350 MPa , 𝐸 𝑐 = 32 , 800 MPa , 𝐷 = 300 m and 𝑡 𝑡 = 10 mm. Dashed line depicts FE results. 
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Fig. 5. Effect of temperature on longitudinal stress in extreme fibres of the concrete core at the mid-span for fixed (a) and pinned (b) arches with 2Θ = 73 . 74 and fixed 

(c) and pinned (d) arches with 2Θ = 120 . 𝑞 = 450 kN/m , 𝑅 = 5000 mm , 𝜎𝑦 = 350 MPa , 𝐸 𝑐 = 32 , 800 MPa , 𝐷 = 300 m and 𝑡 𝑡 = 10 mm. Dashed line depicts FE results. 

Fig. 6. Temperature profile through CFST cross-section. 

𝑁 𝑏 = −( 𝑤 

′
𝑏 − 𝑣 𝑏 + 𝑣 ′𝑣 ′𝑏 ) 

(
𝐸𝐴 𝑠 + ̂𝐸𝐴 𝑐 

)
, (43) 

and 

𝑀 𝑏 = − 

𝑣 ′′
𝑏 

(
𝐸𝐼 𝑠 + ̂𝐸𝐼 𝑐 

)
𝑅 

. (44) 

The static buckled boundary conditions are 

𝑤 𝑏 (Θ) = 𝑤 𝑏 (−Θ) = 𝑣 𝑏 (Θ) = 𝑣 𝑏 (−Θ) = 𝑣 ′′𝑏 (Θ) = 𝑣 ′′𝑏 (−Θ) = 0 , (45) 

for simply-supported arches, and 

𝑤 𝑏 (Θ) = 𝑤 𝑏 (−Θ) = 𝑣 𝑏 (Θ) = 𝑣 𝑏 (−Θ) = 𝑣 ′𝑏 (Θ) = 𝑣 ′𝑏 (−Θ) = 0 , (46) 

for arches with fixed ends. Crown-pinned arches cannot buckle in an 

anti-symmetric mode [8] . 

In the case of anti-symmetric buckling, the displacement v b and its 

second derivative 𝑣 ′′
𝑏 

are anti-symmetric through the arch length. Addi- 

tionally, the pre-buckled slope v ′ is anti-symmetric as the radial deflec- 

tion v in the pre-buckled state is symmetric. Hence, the terms v b , 𝑣 
′′
𝑏 

and 

v ′ become zero when integrating Eq. (43) with respect to 𝜃, giving 

𝑁 𝑏 = 0 . (47) 
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Fig. 7. Effect of non-uniform thermal loads A-D on radial deflections (left) and bending moment (right) for fixed-ended arches. Dashed line and markers depict FE 

results. 2Θ = 120 ◦, 𝑞 = 300 kN/m , 𝑅 = 5000 mm , 𝜎𝑦 = 350 MPa , 𝐸 𝑐 = 32 , 800 MPa , 𝐷 = 200 mm and 𝑡 𝑡 = 10 . 

Fig. 8. Elastic anti-symmetric buckling loads for pinned (left) and fixed (right) CFST arches under uniform thermal load. 2Θ = 73 . 34 ◦, 𝑅 = 5000 mm , 𝜎𝑦 = 350 MPa , 

𝐸 𝑐 = 32 , 800 MPa , 𝐷 = 300 mm and 𝑡 𝑡 = 10 mm. 

The linear homogeneous differential equation for anti-symmetric bi- 

furcation is obtained by substituting Eqs. (44) and (47) into (42) , as 

𝑣 ′′′′
𝑏 

𝜇2 
+ 𝑣 ′′𝑏 = 0 . (48) 

Solving Eq. (48) gives 

𝑣 𝑏 = 𝐶 1 sin ( 𝛾𝜇𝜃) + 𝐶 2 cos ( 𝛾𝜇𝜃) + 𝐶 3 𝜃 + 𝐶 4 , (49) 

where coefficients 𝐶 1 …𝐶 4 are unknown. In order for non-trivial coef- 

ficients to exist, the coefficient matrix must have a first determinant 

equalling to zero. This leads to the equations obtained by Pi et al. [45] , 

sin ( 𝛾𝜇𝜃) cos ( 𝛾𝜇𝜃) = 0 for pinned arches 

[ 𝜇Θcos ( 𝜇Θ) − sin ( 𝜇Θ)] sin ( 𝛾𝜇𝜃) = 0 for fixed arches . 
(50) 

The lowest solution of Eq. (50) , obtained when the first terms equal zero, 

are 𝜇𝜃 = 𝜋 for simply-supported arches, and 𝜇Θ = 1 . 4303 𝜋 for fixed- 

ended arches. The critical axial force is obtained by substituting these 

solutions into Eq. (73) , 

𝑁 𝑝 = 

𝜋2 ( ̂𝐸𝐼 𝑐 + ̂𝐸𝐼 𝑠 ) 
( 𝑆∕2) 2 

(51) 

for pinned arches, and 

𝑁 𝑝 = 

(1 . 4303 𝜋) 2 ( ̂𝐸𝐼 𝑐 + ̂𝐸𝐼 𝑠 ) 
( 𝑆∕2) 2 

(52) 

for fixed arches. Substituting (51) and (52) into (77) yields 

𝐷 1 𝑃 
2 
𝑏 + 𝐷 2 𝑃 𝑏 + 𝐷 3 = 0 (53) 

where 

𝐷 1 = 15 + 2 𝜋2 , 𝐷 2 = 12 + 4 𝜋2 , and 

𝐷 3 = 

12 𝜋4 

𝜆2 
− 

12 𝜋2 
(
̂𝐸𝐴 𝑐 𝜖𝑐,𝑡ℎ + 

̂𝐸𝐴 𝑠 𝜖𝑠,𝑡ℎ 

)
𝜃2 

(
𝐸𝐴 𝑐 + 𝐸𝐴 𝑠 

) , (54) 

for pinned arches, and 

𝐷 1 = 5 , 𝐷 2 = 4 , and 𝐷 3 = 

12(1 . 4303 𝜋) 2 

𝜆2 
− 

12 
(
̂𝐸𝐴 𝑐 𝜖𝑐,𝑡ℎ + 

̂𝐸𝐴 𝑠 𝜖𝑠,𝑡ℎ 

)
𝜃2 

(
𝐸𝐴 𝑐 + 𝐸𝐴 𝑠 

) , 

(55) 
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Fig. 9. Elastic anti-symmetric buckling loads for pinned (left) and fixed (right) CFST arches subjected to ISO fire load. 2Θ = 73 . 34 ◦, 𝑅 = 5000 mm , 𝜎𝑦 = 350 MPa , 

𝐸 𝑐 = 32 , 800 MPa , 𝐷 = 300 mm and 𝑡 𝑡 = 10 mm. 

for fixed ended arches. The anti-symmetric buckling load is determined 

by solving Eq. (53) when adopting the critical axial force defined by 

Eq. (51) and Eq. (52) for simply-supported and fixed-ended arches re- 

spectively. Alternatively, the critical buckling load can be obtained by 

solving employing System (31)–(36) and increasing the load q until the 

resulting axial force equals the critical value as given by Eqs.(51) or 

(52) . 

If strain Eq. (12) and equilibrium Eqs.(16) and (17) are perturbed 

instead, the buckling analysis yields a critical axial force for fixed arches 

as; 

𝑁 𝑝 = 

𝐸𝐼 𝑐 + ̂𝐸𝐼 𝑠 

𝑆∕2 2 
[
( 𝜂𝜋) 2 − Θ2 ] (56) 

where 𝜂 is a function of included angle Θ and varies from 1.4303 at 

2Θ = 0 ◦ to 1.5 at 2Θ = 180 ◦, see [3] . The corresponding buckling load q 

can be iteratively obtained by solving Eqs. (31)–(36) for given values of 

q until N p is obtained. The critical axial force for pinned arches derived 

in this case remains the same as given in Eq. (51) . This buckling analysis 

adopts the axial in-extensibility condition and assumes a constant axial 

force N through the arch length. The axial in-extensibility condition is 

expressed as 𝑤 

′
𝑏 
− 𝑣 𝑏 = 0 . The reader is referred to [3] for further details. 

The effect of uniform temperature fields on the anti-symmetric elas- 

tic buckling loads is shown in Fig. 8 . It can be seen that the buck- 

ling strength of CFST arches deteriorate with increasing thermal load. 

Thus, thermal loading may trigger anti-symmetric bifurcation buckling 

in CFST arches. Furthermore, the critical buckling loads when neglecting 

TTS are depicted. The stability boundaries still reduce with an increase 

in temperature albeit at a lesser rate then the case when TTS is not 

considered. For slender deep arches, anti-symmetric buckling may oc- 

cur whilst in the elastic range. Stocky shallow arches are likely to begin 

yielding prior to elastic buckling due to the development of large bend- 

ing moments and axial forces with rise in temperature. Fig. 9 depicts 

the anti-symmetric buckling loads for the same arch when subjected 

to standard ISO-834 fire loading at various time intervals throughout 

a three hour heating period. The temperature distribution through the 

cross-section was obtained by conducting a transient thermal analysis 

using the Finite Element (FE) method with commercial software pack- 

age ANSYS [46] . The details of the FE model are given in Section 6 . Fire 

loading initially causes a drastic reduction in the anti-symmetric buck- 

ling strength of CFST arches due to the rapid heating of the steel tube. 

This is followed by a continual deterioration of buckling loads though 

at a slower rate, caused by delayed heating of the concrete core. 

4.2. Symmetric snap-through buckling 

Arches also feature the possibility of buckling in a symmetric shape. 

At the symmetric buckling load combination, the arch snaps away from 

its previous position on the equilibrium path to an adjacent buckled 

configuration. As symmetric snap-through buckling is equivalent to limit 

instability in arches [5] , System Eqs. (31)–(36) for given values of q until 

N p is obtained. The critical axial force for pinned arches derived in this 

case remains the same as given in Eq. (51) . This buckling analysis adopts 

the axial in-extensibility condition and assumes a constant axial force N 

through the arch length. The axial in-extensibility condition is expressed 

as 𝑤 

′
𝑏 
− 𝑣 𝑏 = 0 . The reader is referred to [3] for further details. 

The effect of uniform temperature fields on the anti-symmetric elas- 

tic buckling loads is shown in Fig. 8 . It can be seen that the buck- 

ling strength of CFST arches deteriorate with increasing thermal load. 

Thus, thermal loading may trigger anti-symmetric bifurcation buckling 

in CFST arches. Furthermore, the critical buckling loads when neglecting 

TTS are depicted. The stability boundaries still reduce with an increase 

in temperature albeit at a lesser rate then the case when TTS is not 

considered. For slender deep arches, anti-symmetric buckling may oc- 

cur whilst in the elastic range. Stocky shallow arches are likely to begin 

yielding prior to elastic buckling due to the development of large bend- 

ing moments and axial forces with rise in temperature. Fig. 9 depicts 

the anti-symmetric buckling loads for the same arch when subjected 

to standard ISO-834 fire loading at various time intervals throughout 

a three hour heating period. The temperature distribution through the 

cross-section was obtained by conducting a transient thermal analysis 

using the Finite Element (FE) method with commercial software pack- 

age ANSYS [46] . The details of the FE model are given in Section 6 . Fire 

loading initially causes a drastic reduction in the anti-symmetric buck- 

ling strength of CFST arches due to the rapid heating of the steel tube. 

This is followed by a continual deterioration of buckling loads though 

at a slower rate, caused by delayed heating of the concrete core. 

4.2. Symmetric snap-through buckling 

Arches also feature the possibility of buckling in a symmetric shape. 

At the symmetric buckling load combination, the arch snaps away from 

its previous position on the equilibrium path to an adjacent buckled con- 

figuration. As symmetric snap-through buckling is equivalent to limit 

instability in arches [5] , System (31)–(36) can be employed to anal- 

yse symmetric stability loss for all support conditions. Critical buck- 
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Fig. 10. Elastic symmetric buckling loads for crown-pinned CFST arches subjected to uniform temperature field. 2Θ = 19 . 06 ◦ and 𝑅 = 18125 mm (left) and 2Θ = 73 . 34 ◦

and 𝑅 = 5000 mm (right). 𝜎𝑦 = 350 MPa , 𝐸 𝑐 = 32 , 800 MPa , 𝐷 = 300 mm and 𝑡 𝑡 = 10 mm. 

ling loads q and/or temperature profiles T ( y ) can be increased un- 

til a real solution no longer exists for System (31)–(36) . A symmet- 

ric buckling analysis can also be conducted by following the proce- 

dure in Section 4.1 whilst assuming a symmetric buckled displacement 

v b . Symmetric buckling is the governing buckling mode for crown- 

pinned arches and very shallow (approximately 2 Θ< 20 ∘) pinned or 

fixed arches. Though due to high load magnitudes required to trigger 

instability, it is likely that only slender arches will buckle symmetrically 

prior to development of plastic strain. 

The effect of thermal loading on the elastic symmetric snap-through 

loads is dependant on the included angle, see Fig. 10 . For arch with very 

low included angles, thermal loading may increase increased the elastic 

symmetric buckling loads. This may occur after an initial reduction in 

instability load as seen in singly-pinned case shown in Fig. 10 (a). Con- 

versely for most other cases, a reduction of symmetric buckling strength 

with increase with temperature is observed. 

5. Non-linear inelastic analysis 

The numerical model proposed in Section 3.1 is now generalised to 

consider inelastic material behaviour in both the steel tube and concrete 

core. The following model is restricted to uniform temperature loading 

in order to avoid the derivation of cumbersome equations. Though the 

same methodology can be applied for the case of non-uniform tempera- 

ture fields. Combining Eqs. (11), (12), (14) and (15) with inelastic ma- 

terial models (2) for steel and (7) for concrete yields the equations for 

axial force N and bending moment M . The axial force is obtained as 

𝑁 = 

𝑓 ′𝑐 
𝜖𝑚𝑎𝑥 

( 

( 𝑣 ′′) 2 𝐼 𝑐 
𝑅 

2 𝜖𝑚𝑎𝑥 
+ 

𝜖2 
𝑐,𝑡ℎ 
𝐴 𝑐 

𝜖𝑚𝑎𝑥 
+ 2 𝐴 𝑐 𝜖𝑐,𝑡ℎ + 

𝐴 𝑐 𝜖
2 
𝑚 

𝜖𝑚𝑎𝑥 

) 

− 𝜖𝑚 

[ 
𝑍 1 + 

2 𝐴 𝑐 𝑓 
′
𝑐 

𝜖𝑚𝑎𝑥 

( 

1 + 

𝜖𝑐,𝑡ℎ 

𝜖𝑚𝑎𝑥 

) ] 
+ 𝑍 2 , (57) 

where 

𝑁 𝑝 = − 𝑐 1 𝜎𝑦 𝜖𝑠,𝑡ℎ + 𝑐 2 𝜎𝑦 − 𝑐 3 𝜎
2 
𝑦 ∕ 𝐸 𝑠 , 𝑍 1 = 𝐸 𝑠 𝐴 𝑠,𝑒 + 𝑐 1 𝜎𝑦 𝐴 𝑠,𝑝 and 

𝑍 2 = 𝐸 𝑠 𝐴 𝑠,𝑒 𝜖𝑠,𝑡ℎ − 𝐴 𝑠,𝑝 𝑁 𝑝 + 

( 𝑣 ′′ + 𝑤 

′) 
𝑅 

( 𝐸 𝑠 𝑄 𝑒 + 𝑐 1 𝜎𝑦 ̂𝑄 𝑝 ) , (58) 

and the thermal section properties 

𝑄 𝑒 = ∫𝐴 𝑠,𝑒 𝑦 𝑑𝐴 𝑠,𝑒 , and , 𝑄 𝑝 = ∫𝐴 𝑠,𝑝 𝑦 𝑑𝐴 𝑠,𝑝 , (59) 

are the first moment of area for elastic steel area A s,e and the plastic 

steel area A s,p respectively. The bending moment is derived as 

𝑀 = − 

( 𝑣 ′′ + 𝑤 

′) 
𝑅 

[ 

2 𝐼 𝑐 𝑓 ′𝑐 
𝜖2 𝑚𝑎𝑥 

( 𝜖𝑚𝑎𝑥 − 𝜖𝑚 + 𝜖𝑐,𝑡ℎ ) + 𝐸 𝑠 ̂𝐼 𝑠 + 𝑐 1 𝜎𝑦 ̂𝐼 𝑠,𝑝 

] 

+ 

(
𝐸 𝑠 ̂𝑄 𝑒 + 𝑐 1 𝜎𝑦 ̂𝑄 𝑝 

)
( 𝜖𝑚 ) − 𝐸 𝑠 ̂𝑄 𝑒 𝜖𝑠,𝑡ℎ + ̂𝑄 𝑝 𝑁 𝑝 (60) 

where the thermal section properties 

𝐼 𝑠 = ∫𝐴 𝑠,𝑒 𝑦 
2 𝑑𝐴 𝑠,𝑒 , and 𝐼 𝑠,𝑝 = ∫𝐴 𝑠,𝑝 𝑦 

2 𝑑𝐴 𝑠,𝑝 , (61) 

are the second moment of areas for elastic plastic steel areas. 

A system of differential equations is again obtained defined by equi- 

librium Eqs. (16) and (17) and constitutive Eqs. (57) and (60) . Adopting 

the dependent variables defined in Eq. (30) and converting Eqs. (57) and 

(60) to first order form, the following system is derived; 

𝑥 ′1 = 𝑥 2 , (62) 

𝑥 ′2 = 

𝑅 𝜖2 𝑚𝑎𝑥 [ 𝜖𝑚 
(
𝐸 𝑠 ̂𝑄 𝑒 + 𝑐 1 𝜎𝑦 ̂𝑄 𝑝 

)
+ 𝑄 𝑁 𝑝 − 𝐸 𝑠 ̂𝑄 𝑒 𝜖𝑠,𝑡ℎ − 𝑥 3 ] 

2 𝐼 𝑐 𝑓 ′𝑐 ( 𝜖𝑚𝑎𝑥 − 𝜖𝑚 + 𝜖𝑐,𝑡ℎ ) + 𝜖2 𝑚𝑎𝑥 ( 𝐸 𝑠 ̂𝐼 𝑠 + 𝑐 1 𝜎𝑦 ̂𝐼 𝑠,𝑝 ) 
− 𝑥 ′6 , (63) 

𝑥 ′3 = 𝑥 4 , (64) 

𝑥 ′4 = 𝑥 5 𝑅 (1 + 𝑥 ′2 + 𝑥 ′6 ) + 𝑥 ′5 𝑅 ( 𝑥 2 + 𝑥 6 ) − 𝑞𝑅 

2 , (65) 

𝑥 ′5 = 𝑥 5 ( 𝑥 6 + 𝑥 2 ) − 

𝑥 3 
𝑅 

, (66) 

𝑥 ′6 = 𝜖𝑚𝑎𝑥 + 𝜖𝑡ℎ,𝑐 + 

𝑍 1 𝜖
2 
𝑚𝑎𝑥 

2 𝑓 ′𝑐 𝐴 𝑐 

+ 𝑥 1 − 0 . 5 ( 𝑥 2 + 𝑥 6 ) 2 

− 

√ 

𝜖2 𝑚𝑎𝑥 
2 𝑓 ′𝑐 𝐴 𝑐 

[
2 𝑓 ′𝑐 𝐴 𝑐 + 2 𝑥 5 + 𝑍 

2 
1 + 𝑍 1 ( 𝜖𝑐,𝑡ℎ + 𝜖𝑚𝑎𝑥 ) − 2 𝑍 2 

]
+ 

𝐼 𝑐 ( 𝑣 ′′) 2 

𝐴 𝑐 𝑅 

2 . 

(67) 

Eqs. (31)–(36) can be numerically solved with prescribed boundary con- 

ditions. Note that when solving quadratic Eq. (57) for the membrane 

strain x 6 , the lower solution was adopted which would otherwise always 

lead to a membrane strain 𝜖m 

exceeding the maximum strain 𝜖max for any 
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Fig. 11. Flowchart of numerical procedure to solve system (28)–(33). 

real solution. Additionally, two higher order terms were neglected in 

solving for Eq. (67) which are negligible and would otherwise convolute 

the analysis. The term I c ( v ″ ) 
2 / A c R 

2 in Eq. (67) may also be neglected 

as its influence on results is minute. 

As the plastic area A s,p is initially unknown, the elastic solution is 

first obtained for a given load and temperature profile, either by solv- 

ing Eqs. (77) and (75) or system (31) –(36) with 𝐴 𝑠,𝑝 = 𝑄 𝑒 = 𝑄 𝑝 = 0 . The 

stress in the steel 𝜎s is obtained from Eq. (2) and is subsequently com- 

pared to the yield stress 𝜎y . If 𝜎s < 𝜎y , the steel remains in the elastic 

range and the solution is complete. However, if 𝜎s > 𝜎y , inelastic be- 

haviour occurs and system (31) –(36) must be solved using an approxi- 

mate plastic area of steel obtained by the yield strength to stress com- 

Fig. 13. Central radial deflections of steel I-section arch supported by elastic 

end restraints and subjected to vertically distributed loading and linear thermal 

gradients. 𝐸 𝑠 = 200 GPa , 𝜎𝑦 = 300 MPa , 𝐴 𝑠 = 16000 mm 

2 , 𝐼 𝑠 = 986 × 10 6 mm 

4 , 

𝑞 = 30 kN/m , 2Θ = 60 ◦ and 𝑅 = 15000 mm. 

parison. Once system (31) –(36) is solved, the steel strength is compared 

again to the stress allowing a more accurate estimation of the plastic 

area. This process is repeated until a desired accuracy ( Tol ) is achieved. 

This numerical procedure is graphically depicted in Fig. 11 . 

As uniform thermal loading causes a reduction in stress in the con- 

crete core, the inelastic response of CFST arches is similar to the elastic 

behaviour prior to yielding of the steel tube. This can be seen upon com- 

parison of Figs. 2 (a), 3 (a) and 12 . The displacements, axial forces and 

bending moments are generally greater in the inelastic case due to the 

non-linear concrete material model. Upon yielding off the steel tube, the 

responses to elevated temperature fields as discussed in Section 3.2 be- 

gin to reverse; CFST arches displaces downwards, the axial forces and 

bending moments reduce in magnitude and the stresses in the concrete 

increase. It is also noted that the favourable moment distribution as- 

sociated with pin-ended and crown-pined arches delay initial yielding 

of the steel tube. Full yielding of the steel tube may induce bifurcation 

buckling in CFST arches due to the great reduction in buckling strength. 

This is probable in pinned arches. The higher stiffness associated with 

fixed arches increases the possibility that a stable configuration will be 

maintained despite full yielding of the steel, though the compressive 

stress levels in the core may become extremely large causing complete 

material failure. 

Fig. 12. Effect of uniform temperature field on axial force (a) and central radial deflection (b) for fixed arches (inelastic analysis). 2Θ = 120 and 𝑞 = 450 kN/m . 

Dashed line depicts FE results. 
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6. Inelastic buckling analysis 

6.1. Finite element model 

The proposed system (63)–(64) is incapable of modelling anti- 

symmetric bifurcation buckling. Hence, a FE model is developed, using 

the commercially available software package ANSYS, in order to ex- 

amine the inelastic in-plane buckling strength. This section details the 

development of the FE model. 

The mechanical and thermal properties of steel and concrete at ele- 

vated temperatures have been adopted from the EC3 for carbon steels 

and the EC2 for siliceous concrete. These include thermal strain, ther- 

mal conductivity, density, stress-strain data and specific heat. All prop- 

erties were defined at 22 ∘C and from 100 ∘C to 1200 ∘C at intervals of 

100 ∘C. ANSYS employs linear interpolation to determine properties at 

intermediate temperatures. Poisson’s ratio was assumed independent of 

temperature and was defined as 0.18 for concrete and 0.30 for steel. 

The available bi-linear isotropic hardening plasticity model and Von- 

Mises yield criterion were adopted to input the stress-strain relation 

of the steel. The yield stress and tangent modulus were input using 

Eq. (2) . For comparison to the elastic analysis, the concrete core was 

modelled as a linear elastic material with elastic modulus defined by 

Eq. (6) . For the inelastic analysis, the ASCE (7) concrete and EC2 

(9) stress-strain relations were adopted and modelled using the Drucker- 

prager (DP) concrete and multi-linear isotropic hardening (IH) plasticity 

models. The DP model features two yield surfaces: for compressive load- 

ing and for tensile/tensile-compressive stress. A yield stress of 0 . 4 𝑓 ′
𝑐,𝑇 

was selected for compression with the elastic modulus input as the tan- 

gent at the yield stress in the DP model. Behaviour in tension was mod- 

elled as elastic perfectly plastic with the yield stress defined by Eq. (10) . 

The MISO model makes no distinction between compressive or tensile 

stress states. Differences between the inelastic buckling loads predicted 

when adopting the two concrete material models and two plasticity 

models is analysed in Section 6.3 . 

A transient thermal analysis is required to obtain the time-varying 

temperature distribution through the CFST cross-section when subjected 

to heating. Solid70 elements were employed to mesh the CFST arch for 

the transient thermal analysis. Solid70 elements feature 8 nodes per el- 

ement, with each node possessing a single degree of freedom; temper- 

ature. An element size of 50 mm was adopted. The outer face of the 

steel tube was subjected to radiation, with the surface emissivity of 

steel taken as 0.7, and convection, with the convection coefficient taken 

as 25 W/m2 K. The time-temperature relationship for standard ISO-834 

fires is 

𝑇 𝑔 = 𝑇 0 + 345 log (8 𝑡 + 1) , (68) 

and where t is time in seconds and T 0 denotes initial temperature taken 

as 22 ∘ C. An analysis period of 3 hours was adopted. For the case of 

uniform thermal loading, a transient thermal analysis is not required 

and the thermal load can be input in the non-linear structural analysis 

stage. 

Solid186 elements were adopted to mesh the CFST arch which are 

a higher-order 3D element compatible with geometrical non-linearity, 

stress stiffening and plasticity. An element size of 50 mm was adopted. 

This element size was found to provide an efficient balance between 

computation time and accuracy. Smaller mesh sizes were not found to 

noticeably influence results. Geometric non-linearity is incorporated by 

activating the large deflection option. The arch ends were fully fixed 

from displacement and rotation in all three directions. A fully bonded 

contact model between the steel tube and concrete core was employed 

to comply with the assumption made in the derivations of the proposed 

numerical model. The influence of contact model on behaviour and in- 

plane strength is studied in Section 6.3 . Loading was applied in two 

steps, ensuring the arches were mechanically pre-loaded prior to heat- 

ing. Geometric imperfections are required to trigger anti-symmetric bi- 

furcation buckling upon reaching a critical state. An imperfection size of 

arch length S/1000 is adopted herein. The formation of a new geometry 

with an anti-symmetric geometric imperfection is conducted using the 

UPGEOM command following an eigenvalue buckling analysis. 

The radial deflections, axial forces, bending moments and stresses 

in the concrete core as predicted by system (31) –(36) and ANSYS are 

compared in Figs. 2, 3, 4 , 5, 7 and 12 for the case of fixed end supports. 

It can be seen that the two models agree well. Comparisons between the 

anti-symmetric buckling modes are also made. The anti-symmetric elas- 

tic loads determined by both methods are depicted in Fig. 8 . As with 

the pre-buckling behaviour, a high level of agreement exists between 

both models. The elastic buckling loads determined by both models 

vary between 5–10%. The FE results are slightly lower due to the ini- 

tial anti-symmetric imperfection included in the FE model required to 

trigger bifurcation buckling under combined thermal and mechanical 

loading. The initial imperfections cause a deviation away from the the- 

oretical buckling load. Moreover, the assumption of two-dimensional 

modelling adopted in the analytically derived models is validated as 

Fig. 14. Inelastic buckling strength of fixed CFST arches subjected to uniform temperature field. 𝐸 𝑠 = 200 GPa , 𝜎𝑦 = 350 MPa , 𝑓 ′𝑐 = 32 MPa , 𝐷 = 300 mm and 𝑡 𝑡 = 10 
mm. Arch A (left) features 2Θ = 120 ◦ and 𝑅 = 4450 mm, and Arch B (right) features 2Θ = 73 . 74 ◦ and 𝑅 = 5000 mm. 
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Fig. 15. Inelastic buckling strength of fixed CFST arches subjected to ISO fire loading. 𝐸 𝑠 = 200 GPa , 𝜎𝑦 = 350 MPa , 𝑓 ′𝑐 = 32 MPa , 𝐷 = 300 mm and 𝑡 𝑡 = 10 mm. Arch 

A (left) features 2Θ = 120 ◦ and 𝑅 = 4450 mm, and Arch B (right) features 2Θ = 73 . 74 ◦ and 𝑅 = 5000 mm. 

the FE model considers thermal expansions and mechanical strains of 

the cross-section. The FE model is further validated by comparison the 

non-discretisation mechanical-based formulation proposed by Heidar- 

pour et al. [12] for the non-linear inelastic analysis of steel I-section 

arches under linear thermal gradients. The circular steel arches were 

supported by elastic end restraints and subjected to vertically distributed 

loading. The central radial deflections as determined by both models are 

depicted in Fig. 13 for two levels of thermal gradient. The temperature 

at the bottom of the cross-section is denoted by T b and the ratio of the 

bottom temperature to top temperature is expressed as 𝛽. A small dif- 

ference is observed in the results predicted by both models. 

6.2. Inelastic in-plane buckling strength 

The FE model was employed to investigate the in-plane buckling 

strength of CFST arches subjected to uniform temperature fields and 

ISO-834 fire loading. Two geometrical configurations were analysed 

herein labelled as Arches A and B. Uniform thermal loading reduces 

the buckling strength of CFST arches, see Fig. 14 . The deterioration of 

buckling load is gradual up until 400 ∘C, after which a rapid decline in 

strength occurs. The considerable drop in strength above this temper- 

ature level is due to the reduction of steel yield strength and concrete 

compressive strength (in the case of the ASCE model). This result is 

common across both shallow and deep arches. In the case of fire load- 

ing, a great reduction of buckling load is observed during initial heating, 

which followed by a slower rate of deterioration. The buckling strength 

versus time for both Arches when subjected to fire loading are depicted 

in Fig. 15 . 

6.3. Sensitivity analysis 

The sensitivity of results when adopting different material and plas- 

ticity models for the concrete core have been assessed, see Fig. 14 . The 

critical buckling loads for arches under uniform thermal loading were 

determined when using the DP and IH plasticity models, and the ASCE 

and EC2 material models. It can be seen that the plasticity model makes 

Fig. 16. Elastic (left) and inelastic (right) buckling strength of fixed CFST arches subjected to uniform thermal loading with fully bonded and frictionless contact 

models. 𝐸 𝑠 = 200 GPa , 𝜎𝑦 = 350 MPa , 𝑓 ′𝑐 = 32 MPa , 𝐷 = 300 mm, 𝑡 𝑡 = 10 mm, 2Θ = 120 ◦ and 𝑅 = 4450 mm. 
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little difference to the predicted buckling loads. Upon comparison of the 

results for the two material models, it is observed that the ASCE model 

predicts a higher buckling load then the EC2 model across all temper- 

ature levels. This is to be expected as the ASCE model considers the 

effects of confinement and does not feature a degradation of concrete 

compressive strength below 400 ∘C. This effect is greater in Arch B due 

to its larger cross-sectional size and stockiness. 

By defining the elastic modulus as the tangent to the stess-strain 

curves at 𝜎 = 0 . 4 𝑓 ′
𝑐,𝑇 
, TTS is captured in the elastic modulus and is thus 

modelled implicitly. Consequently, development of TTS is independent 

of the order of heating and mechanical loading, and is reversible. The 

former is overcome by mechanically loading prior to heating. The sig- 

nificance of the latter is now analysed by comparing the results to the 

case when TTS is modelled as a plastic strain and hence irrecoverable. 

TTS was defined as a plastic strain using Eq. (5) . Fig. 15 depicts the in- 

plane strength of Arch B with 𝑓 ′𝑐 = 40 MPa when modelling the TTS as 

elastic (labelled as implicit) and plastic (labelled as explicit). It can be 

seen that modelling the TTS as an elastic or plastic strain caused little 

influence on results. 

In order to validate the assumption of a perfect bond used in the 

preceding analyses, the influence of steel-concrete contact model on 

buckling loads has been analysed. The buckling strength when assum- 

ing a fully bonded or frictionless contact model is shown in Figs. 15 and 

16 for the cases of fire loading and uniform thermal loading respectively. 

The results show that the contact model between the steel and concrete 

does not noticeably influence the in-plane elastic or inelastic buckling 

strength of CFST arches. 

7. Conclusions 

The non-linear behaviour and in-plane buckling modes of CFST 

arches under thermal and mechanical loading are investigated in this 

paper through analytical and numerical means. An energy method is 

invoked to derive the non-linear equations of equilibrium which, to- 

gether with elastic or inelastic material models, results in a system of 

first-order differential equations which can be numerically solved us- 

ing the boundary conditions of fixed arches, pinned arches or crown- 

pinned arches. Obtaining this solution is an iterative process due to the 

presence of elastic and plastic properties in the system, which are first 

estimated and subsequently refined by comparing the stress in the steel 

tube to the yield strength. Results show that upon initial heating, a CFST 

arch deflects upwards causing great increases to bending moment and, 

if shallow, axial force. Closed-form solutions are obtained for the elas- 

tic bifurcation buckling loads. The inelastic in-plane buckling strength 

is investigated by the development of a FE model. A reduction in elas- 

tic and inelastic anti-symmetric and symmetric buckling strength with 

thermal load is observed. Consequently, thermal loading may induce 

stability loss in CFST arches. The results of the derived models are com- 

pared to those predicted by the FE model developed and good agree- 

ment exists. Furthermore, a sensitivity analysis was conducted with the 

FE model which showed that the contact model for the steel-concrete in- 

terface, and concrete material and plasticity models did not noticeably 

influence in-plane buckling strength. The present analysis was limited 

to uniformly distributed radial loading, in-plane buckling behaviour and 

did not consider thermal separation of the tube and core, and interac- 

tion of local and global buckling behaviour. Varied mechanical loading 

conditions such as vertical distributed loading and concentrated loads 

require research attention. As CFST arches typically feature large free- 

standing portions, the influence of thermal loading on the out-of-plane 

stability is important. When heated, the steel tube may separate from 

the concrete core and buckle locally. Local buckling of the steel tube 

may reduce the global in-plane buckling strength of CFST arches. Ad- 

ditionally, an air-gap may be formed upon this separation influencing 

the transfer of heat from the tube to the core. These areas will form the 

subjects of future research works. 
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Appendix 

Closed-form solution for pre-buckling analysis of shallow arches 

In the case of shallow arches, the effect of the membrane strain on 

the radial deformation may be neglected. Hence, strain Eqs. (12) can be 

reduced to; 

𝜖𝑚 = 𝑤 

′ − 𝑣 + 

1 
2 
( 𝑣 ′) 2 , 𝜖𝑏 = − 

𝑦 𝑣 ′′

𝑅 

. (69) 

Applying the principle of virtual work whilst adopting strain Eq. (69) , 

gives the simplified yet accurate non-linear equilibrium equations; 

𝑁 

′ = 0 , (70) 

− 𝑀 

′′ + 𝑁𝑅 (1 + 𝑣 ′′) − 𝑞𝑅 

2 = 0 . (71) 

Substitution of the constitutive relation (28) into radial equilibrium 

Eq. (71) yields the following differential equilibrium equation 

𝑣 ′′′′

𝜇2 
+ 𝑣 ′′ = 𝑃 , (72) 

where 𝜇 is termed the axial force parameter defined as 

𝜇2 = 

𝑁𝑅 

2 

𝐸𝐼 𝑐 + ̂𝐸𝐼 𝑠 
, (73) 

and the dimensionless load parameter P is expressed as 

𝑃 = 

𝑞𝑅 − 𝑁 

𝑁 

. (74) 

The dimensionless radial displacement is obtained by solving 

Eq. (72) using the boundary conditions (18) and (19) or (20) , as 

𝑣 = 

𝑃 

𝜇2 

[ 
Φ[ cos ( 𝜇𝜃) − cos ( 𝜇Θ)] 

cos ( 𝜇Θ) 
+ 

1 
2 
( 𝜇2 𝜃2 − 𝜇2 Θ2 ) 

] 
. (75) 

The parameter Φ is defined as 

Φ = 1 for pin-ended arches , 

Φ = 𝜇Θ∕ tan ( 𝜇Θ) for fixed arches . 
(76) 

An equation relating 𝜇 and P is obtained by substituting Eqs. (69) and 

(75) into (25) , which yields 

𝐵 1 𝑃 
2 + 𝐵 2 𝑃 + 𝐵 3 = 0 , (77) 

with 

𝐵 1 = 

Φ2 

4 𝜇2 Θ2 

[ 
1 − 

tan ( 𝜇Θ) 
𝜇Θ

+ tan 2 ( 𝜇Θ) 
] 
+ 

Φ
𝜇2 Θ2 

[ 
1 − 

tan ( 𝜇Θ) 
𝜇Θ

] 
+ 

1 
6 
, (78) 

𝐵 2 = 

Φ
𝜇2 Θ2 

[ 
1 − 

tan ( 𝜇Θ) 
𝜇Θ

] 
+ 

1 
3 
, (79) 

𝐵 3 = 

𝜇2 Θ2 

𝜆2 
− 

̂𝐸𝐴 𝑐 𝜖𝑐,𝑡ℎ + 

̂𝐸𝐴 𝑠 𝜖𝑠,𝑡ℎ 

𝜃2 
(
𝐸𝐴 𝑐 + 𝐸𝐴 𝑠 

) . (80) 

In Eq. (80) , the geometric parameter 𝜆 is defined as 

𝜆 = 𝑅 Θ2 ∕ 𝑟 𝑥 = 𝑆Θ∕2 𝑟 𝑥 . (81) 

The axial force N can be found by solving quadratic Eq. (77) for a given 

temperature distribution T ( y ) and mechanical load q . The radial deflec- 

tion v and bending moment M are subsequently obtained by solving 

Eqs. (75) and (15) respectively. 
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Chapter 6. Thermal in-plane stability of concrete-filled steel tubular arches

6.5 Concluding Remarks

This chapter presented a comprehensive study into the in-plane response and buckling

strength of CFST arches subjected to mechanical loading and elevated temperature

fields. Analytical models for the elastic prebuckling and in-plane elastic anti-symmetric

buckling loads were derived. Additionally, numerical models were formulated for elastic

and inelastic prebuckling analyses. The in-plane inelastic buckling strength was sub-

sequently investigated using FE analysis. The findings made in this chapter can be

summarised as follows;

1. Elevated temperature fields significantly increase axial force in shallow fixed CFST

arches and less so in deep or pinned arches;

2. Great increases to the magnitude of bending moments are observed with temper-

ature rise in both shallow and deep arches;

3. Thermal and fire loading may induce in-plane stability loss in CFST arches due to

simultaneous degrading material properties and increasing longitudinal stresses;

4. Elastic anti-symmetric buckling strength generally deteriorates with temperature

level. The effect of temperature on buckling loads is significantly increased when

considering TTS;

5. Symmetric snap-through buckling loads did not always degrade with increasing

thermal load as shallow crown-pinned arches displayed an increase in elastic buck-

ling strength;

6. Material failure is the governing in-plane failure mode in shallow fixed CFST when

subjected to combined mechanical and thermal or fire loading. Limit instability

only occurs in very shallow arches;
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7. The effect of temperature on the in-plane inelastic buckling strength slightly in-

creases with arch included angle and slenderness; and

8. The assumed contact model at the steel-concrete interface had a negligible effect

on behaviour and buckling loads.
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Chapter 7

Thermal out-of-plane stability of concrete filled

steel tubular arches

7.1 Introduction

In this chapter, the elastic and inelastic out-of-plane buckling strength of CFST arches

subjected to combined mechanical and thermal loading is numerically investigated.

A flexural-torsional buckling analysis is conducted using energy methods resulting in

a numerical model which is applicable to arches subjected to uniformly distributed

or central concentrated loads, and for arches featuring pinned or fixed end supports.

The critical loads are dependant on the pre-buckled state which must first be solved.
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The BVP formulated in Chapter 6 is utilised for the required prebuckling analysis and

generalised to consider central concentrated loads and basic creep strain: modelled using

the fractional derivative-based creep law developed in Chapter 3. The inelastic out-of-

plane buckling strength of CFST arches at elevated temperatures is then studied using

FE analysis. The elastic flexural-torsional buckling loads determined by the derived

numerical model, in addition to the results predicted by the prebuckling analysis, are

employed to validate the developed FE model. Subsequently, parametric studies and

sensitivity analyses are presented.

The following paper is included in this chapter;

1. Y. Bouras, and Z. Vrcelj. 2020. Out-of-plane stability of concrete-filled steel

tubular arches at elevated temperatures. Submitted to International Journal of

Mechanical Sciences, Under Review.
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Out-of-plane stability of concrete-filled steel tubular arches at elevated
temperatures
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Abstract

This paper investigates the flexural-torsional buckling behaviour of concrete-filled steel tubular circular arches under

mechanical and thermal loading. A thermo-elastic pre-buckling analysis is first conducted by employing the princi-

ple of virtual work to derive the non-linear equations of equilibrium. The governing geometrical, equilibrium and

constitutive material relations are numerically solved as a system of first-order differential equations with boundary

conditions of pinned or fixed ends. The prebuckling analysis is then generalised to consider basic creep strain which

is found to have a negligible impact on the prebuckling response under short-term heating. Subsequently, an elastic

out-of-plane buckling analysis is performed using energy methods and the influence of thermal loading on buckling

loads is examined. The results show that stability boundaries decrease with an increase in thermal loading, and that the

rate of reduction is independent of the type of end-supports. Additionally, a Finite Element (FE) model is developed

to analyse the inelastic lateral buckling strength of CFST arches under both uniform thermal and fire loading. The FE

analysis is validated by comparison to the numerical method derived herein for the elastic buckling analysis.

Keywords: Buckling, CFST, Creep, Finite Element, Fractional derivatives, Lateral stability, Thermal loading

1. Introduction

The use of concrete-filled steel tubular (CFST) members in conventional structures provides many benefits relating

to both mechanical behaviour and constructibility. Advantages of the former include increased compressive strength,

reduced shrinkage in the concrete core, concrete confinement and improved local buckling strength of the steel tube.

Consequently, CFST sections have recently surged in popularity for use in arch bridges, with over 400 constructed

worldwide [1]. As arches experience primarily compression, they are prone to stability loss. In-plane buckling of

arches may be in an anti-symmetric or symmetric form. Additionally, an arch may suddenly displace laterally and

twist out of plane when subject to in-plane bending and/or compression in a flexural-torsional type buckling mode

[2]. The problem of stability is paramount in CFST arches as the increased compressive strength gained with CFST

sections may result in the use of slender structures. Geometrical non-linearities in shallow arches [3, 4] convolute the

stability analysis and reduce load carrying capacity.

Classic studies investigating elastic flexural-torsional buckling of arches include the work of Timoshenko and Gere

[5], who developed closed form solutions for simply supported arches of rectangular cross-section under uniform
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compression and bending, and Vlasov [6] who extended Timoshenko and Gere’s study to mono-symmetric cross

sections. Since these works, many researchers have investigated elastic flexural-torsional buckling of arches [7, 8, 9,

10, 11, 12, 13]. As with in-plane stability analysis, out-of-plane buckling problems have been investigated using two

methods which include the static equilibrium and energy methods, adopted in [5, 6] and [5, 7, 8, 9, 10, 11, 12, 13]

respectively. Critical reviews of these early studies were conducted by Papangelis and Trahair [9] and Kang and Yoo

[12]. In these studies, classical buckling method was used to obtain the critical load, thus the effects of in-plane

pre-buckling deformations were ignored. In-plane pre-buckling deformations alter the curvature of an arch, which

significantly influences the out-of-plane buckling resistance [14].

The effect of pre-buckling deformations on the elastic lateral-torsional buckling of simply supported arches sub-

jected to uniform bending was studied in [8, 7, 14]. In these works, the in-plane pre-buckling deformations were

found to increase the moments causing lateral instability. Furthermore, Pi et al [14] discovered that incorporating

pre-buckling deformations in stability analyses allows torsional buckling to occur, in the case when lateral displace-

ments are fully restrained. As the lateral buckling behaviour of fixed arches differs from that of simply-supported

arches, the pre-buckling effects on buckling of fixed arches cannot be assumed the same as for pinned arches [15].

Under uniform positive bending, the pre-buckling deformations reduce the moments causing lateral instability in fixed

arches, contrasting the increase observed in pinned arches [15]. These effects are magnified with an increasing in-

cluded angle and out-of plane slenderness ratio. The influence of pre-buckling deformations on the flexural-torsional

buckling behaviour of arches under uniformly distributed radial loads has been researched [16, 17, 18]. Pi and Brad-

ford [16] generated a three-dimensional curved beam finite element (FE) model for the numerical determination of

flexural-torsional buckling loads and post-buckling analysis of circular thin-walled simply-supported shallow arches.

Analytical solutions for arches subjected to the same conditions were produced by Pi et al. [19]. In these studies,

it was found that the flexural-torsional buckling loads may be underestimated if in-plane pre-buckling behaviour is

ignored [16, 19]. Generalisations to in-plane fixed supports and variable load height was made by Bradford and Pi

[18]. The use of in-plane fixed connections greatly increased the lateral buckling load of the arch. Arches under a

central concentrated load experience combined axial compression and bending moment, which are dependent on arch

slenderness and included angle and vary throughout the length of the arch [20]. The buckling analysis of such arches

is complicated and highly dependent on pre-buckling stresses. Pi et al [20] developed the first analytical solutions

to the elastic lateral-torsional buckling problem of a circular arch subjected to a central concentrated load by using

the principle of virtual work and the Rayleigh-Ritz method. The in-plane fixed and out-of-plane pinned cases were

analysed, in addition to investigating the effects of load position. As with the uniformly distributed case, both in-plane

boundary conditions and load application position greatly influenced critical loads. Building on this study, Pi and

Bradford [21] investigated the generalised case of rotational end restraints, where the sensitive relationship between

buckling load and rotational restraint stiffness was analytically derived. The results for both studies [20, 21] were

verified by FE analysis and a curved beam element code developed by the authors in [22].

The failure modes of arches consist of buckling of slender arches, and the plastic collapse of stocky arches. Gen-
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erally, failure will involve an interaction between stability loss and material yielding, which is dependent on the arch’s

loading and geometrical configuration, residual stresses and geometric imperfections [23]. Pi and Trahair [24] in-

vestigated the out-of-plane inelastic buckling strength of circular I-section steel arches in uniform compression and

bending through the development of a non-linear three dimensional FE model. In-plane curvature, included angle, ini-

tial geometric imperfections, large deformations residual stresses and material inelasticity were all incorporated into

the model. The effects of in-plane curvature and included angle were found to substantially influence the buckling

and strength of the arches. An increase in arch angle and curvature results in a decreased flexural-torsional buck-

ling strength. This model was extended to account for general loading scenarios including concentrated loads and

uniformly distributed transverse loads by the authors in [25]. It was found that the buckling moments under central

concentrated loads were generally less than for arches under a quarter point concentrated load. Similarly, buckling

loads of arches subjected to uniformly distributed loading over their entire length were less than when loaded with

a uniformly distributed load over half the arch. Pi and Bradford [26] conducted a study for fixed I-section arches

subject to uniform compression, uniform bending and combined compression and bending. Design equations for

pin-ended arches were deemed insufficient for use on fixed arches and novel design equations were proposed for fixed

arches. The out-of-plane strength of high strength steel arches was analysed in [27] where design recommendation

were proposed for the cases of uniform compression, uniform bending and combined compression and bending. The

inelastic flexural-torsional buckling and strength of circular steel arches with central elastic-torsional restrains was

studied in [28]. Central torsional restraint were found to increase the strength of steel arches. However, this im-

provement in strength reduces with decreasing arch slenderness. The stiffness of the central rotational restraint was

determined to reach a threshold value at which further increases in stiffness did not strengthen the arch. Slenderness

and included angle were found to be the key factors influencing the threshold stiffness. Furthermore, the threshold

stiffness is less for arches that fail inelastically, then that for arches buckling elastically. Pi and Bradford [29] proposed

a three-dimensional curved beam element model for the non-linear elastic-plastic flexural-torsional buckling and post-

buckling analysis of circular steel arches under a central concentrated which accounts for large twist rotations. The

included angle, arch slenderness, torsional parameter and material yielding were found to greatly influence buckling

behaviour. Stocky arches featuring low included angles fail in an elastic-plastic mode. For the case when stocky

arches feature large included angles, the elastic-plastic and elastic buckling loads for pin-ended arches are identical,

whilst for fixed arches, the elastic-plastic critical load is smaller than the elastic buckling load. The elastic-plastic and

elastic buckling loads for slender arches are equal as the arch loses stability prematurely. Wu et al. [30] investigated

the elastic and elastic-plastic buckling of fixed parabolic CFST arches and developed a novel method for predicting

the in-plane strength, and Pi et al. [31] proposed design equations considering non-linear bending actions.

Upon reaching a critical temperature, an arch may buckle laterally in a flexural-torsional mode due to the increased

axial compression and bending moments induced by restrained thermal expansion and rotations. Heidarpour et al [32]

investigated the thermo-elastic flexural-torsional buckling of steel I-section arches at elevated temperatures. Adopting

the non-discretisation mechanical based method developed in [33] for the non-linear pre-buckling analysis, the critical
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temperatures causing lateral instability were determined using classical buckling theory. A parametric study was

then performed to investigate the effect of multiple parameters on critical buckling temperatures which included the

included angle, slenderness ratio and imposed load for pinned, fixed and spring supported arches. Similarly to in-

plane stability, an increase in included angle and stockiness of the member resulted in a higher magnitude of buckling

temperature. In addition, the influence of the ratio of the temperature in the top fibre of the cross section to the

temperature in the bottom fibre on the critical temperatures was analysed and deemed significant. Conversely, the

size of external load was found to have a smaller impact on critical temperatures. However, thermal induced lateral

instability in arches requires a greater research focus as studies on the subject are limited. Thermoelastic buckling

of steel beams [34, 35, 36] and in-plane thermoelastic stability of steel arches [37, 38, 39, 32, 40, 41] have received

more research attention. Temperature fields may trigger lateral-torsional buckling or in-plane flexural buckling in

slender steel beams, and in-plane anti-symmetric bifurcation buckling or symmetric snap-through buckling in steel

arches. Similar to temperature effects, studies on the out-of-plane stability loss caused by viscoelasticity in arches are

also rare. Jiang and Lu [42] studied the reliability and sensitivity of the out-of-plane buckling loads of CFST arches

while considering creep effects using a time-integrated approach and the finite element reliability method. Geng et

al. [43] investigated the out-of-plane creep buckling behaviour of CFST arches caused by instantaneous overload.

The significance of prebuckling time effects on the ultimate capacity of fixed-ended parabolic arches under uniformly

distributed radial loading were analysed using FE analysis, and it was found that time effects may reduce buckling

loads up to 18%.

Elevated temperature fields have been shown to significantly impact the in-plane elastic and inelastic buckling

strength of CFST arches [44]. In addition to the effect caused by the increase in axial forces and bending moments,

critical buckling loads in CFST arches further deteriorate due to the great reductions in concrete stiffness which is

magnified when considering transient thermal strain (TTS). TTS is a thermo-mechanical strain only occurring in pre-

loaded concrete upon virgin heating and is independent of time [45]. Despite this, studies investigating the thermal

out-of-plane stability of CFST arches do not appear in the open literature. This is an important problem as exposure

to extreme temperatures may induce flexural-torsional buckling in CFST arches if sufficient lateral restraints are not

provided. Due to the lack of research on this subject, this paper investigates the effects of thermal and fire loading on

the out-of-plane stability of CFST arches under uniformly distributed radial loading. A non-linear elastic prebuckling

analysis is first presented for shallow CFST arches subjected to uniformly distributed radial loads and uniform thermal

loading with pin or fixed end supports. Subsequently, an elastic out-of-plane buckling analysis is conducted which

considers non-linear prebuckling deformations. These following assumptions are made for the elastic prebuckling and

flexural-torsional buckling analyses:

• The Euler-Bernoulli hypothesis is valid, that is plain sections remain plane post deformation;

• The temperature field is constant through the length of the arch and cross-section;

• Cross-sectional thermal expansions are negligible;
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• Fully bonded contact exists at the steel-concrete, and thus the longitudinal strains of both materials are equal

along this face;

• The prebuckled arch does not deform laterally or twist;

• The mechanical load, elevated temperature level and in-plane prebuckling stresses and deformations are all

constant during flexural-torsional buckling; and

• The direction of the radial load q remains acting at the centroidal axis of the arch and does not change during

bifurcation.

The inelastic out-of-plane buckling strength is then analysed with FE analysis. Results predicted by the FE model and

the derived numerical models are compared. Agreeable results would confirm validity of assumptions regarding Euler-

Bernoulli theory and cross-sectional thermal expansions. Additionally, a sensitivity analysis is conducted to assess

the influence of the contact model at the steel-concrete interface, and concrete material models on the out-of-plane

buckling strength.

2. Material models

2.1. Steel

The total longitudinal strain ε in the confining steel tube is expressed as;

ε = εch + εs,th, (1)

where εch is the total instantaneous mechanical strain, consisting of the sum of the elastic and plastic strains, and

εs,th is the thermal expansive strain. The temperature dependent stress-strain equation developed in [46] is employed,

defined as

σs =


Es,T εch for εch ≤ εp

(c1 εch + c2)σy,T − c3 σ
2
y,T /Es,T for εch > εp,

(2)

where the yield strain is

εp =
c2 σy,T − c3 σ

2
y,T /Es,T

Es,T − c1 σy,T
, (3)

with coefficients c1 = 12.5, c2 = 0.975 and c3 = 12.5. The elastic modulus Es,T , yield strength σy,T and thermal strain

εs,th are adopted from the Eurocode 3 (EC3) [47].

2.2. Concrete

The following linear elastic concrete model is utilised for the elastic analyses, defined as;

ε =
σc

Ec,T
+ εtr + εc,th. (4)
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The explicit Eurocode 2 (EC2) model [48] is adopted for the TTS, known as:

εtr =
σc

f ′c
φ (T ) =

2σc

3 f ′c


εmax − εmin

f ′c,T / f ′c

 , (5)

where Ec,T is the temperature sensitive elastic modulus, εc,th is the thermal expansive strain in the concrete, f ′c is the

compressive strength of concrete at ambient temperature, f ′c,T is the compressive strength at an elevated temperature,

εmax is the peak stress strain (PSS) considering TTS and εmin is the minimum PSS when ignoring TTS. These variables

are available in the EC2 [49] (siliceous concrete). Substituting Eq. (5) into (4) gives;

ε =
σc

Êc,T
+ εc,th = σc

(
1

Ec,T
+
φ (T )

f ′c

)
+ εc,th. (6)

When considering basic creep strain, Eq.(4) is generalised as;

ε =
σc

Ec,T
+ εtr + εc,th + εcr. (7)

The linear component of the fractional viscoelastic rheological law formulated in [50] is adopted to model the high

temperature creep in concrete. Basic creep strain is expressed as variable-order fractional derivative equation;

Dα (T )
t ecr =

σ

η (T )
. (8)

Dα (T )
t is the operator of the variable-order fractional derivative of order α (T ) with respect to time t with 0 < α < 1

and t > 0. The temperature dependent dynamic viscosity is denoted as η (T ). These parameters are available in [50].

The Caputo definition of the fractional derivative of a function f (t) is adopted, defined as;

Dα (t)
t f (t) =

1
Γ[1 − α(t)]

∫ t

0

D1 f (τ)
(t − τ)α(t) dτ, (9)

with the Gamma function known as;

Γ(α) =

∫ ∞

0
e−ttα−1 dt. (10)

The ASCE [51, 46] constitutive law is one of two inelastic concrete models considered. The ASCE model incor-

porates confinement and implicitly considers TTS. It is defined as;

σ = f ′c

1 −
(
ε − εmax

εmax

)2 , (11)

where εmax is the PSS. In the ASCE model, the relationship between compressive strength and temperature is;

f ′c,T =



f ′c for 22◦C ≤ T ≤ 450◦C,

f ′c [2.011 − 2.353(T − 20) × 10−3] for 450◦C ≤ T ≤ 874◦C,

0 for 874◦C < T.

(12)

The EC2 model is the second inelastic concrete model considered in this study;

σ

f ′c,T
=

3ε
εmax[2 + (ε/εmax)3]

. (13)
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The reduction factors for the compressive strength are available in the EC2 [49]. The EC2 model for tensile strength

at elevated temperatures is defined as:

fck,t (T ) =


fck,t for 20◦C ≤ T ≤ 100◦C,

fck,t[1.0 − (T − 100)/500] for 100◦C ≤ T ≤ 600◦C,
(14)

where fck,t is the concrete tensile strength under ambient conditions.

3. Non-linear elastic pre-buckling analysis

3.1. Uniformly distributed radial load

Consider a circular shallow CFST arch with pinned or fixed ends and subjected to a uniformly distributed radial

load q and constant elevated temperature level T . The origin o is stationed at the arch’s geometrical center with the

axis os aligning with centroidal axis of the arch and the axis oy changing direction along the arch length being always

directed to the center of the arch. The geometrical and loading configuration is depicted in Figure 1. The non-linear

longitudinal normal strain equation accurate for shallow arches is adopted [3, 4];

ε = εm + εb (15)

where ε is the total strain in the CFST cross section at an arbitrary point P, and

εm = w′ − v +
1
2

v′2, εb = −y v′′

R
, (16)

where εm and εb are the membrane and bending strains respectively, ŵ is the axial displacement, v̂ is the radial

displacement, w = ŵ/R, v = v̂/R, y is the vertical coordinate of P, ( )′ = d( )/dθ, ( )′′ = d2( )/dθ2 and θ denotes the

angular coordinate.

Figure 1: Geometrical and loading configuration of shallow CFST arch
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The virtual work principle is utilised to obtain the non-linear equilibrium equations, which requires that;
∫

Vs

σsδε dVs +

∫

Vc

σcδε dVc −
∫ Θ

−Θ

qR2δv dθ = 0, ∀ δv, δv′, δv′′, δw, δw′ (17)

where Θ represents half the arch included angle, Vs is the volume of the steel tube, Vc is the volume of the concrete

core and δv, δv′, δv′′, δw and δw′ are kinematically possible variations of displacement. The definition for axial force

N is;

N = −
∫

Ac

σc dAc −
∫

As

σs dAs, (18)

and the bending moment M defined by

M =

∫

Ac

σc y dAc +

∫

As

σs y dAs. (19)

In Eqs. (18) and (19), As and Ac are the areas of the outer steel tube and inner concrete core respectively. Substituting

Eqs. (15), (18) and (19) into (17), and upon integration, gives the non-linear equilibrium equations;

N′ = 0, (20)

in the axial direction, and

−M′′ + NR (1 + v′′) − qR2 = 0, (21)

in the radial direction. Additionally, the static boundary condition for a pin-ended arch is obtained;

v′′(Θ) = v′′(−Θ) = 0. (22)

This adjoins the geometric boundary conditions;

v (Θ) = v (−Θ) = w (Θ) = w (−Θ) = 0, (23)

for an arch with pinned-ends, and

v (Θ) = v (−Θ) = v′ (Θ) = v′ (−Θ) = w (Θ) = w (−Θ) = 0, (24)

for fixed-ended arch. The axial force equation is obtained by substituting Eqs. (1) and (6) into (18):

N = EsAsεs,th + EcAcεc,th − εm (EsAs + EcAc). (25)

The moment-curvature relationship is similarly derived by combining Eqs. (1), (6), (16) and (19):

M = − (EsIs + EcIc)
R

v′′, (26)

Thus, a boundary value problem is formulated comprised of the system of ordinary differential equations (equi-

librium Eqs. (20) and (21) and constitutive Eqs. (25) and (26)) and boundary conditions (23) or (24). Introducing a

set of dependent variables:

x1 = v, x2 = v′, x3 = M, x4 = M′, x5 = N, x6 = w, (27)
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which upon differentiation give,

x′1 = x2, (28)

x′2 =
−x3 R

EsIs + EcIc
, (29)

x′3 = x4, (30)

x′4 = x5 R (1 + x′2) − qR2, (31)

x′5 = 0, (32)

x′6 =
EsAsεs,th + EcAcεc,th − x5

EsAs + EcAc
+ x1 − 0.5 x2

2. (33)

Given load q and temperature T , system (28)-(33) can be numerically solved with the boundary conditions

x1 (Θ) = x1 (−Θ) = x3 (Θ) = x3 (−Θ) = x6 (Θ) = x6 (−Θ) = 0, (34)

for an arch with pinned ends, or

x1 (Θ) = x1 (−Θ) = x2 (Θ) = x2 (−Θ) = x6 (Θ) = x6 (−Θ) = 0, (35)

for a arch fixed at its ends. Solving system (28)-(33) has been found to be insensitive to initial guess values. An

example of the results obtained by solving system (28)-(33) is shown in Figure 2 where the effect of uniform thermal

loading on axial force N and central displacement at the arch centre v̂ (0) of a shallow fixed CFST arch is demonstrated.

Figure 2: Influence of uniform thermal load on axial force (left) and central radial displacement (right) of fixed-ended CFST arch. q = 450 kN/m,

2Θ = 73.34◦, R = 5000 mm, Es = 200 GPa, Ec = 32, 800 MPa, Cross-section diameter = 300 mm and steel tube thickness = 10 mm.
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3.2. Central concentrated load

The loading case of a central concentrated load Q is now considered. The equations of equilibrium and BC’s are

again derived by employing the virtual work principle;
∫

Vs

σsδε dVs +

∫

Vc

σcδε dVc − Q
2
δv (0) = 0, ∀ δv, δv′, δv′′, δw, δw′. (36)

which upon integration over half the larch length gives the following non-linear equilibrium equations;

N′ = 0, (37)

in the axial direction, and

−M′′ + NR (1 + v′′) = 0. (38)

If the arch is integrated over the left-side [−Θ, 0], the BC representing zero shear force at the arch centre is obtained;

−M′

R
+

Q
2

+ N v′ = 0, at θ = 0. (39)

Eq.(39) takes the form

−M′

R
− Q

2
+ N v′ = 0, at θ = 0. (40)

when the arch is integrated over the right side [0,Θ]. This adjoins the known static and geometric BC of pinned or

fixed arches. Using the definition of dependent variables introduced earlier, considering symmetry and only the right

side of the arch, the BC’s may be expressed as,

x1 (Θ) = x2 (0) = x3 (Θ) = − x4 (0)
R
− Q

2
= x6 (Θ) = x6 (0) = 0, (41)

for an arch with pinned ends, or

x1 (Θ) = x2 (Θ) = x2 (0) = − x4 (0)
R
− Q

2
= x6 (Θ) = x6 (0) = 0, (42)

for a arch fixed at its ends.

System (28)-(33) can be utilised to analyse the prebuckling state of a CFST arch given central concentrated load Q

and temperature level T by setting q = 0 and adopting BC’s (41) or (42). An example is shown in Figure 3 where the

effect of uniform thermal loading on the bending moment and axial force of a shallow fixed CFST arch under central

concentrated loading is depicted. As with the case of uniformly distributed radial loading, elevated temperature fields

cause the arch to displace upwards and greatly increase the magnitudes of axial force and bending moments.
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Figure 3: Influence of uniform thermal load on bending moment (left) and axial force (right) of fixed-ended CFST arch under central concentrated

load. Q = 200 kN, 2Θ = 37.85◦, R = 9250 mm, Es = 200 GPa, Ec = 32, 800 MPa, cross-section diameter = 300 mm and steel tube thickness = 10

mm.

3.3. Effects of basic creep

The significance of basic creep strain on the prebuckling behaviour of CFST arches is now examined through

generalising the preceding analysis by adopting of Eq. (7) to define the total strain in the concrete core. Discretisation

of Eq. (8) is first conducted in order to numerically approximate the basic creep strain (see [50] for the derivation);

εcr,n = εcr,n−1 −
n−2∑

j=0

(εcr, j+1 − εcr, j)[(n − j)1−αn − (n − j − 1)1−αn ] +
σn

ηn
Γ (2 − αn)∆t

αn , (43)

where time t = n ∆t and ∆t and n denote the time step size and current time step respectively. As the numerical

procedure begins at n = 2, the creep strains at t = 0 and t = 1 are required to be predetermined. These are known as;

εcr(1) =
σ1

η1
Γ (2 − α1)(∆t)α1 + εcr(0), (44)

and εcr(0) = 0.

The procedure outlined earlier to obtain the constitute equations for axial force and bending moment are followed.

In this case, Eqs. (1), (8), (18) and (44) are combined to give the axial force at time step n;

Nn = Es,nAs(εs,th,n − εm,n) +
Ec,nAc(εc,th,n − εm,n) − Ec,n εcr,N

1 + Ec Γ (2 − αn) ∆tαn/ηn
, (45)

where

εcr,N = εcr,n−1(N) −
n−2∑

j=0

(
εcr, j+1(N) − εcr, j(N)

) [
(n − j)1−αn − (n − j − 1)1−αn

]
. (46)

Likewise, the bending moment is obtained at time step n upon combination of Eqs.(1), (8), (19) and (44);

Mn =
Es,nIsv′′n

R
− Ec,nIc v′′n /R + Ec,n εcr,M

1 + Ec Γ (2 − αn) ∆tαn/ηn
, (47)
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with

εcr,M = εcr,n−1(M) −
n−2∑

j=0

(
εcr, j+1(M) − εcr, j(M)

) [
(n − j)1−αn − (n − j − 1)1−αn

]
. (48)

Creep equations εcr(N) and εcr(M) are functions of axial force and bending moment respectively in place of longitu-

dinal stress as seen in Eqs. (43) and (44). Substitution of dependant variables (27) into Eqs. (45) and (47), and after

rearranging, yields;

x′2,n = − x3,n R (1 + Ec,n Γ (2 − αn) ∆tαn/ηn) + Ec,n R εcr,M

Es,nIs (1 + Ec,n Γ (2 − αn) ∆tαn/ηn) + Ec,nIc
, (49)

and

x′6,n =
Ec,nAcεc,th,n − Ec,n εcr,N + (Es,nAsεs,th,n − x5,n)(1 + Ec,n Γ (2 − αn) ∆tαn/ηn)

Es,nAs (1 + Ec,n Γ (2 − αn) ∆tαn/ηn) + Ec,nAc
+ x1,n − 0.5 x2

2,n. (50)

Although behaviour is now time-dependant and dynamic in nature, adoption of the static equilibrium equations

remains valid for creep and creep buckling problems. Thus, the prebuckled state when considering viscoelastic effects

can be solved numerically by replacing Eqs. (29) an (33) with (49) an (50) in the system (28)-(33) subjected to BC’s

(34), (35), (41) or (42). The BVP must be solved at every time step from n = 2 until the desired final time, and due

to the history dependence of the creep law, εcr(N) and εcr(M) must be determined and recorded after every time step

for use in the proceeding time steps. As stated earlier, solutions for the first two time steps must be initially known.

These can be obtained by solving the corresponding elastic problem (εcr=0) for when n = 0 and by setting εcr,N = 0

and εcr,M = 0 for when n = 1.

Two scenarios have been considered to analyse the significance of basic creep strain on the thermal response

of CFST arches; constant elevated temperature levels and time-varying temperature fields. Of interest is short-term

or transient heating which would be experienced during fire exposure. Hence, the total analysis time is limited to

300 mins. The effect of non-varying elevated temperatures on the axial force and bending moments are depicted in

Figures 4 and 5 respectively for both pinned and fixed CFST arches. It can be seen that creep strain causes a slight

reduction in axial force. The time-evolution of bending moment is more noticeable. CFST arches deflect downwards

with progression of time due to creep resulting in the development of positive bending. This is shown in Figure 5

as a reduction on the magnitudes of the negative moments. Though it is noted that time-induced changes to bending

moment are still small when compared to those caused by the thermal expansive strains. For the case of time-varying

temperature, the CFST arch is subjected to a heating rate of 1.5◦C/min with the time-evolutions of axial force and

bending moment depicted in Figures 6 and 7 respectively. Practically identical results are obtained when creep strain

is and is not considered. Therefore, due to the negligible effect basic creep strain has on the prebuckling behaviour

under transient heating scenarios, in addition to the small changes to axial force observed under constant elevated

temperatures, time effects will not be considered in the following flexural-torsional buckling analyses.
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Figure 4: Effect of basic creep strain on axial force in pinned (left) and fixed (right) CFST arches at constant elevated temperature levels. T = 400◦C,

q = 300 kN/m, 2Θ = 73.74◦, R = 5000 mm, cross-section diameter = 300, steel tube thickness = 10 mm and ∆t=10.

Figure 5: Effect of basic creep strain on bending moment in pinned (left) and fixed (right) CFST arches at constant elevated temperature levels

temperature. q = 300 kN/m, 2Θ = 73.74◦, R = 5000 mm, cross-section diameter = 300, steel tube thickness = 10 mm and ∆t=10.
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Figure 6: Effect of basic creep strain on axial force in pinned (left) and fixed (right) CFST arches subjected to time-varying uniform temperature

fields. Heating rate is 1.5◦C/min. T = 400◦C, Q = 200 kN, 2Θ = 73.74◦, R = 5000 mm, cross-section diameter = 300, steel tube thickness = 10

mm and ∆t=10.

Figure 7: Effect of basic creep strain on bending moment in pinned (left) and fixed (right) CFST arches subjected to time-varying uniform

temperature fields. Heating rate is 1.5◦C/min. q = 200 kN, 2Θ = 73.74◦, R = 5000 mm, cross-section diameter = 300, steel tube thickness

= 10 mm and ∆t=10.

4. Elastic out-of-plane buckling analysis

The simultaneous stiffness reduction and longitudinal stress increase induced by elevated temperatures may cause

a CFST arch to rapidly displace out-of-plane and buckle in a flexural-torsional mode, see Figure 8.
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Figure 8: Flexural-torsional buckled configuration

The potential energy of the system in an infinitesimal flexural-torsional buckled state can be written as;

Π =

∫

Vs

1
2

(Esε
2
ss + Gsγ

2
sx + Gsγ

2
sy) + σssεss dVs +

∫

Vc

1
2

(Ecε
2
ss + Gcγ

2
sx + Gcγ

2
sy) + σscεss dVc, (51)

where σss and σsc are the constant prebuckling longitudinal stresses in the steel tube and concrete core respectively.

The steel Gs and concrete Gc shear moduli are;

Gs =
Es

2 (1 + vs)
, Gc =

Ec

2 (1 + vc)
. (52)

Poisson’s ratio is assumed to be independent of temperature and is adopted as vs = 0.3 for steel and vc = 0.18 for

concrete. The out-of-plane buckling longitudinal εss and shear strains γsx and γsy are expressed as [17];

εss = − x
R

(u′′ − φ) − ω
R

(φ′ − u′′) +
1
2

u′2 +
y
R

(u′′φ +
1
2
φ2) +

1
2 R2 (x2 + y2)(φ − u′)2, (53)

γsx = − 1
R

(
y +

∂ω(x, y)
∂x

)
(φ − u′), and γsy =

1
R

(
x +

∂ω(x, y)
∂y

)
(φ − u′), (54)

with φ denoting the twist rotation of the cross-section about axis os, u = û/R where û is the lateral displacement in

direction of axis ox and ω(x, y) is the cross-secional warping function. Upon substitution of Eqs. (53) and (54) into

Eq.(51), and ignoring higher-order terms, Eq.(51) can be expressed as;

Π =

∫ Θ

−Θ

1
2


ẼIy

R2 (u′′ + φ)2 +
G̃J
R2 (φ′ − u′)2 +

ẼIw

R4 (φ′′ − u′′)2

 R dθ+
∫ Θ

−Θ

[
M
R

(
u′′φ +

1
2
φ2

)
− N

(
u′2

2
+

r̃2

2 R2 (φ′ − u′)2
)]

R dθ.

(55)

The terms ẼIy, G̃J, ẼIw and r̃ are the temperature dependant composite cross-sectional properties, defined as;

ẼIy = EsIy,s + EcIy,c, G̃J = GsJs + GcJc, ẼIw = EsIw,s + EcIw,c and r̃ =

(
Ix,s + Iy,s

As
+

Ix,c + Iy,c

Ac

)1/2

(56)
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Js and Jc represent the torsional constants for the steel tube and concrete core respectively, and Iw,s and Iw,c denote

the warping constants for the tube and core. As circular CFST cross-sections are doubly-symmetric, the in-plane (Ix,s

and Ix,c) and out-of-plane (Iy,s and Iy,c) second moment of areas are equal.

The Rayleigh-Ritz method is employed to obtain the critical load. The first mode buckled shapes are assumed to

behave according to;

u
uc

=
φ

φc
= cos

(
πθ

2Θ

)
, for pinned arches, and

u
uc

=
φ

φc
= cos

(
πθ

Θ

)
+ 1, for fixed arches. (57)

where uc and φc are the dimensionless maximum (central) buckling lateral displacements and twist rotations respec-

tively. Eq.(57) satisfies the boundary conditions for pinned ends u = φ = 0 at ±Θ and fixed ends u = φ = φ′ = 0 at

±Θ. Substituting Eq.(57) into Eq.(55) and integrating by parts yields;

Π (uc, φc) = k11 u2
c + k2

12 uc φc + k22 φ
2
c . (58)

The parameters k11, k12 and k22 are derived as;

k11 =
ẼIy

2R
α4Θ +

ẼIw

2R3 α
4Θ +

G̃J
2R

α2Θ − NRα2Θ

(
1
2

+
r̃2

2R2

)
, (59)

k12 = − ẼIy

2R
α2Θ − ẼIw

2R3 α
4Θ − G̃J

2R
α2Θ + Nα2Θ

r̃2

2R
− α

2

2

[
M(Θ)

Θ

2
− M′(Θ)

Θ2

4
+ M′′(Θ)

Θ3

12

]
, (60)

k22 =
ẼIy

2R
AΘ +

ẼIw

2R3 α
4Θ +

G̃J
2R

α2Θ − Nα2Θ
r̃2

2R
+ M(Θ)

Θ

4
− M′(Θ)

Θ2

8
+ M′′(Θ)

Θ3

24
(61)

with

α =
π

2Θ
for pinned ends, α =

π

Θ
for fixed ends, and (62)

given A = 1 for pin-ended arches and A = 3 for fixed-ended arches.

The equations governing the out-of-plane buckling state are obtained using the principle of stationary potential

energy, which requires that;
∂Π(uc, φc)

∂ uc
= 0 and

∂Π(uc, φc)
∂ φc

= 0. (63)

Performing partial differentiation with respect to lateral deformation and twist on potential energy function (58) yields

the following algebraic relations; 
k11 k12

k12 k22




uc

φc


=


0

0


. (64)

The determinant of the coefficient matrix (64) must vanish for non-trivial solutions for uc and φc, giving;

k11 k22 − k2
12 = 0. (65)

The elastic out-of-plane bucking load for a pinned or fixed-ended arch under a uniform temperature field can be

obtained from solving Eq.(65) for both uniformly distributed radial loading and central concentrated loading cases.
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As k11, k12 and k22 are functions of the in-plane pre-buckling moment M and axial force N, system (28)-(33) must

first be solved for a given loading configuration (T and q or Q). The resulting values for bending moment, and its

first and second derivative at the arch ends are substituted into Eqs.(60) and (61). Subsequently, Eq.(65) is solved

for axial force Ncr. If the pre-buckling axial force N obtained from system (28)-(33) is equal to Ncr, the critical load

combination has been reached (Tcr, qcr and/or Qcr). This method can be employed for either pin-ended or fixed-ended

arches, with the differences lying in the BC’s adopted when solving system (28)-(33) and the definitions of constants

α and A.

To examine the effect of thermal loading on the elastic out-of-plane buckling loads of shallow CFST arches for

the case of uniformly distributed radial loading, Eq.(65) was solved for three arch geometrical configurations. The

results are shown in Figures 9, 10 and 11. It can be seen that critical buckling loads are sensitive to temperature, with

buckling strength substantially decreasing with rise in thermal loading. This result contrasts the behaviour observed in

steel arches where elastic out-of-plane buckling loads are dependant primarily by the thermal load and vary minimally

with mechanical load level [32]. The magnitude of buckling strength deterioration with temperature level is compared

for fixed and pinned ended arches, see Figure 10. The critical loads have been normalised by dividing them by the

critical loads at ambient temperature. The results show that the out-of-plane buckling loads of pinned and fixed arches

degrade at the same rate with temperature rise. Thus, the effect of thermal loading on the out-of-plane buckling loads

of CFST arches is independent on the type of end supports. Moreover, the rate of strength degradation is identical

across the three geometrical configurations when the cross-sectional parameters are the same. The steel-concrete ratio

is the predominant parameter influencing buckling strength deterioration. Increasing the steel tube thickness for a

fixed cross-section diameter relaxes the rate of buckling load reduction with temperature rise. This can be seen in

Figure 11 where the critical out-of-plane buckling loads for a fixed arch are shown for three steel tube thicknesses. A

noticeable delay in critical load deterioration is observed when increasing the confining tube thickness from 10 or 15

mm to 20 mm. Consequently, reduction factors may be easily obtained from these results for convenient prediction

of out-of-plane buckling loads of shallow CFST arches at elevated temperatures for based only on the cross-section

diameter and steel tube thickness.

Elevated temperature fields influence stability boundaries for fixed or pinned-ended shallow CFST arches under

central concentrated loads in the same manner as the loading condition of uniformly distributed radial loading. The

flexural-torsional buckling loads for a shallow fixed CFST arch subjected to a central concentrated load are depicted

in Figure 12. It can be seen that the dimensionless buckling loads are practically identical to those shown in Figure 10

at all temperature levels for the same cross-section. The negligible effect of in-plane supporting conditions and arch

geometry discussed previously also hold for central concentrated buckling loads with cross-sectional dimensions gov-

erning the influence of temperature on critical buckling loads. The influence of cross-section diameter with constant

steel tube thickness on normalised buckling loads is represented in Figure 12. Increasing the cross-section diameter

leads to a greater rate of strength reduction with temperature rise caused by the lower steel-concrete ratio. The results

for the 100 and 200 mm diameters are terminated at 500◦C and 600◦C respectively due to the occurrence of in-plane
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limit instability failure. At the lower temperature levels, and in all other geometrical configurations, flexural-torsional

buckling preceded snap-through buckling. The limit instability, or symmetric snap-through buckling loads, can be

obtained from system (28)-(33) by increasing the mechanical load or temperature level until numerical convergence

cannot be achieved. As limit instability is approached, a drastic jump in forces and displacements is typically ob-

served. These surprising results indicate that the governing failure mode may change with rise in temperature; an

event likely to occur in very shallow and slender arches as in the present case. It is therefore important to consider

both in-plane and out-of-plane stability of CFST arches in elevated temperature fields.

Figure 9: Elastic out-of-plane buckling loads of fixed CFST arches under uniformly distributed radial loading and uniform temperature field.

2Θ = 73.34◦ and R = 5000 mm (left) and 2Θ = 56.15◦ and R = 8500 mm (right). Es = 200 GPa, Ec = 32, 800 MPa, cross-section diameter

= 300 mm and steel tube thickness = 10 mm.
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Figure 10: Dimensionless out-of-plane critical elastic buckling loads for CFST arches subjected to uniformly distributed radial loading and uniform

temperature level with pinned or fixed ends. 2Θ = 73.34◦, R = 5000 mm, qcr(T = 22◦C) = 5100 kN/m for fixed ends and qcr(T = 22◦C) =

1358 kN/m for pinned ends (left). 2Θ = 56.15◦, R = 8500 mm, qcr(T = 22◦C) = 1900 kN/m for fixed ends and qcr(T = 22◦C) = 482 kN/m for

pinned ends (right). Es = 200 GPa, Ec = 32, 800 MPa, cross-section diameter = 300 mm and steel tube thickness = 10 mm.

Figure 11: Effect of steel tube thickness on elastic out-of-plane buckling loads of fixed CFST arches under uniformly distributed radial loading and

uniform temperature field. 2Θ = 37.85◦, R = 9250 mm, Es = 200 GPa, Ec = 32, 800 MPa and cross-section diameter = 300 mm.
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Figure 12: Elastic out-of-plane central concentrated buckling loads of fixed CFST arches under uniform temperature field. 2Θ = 37.85◦, R =

9250 mm, Es = 200 GPa, Ec = 32, 800 MPa and steel tube thickness tt = 300 mm.

5. Inelastic out-of-plane buckling strength

5.1. Finite element model

A FE model is constructed using software package ANSYS [52] to investigate the inelastic lateral buckling

strength of CFST arches. The following considerations have been made when developing the FE model:

1. The arch is meshed using Solid186 elements of 50 mm size. A finer mesh did not noticeably alter numerical

results;

2. All thermal and mechanical properties are defined at ambient temperature, and from 100◦C in intervals of 100◦C

to 1200◦C. Parameter values at intermediate temperatures are obtained via linear interpolation.

3. A geometric non-linear analysis is conducted by assuming large deflections;

4. Lateral geometric imperfections are incorporated based on the buckled shape. Hence, an eigenvalue buckling

analysis is first conducted for imperfect geometry formation. A size of arch length S/1000 is assumed for the

initial imperfections;

5. The bi-linear isotropic hardening plasticity model is utilised to model the deformation characteristics of steel

(Eq.(2)). This model adopts Von-Mises yield criterion and considers strain flow and hardening;

6. The mechanical behaviour of concrete is considered with the Drucker-prager (DP) concrete plasticity model.

A yield stress of 0.4 f ′c,T is assumed with elastic modulus taken as the tangent at this point. Tensile behaviour

is assumed as elastic-perfectly plastic with the elastic modulus the same as in compression and the yield stress

given by Eq.(14);

7. A perfect bond is assumed between the steel and concrete. The influence of contact model on numerical results

is investigated in Section 5.3;
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8. Mechanical loading is applied first, followed by the thermal load in a subsequent load step;

9. Displacements and rotations are fully fixed at the arch ends; and

10. Solid70 elements are adopted to mesh structure for the transient thermal analysis, with an element size of 50

mm, as required for the case of fire loading. The steel tube is exposed to radiation and convection. The steel

surface emissivity and convection coefficient are assumed as 0.7 and 25 W/m2K respectively.

Verification of the FE model is made by comparing the results to the out-of-plane elastic buckling loads obtained

using Eq.(65) and the elastic prebuckling behaviour determined using system (28)-(33) for fixed-ended arches. The

results of these comparisons are depicted in Figures 2, 3, 9, 11 and 12. It is shown that a small variation exists across

the models at all examined temperature levels. Further validation of the FE model has been made by the authors

in [44] for the inelastic prebuckling behaviour, and the elastic in-plane buckling loads of CFST arches at elevated

temperatures.

5.2. Inelastic buckling strength

The inelastic out-of-plane buckling loads of fixed-ended CFST arches under thermal loading has been analysed

using the described FE model. Figure 13 depicts the effect of uniform thermal loading on the critical loads of CFST

arches subjected to uniformly distributed radial loading and central concentrated loads. For both cases, the out-of-

plane buckling strength mostly deteriorated with temperature rise. When considering the uniformly distributed radial

loading scenario, the effect of temperature on buckling loads is sensitive to included angle and arch slenderness

parameter λ = RΘ/rx, where rx is the radius of gyration of the cross-section about either axis. It is shown that the rate

of critical load degradation is greatest in the most slender arch. As the slenderness (and included angle) decreases the

rate of buckling strength reduction reduces and approaches the normalised squash load, defined as the temperature

dependant compressive strength of the cross-section (Ac f ′c,T + Asσy,T ) divided by the cold compressive strength of the

cross-section (Ac f ′c + Asσy). The higher slenderness ratio associated with deeper arches causes instability to govern

failure. Whereas the buckling strength of stocky shallow arches are governed by material failure. Considering the

case of central concentrated loads, it is shown in Figure 13 that slenderness and arch included angle do not impact the

rate of strength deterioration with temperature rise. Instead, the normalised buckling load degrades with temperature

at a rate very close to that of the squash load. Thus, it can be stated that material strength or section capacity governs

failure on CFST arches at elevated temperatures under central concentrated loads. This result also holds when varying

the cross-section parameters as shown in Figure 14. Though the magnitude of strength increases with cross-section

diameter or steel tube thickness, the normalised buckling loads are not noticeably influenced. This contrasts the effects

of cross-section parameters and steel-concrete ratio on elastic buckling loads as illustrated in Figure 12.

The effect of standard ISO-834 fire loading on the behaviour and critical buckling loads has been analysed. The

out-of-plane strength versus heating time is depicted in Figure 15 for uniformly distributed radial loading and Figure

16 for central concentrated loading. For the case of uniformly distributed radial loading, the results show that there

is an initial significant reduction in buckling strength during fire exposure, which is proceeded by a slow rate of
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Figure 13: Inelastic out-of-plane buckling strength of fixed CFST arches at elevated temperatures subjected to uniformly distributed radial load

(left) and central concentrated load (right). σy = 300 MPa, f ′c = 32 MPa, cross-section diameter 300 mm and steel tube thickness = 10 mm.

degradation. As with the case of uniform thermal loading, the effect of fire loading on buckling strength increases

with slenderness. The results are depicted for two concrete strengths; 32 MPa and 40 MPa. Concrete compressive

strength does not influence the rate of strength reduction. Additionally, the magnitudes of the out-of-plane critical

loads at the two strength levels converge quickly indicating that out-of-plane buckling strength during fire loading

is largely governed by stability. Behaviour varies when considering the central concentrated loading case. Buckling

strength slightly deteriorates during the first approximately 20 mins of heating, see Figure 16. This is followed by

the rapid drop in strength with decaying rate of change as observed in the uniformly distributed radial loading case.

Slenderness is again shown to impact the effect of fire loading on the out-of-plane strength though to a lesser extant

when compared to uniformly distributed radial loads.
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Figure 14: Inelastic out-of-plane buckling strength of fixed CFST arches under central concentrated loads and uniform temperature field. 2Θ =

37.85◦, R = 9250 mm, σy = 300 MPa and f ′c = 32 MPa.

Figure 15: Inelastic out-of-plane buckling strength for fixed CFST arches under uniformly distributed radial load and standard ISO-834 fire.

σy = 300 MPa, cross-section diameter 300 mm and steel tube thickness = 10 mm.
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Figure 16: Inelastic out-of-plane buckling strength for fixed CFST arches under central concentrated loads and standard ISO-834 fire. σy =

300 MPa, cross-section diameter 300 mm and steel tube thickness = 10 mm.

5.3. Sensitivity analysis

The difference in buckling loads when adopting the ASCE concrete model, with and without TTS, and the EC2

model with TTS have been examined for the case of uniform temperature fields, see Figure 17. It can be seen that the

ASCE and EC2 models lead to similar numerical results. When analysing the effect of TTS (ASCE model), it can be

seen that TTS reduces buckling strength up significantly to approximately 500◦C. Thus neglecting TTS may cause

an over prediction of critical loads. Though the results converge at higher temperatures. Moreover, an increase in

buckling load is observed at 100◦C when neglecting TTS. This is due to the thermal strain exceeding the magnitude

of mechanical strain in the steel tube caused by constant (or slightly reduced) elastic modulus and yield strength of

steel within this range which leads to an increased buckling strength.

Hitherto, a perfect bond has been assumed between the steel tube and concrete core. The significance of the

contact model is now investigated by comparing the inelastic out-of-plane buckling loads when adopting a frictionless

or fully bonded contact. It is shown in Figure 18 that the contact model does not noticeably influence numerical results

for the cases of uniform temperature fields and fire loading.
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Figure 17: Inelastic out-of-plane buckling strength for fixed CFST arches under uniformly distributed radial load and constant temperature field.

2Θ = 73.34◦ and R = 5000 mm (left) and 2Θ = 128.02◦ and R = 4450 mm (right). σy = 300 GPa, f ′c = 32 MPa, cross-section diameter 300 mm

and steel tube thickness = 10 mm.

Figure 18: Effect of contact model at steel-concrete interface on out-of-plane inelastic buckling loads of fixed CFST arch under uniform thermal

loading (left) and ISO-834 fire loading (right). 2Θ = 73.34◦, R = 5000 mm, σy = 300 GPa, f ′c = 32 MPa, cross-section diameter 300 mm and

steel tube thickness = 10 mm.

6. Conclusions

The out-of-plane elastic and inelastic stability of concrete-filled steel tubular circular arches subjected to uniformly

distributed radial loading or central concentrated loads and elevated temperature fields has been analysed in this

paper. Energy methods are employed to conduct an elastic prebuckling and out-of-plane buckling analysis, resulting

in numerical systems which may be solved for pinned or fixed-ended shallow arches. It was found that the elastic
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buckling loads of CFST arches are sensitive to temperature, unlike in steel arches, and that the rate of buckling load

degradation with temperature is independent of the supporting conditions. Basic creep strain was incorporated into

the prebuckling analysis through discretisation of a fractional-viscoelastic rheological law. Time effects in transient

heating scenarios were found to be negligible. The effect of elevated temperature and fire loading on the inelastic

out-of-plane buckling loads of CFST arches was then studied with FE analysis. Validation of the FE model is made

by comparison to the numerical system derived herein for the determination of elastic buckling loads. As with the

elastic case, a decrease in lateral buckling loads with temperature rise is found when considering inelastic material

behaviour. Effects of thermal and fire loading increased with arch slenderness for the uniformly distributed radial

loading case. This can be elucidated by the failure mode; instability is triggered early in slender arches whereas stocky

shallow arches are governed by material strength. For the case of central concentrated loads, arch slenderness did not

influence the effects of thermal load on the buckling strength. Additionally, the significance of concrete material

models and the assumption of the bond between the steel-concrete interface on numerical results was assessed. It

was found that consideration of TTS has a substantial impact on buckling strength, however the difference between

results when adopting the EC2 or ASCE concrete models is marginal. Adopting a perfect or frictionless bond at the

steel-concrete interface did not noticeably influence behaviour. Future research works may consider varied loading

and support conditions including elastic end supports and intermediate restraints through the arch length.
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Chapter 7. Thermal out-of-plane stability of concrete filled steel tubular arches

7.4 Concluding Remarks

This chapter presented an investigation into the effects of elevated temperatures on the

elastic and inelastic out-of-plane buckling strength of CFST arches. A novel numerical

model was derived for the determination of flexural-torsional buckling loads of CFST

arches subjected to uniformly distributed radial loads or central concentrated loads

and with pinned or fixed ends. Additionally, the significance of basic creep strain on

the thermo-elastic response was examined. FE analysis was employed to investigate

the inelastic buckling strength of CFST arches under uniform thermal loading and fire

loading and to conduct parametric studies. The following conclusions have been drawn

from this chapter;

1. Elastic flexural-torsional buckling loads significantly decrease with rise in uniform

thermal load;

2. The rate of elastic buckling load deterioration with temperature rise was found

to be only dependant on the cross-section size and steel-concrete ratio, and is

independent of other parameters including the type of end supports, arch slen-

derness/included angle and mechanical loading type;

3. Basic creep strain has a negligible effect on the elastic prebuckling behaviour of

CFST arches under transient heating;

4. The dominant failure mode may transition from flexural-torsional buckling to

in-plane limit instability as temperature increases in slender shallow arches;

5. For the case of uniformly distributed radial loading, the effect of temperature on

the inelastic buckling strength increases noticeably with arch slenderness, indi-

cating that instability governs buckling strength;
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6. For the case of central concentrated loads, reduction of buckling strength with

temperature was not influenced by arch slenderness and followed the squash load.

Thus, section capacity governs the strength of CFST arches for this loading sce-

nario; and

7. The contact model for the steel-concrete interface did not influence out-of-plane

buckling strength.
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Chapter 8

Conclusions

8.1 Summary

Presented in this research project is a comprehensive analytical and numerical inves-

tigation into the response and failure modes of circular concrete and CFST arches

subjected to combined mechanical loading and elevated temperature fields. This re-

search was necessitated by the increasing construction of CFST arch bridges and the

pre-existing lack of knowledge on the subject.

In order to analyse the significance of time-temperature coupling on the thermal be-

haviour of concrete and CFST arches, a novel viscoelastic rheological model based on
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fractional-derivatives was developed for basic creep in concrete at extreme elevated

temperatures. Fractional viscoelastic models are able to accurately reflect material be-

haviour with few model parameters and can efficiently model time-varying stress and

temperature conditions. The model parameters were calibrated using existing exper-

imental data in the literature resulting in creep strain being governed a temperature

dependant variable-order fractional differential equation. Discretisation of the variable-

order fractional differential equations was conducted using finite-differences in order to

solve for creep strain in the following analytical and numerical analyses.

Subsequently, the thermo-elastic prebuckling response and in-plane buckling behaviour

of shallow concrete arches was examined. Energy methods and variational principles

were employed to derive the non-linear equilibrium equations and buckling equilibrium

equations respectively. TTS and basic creep strain were considered, the latter by adopt-

ing the elastic-viscoelastic analogy. It was found that the axial force and bending mo-

ment greatly increased with temperature level, and that the arch displaced downwards

during heating. Moreover, thermal loading was found to significantly reduce the elastic

in-plane anti-symmetric buckling and limit instability loads. These effects were greatly

enhanced when TTS was considered, whilst incorporation basic creep strain resulted in

a smaller influence on thermal response. Criteria delineating between buckling loads

were analytically defined, and found to be temperature dependant. Consequently, a

change in the governing buckling mode may occur during heating. This study was then

extended by investigating the inelastic response and in-plane failure modes of shallow

concrete arches subjected to mechanical and fire loading. A FE model was developed

which considered material and geometric non-linearity. Verification of the FE model

was made by comparison to a novel non-discretisation based numeral model derived for

the inelastic analysis of concrete arches subjected to mechanical loads uniform temper-

ature level. Further validation was achieved by analysing the inelastic buckling loads

predicted by the FE analysis and the tangent modulus theory - employed through the
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use of the derived numerical model and the closed-form solutions for the elastic buck-

ling loads obtained previously. Extensive parametric studies were performed which

assessed the influence of parameters on fire resistance time and failure modes. Over-

all it was observed that fire loading can trigger anti-symmetric bifurcation buckling

in shallow concrete arches and that anti-symmetric buckling is the governing in-plane

failure mode.

Stability of CFST arches were the focus of proceeding works. Their non-linear elastic

and inelastic thermal behaviour and in-plane stability were analytically and numer-

ically investigated. Closed-form expressions were obtained for the prebuckling and

in-plane buckling loads of pinned or fixed-ended shallow CFST arches under uniformly

distributed radial loading and elevated temperature fields. An original numerical model

in the form of a BVP was also derived for the elastic or inelastic prebuckling analysis

of shallow and deep CFST arches. The numerical model can be applied to boundary

conditions including pinned, fixed or crown-pinned arches. As with concrete arches,

thermal loading greatly influenced the prebuckling stresses and displacements and re-

duced the in-plane elastic buckling loads - substantially when TTS was considered. FE

analysis was utilised to verify the derived models and to subsequently analyse the inelas-

tic in-plane buckling strength of CFST arches under uniform temperature fields and fire

loading. Extensive parametric studies were conducted to highlight the primary factors

governing fire resistance times. Additionally, sensitivity analyses explored the influence

of material and contact models on arch behaviour. Out-of-plane stability of CFST

arches subjected to mechanical and thermal loading was then studied. Energy methods

were employed to formulate a numerical model to determine the elastic flexural-torsional

buckling loads. The model is dependant on the prebuckling state which can be numer-

ically solved using the aforementioned BVP. By changing the boundary conditions and

two constants, the model can be applied to uniformly distributed radial loading or cen-

tral concentrated loading cases. The rate of elastic buckling strength deterioration was
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shown to be independent on the end support conditions and arch geometry, only vary-

ing with cross-section parameters. Furthermore, the elastic prebuckling analysis was

generalised to include the previously derived fractional derivative-based creep law. The

significance of basic creep strain on the thermal response for transient thermal loading

was found to be small. Assessment of inelastic flexural-torsional buckling strength was

conducted through the development of a FE model. Comparison between the derived

numerical model and the FE analysis showed a high level of agreement. Parametric

studies revealed that the effect of temperature on buckling strength increased with arch

slenderness for the loading case of uniformly distributed radial loading. Whereas in-

elastic strength of CFST arches subjected to central loads and elevated temperature

fields were governed primarily by material strength. The impact of fire loading on the

out-of-plane buckling strength was also examined for both mechanical loading cases.

8.2 Novel Contributions

Significant contributions have been made by this research thesis in the to subject area of

thermal stability of structural arches and concrete creep modelling. Research outcomes

are stated as follows:

1. Novel fractional viscoelastic rheological model developed for high temperature

basic creep in concrete;

2. Derived non-linear equilibrium and in-plane buckling equilibrium equations of

shallow concrete arches subjected to uniformly distributed radial loads and uni-

form temperature fields in addition to defining parameters delineating between

buckling modes;
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3. Illustrated the influence of thermal loads on the response and in-plane stability

boundaries of shallow concrete arches whilst analysing the contributions of TTS

and basic creep strain;

4. Formulated an original non-discretization mechanical based numerical model for

the inelastic analysis of shallow concrete arches under mechanical loading and

uniform temperature fields;

5. Discovered that fire loading may trigger anti-symmetric buckling in shallow con-

crete arches, and that for concrete arches it is the governing in-plane failure mode;

6. Developed analytical expressions for the non-linear elastic prebuckling state and

anti-symmetric and symmetric buckling loads of CFST arches under uniformly

distributed radial loading and non-uniform thermal loading

7. Proposed an original non-discretization mechanical based numerical model for

the non-linear elastic and inelastic analysis of shallow and deep CFST arches

with pinned, fixed or crown-pinned supports under mechanical loading and non-

uniform temperature fields;

8. Derived numerical model to determine the elastic flexural-torsional buckling loads

of shallow CFST arches at elevated temperatures with pinned or fixed ends and

subjected to uniformly distributed radial loads or central concentrated loads;

9. Demonstrated the impact of basic creep strain in the concrete core on the thermal

response of CFST arches subjected to short-term heating; and

10. Determined the primary factors governing the effect of elevated temperatures on

the in-plane and out-of-plane buckling strength of CFST arches under uniform

thermal or fire loading.
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8.3 Further Research

In Chapter 2, gaps in the knowledge area of arch stability were identified one of which

formed the research objectives of this thesis. The remaining knowledge gaps may be

considered in future research projects. The following is a set of recommendations to

further the work outlined herein:

1. Effects of extreme elevated temperatures on non-circular concrete and CFST

arches can be investigated for example parabolic profiles;

2. Generalisations of the derived analytical and numerical models may be made

to study varied loading and boundary conditions including vertically distributed

loading, quarter-point concentrated loads, dynamic loading and elastic end sup-

ports;

3. Concrete spalling was not considered in the inelastic analysis of concrete arches

subjected to fire loading. In-plane buckling strength may be reduced in slender

concrete arches due to the possible occurrence of spalling;

4. All analyses were limited to uniform thermal and fire loading through the arch

length. Non-uniform thermal loading and localised temperature fields may induce

great magnitudes and asymmetric distributions of bending moment consequently

leading to premature anti-symmetric buckling; and

5. Interaction effects between local buckling of the steel tube and global buckling of

the CFST arch were not considered in this study and may be addressed in future

works.
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