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Abstract: We reported earlier that an anti-inflammatory small peptide receptor-formyl peptide
receptor-2 (FPR2) was significantly decreased in placentas from third trimester pregnancies
complicated with fetal growth restriction (FGR), compared to placentas from uncomplicated control
pregnancies, suggesting FPR2 may play a role in the development of FGR. The aim of this study is to
investigate whether the actions of FPR2 alters placental growth process in humans. Accordingly, using
small-for-gestation age (SGA) as a proxy for FGR, we hypothesize that FPR2 expression is decreased
in first-trimester placentas of women who later manifest FGR, and contributes to aberrant trophoblast
function and the development of FGR. Chorionic villus sampling (CVS) tissues were collected at
10–12 weeks gestation in 70 patients with singleton fetuses; surplus tissue was used. Real-time PCR
and immunoassays were performed to quantitate FPR2 gene and protein expression. Silencing of
FPR2 was performed in two independent, trophoblast-derived cell lines, HTR-8/SVneo and JEG-3
to investigate the functional consequences of FPR2 gene downregulation. FPR2 mRNA relative to
18S rRNA was significantly decreased in placentae from SGA-pregnancies (n = 28) compared with
controls (n = 52) (p < 0.0001). Placental FPR2 protein was significantly decreased in SGA compared
with control (n = 10 in each group, p < 0.05). Proliferative, migratory and invasive potential of the
human placental-derived cell lines, HTR-8/SVneo and JEG-3 were significantly reduced in siFPR2
treated cells compared with siCONT control groups. Down-stream signaling molecules, STAT5B
and SOCS3 were identified as target genes of FPR2 action in the trophoblast-derived cell lines and
in SGA and control chorionic villous tissues. FPR2 is a novel regulator of key molecular pathways
and functions in placental development, and its decreased expression in women destined to develop
FGR reinforces a placental origin of SGA/FGR, and that it contributes to causing the development
of SGA/FGR.
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1. Introduction

Fetal growth restriction (FGR) complicates up to 10% of all human pregnancies and is a major
cause of preterm birth and late pregnancy stillbirth, a leading cause of neonatal death and morbidity
and a cause of lifelong neurological impairment including cerebral palsy and cardio-metabolic and
vascular diseases in adulthood [1–4]. Small-for-gestation age (SGA) is often considered as a surrogate
for FGR. While a number of maternal and fetal factors that contribute to FGR/SGA have been identified,
the etiologies of the mechanism has not yet been fully elucidated. The underlying cause of FGR/SGA is
unclear, but in the absence of a maternal (e.g., preeclampsia) and/or fetal (e.g., genetic) pathology, the
origins of FGR/SGA predominantly lie within a functionally insufficient placenta, which manifests as
inadequate utero-placental blood flow on ultrasound scan and maternal vascular mal-perfusion on
placental histology [5].

Placental-related FGR/SGA arises primarily due to deficient remodeling of the uterine spiral
arteries supplying the placenta during early pregnancy. The resultant mal-perfusion induces cellular
stress within the placental tissues, leading to selective suppression of protein synthesis and reduced
cell proliferation [6]. Consequently, there is a reduction in villous volume and surface area for
maternal-fetal exchange. Extensive dysregulation of gene expression occurs, affecting placental
transport, endocrine, metabolic and immune functions. Secondary changes involving dedifferentiation
of smooth muscle cells surrounding the fetal arteries within placental stem villi correlate with absent or
reversed end-diastolic umbilical artery blood flow, and with a reduction in birthweight [6]. Thus, the
developmental abnormalities associated with fetal growth and the clinical symptoms associated with
pathological pregnancies in late pregnancy are often associated with abnormal placental development
early in gestation [6].

Excessive placental inflammation is associated with several pathological conditions, including
FGR pregnancies [7]. We have recently reported that a small molecule peptide receptor, formyl-peptide
receptor (FPR2), an anti-inflammatory receptor, is expressed in the human placenta across gestation [8].
FPRs are seven trans-membrane proteins belonging to the G-protein coupled receptor family.
In humans, three FPR paralogs have been identified (FPR1, FPR2 and FPR3). Upon binding to specific
ligands/agonists, FPR2 influences basic cellular functions including proliferation, differentiation,
invasion, angiogenesis as well as host defense and regulation of inflammatory reactions [9]. As such,
FPRs and their specific agonists have been identified as potential targets in the development of efficient
therapeutic agents in several diseases including cancer, diabetes and asthma [9–11].

Targeted deletion of Fpr2 in mice and/or in vitro silencing leads to increased inflammation,
compromised immune regulation and abnormal blood vessel growth, whereas FPR activation
or over-expression inhibited inflammation, restored immune regulation and increased
neovascularization [12,13]. FPR2 regulates inflammatory events in the human endometrium and
decidua of early pregnancy, including production of the pregnancy hormone, β-human chorionic
gonadotropin (β-hCG) early in pregnancy [14]. Our previous study also demonstrated that FPR2
expression was significantly decreased in the placentas from third-trimester FGR pregnancies compared
with uncomplicated normal pregnancies; and its reduction was associated with an aberrant production
of inflammatory cytokines and chemokines from cultured syncytiotrophoblast (SCT) in vitro [8].
However, determining the cause of human FGR remains a major challenge in human pregnancy
research. It is uncertain whether the decreased placental FPR2 expression observed in third trimester
human FGR-affected pregnancies [8] is truly causative or rather reflects a response to an altered
growth process.

A recent study describes that FPR2 plays an essential role in the regulation of epithelial
mesenchymal transition (EMT) in tumor progression [15]. However, the potential role of FPR2
in EMT associated with early placentation is largely unknown. Human placental development shares
many features of a metastatic tumor biology. More specifically, during early placental development,
the extravillous trophoblasts (EVT) undergo a partial EMT and migrate from the outer surface of the
cytotrophoblastic shell into the endometrium by adopting a pleiotropic phenotype similar to metastatic
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tumor tissue [16]. The placenta has therefore been linked to a malignant tumor, albeit a highly regulated
one [17]. Understanding the role of key regulators such as FPR2 in processes associated with EMT in the
earliest stages of pregnancy is critical to comprehending the role of the FPR2 not only in uncomplicated
pregnancies but also in pathological pregnancies associated with abnormal EMT in FGR pregnancies.
Therefore, in this study we determined the expression of FPR2 in early placental tissues collected at
first trimester and investigated the signaling pathways and EMT that are essential for trophoblast
proliferation and invasion.

Early gestation sampling can be accomplished by chorionic villus sampling (CVS), a procedure
generally performed between 10 and 14 weeks of gestation. In this study, we made use of a unique
resource of first trimester tissues collected via CVS during the first trimester. Subsequent differentiation
between uncomplicated and pathological pregnancies is possible, as the eventual maternal and fetal
outcomes of ongoing pregnancies are determinable [18–20]. We hypothesized that placental FPR2
expression is decreased early in gestation in SGA pregnancies and contribute to aberrant signaling
mechanisms associated with trophoblast invasion and EMT. FPR2 expression was quantified using
real-time PCR and immunoassays in villus tissue collected with known clinical outcomes, i.e., SGA or
uncomplicated control pregnancies, to investigate the temporal relationship between altered placental
FPR2 expression and any subsequent development of SGA. The consequences of decreased FPR2
expression on trophoblast function was determined using two independent trophoblast-derived cell
lines, HTR-8/SVneo and JEG-3.

2. Materials and Methods

2.1. Human Research Ethics

The collection and archiving of all samples into a biobank for future research purposes had
the approval of the relevant institutional human research ethics committees as described below for
the CVS and the first trimester placental villus tissues. Each woman, from whom samples were
collected and pregnancy outcome data recorded, gave informed and written consent to the collection
of the placental villus tissue and the recording of coded, de-identified demographic information and
pregnancy outcomes where possible.

2.2. Collection of Surplus CVS Tissue Samples

First-trimester placental villous tissue was obtained from surplus tissue at chorionic villus
sampling (CVS) from singleton pregnancies performed vaginally between 10 and 12 weeks of gestation
for maternal age or serum screening related risk for aneuploidy. CVS was performed at the University
Medical Center of Groningen, The Netherlands. Surplus supply of CVS samples was collected from
pregnant women with informed consent and in accordance with the guidelines of the Federation
of Dutch Medical Scientific Societies regarding surplus material not needed for diagnostics. Patient
demographics including follow-up of pregnancy outcome details were collected by a questionnaire
returned by the patient postpartum. As previously described in our study [18–20], pregnancies later
complicated by SGA were selected from the database, and controls were selected matched for maternal
age and gestational age at the time of sampling. SGA cases were selected based on the birth weight being
below the 10th percentile according to Dutch population charts from the Stichting Perinatale Registratie
Nederland. Patient identification was then removed, and the samples were coded and processed
anonymously. The exclusion criteria for both control and SGA affected pregnancies were chromosomal
abnormalities, congenital anomalies, gestational diabetes, preeclampsia, maternal hypertension and
maternal chemical dependency. The control group was selected based on the crown–rump-length
(CRL) of each SGA affected fetus at the time of CVS. A total of 105 pregnancies were selected based
on the RNA quality, n = 28 from SGA and n = 52 from control uncomplicated pregnancies were used
(Table 1).
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Table 1. Patient characteristics of first trimester small-for-gestation age (small-gestation age, SGA) and
control pregnancies.

Control (n = 52) SGA (n = 28) p Value

Maternal Age (years) 38.35 ± 3.14 37.96 ± 4.25 p = 0.64
Gravidity 3.14 ± 0.22 3.14 ± 0.32 p = 0.97

Parity 1.42 ± 0.13 1.43 ± 0.25 p = 0.98

Birth weight (g) 3534 ± 251.4 2575 ± 548.2
Birth weight percentile: p < 0.05 *

<3rd
3rd–4th 32.14%
5th–9th 39.29%
>10th 100% 28.57%

Newborn gender:
Male 59.62% 53.57% p = 0.60

Female 40.38% 46.43%

Patient characteristics of first trimester SGA and control pregnancies. Results presented as mean ± SD or n (%) as
appropriate. Unpaired independent t-test and chi-square test used to calculate p-values of continuous and discrete
non-parametric data respectively. p < 0.05 (indicated by *) considered statistically significant.

2.3. First Trimester Placental Tissues

Placental tissues from pregnancies at the first-trimester were obtained with the informed written
consent from Monash Health, Clayton, Victoria, Australia. Placental tissues were collected from
10–12 weeks’ gestation (n = 3).

2.4. Trophoblast-Derived Cell Lines

The immortalized isolated primary normal extravillous cytotrophoblasts (EVCT), HTR-8/SVneo
was a kind gift from Dr. Charles Graham (Queen’s University, Kingston, ON, Canada).
The choriocarcinoma-derived cell line, JEG-3 was purchased from American Tissue Type Culture
Collection (ATCC, Manassas, VA, USA). The cells were maintained in RPMI-1640 medium supplemented
with 10 mM sodium bicarbonate, 50 mg/mL streptomycin, 50 IU/mL penicillin and 10% fetal bovine
serum (FBS). All reagents were purchased from Invitrogen Corporation (Carlsbad, CA, USA).

2.5. Silencing of FPR2 in Trophoblast Cell Lines

Cultured HTR-8/SV-neo and JEG-3 (2×105 cells/well in 6-well plates and 5×104 cells/well in
24-well plates) cells were transfected with siRNA specific for FPR2 (siFPR2, Thermo Fisher Scientific,
Waltham, MA, USA). Negative control siRNA (siCONT) consisted of a pool of enzyme-generated
siRNA oligonucleotides of 15–19 base pairs that were not specific for any known human gene (AllStars
Neg. siRNA AF 488, Qiagen, Hilden, Germany) and showed no sequence similarity to FPR2. Briefly,
siFPR2 or siCONT were used at a ratio of 1:6 and incubated for 15 min at room temperature. The siRNA
complexed with the Hi-Perfect transfection reagent (Qiagen, Hilden, Germany) was then added
drop-wise to a final concentration of 80-µM siRNA and incubated at 37 ◦C for 24–48 h hours. Trypan
blue exclusion assay was performed to verify the viability of cells following siRNA transfection.

2.6. Real-Time PCR

Total placental RNA was isolated and purified using the Macherey–Nagel NucleoSpin® RNA kit
according to the manufacturer’s instructions (Macherey–Nagel Inc. Dueren, Germany). cDNA was
prepared from 500 ng total RNA using a Qiagen QuantiTect Reverse Transcription Kit according to the
manufacturer’s instructions (Qiagen, Hilden, Germany). FPR2 mRNA expression was determined
using validated assays that consisted of a TaqMan® FAMTM labeled MGB probe (FPR2, Hs02759175_s1,
Thermo Fisher Scientific, Waltham, MA, USA) on an ABI Prism 7500 (Thermo Fisher Scientific,
Waltham, MA, USA). Gene expression quantitation was performed as the second step in a two-step
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reverse transcriptase–polymerase chain reaction (RT-PCR) protocol according to the manufacturer’s
instructions (Invitrogen/Thermo Fisher Scientific, Waltham, MA, USA). Gene expression quantitation
for the housekeeping gene 18S rRNA (VIC- labeled probe, Thermo Fisher Scientific, Waltham, MA,
USA) was performed in the same reaction as described previously [8,20]. Levels of gene expression
relative to 18S rRNA were calculated according to the 2-∆∆CT method [8,20,21].

2.7. Immunohistochemistry

Paraffin-embedded 5 µm tissue sections were deparaffinized in xylene and dehydrated in graded
alcohol. Endogenous peroxidase activity was blocked using 3% hydrogen peroxide for 10 min at room
temperature. Antigen retrieval was achieved by enzymatic digestion using 20 mg/mL Proteinase K
(Ambion, Austin, TX, USA) in Tris buffer containing 1 M Tris-HCl, 0.5 M EDTA (pH 7.5). Nonspecific
protein binding was saturated with the blocking agent provided in the Histostain-Plus Broad Spectrum
kit (Zymed Laboratories, South San Francisco, CA, USA). Tissue sections were then incubated
overnight at 4 ◦C with primary FPR2 anti-human, mouse monoclonal IgG antibody (Novus Biologicals,
Centennial, CO, USA) at a concentration of 0.02 µg/µl, in 2% (w/vol) non-fat milk phosphate buffered
saline (PBS). Control sections were incubated with 0.02 µg/µl mouse IgG, 2% (w/vol) non-fat milk in
PBS (DAKO, Copenhagen, Denmark). Staining was visualized by incubating with the biotinylated
secondary antibody and streptavidin-conjugated enzyme from the Histostain-Plus Broad-Spectrum kit
(Zymed Laboratories, South San Francisco, CA, USA). Chromogenic detection was performed using
diaminobenzidine (DAB, Sigma Chemical Co. St. Louis, MO, USA). Sections were mounted with
Histomount (Sigma Chemical Co. St. Louis, MO, USA).

2.8. ELISA

FPR2 in the total protein extracts prepared from the chorionic villus tissues (n = 10 SGA; n = 10
control) and from the cellular extracts were measured using an ELISA (FPR2 ELISA Kit (Human),
OKEH01364, Aviva Systems Biology, San Diego, USA) following the manufacturer’s instructions.
The total protein extract from CVS tissues were obtained as a second step purification from the
Macherey–Nagel NucleoSpin® RNA kit (Macherey–Nagel Inc. Dueren, Germany), due to the
limitations on the purity of the protein content, only a subset of CVS samples was analyzed for protein
content. The concentration of FPR2 (pg/mL) in µg of total protein in the chorionic villus samples and
in the cellular extracts were determined using a microplate reader, SpectraMax i3 (Molecular Devices,
San Jose, CA, USA) and the optical density was read at an absorbance of 450 nm.

2.9. Proliferation Assay

Cultured HTR-8/SV-neo and JEG-3 cells were seeded into 24-well plates at a density of
5 × 104 cells/well, cultured and transfected for 24 h using the siFPR2 or siCONT. Cell proliferation
was measured at 48 h using the CyQuant proliferation assay (Thermo Fisher Scientific, Waltham, MA,
Australia) and the fluorescence measurements were made using a microplate reader SpectraMax i3
(Molecular Devices, San Jose, CA, USA) with excitation at 485 nm and emission detection at 530 nm.

2.10. Transwell Migration and Invasion Assays

Cell migration and invasion in HTR-8/SV-neo and JEG-3 were measured using 8 µm tissue culture
inserts (Becton and Dickinson, BD Biosciences, San Jose, CA, USA). For the invasion assay, the
polycarbonate membranes at the bottom of the Transwell were coated with a thin layer of growth
factor-reduced Matrigel (Becton and Dickinson, BD Biosciences, San Jose, CA, USA), diluted 1:10 in
RPMI medium. Cell invasion and migration was quantified using colorimetric methods as previously
described [22]. Briefly, cells were serum starved overnight prior to siFPR2 or siCONT transfection. Cells
were transfected for 48 h, detached using non-enzymatic cell dissociation reagent (Sigma Chemical Co.
St. Louis, MO, USA) and plated in the Transwell using serum free medium at 5 × 103 cells/chamber.
The lower chambers contained 10% FBS medium as a chemo-attractant. Following incubation for 24 h
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at 37 ◦C in 95% air/5% CO2, non-migrating cells in the Transwell inserts were removed using a cotton
swab. Alamar Blue (Becton and Dickinson, BD Biosciences, San Jose, CA, USA) was added to the
medium of the feeder tray at a final concentration of 10% and the plate was further incubated at 37 ◦C
for 8 h. Absorbance was read at 540 and 630 nm with a microplate reader, SpectraMaxi3 (Molecular
Devices, San Jose, CA, USA).

2.11. Apoptosis Assay

The effect of FPR2 on apoptosis in HTR-8/SV-neo and JEG-3 cells was measured following
transfection with siFPR2 or siCONT for 48 h in culture. Apoptosis was determined using the ApoAlert®

Caspase Colorimetric assay kit specific for the caspase 3 activity according to the manufacturer’s
instructions (Clone Tech Laboratories Inc/ Takara Bioscience, Mountainview, CA, USA). The colorimetric
assay was based on spectrophotometric detection of the chromophore p-nitroaniline (pNA) after its
cleavage by caspases from the labeled caspase-specific substrates as previously described [23]. Briefly,
cells (2 × 105 cells/well) were treated with siFPR2 or siCONT as described above. ApoAlert Caspase
activity for caspase 3 was measured on cell lysates by the addition of 50 µM caspase 3 substrate
(DEVD-pNA) in the presence or absence of caspase 3 inhibitor DEVD-fmk, all provided in the assay kit.
Chromgen detection and absorbance were measured at 405 nm using a microplate reader, SpectraMaxi3
(Molecular Devices, San Jose, CA, USA).

2.12. Immunoblotting for Markers of Apoptosis and EMT

Total cellular protein from HTR-8/SV-neo and JEG-3 cells was extracted and markers of apoptosis
were quantitated by immunoblotting as previously described [8]. Immunoblotting was performed
with 25 µg of total protein using a 10% SDS/PAGE and electroblotting onto a nitrocellulose membrane
(Pal Gelman, NSW, Australia). The membrane was blocked with 5% (w/v) skim milk for one hour at
room temperature and followed by an overnight incubation at 4 ◦C in 0.025 µg/µL mouse anti-human
monoclonal p53 (TP53 PAb 1801, Abcam, Cambridge, MA, USA) or 0.01 µg/µL mouse anti-human
monoclonal Caspase 8 (MAB4708, Chemicon, Australia) or rabbit polyclonal E-cadherin (AB 15148,
Abcam, Cambridge, MA, USA) or SNAL (AB82846, Abcam, Cambridge, MA, USA) or SLUG (AB27568,
Abcam, Cambridge, MA, USA) or mouse monoclonal vimentin (E5, Santa Cruz Biotechnology, Dallas,
Texas, USA) or mouse monoclonal beta-tubulin (loading control, NB600-501, Novus Biologicals,
Centennial, CO, USA). Antibody binding was visualized using horseradish peroxidase-conjugated goat
anti-mouse secondary antibody (0.02 µg/µL, Thermo Fisher Scientific, Waltham, MA, USA), followed by
autoradiography using the ECL-Western Chemiluminescence Detection Kit (GE Healthcare, Chicago,
Illinois, USA). Immunoreactive protein for TP53 (53 kDa), Caspase 8 (55 kDa), E-cadherin (120 kDa),
SNAIL (30 kDa), SLUG (29 kDa) and vimentin (55 kDa) normalized to beta-tubulin (50 kDa) was
quantitated using scanning densitometry (ImageQuant, GE Healthcare, Chicago, Illinois, USA) as
described previously [8].

2.13. cDNA Array

RNA from three independent transfection experiments from the HTR-8/SVneo and JEG-3 cells
were pooled separately and a total of 2 µg RNA per PCR array plate was used for each of the treatment
groups for the two cell lines. The TaqMan® Array on Human JAK-STAT pathway (catalog # 4414156,
Thermo Fisher Scientific, Waltham, MA, USA) and custom-designed EMT markers cDNA array
(Thermo Fisher Scientific, Waltham, MA, USA) were performed following cDNA preparation using the
Superscript III containing reagents, according to the manufacturer’s recommendations (Thermo Fisher
Scientific, Waltham, MA, USA). PCR conditions consisted of an activation cycle at 50 ◦C for 2 min
and 95 ◦C for 10 min, followed by 40 cycles at 95 ◦C for 15 s and 60 ◦C for 1 min. mRNA expression
was normalized to the housekeeping gene included in the array plate. Data were analyzed using
Data Assist software program (Thermo Fisher Scientific, Waltham, MA, USA). Differentially expressed
genes were prioritized based on their level of expression above or below a 2-fold change in mRNA
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expression in siFPR2 treated cells compared with siCONT treated cells. Complementary genes that
showed consistent up-regulation or down-regulation in the two cell lines were further validated by
real-time PCR in the cultured cells and in the CVS samples. As described above, gene expression
relative to 18S rRNA was calculated according to the 2-∆∆CT method [8,20,21].

2.14. Data Analysis

Statistical analysis was performed using Graph Pad Prism program (GraphPad software, Version
7.01, Inc., San Diego, CA, USA). Mann–Whitney U test was used for the semi-quantitative data analysis
for FPR2 mRNA, while unpaired t-test was used for differences in FPR2 protein between SGA and
control groups. Statistical differences between treatment groups were evaluated using paired t-test.
All data are presented as ± SEM, unless otherwise stated. A probability value of <0.05 was accepted as
statistically significant and 95% confidence intervals (CI) are given where appropriate.

3. Results

Table 1 depicts the demographic data collected at delivery for both SGA and control pregnancies
used in this study. A significantly lower mean birth weight was observed in the SGA group compared
with controls, however, there was no significant difference in maternal age, gestation or parity between
the two groups.

Using placental tissues collected via CVS, we determined the expression of FPR2 mRNA in
early pregnancy. Quantification of relative FPR2 mRNA to 18S rRNA in the chorionic villus samples
was performed using real-time PCR (Figure 1A). FPR2 mRNA was detected in all CVS samples
analyzed. The level of expression of placental FPR2 mRNA was significantly decreased in SGA-affected
pregnancies (n = 28) compared with those obtained from control pregnancies (n = 52; p < 0.001;
Mann–Whitney U test). Placental content of FPR2 protein was measured using an ELISA. FPR2 protein
determined in a subset of chorionic villus tissues from SGA pregnancies (n = 10) was significantly
decreased compared with that in a subset of control CVS (n = 10, p < 0.05) (Figure 1B).

Immunohistochemistry was used to localize FPR2 protein in the first-trimester placental tissues
at the implantation site from uncomplicated normal pregnancies. Arrows indicate the presence of
immunoreactive protein in extravillous cytotrophoblasts (EVCT), in the decidual cells and in the
glandular epithelial cells (Figure 1Ci). Substitution of the primary antibody with the isotype control
IgG2a (Figure 1Cii) showed no immunoreactivity (Figure 1Cii).

FPR2 mRNA in trophoblast-derived cell lines was transiently inactivated using FPR2 specific
siFPR2. Non-specific siRNA control siCONT, was used as a control. In both HTR-8/SVneo (Figure 2A)
and in JEG-3 (Figure 2C), siFPR2 treatment for 48 h significantly decreased FPR2 mRNA compared with
cells transfected with siCONT, respectively (n = 4, p < 0.01). The decrease in FPR2 mRNA expression
was further confirmed at the protein level. A quantitative decrease in FPR2 protein was observed in
the cellular extracts of both HTR-8/SVneo (Figure 2B) and JEG-3 (Figure 2D) cells following siFPR2
treatment compared with siCONT treated cells respectively (n = 4, p < 0.01).
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Figure 1. (A) Real-time PCR analyses for formyl peptide receptor-2 (FPR2) mRNA relative to 18S rRNA.
FPR2 mRNA relative to 18S rRNA in SGA (n = 28) and control (n = 52) in early gestation was determined
using real-time PCR. Gene expression differences between SGA and control placental tissues were
calculated according to 2-∆∆CT method (Livak and Schmittgen, 2001). Data presented as mean ± SEM.
A probability value of <0.05 was considered to be statistically significant as denoted by *. (B) ELISA.
FPR2 concentrations in the chorionic villus tissues from SGA (n = 10) and control (n = 10) pregnancies.
Data presented as mean± SEM. A probability value of <0.05 was considered to be statistically significant
as denoted by *. (C) Immunohistochemical localization for FPR2 protein. Immunoreactive FPR2 protein
localization in placental tissues obtained from pregnancies at first trimester (n = 3) was performed
using immunohistochemistry. A representative image is shown. Arrows indicate the presence of
immunoreactive FPR2 protein in; extravillous cytotrophoblasts (EVCT), in the decidual cells and in
the glandular epithelial cells. No immunoreactivity was observed in the negative control, where the
primary antibody was substituted with the isotype control IgG2a (Figure 1Cii).
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Figure 2. FPR2 inactivation in HTR-8/SVneo and JEG-3. Real-time PCR and ELISA demonstrates
mRNA and protein concentrations following transfection with siFPR2 or siCONT. (A) (HTR-8/SV neo)
and (C) (JEG-3). Columns represent 2–∆∆CT values normalized to 18S mRNA expression, ± SEM of
four independent experiments (* p < 0.05). (B) (HTR-8/SV neo) and (D) (JEG-3): ELISA to quantitate
protein concentration in the cellular extracts of siFPR2 and siCONT treated cells. Data are expressed
as the optical density read at an absorbance of 450 nm. Values represent ± SEM of four independent
experiments (* p < 0.05).

The effect of FPR2 silencing on cell proliferation, migration and invasion was also determined
in HTR-8/SVneo and in JEG-3 cells. Following siFPR2 treatment for 24 h, the proliferative potential
was significantly decreased in both HTR-8/SVneo (Figure 3A) and in JEG-3 (Figure 3B) compared
with siCONT treated cells respectively. Following siFPR2 transfection for 48 h the percentage of
migrated cells or invading cells was calculated and revealed a significant decrease in migratory
potential in HTR-8/SVneo compared with siCONT treated cells (Figure 3C, n = 4, p < 0.005) and JEG-3
cells compared with siCONT treated cells (Figure 3D, n = 4, p < 0.005). siFPR2 treatment in both
HTR-8/SVneo (Figure 3E) and in JEG-3 (Figure 3F) resulted in a significant reduction in cell invasion
compared with cells transfected with siCONT respectively (n = 4, p < 0.005).

As depicted in Figure 4, the functional effect of FPR2 on HTR8/SVneo and in JEG-3 cell apoptosis
was investigated following siFPR2 silencing. As shown in Figure 4A, immunoblotting for apoptotic
markers detected the presence of immunoreactive proteins TP53 (55 kDa) and caspase 8 (53 kDa) in both
HTR-8/SVneo and in JEG-3 following siFPR2 or siCONT treatment for 48 h in culture. Semi-quantitative
analyses of TP53 (Figure 4B) and caspase 8 (Figure 4C) relative to beta-tubulin (50 kDa) did not show
significant difference for both TP53 and caspase 8 in HTR-8/SVneo and in JEG-3 cells respectively.
Further quantitation of caspase 3 activity in both HTR-8/SVneo and in JEG-3 following siFPR2 or
siCONT treatment for 48 h in culture, also did not show a significant difference in siFPR2 treated cells
compared to siCONT (Figure 4D).
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Figure 3. Effect of FPR2 silencing on (A). (HTR-8/SV neo) and (B). (JEG-3) proliferation; (C) (HTR-8/SV
neo) and (D) (JEG-3) Migration; and (E) (HTR-8/SV neo) and (F) (JEG-3) invasion. Cells transfected for
24 h with siCONT and siFPR2 for proliferation assays. Cells were transfected for 48 h to determine the
migratory and invasive potential of FPR2. Briefly, cells were dissociated and seeded on top of uncoated
(for migration assay) or Matrigel-coated (for invasion assay) 8-µm pore filters, immersed in feeder trays.
The number of migrating and invading cells were deduced according to Al Naisry et al. (2007). Data
are representative of four independent experiments conducted in quadruplicate. Values represent ±
SEM (* p < 0.05).
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Figure 4. Effect of FPR2 silencing on HTR-8/SV neo and JEG-3 apoptosis. (A). Immunoblotting for
TP53, caspase 8 and beta-tubulin loading control in HTR-8/SV neo and JEG-3; (B). Semi-quantitation
of immunoreactive TP53/beta-tubulin in HTR-8/SV neo and JEG-3. (C). Semi-quantitation of
immunoreactive protein caspase 8/beta-tubulin in HTR-8/SV neo and JEG-3. (D). Measurement
of caspase 3 activity in HTR-8/SV neo and JEG-3. Briefly, cells transfected for 48 h to determine the effect
of FPR2 silencing on apoptosis. Data are representative of three independent experiments conducted in
duplicate. Values represent ± SEM.
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The down-stream targets of genes of FPR2 in the JAK-STAT pathway was investigated using a
pathway specific cDNA array. The candidate genes identified and prioritized for those that showed an
increase (>2-fold) or decrease (<2-fold) expression changes (Figure 5). Genes that were complementary
in both the cell lines and showed consistent gene expression differences between treatment groups
were identified as AKT1 ( − 2.45 in HTR-8/SVneo and −2.60 in JEG-3); RAF1 (−4.08 in HTR-8/SVneo
and −3.81 JEG-3); JAK2 (−3.95 in HTR-8/SVneo and -3.90 in JEG-3); STAT1 (−6.0 in HTR-8/SVneo and
−5.8 in JEG-3); STAT5B (−7.5 in HTR-8/SVneo and −6.1 in JEG-3). An increase mRNA expression for
suppressor of cytokine signaling 3 (SOCS3) in HTR-8/SVneo (+2.9) and in JEG-3 (+2.3) was observed.

Figure 5. Relative mRNA expression for all target genes in the JAK-STAT signaling pathway as
described in the methods section. Columns represent 2–∆∆CT values, normalized to three house-keeping
controls. The data represent pooled (n = 4 independent experiments) cDNA collected from siFPR2 or
siCONT treated HTR-8/SV neo (red) and JEG-3 (blue). Further validation of the candidate genes was
performed using the real-time PCR as described in the methods section.

Further validation of the candidate genes that consistently showed the most down- or up-regulation
in the siFPR2 treated cells compared with siCONT treated cells in both HTR-8/SVneo and in JEG-3; and
in CVS tissues is shown in Figure 6. A significant decrease in the mRNA of STAT5B relative to 18S rRNA
in siFPR2 treated cells compared with siCONT treated cells was observed in HTR-8/SVneo (Figure 6A),
while the most up-regulated gene, SOCS3 demonstrated a significantly increased SOCS3 mRNA in
siFPR2 treated cells compared with siCONT treated cells in HTR-8/SVneo (Figure 6B). In JEG-3 cells
a similar trend for the mRNA following siFPR2 was observed, demonstrating a significant decrease
in the mRNA of STAT5B (Figure 6C) and an increase in the mRNA of SOCS3 (Figure 6D) in siFPR2
compared with siCONT treated cells. These candidate genes were further validated in the chorionic
villus tissues (Figure 6E,F) and consistent significant differences in STAT5B and SOCS3 mRNA relative
to 18S rRNA expression were observed in the SGA group (n = 28) compared with control (n = 52).
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Figure 6. Relative quantification of mRNA of the candidate FPR2 downstream targets in HTR-8/SVneo,
JEG-3 and in SGA and control chorionic villus tissues by real time PCR. (A) and (B) in HTR-8/SV neo:
Relative mRNA expression for STAT5B and SOCS3. (C) and (D) in JEG3: Relative mRNA expression
for STAT5B and SOCS3. (E) and (F) in SGA and Control chorionic villus tissues: Relative mRNA
expression for STAT5B and SOCS3. Columns represent 2–∆∆CT values, normalized to 18S rRNA, ± SEM
are shown (* p < 0.05). (G–I) in HTR-8/SVneo, EGF (10 ng/mL) stimulation following siFPR2 or siCONT
treatment significantly increased STAT5B mRNA relative to 18S rRNA in siFPR2 treated cells compared
to siCONT (* p < 0.05); (H) and (I) EGF stimulation (10 ng/mL) significantly improved proliferation and
migration of HTR-8/SVneo cells following treatment with siFPR2 compared to siCONT treated cells
(* p < 0.05 and ** p < 0.005), respectively. Data are representative of four independent experiments
conducted in duplicate. Values represent ± SEM.

Further investigation on the direct involvement of FPR2 on STAT5B expression, following siFPR2
or siCONT treatment of HTR-8/SVneo cells for 48 h in culture, cells were stimulated with epidermal
growth factor (EGF, 10 ng/mL) for 24 h and STAT5B mRNA expression and functional analysis for
proliferation and migration were performed. EGF was chosen for this experiment as FPR2 is implicated
in the activation of the phosphorylation of tyrosine residues in the JAK/STAT signaling pathway
through EGF-receptor [24]. As shown in Figure 6G–I, EGF stimulation of siFPR2 treated cells showed
a significant increase in STAT5B mRNA expression relative to 18S rRNA (Figure 6G). Furthermore,
EGF stimulation of siFPR2 treated cells rescued proliferation (Figure 6H) and migration (Figure 6I)
potential of HTR-8/SVneo cells compared to siCONT treated cells.

Investigation on the effect of siFPR2 on the downstream target genes in the EMT pathway
Candidate genes that showed 2-fold differences in gene expression were prioritized. A 3-fold increase
in E-cadherin mRNA was observed in siFPR2 treated cells in HTR-8/SVneo, while 3.7-fold increase in
JEG-3 cells compared with siCONT treated cells. However, a 2-fold decrease in the mRNA for SNAIL
and SLUG was observed in both HTR-8/SVneo and JEG-3 cells following siFPR2 transfection when
compared with siCONT treated cells respectively. In addition to these EMT markers, vimentin, is an
intermediate filament protein which is characteristically upregulated in cells undergoing EMT was also
analyzed. Further validation of the EMT target genes by real-time PCR showed a significant increase in
E-cadherin mRNA (Figure 7A, HTR-8/SVneo; Figure 7B, JEG-3), while a significant decrease in SNAIL
(Figure 7C, HTR-8/SVneo; Figure 7D, JEG-3) and SLUG (Figure 7E, HTR-8/SVneo; Figure 7F, JEG-3)
mRNA following siFPR2 treatment compared with siCONT. Vimentin mRNA expression was 2.5-fold
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(HRT-8/SVneo) and 2.3-fold (JEG-3) decreased in siFPR2 treated cells compared with siCONT treated
cells (data not shown).

Figure 7. (A–F) Relative mRNA expression for all target genes in the epithelial mesenchymal transition
(EMT) pathway as described in the methods section. Columns represent mRNA expression normalized
to 18S rRNA. The data represent pooled (n = 4 independent experiments) cDNA collected from siFPR2
or siCONT treated HTR-8/SVneo (black) and JEG-3 (gray). (G) Immunoblotting for E-cadherin, SNAIL,
SLUG, vimentin and beta-tubulin loading control in HTR-8/SV neo and JEG-3; (H) Semi-quantitation
of immunoreactive E-cadherin/beta-tubulin in HTR-8/SV neo and JEG-3. (I) Semi-quantitation of
immunoreactive protein SNAIL/beta-tubulin in HTR-8/SV neo and JEG-3. (J) Semi-quantitation of
immunoreactive protein SLUG/beta-tubulin in HTR-8/SV neo and JEG-3. (K) Semi-quantitation of
immunoreactive protein vimentin/beta-tubulin in HTR-8/SV neo and JEG-3. Briefly, cells transfected
for 48 h to determine the effect of FPR2 silencing on markers of EMT. Data are representative of four
independent experiments conducted in duplicate. Values represent ± SEM. * p < 0.05.
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As shown in Figure 7G, immunoblotting for candidate EMT markers detected the presence
of immunoreactive proteins E-cadherin (120 kDa), SNAIL (29 kDa), SLUG (30 kDa) and vimentin
(55 kDa) in both HTR-8/SVneo and in JEG-3 following siFPR2 or siCONT treatment for 48 h in culture.
Semi-quantitative analyses of E-cadherin (Figure 7H), SNAIL (Figure 7I), SLUG (Figure 7J) and
vimentin (Figure 7K) relative to beta-tubulin (50 kDa) showed significant increase in E-cadherin
while a significant decrease in SNAIL, SLUG and vimentin immunoreactivity in HTR-8/SVneo and in
JEG-3, respectively.

4. Discussion

The molecular basis of fetal growth and development is complex. The results of this current
study show that FPR2 is expressed in early gestation chorionic villus samples and its expression
is significantly reduced in pregnancies that later developed SGA. These findings agree with our
previous study that demonstrated a significant reduction in placental FPR2 from human pregnancies
complicated by FGR collected at third trimester gestation compared with gestation-matched controls [8].
The third trimester placental samples were collected from a well-defined cohort of idiopathic FGR
pregnancies that were carefully selected using strict clinical criteria indicative of placental insufficiency
and underlying pathology [8]. The results from this study support a temporal relationship between
altered FPR2 expression and SGA and are consistent with a causal role for placental FPR2 in the success
of pregnancy outcome.

The relationship between abnormal placental development and FGR is complex. Feto–placental
growth and functional efficiency early in gestation are orchestrated by a cascade of signaling pathways
governed by an array of transcription factors, cytokines, endocrine regulators and growth factors and
their receptors [6]. Typically, the placentae in SGA/FGR are smaller than their gestation age-matched
controls and they show obvious morphologic defects [6,18,20]. Macroscopic placental lesions are
frequently evident, while microscopic defects such as reduced trophoblast proliferation and abnormal
villous vasculature with shorter, less branched terminal villi are also observed. Another significant
functional defect is utero-placental ischemia due to failure of the EVCTs to effectively carry out the
critical processes of invasion, transformation and remodeling of the spiral arteries in the maternal
decidua [6]. Differentiation of cytotrophoblasts is fundamental to normal human placental development.
In particular, modification of the maternal vessels by EVCTs, which replace the maternal endothelium,
is critical for the successful progression of pregnancy, since reduced invasion of interstitial and
endovascular cytotrophoblasts is associated with FGR and preeclampsia. Our findings demonstrated
that FPR2 may directly or indirectly regulate trophoblast proliferation, migration and invasion of
HTR-8/SVneo and JEG-3 cells, commonly used cell line models to investigate human placental cell
function, raising a potential mechanism by which decreased placental FPR2 expression observed early
in gestation in SGA/FGR may contribute to abnormal feto-placental growth early in gestation, thus
contributing to the etiology of SGA/FGR.

Regulation of the key events, including proliferation, migration and invasion are essential for
successful placentation and pregnancy outcome [6]. Xu and co-workers [13] have reported that
placental lipoxin A4 expression is reduced in preeclamptic pregnancies and in the same study, the
authors have demonstrated that administration of a synthetic antagonist of Fpr2 in a rodent model
caused abnormal placentation and abortion, which emphasizes the critical importance of FPR2 in
placentation. Our findings in this study using the in vitro human cell culture models demonstrate that
the down-regulation of FPR2 in trophoblast-derived cell lines perturbed not only the proliferatory,
migratory ability of the trophoblasts, but also the invasive potential of the trophoblasts, which
demonstrates that FPR2 is necessary for the regulation of basic cellular functions likely early in
gestation. Furthermore, in vitro experiment using HTR-8/SVneo and JEG-3 demonstrated that there
were no significant differences observed in the expression levels of markers of apoptosis following
silencing of FPR2. This excludes the possibility that the observed reduced proliferation, migration
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and invasion in the trophoblast-derived cell lines are not part/consequence of apoptosis following
downregulation of FPR2.

FPR2 mediates signaling via G-proteins, which trigger several agonist-dependent signal
transduction pathways, including JAK-STAT signaling pathway that are essential for multiple biologic
processes including cell proliferation, death, differentiation, migration and invasion [9]. Therefore, we
subsequently aimed at identifying the targeting signaling molecules downstream of FPR2 that may
directly or indirectly regulate basic cellular functions of the trophoblasts. More specifically, silencing of
FPR2 in vitro identified decreased expression of STAT5B, while an increased expression for SOCS3,
which was consistent with the gene expression differences in the chorionic villous tissues collected
from pregnancies affected with SGA/FGR compared with control. STAT5B plays an essential role in
trophoblast biology by regulating the critical events that are fundamental for successful placentation
and fetal growth. It is reported that epidermal growth factor (EGF)-mediated STAT5B activation
increases cell proliferation, migration and invasion [25]. Furthermore, the JAK-STAT signaling pathway
is regulated by a vast array of intrinsic stimuli, including EGF, EGF-receptor (EGFR) and FPR2, which
can add plasticity to the response of a cell. The cross talk between FPR2 and EGF receptor (EGFR)
is an essential first step in activation of the phosphorylation of tyrosine residues in the JAK/STAT
signaling pathway [24]. In our experiments, EGF stimulation of FPR2 knock-down in HTR-8/SVneo
cells not only demonstrated a significant increase in STAT5B mRNA but also showed a rescue effect
on the proliferation and migration potential in HTR-8/SVneo cells. Thus, FPR2 plays an eminent role
in providing docking sites for recruitment and triggering of critical regulatory molecules associated
with EGFR-mediated pathway, which involves JAK-STAT signaling molecules that are essential for
cellular growth [9,26]. Future studies could determine the activation of this important pathway in the
development of SGA/FGR.

Another important down-stream target of FPR2 that was identified in this study was the suppressor
of cytokine signaling 3, commonly known as SOCS3. The significant functional role of cytokine signaling
in the regulation of a variety of aspects of cell growth and differentiation predominantly occur through
their interaction with receptors of the cytokine receptor superfamily, JAKs and, by the activation of
members of the STATs [27]. SOCS proteins on the other hand are characterized by the presence of
an SH2 domain and a conserved motif termed the SOCS box [28]. They suppress cytokine signaling
through interaction of the SH2 domain with sites of tyrosine phosphorylation on receptors or on JAKs.
These interactions either compete for the recruitment of other signaling proteins, directly block the
catalytic activity of the kinases and/or target the proteins for degradation through recruitment of
ubiquitylation complexes through the SOCS box [28]. Although the key regulatory mechanisms by
which SOCS3 contribute to trophoblast function in the human placental biology is unknown, findings
from cytokine biology in trophoblasts have reported SOCS3 as crucial in regulating the optimum levels
and functions of the important cytokine leukemia inhibitory factor (LIF) and its receptor LIFR [29,30].
SOCS3 is known as a physiological antagonist for LIFR-mediated trophoblast differentiation and
invasion [30]. The invasive capacities of trophoblasts are positively and negatively regulated by
LIF/LIFR signaling on the trophoblast cells by inducing expression of invasion relevant genes, including
STAT3. SOCS3 deletion leads to embryonic lethality in murine models, while its overexpression
suppresses responses to a number of cytokines including LIF [31]. In this study, we have demonstrated
that the expression of SOCS3 is significantly increased in chorionic villus tissue obtained from SGA
compared with control. In cultured monocytes, activation of FPR2 by specific agonist annexin-A1,
initiates depletion of SOCS3 expression to trigger anti-inflammatory responses [32]. One plausible
mechanistic pathway for increased SOCS3 expression in SGA/FGR chorionic villus tissue may include
a direct or indirect regulation of FPR2 on the expression of SOCS3 in HTR-8/SVneo and in JEG-3 cells,
however, this mechanistic pathway in the trophoblasts warrants further investigation.

There are several pathways shared between placenta and cancer cells at molecular level. These
pathways regulate hyperproliferation, invasion, angiogenesis and immunoevasion. Both cancer cells
and trophoblast cells promote migration through activation of epithelial-mesenchymal transition
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(EMT), which leads to loss of cell-to-cell contact inhibitions [33]. However, the migratory and invasive
capacities of invading trophoblasts are spatially and time regulated. These capacities enable either
the accomplishment of successful embryo implantation and pregnancy progression when kept under
control or the achievement of neoplastic and malignant transformation when such capacities are no
longer kept under control. In this study, we have identified an increased expression of E-cadherin,
while the transcriptional regulators SNAIL and SLUG were decreased in both trophoblast-derived cell
lines. These observations suggest that FPR2 is essential for the progression of EMT during placental
development. A recent study has reported that the levels of FPR2 expression is directly correlated
increased proliferation and invasion during gastric cancer (GC) progression and with the patients’
overall survival [15]. Using in vitro model systems, the functional role of FPR2 was linked with the
regulation of invasion and metastasis of GC cells via MAPK/ERK signaling pathways and in the direct
regulation of EMT.

In summary, our study reports that reduced FPR2 expression may directly or indirectly contribute
to trophoblast dysfunction and subsequent abnormal spiral arteriole remodeling associated with
SGA/FGR pregnancies. In our previous study we also reported that decreased placental FPR2 may lead
to disrupted vascular endothelial cell function in vitro including abnormal angiogenesis and increased
endothelial permeability, which are characteristics of FGR placentae [8]. It remains uncertain whether
these changes also correlate with the reduced placental FPR2 expression observed in early gestation SGA
pregnancies. However, it is plausible that the contribution of FPR2 in the many pathological processes
leading to SGA/FGR may not be restricted to alterations in trophoblast dysfunction and endothelial
function, since FPR2 has been shown to modulate inflammatory cytokine and chemokine production.
This raises yet another possibility that reduced placental FPR2 expression, as an anti-inflammatory
receptor protein, may impact directly with cytokine and chemokine signaling pathways that are
crucial for feto-placental growth early in gestation and hence fetal growth. Thus, FPR2 may have
gestation dependent roles in human placental development. In early gestation, FPR2 may regulate
cytotrophoblast functions, including villous and EVCT differentiation. Late in gestation, FPR2 may
reduce inflammation induced pathogenesis and switch to stabilize vascular functions, which are critical
for fetal growth. Overall, our study reports that altered placental FPR2 and poor fetal growth are both
the result from the underlying cause of poor placentation/fetal growth.

5. Limitations

Here we used SGA as a proxy for FGR, which provided a rare window into pregnancy disorders
such as FGR and to early normal placentation. However, current clinical tools including ultrasound
methods do not reliably identify those SGA fetuses with increased risk of morbidity. Thus, SGA may
dilute a possible effect, nevertheless our data still show reduced FPR2 expression and its association
with SGA pregnancies. It must be mentioned, however, that CVS is the only method to directly access
first trimester placental molecular profile in the context of known pregnancy outcomes. The indication
for CVS, advanced maternal age, may limit the present findings for younger women. Our samples
were from a homogeneous racial group, consistent with the population undergoing CVS at the clinical
site, which may limit the findings for all pregnant women. The procedure is not offered to women
without risk factors because CVS is associated with risk, e.g., 0.33% pregnancy loss. In conclusion,
our results directly support the concept of the placental origins of FGR [6] and allow for targeted
investigation of placental derived biomarkers in early pregnancy.

Another important limitation of our study is the use of trophoblast-derived cell lines including
normal extravillous trophoblast-derived cell line, HTR-8/SVneo and the choriocarcinoma derived cell
line, JEG-3. The necessity to use such cell lines is based on the fact that isolated primary trophoblast
no longer proliferates in culture. Thus, only short-term cultures can be performed with primary
cells. Therefore, respective cell lines have been developed to overcome the handicap of missing
proliferation of primary trophoblasts in culture. We acknowledge that results obtained from studies
using non-primary cells need to be taken with caution, especially when trying to extrapolate such
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results to the in vivo situation. While trophoblast-derived cell lines have their disadvantages compared
to primary cells, they are advantageous in terms of reproducibility, stability and proliferation and thus
enable to evaluate the net effect of treatments on mRNA/protein expression.
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