

Lunge exercises with blood-flow restriction induces post-activation potentiation and improves vertical jump performance

This is the Accepted version of the following publication

Doma, Kenji, Leicht, AS, Boullosa, Daniel and Woods, Carl (2020) Lunge exercises with blood-flow restriction induces post-activation potentiation and improves vertical jump performance. European Journal of Applied Physiology, 120. pp. 687-695. ISSN 1439-6319

The publisher's official version can be found at https://link.springer.com/article/10.1007/s00421-020-04308-6 Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/41196/

- 2 Lunge exercises with blood-flow restriction induces post-activation potentiation and improves vertical
- jump performance

5 Abstract

- 6 Purpose: This study examined the post-activation potentiation effects of body-weight lunge exercises with
- 7 blood-flow restriction on jump performance. Eighteen anaerobically-trained men took part in this study across
- 8 three weeks. Methods: During the first week, participants were familiarised with the lunge exercises with blood-
- 9 flow restriction and the drop-jump protocol. In the second and third week, participants were randomly allocated
- to complete body-weight lunges (3 sets of 8 repetitions) either with or without blood-flow restriction (occlusion
- set at 130% of systolic blood pressure) to induce post-activation potentiation. Drop-jump performance was assessed between blood-flow conditions, and prior to, and at the third, sixth, ninth, twelfth and fifteenth minute
- following each lunge exercise. Relationships between mechanical contributors of jump performance and final
- 14 jump performance were examined via Pearson correlation coefficients. Results: Lunges with blood-flow
- restriction significantly improved jump height (~4.5% \pm 0.8%), flight time (~3.4% \pm 0.3%) and power (~4.1% \pm
- 16 (0.3%) within 6-15 minutes post-exercise (p<0.05) with the magnitude of effect between blood-flow conditions,
- 17 moderate-large (0.54-1.16). No significant changes (p>0.05) were found in jump performance measures
- 18 following lunge exercises without blood-flow restriction. Significant correlations (p<0.05) between mechanical
- 19 contributors of jump performance and jump performance highlighted the potential of blood flow restriction to
- 20 enhance stretch-shortening cycle mechanics in the current study. Conclusion: Lunge exercises with blood-flow
- 21 restriction improved subsequent jump performance in anaerobically trained men. The use of blood flow-
- 22 restriction may be a practical alternative to heavy resistance training equipment during warm-up protocols.
- 23

24 Key words

25 Resistance training; Muscular power; Occlusion; Lower body; Drop jump

27 Abbreviations

Analysis of variance	ANOVA
Blood flow restriction	BFR
Blood lactate	LAC
Contact time	CT
Drop-jump	DJ
DJ at baseline	DJ _{Base}
DJ 3-minutes post-exercise	DJ-3
DJ 6-minutes post-exercise	DJ-6
DJ 9-minutes post-exercise	DJ-9
DJ 12-minutes post-exercise	DJ-12
DJ 15-minutes post-exercise	DJ-15
Effect size	ES
Flight time	FT
Heart rate	HR
Least Square Difference	LSD
Mat jump height	MJH
Post-activation potentitation	PAP
Rating of perceived exertion	RPE
Reactive strength index	RSI
Regulatory light chain	RLC
Vertical jump height	VJH

28

29

30

31 Author contributions

32 Conceptualization: Kenji Doma, Carl Woods, Daniel Boullosa, Anthony Leicht; Methodology: Kenji Doma,

- 33 Carl Woods, Anthony Leicht; Formal analysis and investigation: Kenji Doma, Daniel Boullosa; Writing –
- 34 review and editing: Kenji Doma, Carl Woods, Daniel Boullosa, Anthony Leicht

35

37 Introduction

38 The implementation of a conditioning exercise to increase near-immediate muscular power and improve 39 athlete's performance is referred to as post-activation potentiation (PAP) (Tillin and Bishop 2009). This practice 40 provides acute and temporary enhancement of muscular contractility induced by a prior activity, which typically 41 involves muscular contractions performed at maximal, or near maximal, efforts often via similar biomechanical 42 demands (Hodgson et al. 2005; Doma et al. 2016). The effectiveness by which conditioning contractions 43 optimises the PAP phenomenon depends on the net balance between fatigue and potentiation, and appears to be 44 influenced by the duration between potentiation and performance (Boullosa et al. 2013; Clark et al. 2006), 45 training status (Seitz and Haff 2016) and intensity of conditioning activity (Baker 2003). It has been proposed 46 that the effect of PAP primarily occurs as a result of elevated phosphorylation of myosin regulatory light chain 47 (RLC) due to increased sensitivity to calcium (Boullosa et al. 2018; Metzger et al. 1989), although greater 48 recruitment of higher threshold motor units has also been suggested to enhance muscular power (Sweeney et al. 49 1993).

50 The application of heavy back squats (>80% of one repetition maximum) is the most common method of 51 causing sufficient PAP-inducing fatigue to improve subsequent performances (e.g., vertical jump or sprint) 52 (Seitz and Haff 2016; Wilson et al. 2013). However, such protocols require relocation of heavy equipment to the 53 field or court that athletes train in, which may be cumbersome (Docherty and Hodgson 2007). Resistance 54 exercises with body weight may be a convenient and simpler alternative, although the level of intensity and 55 stimuli would be insufficient when compared to heavy resistance training. One method of enhancing mechanical 56 stress is the use of blood flow restriction (BFR), by occluding blood flowing to the working muscles during 57 exercise. Incorporating BFR in conjunction with resistance exercises at lighter loads has been shown to elicit 58 similar muscular strength and hypertrophic adaptations to those with heavy resistance training (Centner et al. 59 2018). Several studies have suggested that BFR exercises induce an earlier onset of fast-twitch fibre recruitment 60 due to inadequate oxygen supply to slow-twitch muscle fibres (Moritani et al. 1992; Takarada et al. 2000). As 61 the recruitment of higher threshold motor units is one proposed mechanism of PAP (Sweeney et al. 1993), BFR 62 exercises with lighter loads, such as body weight, may elicit similar responses to heavy resistance training and 63 generate more sustained, mechanical power improvements.

For instance, a recent study by Miller et al. (2018) examined the effects of whole body vibration exercises and
maximal isometric contractions of knee extensors with and without BFR on subsequent vertical jump

66 performance. Their results showed that whole body vibration and maximal isometric contractions with both 67 BFR and non-BFR conditions significantly improved jump height, although the addition of BFR technique did 68 not enhance the PAP response. It is possible that the incorporation of isometric contractions by Miller et al. 69 (2018) may have limited optimum benefits of BFR, given that isometric exercises do not replicate task 70 constraints typically observed during jumping protocols, with the optimal transfer of PAP occurring when the 71 conditioning activity mimics the performance task (Doma et al. 2018; Doma et al. 2016). Incorporating dynamic 72 BFR exercises may further augment the effects of PAP and optimise vertical jump performance measures, 73 although this is yet to be investigated as far as we are aware. Thus, the current study examined the acute effects 74 of dynamic, body weight resistance-exercises between BFR and non-BFR conditions on jump performance. We 75 hypothesised that body weight resistance-exercises performed during the BFR condition would induce greater 76 improvement in jump performance than the non-BFR condition.

77

78 Materials and methods

79 This study was conducted as a cross-over, randomised study across three weeks (Figure 1). The first week 80 consisted of a familiarisation session where participants undertook a standardised warm-up, the PAP protocol 81 and a drop-jump (DJ) performance test. The standardised warm-up consisted of participants performing lower 82 body dynamic stretches (i.e., leg swings, high knees and butt kicks), followed by five DJ exercises at 83 submaximal effort and one at 100% of maximal effort. During the second and third week, participants were 84 randomly assigned to complete the PAP protocol in either a BFR or a non-BFR condition. Both sessions 85 commenced by measuring body mass, followed by an equivalent warm-up method to that of the familiarisation 86 week. After the warm-up, a DJ test was conducted as a baseline measure (DJ_{Base}), then the PAP protocol, and the 87 DJ test was subsequently completed at 3-minutes (DJ-3), 6-minutes (DJ-6), 9-minutes (DJ-9), 12-minutes (DJ-88 12) and 15-minutes (DJ-15) following the PAP protocol. Heart rate (HR; FS-1, Polar, Finland), rating of 89 perceived exertion (RPE) using Borg's 6-20 visual analogue scale and capillary blood lactate (LAC; Lactate 90 Pro2, Arkray, Japan) sample were also collected just prior to DJ-3, DJ-6 and DJ-9. ***Figure 1 around here*** 91

92 Eighteen, anaerobically trained, males took part in the study. Each participant was classified as healthy

93 according to medical screening with no reports of illness, injury or medication that would contraindicate any

94 protocols. According to an a priori sample-size calculation (G*Power 3.1.9.2) using data from previous studies

95 examining PAP effects using similar protocols and outcome measures (Garcia-Pinillos et al. 2015; Horan et al. 96 2015; Miller et al. 2018), 18 participants were sufficient to detect a significant change in variables ($\geq 80\%$ 97 power; p < 0.05). The participants were considered anaerobically trained if they 1) undertook resistance training, 98 Olympic lifting and/or were taking part in sports that required repeated anaerobic exercises involving both 99 sprinting and jumping tasks (e.g. basketball, volleyball, soccer); and 2) anaerobic training was completed at least 100 twice a week for the last 6 months. All participants were familiar with the lunge protocol utilised in the current 101 study. To control for biological variation, the BFR and non-BFR conditions were separated by seven days, and 102 undertaken at the same time of the week and day to avoid circadian influences on performance. The participants 103 also refrained from anaerobic-based exercises for at least 48 hours prior to all sessions and avoided caffeine and 104 food consumption for at least two hours prior to each testing session. All participants provided written informed 105 consent with all protocols approved by the Institutional Human Research Ethics Committee and in accordance 106 with the Declaration of Helsinki.

107 The PAP protocol for both the BFR and non-BFR conditions involved performance of lunges by positioning the 108 rear foot on a bench and the leading foot on the floor. This unilateral exercise was selected given that greater 109 load is applied to a single limb as opposed to load being distributed across both limbs during bilateral exercises. 110 Three sets of eight repetitions were completed for both legs, with two minutes of rest in-between each set based 111 on pilot testing. Specifically, the participants completed eight repetitions with the left leg, immediately followed 112 by eight repetitions using the right leg for each set. Prior to the BFR condition, resting blood pressure was 113 initially measured. Following warm-up, a pressure cuff (Sports Rehab Tourniquet, SportsRehab, Australia) was 114 placed on both lower limbs at the most proximal end of the thigh. To ensure standardisation, the cuff pressure 115 was set to 130% of each participant's resting systolic blood pressure. During the non-BFR condition, the same 116 PAP protocol was undertaken without the use of the pressure cuff.

For the DJ protocol, participants dropped off a 30cm box and completed a countermovement jump, which
required them to flex at their hips, knees and ankles during the eccentric phase, followed by extending these
joints during the concentric phase to jump as fast and as high as possible with full effort (Nagata et al. 2018).
The participants were instructed to 'leave the ground as fast as possible, and to jump as high as possible', in
order to optimise the stretch-shortening cycle and gain momentum during the concentric phase (Doma et al.
2017). The DJ protocol was used to obtain measures of contact time (CT) and reactive strength index (RSI),
which are important determinants of jump height performance (Barker et al. 2018). A jump mat (Speedlight,

124 Swiftperformance, Australia) was used to measure jump height (MJH), contact time (CT), flight time (FT) and

power. To confirm the results of the electronic jump height measure, a vertical jump apparatus (Yard Stick,

126 Swift Performance, Queensland, Australia) was also employed to measure vertical jump height (VJH). The

127 reactive strength index (RSI) was also calculated using the formula $RSI = VJH \div CT$, where VJH is jump

height in metres and CT is contact time in seconds (Flanagan and Harrison 2007).

129 The measures of central tendency and dispersion are reported as mean \pm standard deviation. All data were 130 analysed using the Statistical Package of Social Sciences (SPSS, version 24) with the majority of the data 131 normally distributed based on the Shapiro-Wilk's test. Reproducibility of the DJ protocol was determined from 132 both DJ_{Base} measures conducted before the PAP conditions via intra-class correlation coefficients (ICC, SPSS 2-133 way mixed, 95% confidence intervals) and systematic error via paired t-tests. Based on classifications by Menz 134 et al., ICC values of >0.75, $0.40 \le x \le 0.75$ and <0.40 were considered having excellent, moderate and poor 135 reliability, respectively. A two-way (condition × time) repeated measures analysis of variance (ANOVA) was 136 conducted to compare DJ measures between the BFR and non-BFR conditions and between each time point. 137 Fisher's Least Square Difference (LSD) test was conducted for post-hoc analyses when interaction, main time or 138 main condition effects were identified. Effect size (ES; Cohen's d) with 95% confidence interval was also 139 calculated to determine the magnitude of differences between the BFR and non-BFR conditions at each post-140 PAP time point with <0.5, $0.5 \le x \le 0.8$ and >0.8 considered small, moderate and large, respectively (Cohen, 141 1988). To further examine the potential mechanisms of PAP-induced improvement in jump performance for 142 both BFR and non-BFR conditions, Pearson's product moment correlations were calculated between the 143 mechanical (i.e., RSI, CT, FT and power) factors of jump performance and actual vertical jump height. This was 144 accomplished by ascertaining the greatest improvement in VJH measures during the post-PAP time points and 145 calculating the percentage changes from these time points to DJ_{Base}. For example, if a participant exhibited his 146 greatest VJH at DJ-6 during the BFR condition, then the percentage change between DJ_{Base} and DJ-6 were 147 calculated for all DJ parameters. Once these changes were calculated for each participant, correlations between 148 performance measures were determined and reported.

149

150

151 Results

The physical characteristics of the participants for age, height and body mass were 22.9±5.0 years, 1.80±0.06 m
and 79.4±9.9 kg, respectively. With respect to the systematic error of the performance parameters, no significant

differences were found between BFR and non-BFR at DJ_{Base} for VJH, CT, FT, MJH, Power and RSI (p > 0.05).
In addition, ICC measures demonstrated excellent test-retest reliability, for all variables with values ranging
from 0.85 to 0.96 (Table 1).

- 157 When comparing performance measures between time points (i.e., DJ_{Base} to DJ-15) and between BFR and non-
- **158** BFR conditions, a significant interaction effect was found for FT (p = 0.02), MJH (p = 0.05) and power (p = 0.05) and power
- 159 0.005) while there were no interaction effects for VJH, CT and RSI (p > 0.05). Specifically, the BFR condition
- exhibited significantly greater values for FT, MJH and power at DJ-15 compared to the non-BFR condition ($p \le 10^{-10}$
- 161 0.05; Figure 2). During the BFR condition, FT and and DJ-15 compared to DJ_{Base} (p \leq 0.05) whilst power was
- significantly greater at DJ-6, DJ-9 and DJ-15 compared to DJ_{Base} (p ≤ 0.05). There were no significant
- differences across time points for these measures within the non-BFR condition (p > 0.05). The BFR condition
- exhibited greater ES for VJH ($0.55 \le x \le 0.82$), FT ($0.60 \le x \le 1.08$), MJH ($0.54 \le x \le 1.06$) and power ($0.64 \le x \le 1.16$)
- with moderate to large ES at DJ-6, DJ-9 and DJ-15, when compared to DJ-3 and DJ-12 with small ES (-
- 166 $0.20 \le x \le 0.35$) (Table 2).
- 167 ***Figure 2 around here***
- 168 ***Table 2 around here***
- 169
- 170 When comparing the percentage change between DJ_{Base} and best DJ performance, significant correlations were
- 171 identified between several performance parameters in each condition (Table 3). Specifically, significant
- 172 correlations were identified between VJH and CT, FT and RSI ($p \le 0.05$), whilst the correlation between VJH
- and power was not significant for both BFR and non-BFR conditions (p > 0.05).
- 174 ***Table 3 around here***
- 175
- 176 With respect to the psycho-physiological measures, there were no significant interaction effects for RPE, LAC
- and HR measures (p > 0.05). However, non-significant, but moderately greater values were observed for RPE
- 178 (~8.9 vs. 8.6, ES = $-0.11 \le x \le 0.55$) and LAC (~4.0 mmol·L⁻¹ vs. 5.1 mmol·L⁻¹, ES = $0.50 \le x \le 0.78$), with small
- 179 changes for HR (~97.6 bpm vs. 97.4 bpm, ES = $-0.15 \le x \le 0.13$) during the BFR compared to non-BFR condition
- **180** (Table 2).

181 Discussion

182 The current study compared the PAP effects of lunge exercises between those performed in a BFR and non-BFR 183 condition. The improvement in DJ measures during the BFR condition suggests that the occlusion of the lower 184 limbs above brachial systolic blood pressure induces a substantial PAP stimulus compared to the non-BFR 185 condition despite equated workload between conditions. Whilst still not fully understood, intra-muscular hypoxic conditions caused by occluded exercises may accelerate the fatigue response of slow-twitch muscle 186 187 fibres, thereby eliciting an earlier onset of fast-twitch muscle fibre recruitment (Moritani et al. 1992; Takarada et 188 al. 2000). Given that the recruitment of higher threshold motor units has been reported as one of the 189 underpinning mechanisms of PAP (Tillin and Bishop 2009), it is likely that the lunge exercises during the BFR 190 condition in the current study was sufficient to elicit PAP. In addition, the greater LAC values (moderate ES) 191 provided further confirmation of the increased recruitment of type II muscle fibres as a result of greater 192 anaerobic metabolism during the occluded condition (Luscher et al. 1983). Interestingly, previous studies 193 (Garcia-Pinillos et al. 2015; Boullosa and Tuimil 2009) also reported greater LAC measures as a result of PAP 194 in aerobically trained, young males. However, it is important to note that differences in LAC measures reported 195 by previous studies (Boullosa and Tuimil 2009; Garcia-Pinillos et al. 2015) were statistically significant, whilst 196 the PAP protocol in the current study augmented LAC measures at a non-significant level and moderate ES. The 197 distinct findings between the current study, and those by others (Boullosa and Tuimil 2009; Garcia-Pinillos et al. 198 2015), may be due to differences in the type of PAP protocol, participant's physical characteristics, recovery 199 periods and timing of when LAC measures were obtained. Nonetheless, the improvement in jump performance 200 reported in the current study demonstrates that body-weight lunge exercises with occlusion may be a practical, 201 and more readily accessible method of acutely preparing anaerobically-trained athletes for conditioning sessions 202 or matches in sport.

203 The current findings are in line with those of Moore et al. (2004), who examined twitch torque characteristics of 204 the biceps brachii muscles immediately following a 10-second maximal isometric contraction in an occluded 205 condition (100 mmHg). In their study, the PAP effect was assessed after participants completed an 8-week, 206 resistance training program consisting of occluded, low intensity (50% of 1 repetition maximum) elbow flexion 207 exercises. Their chronic, occluded training resulted in significantly greater improvement in twitch torque 208 following an occluded, maximal voluntary, acute contraction, when compared to a similar non-occluded, 209 maximal acute contraction. Interestingly, Miller et al. (2018) recently reported comparable levels of 210 improvement in vertical jump performance between BFR and non-BFR conditions of isometric squat exercises

211 on a vibration machine, although greater improvement in isometric contraction force was observed in the BFR 212 condition (2.9 vs 0.8%). The discrepancy in findings between the current study, and that of Miller et al. (2018) 213 may be due to the mode of conditioning exercises and subsequent performance protocol. For example, the 214 current study incorporated dynamic, conditioning contractions to improve a subsequent dynamic performance 215 measure (i.e., vertical jump performance), as opposed to isometric exercises utilised by Miller et al. (2018), who 216 only showed greater improvement in isometric contraction force. It has been suggested that a better transfer of 217 PAP occurs when the kinematic characteristics of conditioning contractions are similar to that of the subsequent 218 performance measure (Doma et al. 2018; Doma et al. 2016). Therefore, dynamic conditioning contractions may 219 need to be considered when optimising the PAP effects via BFR methods for subsequent performance measures 220 that are dynamic in nature. Further research is warranted to compare various modes of conditioning exercises on 221 subsequent dynamic performance measures during BFR and non-BFR conditions.

222 Within the BFR condition in the current study, significant improvements in MJH, FT and power were observed 223 across several time points after the lunge exercises when compared to baseline measures, although no 224 differences were identified between time points within the non-BFR condition. These findings suggest that, 225 whilst lunge exercises with BFR exhibited benefits for vertical jump performance, the metabolic stimuli induced 226 by three sets of eight repetitions during the non-BFR condition was insufficient to evoke any PAP effects. In 227 fact, Horan et al. (2015) reported significant improvement in vertical jump performance after one set of 20 228 repetitions of body-weight lunge exercises, which was greater than twice the mechanical work compared to that 229 of the current study for one set (i.e., eight repetitions). However, it is important to note that Horan et al. (2015) 230 assessed vertical jump performance for only 30 seconds after the conditioning activity, and it is unclear whether 231 PAP would have been sustained beyond this period. Thus, according to the current findings, it appears that 232 body-weight lunge exercises requires BFR to facilitate PAP-induced improvement in jump performance for 233 longer periods.

The significant improvement in vertical jump and power from the 6th to the 9th minute after the BFR lunge exercise in the current study is similar to results of previous studies, where optimal potentiation for subsequent power output occurs between 5-10 minutes following dynamic conditioning contractions (Wilson et al. 2013; Doma et al. 2018; Doma et al. 2016). Interestingly, the current study also identified significantly better vertical jump performance measures at the 15th minute following the lung exercise. Previous studies have also noted that PAP effects were sustained for up to 16-20 minutes following conditioning contractions (Jo et al. 2010; Kilduff et al. 2007). The magnitude and duration of PAP is highly dependent on the balance between fatigue and potentiation, with more strenuous conditioning activities requiring greater recovery for potentiation to offset
fatigue (Seitz and Haff 2016). Whilst participants in the current study were anaerobically trained, it is possible
that a longer period of recovery was required for optimal PAP as they were not undertaking long-term BFR
training.

245 The significant correlations between both jump height measures (i.e., VJH and MJH) and RSI and CT during the 246 best jump, demonstrates that the period of foot contact with the ground was an important determinant for 247 vertical jump height in both conditions. Previous studies have reported increased RSI values following several 248 weeks of explosive training, with a concomitant reduction in CT and increased vertical drop jump height (Dello 249 Iacono et al. 2017; Lockie et al. 2012). It has been suggested that greater RSI values are indicative of enhanced 250 stretch-shortening cycle mechanics, by increasing vertical ground reaction force in a shorter period of time (i.e., 251 rate of force development), with elevated leg spring stiffness (Barker et al. 2018; Douglas et al. 2018). Given 252 that rate of force development is affected by phosphorylation of myosin RLC (Greenberg et al. 2009), a primary 253 mechanism of PAP (Sweeney et al. 1993), we speculate that the conditioning contractions optimised stretch-254 shortening cycle mechanics via myosin RLC phosphorylation in the current study. Interestingly, whilst no PAP-255 effects were found in the non-BFR condition, the correlations suggested that those participants, who acutely 256 improved jump performance, also exhibited changes in mechanical contributors (i.e., CT, RSI and power). 257 However, it should be noted that assessment of kinetic measures was beyond the scope of this study, and future 258 research could examine the effects of occluded PAP protocols on ground-reaction force characteristics. 259 Whilst the current study demonstrated the benefits of occluded lunge exercises on subsequent vertical jump 260 performance measures, some limitations should be considered. Firstly, we were unable to report on whether 261 occluded, body weight exercises were equally effective in inducing PAP effects as heavy resistance exercises, as 262 this was beyond the scope of this study. Nonetheless, we were able to identify that occluded, body weight 263 exercises were sufficient to acutely improve vertical jump performance, and may be a convenient alternative to a 264 common heavy resistance training protocol based on similar levels of improvement in jump performance 265 between the current study and that of a meta-analysis with heavy resistance exercise (Seitz and Haff 2016). 266 Secondly, the effects of occluded lunge exercises were examined on vertical jump performance only, which may 267 not be replicated to other sport-specific performance measures, including sprint and change-of-direction speed. 268 Thus, further research is warranted to determine whether the PAP protocol in the current study is also beneficial 269 to other performance tasks considered essential in sports. Finally, our cohort was limited to younger,

- anaerobically trained males, and thus our data may not be extrapolated to the general population, warranting
- 271 further research to confirm our findings with other age groups.
- 272 In conclusion, the current study showed that body weight lunge exercise with BFR improved subsequent vertical
- 273 jump performance measures for several minutes, post-exercise. Therefore, occluded, body weight lunge exercise
- during a warm-up routine may be a practical and effective protocol for optimising anaerobic power.
- 275

276 Acknowledgements

277 The authors do not declare any acknowledgements for this study.

279 References

280 Baker D (2003) Acute effect of alternating heavy and light resistances on power output during upper-281 body complex power training. J Strength Cond Res 17 (3):493-497 282 Barker LA, Harry JR, Mercer JA (2018) Relationships Between Countermovement Jump Ground 283 Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time. J Strength Cond 284 Res 32 (1):248-254. doi:10.1519/JSC.000000000002160 285 Boullosa D, Del Rosso S, Behm DG, Foster C (2018) Post-activation potentiation (PAP) in endurance sports: A review. Eur J Sport Sci 18 (5):595-610. doi:10.1080/17461391.2018.1438519 286 287 Boullosa DA, Abreu L, Beltrame LG, Behm DG (2013) The acute effect of different half squat set 288 configurations on jump potentiation. J Strength Cond Res 27 (8):2059-2066. 289 doi:10.1519/JSC.0b013e31827ddf15 290 Boullosa DA, Tuimil JL (2009) Postactivation potentiation in distance runners after two different field 291 running protocols. J Strength Cond Res 23 (5):1560-1565. 292 doi:10.1519/JSC.0b013e3181a3ce61 Centner C, Wiegel P, Gollhofer A, Konig D (2018) Effects of Blood Flow Restriction Training on 293 294 Muscular Strength and Hypertrophy in Older Individuals: A Systematic Review and Meta-295 Analysis. Sports Med. doi:10.1007/s40279-018-0994-1 296 Clark RA, Bryant AL, Reaburn P (2006) The acute effects of a single set of contrast preloading on a 297 loaded countermovement jump training session. J Strength Cond Res 20 (1):162-166. 298 doi:10.1519/16244.1 299 Dello Iacono A, Martone D, Milic M, Padulo J (2017) Vertical- vs. Horizontal-Oriented Drop Jump 300 Training: Chronic Effects on Explosive Performances of Elite Handball Players. J Strength 301 Cond Res 31 (4):921-931. doi:10.1519/JSC.000000000001555 302 Docherty D, Hodgson MJ (2007) The application of postactivation potentiation to elite sport. Int J 303 Sports Physiol Perform 2 (4):439-444 304 Doma K, Leicht AS, Schumann M, Nagata A, Senzaki K, Woods CE (2018) Postactivation potentiation 305 effect of overloaded cycling on subsequent cycling Wingate performance. J Sports Med Phys 306 Fitness. doi:10.23736/S0022-4707.18.08134-3 307 Doma K, Schumann M, Leicht AS, Heilbronn BE, Damas F, Burt D (2017) The repeated bout effect of 308 traditional resistance exercises on running performance across 3 bouts. Appl Physiol Nutr 309 Metab 42 (9):978-985. doi:10.1139/apnm-2017-0214 310 Doma K, Sinclair WH, Hervert SR, Leicht AS (2016) Postactivation potentiation of dynamic 311 conditioning contractions on rowing sprint performance. J Sci Med Sport 19 (11):951-956. 312 doi:10.1016/j.jsams.2016.02.017 313 Douglas J, Pearson S, Ross A, McGuigan M (2018) Kinetic Determinants of Reactive Strength in Highly 314 Trained Sprint Athletes. J Strength Cond Res 32 (6):1562-1570. 315 doi:10.1519/JSC.00000000002245 316 Flanagan EP, Harrison AJ (2007) Muscle dynamics differences between legs in healthy adults. J 317 Strength Cond Res 21 (1):67-72. doi:10.1519/R-18495.1 318 Garcia-Pinillos F, Soto-Hermoso VM, Latorre-Roman PA (2015) Acute effects of extended interval 319 training on countermovement jump and handgrip strength performance in endurance 320 athletes: postactivation potentiation. J Strength Cond Res 29 (1):11-21. 321 doi:10.1519/JSC.000000000000591 322 Greenberg MJ, Mealy TR, Watt JD, Jones M, Szczesna-Cordary D, Moore JR (2009) The molecular 323 effects of skeletal muscle myosin regulatory light chain phosphorylation. Am J Physiol Regul 324 Integr Comp Physiol 297 (2):R265-274. doi:10.1152/ajpregu.00171.2009 325 Hodgson M, Docherty D, Robbins D (2005) Post-activation potentiation: underlying physiology and 326 implications for motor performance. Sports Med 35 (7):585-595. doi:10.2165/00007256-327 200535070-00004

- Horan SA, Watson SL, Lambert C, Weeks BK (2015) Lunging Exercise Potentiates a Transient
 Improvement in Neuromuscular Performance in Young Adults. J Strength Cond Res 29
 (9):2532-2537. doi:10.1519/JSC.00000000000913
- Jo E, Judelson DA, Brown LE, Coburn JW, Dabbs NC (2010) Influence of recovery duration after a
 potentiating stimulus on muscular power in recreationally trained individuals. J Strength
 Cond Res 24 (2):343-347. doi:10.1519/JSC.0b013e3181cc22a4
- Kilduff LP, Bevan HR, Kingsley MI, Owen NJ, Bennett MA, Bunce PJ, Hore AM, Maw JR, Cunningham
 DJ (2007) Postactivation potentiation in professional rugby players: optimal recovery. J
 Strength Cond Res 21 (4):1134-1138. doi:10.1519/R-20996.1
- Lockie RG, Murphy AJ, Schultz AB, Knight TJ, Janse de Jonge XA (2012) The effects of different speed
 training protocols on sprint acceleration kinematics and muscle strength and power in field
 sport athletes. J Strength Cond Res 26 (6):1539-1550. doi:10.1519/JSC.0b013e318234e8a0
- Luscher H, Ruenzel PW, Henneman E (1983) Effects of impulse frequency, PTP, and temperature on
 responses elicited in large populations of motoneurons by impulses in single Ia-fibers. J
 Neurophysiol 50 (5):1045-1058. doi:10.1152/jn.1983.50.5.1045
- Metzger JM, Greaser ML, Moss RL (1989) Variations in cross-bridge attachment rate and tension
 with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications
 for twitch potentiation in intact muscle. J Gen Physiol 93 (5):855-883
- Miller RM, Keeter VM, Freitas EDS, Heishman AD, Knehans AW, Bemben DA, Bemben MG (2018)
 Effects of Blood-Flow Restriction Combined With Postactivation Potentiation Stimuli on
 Jump Performance in Recreationally Active Men. J Strength Cond Res 32 (7):1869-1874.
 doi:10.1519/JSC.00000000002110
- Moore DR, Burgomaster KA, Schofield LM, Gibala MJ, Sale DG, Phillips SM (2004) Neuromuscular
 adaptations in human muscle following low intensity resistance training with vascular
 occlusion. Eur J Appl Physiol 92 (4-5):399-406. doi:10.1007/s00421-004-1072-y
- Moritani T, Sherman WM, Shibata M, Matsumoto T, Shinohara M (1992) Oxygen availability and
 motor unit activity in humans. Eur J Appl Physiol Occup Physiol 64 (6):552-556
- Nagata A, Doma K, Yamashita D, Hasegawa H, Mori S (2018) The Effect of Augmented Feedback Type
 and Frequency on Velocity-Based Training-Induced Adaptation and Retention. J Strength
 Cond Res. doi:10.1519/JSC.0000000002514
- Seitz LB, Haff GG (2016) Factors Modulating Post-Activation Potentiation of Jump, Sprint, Throw, and
 Upper-Body Ballistic Performances: A Systematic Review with Meta-Analysis. Sports Med 46
 (2):231-240. doi:10.1007/s40279-015-0415-7
- Sweeney HL, Bowman BF, Stull JT (1993) Myosin light chain phosphorylation in vertebrate striated
 muscle: regulation and function. Am J Physiol 264 (5 Pt 1):C1085-1095.
 doi:10.1152/ajpcell.1993.264.5.C1085
- Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N (2000) Effects of resistance exercise
 combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol
 (1985) 88 (6):2097-2106. doi:10.1152/jappl.2000.88.6.2097
- Tillin NA, Bishop D (2009) Factors modulating post-activation potentiation and its effect on
 performance of subsequent explosive activities. Sports Med 39 (2):147-166.
 doi:10.2165/00007256-200939020-00004
- Wilson JM, Duncan NM, Marin PJ, Brown LE, Loenneke JP, Wilson SM, Jo E, Lowery RP, Ugrinowitsch
 C (2013) Meta-analysis of postactivation potentiation and power: effects of conditioning
 activity, volume, gender, rest periods, and training status. J Strength Cond Res 27 (3):854 859. doi:10.1519/JSC.0b013e31825c2bdb

374

376 Figure legends

- **Figure 1.** The mean ± standard deviation at baseline (DJ_{Base}), 3 minutes (DJ-3), 6 minutes (DJ-6), 9 minutes
- 378 (DJ-9), 12 minutes (DJ-12) and 15 minutes (DJ-15) after lunge exercises for A) vertical jump height; B) contact
 379 time; C) flight time; D) power; E) mat jump height; and F) reactive strength index during the blood flow
- **380** restriction (BFR) and non-BFR conditions
- 381 * Significant differences between the two conditions (p < 0.05)
- **382** † Significantly greater than DJ_{Base} during the BFR condition (p < 0.05)