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SOME INEQUALITIES FOR THE GENERALIZED
k-g-FRACTIONAL INTEGRALS OF CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR

(Communicated by M. Kirane)

Abstract. Let g be a strictly increasing function on (a,b), having a continuous derivative g’
on (a,b). For the Lebesgue integrable function f : (a,b) — C, we define the k-g-left-sided
[fractional integral of f by

"X

Stearf (0= [ K(e() =g )¢ (1)f (W) dr, x € (a8

a
and the k- g-right-sided fractional integral of f by
b
Skes-f ()= [ K(g(t)~g()¢ (1) £ (0)dr. x € [a.p),

x

where the kernel £ is defined either on (0,e0) or on [0,e) with complex values and integrable
on any finite subinterval.

In this paper we establish some trapezoid and Ostrowski type inequalities for the k-g-
fractional integrals of convex functions. Applications for Hermite-Hadamard type inequalities
for generalized g-means and examples for Riemann-Liouville and exponential fractional inte-
grals are also given.

1. Introduction

Assume that the kernel k is defined either on (0,0) or on [0,°0) with complex
values and integrable on any finite subinterval. We define the function K : [0,e0) — C
by

Jok(s)dsif 0 <t,
K(t):=
0ifr=0.

As a simple example, if k(t) =t*"! then for o € (0,1) the function k is defined
on (0,00) and K (1) := 11% for t € [0,e0). If ¢ > 1, then & is defined on [0,cc) and
K (t):= Lt* for 1 € ]0,).

o
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Let g be a strictly increasing function on (a,b), having a continuous derivative g’
on (a,b). For the Lebesgue integrable function f: (a,b) — C, we define the k- g-left-
sided fractional integral of f by

Staar S (0) = [ Kg() =) () (), v (@b m
and the k- g -right-sided fractional integral of f by
Seas £ = [ k(e 8 0) £ ()t x< ). @
If we take k(1) = ﬁﬂ—l, where T is the Gamma function, then
Stear (9= g7 [ 0 =8¢ (@) () G

=17, f(x), a<x<b

and

Staaf () = i [ o)~ @I ¢ O @t = I 0, asx<b, @

I'(o
which are the generalized left- and right-sided Riemann-Liouville fractional integrals
of a function f with respect to another function g on [a,b] as defined in [23, p. 100].

For g(¢) =t in (4) we have the classical Riemann-Liouville fractional integrals
while for the logarithmic function g (z) = Ins we have the Hadamard fractional inte-
grals [23, p. 111]

| X x\1e-1 f(r)de
o = = - g <
HY, f(x) F(a)/u {m(tﬂ 2 0<a<x<h 5)
and . Fyd
1 I\1%~ t)at
o = - < .
HE £(x) r(a)/x {m(x)} S 0<a<x<h ©)
One can consider the function g (t) = —¢~! and define the ”Harmonic fractional inte-
grals” by
xI=¢ o f(f)dt
RE ()= [ 0<a<x<b 7
SO T @)y Gt OS5 v
and l-o b (1)
X' f(t)drt
R = / ,0<a<x<b. 8
b-S ) T(a)Jy (1—x) %o+t a=x (8)

Also, for g (t) =exp(Br), B >0, we can consider the ” 3 -Exponential fractional in-
tegrals”

B2 g0 = gy | exp(Br) —exp (B exp (B f(ar, )
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for a <x<b and

ﬁ b oa—1
B ()= g [ loxp (B —exp (o) exp (B £ ()ar, (10

for a <x<b.
If we take g (¢) =1 in (1) and (2), then we can consider the following k-fractional
integrals

Starf (x /k x—1)f()dt, x € (a,b] (11

and
Sepf (x / k(t—x) f (1) dt, x € [a,b). (12)

In [26], Raina studied a class of functions defined formally by

70 (.- % Ok i :
T (x) '_,E()F(pkwt)x’ |x| < R, with R > 0, (13)

for p, A > 0 where the coefficients ¢ (k) generate a bounded sequence of positive
real numbers. With the help of (13), Raina defined the following left-sided fractional
integral operator

Iraad 0= [0/ FG wx—tf) f Ot x>0 (14

where p, A >0, w € R and f is such that the integral on the right side exists.
In [ 1], the right-sided fractional operator was also introduced as

b
Il () ;:/ (=) 78, (wt—x)) f()dt, x<b,  (15)

where p, A >0, we R and f is such that the integral on the right side exists. Several
Ostrowski type inequalities were also established.

We observe that for k(t) = *~1.% ’;’ 5 (wtP) we re-obtain the definitions of (14)
and (15) from (11) and (12).

In [24], Kirane and Torebek introduced the following exponential fractional inte-
grals

780 =5 [Cew] -2t a0} rdn x> a (16)
and ,
T2 f (x) ::é/ exp{—lea(t—x)}f(t)dt,x<b, (17)

where a € (0,1).
We observe that for k (t) = L exp (—1=%¢) , € R we re-obtain the definitions of
(16) and (17) from (11) and (12).
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Let g be a strictly increasing function on (a,b), having a continuous derivative g’
n (a,b). We can define the more general exponential fractional integrals

11—«

4.0 wi= g [er{ -5 W e} s O x>0 ay

o

and
75 1w [ oo {120 -sw) b rOax<n a9
where a € (0,1).

Let g be a strictly increasing function on (a,b), having a continuous derivative g’
n (a,b). Assume that o0 > 0. We can also define the logarithmic fractional integrals

2810 = [ (@)= @) s~ O O, 20)

for0<a<x<band

G r@= [ G0 —g W) 0 -g W) O F0ar @D

for 0 < a < x < b, where o > 0. These are obtained from (11) and (12) for the kernel
k(t) =t*'Inz, t > 0.
For ov =1 we get

Lyarf (x /m g)g (1) f()dt, 0<a<x<b (22)

and
Lo f(x /m g(0))g (1) f(1)dr, 0 < a<x<b. (23)

For g (t) =t, we have the simple forms
2% £ (x) ::/x(x—t)“*ln(x—z)f(z)dz, 0<a<x<b, 24)
b

L8 F (x) :/ (t—x)* ' In(t—x)f(£)dr, 0 < a<x<b, 25)
Lo (x /ln x—1)f()di, 0<a<x<b (26)

and
/lnt— 1)dt,0<a<x<b. 27

Recall the classical Riemann-Liouville fractional integrals defined for or > 0 by

T () = ﬁ [ w0 ey
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for a <x<b and

0w

Jy f(x) = e

for a < x < b, where I' is the Gamma function. For o« = 0, they are defined as

Joof (x) =Jp_f (x) = £ (x) forx € (a,b).

In the recent paper [17] we obtained the following results for convex functions and the
classical Riemann-Liouville fractional integrals:

THEOREM 1. Let f:[a,b] — R be a convex function and x € (a,b), then we have
the inequalities

ﬁ{f () (b =0 =1 (x) (r—a)*"| 28)
<‘r(a—1+ iy (=@ S @)+ b —x)"f (b)) =TS () = i f ()
<ﬁ[f/_(b)(b—x)a+l fi(a) (x— )O‘H}
and
F(al+ 3 [/ ) =0 = 1 () (=) 29)
< f(a)+IEf(b) - NCE) [(x—a)*+(b—x)"] f(x)
<ﬁ @) 6= 1 @) =) ]

where f' (+) are the lateral derivatives of f.

In particular, we have:

COROLLARY 1. Let f:[a,b] — R be a convex function, then we have the inequal-

ities
, [a+b , (a+Db ol
<m[f+< 2 >_f<T)}(b_“) (30)

1
(
1 fla)+f(b) a+b w o [a+h
s 21T (o + 1) 2 (b=a)”~ +f< )‘th (T)
1
(

[f ()= i (@)] (b—a)*™,
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1 a+b , (a+b ot
o<y (7)1 (7)) oo e

s P+ SO ! () -

[/ 0) = fi(@)] (0 —a)™*!

1
20‘“1"(0(—1-2)
and

Sy f (@) + I3 ] (b)
2

I f®)+/f(a)
Ogl“(a—i—l) 2

2% —1 o
< gartrg g O~ fi @) (b -a)®T.

(b—a)” - (32)

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals
see [2]-[18], [21]-[34] and the references therein.

In this paper we establish some trapezoid and Ostrowski type inequalities for the
k- g-fractional integrals of convex functions. Applications for Hermite-Hadamard type
inequalities for generalized g-means and examples for Riemann-Liouville and expo-
nential fractional integrals are also given.

2. Some identities
For k and g as at the beginning of Introduction, we consider the mixed operator
Skg.atp—f (x) (33)

= [Stas £ )+ St (0]

5 | [Hew—eg @+ [Ke0—ewg 00

for the Lebesgue integrable function f: (a,b) — C and x € (a,b).

Observe that
Seaxef ()= [ (e 0) 808 () (), x€ [0 (34
and .
Staxt (@ = [ K(gl)=g(a)g ()7 ()dr, x€ (@bl (39)
We can define also the mixed operator
Skgats-f (x) (36)

_% [Sk,g,erf (b)+Sk,g,xff (a)]
:% [/xbk(g(b)_8(t))g/(l)f(t)dt—I—/:k(g(t)—g(a))g’(t)f(t)dt 7
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for any x € (a,b).
The following two parameters representation for the operators Sy o 4+ »— and
Skgat s hold [20]:

LEMMA 1. Assume that the kernel k is defined either on (0,0) or on [0,) with
complex values and integrable on any finite subinterval and g be a strictly increasing
function on (a,b), having a continuous derivative g' on (a,b). If f : |a,b] — C is
absolutely continuous on |a,b], then we have for x € (a,b) that

Skga+o—f (x) = ! (K (g(x) —g(a)) f(a)+K(g(b)—gx))f ()

2
3 [(K(e(0 -0~ 37 [ K(g() g 0)ar

+%/:K(g<x)—g<f>> [£' (1) = 2] dt%/be(g(t)—g(x)) ly—fF (O)]de (37)

and

S‘k,g,aJr,bff (X) =
b X
37 [ Ke®)-g0)ar— 32 [ K0 -g@)ar

+) /,fK(g(b)—g(z)) (@)~ )di+ 5 /:mg(,)_g(a)) (A= @]dr, 38)
forany A, yeC.

(K (g(b)—g(x))+K(g(x)—g(a)]f(x)

N =

Proof. Using the integration by parts formula, we have

[ ke =) (05 0)a (39)

and

[ e —5)¢ 01 1)a (0
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forany x € (a,b).
From (39) and (40) we get

/k (1) (1) d
+A/ K(g

and

/k (1) f(0)dr

=[K(g( Y/K

for any x € (a,b).

S. S. DRAGOMIR

)—g@)di+ [ Kigl)—g@) [£'()-

s [k -5 [ 1) -

If we add the equalities (41) and (42) and divide by 2 then we get the desired

result (37).

Using the integration by parts formula, we have

[ ke0) 5020

b
= [ K(e() -5

- {K(g(b)—g(t))f(t

and
/xk - g () f(t)dt

/ f(t)dt =

/ K(g
for any x € (a,b).
From (43) and (44) we have

/k (1) f () dr
=K (g( +}//K

f(r)dr

W £y
- [ k) -0
K (g() g () 109+ [ K (b8 ) S ()

b
—gO)di+ [ K(gb)=g@) [£' ()~

(43)

(45)
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and

[ ke -g@) 05 0 (46)
K (g(x) - )= [[K(gl)—g(@)dr— [ K(g)~g(a) [1' ()~ 2] ar,

for any x € (a,b).

If we add the equalities (45) and (46) and divide by 2 then we get the desired
result (38). [

If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can define the g-mean of two numbers a,

bel as
Mg (a,b) =g " (M) .

If /=R and g(t) =1 is the identity function, then My (a,b) = A(a,b) := “t2,

the arithmetic mean. If I = (0,00) and g(¢) = lnt, then M, (a,b) = G (a,b) := \ab,
the geometric mean. 1f I = (0,e0) and g(t) = +, then M, (a,b) = (a b) := ﬁ,
the harmonic mean. If I = (0,) and g (¢) =7, p #£0, then Mg (a,b) =M, (a,b) :=

1/p
(#) , the power mean with exponent p. Finally, if I =R and g (1) = expt, then

Mg (ayb) - LME (avb) : (u) ’
the LOgMea’lExp funclion.

Using the g-mean of two numbers we can introduce

Prgat vt =Skgarp—f (Mg(a,b)) 47
[ ) ¢ s
. A;M)k(gm— g“zi“”)g (0)f (1) e
and
Bigario—f =Skga+p—f (Mg (a,b)) (48)
e

k(g(b)—g(1)g (1) f (t)dt

2 My(a,b)

t3 /Mg " —g(a)g (1) f(r)dr.
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COROLLARY 2. With the assumptions of Lemma 1 we have

Pigarp-f =K (g(b) ;g(a)) f(“)‘;f(b) L %A/IJMg(a,b)K (M _g(t)) B
Ll g(a)+g(b)
—27 Mgab)K<g(t)_f)dl‘
2‘/Mg (a,b) ( (b) g(l)) [f/(t)_ljl di
g(a)+g(b) /
+2 M«<a=b>K<g 0= f) [y—£ ()] dt (49)

and

Prgar s f =K (M) £ (M (a.b))

b g(”vh)
3l f, Kb =@ [ k0 —s@)a

b

4= K(g(b)—g()) [f/(t)

Mg(a,b)

Mguh
= (@) [~ 7 @) dr (50
forany A, yeC.

[

y|d

[\S]

For x = anrb we can consider

a+b
Mk,g,qu,hff ::Sk,g,qu,hf( ) ) 51)

:%/u“?”k@(a;b - .
+%/a;,k<g(t)—g(a;—b)>g’(t)f(t)dt

and

. a+b
Mk,g,aJr,bff _Sk ,8.a+,b— f < )

=3 /%,,k(g )5 ) @) 0t E [ k(e -g(@)g () F )

We have the mid-point representation as well:
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COROLLARY 3. With the assumptions of Lemma 1 we have

Migarp—f
3 [K(¢(57) ~s@) r@x(s0r-5("37) ) s
+% /I/Q#K(g(a;b)—g(t))dt—?/ﬁ ( (Hb))df]
+§/K(g(;b) ~50)) [ )~ Aar
(oo (52)) o
and
Migarb—f
2 (er-e(452)) +x (6 (£2) o) | 1 (£2)
v/, K )t 4 fhm(z)—g(a))dr]
+y #K(g(b)—g(t))[f’(t)—Y]dtJrl Q#K(g(t)—g(a))[l—f’(t)]dt,

forany A, yeC.

3. Trapezoid type inequality for convex functions

We have the following trapezoid type inequality for convex functions:

THEOREM 2. Assume that the kernel k is defined either on (0,°0) or on [0,c0)
with nonnegative values and integrable on any finite subinterval and g be a strictly in-
creasing function on (a,b), having a continuous derivative g' on (a,b). If [ : |a,b] —
R is a continuous convex function on [a,b], then we have

% £l (x / K(g ))di — f / K(g )dt}
<%[K(g( )—g(a)) f(a)+K(g(b)—g(x)) f(D)] = Skgatpf (%)
<% / K(g(t)—g(x))di — £, (a / K(g (z))d;} (55)

forany x € (a,b).
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Proof. Since f : [a,b] — R is a continuous convex function on [a,b], then the
lateral derivatives f exist on (a,b) and they are equal except at most a countably
subset of (a,b). Also f' (a) and f’ (b) exist and we have [} (a) < f (1) < f} () <
S~ (b) forany ¢t € (a,b).

Observe that by the positivity of the kernel ¥ we have K (g(x) —g(z)) > 0 for
t € (a,x) and K (g(t) —g(x)) >0 for z € (x,b).

If we use the equality (37) for A = f/ (a) and Y= f’ (b), then we have for x €
(a,b) that

(K (g(x)—g(a))f(a) +K(g(b)—g(x))f(D)]

f+ /K dt——f /K

5/K () =g (1) [f (1)~ £, (@) dt

1
Sk,g,aJr,bff (.X) = 5
_|_

oy [ kG £(b) =7 (1) dr
>§[K(g(X)—g(a))f( a)+K(g(b)—g(x))f ()]
+%f4(a)/:1<(g dt——f /K

which proves the second part of (55).
If we use the equality (37) for A = f’ (x) and y = f} (x), then we have for x €
(a,b) that

Sk,g,a-‘r,b—f(x):%[K( () —g(a) f(a) + K (g(b) —g(x)) f (b))
_|_

o /K dz——f+ /K _e()di
E/K W) —g0)) [F (1)~ £ (x)]drt
oy K S =1 0] ds

<§[K(g(X)—g( a)) f(a)+K(g(b) —g(x))f (b))

70 [ Ke di— 37 /K

which proves the first part of (55). [

REMARK 1. If the functions is differentiable convex on (a,b), then the first in-
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equality in (55) becomes
1 b X ,
5[/ K(g()—g(0)di— [ K(e()—g0)dr| '@
< [K(2(1) — g (@) £ (@) +K (g (6) ~ (X)) £ (B)] — Skgar £ (X),  (56)
a,b).

—~ N =

for any x €

COROLLARY 4. With the assumptions of Theorem 2 we have the Hermite-
-Hadamard type inequality for the g-mean M, (a,b)

sl [} k(a0 - 207 g

Mg (a,b

—f (M, (a,b)) /QM"'(Q’b)K (M _g(;)> dt}

2
x (g s <a>) T

slrof | (so- 2 )

~fi(a) [ ey (M ¢ (r)) dt] - (57)

2
In particular, if f is differentiable in Mg (a,b), then we have the simpler inequality

2 (M, @)

X{AZme<g0y_ggé;ﬁﬂ>d”‘é%w@K<§gzgﬁgl_gaodﬁ
<K<g00—g@w)f@0;f@)

B - Pk,g7a+7b—f~ (58)

We also have:

COROLLARY 5. With the assumptions of Theorem 2 we have

[ (57 L (s0-s(%57) )

2 (52) [Pl 232) e

K (¢(27) e @) s@-+k (20)-(“57) ) 70)] ~Mearns

7o oy (s (S50) st [ 7k (o (452) -e00) dt] .

(59)
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In particular, if f is differentiable in M then we have the simpler inequality
f’ (a + b)
b a+b ot a+b
foak (e-e(552) Jar= [ K (s(*57) ~st0 )

<K (:(52) ~5@) r@+& (s -2 (“52) ) 0] ~Muars

4. Ostrowski type inequalities for convex functions

X

We also have:

THEOREM 3. Assume that the kernel k is defined either on (0,0) or on [0,c0)
with nonnegative values and integrable on any finite subinterval and g be a strictly in-
creasing function on (a,b), having a continuous derivative g' on (a,b). If [ :|a,b] —
R is a continuous convex function on [a,b], then we have

3 | (K)o @) K0 - s@)al
<5“Hhﬂ>—5m@w>ga»+K@w—g@nﬂw
[ /K N~ £ (@) [ Kigo) <a>>dt}7 ©1)
for x € (a,b).

Proof. Observe that by the positivity of the kernel X we have K (g(b) —g (1)) >0
forz € (x,b) and K (g (1) —g(a)) >0 fort € (a,x).
Using the identity (38), we have for y= f} (x) and A = f’ (x) that

Stgarsf () =3 [K (g (0) ~8()) + K (g () ~ g @)] £ ()
300 [ K@) —g@a 20 [Tk
+%fK@w%g@HfU 7 )

3 [ Kle@—g@) [/ - 0] ar
>3 (K ()~ () +K (¢ ) — ¢ (@) (@)
1, b
+201 0 [ K(e®)—gdr— 370 [ K



SOME INEQUALITIES FOR THE GENERALIZED k- g-FRACTIONAL INTEGRALS 177

which proves the first inequality in (61).
Using the identity (38), we have for y= f’ (b) and A = f| (a) that

Sttt (%) = [K(g(b) g(x))+K(g(x) —g(@)lf (%)

/K t——f+ /K

+§/1< (b)—g () [f' (1)~ £ ()] dt

NI'—‘

+3 [ K fi@=f o) dr
<%[ (3(6) ~ g ) + K (g (¥) ~ g (@))] ()
/K dt——f+ /K _g(a)d,

which proves the second inequality in (61). [J

REMARK 2. If the function is differentiable convex on (a,b), then the first in-
equality in (61) becomes

H/hzqg( ))di — /K }f’(x)
Stgarpf(x)— ;[K(g(b) g)+K(g(x)—g(a)]f(x), (62)

forany x € (a,b).

COROLLARY 6. With the assumptions of Theorem 3 we have the Hermite-
-Hadamard type inequality for the g-mean M, (a,b)

e(a,b)
s |ronaon [ Ke-ewa-r onas [ K0 -e@)al

Mg (uvh)

Prparat ~K (HEDY o1 0

g(a,D)
Slref  kew-sma-r@ [ ke -d@al. o

Mg (a,b)

In particular, if f is differentiable in My (a,b), then we have the simpler inequality

2(a.b)
o) | [ ko) -s0ar- [ K0 -g(@)al

Mg (a,b)

<Pegaro-f—K (g(b)z;g(a)) f (Mg (a,b)). (64)
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We also have:

COROLLARY 7. With the assumptions of Theorem 3 we have

% ( )3 e f<a+b>/mK (a))dt]

s o) ) )
<§ 10 /#qu(b) Y R (a))dt]. (©5)

In particular, if f is differentiable in #7 then we have the simpler inequality

f <a+b> /%,, (g(0) dt—/mK ())dt‘|
3o o2 ) )22

(66)

5. Applications for generalized Riemann-Liouville fractional integrals
If we take k() = ﬁt“‘l, where T is the Gamma function, then

e () = 160 0= 1 [ 60— 01" () f O

for a <x<b and

Stat () = /)= s [ e 0= I ¢ (0 @),

for a < x < b, which are the generalized left- and right-sided Riemann-Liouville frac-
tional integrals of a function f with respect to another function g on [a,b] as defined
in [23, p. 100].

We consider the mixed operators

1
B () = 5 (1 )+ o f ()] (67)

and |
v f (0):= 5 [B4 o f (0) + 1L o f(@)], (68)

for x € (a,b).



SOME INEQUALITIES FOR THE GENERALIZED k- g-FRACTIONAL INTEGRALS 179

‘We observe that for o > 0 we have

K(t) = — /t"‘*ld— " s
B 0 CT (@) T(ar1) 7T

Let g be a strictly increasing function on (a,b), having a continuous derivative g’
on (a,b). If f:[a,b] — R is a continuous convex function on [a,b], then by Theorem
2 we have the trapezoid type inequalities

st [0 [ 60— enar s ) [ e - el0)"al]
<72r(;+ 0 [(g(x) = g (@)* f(a)+ (g (b) — g (X))* F(B)] = [%qs p_f (%)
41 [ / b o / * o
S (a1 1) _f_(b)/x (8(r) —g(x)) dt—f+(a)/a (g(x)—g()) dt]7 (69)

for x € (a,b).

In particular, if f is differentiable convex on (a,b), then by the first inequality in
(69) we have

st | 0 -sar (e -0 a1

<3 [0 =8 @) F @+ (¢ (0= () £ ()] ~ fars £, T0)

for x € (a,b).

If we take in (69) and (70) x = M, (a,b), then we get

L,
mf (Mg (a,b))

< (gzgyl)"(_agial))) f(a>;f(b) —Igarp-f (Mg (a,b))

<2r(;+1) [f/ (b)/nz,@,b) (g(t)_g(a);g(b))ad’
~fl(a) / e (M —g(t))adt} : (71)
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If we take in (69) and (70) x = “%”, then we also get

2r(;+1)f’<a;rb>

[l o e o [ ((e52) o)
g [((£32) o) o (oo () 0
A S (“Zﬂ>
<m [f/ <l’>/a; (g(r)—g(“;b»“‘d,

1! (a)/{% (g (“;b) —g(t))adt] . (72)

Let g be a strictly increasing function on (a,b), having a continuous derivative g’ on
(a,b). If f :[a,b] — R is a continuous convex function on [a,b], then on making use
of Theorem 3 we can state the following Ostrowski type inequality

s [0 [ @) ) [0 -y

e 100~ 3 [ 0) — 5"+ (2 =2 (@) £ )

<zr((;H) f (”>/xb (g(b)—g(r)di—f. (a)/j(g(ﬂ—g(a))"‘dt} (73)

for x € (a,b).

In particular, if f is differentiable convex on (a,b), then by the first inequality in
(73) we have

m |:/xb(g(b)_g(t))adt—/:(g(t)_g(a))adt f/(x)

e S 0= 500 (O =8 ) + W =2 @) £ (). ()

for x € (a,b).
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If we take in (73) and (74) x = M, (a,b), then we get

1 / b o My (a,b) o
mf (Mg (a,b)) X [/Mg(%b) (g(b)—g(1)) dt—/u (g(t) —g(a)) dt}
Iy f (M, (b)) % £ (M, (a.5))
1 / b a , Mg (a,b) o
<§@;gjp4wémw¢mm—gm>m—ﬁmwé @@—gWDdﬁ.

(75)

If we take in (73) and (74) x = “%”, then we also get
at+b

1 ,(a+b b o agh .
2r(a+1)f< 2 )X l/ﬁz,,(g(b)—g(f)) df—/u (8 (1) —g(a)) dt]

9 a-+b
gI;fu+,hf< D) )

el () () ) ()

a+b
1 ==

b 2
St |0 o GO s e f @ <g<z>—g<a>>°‘dz]. 76)

afb a

If we take in these inequalities g (r) =, we recapture the results for the classical
Riemann-Liouville fractional integrals outlined in Introduction.

6. Example for an exponential kernel
For o € R we consider the kernel & (7) :=exp(az), t € R. We have
|k (s)| = exp(as) fors € R

and
_exp(ar)—1

K (1) ,ift € R,

for oo £ 0.
Let f: [a,b] — C be an integrable function on [a,b] and g be a strictly increasing
function on (a,b), having a continuous derivative g’ on (a,b). Define

Hgi pf (%) :%/xbexp la(g(t) —g () (1) f(t)dt -
T % /:CXP [0 (g(x)—g ())& (2)f(t)dt,

for x € (a,b).
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If g =1Inh where h: [a,b] — (0,) is a strictly increasing function on (a,b),
having a continuous derivative 4’ on (a,b), then we can consider the following operator
as well

Kiatof ()= A v p f () (78)
b o g/ X O\ * K
=3[ ) wroa [ (@) 7o),
for x € (a,b).

Let g be a strictly increasing function on (a,b), having a continuous derivative g’
n (a,b). If f: [a,b] — R is differentiable convex function on (a,b), then by Theorem
2 we have the trapezoid type inequalities

1 xp (o (g (1) —g(x)) X (x)—g(1)) -1
L) x (/ exp - 8( L, [fexplo -8 dt)
g% [exp (a)))—lf(a>+exp( (g ba g(x))— lf(b)} A 1)
gé[ bexp( (Ut@@»-%p#“wlme@@EKWN—%ﬂ’

(79)

forany x € (a,b).
If g =1Inh where h: [a,b] — (0,) is a strictly increasing function on (a,b),
having a continuous derivative 4’ on (a,b), then by (79) we get

nir) \* h(x)\ ¢
N (0 0 Rkl ) M
7 ) /x g dt—/u —
[ (h@))* o)\
<1 (M“)) lf(a)—|— ( (X)> lf(b) K.oc f( )
\2 a a h,a+.b
i M \* hx)\*
<1 f/ (b)/b Mdt—f/ (a)/x Mdl (80)
N ¢ o + 9 o ’

for any x € (a,b).
Let f: [a,b] — C be an integrable function on [a,b] and g be a strictly increasing
function on (a,b), having a continuous derivative g’ on (a,b). Also define

Ao T (%) (81)
1 b / | /
Zg/x explo (g (b) —g(1))lg (t)f(t)dt+5/a expla(g(t) —g(a)|g (t) f(t)dt,
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forany x € (a,b).
If g=Inh where h: [a,b] — (0,c0) is a strictly increasing function on (a,b), hav-
ing a continuous derivative &’ on (a,b), then we can consider the following operator

as well
Ky f () =48 10y f(x) (82)
_ L[ (@)K @) TR\ ()
‘zu (h(r)) g s | <h<a>> h(z)f(”‘”]’

for any x € (a,b).
If f:[a,b] — R is differentiable convex function on (a,b), then by Theorem 3

we have the Ostrowski type inequalities

for any x € (a,b).
If g =1Inh where h: [a,b] — (0,00) is a strictly increasing function on (a,b),

having a continuous derivative &’ on (a,b), then by (83) we get

o[ (o [ ()"
(

2 ) a
<Ky ) ;{ i) +£%) 2w
g% {f’_ (b)/j(%)am— ;(a)/: <%)adt], (84)

forany x € (a,b).

Finally, if we take x; := /! ( AOL (b)) =h~Y (G (h(a),h (b)) € (a,b), where
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G is the geometric mean, in (80) and (85), then we get

hit) ¢ G(h(a),h(b)) | *
L, ”(G(h(u)ﬁ(h))) -1 xh( h(7) ) —1
2f (xn) /Xh " dt—/a 5 dt
h(b) o/2 {
(a) - a)+
ae O\ G(h(a).h(b)) \ *
1 b\ Gh(a).h(b -1 Yh ) -1
<3 f’_(b)/ (s ;”> dz—f;(a)/ ( “)a ) ar| (85
Xn a
and

s [[G) [ () ]

< [f’ (b)/)j (%)adt— L@ " (%)adt} (86)
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