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ABSTRACT

AUTOMATED HEART ARRHYTHMIA DETECTION FROM

ELECTROCARDIOGRAPHIC DATA

Jinyuan He, Ph.D.

Victoria University 2020

Heart arrhythmia is a severe heart problem, which threatens people’s lives by pre-

venting their hearts from pumping enough blood into vital organs. Arrhythmia

has been a major worldwide health problem for years, accounting for nearly 12%

of global deaths every year. The research of automated heartbeat classification is

highly demanded, which provides a cost-effective screening for heart arrhythmia

and allows at-risk patients to receive timely treatments. To construct an effective

automated heartbeat classification model from ECG recordings for arrhythmia de-

tection, several key challenges must be addressed, including data quality, heartbeat

segmentation range, data imbalance problem, intra and inter-patients variations,

identification of supraventricular ectopic heartbeats from normal heartbeats, and

model interpretability. This thesis comprehensively discusses these challenges and

proposes four practical models to gradually tackle the heartbeat classification task.

Specifically, in Chapter 3, a model named D-ECG is proposed to solve the

problems suffered by previous methods of applying a standalone classifier and us-

ing a static feature set to classify all heartbeat types. D-ECG introduces the

dynamic ensemble selection techniques in heartbeat classification for the first time

and incorporates a result regulator to improve the disease heartbeats detection

performance. Although the dynamic ensemble selection technique has introduced

visible improvements in the heartbeat classification task, they also brought some



disadvantages. The dynamic selection nature, which determines the best classifiers

according to the sample to be predicted, can result in a delay of the model predic-

tion, making the model less practical in online detection scenarios. In Chapter 4,

the author proposes a novel pyramid-like model to tackle this problem. The model

adopts a dual-channel classification strategy and customizes a binary classification

algorithm that takes neighbor-related information into account to assist disease

heartbeats detection. Compared to the D-ECG framework, the pyramid-like model

can provide more timely response to an unknown heartbeat while maintaining a

good classification performance as the D-ECG framework. It has the potential to

be applied in online detection scenarios.

In Chapter 5, the author examines the recent advances brought by deep neural

networks and proposes a DNN-based solution named Multi-channels Convolution

Neural Network (MCHCNN) to solve the problems of current deep-learning based

heartbeat classification models. As an improvement, the proposed network accepts

raw ECG heartbeat and heart rhythm (RR-intervals) as inputs and uses different

sizes of convolution filters in parallel to capture temporal and frequency patterns

from ECG signals. The experimental results have shown visible improvements

brought by MCHCNN. However, there is still a long way before MCHCNN can

make practical impacts because its performance of S-type heartbeats detection is

still relatively low. To tackle this problem, the author investigates the potential

causes to the problem and proposes an advanced two-step DNN-based classification

framework in Chapter 6. Due to the observed difficulty of detecting S -type heart-

beats from N -type heartbeats, the proposed framework trains a deep dual-channel

convolutional neural network (DDCNN) which accepts segmented heartbeats as

input in the first step to classify V -type, F -type and Q-type heartbeats. At this

stage, S -type and N -type heartbeats are not the targets, so they are put into



one bundle to be studied in the next step. In the second step, a central-towards

LSTM supportive model (CLSM) is specially designed to distinguish S -type heart-

beats from N -type ones. The RR-intervals of a heartbeat and its neighbors are

arranged in sequence form, serving as the input to CLSM. In particular, CLSM

learns and extracts hidden temporal dependency between heartbeats by processing

the input RR-interval sequence in central-towards directions. Instead of using raw

individual RR-intervals, the abstractive, mutual-connected temporal information

provides stronger and more stable support for identifying the problematic S -type

heartbeats. Besides, as an improvement as well as a necessary driver for activating

the CLSM, a rule-based data augmentation method is also proposed to supply

high-quality synthetic samples for the under-represented S -type RR-interval se-

quences.

Extensive experiments are conducted to provide a comprehensive evaluation for

each proposed model. The results prove that the research of heartbeat classification

presented in this thesis brings practical ideas and solutions to the arrhythmia

detection problem.
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CHAPTER 1

INTRODUCTION

As a powerful tool to discover values from data, artificial intelligence has at-

tracted an increasing number of attentions in the era of big data. Currently, the

research and applications of artificial intelligence have covered a wide range of

industry fields, including Healthcare [78], Education [117], Agriculture [110], Gov-

ernment Management [132], Finance and Economics [43], Military [161], Automo-

tive industry [171], etc. The field of artificial intelligence moves extremely quickly.

It has unconsciously changed our lives, helping us to be healthier, happier, more

productive and more creative. In this thesis, the author presents another medical

application of artificial intelligence: automated heart arrhythmia detection from

electrocardiographic data. The thesis starts by introducing the research back-

ground and motivation, followed by clarification of the research problems. After

that, the author presents all the efforts that have been made to tackle the research

problems in details. Finally, the thesis is summarized with the main contributions

and future research plans.

1.1 Research Background and Motivation

Heart arrhythmia, also known as irregular heart rhythms, is a group of conditions

in which the body electrical impulse varies from the normal sequence, causing

the heart to beat erratically (too fast or too slowly). Heart arrhythmia has been a

major worldwide health problem for years. It threatens people’s lives by preventing

their hearts from pumping enough blood into the vital organs. Statistics [133] show

that about 12% of deaths around the world are because of heart arrhythmia each

year.

Arrhythmia can occur at all age groups. Early detection and timely treatment
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are the keys to survival from arrhythmia. Since arrhythmia may not cause any

noticeable symptoms or signs, it is difficult for people to realize whether they have

been affected by the heart problem by themselves. The electrocardiogram (ECG)

plays a pivotal role in the diagnosis of arrhythmia because ECG captures heart

rate, rhythm, and vital information regarding the electrical heart activities and

related conditions. Clinically, detection of arrhythmia is conducted by interpreta-

tion of individual heartbeats in patients’ ECG recordings. However, the manual

interpretation of ECG recordings is time-consuming and error-prone, especially

for the long-term ECG recording, which is essential for capturing the sporadically

occurred arrhythmia [209]. Therefore, an automated method to assist clinicians in

detecting arrhythmia heartbeats from ECG is highly demanded.

1.2 Challenges

Heartbeat classification on ECG is a core step towards identifying arrhythmia.

As reported by the Association for Advancement of Medical Instrumentation

(AAMI) [8], there are 15 original types of heartbeats which are further categorized

into five super classes: Normal (N ), Supraventricular (S ) ectopic, Ventricular (V )

ectopic, Fusion (F ) and Unknown (Q). In particular, problematic arrhythmias are

mostly found in S -type and V -type heartbeats [38]. Table 1.1 presents the 15

types and the hierarchy of the 5 super classes. The author presents several ECG

samples of different heartbeat classes in Fig.1.1. It can be observed that the V -

type heartbeat exhibits a huge morphological difference against other heartbeats,

while the normal (N -type) and the S -type heartbeats are similar in shape.

To construct an effective automated heartbeat classification model from ECG

recordings for arrhythmia detection, several key challenges must be addressed. The

first challenge is data quality. In real-world practices, ECG signals usually come
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Table 1.1: ECG heartbeat types

AAMI class Original class Type of beat

Normal (N) N Normal beat

L Left bundle branch block beat

R Right bundle branch block beat

e Atrial escape beat

j Nodal (junctional) escape beat

Supraventricular ectopic beat (S) A Atrial premature beat

a Aberrated atrial premature beat

J Nodal (junctional) premature beat

S Supraventricular premature beat

Ventricular ectopic beat (V ) V premature ventricular contraction

E Ventricular escape beat

Fusion beat (F ) F Fusion of ventricular and normal beat

Unknown beat (Q) / Paced beat

f Fusion of paced and normal beat

Q Unclassifiable beat

with serious background noise and baseline wanders. Baseline wanders is the effect

that the base axis (X-axis) of individual heartbeats appear to move up or down,

rather than being straight all the time. Fig.1.2 shows the baseline wanders effect.

Besides, there may be also some spikes due to the sensing error that could mess

up the signal normalization process. The quality of ECG recordings has a direct

impact on the heartbeat classification performance.

The second challenge is heartbeat segmentation. Since classification is per-

formed on individual heartbeats, the original ECG recordings need to be segmented

to a collection of successive heartbeats. Fig. 1.3 presents the fiducial points and

key intervals of a normal heartbeat. The R peak is a good indicator to locate a

heartbeat and the Pan-Tompkins algorithm [146] provides an accurate method for

identifying R peak locations of ECG recordings, which save some troubles. How-

ever, it is still needed to define a proper range of a heartbeat in consideration of

the designed classification methods. A too large range will lead to cross-overs of

successive heartbeats and increase the computation burden, whereas a too small
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Figure 1.1: Examples of different types of heartbeats. Letters indicate the P -
waves, R-peaks, QRS -complexes and T -waves, corresponding to their references
in the medical literature. Time gap between two successive R peaks is known as
RR-interval. Specifically, previous-RR-interval denotes the interval between the
current R peak and the previous R peak. In comparison to the normal heartbeat
(class N ), the S -type heartbeat has a less obvious P -wave which is due to junctional
premature beating. The V -type heartbeat exhibits a deep and capacious S -wave
caused by left bundle branch block. Class F is a fusion of paced and normal
heartbeats. The unclassifiable beat is denoted as class Q.

Figure 1.2: The baseline wanders effect.

range will result in the exclusion of key fluctuations, causing impacts to classify

heartbeats.

The third challenge is data imbalance problem. As mentioned, in Sec. 1.1,

the occurrence of arrhythmia-related heartbeats, especially the S -type heartbeats,

is a sporadic event. For most patients, more than 90% of their heartbeats are

normal heartbeats. The under-supplied disease heartbeats impose an obstacle for

learning models to recognize the abnormal patterns. Moreover, the severe unevenly
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Figure 1.3: Fiducial points and key intervals of a segmented normal ECG heartbeat
[189].

distributed heartbeats tend to bias an automated heartbeat classification method.

The fourth challenge is the intra and inter-patients variations. The intra-patient

variations is that a patient’s heartbeats (of the same type) may exhibit differ-

ent patterns at different timestamps. For example, given a male patient X, the

previous-RR-intervals of X ’s normal heartbeats in the morning and in the evening

can vary significantly. By contrast, the inter-patient variations is that heartbeats

(of the same type) of different patients may exhibit different patterns. The in-

tra and inter-patients variations have caused a lot of troubles to the automated

heartbeat classification task.

The fifth challenge is the identification S -type heartbeats from normal heart-

beats, which is one of the most problematic tasks for existing arrhythmia detection

methods. As shown in Fig. 1.1, it is less likely to provide accurate identification of

the S -type heartbeats from the normal ones merely based on the morphology. In
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clinical practice, special rhythm information between two heartbeats, known as the

RR-interval, is needed to help identify the S -type heartbeats because the S -type

heartbeats are premature heartbeats and they normally have shorter previous-

RR-intervals than the normal heartbeats. However, the inter- and intra-patients

variations existing in the heart rhythms still impose great challenges to the detec-

tion tasks.

The sixth challenge is interpretability. Model explainability is important for a

machine learning model to be applied in clinical practices, which is essential for

clinicians to rationalize the model prediction [11]. Basically, existing solutions for

automated heartbeat classification can be roughly divided as feature-engineering

based and deep-learning based methods. In fact, the feature-engineering based

methods have incorporated medical knowledge during the feature extraction stage.

Therefore, they are easy to interpret. However, the deep-learning based methods

perform black box operations, in which the features are learned from data auto-

matically. A comprehensive investigation into the deep-learning models should

be conducted to explain the intermediate processes of the models and to improve

clinicians’ trust in the models.

It is worth to note that, the challenges presented in this section are not mutual-

independent. In fact, they are inter-twisted with each other, making the heartbeat

classification task more complicated.

1.3 Research Questions

The author formalizes the above-discussed challenges into specific research ques-

tions, which will then be addressed one by one in the following chapters.

� What are potential quality problems of real-world collected ECG signals and

how to improve the quality of these signals to facilitate the follow-up anomaly
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detection tasks?

� How to perform accurate heartbeat segmentation on the real-world collected

ECG recordings and how to evaluate the segmentation performance? Does

the segmentation provide enough information for an algorithm to recognize

the anomalies?

� How to tackle the data imbalance problem, especially when abnormal cases

account for less than 10% of the total data? How to provide an effective and

reasonable data augmentation method that can catch the real distribution

of the abnormal samples?

� How to deal with the intra and inter-subjects variations? How to effectively

catch the general patterns of different subjects to improve the arrhythmia

detection performance?

� What are the key differences between the S -type heartbeats and normal

heartbeats? How to extract temporal information to help improve the clas-

sification performance of the S -type heartbeats?

� How to explain and interpret an arrhythmia detection model to enhance its

application in practice?

1.4 Contributions

The author has made several attempts to tackle the six challenges and the spe-

cific research questions discussed in the previous sections. The achievements are

summarized as follows.

It is worth noting that the proposed models are trained and evaluate on the

baseline MIT-BIH-AR database. To provide a better explanation of the achieve-

ments made, the author provide a brief introduction of the database first. MIT-
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BIH-AR is the benchmark database for arrhythmia detection, which is used in

most published research [119]. The database contains 48 two-lead ambulatory ECG

recordings from 47 patients (including 22 females and 25 males). Each recording is

denoted by a 3-digits number. The recordings were digitized at 360 Hz per second

per channel with 11-bit resolution over a 10-mV range. For most of them, the first

lead is modified limb lead II (except for the recording 114). The second lead is a

pericardial lead (usually V1, sometimes are V2, V4 or V5, depending on subjects).

In this study, only the modified limb lead II is used.

1.4.1 D-ECG: A Dynamic Framework for Automated Car-

diac Arrhythmia Detection

The author notices that many existing methods for heartbeat classification are

facing a bottleneck of applying a standalone classifier and using a static feature set

to classify all heartbeat samples. This has been shown to cause huge impacts on

identification of the problematic heartbeats because of the intra and inter patients

variations. However, a single classifier is believed to be an expert only in certain

local regions of the feature space.

In this work, the author propose a dynamic framework named D-ECG, which

introduces the dynamic ensemble selection (DES) techniques to solve the problems.

Technically, the proposed D-ECG consists of five phases: preprocessing, feature

extraction, classifier pool training, dynamic selection classification and result re-

finement. In the classifier pool training stage, the synthetic minority oversampling

as well as the edited nearest neighbors technique (SMOTEENN) are adopted to

remedy the negative effect caused by the data imbalance of the ECG database.

Besides, a result regulator is creatively developed to refine the result from the pre-

vious phase. Specifically, the result regulator is a Support Vector Machine trained
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with an adjusted feature set which is different from the one used for DES training.

The rationale of such a classification strategy is that the sensitivities to certain

feature varies with heartbeat types [209].

To the best of our knowledge, this is the first time that the DES techniques

are introduced in the heartbeat classification task. The author conducts extensive

experiments to examine the performances of a wide range of DES techniques and

the performance of the proposed framework. The result shows that the proposed

framework has brought visible improvements on overall heartbeat classification

accuracy as well as the sensitivity of disease heartbeats.

1.4.2 A Pyramid-like Model to Improve Heartbeat Classi-

fication Performance

Although the dynamic ensemble selection (DES) techniques has introduced visible

improvements on the heartbeat classification task, they also brought some dis-

advantages. The dynamic selection nature, which determines the best classifiers

according to the sample to be predicted, can result in a serious delay of the model

prediction, making the model less practical in online detection scenarios.

In this work, the author proposes a novel pyramid-like model to tackle the

challenges discussed in Sec. 1.2. Compared to the D-ECG framework, the proposed

pyramid-like model can provide more timely response to an unknown heartbeat

while maintaining a good classification performance as the D-ECG framework. It

has the potential to be applied in online detection scenarios.

Specifically, by noticing that most of the existing works take heartbeats as

mutual-independent data samples and ignore the neighbor-related information of

heartbeats, the author specially designs a pyramid-like structure to takes advantage

of the information provided by the surrounding heartbeats to assist identification
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of disease heartbeats. The proposed pyramid-like model is made up of the ns-

Dispatcher, nRefiner and sRefiner. Fig. 1.4 presents the entire framework. The

classification process has two stages, known as level-1 and level-2 classification.

In level-1 classification, the raw heartbeat data is processed by the nsDispatcher

at first, where each heartbeat is categorized into the N or S group. After that,

in the level-2 classification, the nRefiner classifies the heartbeats in the upper N

group to the N, V, F or Q group. Simultaneously, the sRefiner classifies the heart-

beats in the upper S group to the S, V, F or Q group. The nsDispatcher is an

algorithm that specially design to consider neighbor-related information to assist

disease heartbeats detection by incorporating medical rules, whereas nRefiner and

sRefiner are two classification strategies to tackle the data imbalance problem and

the static features problem, respectively. Details are given in Chapter 4.

Figure 1.4: Overall structure of the proposed pyramid-like model.

On the basis of the proposed pyramid-like model, we also propose a completed

solution for real-time arrhythmia detection from IoT (Internet-of-Things) ECGs.

Fig. 1.5 depicts the solution. The proposed solution covers the whole life-cycle

of online arrhythmia detection: (1) IoT ECG collection and transfer; (2) ECG

recording cleaning; (3) heartbeat segmentation and featurization; (4) heartbeat

classification; (5) Result Notification.
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1.4.3 Inspecting the advances brought by DNN in Heart-

beat Classification

Recent advances in heartbeat classification are largely driven by deep neural net-

works (DNNs). A DNN is a computational model consisting of multiple processing

layers, which can automatically learn the high-level representations of the raw ECG

recordings without extensive data preprocessing. In consideration of the sporadic

occurrence of S-type heartbeats, which imposes a great challenge to DNN training,

many DNN-based studies used synthetic heartbeats for model training and evalu-

ation [3,113,114,203,207]. However, these efforts suffer from data leakage because,

after augmentation, data is not partitioned patient-wise into training and test sets.

So that beats from the same patient may appear in training and test, and the deep

learning algorithms may learn patient-specific characteristics during training which

then appear on test data. Additionally, the over-optimistic results obtained from

data leakage have hidden a potential limitation of these DNN models in which only

the ECG segmented heartbeats are accepted as inputs. The inter-heartbeat rhythm

information is not well considered in these models. As mentioned in Sec.1.2, the

rhythm provides indispensable information to distinguish the S-type arrhythmia

heartbeats. Without such information, a high misclassification rate is probably

obtained on S-type heartbeats. The problem is still open.

The author re-implements some DNN-based works [3, 113, 114] and evaluates

these models on the benchmark MIT-BIH Arrhythmia database [137] following

the well-recognized inter-patient evaluation scheme [38]. As compared against the

reported performances in literature, these models’ performances measured in our

experiments have some degradation. The result confirms that, without considera-

tions of heart rhythm, a DNN is less likely to identify S-type heartbeats.

To solve the above problem, the author propose a DNN-based solution named
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Multi-channels Convolution Neural Network (MCHCNN). As an improvement, the

proposed network accepts raw ECG heartbeat and heart rhythm (RR-intervals) as

inputs and uses different sizes of convolution filters in parallel to capture temporal

and frequency patterns from ECG signals. Fig. 1.6 presents the proposed network

architecture. Although the experimental results has shown visible improvements

brought by MCHCNN, there is still a long way before MCHCNN can make practical

impacts because its performance of S -type heartbeats detection is still relatively

low. Further improvements are necessary.

1.4.4 An Advanced Two-step Deep Neural Network-based

Classification Framework for Arrhythmia Detection

Deep neural networks (DNNs) have brought noticeable advances to the field of

arrhythmia detection, but to identify the problematic supraventricular ectopic (S-

type) heartbeats is still a bottleneck in most of the existing studies. This is mainly

due to morphological similarity between the S-type heartbeats and the normal

ones, the imbalanced heartbeat occurrence rate, and both the inter- and intra-

patients variations in heart rhythms. Although the MACHCNN proposed in Sec.

1.4.3 has made some improvements, it still suffers from this bottleneck.

In this work, the author presents a two-step DNN-based classification frame-

work to identify problematic heartbeats for arrhythmia detection. Due to the

observed difficulty of detecting S -type heartbeats from N -type heartbeats, the

proposed framework trains a deep dual-channel convolutional neural network (DD-

CNN) which accepts segmented heartbeats as input in the first step to classify V -

type, F -type and Q-type heartbeats. At this stage, S -type and N -type heartbeats

are not the targets, so they are put into one bundle to be studied in the next step.

In the second step, a central-towards LSTM supportive model (CLSM) is specially
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designed to distinguish S -type heartbeats from N -type ones. The RR-intervals of a

heartbeat and its neighbors are arranged in sequential form, serving as the input to

CLSM. In particular, CLSM learns and extracts hidden temporal dependency be-

tween heartbeats by processing the input RR-interval sequence in central-towards

directions. Instead of using raw individual RR-intervals, the abstractive, mutual-

connected temporal information provides stronger and more stable support for

identifying the problematic S -type heartbeats. Besides, as an improvement as well

as a necessary driver for activating the CLSM, a rule-based data augmentation

method is also proposed to supply high-quality synthetic samples for the under-

represented S -type RR-interval sequences. To avoid data leakage, the benchmark

evaluation dataset is split into training and test sets at patient level following the

well-recognized inter-patient division paradigm proposed in [38]. The synthetic

training samples are generated from the training set only.

Extensive experiments on three real-world ECG databases are implemented to

evaluate the proposed framework and the rule-based data augmentation method.

The experimental results show that the proposed framework has the potential to

make a substantial clinical impact. Besides, Although CLSM is initially designed

as the second-step structure in the proposed framework, it is a general and flexible

binary classifier. For those works suffering from the confusion of the S -type and

the normal heartbeats, CLSM can be easily integrated as a complement without

changing their original structures. This is why we define CLSM as a supportive

model.

1.5 Thesis Structure

The rest of this thesis is structured as follows. Chapter 2 introduces background

knowledge of ECG signals, reviews previous research efforts to tackle the heart-
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beat classification task and discusses the evaluation paradigm for an automated

heartbeat classification model. Chapter 3 to Chapter 6 present my main research

outcomes. Specifically, Chapter 3 propose a dynamic framework named D-ECG,

which introduced the dynamic ensemble selection techniques to solve the heart-

beat classification problem. Chapter 4 proposes a novel pyramid-like model to

tackle the problem. Compared to the D-ECG framework, the pyramid-like model

can provide more timely response to an unknown heartbeat. Chapter 5 inspects

the recent advances brought by deep learning and proposes a DNN-based solution

named MCHCNN to solve the problems of existing deep learning based methods.

Chapter 6 proposes an advanced two-step deep neural network-based classification

framework for arrhythmia detection. The entire thesis is summarized with our

achievements and future work discussion in Chapter 7.
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Figure 1.5: A solution for online arrhythmia detection.
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CHAPTER 2

LITERATURE REVIEW

This chapter presents related works to tackle the heartbeat classification task. In

particular, Sec. 2.1 introduces primal aspects of ECG signals. Sec. 2.2 reviews

previous research efforts to tackle the heartbeat classification task. Sec. 2.3 dis-

cusses the paradigm and metrics used to evaluate a heartbeat classification model.

In Sec. 2.4, an overview of IoT-based ECG monitoring system is provided.

2.1 ECG Signal

ECG records the electrical activity of the heart via measuring the heart voltage

potential differential. It captures heart rate, rhythm, conditions of heart muscles

and other vital information regarding the electrical heart activities.

Analysis of ECG has a wide range of applications, covering fields of heart

disease classification [4,7,18,23,28,48–51,56,66,77,84,87,88,97,100,105,108,118,

122,124,126–128,135,136,138,145,148,151,175,179,185,201,202,211], sleep apnea

detection [22,61,67,85,134,163], biometric identification [62,122,172,182], emotion

recognition [5,116], driver drowsiness classification [29,89,90], and others [82,107].

Currently, there are multiple approaches to measure ECGs. Based on the

measurement principles, these approaches can be classified into three categories:

In-the-person, On-the-person, and Off-the-person [34].

� In-the-person. Measuring devices are implanted inside the body of the person

via surgical implanation or ingestion of pill-shaped system. Such kind of

approaches are mainly for chronic patients and in extreme clinical scenarios.

� On-the-person. Most of the measuring approaches come from this category.

Such approaches use a device that is directly attached to body surface to ob-
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tain the signal. Bedside monitors and Holter machines are typical examples,

in which 12 leads electrodes are placed on a patient’s arms, legs and chest.

� Off-the-person. This approach measures ECG by sensors which are embed-

ded into daily used objects. In recent years, applications of such approaches

presents an increasing trend. In comparison to the In-the-person and the

On-the-person approaches, this approach is more human-friendly and less

invasive. It is aligned with the future trend of Internet-of-Things and Arti-

ficial Intelligence.

2.2 Previous Efforts in Heartbeat Classification

Heaps of research efforts have been made to tackle the heartbeat classification task

over the years. The existing solutions can be roughly allocated to either the feature-

engineering based or the deep-learning based category. Table 2.1 summarizes their

differences.

2.2.1 The Feature-engineering Based Methods

The feature-engineering based methods focus on signal feature extraction, feature

selection, and classifier selection.

Feature extraction and selection

The feature extraction stage plays a core role in feature-engineering based meth-

ods. It causes direct impacts on the final classification performance. In raw ECG

signals, a heartbeat is denoted as a high-dimensional time-series sequence, which

is difficult for a classifier to interpret and discover important information to dis-

tinguish different heartbeat types. Therefore, some patterns needs to be sum-
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Table 2.1: Comparison between Feature-engineering based and Deep-learning
based methods

Feature Engineering Deep Learning

Work flow Feature extraction, selection

and classifier determination

End-to-end processing

Commonly used features Mainly handcrafted, includ-

ing RR-intervals, higher-order

statistics, wavelet, signal en-

ergy coefficients, etc.

Learned by networks,

including CNN, RNN,

LSTM, etc.

Feature selection PCA, floating sequential

search, weighted LD model

N.A.

Commonly used classifiers SVM, nearest neighbors, artifi-

cial neural networks, weighted

linear discriminant, optimum-

path forest

N.A.

Training data Less More

Parameters Less More

Explainability High Low

Current limitations Use of fixed features for all

heartbeat types classification;

Limitation of static classifiers

to handle both intra- and inter

patients variations

Lack of considerations of

frequency patterns and

heart rhythms; A biased

evaluation is followed.

marized and extracted from the time-series sequence to represent the heartbeats.

Such patterns are known as features. Feature extraction is normally performed

under the guidance of medical knowledge, which helps to improve classification

performance and increase the model explainability. For example, RR-intervals

is one of the most commonly used features because it contains indispensable

rhythm information to distinguish the premature S -type heartbeats from the nor-

mal ones [4, 23,54,55,99,151,209].

Most of the heartbeat features found in literature are extracted in the time

or frequency domain. The author explains and summarizes the most widely used

features as follows.

� RR-interval. This feature denotes the heart rate. In particular, the interval

between the current R peak and the previous R peak is known as previous-

RR, while the interval between current R peak and the following R peak is
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post-RR. Local-RR is the average of local RR-intervals. The range of local-

RR needs to be determined based on the model. Global-RR is defined as the

average of RR-intervals on the entire ECG recording.

� QRS complex statistics [38,96,209]. This feature is presented as statistics to

describe a certain interval in the QRS complex of a heartbeat. It is widely

used in clinical practices. Depending on different intervals, as shown in Fig.

1.3, this feature can be P-duration, QRS-duration, T-duration, PR-interval,

or QT interval. It is worth to mention that the use of this feature requires

an extra algorithm to detect the fiducial points, such as the one proposed by

Laguna et al. [103]. The accuracy of the point detection can be a potential

influence factor of the heartbeat classification performance.

� Morphology amplitudes [14,38,131,209]. This feature uses a group of values

obtained from down-sampling of the heartbeat segment amplitude to depict

the ECG morphology. Depending on different segment, this feature can be

P-morphology, QRS-morphology, or ST-morphology. Similar to the QRS

complex statistics, the morphology amplitudes is also widely used in clinical

practices. However, this feature is not very efficient for an automated model

because it suffers from high dimensions.

� Principal components [17, 91, 177]. This feature is the coefficients obtained

by performing the principal component analysis (PCA) on the original ECG

heartbeats or the key segments in the heartbeats. It avoids the high dimen-

sion problem of including the raw or down-sampled sequence in the feature

vector. In the theory of PCA [192], an ideal feature set has three characters:

(1) high variance of individual feature; (2) mutual-uncorrelated; (3) not too

many. PCA produces an ideal set of features by creating a set of princi-

pal components. The first component (C1) is the strongest underlying trend
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which captures the highest variance of the data. The second component (C2)

is the second strongest underlying trend that happens to be perpendicular

to C1. The third component (C3) is the third strongest underlying trend

which is also perpendicular to C1 and C2, and so on. It is worth to note that

PCA is an unsupervised process. That means, it is not guaranteed that the

principal components contribute significantly to the classification task.

� Independent components [20, 155, 205, 206]. Similar to the principal compo-

nents, this feature is the coefficients obtained by performing the independent

component analysis (ICA) on the original ECG heartbeats or the key seg-

ments in the heartbeats. In particular, ICA [75] is a statistical method to find

mutual-independent components from multivariate data. In the heartbeat

classification task, ICA is applied to calculate the independent components

from the ECG signal in the Fourier transformed domain or the time domain.

The independent components then serve as important features to distinguish

different heartbeat types. It is reported that the use of independent compo-

nents helps to identify normal heartbeats [142].

� Higher-order statistics [41,42,77,109,130,163,172]. The skewness (3rd order

statistics) and the kurtosis (4th order statistics) are two commonly used

Higher-order statistics. They are effective in estimating shape parameters

of ECG signals. For an input signal, assume X1...,N denotes all the data

samples, X̄ is the mean and s is the standard deviation, the skewness and

kurtosis can be defined respectively as below.

Skewness =

∑N
i=1(Xi − X̄)3/N

s3
(2.1)

Kurtosis =

∑N
i=1(Xi − X̄)4/N

s4
(2.2)
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Application of the higher-order statistics helps to distinct V -type heartbeats

because the major difference of V -type heartbeats against other types is the

heartbeat shape. Moreover, it also helps to reduce the variability among

individual heartbeats of the same type [141].

� High-order accumulates [140,141]. This feature provides a statistical descrip-

tion of QRS complex. It helps to amplify the differences between different

types of heartbeats. The second- (C2x(k)), third- (C3x(k, l)) and fourth-order

((C4x(k, l,m))) accumulates are defined as follows.

C2x(k) = E{x(n)x(n+ k)} (2.3)

C3x(k, l) = E{x(n)x(n+ k)x(n+ l)} (2.4)

C4x(k, l,m) =E{x(n)x(n+ k)x(n+ l)x(n+m)}

− C2x(k)C2x(m− l)− C2x(l)C2x(m− k)

− C2x(m)C2x(l − k)

(2.5)

where E denotes expectation, and k, l, and m are the time lags.

� Wavelet coefficients [60, 101, 112]. Discrete wavelet transform (DWT) pro-

vides a time-frequency representation of a signal, which is widely used in

data compression, noise reduction and multi-frequency-bands signal analy-

sis. DWT iteratively decomposes a signal to different frequency bands with

a scaling function and a wavelet function. The high-frequency component

provides the detail information of the upper-level signal whereas the low-

frequency component is a coarse approximation of the upper-level signal.

Each component is represented by a collection of wavelet coefficients, which
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is obtained by the inner products of mother wavelet function and the upper-

level signal. As reported in [119], wavelet coefficients is believed to be the

best feature for heartbeat classification. The choice of the mother wavelet

function is the key of the discrete wavelet transform, which heavily depends

on applications. For heartbeat features extraction, the Haar wavelet is al-

ways chosen because of its simplicity. Besides, it has been demonstrated as

the ideal wavelet for short time signal analysis [204]. The Haar function can

be represented as

ψ(t) =


1 0 ≤ t<1/2,

−1 1/2 ≤ t<1,

0 otherwise.

, (2.6)

and its corresponding scaling function is

φ(t) =


1 0 ≤ t<1,

0 otherwise.

, (2.7)

where t denotes sample values.

� Statistics of wavelet coefficients. Instead of using the wavelet coefficients

directly, some statistical features extracted from the wavelet coefficients have

also been proposed. Examples include mean, standard deviation, energy

[60] and coefficient variance [204]. These features are less sensitive to the

variations of marked fiducial points.

� Random projection [13, 74]. This feature is obtained from projecting the

original ECG signals onto a random matrix. It denotes a low dimensional

representation to the original signal. The feature has a low computational

complexity which is suitable for real-time detection scenarios.

� Maximal Lyapunov exponents [143, 177, 178]. The Lyapunov exponent is a

measure to distinguish different types of trajectories based on their sensitive
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dependence on the initial conditions. The maximal Lyapunov exponent λ

can be defined as follows:

λ = lim
t→∞

lim
|δZ0|→0

1

t
ln
|δZ(t)|
|δZ0|

(2.8)

where δZ0 denotes the initial separation and |δZ(t)| ≈ eλt|δZ0|.

� DTW distance [188,209]. This feature denotes the similarity between a given

beat and the median beat of a recording. It helps to distinguish the V -

type beats which exhibit significant morphological differences against other

heartbeats. However, the feature suffers from high computation complexity.

It is less likely to be included in a real-time detection system.

� Other used features found in the literature include Fuzzy clustering coeffi-

cients [18, 139, 144], Hermite transformed representation [79], Linear predic-

tive codes [64], Local fractal dimension [135], Morphological areas [209], and

etc.

These features have been experimentally proven to be able to make contribu-

tions to the distinction of different types of heartbeats. However, it is impossible

to include all these features into consideration as this will lead to model overfit-

ting. Therefore, feature selection is highly demanded. Most of the existing works

decide which features to be used based on their experiences and understanding

of the task, which does not guarantee the used features are optimal. Only some

works have investigated the feasibility of automated feature selection techniques to

select the most representative features. Llamedo and Martinez [115], and Mar et

al. [124] conduct feature selection by applying the floating sequential search strat-

egy. Doquire et al. [46] search for the most representative features by using the

filter and the wrapper feature selection techniques, respectively, and they find that
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RR-intervals and higher order statistics have a strong discrimination power. To

have a better understanding of how techniques work, the author provides a brief

overview of feature selection as follows.

A feature selection technique consists of a search strategy to select candidate

feature subsets and an objective function to evaluate these candidates. There are

three main categories of search strategies: exponential, sequential and random-

ized. The floating sequential search (FSS) mentioned above is a sequential search

strategy [149]. It is an extension to the Plus-L minus-R selection (LRS) strategy.

The basic idea of LRS is presented in Algorithm 1. Given values of L and R, if

L is larger than R, LRS starts from an empty set and repeatedly adds L features

and removes R features to optimize the classification performance; otherwise, LRS

starts from the full set and repeatedly removes R features followed by L additions

to optimize the classification performance.

Algorithm 1 The workflow of LRS

Require: Numbers of features to be added, L; Numbers of features to be removed,

R; A feature full set, fullFeas; A classification performance metric, J .

Ensure: The optimal feature subset, optFeas.

1: if L >R then

2: optFeas = ∅

3: else

4: optFeas = fullFeas

5: end if

6: K = 0

7: while K <a Preset Value do

8: if L >R then

9: for repeat L times do
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10: x+ = arg maxx/∈optFeas J(optFeas+ x)

11: optFeas = optFeas+ x+

12: end for

13: for repeat R times do

14: x− = arg maxx∈optFeas J(optFeas− x)

15: optFeas = optFeas− x−

16: end for

17: else

18: for repeat R times do

19: x− = arg maxx∈optFeas J(optFeas− x)

20: optFeas = optFeas− x−

21: end for

22: for repeat L times do

23: x− = arg maxx∈optFeas J(optFeas− x)

24: optFeas = optFeas+ x+

25: end for

26: end if

27: end while

FSS improves LRS by allowing the values of L and R to be determined from the

data instead of fixing them. In terms of the objective functions, they can be clas-

sified into two categories: filters and wrappers [63]. In filters objective function,

feature subsets are evaluated based on their information content, such as inter-class

distance, mutual-correlations, statistical dependence or information-theoretic mea-

sures. By contrast, in wrappers objective functions, feature subsets are evaluated

based on their actual classification performance on test data. Therefore, when

using wrappers objective functions, a classifier and a performance metric need to
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be determined. This leads to a disadvantage of wrappers objective functions: the

optimal feature subset will be specific to the classifier and classification metric

under consideration.

Classifier selection

Regarding the classifiers used in the heartbeat classification task, the support vec-

tor machine (SVM) is the most widely used for its robustness, good generalization

and computationally efficiency [1, 23, 35, 39, 74, 147, 154]. Besides, decision trees

(DT) [54, 121, 152], K-nearest neighbors (KNN) [9, 97, 104, 143, 173] and artificial

neural networks (ANN) [52, 60, 131, 141, 144] are also frequently found in the lit-

erature. Other used classifiers include optimum-path forest (OPF) [37], linear dis-

criminants(LD) [38], conditional random field [40], and reservoir computing with

logistic regression [53], hidden Markov models [30,58] etc. The author provides an

overview of the frequently used classifiers as below.

� SVM. Support vector machine [31] is a binary classifier. It is an extension to

maximal margin classifier. Given training observations x1, . . . , xn ∈ Rp and

associated class labels y1, . . . , yn ∈ {−1, 1}. Briefly, the training objective of

maximal margin classifier is to construct a separating hyper-plane that has

the farthest minimum distance to the training observations. The training

process is formulated as below.

maximize
β0,β1,...,βp,M

M

subject to
∑p

j=1 β
2
j = 1

yi (β0 + β1xi1 + β2xi2 + . . .+ βpxip) ≥M∀i = 1, . . . , n.

(2.9)

where β1, . . . , βn are the parameters of the hyper-plane.

Maximal margin classifier classifies unknown observations depending on

which side of the hyper-plane the observation is located. However, this classi-
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Table 2.2: Non-linear kernels

Kernels Mathematical representation

Polynomial Kernel K (xi, xi′ ) = (xi · xi′ + 1)p

Gaussian Kernel K (xi, xi′ ) = e
−1

2σ2
(xi−xi′ )

2

Radical Kernel K (xi, xi′ ) = exp
−γ

∑p
j=1

(
xij−xi′j

)2
Sigmoid Kernel K (xi, xi′ ) = tanh (ηxi · xi′ + ν)

fier is limited by linearity. It cannot separate classes with non-linear decision

boundaries. SVM improves the maximal margin classifier by introducing the

kernel trick to enlarge the feature space. A kernel is a function that quanti-

fies the similarity of two observations. Let xi and xi′ denote two observations,

a kernel function K can be represented as

K (xi, xi′) =

p∑
j=1

xijxi′j. (2.10)

It is equivalent to the inner product of the two observations, but it is more

computational efficient than calculating the inner product directly. Unlike

using quadratic and cubic terms to enlarge the feature space which involves

heaps of inner products calculations, using kernel functions avoids complex

calculations in high-dimensional space. There are some commonly used ker-

nels, including the Polynomial Kernel, the Gaussian Kernel, the Radical

Kernel and the Sigmoid Kernel. The author presents these kernels in Ta-

ble 2.2. Different kernels lead to different decision boundaries. It is hard

to say which one is the best. It really depends on specific tasks and data

distributions.

It is worth to note that SVM is sensitive to imbalanced data. Therefore,

heartbeats balancing should be considered when applying SVM on the heart-

beat classification task.

� DT. Decision Tree [150] is a flowchart-like classification model in which in-
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ternal nodes denote selected features and terminal nodes represent labels.

It classifies unknown samples based on the if-then-else rules acquired on

training observations. A DT is built by iteratively selecting the most dis-

criminatory features as internal nodes. The Gini index or the entropy is used

to quantify the discrimination ability of a feature, which are defined by

Gini =
∑K

k=1 p̂k (1− p̂k) ,

and

Ent = −
∑K

k=1 p̂k log p̂k.

(2.11)

Here p̂k denotes the proportion of observations in the data set that are from

the k-th class.

Compared to other classifiers, decisions given by DT are easier to interpret

and rationalize, which is important in medical applications. However, DT

is not efficient for features with continuous value, such as the RR-interval,

HOS, and wavelet coefficients. Besides, DT tends to overfit training data if

a high-dimensional feature vector is presented, but this can be relieved by

applying tree pruning [123] or constructing random forest [72].

� KNN. The K-nearest neighbors is a simple yet effective classification method.

Its basic idea is presented in Algorithm 2. For each unknown observation,

KNN calculates its distances to all training observations. The top K nearest

training observations are then selected to vote on the label of the unknown

observation. KNN is efficient in connecting previous knowledge which is rep-

resented by training observations to predict an unkonwn sample. However, it

has high computational cost. Therefore, KNN cannot be applied on real-time

heart disease detection scenarios.
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Algorithm 2 The K-nearest neighbors

Require: Numbers of neighbors, K; Traing set, D; Test set, T .

Ensure: Label predictions for each test sample.

1: for each sample z′ = (x′, y′) in T do

2: for each sample z = (x, y) in D do

3: Calculate the distance of z′ to z, d(z′, z)

4: end for

5: Dk = [ the K nearest neighbors of z′ in D ]

6: y′ = argmax
∑k

(x′,y′)⊆Dk I (v = yi)

7: end for

8: Return

� ANN. The Multilayer Perceptrons (MLP) and the Probabilistic Neural Net-

works (PNN) are two widely used artificial neural network structures. MLP

is a feedforward multilayer network which is shown in Fig.2.1. A MLP net-

work consists of an input layer, multiple hidden layers and an output layer.

Layers are made up of processing units (known as neurons) which receive

and transform information. Neurons in different layers are connected by

weighted edges. The network weights can be learned by applying backprop-

agation [70] during network training. Specifically, the hidden layers are also

known as processing layers in which the output of a neuron is a nonlinear

mapping of the weighted sum of the outputs of neurons in the previous layer.

The non-linear transformations are achieved through activation functions.

The commonly used activation functions include ReLU, Tanh, and sigmoid.
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They can be represented as

ReLU(x) =

 0 for x ≤ 0

x for x > 0
(2.12)

Tanh(x) =
(ex − e−x)
(ex + e−x)

(2.13)

Sigmoid(x) =
1

1 + e−x
(2.14)

It is worth to note that the numbers of total layers in a network and the

number of neurons in a layer have direct influences on the classification per-

formance of the network. Therefore, these parameters need to be carefully

determined based on specific tasks. According to Mar et al. [124], MLP is

reported to be superior to the linear discriminants classifier in the heartbeat

classification task.

Input Layer

Hidden Layer

Output LayerNeuron

Neuron

Neuron

Figure 2.1: Structure of Multilayer Perceptrons.

PNN [166] is a radial basis function network, a special type of feedforward
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network. PNN consists of an input layer, a pattern layer, a summation layer

and an output layer.

– The input layer receives values of training observations. Each neuron

in the input layer takes in the value of a feature.

– The pattern layer is also called radial basis layer. It contains one neu-

ron for each training observation. The neurons compute the Euclidean

distances of the neurons’ centers to the test cases and then perform

nonlinear transformations via applying the radial basis function.

– The summation layer is used to connect the pattern neurons of different

categories to vote for the most possible category of the test observation.

It contains one neuron for each category. That is, the number of neurons

in the summation layer is equals to the number of categories.

– The output layer outputs the category that has the most votes.

As compared to the traditional MLP, PNN is easier to train and converge

[204]. Therefore, PNN is very suitable for the real-time processing scenarios.

Besides, PNN is less sensitive to outliers, making it less distracted by the

noises in the real-world collected ECG signals.

Critical analysis of existing works

One of the most significant works in heartbeat classification field is proposed at

2004 by De Chazal et al. [38]. By noticing that the improper training and test

data separation can bias the classification results, this work proposes an inter-

patients evaluation paradigm to prepare the benchmark MIT-BIH-AR database

for heartbeat classification model evaluation. The inter-patients paradigm has

made great impacts and it is widely followed by later works. Features used in
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this work are the ECG morphology and heartbeat interval from both ECG leads.

De Chazal et al. adopt a weighted LD classifier design to process features from

different ECG leads. However, feature examination and feature selection are not

performed in this work and a less satisfied performance (overall accuracy 83%) is

reported.

Llamedo and Martinez [165] improve De Chazal’s work [38] by including fre-

quent domain features into consideration and applying the floating feature selection

algorithm to reduce the risk of overfitting. The wavelet transform is used to allow

extraction of multi-scale frequent features. However, the floating feature selection

algorithm does not perform as well as expected, but this work can still achieves

an overall accuracy of 90%. Later, this work is extended by Tanis Mar et al. [124].

Tanis Mar et al. consider a feature combination of temporal, morphological and

statistical features and use the sequential forward floating search (SFFS) algorithm

for feature selection. As compared to exhaustive search method which is compu-

tational heavy, the SFFS works a lot more efficiently. More importantly, it has

been reported that for most of the time SFFS is able to find solutions very close to

the optimal one. This work reports an improved the disease heartbeat detection

performance. However, the feature selection is limited in the extracted features

only, which can be a potential issue to limit the model performance because there

might be other more significant features.

Yakoub Bazi et al. [12] propose to use SVM to take in morphological features

and wavelet coefficients to classify heartbeats for the first time. The proposed

model is evaluated with the inter-patients paradigm. However, this work only

report an overall accuracy of 92%. Recall and precision rates of the disease heart-

beats are not found. It is difficult to tell the true performance of this model because

of the imbalance nature of the test data.
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Luz et al. [118] propose an efficient arrhythmia classification model by ap-

plying and analyzing a robust supervised graphbased pattern recognition tech-

nique, the optimum-path forest (OPF) classifier. As reported bu Luz et al., this

is the first time that OPF classifier is used to the ECG heartbeat signal clas-

sification task. In order to demonstrate the effectiveness of OPF classifier, this

work comprehensively compare its performance (in terms of training and test-

ing time, accuracy, specificity, and sensitivity) of to the three well-known expert

system classifiers, i.e., support vector machine (SVM), Bayesian and multilayer

artificial neural network (MLP). The features used here come from six published

works [38, 60, 164, 198, 204, 205]. However, the reported disease heartbeats detec-

tion performance is less satisfying, with the best sensitivity of the S -type and the

V -type heartbeats being merely 18.3% and 82.4%, respectively.

Ye et al. [199] propose a novel ECG heartbeat classification model that com-

bines general multi-class and specific two-class classifiers. The general classifier is

trained on the global training data set with 5 heartbeat classes, whereas the specific

classifier leverage the individual information to help detect abnormal heartbeats

from the normal ones. The proposed models achieve a decent performance on

S -type and V -type heartbeats detection. However, this model is less practical in

real-world applications, especially in IoT devices. The reason is that the model

requires fine-tuning for each user, including obtaining individual information and

retraining the specific two-class classifier, which increase the computational and

power burden of the IoT devices.

A weighed SVM model is proposed by De Lannoy et al. [39]. To avoid the im-

pact of the data imbalance, a convex approximation of the balanced classification

rate rather than the standard accuracy is used to optimize the SVM model. Be-

sides, assessment of features is performed to select the best feature set. The model
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achieve a good performance on disease heartbeat detection, but the accuracy of

the normal heartbeat is 80% only. That means, a large portion of normal heart-

beats are misclassified as abnormal. It is difficult to apply this model in real-world

scenarios because it can cause a lot of fake alarms and waste medical resources.

Feature extraction and selection play a vital role in a heartbeat classification

model. Zhang et al. [209] introduce a novel disease-specific feature selection method

to investigate the significance of extracted features in catching the differences of

various types of heartbeats. The results show that RR-interval is the most powerful

feature in distinguishing disease heartbeats from normal heartbeats, while the

morphological distance (DTW distance between a beat and the median beat of

a recording) is the No.1 useful feature to distinguish different disease heartbeats.

In this work, the selected features from both ECG leads are input into combining

SVMs for heartbeat classification. The model achieves an overall accuracy of 86%,

and sensitivities of 89%, 79% and 85% for normal, S -type and V -type heartbeats,

respectively. Still, the disease heartbeat detection performance is obtained at the

expense of a high misclassification rate of normal heartbeats.

To summarize, the feature-engineering based methods are easy to interpret and

rationalize. However, such methods often experience difficulty in achieving satis-

factory performance on abnormal heartbeat detection while keeping a good overall

classification accuracy, especially when S -type arrhythmia heartbeats are involved.

Besides, the effectiveness of extracted features, the mutual-influences among fea-

tures, and the compatibility between the feature distribution and the classifiers are

three major factors that lead to a solid upper-bound on model performance.
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2.2.2 The Deep-learning Based Methods

Recent advances in heartbeat classification are largely driven by deep neural net-

works (DNNs). A DNN is a computational model consisting of multiple process-

ing layers, which can automatically learn the high-level representations of the raw

ECG recordings without extensive data preprocessing. Convolution neural net-

work (CNN) [98], Recurrent neural network (RNN) [156], and Long short-term

memory network (LSTM) [73] are representative DNN structures. Most of the

existing deep-learning based heartbeat classification methods are extended from

these structures. To have a better understanding of the existing methods, the

author presents the preliminary knowledge of CNN, RNN and LSTM as follows.

� CNN

CNN is useful in learning representations of data. It is commonly applied in

image and video recognition, recommend systems, image classification, and

natural language processing. Recently, CNNs have attracted more and more

attention in the applications in ECG signal classification because they have

been proven effective in recognizing key patterns and learn useful features,

such as P -waves and QRS -complexes of ECG heartbeats [65].

A convolutional neural network is normally made up of an input layer, an

output layer, multiple convolutional layers, pooling layers, and dense Layers.

The convolutional layer is the core building block of CNN, in which most

of the computational heavy lifting is done. Specifically, we define an input

tensor I as a multidimensional array of data and the kernel K as a multi-

dimensional array of parameters. The convolution operation S is actually a

weighted average of an input tensor and a kernel at every position:

S(p) =

∫
I(p− a)K(a)da (2.15)
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where p denotes the position index. Fig. 2.2 present an example of 2D

convolution. In this case, the input tensor is 4 × 3 and the kernel is 2 × 2.

The output of the convolution operation is called a feature map, which is

obtained by applying matrix multiplication between the kernel and every

equal-sized sub-matrix in the input tensor. In practice, the number of kernels

in a CNN need to be determined depending on specific tasks. Each kernel

outputs a feature map. The convolution operation is usually followed by a

ReLU activation to enable the network to learn non-linear patterns from the

input data.

Figure 2.2: An example of 2D convolution [59].
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The pooling layer replaces the output of the previous layer with a summary

statistic. It is used to reduce the size of the learned representations to pre-

vent overfitting. Commonly applied pooling methods include max pooling,

average pooling, etc. The purpose of the dense layer is to provide an over-

all regulation of the previously learned representations. Finally, the output

layer applies a softmax function on the outputs of the dense layer to calcu-

late the categorical probability distribution. The softmax function can be

mathematically denoted as

σ(z)j =
ezj∑K
k=1 e

zk
(2.16)

where z is the input vector to the softmax function and j = 1, 2, ..., K indexes

the output categories.

� RNN

RNN is used for processing sequential data. A basic RNN structure consists

of an input layer, a hidden layer and an output layer. Fig. 2.3 shows how

a RNN maps an input sequence x to an output sequence o. In this case, U ,

V , and W denote weight matrix. The author mathematically presents the

mapping process with the equations below.

ht = f (U ·Xt +W · ht−1) (2.17)

Ot = g (V · ht) (2.18)

where f and g denote activation functions (sigmoid, ReLU, or tanh). It

can be clearly seen that RNN produces an output at each time step. The

current output is not only related to the current input, but also related to the

hidden state in the previous time step. As compared to CNN, RNN is more

effective in capturing mutual-dependence of sequential data. However, RNN
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has problems in dealing with long data sequences because the gradients which

carry important information for optimizing network parameters get smaller

with the increase of time steps. The vanishing gradient problem imposes a

great challenge to the RNN training process.
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w ht+1
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Figure 2.3: A graphical representation of RNN.

� LSTM

The long short-term memory network (LSTM) [73] is a variation of recur-

rent neural networks (RNN). It alleviates the vanishing gradient problem

presented in the ordinary RNNs and it is able to learn temporal relationship

across long periods of time.

A common LSTM unit consists of a cell ct, an input gate it, a forget gate

ft and an output gate ot, as shown in Fig.2.4. The cell remembers the time

dependency between elements in the input sequence. Its memory can be

effectively conveyed along the entire processing chain with just limited linear

interactions. The input gate controls the new information to be stored in the

cell. The forget gate decides the information to be thrown away from the

cell. The unit output is managed by the output gate based on the current

cell ’s memory.

As an illustration, let Wn and Un be the weights of inputs and recurrent
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Figure 2.4: A LSTM Unit.

connections respectively, and bn be the bias. The subscript n can be the

forget gate f , input gate i, output gate o or the cell c. Given the input xt,

the LSTM unit at time t is updated as follows:

ft = σ (Wfxt + Ufht−1 + bf ) (2.19)

it = σ (Wixt + Uiht−1 + bi) (2.20)

ot = σ (Woxt + Uoht−1 + bo) (2.21)

ct = ft ◦ ct−1 + it ◦ tanh (Wcxt + Ucht−1 + bc) (2.22)

ht = ot ◦ tanh (ct) (2.23)

where σ represents the sigmoid function and the operator ◦ denotes the

element-wise product. Apparently, in LSTM, the information stored in cells

is not directly processed by any activation function. Therefore, the gradients

of cell states can be passed over a long distance without being vanishing. Ap-

plying LSTM in a heartbeat sequence helps to capture mutual-relationships

of fiducial points in the heartbeat. Moreover, LSTM can be used to explore

temporal dependencies between heartbeats.
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Critical analysis of existing works

Kiranyaz et al. [93] apply an adaptive 1D-CNN on ECG signals for the first time.

They argue that the proposed method helps to avoid the use of hand-crafted fea-

tures and reduce the computation cost of applying PCA on features to avoid the

’Curse of Dimensionality’. The proposed 1D-CNN is easy and efficient to imple-

ment on hardware, making it eligible for real-time heart monitoring and disease

warning. However, the method is patient-specific, which means that it can not be

applied in unknown patients. This limits the application of this method in many

real-world scenarios.

Acharya et al. [3] propose a 9-layer CNN for the general heartbeat classification

task. The model accepts segmented heartbeats as input. It calculates the prob-

ability of each heartbeat type that the input heartbeat may belong to. Chauhan

and Vig [19] apply LSTM to detect abnormal heartbeats in ECG signals. They

claim that the stack of LSTM layers help to extract useful temporal features of

heartbeats. Yildirim [203] proposes a deep bidirectional LSTM and wavelet se-

quences based heartbeat classification model. In this model, the input heartbeats

are firstly decomposed to multiple frequency resolutions via discrete wavelet trans-

form (DWT). Each component is then processed by the stacked bidirectional LSTM

to model the fluctuations in both directions. On the basis of Yildirim ’s work, Liu

et al. [113] propose a heartbeat classification model by integrating stacked bidi-

rectional LSTM and 2D CNN. Liu et al. acknowledge the advantages of DWT

decomposition and stacked bidirectional LSTM, and they accept this idea in their

model. Moreover, they apply a 2D convolution layer to summarize the fluctuation

patterns learned by the stacked bidirectional LSTM layers. There is also a work

proposed by Liu et al. on integrating LSTM and CNN for heartbeat classifica-

tion [114]. In this work, instead of using DWT, Liu et al. apply the ensemble
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empirical mode decomposition to decompose the segmented heartbeats into N

components. The first N/2 components are processed by 2D CNN layers and the

remaining components are processed by stacked bidirectional LSTM layers. The

output of both the CNN and LSTM layers are gathered in the fusion layer to give

a classification decision.

All models discussed in the above paragraph are evaluated with the MIT-BIH

arrhythmia database in their original studies and reported to have supremely good

heartbeat classification performances. However, the reported results are over-

optimistic because the evaluations suffer from data leakage. It is worth to note

that a large dataset is highly requested to guarantee enough data samples for train-

ing, validating, and testing a DNN model. Since ECG signals are very imbalanced

in heartbeat types, as mentioned in Sec. 1.2, the discussed DNN-based works

use synthetic heartbeats to complement the shortage of abnormal heartbeats in

MIT-BIH arrhythmia database. The synthetic samples are mixed with the origi-

nal ones to be allocated into any of the training, validating, or testing set. That

means, the heartbeat samples from the same patients have high chances to appear

in both training and test datasets. In this case, the discussed models would learn

the particularities of the patient’s heartbeats during the training and obtain over-

optimistic results on test heartbeats. Therefore, the reported results can not truly

reveal how these models will perform in real-world scenarios. Additionally, the bi-

ased evaluation process may hide a possible limitation of the discussed DNN-based

works, since these works accept segmented raw ECG heartbeats as the only input.

The heartbeat rhythm information is not properly considered. As mentioned in

Sec. 1.2, the previous-RR-interval provides indispensable rhythm information to

indicate the difference between the S -type arrhythmia heartbeats from the normal

ones. If such information is not counted into consideration, a high misclassification
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rate is probably obtained for the S -type arrhythmia heartbeat detection.

A recent research attempt to solve the aforementioned problems is done by

Sellami et al. [157] in which a 5-layer CNN with residual connections is proposed.

Unlike Acharya’s work that generates synthetic heartbeats to overcome the class

imbalance problem, this work proposes a batch-weighted loss function for imbal-

anced data. Moreover, the model considers the rhythm information by including

the neighbor heartbeats into the analysis. To reveal the true model performance,

the model is evaluated on the MIT-BIH-AR database following the inter-patient

paradigm proposed in [38]. This evaluation paradigm balances the heartbeat dis-

tribution in training and test set. More importantly, it alleviates the data leakage

problem. Details of this evaluation paradigm will be discussed in Sec. 2.3. The

experimental results demonstrate the improvements brought by Sellami’s model in

detection of the disease heartbeats. However, this is at the cost of the classifica-

tion performance of normal heartbeats. This implies that the model misclassifies

a large portion of normal heartbeats as the disease heartbeats. In real-world prac-

tice, the erroneous classification of normal heartbeats could lead to unnecessary

additional tests, unnecessary patient treatments, expensive costs, and risks for pa-

tients. Moreover, in Sellami’s work, model evaluation is only performed on the

benchmark database. There is a lack of a model generalization ability evaluation

by applying the proposed model on a broader range of ECG databases.

Although deep learning has introduced both new techniques and ideas to solve

the heartbeat classification problem, there is still a long way to go before develop-

ing a practical DNN-based model that can create substantial impacts on clinical

practices.
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2.3 Evaluation of A Heartbeat Classification Model

The Association for Advancement of Medical Instrumentation (AAMI) specifies

several ECG databases to evaluate heartbeat classification models. The MIT-BIH

Arrhythmia database (MIT-BIH-AR) [137] is the most representative one which

is presented in most of the automated arrhythmia detection works. It is unique

because it contains all the five arrhythmia-related heartbeats groups proposed

by AAMI. The database contains 48 two-leads ambulatory ECG records from 47

patients (22 females and 25 males). Each record has approximately 30 minutes

in length. These recordings were digitized at 360Hz. For most of them, the first

lead is modified limb lead II (except for the recording 114). The second lead is a

pericardial lead (usually V 1, sometimes are V 2, V 4 or V 5, depending on subjects).

Performance metrics have also been specified by the AAMI. Unlike many clas-

sification problems in which only the overall accuracy is used as a performance

indicator, multiple metrics are needed to comprehensively evaluate a heartbeat

classification model. The used metrics include Sensitivity (also known as recall),

Positive predictivity (also known as precision), and Overall accuracy, etc. This is

because most peoples’ ECG recordings are very imbalanced in heartbeats distribu-

tion, with more than 90% being normal heartbeats. The imbalance can lead to a

strong distortion of the overall accuracy. Moreover, how many arrhythmia-related

heartbeat are correctly recognized and how many predictions are correct among

all suspected arrhythmia-related heartbeats are of interest to medical profession-

als because missing a disease heartbeat can cause serious consequence to patients.

Therefore, the Sensitivity and the Positive predictivity are particular important in

the heartbeat classification task. The metrics are formally defined as follows.

Recall =
TP

TP + FN
(2.24)
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Precision =
TP

TP + FP
(2.25)

Accuracy =
TP + TN∑ (2.26)

where TP , TN , FP and FN denotes true positive, true negative, false positive

and false negative, respectively, and
∑

represents the amount of instances in the

data set.

Although benchmark databases and evaluation metrics are specified, there is a

lack of a specific protocol which clearly indicates how to perform evaluation with

the databases. That is, the AAMI does not specify which recordings or heartbeats

should be used to train a model and which should be used to test the method. This

problem can not be simply solved by performing cross-validation on recordings or

individual heartbeats. Performing cross-validation on recordings is impractical be-

cause it is difficult to guarantee even heartbeat distributions of the training and the

test sets. It is possible that the training set does not contain sufficient arrhythmia-

related heartbeats for a model to learn the abnormal patterns, or that the test set

does not include enough arrhythmia-related heartbeats to test the model disease

detection ability. Performing cross-validation on individual heartbeats is referred

as the intra-patient paradigm in the literature [38]. The paradigm is adopted

in many works [10, 18, 24, 26, 44, 52, 60, 81, 91, 102, 141, 145, 176, 187, 198, 205, 206].

However, this paradigm can lead to data leakage because it makes heartbeats from

the same recording, which are highly correlated, possibly be used for training and

testing a model at the same time. Therefore, the paradigm tends to over-estimate

a heartbeat classification model.

To reveal the true performance a heartbeat classification model, de Chazal

et al. [38] propose an evaluation protocol, known as inter-patient paradigm, to

divide the MIT-BIH Arrhythmia database into a training set and a test set. The

paradigm balances the heartbeat distribution on both training and test sets. More
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Table 2.3: The inter-patient paradigm

Data set N S V F Q Recordings (Patient ID)1,2

DS1 45808 943 3786 414 8 101, 106, 108, 109, 112, 114, 115, 116,

118, 119, 122, 124, 201, 203, 205, 207,

208, 209, 215, 220, 223, 230

DS2 44198 1836 3219 388 7 100, 103, 105, 111, 113, 117, 121, 123,

200, 202, 210, 212, 213, 214, 219, 221,

222, 228, 231, 232, 233, 234

1 Each recording in MIT-BIH-AR is denoted by a 3-digits number and the numbers are
originally discontinuous.

2 Recordings 102, 104, 107 and 217 containing paced beats are excluded from analysis [8].

importantly, it avoids the training and the test heartbeats coming from the same

patient. The inter-patient paradigm simulates arrhythmia detection scenarios in

real world, in which test heartbeats are usually unknown to the existing automated

algorithms or methods. It makes the heartbeat classification task more challenging.

Table 2.3 presents the inter-patient paradigm in details, where DS1 is the training

set and DS2 is the test set.

Compared to the intra-patient paradigm, those works adopting the inter-patient

paradigm report less promising but more realistic results in the literature. In order

to develop a practical automated arrhythmia detection model, the author follows

the inter-patient paradigm in all research works presented in this thesis.

2.4 IoT-based ECG Monitoring System

The rapid development of the off-the-person ECG sensing approaches facilitates

the growth of IoT-based ECG monitoring systems. Basically, an IoT-based ECG

monitoring system consists of three parts: the ECG sensing network, IoT cloud,

and graphical user interface [197].

The ECG sensing network is responsible for tracking patients’ heart status,

generating ECG recordings correspondingly, and transmitting the produced data
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to the IoT cloud.

The IoT cloud provides four functions including data cleaning, data storage,

ECG analysis and disease warning. In particular, in data cleaning module, ECG

signals are preprocessed to correct the anomalies and removes the noises that are

introduced during the ECG collection and transmission. Data storage provides a

storing service to store the large volume of ECG signals and a fast-access service

to the stored ECG signals. ECG analysis plays a vital role in an IoT cloud. It per-

forms ECG signal interpretation and heart disease detection, such as arrhythmia

detection [4, 7, 23, 25, 83, 119] and sleep apnea detection [158]. If any anomaly is

detected during the ECG analysis stage, the analytical results will be summarized

and prompted to medical professionals for further conformation.

Figure 2.5: Overview of an Iot-based ECG monitoring system [197].

Finally, regarding the GUI module, it is used for data visualization and patients’

self-management. It allows patients to track their health status conveniently.

It is worth noting that data security and privacy is an important concern for a

IoT-based ECG monitoring system [184]. The ECG recordings stored in the cloud

may suffer from various types of security threats such as linking attacks [168],
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unauthorized access. Therefore, in order to ensure the security and privacy of

IoT-based ECG recordings, a proper data access control module, such as [80,106],

should be integrated when constructing a IoT-based ECG monitoring system.
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CHAPTER 3

D-ECG: A DYNAMIC FRAMEWORK FOR AUTOMATIC

CARDIAC ARRHYTHMIA DETECTION FROM IOT-BASED ECG

RECORDINGS

3.1 Chapter Abstract

Cardiac arrhythmia has been identified as a type of cardiovascular diseases (CVDs)

that cause approximately 12% of all deaths globally. The current progress on ar-

rhythmia detection is facing a bottleneck for adopting single classifier and static

ensemble methods. Besides, most of the work tends to use a static feature set

for characterizing all types of heartbeats, which may limit the classification per-

formance. To fill in the gap, a novel framework called D-ECG is proposed in this

chapter to introduce dynamic ensemble selection technique (DES) to provide accu-

rate detection of cardiac arrhythmia. In addition, the proposed D-ECG develops

a result regulator that uses different features to refine the classification result from

the DES technique. The results reported in this paper have shown visible improve-

ments on the overall heartbeat classification accuracy as well as the sensitivity of

disease heartbeats.

3.2 Introduction

Cardiac arrhythmia is a type of cardiovascular diseases (CVDs) that seriously af-

fects millions of people around the world and accounts for approximately 80% of

the sudden cardiac death [190]. At critical levels, arrhythmia can be categorized

as life-threatening and non-life-threatening arrhythmia [209]. Life-threatening ar-

rhythmia imposes an imminent risk to patients’ lives and emergency treatment is

required, whereas non-life-threatening arrhythmia just presents a long-term health
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threat to patients but special care is still needed to avoid further deterioration of

heart function.

ECG provides a noninvasive and inexpensive way to study arrhythmia. It

records the electrical activities of the heart. The Advancement of Medical In-

strumentation (AAMI) categorizes ECG heartbeats into 5 super-classes: Normal

(N ), Supraventricular ectopic beat (S ), Ventricular ectopic beat (V ), Fusion beat

(F ) and Unknown beat (Q) [8]. Most arrhythmia are found related to the S and

V -type heartbeats.

With a rapid growth in Internet-of-Things (IoT) techniques, more and more

wearable ECG monitoring devices are developed to produce high-quality ECG

recordings [197]. In comparison to the traditional Holter device, the IoT-based

ECG monitoring devices provide a more human-friendly way for heart status track-

ing. They produce ECG recordings continuously and upload the recordings to the

IoT cloud in real time, making it easy and convenient for both clinicians and pa-

tients to access the ECG recordings. However, manual interpretation of the large

amount of continuously generated ECG recordings could be very time-demanding

and error-prone. Therefore, a computer-assisted method is always needed to help

analyze and interpret the ECG signals. This work aims to develop an automatic

method to help detect arrhythmia-related heartbeats from the IoT-based ECG

recordings.

Many research attempts have been made to address this problem. Current

methods are mainly facing a bottleneck for adopting a single classifier trained

with a predefined feature set [23, 37, 38, 204], which may bias the classification

and lead to a relatively low generalization performance. This is because that the

value of features, such as the RR interval, could vary significantly from patients

to patients (even in the same patient) while a single classifier is believed to be
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an expert only in certain local regions of the feature space [32, 210]. Although

some ensemble methods, such as random forest [4] and ensemble of support vector

machine [74], have been employed to remedy the disadvantages, the problem is only

partly solved because the diversity of the traditional ensembles is relatively low.

Moreover, similar to the use of a single classifier, the classifiers used to construct

an ensemble are determined in the training phase. It is not guaranteed that the

selected classifiers are suitable for making predictions for the input heartbeat.

Besides, using a static set of features for classifying all types of heartbeats can

also limit the classification performance because the discriminatory power of a

feature depends on the types of the heartbeats involved [209]. The inclusion of

less discriminatory features can introduce difficulties in recolonization of disease

heartbeats. For example, RR-intervals help to distinguish the disease heartbeats

from the normal ones. However, the presence of multiple RR-intervals can also

confuse the classification between the S -type and the V -type heartbeats.

Apart from the above mentioned problems, the performance of arrhythmia de-

tection also relates heavily to the training data preparation, since ECG heartbeat

data set is naturally extremely imbalanced, where normal heartbeat is the domi-

nant. A proper measure is a necessity to eliminate the negative effect cause by the

imbalance [186]. Otherwise, the trained classifier may have difficulties in correctly

recognizing the disease heartbeats which only accounts for a small portion of the

whole heartbeat data set [23].

This chapter aims to solve the above problems by proposing a dynamic frame-

work called D-ECG for cardiac arrhythmia detection. The D-ECG introduces

the dynamic ensemble selection (DES) technique to improve the disease detection

accuracy. The DES technique works by estimating a competence level of each

classifier from a pool of classifiers in the training phase. When testing, according
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to each heartbeat to be classified, the DES technique selects the most competent

classifiers to predict the heartbeat label. To the best of our knowledge, this is the

first time that the DES technique is used in cardiac arrhythmia detection scenario.

Specifically, the proposed D-ECG consists of five phases: preprocessing, feature

extraction, classifier pool training, dynamic selection classification and result re-

finement. In the classifier pool training stage, the synthetic minority oversampling

as well as the edited nearest neighbors technique (SMOTEENN ) is adopted to

remedy the negative effect caused by the data imbalance of the ECG database.

Besides, a result regulator is creatively developed to refine the result from the

previous phase. Essentially, the regulator is a classifier trained with a feature set

which is different from the one used for DES training.

As a summary, this chapter makes the following contributions:

� Proposing a dynamic framework named D-ECG, which first introduces the

DES techniques for automatic cardiac arrhythmia detection.

� Customizing a result regulator to improve the heartbeat classification per-

formance.

� Experimentally comparing the performance of various DES techniques in

ECG-based heartbeats classification.

� Experimentally evaluating the feasibility of D-ECG in arrhythmia detection,

with the results being compared against the stat-of-the-art methods in the

same field in terms of overall accuracy, sensitivity and positive predictive.

The rest of this work is structured as follows. Section 3.3 analyzes the pros and

cons of current methods in arrhythmia detection and introduces the background

knowledge of IoT-based ECG monitoring system and Dynamic ensemble selection

techniques. Section 3.4 details the proposed D-ECG. Experiment results and dis-
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cussion are presented in Section 3.5. Section 3.6 concludes this work and discusses

the future work.

3.3 Related Work

This section firstly introduces the IoT-based ECG monitoring system and then re-

views current methods in arrhythmia detection. After that, the dynamic ensemble

technique is presented in detail.

3.3.1 IoT-based ECG Monitoring System

An IoT-based ECG monitoring system mainly consists of three parts: an ECG

sensing network, an IoT cloud, and a graphical user interface (GUI) [197]. The

ECG sensing network is responsible for generating ECG recordings for patients

and transmitting the produced data to the IoT cloud. The IoT cloud is mainly

used for data storage and analysis. Specifically, the IoT cloud performs ECG

signal interpretation and heart disease detection, such as arrhythmia detection

[4,23,37,60,119,154,209] and sleep apnea detection [4,7,23,25,83,158]. The GUI

module is often used for data visualization and management.

Data security and privacy are important concerns for a IoT-based ECG mon-

itoring system [184], since the ECG recordings stored in the cloud may suf-

fer from various types of security threats, such as linking attacks and unau-

thorized access [168]. In order to ensure the safety and privacy of the ECG

recordings, security mechanisms, such as anonymization [169,208] and access con-

trol [80,106,167,180,181,183], should be considered when designing an IoT-based

ECG monitoring system.

53



Figure 3.1: A sample ECG recording that contains normal beats (N), supraven-
triculcar (S) and ventricular ectopic (V ) beats.

3.3.2 Current Methods, Achievements and Problems

Since the life-threatening arrhythmia has been well studied [25], this study focuses

on the investigation of non-life-threatening arrhythmia (Supraventricular ectopic

beat (S-type)) and the related ectopic heartbeats (Ventricular ectopic beat (V -

type)). Fig.3.1 presents a sample ECG segment that contains normal heartbeats

(N), supraventricular and ventricular ectopic beats. It can be clearly seen that N -

type and S-type beats are difficult to tell from their shapes. In fact, N -type and

S-type beats are similar in most of the heartbeat characteristics except for the RR

intervals, where S-type beats generally have a shorter previous-RR compared to the

N -type beats from the same patient. On the contrast, V -type beats significantly

differ from N -type and S-type beats in terms of the heartbeat morphology.

Current studies on cardiac arrhythmia detection mainly focused on signal fea-

ture extraction and selection and the use of various classifiers combinations [119].

In terms of feature extraction, features extracted from cardiac rhythm or the time

and frequency domain are usually combined to characterize a heartbeat. The com-

monly used features include RR intervals [4, 23, 45, 209], samples or segments of

ECG curves [145,187], higher-order statistics [4,40], wavelet coefficients [37,60,154],
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signal energy [204]. In consideration of the negative impact of having irrelevant

features, some works have applied techniques to reduce the feature space, such as

the floating sequential search [115,124] and the weighted LD model with a forward-

backward search strategy [46]. Although the extracted features in previous work

have been proven to be effective in characterizing an ECG-based heartbeat, the

classification performance is limited by using a static set of features for classifying

all types of heartbeats.

Regarding the choice of classifiers for arrhythmia classification, the support vec-

tor machine (SVM) is the most widely used for its robustness, good generalization

and computationally efficiency [1, 35]. Besides, the nearest neighbors (NN) and

artificial neural networks (ANN) are also frequently found in the literature. Other

classifiers include weighted linear discriminant (WLD), decision tree, optimum-path

forest (OPF). Nevertheless, the use of a single classifier can bias the classification

and lead to a relatively low generalization performance. Although some ensemble

methods have been employed to remedy the disadvantages, the problem can only

be partly solved.

3.3.3 Dynamic Ensemble Selection

DES is one of the promising approaches to construct a multiple classifier system

(MCS). Recently, more and more works are reporting the superior performance

of the DES over the static methods [15, 32]. A DES-based system is composed of

three stages: generation, selection and aggregation [15]. In the generation stage,

a collection of classifiers are trained to create an accurate and diverse classifier

pool. In the selection stage, an ensemble containing the most competent classifiers

is selected. Finally, in the aggregation stage, the output of each classifier in the

selected ensemble are aggregated to give the final decision of the system.
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The core issue of DES techniques is the selection of the most competent classi-

fiers for any testing sample [33]. Usually, the competence of a classifier in the pool

is measured by its performance over a local region of the feature space where the

testing sample is located. This means that, the competence level of a base classifier

not only relates to the performance metrics but also depends on the testing sample

and its neighbors in the feature space. Methods for defining a local region includes

clustering [111], K-nearest neighbors [160], potential function model [194,195] and

decision space [16]. The criterion for measuring the performance of a base classifier

can be divided as individual-based and group-based criterion. In individual-based

criterion, each base classifier is independently measured on use of the metrics such

as ranking, accuracy, probabilistic, behavior [16], meta-learning [32], etc., whereas

in the group-based criterion, the performance of a base classifier relates to its itera-

tions with other classifiers in the pool. For example, diversity, data handling [196]

and ambiguity [47] are widely used as group-based performance metrics.

Regarding the aggregation approaches, there are three main strategies for re-

sults combination: static combiner, trained combiner and dynamic weighting. The

majority voting scheme is a representative static combiner, which is also commonly

used in the traditional ensemble methods. In trainable combiners, the outputs of

the selected based classifiers are used as the input features for another learning

algorithm, such as [15, 129]. The advantage of this strategy is that the combiner

can be well modified to adapt to the specificity of different classification problems.

In dynamic weighting, higher weight value will be allocated to the most competent

classifier and then the outputs of all the weighted classifiers are aggregated to give

the final decision.

Currently, the most prevalent DES techniques include the DES-KL [195], DES-

KNN [162], KNORA-E [95], KNORA-U [95], KNOP [16], DES-P [195], DES-RRC
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Figure 3.2: A sample ECG record with background noise and baseline wandering.
The background noise imposes a strong vibration to the original signal, whereas
the baseline wandering makes the individual heartbeats move up and down instead
of being strait in the X-axis.

[194], META-DES [16], etc. The differences between these DES techniques are

mainly in the methods for defining a local region and the classifier competence

measure. In this work, we experimentally evaluate the effectiveness of these DES

techniques in cardiac arrhythmia detection.

3.4 Dynamic ECG Framework

Details of the proposed D-ECG are presented in this section. Essentially, the D-

ECG is composed of five phases: preprocessing, feature extraction, classifier pool

training, dynamic selection classification and result refinement.

3.4.1 ECG Data Preprocessing

Given the fact that ECG signals usually come with serious background noise and

baseline wandering, as shown in Fig.3.2, proper measures should be taken to elim-

inate the negative effect caused by the noises on cardiac arrhythmia detection.

To remove the baseline wandering, each ECG signal is processed with a 200-

ms width median filter followed by a 600-ms median filter to obtain the signal
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baseline. The baseline is then subtracted from the raw ECG signal to get the

baseline corrected data.

After that, the discrete wavelet transform is employed to remove the back-

ground noise from the baseline corrected signals. The signals are decomposed

to different frequency bands with various resolutions on use of the Daubechies-4

(DB4) mother wavelet function [36]. The reason for choosing DB4 is that its short

vanishing moment is ideal for analyzing signals like ECG with sudden changes. The

coefficients of detail information (cDx) in each frequency band are then processed

by a high-pass filter with a threshold value

T =
√

2 ∗ log(n) (3.1)

,where n is the length of the input signal. Those coefficients that failed by the

filter are set to zero. Finally, the clean signals are obtained by employing inverse

discrete wavelet transform on the coefficients.

The clean signals are segmented to individual heartbeats by taking advantage

of the R peak locations. For each R peak, 90 samples (250 ms) before R peak and

144 samples (400 ms) after R peak are taken to represent a heartbeat, which is

long enough to catch the samples representing the re-polarization of ventricles and

short enough to exclude the neighbor heartbeats [4].

3.4.2 Feature Extraction

Noticing a fact that disease heartbeats can cause disorders to heartbeat shape and

heart rhythms in ECG signal. In order to effectively catch these anomalies, three

types of features are used to represent individual heartbeats: RR-intervals, higher

order statistics and wavelet coefficients.

RR-interval is the time distance between two successive R peaks. As experi-

mentally proven in [209], the RR interval is one of the most indispensable features
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for heartbeat classification and it has great capacity to tell the supraventricular

premature beats and the ectopic beats from the normal beat. In this work, four

types of RR intervals are extracted from ECG signals: pre RR, post RR, local RR

and global RR [119].

However, it should be noted that the RR intervals can significantly vary from

patient to patient, known as the inter-patient variations. To reduce the negative

impacts, we normalize the RR intervals for each heartbeat in the way below:

nomalized pre RR =
pre RR

mean(ds.pre RR)
(3.2)

nomalized post RR =
post RR

mean(ds.post RR)
(3.3)

nomalized local RR =
local RR

mean(ds.local RR)
(3.4)

nomalized global RR =
global RR

mean(ds.global RR)
(3.5)

where ds.pre RR denotes the average of all pre RRs in the ds which a heartbeat

belongs to, and so on.

Regarding the higher order statistics (HOS), it is reported to be useful in catch-

ing subtle changes in ECG data [125]. In this work, the skewness (3rd order statis-

tics) and kurtosis (4th order statistics) are calculated for each heartbeat. They can

be mathematically defined as follows, where X1...,N denotes all the data samples in

a signal, X̄ is the mean and s is the standard deviation.

Skewness =

∑N
i=1(Xi − X̄)3/N

s3
(3.6)

Kurtosis =

∑N
i=1(Xi − X̄)4/N

s4
− 3 (3.7)
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The wavelet coefficients provide both time and frequency domain information

of a signal, which is claimed to be the best features of ECG signal [119]. The

choice of the mother wavelet function used for coefficients extraction is crucial to

the final classification performance. In this work, the Haar wavelet function is

chosen because of its simplicity and that it has been demonstrated as an ideal

wavelet for short time signal analysis [204]. The Haar function can be represented

as

ψ(t) =


1 0 ≤ t<1/2,

−1 1/2 ≤ t<1,

0 otherwise.

(3.8)

and its corresponding scaling function is

φ(t) =


1 0 ≤ t<1,

0 otherwise.

(3.9)

where t denotes sample values.

3.4.3 Classifier Pool Training

A classifier pool, containing a set of base classifiers that are trained both accurately

and diversely, is created in this stage. First of all, the SMOTEENN technique

[6,21,191] is adopted to remedy the training data imbalance problem. The minority

classes (the S-type and V -type heartbeats) are up-sampled to the same amount of

normal heartbeats.

In order to increase the diversity of the classifier pool, we take 6 different classi-

fiers into consideration, including multi-layers perceptron, support vector machine

(SVM), linear SVM, Bayesian model with Gaussian kernel, decision tree, and K-

nearest neighbors model. The classifiers are trained using different training subsets.
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A dynamic selection dataset named DSEL is split from the training set for

ensemble selection. Given an unknown heartbeat, we calculate its local region

within the scope of DSEL. The competence of each base classifier is then measured

and compared in the calculated local region.

3.4.4 Dynamic Selection Classification

In this stage, a dynamic ensemble selection technique is equipped into the frame-

work. There are several prevalent DES techniques which have been proven their

effectiveness in some classification problems. The differences between them are

summarized in Table 3.1. Given a well-defined local region in DSEL,

- DES-KNN selects the top N accurate classifiers and top J diverse classifiers

to compose the ensemble.

- DES-KL measures the competence level using

σi,j =
∑

xk∈DSEL

Csrcexp(−d(xk, xj)
2), (3.10)

where xj is a query sample, Csrc is the KL divergence between the uniform

distribution and the vector of class supports.

- DES-P selects the classifiers that have a better accuracy than a random

classifier into the ensemble.

- DES-RRC measures the competence level using

σi,j =
∑

xk∈DSEL

CsrcK(xk, xj), (3.11)

where xj is a query sample, Csrc denotes the source competence proposed

in [193] and K(xk, xj) is a Gausssian potential function. The classifiers that

have a higher competence level than a random classifier are selected.
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Table 3.1: A brief comparison between prevalent DES techniques

Technique Local region defini-
tion

Competence
measure

Reference

DES-KNN K-NN Accuracy & Di-
versity

Soares et al. [162]

DES-KL Potential function Probabilistic Woloszynski et al.
[195]

DES-P Potential function Probabilistic Woloszynski et al.
[195]

DES-RRC Potential function Probabilistic Woloszynski et al.
[194]

KNORA-E K-NN Oracle Ko et al. [95]

KNORA-U K-NN Oracle Ko et al. [95]

KNOP K-NN Behavior Cavalin et al. [16]

META-DES K-NN Meta-Learning Cruz et al. [32, 32]

- KNORA-E selects the classifiers that correctly recognize all samples in the

local region. If no base classifier is qualified, the local region shrinks.

- KNORA-U selects all classifiers that correctly recognize at least one sample

in the local region. A majority voting scheme is used to give the final result.

In the voting stage, a selected classifier is allowed to vote more than once.

The number of votes depends on the amount of samples the classifier correctly

recognizes.

- KNOP works similarly to KNORA-U. The difference is that KNORA-U

works in the feature space, whereas KNOP works in the decision space [16].

That is, in KNOP, all samples in MIT-BIH-AR are transform from the feature

space to the decision space in advance.

- Meta-DES considers a base classifier as competent or incompetent by defin-

ing a set of meta features for the classifier and training a meta-classifier which

takes in the meta features to predict if a base classifier is competent.

In this work, we individually evaluate the performance of these DES techniques
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in cardiac arrhythmia detection and choose the best one to fit in the proposed

framework.

3.4.5 Result Refinement

A result regulator is developed in this stage. It is used for refine the classification

decisions made on disease heartbeats. That is, if an unknown heartbeat is classified

as S -type or V -type in the dynamic classification stage, it is then passed through

the regulator for decision refinement.

Specifically, the result regulator is a SVM classifier trained with a feature set

which is different from the one used for DES training. The motivation behind

constructing such a regulator is two-folds: (1) it is reported that the discriminatory

power of a feature depends on the types of the heartbeats involved [209]; (2) the

S -type heartbeats tend to be recognized as V -type beats under the presence of

multiple heart rhythm features. In order to precisely catch the differences between

S -type and V -type heartbeats, we exclude the RR-intervals from the feature set

and only use the S -type and V -type beats to train the result regulator.

3.5 Experiment Result Analysis and Discussion

This section starts with the introduction of the MIT-BIH Arrhythmia benchmark

database, followed by the specification of the experiment settings. Next, we indi-

vidually evaluate the heartbeat classification performance of each DES technique

presented in Table 3.1. The performances are then compared to the single classifier

and the traditional ensembles. After that, we incorporate the best performing DES

technique into the proposed D-ECG and evaluate the whole model on the MIT-

BIH Arrhythmia database to see whether the result regulator helps improve the
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disease heartbeats classification performance. Finally, we compare the proposed

D-ECG against the stat-of-the-art methods.

3.5.1 The MIT-BIH Arrhythmia Database

The MIT-BIH arrhythmia database [137] contains 48 two-lead ambulatory ECG

recordings from 47 patients (22 females and 25 males), with each recording approx-

imately 30 minutes in length. These recordings were digitized at 360 Hz per second

per channel with 11-bit resolution over a 10-mV range. For most of the recordings,

the first lead is modified limb lead II (except for the recording 114 which used V 5

as the first lead and MLII as the second). The second lead is a pericardial lead

(usually V 1, sometimes are V 2, V 4 or V 5, depending on subjects).

Intra-patient and inter-patient paradigm [4,38,200,209] are two different types

of paradigms concerning the use of the MIT-BIH-AR database for performance

evaluation. The intra-patient paradigm separates the entire data set into a training

set and a testing set merely according to the heartbeat labels, whereas inter-patient

paradigm groups the heartbeats by patients and partitions the patients into a

training set (DS1) and a testing set (DS2), as shown in Table 3.2. It has been

empirically proven that the intra-patient paradigm can produce an over optimistic

classification result by allowing training and testing heartbeats coming from the

same patient [119]. Therefore, in order to reveal the true performance of the

proposed model and have a fair comparison with the state-of-the-art rivals, the

inter-patient paradigm is strictly followed in this work.

On the basis of inter-patient paradigm, we further split DS1 into a training

set and a dynamic selection data set (DSEL), which account for 70% and 30%,

respectively. In addition, we generate six different subsets from the training set to

train the base classifiers in the ensemble pool.
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Table 3.2: Recording distributions and class proportions in DS1 and DS2

Dataset N S V F Q Recordings1

DS1 45808 943 3786 414 8 101, 106, 108, 109, 112, 114,
115, 116, 118, 119, 122, 124,
201, 203, 205, 207, 208, 209,
215, 220, 223, 230

DS2 44198 1836 3219 388 7 100, 103, 105, 111, 113, 117,
121, 123, 200, 202, 210, 212,
213, 214, 219, 221, 222, 228,
231, 232, 233, 234

1 Each recording is denoted by a 3-digits number and the numbers are originally discontinuous.

3.5.2 Experiment Settings

The experiments presented in this work are programmed in Python 3.63 and run

in a 64-bits Ubuntu 16.04 platform with an i7− 7700k CPU and 16GB memory.

The metrics used for classifier performance evaluation are sensitivity (Se), pos-

itive predictive value (+P ) and accuracy value (Acc). It is worth to note that

penalties should not be applied for the misclassification of class F -type and Q-

type, as recommended by the AAMI standard [38].

3.5.3 Comparative Analysis of DES Techniques

The effectiveness of the DES techniques in arrhythmia detection is evaluated in

this subsection. They are trained on the same classifier pool as mentioned in

section 3.4.3. The used features are RR-intervals, HOS and wavelet coefficients.

The results are summarized in Table 3.3.

It can be seen from Table 3.3 that all DES techniques have a similar perfor-

mance in terms of the overall accuracy and positive predictive of normal heartbeats

except DES-KNN. META-DES obtains the best result in overall accuracy, sensitiv-

ity of normal heartbeats and positive predictive of S -type heartbeats. KNORA-U
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Table 3.3: Heartbeats classification performance of DES techniques, single classi-
fiers and traditional ensembles.

Technique Classifiers Acc
N S V

Se +P Se +P Se +P

DES DES-KNN 81.79 82.15 99.28 68.7 28.1 93.72 35.9

DES-KL 90.39 91.86 98.98 65.62 32.44 94.78 61.38

DES-P 90.42 91.87 99.01 65.56 32.46 95.22 61.44

DES-RRC 89.4 90.81 99.01 64.37 28.58 94.81 60.4

KNORA-E 89.43 90.74 99.04 65.11 30.72 95.65 57.85

KNORA-U 89.97 91.1 98.77 74.86 35.69 93.72 59.67

KNOP 90.54 92.02 98.88 64.37 35.56 95.62 60.0

META-
DES

90.77 92.35 98.8 63.63 36.06 95.0 60.8

Single Clas-
sifier

SVM 81.83 81.35 99.48 88.08 30.17 94.91 36.95

KNN 84.22 84.84 98.5 72.01 22.01 92.73 52.89

Perceptron 80.22 81.75 98.93 40.99 12.85 89.9 39.53

Linear SVM 85.08 86.9 99.01 48.52 18.14 89.69 48.28

Bayesian 79.13 80.52 97.59 64.37 31.06 77.63 28.65

Decision Tree 78.37 80.38 96.56 52.74 18.37 74.37 39.95

Homogeneous E-SVM (50) 1 82.76 82.87 99.35 72.92 30.89 96.68 36.76
Ensemble E-KNN (10) 84.27 84.9 98.62 72.06 22.86 92.54 51.46

E-Perceptron
(50)

85.95 87.98 99.0 43.9 16.44 91.61 52.79

E-LSVM
(50)

86.7 88.96 98.95 46.12 18.55 88.51 52.74

E-GB (50) 81.58 83.89 96.58 36.66 17.9 84.28 40.19

Forrest (50) 87.53 89.2 98.59 56.04 33.6 90.37 45.86

Heterogeneous
Ensemble

Mixture2 89.48 91.13 99.02 61.63 27.0 92.98 61.7

1 The number denotes the amount of classifiers in the ensemble.
2 The mixture ensemble contains multi-layers perceptron, SVM, linear SVM, Logistic regression,

Bayesian model with Gaussian kernel, decision tree, and K-nearest neighbors model.

achieves the best sensitivity of normal heartbeats, which is approximately 6.16%

higher than the second best result obtained by DES-KNN. Regarding the detection

of V -type heartbeats, all DES techniques have a promising performance, with the
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lowest sensitivity higher than 93%. However, the corresponding positive predictive

values are struggling around 60%.

In order to demonstrate the advantages of DES techniques, we compare them

against single classifier and traditional ensembles methods. We categorize the

traditional ensemble methods into homogeneous ensemble and heterogeneous en-

semble. The former generates an ensemble with a numbers of certain classifiers

that trained with different training sets, while the later contains various types of

classifiers. In traditional ensemble methods, the final decision is given based on

the majority voting scheme. The experimental results are presented in Table 3.3

as well. Obviously, the average performance of DES techniques is significantly

better than that of single classifier. Though the homogeneous ensemble methods

have make some improvements to the corresponding single classifier, the overall

performance is still lower than that of DES techniques, with no method achiev-

ing higher than 88% in accuracy and higher than 90% in detection sensitivity of

normal heartbeats. Surprisingly, the mixture ensemble performs closely to the

average performance of DES techniques. However, since the number of classifiers

in the ensemble is small, the performance is extremely sensitive to the choices of

classifiers.

3.5.4 D-ECG Performance Evaluation

Since META-DES obtains the best results in overall accuracy, sensitivity of normal

heartbeats and positive predictive of S -type heartbeats, and performs closely to

other DES techniques in the rest of the metrics, we incorporate META-DES into

the proposed D-ECG structure.

Table 3.4 shows the arrhythmia detection results of META-DES and D-ECG

in DS2. The classification decisions of D-ECG are given by applying the result
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Table 3.4: Arrhythmia detection result of META-DES and D-ECG in DS2 of
the MIT-BIH-AR database

Predicted class (META-DES) Predicted class (D-ECG)

N S V F Q N S V F Q

True
class

N 40698 1921 1331 0 119 40698 2053 1199 0 119

S 125 1116 513 0 0 125 1472 157 0 0

V 102 58 3058 0 1 102 103 3013 0 1

F 3 0 4 0 0 3 0 4 0 0

Q 263 0 124 0 1 263 2 122 0 1

Table 3.5: Arrhythmia detection performance comparison between before- and
after-refinement

Refinement Acc
N S V

Se +P Se +P Se +P

Before 90.77 92.35 98.8 63.63 36.06 95.0 60.8

After 91.4 ↑ 92.35 98.8 83.92 ↑ 40.55 ↑ 93.6 67.03 ↑

regulator on the decisions of META-DES. We summarize the results and make a

straight-forward comparison between them in Table 3.5. It is apparent that the

regulator component has made visible improvements to the results obtained by

META-DES, with overall accuracy increasing from 90.77% to 91.4%, sensitivity of

S -type heartbeats increasing by more than 20%, positive predictive of S -type and

V -type increasing from 36.06% and 60.8% to 40.55% and 67.03%, respectively.

The proposed D-ECG is compared to the state-of-the-art rivals in cardiac ar-

rhythmia detection. The comparative results are summarized in Table 3.6. It

is clear that the proposed D-ECG achieves the best sensitivity of both S -type

and V -type heartbeats, being significantly better than the second highest. In the

meantime, the proposed D-ECG maintains the second best overall accuracy and

sensitivity of normal heartbeats. Shan’s model [23] obtains the highest accuracy

and sensitivity on normal heartbeats, but it fails in detection of S -type heartbeats,
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Table 3.6: Arrhythmia detection comparison between the proposed D-ECG and
the stat-of-the-art rivals in DS2 of the MIT-BIH-AR database

Method Acc
N S V

Se +P Se +P Se +P

Proposed D-ECG 91.4 92.35 98.8 83.92 40.55 93.6 67.03

De Chazal [38] 81.9 86.9 99.2 75.9 38.5 77.7 81.9

Ye C [200] 86.4 88.5 97.5 60.8 52.3 81.5 63.1

Zhang Z [209] 86.7 88.9 99.0 79.1 36.0 85.5 92.8

Shan C [23] 93.1 98.4 95.4 29.5 38.4 70.8 85.1

Mariano L [115] 78.0 78.0 99.0 76.0 41.0 83.0 88.0

with the sensitivity being merely 29.5%. Although the proposed D-ECG has a rel-

ative low positive predictive of both S -type and V -type heartbeats, it is still a

more appropriate choice than other listed works for cardiac arrhythmia detection

from a clinical point of view. This is because in a clinical environment, misclassi-

fication of a normal heartbeat would not lead to a disaster, but missing a disease

heartbeat can kill.

3.6 Chapter Conclusion

In this chapter, a dynamic framework named D-ECG for automatic cardiac ar-

rhythmia detection from IoT-based ECG recordings is proposed. The D-ECG

introduces the dynamic ensemble selection techniques to improve the heartbeat

classification performance for the first time. Specifically, the proposed D-ECG is

made up of five phases: preprocessing, feature extraction, classifier pool training,

dynamic selection classification and result refinement. In the training stage, we

use the SMOTEENN technique to remedy the negative effect of data imbalance

problem in ECG signals. Moreover, we propose a result regulator in the last stage
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of D-ECG to use different features to improve the disease heartbeats classification

performance. We conduct extensive experiments to investigate the feasibility of

DES techniques in heartbeat classification. The results show that the DES tech-

niques generally have a superior performance than single classifier and traditional

ensemble methods in majority evaluation metrics. We also experimentally evalu-

ate the effectiveness of the proposed D-ECG using the benchmark MIT-BIH-AR

database and compare the result against the state-of-the-art methods. The re-

sults show that the proposed D-ECG brings visible improvements to the heartbeat

classification task in terms of overall classification accuracy and the sensitivity of

disease heartbeats.

Notwithstanding all contributions that have been made in this work, the pro-

posed D-ECG is still far from perfect. The dynamic nature trades high consuming

of computation resources with performance increase. This limits the applications

and deployments of D-ECG in a small IoT cloud and in scenarios with high con-

current connections. In the next study, we try to investigate a more efficient model

by considering the neighbor information of heartbeats.
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CHAPTER 4

A PYRAMID-LIKE MODEL FOR HEARTBEAT CLASSIFICATION

FROM ECG RECORDINGS

4.1 Chapter Abstract

Heartbeat classification is an important step in the early-stage detection of cardiac

arrhythmia, which has been identified as a type of cardiovascular diseases (CVDs)

affecting millions of people around the world. The current progress on heartbeat

classification from ECG recordings is facing a challenge to achieve high classifica-

tion sensitivity on disease heartbeats with a satisfied overall accuracy. Most of the

works take individual heartbeats as independent data samples in processing. Fur-

thermore, the use of a static feature set for classification of all types of heartbeats

often causes distractions when identifying Supraventricular Ectopic beats. In this

work, a pyramid-like model is proposed to improve the performance of heartbeat

classification. The model separates the classification of normal and supraventric-

ular ectopic beats from the overall heartbeat classification, and takes advantage

of the neighbor-related information to assist identification of supraventricular ec-

topic bests. We evaluate the proposed model with the benchmark MIT-BIH-AR

database and the St. Petersburg Institute of Cardiological Technics(INCART)

database. The results show that the proposed pyramid-like model exhibits higher

performance than the state-of-the-art methods in the identification of disease heart-

beats.

4.2 Introduction

An electrocardiogram (ECG) is a recording of the electrical activity of the heart

over a period of time. It provides a noninvasive and inexpensive way for studying
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the heart. Heartbeat classification is one of the important fields in ECG analysis.

The Association for Advancement of Medical Instrumentation (AAMI) catego-

rized heartbeats into 5 super classes: Normal(N -type), Supraventricular (S -type)

ectopic, Ventricular (V -type) ectopic, Fusion (F -type) and Unknown (Q-type)

beats [8]. Heartbeat classification is an essential step toward identifying arrhyth-

mia. Arrhythmia affects the body by impacting heart’s ability to pump blood.

Critically, arrhythmia can be divided as life-threatening and non-life-threatening

arrhythmia [209]. For example, ventricular fibrillation and tachycardia are life-

threatening arrhythmia, which are fatal and require medical attention immedi-

ately. Non-life-threatening arrhythmia, such as atrial fibrillation, just presents a

chronic health threat to patients, but special care is still needed to avoid further

deterioration of heart function.

Although to perform an electrocardiography test is simple, the manual inter-

pretation of ECG recordings could be time-consuming and error-prone, especially

for the long-term ECG recordings. Hence, an intelligent approach on automatic

heartbeat classification from ECG recordings is highly demanded, which would be

of great assistance for clinicians in heart diseases diagnosis.

Many research attempts have been made to address the heartbeat classification

problem. The current process has difficulties in guarantying a high detection sensi-

tivity of disease heartbeats as well as maintaining a good overall classification accu-

racy. Most of the existing works take heartbeats as mutual-independent data sam-

ples, with no connections to their predecessors or successors [38,115,120,200,209].

Therefore, the neighbor-related information is ignored in their models. In addition,

the use of a single static feature set to classify all types of heartbeats together may

cause a high misclassification rate on S -type beats in particular.

To develop a practical heartbeat classification model, a number of factors need
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to be considered: (1) ECG recordings are imbalanced and usually dominated by the

normal heartbeats; (2) Some shape-related features must be included to distinguish

the V -type heartbeats from the normal heartbeats because these two heartbeat

types have different QRS complexes; (3) The normal and S -type heartbeats are

similar in QRS complex morphology, but the S -type heartbeats have a fast heart

rhythm. In other words, the existence of the shape-related features makes a S -

type heartbeat be easily misidentified as a normal beat. In this study, we aim to

propose a pyramid-like model to solve these problems and improve the heartbeat

classification performance.

The rest of this work is structured as follows. Section 4.3 reviews current

methods in arrhythmia detection and introduces related techniques used in this

work. Section 4.4 presents the proposed pyramid-like model. Section 4.5 introduces

the experimental ECG databases. Experiment results and discussion are presented

in Section 4.6. Section 4.7 concludes this work and discusses the future work.

4.3 Related Work

In this section we review the related studies in heartbeat classification from ECG

recordings and introduce two feature extraction techniques: the Higher-order

statistics and the Discrete wavelet transformation. The Earth mover’s distance

(EMD) is also discussed for measuring the dissimilarity of two multi-dimensional

distributions.

4.3.1 Literature Review

Many machine-learning approaches have been proposed for automatic heartbeat

classification for the last two decades. The differences between these approaches
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are mainly the features and the classifiers.

The features used to represent a heartbeat are usually extracted from cardiac

rhythm or time/frequency domains, in which the RR-Interval is reported as one of

the most widely used feature [4,23,38,119,174,209]. RR-Interval holds indispens-

able information about heart rhythms and has capacity to discriminate the disease

heartbeats from the normal ones. Other features, such as the higher order statistics

(HOS) [4, 40], wavelet coefficients [10, 60, 101, 112, 198, 204], morphological ampli-

tudes [86,209], signal energy [204], and random projection features [13,74], can also

be commonly found in the literature. As irrelevant features could cause negative

impacts to the classification performance and decrease the generalization power,

different feature selection techniques have been applied to clear up the noise and

reduce the feature dimension, such as the floating sequential search [115] and the

weighted linear discriminant model with a forward-backward search strategy [46].

Regarding the classifiers, the support vector machine (SVM) [23, 39, 74, 147,

154], nearest neighbors (NN) [104,173], artificial neural networks (ANN) [60,124],

optimum-path forest (OPF) [37], linear discriminants(LD) [38], conditional random

field [40], and reservoir computing with logistic regression [53] are common choices

for the heartbeat classification problem. However, using a single classifier can bias

the classification and lead to a relatively low generalization performance. Some

ensemble methods, such as random forest [4] and ensemble of SVM [74], have been

employed to remedy the disadvantages.

Although some promising results have been achieved, the current methods on

heartbeat classification still have some problems. The internal connections among

heartbeats are often ignored in existing classification process. All types of heart-

beats are presented using a same set of static features. This could limit the clas-

sification performance and possibly lead to a failure in identification of S -type
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heartbeats.

4.3.2 Higher-order Statistics

The higher-order statistics (HOS) methods are commonly used to estimate signal

shape. They contain both amplitude and phase information of non-Gaussian linear

processes and high immunity to the Gaussian background noise in comparison to

the lower-order statistics [27]. In this work, we count the skewness (3rd order

statistics) and the kurtosis (4th order statistics) into our feature set.

The skewness measures the symmetry of a distribution. The kurtosis denotes

whether the distribution is heavy-tailed or light-tailed, as compared to the normal

distribution. For an input signal, assume X1...,N denotes all the data samples, X̄

is the mean and s is the standard deviation, the skewness and kurtosis can be

defined respectively as below.

Skewness =

∑N
i=1(Xi − X̄)3/N

s3
(4.1)

Kurtosis =

∑N
i=1(Xi − X̄)4/N

s4
(4.2)

4.3.3 Discrete Wavelet Transform

The discrete wavelet transform (DWT) provides a time-frequency representation

of a signal, which is widely used in data compression, noise reduction and multi-

frequency-bands signal analysis. The DWT iteratively decomposes a signal to

different frequency bands with a scaling function and a wavelet function. The

high-frequency component provides the detail information; while the low-frequency

components is a coarse approximation of the upper-level signal. Each component
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is represented by a collection of wavelet coefficients, which is obtained by the

inner products of mother wavelet function and the upper-level signal. Fig 4.1

presents the whole decomposition process. Only the low-frequency components

are decomposed.

Figure 4.1: A demonstration of discrete wavelet decomposition. cAx and cDx

denote the wavelet coefficients of coarse approximation and detail information at
x level, respectively.

The choice of the mother wavelet function is the key of the discrete wavelet

transform, which heavily depends on applications. In term of noise reduction on

raw ECG signals, we use the Daubechies-4 wavelet for its good orthogonality and

short vanishing moment. For morphology features extraction, the Haar wavelet is

chosen because of its simplicity. Besides, it has been demonstrated as the ideal

wavelet for short time signal analysis [204]. The Haar function can be represented
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as

ψ(t) =


1 0 ≤ t<1/2,

−1 1/2 ≤ t<1,

0 otherwise.

, (4.3)

and its corresponding scaling function is

φ(t) =


1 0 ≤ t<1,

0 otherwise.

, (4.4)

where t denotes sample values.

4.3.4 Earth Mover’s Distance

The Earth mover’s distance (EMD) is a metric of dissimilarity between two multi-

dimensional distributions [153]. A distribution can be represented by a set of

clusters. Such a representation is called the signature of the distribution. Data

points from a distribution are grouped into a set of clusters, with each cluster

denoted by its mean (or mode) and the fraction of the distribution that belongs to

the cluster. Thus, one cluster can be regarded as a single feature in a signature.

The distance between the features is called the ground distance. Signatures could

be different in length. For example, simple distributions have shorter signatures

than the complex ones.

The Earth mover’s distance can be formulated and solved as a transportation

problem [71]. Assume that there is a signature P with m cluster:

P = {(p1, wp1) , ..., (pm, wpm)} , (4.5)

and a signature Q with n cluster:

Q = {(q1, wq1) , ..., (qn, wqn)} , (4.6)
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where p and q are the cluster representatives (mean or mode), and w denotes the

cluster weight.

Let D =
[
d[i, j]

]
be the ground distance between pi and qj and F = [fi,j] be

the flow between pi and qj. The optimal F is obtained by minimizing the overall

work:

W =
m∑
i=1

n∑
j=1

fi,jdi,j, (4.7)

subject to the following constrains:

0 ≤ fi,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (4.8)

n∑
j=1

fi,j ≤ wpi, 1 ≤ i ≤ m, (4.9)

m∑
i=1

fi,j ≤ wqj, 1 ≤ j leqn, (4.10)

m∑
i=1

n∑
j=1

fi,j = min

{
m∑
i=1

wpi,
n∑
j=1

wqj

}
(4.11)

The Earth mover’s distance is defined as the work normalized by the total flow:

EMD(P,Q) =

m∑
i=1

n∑
j=1

fi,jdi,j

m∑
i=1

n∑
j=1

fi,j

(4.12)

4.4 Methodology

This section presents the proposed methodology. Firstly, we introduce the prepro-

cessing method. Then we discuss the appropriate features for heartbeat classifica-

tion. After that, we present the pyramid-like model in detail.

4.4.1 Preprocessing

The raw ECG signals always come with Gaussian white noise and baseline wan-

ders. The baseline wanders is the effect that the base axis (X-axis) of individual
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heartbeats appear to move up or down rather than being straight all the time, as

shown in Fig 4.2. In order to avoid propagation of the negative impact of these

two problems to the classification stage, an effective method for cleaning up the

ECG recordings is indispensable.

Figure 4.2: A sample ECG recording with Gaussian white noise and baseline
wanders.

To correct the baseline wanders, each ECG recording is processed with a 200-ms

width median filter followed by a 600-ms median filter to obtain the signal baseline,

which is then subtracted from the raw ECG signal to get the baseline corrected

data. Then, a discrete wavelet transform is applied to remove the Gaussian white

noise. The baseline corrected recordings are decomposed to different frequency

bands with various resolutions. We select the Daubechies-4 as the mother wavelet

function because its short vanishing moment is ideal for analyzing signals like ECG

with sudden changes. The coefficients of detail information (cDx) in each frequency

band are then processed by a high-pass filter with a threshold value

T =
√

2 ∗ log(n), (4.13)

where n indicates the length of the input signal. The coefficients that failed by

the filter are set to zero. Finally, the clean recordings are obtained by employing

inverse discrete wavelet transform on the coefficients.

After noise reduction, The ECG recordings are segmented to individual heart-
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beats using the R locations provided by the databases. For each R peak, 90

samples (250-ms) before R peak and 144 samples (400-ms) after R peak are taken

to represent a heartbeat. This is long enough to catch the samples represent-

ing the re-polarization of ventricular and short enough to exclude the neighbor

heartbeats [4].

4.4.2 Feature Extraction

Three types of features are used to characterize a heartbeat in this work: RR-

interval, HOS and wavelet coefficients. Table 4.1 and Table 4.2 summarize the

statistics of these features and give their p-values among normal, S -type and V -

type beats. Fig 4.3 gives a visual demonstration on the feature significance via

boxplots.

The RR-interval is the time distance between two successive R peaks. Specifi-

cally, the interval between the current R peak and the previous R peak is known

as PreRR, while the interval between current R peak and the following R peak is

PostRR. The RR-interval is one of the most indispensable features used for heart-

beat classification. Zhancheng et al. [209] have done extensive work to prove that

PreRR is the top distinguishing feature for recognizing S beats. Table 4.1 shows

the p-value of PreRR between normal and S -type heartbeats is 2.16e−58, which

means that PreRR leads to a significant difference between the normal and S -type

beats.

The skewness (3rd order statistics) and the kurtosis (4th order statistics) are

effective in estimating shape parameters of ECG signals. They are able to well

distinguish V beats because the major difference of V beats against other types

of heartbeats is the shape. The corresponding p-values in Table 4.1 justify this

statement.
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Figure 4.3: Boxplots for the extracted features of ECG signals. Notes: for each
frequency component, we only pick one coefficient as example.
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Table 4.1: Feature statistics and the corresponding p-values between heartbeat
classes

F
eatu

re
S
tatistics

(m
ean
±

std
)

P
-valu

es

N
S

V
N

-
S

N
-

V
S

-
V

p
reR

R
[-0.81,

1.17]
[-1.98,

-0.79]
[-1.86,

-0.33]
2.16e−

58
2.31e−

38
4.27e−

05
p

ostR
R

[-0.88,
0.89]

[-2.02,
0.79]

[-1.17,
1.99]

1.63e−
07

1.94e−
03

2.69e−
11

skew
n
ess

[-0.99,
1.01]

[-1.36,
0.58]

[-1.63,
-0.13]

8.48e−
05

2.71e−
21

2.33e−
08

k
u
rtosis

[-0.91,
1.09]

[-1.29,
0.35]

[-1.63,
-0.91]

1.61e−
09

5.42e−
54

2.05e−
30

cD
4

0
[-0.82,

0.98]
[-0.95,

1.98]
[-2.38,

1.88]
3.47e−

04
4.53e−

02
3.33e−

05
cD

4
1

[-0.98,
0.7]

[-0.67,
1.57]

[-1.0,
2.29]

4.24e−
09

3.15e−
09

1.65e−
01

cD
4

2
[-0.98,

1.01]
[-0.6,

1.44]
[-1.2,

1.24]
7.40e−

05
9.42e−

01
4.77e−

04
cD

4
3

[-0.77,
0.84]

[-0.86,
0.35]

[-2.52,
0.83]

6.81e−
05

7.24e−
11

3.35e−
06

cD
4

4
[-0.54,

0.96]
[-0.32,

0.74]
[-2.71,

0.62]
9.42e−

01
4.76e−

20
1.08e−

21
cD

4
5

[-1.0,
0.96]

[-0.76,
1.23]

[-0.55,
1.83]

9.84e−
03

3.52e−
09

2.80e−
04

cD
4

6
[-0.97,

1.15]
[-1.37,

0.35]
[-1.25,

1.32]
1.35e−

09
6.50e−

01
8.73e−

07
cD

4
7

[-1.03,
0.74]

[-1.57,
0.84]

[-1.18,
3.22]

3.94e−
02

1.76e−
11

6.51e−
14

cD
4

8
[-0.79,

0.86]
[-1.09,

0.75]
[-1.97,

2.47]
1.86e−

02
2.05e−

01
1.40e−

02
cD

4
9

[-0.96,
0.88]

[-1.06,
0.81]

[-1.99,
2.04]

3.69e−
01

6.57e−
01

3.30e−
01

cD
4

10
[-0.82,

0.87]
[-0.39,

1.04]
[-2.17,

2.06]
1.46e−

04
6.14e−

01
1.63e−

02

The wavelet coefficients provide multi-frequency-bands information of signals.

Since each heartbeat only contains 235 data samples, the maximum level of wavelet

decomposition is up to 7. As reported by Asl et al. [10], each type of heartbeats can

find its own representative and distinct components in the detail information at
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Table 4.2: Feature statistics and the corresponding p-values between heartbeat
classes
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N
S

V
N

-
S

N
-

V
S

-
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4
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[-0.78,

0.89]
[-0.48,

1.23]
[-2.19,

1.47]
1.81e−
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3.85e−
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4.43e−

07
cD

4
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[-0.44,
0.93]

[-2.39,
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7.52e−
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cD
4
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[-0.52,
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cD

4
14

[-0.51,
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[-1.17,
0.95]
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01

1.87e−
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1.60e−
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cD
5

0
[-0.7,
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[-0.74,

1.76]
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2.32]
1.38e−
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1.25e−
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cD

5
1

[-0.91,
0.93]

[-0.71,
0.96]

[-2.25,
0.84]
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4.01e−
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cD
5

2
[-1.0,
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cD

5
3

[-0.83,
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5

4
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2.37]
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3.26e−
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cD

5
5

[-0.74,
0.85]

[-0.37,
1.29]

[-2.82,
2.53]

7.77e−
07

3.18e−
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2.39e−
03

cD
5

6
[-1.03,

0.98]
[-1.23,

0.94]
[-2.46,

2.23]
2.64e−

01
6.34e−
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8.66e−

01
cD

6
0

[-0.7,
0.56]

[-0.45,
1.95]

[-2.33,
2.91]

2.59e−
16

5.87e−
02

2.53e−
02

cD
6

1
[-1.0,

0.86]
[-1.36,

0.75]
[-2.11,

1.5]
1.92e−

02
1.01e−

01
9.86e−

01
cD

6
2

[-0.84,
0.83]

[-0.5,
0.91]

[-1.8,
2.12]

6.28e−
03

2.59e−
01

7.75e−
01

cD
6

3
[-0.75,

0.73]
[-2.65,

1.1]
[-2.01,

1.77]
1.23e−

07
4.17e−

01
6.06e−

04
cD

7
0

[-0.73,
0.85]

[-0.22,
1.43]

[-2.88,
1.84]

6.75e−
11

9.81e−
04

4.91e−
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cD
7

1
[-0.85,

0.88]
[-0.94,

1.11]
[-2.46,

2.09]
4.67e−

01
2.36e−

01
1.22e−

01

level 4-7. In this study, the detail information at these levels are used to represent

morphology-related features of an ECG signal. P-values of the coefficients are

presented in Table 4.2.

In conclusion, each of the above-mentioned features has been proven to be able
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to distinguish at least one certain type of heartbeats from the others. However, as

discussed in Sec.4.2, using all these features for all heartbeat types classification

can lead to a poor classification performance. Therefore, a pyramid-like model is

proposed to select and organize these features to improve performance.

4.4.3 Pyramid-like Classification Model

The proposed pyramid-like model is made up of the nsDispatcher, nRefiner and

sRefiner. Fig 4.4 present the entire framework. The classification process has two

stages, known as level-1 and level-2 classification. In level-1 classification, the

raw heartbeat data is processed by the nsDispatcher at first, where each heartbeat

is categorized into the N or S group. After that, in level-2 classification, the

nRefiner classifies the heartbeats in the upper N group to the N, V, F or Q

group. Simultaneously, the sRefiner classifies the heartbeats in the upper S group

to the S, V, F or Q group.

Figure 4.4: Overall structure of the proposed pyramid-like model.

When the shape-related features are included in consideration, N -type and

S -type heartbeats are difficult to distinguish, because these two heartbeat types

share a similar QRS complex. Therefore, we focus on classification of N and S
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beats specially. In nsDispatcher, only the heart rhythm information (RR-interval)

is considered.

Model Training

Algorithm 3 presents the training process of nsDispatcher. The input training data

is denoted as DStraining, where each ECG recording represents a patient.

Algorithm 3 nsDispatcher Training

Require: A training ECG recordings database, DStraining

Ensure: Threshold values for each patient, trsV alues

1: step← 0.05

2: for patient in DStraining do

3: heartbeats ← Nomalize(patient.heartbeats)

4: pid← patient.id

5: for hb in heartbeats do

6: if hb.label ∈ N then

7: labelTrue[pid].append(hb.label)

8: normalBeats[pid].append(hb.preRR)

9: else if hb.label ∈ S then

10: labelTrue[pid].append(hb.label)

11: else

12: continue

13: end if

14: end for

15: normalPreRR← median(normalBeats[pid])

16: t← 0

17: while t > −1 do
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18: for hb in heartbeats do

19: if hb.label /∈ (N ∪ S) then

20: continue

21: else if (hb.preRR - hb.postRR) / normalPreRR < t then

22: labelPred[pid].append(’S’)

23: else if (hb.preRR - normalPreRR / normalPreRR < t then

24: labelPred[pid].append(’S’)

25: else

26: labelPred[pid].append(’N’)

27: end if

28: end for

29: N Sen[t] ← getSensitivity(′N ′, labelTrue[pid], labelPred[pid])

30: S Sen[t] ← getSensitivity(′S ′, labelTrue[pid], labelPred[pid])

31: t← t− step

32: labelPred[pid]← NULL

33: end while

34: trsV alues[pid] ← arg maxt(N Sen[t] + S Sen[t])

35: end for

The core of the nsDispatcher is the decision rules shown between line 18 - 28 in

Algorithm 3. They determine which group (N or S ) a heartbeat belongs to. Let

hb denote a heartbeat and t be the threshold value, the decision rules can then be

mathematically expressed as

rule 1:

hb.preRR− hb.postRR
normalRreRR

< t, (4.14)
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and rule 2:

hb.preRR− normalRreRR
normalRreRR

< t, (4.15)

where normalRreRR represents the median value of the PreRR values of the

normal heartbeats.

The rules are motivated by two observations: (1) a S -type beat generally has

a shorter PreRR value than that of a surrounding N -type beat; and (2) the gap of

the PreRR value between a S -type beat and a N -type beat varies with patients.

Therefore, a heartbeat should not be treated as an independent data sample, but

be associated with the surrounding beats as well as the patient-specific information.

The rule 1 uses the surrounding beats to help classification. Suppose that in an

ECG recording, there is a S -type beat followed by a N -type beat. The S -type beat

can be easily caught by the rule 1. However, when there are two successive S -type

or N -type beats, the rule 1 can fail because there is not enough information. As

such, the rule 2 is applied to complement the rule 1 by taking advantage of the

patient-specific information (normalPreRR).

If any of the rules is satisfied, the heartbeat is categorized as class S, otherwise

as class N. The goal of the training process is to find out the best threshold value

(t) that helps to achieve a high detection sensitivity of both the N -type and S -type

heartbeats for the decision rules of each patient. We traverse every possible t in

the range of (−1, 0). Values beyond this range is practically impossible so far.

The parameter step is used to control the precision of t. The smaller the step, the

more precise the t but the more time-consuming the training process. Formally,

the objective function (line 34 in Algorithm 3) is formulated as:

arg max
t

(N Sen[t] + S Sen[t]). (4.16)

The trained threshold values are stored in trsV alues (line 34 in Algorithm 3).
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Table 4.3: The nRefiner and the sRefiner

Classifier Features

nRefiner Mix Ensemble(Linear SVM, SVM, De-
cision Tree, KNN, Logistic Regression,
Perceptron, and Bayes)

heartbeat rhythm,
HOS, and wavelet
coefficients

sRefiner SVM HOS and wavelet coef-
ficients

In terms of the nRefiner and the sRefiner, Table 4.3 summarizes their compo-

sitions and the training features. Notice that the N group is seriously imbalanced

and dominated by the normal heartbeats. To reduce the impact caused by the

imbalance problem, a mix classifier ensemble method is applied in the nRefiner.

The reason for excluding the heartbeat rhythm for training the sRefiner is that

the V -type heartbeats could also have irregular RR-interval values as the S -type

heartbeats.

Classification

The details of level-1 and level-2 classification are presented in Algorithm 4 and

Algorithm 6, respectively.

In level-1 classification, one important step is the estimation of the normal

PreRR value of a patient (line 4 - 11 in Algorithm 4). For each patient pa in DStest,

we perform a statistical analysis on pa’s heartbeat PreRR values via boxploting.

If less than 10% of the data are considered as outliers, we assume that the ECG

recording is dominated by the normal heartbeats and use

E(normalRreRR)← median(heartbeats.preRRs) (4.17)

to estimate the normal PreRR value. Such an assumption is practical and

reasonable because S -type heartbeats occur sparsely in real-world applications.
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On the other hand, if more than 10% of the data are considered as out-

liers, the ECG recording is likely to be distorted by the S -type heartbeats and

median(heartbeats.preRRs) could represent the PreRR value of a S -type beat.

In such a case, we use

E(normalPreRR)← mean(mean(outliers),median(heartbeats.preRRs))

(4.18)

to estimate the normal PreRR value. This guarantees that the E(normalPreRR)

is not representing an irregular value.

Algorithm 4 Level-1 Classification

Require: A test ECG recordigns database, DStest; The trained threshold values,

trsV alues.

Ensure: The result of level-1 classification, lev1Result.

1: for patient in DStest do

2: pid← patient.id

3: heartbeats← Nomalize(patient.heartbeats)

4: stats← boxplot(heartbeats.preRRs)

5: outliers← stats.outliers

6: if len(outliers) / len(heartbeats) >0.1 then

7: E(normalPreRR)←mean(mean(outliers), median(heartbeats.preRRs))

8: else

9: E(normalPreRR)← median(heartbeats.preRRs)

10: end if

11: neighbor ← getNeighbor(patient)

12: t← trsV alues[neighbor]

13: if t equals to 0 then

14: t← min(trsValues)
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15: end if

16: for hb in heartbeats do

17: if (hb.preRR - hb.postRR) / E(normalPreRR) < t then

18: lev1Result[pid].append(’S’)

19: else if (heartbeat.preRR - E(normalPreRR)) / E(normalPreRR) < t

then

20: lev1Result[pid].append(’S’)

21: else

22: lev1Result[pid].append(’N’)

23: end if

24: end for

25: end for

The algorithm goes on by looking for a patient pb in DStraining who has the

most similar PreRR values distribution with pa, and assign pb’s threshold value to

pa (line 12 - 13 in Algorithm 4). We implement a function named getNeighbor

(Algorithm 5) to perform the task. The function uses the Earth mover’s distance

(EMD) to measure the dissimilarity of two distributions. Notice that if pb’s thresh-

old value equals to 0, which means that no S -type beat is found in pb, it is believed

that there is also a low probability to find S beats in pa. However, we never want

to miss a potential S-type beat, which may lead to a serious consequence to a pa-

tient. In such a case, we assign the smallest value in trsV alues to pa (line 14 - 16

in Algorithm 4). This implies that the algorithm tries to search for the potential

S -type beats while avoiding classifying the N -type as S -type beats.

Once the E(normalPreRR) as well as the t are ready, the heartbeats are

processed by the decision rules.
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Algorithm 5 Find the nearest neighbor of a patient

Require: An ECG recording of a patient, testPatient; The training ECG record-

ings database, DStraining.

Ensure: A patient in DStraining who has the most similar previour-RR values

distribution of the testPatient, neighbor.

1: function getNeighbor(testPatient)

2: data1← Normalize(testPatient.heartbeats.preRRs)

3: for trainPatient in DStraining do

4: pid← trainPatient.id

5: data2[pid]← Normalize(trainPatient.heartbeats.preRRs)

6: end for

7: neighbor ← arg maxpid(EMD(data1, data2[pid]))

8: return neighbor

9: end function

In level-2 classification (Algorithm 6), each heartbeat in the N group is further

classified by the nRefiner to class N, V, F or Q. Similarly, the sRefiner reclassified

the S beats to class S, V, F or Q.

Algorithm 6 Level-2 Classification

Require: The test ECG recordings database, DStest; The level-1 classification

result, lev1Result.

Ensure: The final result of the pyramid-like model, finalResult.

1: for patient in DStest do

2: pid← patient.id

3: heartbeats← Nomalize(patient.heartbeats)

4: for hb in heartbeats do
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5: if lev1Result[pid][hb.id] ∈ N then

6: finalResult[pid].append(nRefiner(hb))

7: else if lev1Result[pid][hb.id] ∈ S then

8: finalResult[pid].append(sRefiner(hb))

9: else

10: continue

11: end if

12: end for

13: end for

4.5 Experimental ECG Databases

In this section, two ECG databases are introduced, namely the MIT-BIH-AR

database and the INCART database. They are public-accessible from the Phys-

iobank [57].

Most of the works on heartbeat classification are trained and evaluated their

models on the MIT-BIH-AR database. In order to have a fair comparison, both

the training and the evaluation of the pyramid-model are performed on the MIT-

BIH-AR database as well. Besides, we use the INCART database to assess the

generalization performance of the proposed model.

All ECG recordings in these databases have an equal length of 30 minutes,

but they are not sampled in the same frequency. They need to be re-sampled

to 360Hz before use. The recordings are well-labeled at heartbeat level. The

original heartbeat annotations include 15 classes, which are further grouped into

5 super-classes by the AAMI [8], as shown in Table 4.4.

Details of these databases are respectively given below.
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Table 4.4: ECG-based heartbeat annotations

AAMI class Original
class

Type of beat

Normal (N) N Normal beat

L Left bundle branch block beat

R Right bundle branch block
beat

e Atrial escape beat

j Nodal (junctional) escape
beat

Supraventricular ectopic beat (S) A Atrial premature beat

a Aberrated atrial premature
beat

J Nodal (junctional) premature
beat

S Supraventricular premature
beat

Ventricular ectopic beat (V ) V premature ventricular con-
traction

E Ventricular escape beat

Fusion beat (F ) F Fusion of ventricular and nor-
mal beat

Unknown beat (Q) / Paced beat

f Fusion of paced and normal
beat

Q Unclassifiable beat

4.5.1 MIT-BIH-AR Database

The database contains 48 two-lead ambulatory ECG recordings from 47 patients

(including 22 females and 25 males). Each recording is denoted by a 3-digits

number. The recordings were digitized at 360Hz per second per channel with 11-

bit resolution over a 10−mV range. For most of them, the first lead is modified

limb lead II (except for the recording 114). The second lead is a pericardial lead

(usually V1, sometimes are V2, V4 or V5, depending on subjects). In this study,
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only the modified limb lead II is used.

The database is seriously imbalanced. The N beats dominate most of the

recordings. Therefore, the k-fold validation scheme cannot be applied to split

the database for training and testing. Two different paradigms are found in the

literature to solve this problem [4,38,200,209]. One is the intra-patient paradigm,

which first mixes up the heartbeats from all recordings and then evenly allocates

each category of heartbeats into two groups. The other one is the inter-patient

paradigm. In this paradigm, the ECG recordings are divided into two datasets

(DS1 and DS2) with each dataset containing approximately the same portion of

heartbeat classes. Table 4.5 shows the division and the corresponding heartbeat

classes distribution. The DS1 is used for model training and the DS2 is used for

model performance evaluation.

It has been empirically proven that the intra-patient paradigm can bias the

classification result by allowing training and testing heartbeats coming from the

same patient [119]. By contrast, the inter-patient paradigm is more objective. In

order to reveal the true performance of the pyramid-like model and have a fair

comparison with the state-of-the-art rivals, the inter-patient paradigm is strictly

followed in this work.

4.5.2 INCART 12-leads Arrhythmia Database

This database consists of 75 ECG recordings sampled at 257Hz. Each recording

contains 12 standard leads. Similarly, only the modified limb lead II is used in this

study. The annotations were first produced by an automatic algorithm and then

corrected manually based on the standard PhysioBank beat annotation definitions.

None of the recordings contains pacemakers, but most of them have ventricular

ectopic beats. The heartbeat distribution of the INCART database is shown in
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Table 4.5: The inter-patient division paradigm.

Data
set

N S V F Q Recordings1,2

DS1 45808 943 3786 414 8 101, 106, 108, 109, 112, 114,
115, 116, 118, 119, 122, 124,
201, 203, 205, 207, 208, 209,
215, 220, 223, 230

DS2 44198 1836 3219 388 7 100, 103, 105, 111, 113, 117,
121, 123, 200, 202, 210, 212,
213, 214, 219, 221, 222, 228,
231, 232, 233, 234

1 Each recording is denoted by a 3-digits number and the numbers are originally dis-
continuous.

2 As recommended by the AAMI, the four recordings (102, 104, 107 and 217) containing
paced beats are excluded from the analysis.

Table 4.6: Heartbeat distributions in the INCART database

Database N S V F Q

INCART 153491 1958 19993 219 6

Table 4.6.

4.6 Experimental Evaluation

In this section, we conduct a benchmark evaluation for the proposed pyramid-like

model on the MIT-BIH-AR database, with the result being compared to the state-

of-the-art methods. Besides, we use the INCART database to assess the model

generalization performance.

All the experiments presented in this work are programmed in Python 3.63 and

done in a 64-bits Windows 10 PC, with i5− 4590 CPU and 12 GB memory.
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4.6.1 Evaluation Metrics

In this work, the performance is evaluated by sensitivity (Se), positive predictive

value (+P ) and accuracy value (Acc). It should be noted that penalties would

not be applied for the misclassification of class F and Q, as recommended by the

AAMI standard.

4.6.2 Classification Result and Discussion

Table 4.7 shows the result of the level-1 classification. The majority of the N -type

and S -type beats are correctly classified by the nsDispatcher. Although 3153 N -

type beats are misclassified as S -type beats, they only account for a small portion

of the total N -type beats. A good classification sensitivity and positive predictive

value of the N -type beat are still achieved. On the other hand, the misclassified

N -type beats lead to a decrease of the positive predictive value of the S -type beats.

However, as the heartbeat classification plays an important role toward identifying

the cardiac arrhythmia, the accuracy over the S -type heartbeats is considered the

most important [37]. From an overall point of view, the nsDispatcher does a decent

job.

Table 4.8 gives the final classification results of the proposed pyramid-like model

in detail. It is worth noting that, from level-1 to level-2 classification, only 164

N -type beats and 87 S -type beats are misclassified by the nRefiner and the sRe-

finer. In addition, the level-2 classification achieves superior performance in the

detection of V -type beats. The results indicate the effectiveness of the nRefiner

and the sRefiner. In terms of the F -type and Q-type beats, a poor performance is

obtained, which is a normal phenomenon because both F -type and Q-type beats

are originally unclassifiable. The same issue is commonly found in all the existing

research works.

96



Table 4.7: The result of level-1 classification of the proposed model on DS2

Predicted class

N S

True class N 40918 3151

S 74 1680

V 872 2347

F 383 5

Q 5 2

Table 4.8: The result of level-2 classification of the proposed model on DS2

Predicted class

N S V F Q

True class N 40754 2762 508 45 0

S 71 1593 87 3 0

V 125 151 2856 87 0

F 317 1 62 8 0

Q 2 0 4 1 0

The proposed model is compared to the state-of-the-art methods over the same

test set (DS2). Table 4.9 summarizes the comparative result. The proposed model

exhibits higher performance in terms of the positive predictive value of N -type

beats and the sensitivity value of the disease heartbeats (S -type and V -type).

In addition, it takes the second best place in global accuracy (91.5%) and the

sensitivity value of normal heartbeats (99.0%).

Although our model has the lowest positive predictive value of the S -type beats,

we make a breakthrough in the sensitivity value (91.0%). Actually, as we can see,

the positive predictive values of S -type heartbeats are commonly low in most of

the existing methods. The best one is obtained by Ye C et al. [200], which is just

17% better than ours, but we beat it in the sensitivity value by more than 30%.
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Table 4.9: Performance comparison of the proposed model and the state-of-the-art
methods on DS2

Method Acc(%)
N S V

Se(%) +P(%) Se(%) +P(%) Se(%) +P(%)

Proposed 91.5 92.0 99.0 91.0 35.0 89.0 81.0

De Chazal [38] 81.9 86.9 99.2 75.9 38.5 77.7 81.9

Ye C [200] 86.4 88.5 97.5 60.8 52.3 81.5 63.1

Zhang Z [209] 86.7 88.9 99.0 79.1 36.0 85.5 92.8

Shan C [23] 93.1 98.4 95.4 29.5 38.4 70.8 85.1

Mariano L [115] 78.0 78.0 99.0 76.0 41.0 83.0 88.0

Table 4.10: Classification result of the proposed pyramid-like model in the IN-
CART database

Predicted class

N S V

True class N 138620 6871 8000

S 106 1554 298

V 792 1643 17783

Table 4.11: Generalization performance comparison between the proposed model
and the stat-of-the-art rival in the INCART database

Method Acc(%)
N S V

Se(%) +P(%) Se(%) +P(%) Se(%) +P(%)

Proposed 90.0 90.3 99.3 79.4 15.4 87.0 72.7

Mariano L [115] 91.0 92.0 99.0 85.0 11.0 82.0 88.0

4.6.3 Generalization Result and Discussion

The classification result on the INCART database is summarized in Table 4.10.

The performance is compared to the latest work by Mariano L. and Juan P. [115],

which is the only work can be found performing model evaluation on both the

MIT-BIH-AR and the INCART database. Table 4.11 presents the comparative

result.
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Notice that the compared method [115] follows the AAMI2 labeling, where

class F and Q are merged into class V. In order to have a fair comparison, we

adapt the proposed model to the AAMI2 labeling.

As seen from Table 4.11, the proposed model has a comparable performance

with the rival on the INCART database. Both the works achieve similar values

in all metrics. However, if we look back at Table 4.9, the proposed pyramid-like

model presents better performance on DS2.

It is worth noting that, from DS2 to the INCART database, the proposed

model maintains a stable heartbeat classification performance. This is very im-

portant, as robustness is indispensable for an algorithm to be applied in a clinical

practice.

4.7 Chapter Conclusion and Future Work

Millions of people around the world are suffering from the cardiac arrhythmia.

Automatic heartbeat classification helps early identify this issue, making it pos-

sible for people to get the right treatment sooner. In this paper, a pyramid-like

model has been proposed for automatic heartbeat classification. The model in-

tegrates three components, namely nsDispatcher, nRefiner and sRefiner. During

the classification process, the nsDispatcher first allocates the heartbeats into the

N or S group. The nRefiner and the sRefiner then further classify the heartbeats

in the N and S group respectively to give the final decision. The significance

of the proposed model is that it takes the surrounding heartbeats as well as the

patient-specific information into consideration to help identification of a S -type

heartbeat. Besides, the nRefiner and the sRefiner are customized with different

classifier structure and training features to adapt to the classification requirements

in the N and S group.
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The proposed model has been evaluated on the MIT-BIH-AR database, with

the performance being compared against the state-of-the-art methods. In addi-

tion, the INCART database is used to measure the generalization performance of

the proposed model. The experimental results have proven the effectiveness and

robustness of the proposed model in heartbeat classification.

Figure 4.5: Extension of pyramid-like model for online-detection scenarios.

In our next study, we aim to extend the proposed pyramid-like model to online-

detection scenarios. We outline the framework design in fig.4.5. The framework

comprises four modules: a raw ECG cleaning module, a heartbeats segmentation

and featurization module, a heartbeat classification module and a result notifica-

tion module.
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CHAPTER 5

A FRAMEWORK FOR CARDIAC ARRHYTHMIA DETECTION

FROM IOT-BASED ECGS AND INSPECTION OF LATEST

ADVANCES BROUGHT BY DEEP LEARNING

5.1 Chapter Abstract

Cardiac arrhythmia has been identified as a type of cardiovascular diseases (CVDs)

that causes approximately 12% of all deaths globally. The development of Internet-

of-Things has spawned novel ways for heart monitoring but also presented new

challenges for manual arrhythmia detection. An automated method is highly de-

manded to provide support for physicians. Current attempts for automatic ar-

rhythmia detection can roughly be divided as feature-engineering based and deep-

learning based methods. Most of the feature-engineering based methods are suf-

fering from adopting single classifier and using fixed features for classifying all five

types of heartbeats. This introduces difficulties in identification of the problem-

atic heartbeats and limits the overall classification performance. The deep-learning

based methods are usually not evaluated in a realistic manner and report overop-

timistic results which may hide potential limitations of the models. Moreover, the

lack of consideration of frequency patterns and the heart rhythms can also limit

the model performance. To fill in the gaps, we propose a framework for arrhythmia

detection from IoT-based ECGs. The framework consists of two modules: a data

cleaning module and a heartbeat classification module. Specifically, we propose two

solutions to the heartbeat classification task, namely Dynamic Heartbeat Classifi-

cation with Adjusted Features (DHCAF) and Multi-channel Heartbeat Convolution

Neural Network (MCHCNN). DHCAF is a feature-engineering based approach, in

which we introduce dynamic ensemble selection (DES) technique and develop a
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result regulator to improve classification performance. MCHCNN is deep-learning

based solution that performs multi-channel convolutions to capture both temporal

and frequency patterns from heartbeat to assist the classification. We evaluate the

proposed framework with DHCAF and with MCHCNN on the well-known MIT-

BIH-AR database, respectively. The results reported in this paper have proven

the effectiveness of our framework.

5.2 Introduction

Cardiac arrhythmia is a type of cardiovascular diseases (CVDs) that threatens

millions of people’s lives around the world. The easiest way to identify arrhythmia

is to perform a manual inspection on 24 to 72 hours electrocardiograms (ECG).

Traditionally, to have such long-term ECG recordings, patients need to wear a

Holter Monitor for a continuous time period, which is a very uncomfortable ex-

perience. The rapid growth of Internet-of-Things (IoT) techniques has spawned

novel ways, like Fitbit, Apple Watch, or Android Wear, for heart status track-

ing [197]. In comparison to the Holter Moniter, the IoT-based devices are more

human-friendly because they have fewer cords and smaller-sizes, and cause fewer

disruptions to patient’s daily routines. However, on the other hand, the prevalence

of IoT-based devices has also resulted in a dramatic increase of ECG data, posing

a great challenge to the ECG interpretation. Manual inspections become time-

consuming and error-prone, which is no longer possible. An automated method

is highly demanded to provide a cost-effective screening for arrhythmia and allow

at-risk patients to receive timely treatments.

Heartbeat classification plays a crucial role in identification of arrhythmia. Ba-

sically, heartbeats can be classified into five classes: Normal(N ), Supra-ventricular

(S ) ectopic, Ventricular (V ) ectopic, Fusion (F ) and Unknown (Q) beats [8]. Par-
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Figure 5.1: A sample ECG recording that contains N, S and V heartbeats. Note:
RR-intervals denote the time distance between two successive R peaks.

ticularly, most arrhythmias are found in S and V beats. Fig.5.1 presents a sample

ECG segment, where the problematic heartbeats are highlighted by circles. It can

be seen that the S beat exhibits a great morphological similarity in temporal di-

mension to the normal heartbeats. Since ECG recordings are mostly dominated

by normal heartbeats for the majority of patients [68], such similarity bring a great

difficulty in distinguishing the S beats from the normal ones.

Many research attempts have been made to provide solutions to automated

heartbeat classification. The existing methods are roughly divided as feature-

engineering based and deep-learning based methods. However, none of these meth-

ods has achieved a clinical significance. Most feature-engineering methods are fac-

ing a bottleneck of applying a standalone classifier and using a static feature set

to classify all heartbeat samples [23,37,38,120,204]. This has been shown to cause

huge impacts on identification of the problematic heartbeats. The deep-learning

based methods are commonly limited by learning temporal patterns from the raw

ECG heartbeats only. The frequency patterns and the RR-intervals have not been

well considered to assist the classification. Moreover, to supply sufficient training

data for driving the deep neural networks, many works [2, 3, 94, 203, 207, 212] fol-

lowed a biased evaluation procedure, in which they synthesized heartbeat samples
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from the whole dataset and then randomly split all heartbeats for model training,

validation and test. Consequently, heartbeats from the same patient are likely to

appear in both the training and test datasets, leading to an over estimation of the

model performance. The overoptimistic results may hide potential limitations of

the neural networks.

Besides, data quality also presents challenges for an IoT-based arrhythmia de-

tection method. First, the IoT-based heart rate sensors may vary the rate of

measurement for battery preservation [11]. Second, the collected ECG recordings

are likely interrupted by background noises and baseline wonders (the effect that

the base axis (X-axis) of individual heartbeats appears to move up or down rather

than being straight all the time).

To solve these problems, we propose a framework for arrhythmia detection

from IoT-based ECGs. The framework consists of a data cleaning module and a

heartbeat classification module. Specifically, we provide two novel solutions to the

heartbeat classification task. The first one is a feature-engineering based method,

in which we introduce the Dynamic Ensemble Selection (DES) technique and spe-

cially design a result regulator to improve the problematic heartbeats detection.

The other one is a deep neural network that performs multi-channel convolutions

in parallel to manage both temporal and frequency patterns to assist the classifica-

tion. To remedy the impact brought by the lack of consideration of heart rhythms,

the proposed network accepts heart rhythms (RR-intervals) as part of the input.

In order to reveal the performance of the proposed methods in real-world prac-

tices, we evaluate the models on the benchmark MIT-BIH arrhythmia database

following the inter-patient evaluation paradigm proposed in [38]. The paradigm

divides the benchmark database into a training and a test dataset at patient level,

making the heartbeat classification a significantly more difficult task.
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The rest of this chapter is structured as follows. Section 5.3 reviews current

methods in heartbeat classification. Section 5.4 presents the proposed framework

and the two embedded solutions for heartbeat classification. The experiment re-

sults and discussion are presented in Section 5.5. Section 5.6 concludes this chapter

and discusses the future work.

5.3 Related Work

This section provides a comprehensive review of current methods for heartbeat

classification. As mentioned before, the existing methods can be roughly allocated

to either the feature-engineering based or the deep-learning based category. The

differences between them are summarized in Table 5.1.

The feature-engineering based methods focus on signal feature extraction and

classifier selection. Commonly used features includes RR-intervals [4,23,209], sam-

ples or segments of ECG curves [145], higher-order statistics [4,40], wavelet coeffi-

cients [37,60,154], and signal energy [204]. They are mostly extracted from cardiac

rhythm, or time/frequency domains. Feature correlation and effectiveness are im-

portant concerns for this type of methods. To avoid negative impacts of noisy

data, techniques, like the floating sequential search [115] and the weighted LD

model [46], must be employed to reduce the feature space. Regarding the selection

of classifiers, the support vector machine (SVM) is the most widely used for its

robustness, good generalization and computationally efficiency [1,35]. Besides, the

nearest neighbors (NN) and artificial neural networks (ANN) are also frequently

found in the literature. The performances of current feature-engineering based

methods are mainly limited by the application of single classifiers and the use of

fixed features to classify all heartbeat types. On one hand, in consideration of

the intra- and inter-subjects variations of the feature values, it is difficult for a
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Table 5.1: Comparison between Feature-engineering based and Deep-learning
based methods

Feature Engineering Deep Learning

Work flow Feature extraction, se-
lection and classifier
determination

End-to-end pro-
cessing

Commonly used
features

RR-intervals, higher-
order statistics,
wavelet, signal energy
coefficients, etc.

Learned by net-
works, including
CNN, RNN,
LSTM, etc.

Feature selection PCA, floating sequen-
tial search, weighted
LD model

N.A.

Commonly used
classifiers

SVM, nearest neigh-
bors, artificial neural
networks, weighted
linear discriminant,
optimum-path forest

N.A.

Training data Less More

Parameters Less More

Explainability High Low

Current limitations Use of fixed features
for all heartbeat types
classification; Limita-
tion of static classi-
fiers to handle both
intra- and inter pa-
tients variations

Lack of considera-
tions of frequency
patterns and heart
rhythms; A biased
evaluation is fol-
lowed.

single classifier to well handle a wide region of the feature space [210]. Although

some ensemble methods, such as random forest [4] and ensemble of support vector

machine [74], have been employed to remedy the disadvantages, the problem is

still open because the diversity of the traditional ensembles is relatively low. On

the other hand, using fixed features tends to make sporadically occurred S beats

be wrongly classified as V beats because both heartbeats types exhibits anomalies

in heart rhythms.
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By contrast, the deep-learning based methods are more straightforward and

integrated, in which features and classifiers are not concerns. They provide end-

to-end solutions to the heartbeat classification task. The existing deep learning

models are mainly extensions of convolution neural network (CNN) [2, 3, 94, 157]

or combinations of CNN and recurrent neural network (RNN) [203,207]. However,

most of the CNN models are limited by the lack of consideration of frequency

patterns and the heart rhythm to assist the classification. Moreover, in order to

provide enough training data, many of them are evaluated in an ideal experimen-

tal setting where heartbeats from the same patient are allowed to appear in both

training and test sets. The results can not reveal the true performances of the

models in real-world practices and also may hide potential limitations of the meth-

ods. As compared to the feature-engineering based methods, both the results and

the intermediate process of deep neural networks are less explainable. This is a

potential impediment that prevents deep learning models from being widely ap-

plied in practices because explainability is important for clinicians to justify and

rationalize the model outcome.

5.4 The Proposed Framework for Arrhythmia Detection

The proposed framework for arrhythmia detection from IoT-based ECGs is pre-

sented in this section. Fig 5.2 shows the framework architecture and the whole

life-cycle of arrhythmia detection from IoT-based ECGs. The framework consists

of a data cleaning module and a heartbeat classification module. It accepts raw

ECG signals that are collected from different IoT devices as input and outputs

predictions for individual heartbeats.

To reduce the impact of noisy data on the prediction accuracy, a series of prepro-

cessing steps are applied to the input signals, such as frequency calibration, base-
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Figure 5.2: Architecture of the proposed framework. The whole life-cycle of ar-
rhythmia detection from IoT-based ECGs includes 4 phases: data collection, stor-
age, analysis and results notification. Specifically, ECG sensing network generates
ECG recordings for patients and transmits the produced data to the IoT cloud,
where fast access storage is conducted. The proposed framework is deployed in the
IoT cloud to provide data analysis. Results from the framework will be pushed to
patients’ ends via Internet.

line correction, and noise reduction, before heartbeat classification. We propose

two solutions, namely Dynamic Heartbeat Classification with Adjusted Features

(DHCAF) and Multi-channel Heartbeat Convolution Neural Network (MCHCNN),

for the heartbeat classification task. DHCAF is a feature-engineering based

method, whereas MCHCNN is a deep-learning based method.

Details of the data cleaning module and two heartbeat classification solutions

are presented below.

5.4.1 Data Cleaning Module

Frequency Calibration

To avoid the possible bias in sampling frequency caused by different ECG collectors,

we develop a frequency calibration component to re-sample all incoming ECG

recordings to 360 Hz at the input of the system.
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Baseline Correction

To correct the baseline wanders, we process each ECG recording with a 200-ms

width median filter followed by a 600-ms median filter to obtain the recording

baseline, and then subtract the baseline from the raw ECG recording to get the

baseline corrected data.

Noise Reduction

For noise reduction, we apply discrete wavelet transform [159] with Daubechies-

4 mother wavelet function to remove recordings’ Gaussian white noise. The

Daubechies-4 function has short vanishing moment, which is ideal for analyzing

signals like ECG with sudden changes. Concretely, in the noise reduction com-

ponent, the baseline corrected recordings are decomposed to different frequency

bands with various resolutions. The coefficients of detail information (cDx) in

each frequency band is then processed by a high-pass filter with a threshold value

T =
√

2 ∗ log(n),

where n indicates the length of the input recording. Coefficients that are blocked

by the filter are set to zero. Finally, the clean recordings are obtained by employing

inverse discrete wavelet transform on all the coefficients.

Heartbeat Segmentation

The clean signals are segmented to individual heartbeats by taking advantage of

the R peak locations that are detected by the Pan-Tompkins algorithm [146]. For

each R peak, 90 samples (250 ms) before R peak and 144 samples (400 ms) after R

peak are taken to represent a heartbeat, which is long enough to catch samples to

represent the re-polarization of ventricles and short enough to exclude the neighbor

heartbeats [4].
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Figure 5.3: Architecture of the proposed DHCAF.

5.4.2 Dynamic Heartbeat Classification with Adjusted

Features

Architecture of the proposed DHCAF is shown in Fig 5.3. The model contains 4

processing stages: Feature Extraction, Classifier Pool Training, Classifier Selection

and Prediction, and Result Refinement.

Feature Extraction.

In this stage, three types of features are extracted to represent individual heart-

beats: RR-intervals, higher order statistics and wavelet coefficients.

As experimentally proven in [209], the RR-interval is one of the most indispens-
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able features for heartbeat classification and it has great capacity to tell both the

S and V beats from the normal beats. In this work, four types of RR-intervals are

extracted from ECG signals: pre RR, post RR, local RR and global RR [119].

The RR-intervals can significantly vary with patients. To reduce the negative

impact of the variation, we normalize the RR-intervals in the way below:

nomalized pre RR =
pre RR

mean(ds.pre RR)
(5.1)

nomalized post RR =
post RR

mean(ds.post RR)
(5.2)

nomalized local RR =
local RR

mean(ds.local RR)
(5.3)

nomalized global RR =
global RR

mean(ds.global RR)
(5.4)

where ds.pre RR denotes the average of all pre RRs in the ds that the heartbeat

belongs to, and so on.

Regarding the higher order statistics (HOS), it is reported being useful in catch-

ing subtle changes in ECG data [125]. In this work, the skewness (3rd order

statistics) and kurtosis (4th order statistics) are calculated for each heartbeat.

They can be mathematically defined as follows, where X1...,N denotes all the data

samples in a signal, X̄ is the mean and s is the standard deviation.

Skewness =

∑N
i=1(Xi − X̄)3/N

s3
(5.5)

Kurtosis =

∑N
i=1(Xi − X̄)4/N

s4
− 3 (5.6)

The wavelet coefficients provide both time and frequency domain information

of a signal, which is claimed to be the best features of ECG signal [119]. The
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choice of the mother wavelet function used for coefficients extraction is crucial to

the final classification performance. In this work, the Haar wavelet function is

chosen because of its simplicity and that it has been demonstrated as the ideal

wavelet for short time signal analysis [204].

Classifier Pool Training.

In this stage, a collection of classifiers, including multi-layers perceptron, support

vector machine (SVM), linear SVM, Bayesian model with Gaussian kernel, decision

tree, and K-nearest neighbors model, are trained using the extracted features, to

create an accurate and diverse classifier pool.

Classifier Selection and Prediction.

This stage plays a core role in the model. The Dynamic Ensemble Selection (DES)

[33] technique is introduced in this stage to select the most competent classifiers

for making predictions of the test samples. It helps to solve both the intra- and

inter-subjects variations of the feature values.

In DES, the competence of a classifier in the pool is measured by its performance

over a local region of the feature space where the testing sample is located. Meth-

ods for defining a local region includes clustering [111], k-nearest neighbors [160],

potential function model [194,195] and decision space [16]. The criterion for mea-

suring the performance of a base classifier can be divided as individual-based and

group-based criterion. In the individual-based criterion, each base classifier is inde-

pendently measured by evaluation metrics such as ranking, accuracy, probabilistic,

behavior [16], meta-learning [32]. In the group-based criterion, the performance of

a base classifier relates to its iterations with other classifiers in the pool. For exam-

ple, diversity, data handling [196] and ambiguity [47] are widely used group-based

performance metrics.
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Once the candidates classifiers are selected, aggregation of results from these

classifiers is then performed to give a united decision. There are three main

strategies for results combination: static combiner, trained combiner and dynamic

weighting. The majority voting scheme is a representative of static combiner, which

is also commonly used in the traditional ensemble methods. In trainable combin-

ers, the outputs of the selected based classifiers are used as the input features for

another learning algorithm, such as [15,129]. In dynamic weighting, higher weight

value will be allocated to the most competent classifier and then the outputs of all

the weighted classifiers are aggregated to give the united decision.

Result Refinement.

The aggregated result from the previous stage will be refined in this stage by our

adjusted features strategy. Specifically, we train an SVM classifier with only HOS

and wavelet coefficients (the RR-intervals are removed) to improve the results of S

and V beats. The rationale of such a classification strategy is that the sensitivities

to certain feature varies with heartbeat types [209] . For instance, the RR-intervals

are indispensable for identifying disease heartbeats from the normal ones. However,

the RR-intervals can also cause troubles to make a distinction between different

kinds of disease heartbeats, such as S and V beats.

5.4.3 Multi-channels Heartbeat Convolution Neural Net-

work

The architecture of the proposed Multi-channels Convolution Neural Network

(MCHCNN) is presented in Fig 5.4. The network accepts two inputs: raw ECG

heartbeat and heart rhythm (RR-intervals). As motivated by an electroencephalo-

gram (EEG) processing network [170] which uses different sizes of convolution fil-
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ters to capture temporal and frequency patterns from EEG signals, the proposed

MCHCNN performs 3 channels of convolutions in parallel on the input ECG heart-

beats to extract the temporal and frequency information. The convolution filter

size varies with channels, where the smaller filter is used to capture temporal pat-

terns and the larger filter is used to capture frequency patterns. We denote the

convolution process as Conv(x, y) in Fig 5.4, where x is the convolution filter size

and y is the amount of the output feature maps. Each convolution operation is

followed by a batch normalization and a ReLu activation. The batch normaliza-

tion normalizes the output of the convolution by subtracting the batch mean and

dividing by the batch standard deviation, which reduces the problem of internal

covariate shift [76] and overfitting. The introduction of a ReLu activation is to

allow the network to extract nonlinear features.

Every three stacked convolutions are wrapped into a building block and by-

passed by a shortcut connection. The learned features are added to the shortcut

at the end of each building block. Such a design helps to reduce the network

degradation problem [69]. Each channel contains 3 building blocks. Learned fea-

tures from the three channels are integrated by addition before a pooling layer.

The pooling layer is used to reduce feature dimensions, after which the learned

features are reduced to half-size. It helps to reduce the number of parameters in

the following fully connected layer and lower the risk of overfitting.

A Rhythm Integration layer is specially designed to concatenate the learned

features and the input heart rhythms. It reduces the impact brought by the lack

of consideration of heart rhythms on identification of disease heartbeats in many

existing network models.

Next, the dense layer is used to learn non-linear combinations of the learned

features. The softmax layer gives the probabilities of each heartbeat type.
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Figure 5.4: Architecture of the proposed Multi-channels Heartbeat Convolution
Neural Network (MCHCNN).
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5.5 Evaluation

In this section, we evaluate the proposed framework equipped with DHCAF and

with MCHCNN, respectively. The MIT-BIH-AR database [137] is used as the

benchmark database. It is the most representative database for arrhythmia detec-

tion and it has been used for most of the published research [38]. Details of the

database are given below.

5.5.1 The MIT-BIH-AR Database

The MIT-BIH-AR database contains 48 two-leads ambulatory ECG records from

47 patients (22 females and 25 males). Each record has approximately 30 minutes

in length. These recordings were digitized at 360Hz. For most of them, the first

lead is modified limb lead II (except for the recording 114). The second lead is a

pericardial lead (usually V 1, sometimes are V 2, V 4 or V 5, depending on subjects).

In order to reveal the performance of the proposed framework, we follow the

evaluation paradigm proposed in [38] to divide the database into a training and

a test dataset. The paradigm avoids heartbeats of the same patient appearing

in both training and test stages, ensuring a fair evaluation. Table 5.2 shows the

division details, where DS1 is the training set and DS2 denotes the test set.

Noticing that DS1 is extremely imbalanced and dominated by N beats, we

apply the SMOTEENN technique [6, 21, 191] on DS1 to over-sample the minority

heartbeats ( S and V ) to the same amount of N beats.

5.5.2 Evaluation Metrics

Evaluation metrics used in this work are sensitivity (Se), positive predictive value

(+P ) and accuracy value (Acc). According to the AAMI standard [38], penal-
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Table 5.2: Recording distributions and class proportions on DS1 and DS2.

Data set N S V F Q Recordings (Patient ID)1

DS1 45808 943 3786 414 8 101, 106, 108, 109, 112, 114,
115, 116, 118, 119, 122, 124,
201, 203, 205, 207, 208, 209,
215, 220, 223, 230

DS2 44198 1836 3219 388 7 100, 103, 105, 111, 113, 117,
121, 123, 200, 202, 210, 212,
213, 214, 219, 221, 222, 228,
231, 232, 233, 234

1 Each recording is denoted by a 3-digits number and the numbers are originally discon-
tinuous.

ties would not be applied for the misclassification of F and Q beats, as they are

naturally unclassifiable.

5.5.3 Results of the proposed framework

Confusion matrixs of the proposed framework with DHCAF and with MCHCNN

on DS2 are presented in Table 5.3. We summarize the results and compare our

framework with multiple state-of-the-art methods in Table 5.4. All results reported

in Table 5.4 are obtained under the same evaluation paradigm on DS2 of MIT-

BIH-AR database.

It is clear that the proposed framework with DHCAF achieves the best sensi-

tivity of both class S and V, and maintains a good performance in overall accuracy

and classification of class N. Shan’s model [23] obtains the highest accuracy and

class N sensitivity. However, it fails in the detection of class S, with the sensitivity

of class S being merely 29.5%, which limit the model’s practical significance. The

proposed framework with MCHCNN outperforms DHCAF in terms of the overall

accuracy, sensitivity of N beats, and the positive predictive value of S beat, but

its performance on sensitivity of S beat is less satisfactory. In fact, it can be found
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Table 5.3: Confusion matrixs of DHCAF and MCHCNN on DS2.

Predicted class (DHCAF) Predicted class (MCHCNN)

N S V F Q N S V F Q

True N 40698 2053 1199 0 119 42356 903 734 83 2

class S 125 1472 157 0 0 669 686 396 3 0

V 102 103 3013 0 1 259 30 2924 6 0

F 263 2 122 0 1 381 1 6 0 0

Q 3 0 4 0 0 3 0 4 0 0

that the positive predictive values of S beats for most listed works in Table 5.4

are relatively low, as compared to other metrics. This is mainly caused by some

N beats being misclassified as S beats. As we mentioned in the Introduction sec-

tion, the similar QRS complex and the data imbalance problem have introduced

a great difficulty in distinguishing the S from the N beats. We compare proposed

framework with MCHCNN to another deep-learning based method by Sellami et

al. [157], which reported model performance under the same unbiased evaluation.

The results show that Sellami’s work has achieved a promising performance on

identification of both the problematic S and V beats, being close to that of the

proposed framework with DHCAF. However, this is at the cost of the overall ac-

curacy and sensitivity of normal beats. In real-world practices, the large amount

of misclassification of normal heartbeats as the disease heartbeats will result in an

unnecessary waste in medical resources.

From the above analysis, the proposed framework with DHCAF is believed to

be a more appropriate choice than the other listed works for cardiac arrhythmia

detection, because it achieves the best identification performance on disease heart-

beats while maintaining a good overall accuracy and classification performance on

the normal heartbeats.
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Table 5.4: Arrhythmia detection results of the proposed framework and the stat-
of-the-art methods on DS2

Method Type Acc
N S V

Se +P Se +P Se +P

Proposed
(DHCAF)

feature
engineer-
ing

91.4 92.4 98.8 84.0 40.6 93.6 67.3

De Chazal [38] feature
engineer-
ing

81.9 86.9 99.2 75.9 38.5 77.7 81.9

Ye C [200] feature
engineer-
ing

86.4 88.5 97.5 60.8 52.3 81.5 63.1

Zhang Z [209] feature
engineer-
ing

86.7 88.9 99.0 79.1 36.0 85.5 92.8

Shan C [23] feature
engineer-
ing

93.1 98.4 95.4 29.5 38.4 70.8 85.1

Mariano L [115] feature
engineer-
ing

78.0 78.0 99.0 76.0 41.0 83.0 88.0

Proposed
(MCHCNN)

deep
learning

93.0 96.1 97.0 39.1 42.3 90.1 72.0

Sellami Ali [157] deep
learning

88.3 88.5 98.8 82.0 30.4 92.0 72.1

5.5.4 Ablative analysis

We perform ablative analysis for the proposed DHCAF and MCHCNN to demon-

strate the effectiveness of the model architectures. The results are summarized in

Table 5.5 and Table 5.6, respectively.

Two baselines are used in the ablative analysis for DHCAF. One is DHCAF

with the result refinement stage removed. The other one is DHCAF with the dy-

namic ensemble selection classification of DHCAF replaced by ensemble of SVM

classification. It is apparent that the result regulator has made unique contribu-
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Table 5.5: Ablative analysis of DHCAF

Method Acc
N S V

Se +P Se +P Se +P

Proposed (DHCAF) 91.4 92.4 98.8 84.0 40.6 93.6 67.3

Proposed (DHCAF)
without Result Re-
finement

90.8 92.4 98.8 63.6 36.1 95.0 60.8

Proposed (DHCAF)
with SVM Ensemble

82.8 82.9 99.4 72.3 30.9 96.7 36.8

tions to DHCAF, with which the overall accuracy, sensitivity of class S, and positive

predictive of class S and V are visibly increased. On the other hand, the poor

classification performance of the SVM ensemble has demonstrated the importance

of the introduction of dynamic ensemble selection to the proposed method.

As discussed in Section 5.2 and 5.3, many existing deep neural network models

have not taken the heart rhythms into account for heartbeat classification, but

this limitation is hidden by the over-optimistic results obtained in a biased eval-

uation paradigm. In the ablative test of MCHCNN, we want to know the actual

impact of heart rhythms on model performances. Therefore, we construct a base-

line MCHCNN which only takes raw ECG heartbeats as input. The results, as

seen in Table 5.6, indicate that heart rhythms (RR-intervals) are necessary for

identification of the disease heartbeats. Without consideration of heart rhythm,

the baseline can hardly detect S beats. The detection on V beats is also affected.

The outcome is in line with the medical fact. As we can see in Fig 5.1, most V

beats present a huge morphological difference with other heartbeats. That is why

the baseline can still maintain 73.8% sensitivity on V beats. However, for S beats,

the heart rhythm is essential for distinguishing them from the normal heartbeats.

Although heartbeat rhythms have been part of the input to the proposed
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Table 5.6: Ablative analysis of MCHCNN

Method Acc
N S V

Se +P Se +P Se +P

Proposed (MCHCNN) 93.0 96.1 97.0 39.1 42.3 90.1 72.0

Proposed (MCHCNN)
without Heart Rhythms

92.1 97.5 95.0 10.3 20.1 73.8 86.0

MCHCNN, the S beats detection performance is still less satisfied. This indi-

cates that the raw heartbeat rhythms provide limited assistance to our MCHCNN

in identification of S beats. A possible explanation is that the heartbeat rhythms

are not integrated well to the network and also easily affected by other learned

features. A future study is needed to investigate this issue.

5.6 Chapter Conclusion

Millions of people around the world are suffering from cardiac arrhythmia. In

this work, we propose a framework for automated arrhythmia detection from IoT-

based ECGs. The framework consists of two modules: a data cleaning module to

tackle the challenges presented by IoT-based ECGs, and a heartbeat classification

module for identification the disease heartbeats. Specifically, we proposed two so-

lutions, DHCAF and MCHCNN, for the heartbeat classification task. DHCAF is

a feature-engineering based method which introduces the dynamic ensemble se-

lection techniques and uses an adjust-feature strategy to assist disease heartbeats

identification. By contrast, MCHCNN is an end-to-end solution that performs

multi-channel convolutions to capture both the temporal and frequency informa-

tion from the raw heartbeats to improve the classification performance. We evalu-

ate the proposed framework on the MIT-BIH-AR database under the inter-patient
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evaluation paradigm. The results show that the proposed framework with DHCAF

is a qualified candidate for automated arrhythmia detection from IoT-based ECGs.

Besides, although the S beats detection performance of MCHCNN is less satisfied,

the network still provide some insights to our future study.

This work is a first step to provide a solution for the automated arrhythmia

detection in the era of Internet-of-Things. In our next study, we aim to investigate

a more effective way for integration of the heart rhythms into a neural network.
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CHAPTER 6

AN ADVANCED TWO-STEP DNN-BASED FRAMEWORK FOR

ARRHYTHMIA DETECTION

6.1 Chapter Abstract

Heart arrhythmia is a severe heart problem that takes people’s lives without warn-

ing at every corner of the world. Automated heartbeat classification provides a

cost-effective screening for heart arrhythmia and allows at-risk patients to receive

timely treatments, which is a highly demanded but challenging task. Deep neural

networks (DNNs) have brought visible improvements to this area, but to identify

the problematic supraventricular ectopic (S -type) heartbeats is still a bottleneck

in most of the existing studies. This is mainly due to morphological similarity

between the S-type heartbeats and the normal ones, the imbalanced heartbeat oc-

currence rate, and both the inter- and intra-patients variations in heart rhythms.

This paper presents a two-step DNN-based classification framework to identify

problematic heartbeats for arrhythmia detection. In the first step, a deep dual-

channel convolutional neural network (DDCNN) is proposed to classify all heart-

beat classes, except for the S -type and the normal heartbeats. In the second

stage, a central-towards LSTM supportive model (CLSM) is specially designed to

distinguish S -type heartbeats from the normal ones. By processing heart rhythms

in central-towards directions, the proposed CLSM learns and abstracts hidden

temporal information between a heartbeat and its neighbors to reveal the deep

differences between the two heartbeat types. As an improvement, we also propose

a rule-based data augmentation method to solve the training data imbalance prob-

lem. The proposed framework is evaluated over three real-world ECG databases.

The results show that our method outperforms many baselines methods in most
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evaluation metrics.

6.2 Introduction

Heart arrhythmia is known as abnormal heart rhythms, in which the heart beats

too fast, too slowly or erratically. Arrhythmia threatens people’s lives by prevent-

ing their hearts from pumping enough blood into the vital organs. It has been

a major worldwide health problem for years, accounting for nearly 12% of global

deaths every year [133]. Early detection and timely treatment are the keys to

survival from arrhythmia. The electrocardiogram (ECG) plays a pivotal role in

the diagnosis of arrhythmia since it captures heart rate, rhythm, and vital infor-

mation regarding the electrical heart activities and related conditions. However,

the manual interpretation of ECG recordings is time-consuming and error-prone,

especially for the long-term ECG recording, which is essential for capturing the

sporadically occurred arrhythmia [209]. Therefore, an automated method to assist

clinicians in detecting arrhythmia heartbeats from ECG is highly demanded.

Heartbeat classification on ECG is a core step towards identifying arrhyth-

mia. As reported by the Association for Advancement of Medical Instrumentation

(AAMI) [8], heartbeats can be categorized into five super classes: Normal (N ),

Supraventricular (S ) ectopic, Ventricular (V ) ectopic, Fusion (F ) and Unknown

(Q). In particular, problematic arrhythmias are mostly found in S -type and V -

type heartbeats [38]. Fig.6.1 shows several ECG samples of different heartbeat

types. It can be observed that the V -type heartbeat exhibits a huge morphologi-

cal difference against other heartbeats, while the normal (N -type) and the S -type

heartbeats are similar in shape. It is less likely to provide accurate identification of

the S -type heartbeats from the normal ones merely based on the morphology. In

clinical practice, special rhythm information between two heartbeats, known as the
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RR-interval, is needed to help identify the S -type heartbeats because the S -type

heartbeats are premature heartbeats and they normally have shorter previous-

RR-intervals than the normal heartbeats. However, the inter- and intra-patients

variations existing in the heart rhythms still impose great challenges to the de-

tection tasks. Besides, the sporadical occurrence of the S -type heartbeats (most

commonly normal heartbeats for the majority of patients) can also be an issue

that tends to bias an automated heartbeat classification method.
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Figure 6.1: Examples of different types of heartbeats. Letters indicate the P -
waves, R-peaks, QRS -complexes and T -waves, corresponding to their references
in the medical literature. Time gap between two successive R peaks is known as
RR-interval. Specifically, previous-RR-interval denotes the interval between the
current R peak and the previous R peak. In comparison to the normal heartbeat
(class N ), the S -type heartbeat has a less obvious P -wave which is due to junctional
premature beating. The V -type heartbeat exhibits a deep and capacious S -wave
caused by left bundle branch block. Class F is a fusion of paced and normal
heartbeats. The unclassifiable beat is denoted as class Q.

Existing solutions to the heartbeat classification problem are mostly following

a traditional pattern recognition paradigm [23, 38, 200, 209], in which the fluctua-

tions of the raw ECG signals are modeled by a set of carefully extracted features,

such as RR-intervals, wavelet coefficients, and morphological amplitudes. How-

ever, pattern-based classification models often experience difficulty in achieving
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satisfactory performance on abnormal heartbeat detection, especially when S -type

arrhythmia heartbeats are involved. Besides, the effectiveness of extracted fea-

tures, the mutual-influences among features, and the compatibility between the

feature distribution and the classifiers [33] are three major factors that lead to a

solid upper-bound on model performance.

Recent advances in heartbeat classification are largely driven by deep neural

networks (DNNs). A DNN is a computational model consisting of multiple pro-

cessing layers, which can automatically learn the high-level representations of the

raw ECG recordings without extensive data preprocessing. In consideration of the

sporadic occurrence of S -type heartbeats, which imposes a great challenge to DNN

training, many DNN-based studies used synthetic heartbeats for model training

and evaluation [3, 113, 114, 203, 207]. However, these efforts suffer from data leak-

age because, after augmentation, data is not partitioned patient-wise into training

and test sets. So that beats from the same patient may appear in training and

test, and the deep learning algorithms may learn patient-specific characteristics

during training which then appear on test data. Additionally, the over-optimistic

results obtained from data leakage have hidden a potential limitation of these

DNN models in which only the ECG segmented heartbeats are accepted as inputs.

The inter-heartbeat rhythm information is not well considered in these models. As

mentioned above, the rhythm provides indispensable information to distinguish the

S -type arrhythmia heartbeats. Without such information, a high misclassification

rate is probably obtained on S -type heartbeats. The problem is still open.

Contributions: In this work, we propose a two-step deep neural network-based

heartbeat classification framework. Due to the observed difficulty of detecting S -

type heartbeats from N -type heartbeats, the proposed framework trains a deep

dual-channel convolutional neural network (DDCNN) which accepts segmented
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heartbeats as input in the first step to classify V -type, F -type and Q-type heart-

beats. At this stage, S -type and N -type heartbeats are not the targets, so they

are put into one bundle to be studied in the next step. In the second step, a

central-towards LSTM supportive model (CLSM) is specially designed to distin-

guish S -type heartbeats from N -type ones. The RR-intervals of a heartbeat and

its neighbors are arranged in sequence form, serving as the input to CLSM. In

particular, CLSM learns and extracts hidden temporal dependency between heart-

beats by processing the input RR-interval sequence in central-towards directions.

Instead of using raw individual RR-intervals, the abstractive, mutual-connected

temporal information provides stronger and more stable support for identifying

the problematic S -type heartbeats. Besides, as an improvement as well as a nec-

essary driver for activating the CLSM, a rule-based data augmentation method is

also proposed to supply high-quality synthetic samples for the under-represented

S -type RR-interval sequences. To avoid data leakage, the benchmark dataset is

split into training and test sets at patient level following the well-recognized inter-

patient division paradigm proposed in [38]. The synthetic training samples are

generated from the training set only.

The rest of the chapter is structured as follows: Section 6.3 reviews the related

Deep Neural Network algorithms that are widely used in arrhythmia detection

work; Section 6.4 shows the details of the proposed framework and the rule-based

data augmentation method; Section 6.5 presents our experiments on real-world

ECG data and discusses the results; finally, the entire chapter is summarized with

our achievements in Section 6.6.
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6.3 Related Work

The proposed DDCNN and CLSM are novel models that involve convolutional

neural networks, residual network, and long short-term memory networks. In this

section, all three related deep learning algorithms are reviewed to provide a basic

understanding of the proposed models to be presented in the next section.

6.3.1 Convolutional Neural Networks

The convolutional neural network (CNN) is useful in learning representations of

data. CNNs are commonly applied in image and video recognition, recommend

systems, image classification, and natural language processing. Recently, CNNs

have attracted more and more attention in the applications in ECG signal classifi-

cation due to their capability of effectiveness in recognizing key patterns and learn

useful features, such as P -waves and QRS -complexes of ECG heartbeats [65].

A convolutional neural network is normally made up of an input layer, an out-

put layer, multiple convolutional layers, pooling layers, and dense Layers. The

convolutional layer is the core building block, where most of the computational

heavy lifting is done. Given input data, a convolution is known as a linear com-

bination of each data point with its neighbors. It is usually followed by a ReLU

activation to enable the network to learn non-linear patterns from the input data.

The pooling layer is used to reduce the size of the learned representations to reduce

the number of network parameters. The purpose of the dense layer is to provide

an overall regulation of the previously learned representations.
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6.3.2 Residual Networks

The residual network (ResNet) was first introduced in [69] to solve the network

degradation problem: with a network getting deeper, its accuracy gets saturated

and then degrades rapidly. Fig. 6.2 shows a sample ResNet block, which consists

of two stacked layers and an identity mapping (the shortcut connection).

Processing Layer

Processing Layer
Identity

Figure 6.2: A Sample ResNet Block.

The core idea of ResNet is to use the stacked processing layers, such as con-

volution layer and dense layer, to fit the residual mapping. The rationale behind

such a design is that if the input has already been optimal, it would be easier to

push the stacked layers to zero than to make them an identity mapping. Hence,

the network will not degrade with depth.

Let x denotes the input and H(x) denotes the desired underlying mapping. A
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residual mapping is expressed as :

F(x) := H(x)− x. (6.1)

Therefore, the desired underlying mapping H(x) can be recast into :

H(x) := F(x) + x (6.2)

and represented by the stacked layers plus with an identity mapping.

6.3.3 Long Short-Term Memory Networks

The long short-term memory network (LSTM) [73] is a variation of recurrent neural

networks (RNN). It alleviates the vanishing gradient problem presented in the

ordinary RNNs and it is able to learn temporal relationship across long periods of

time.

A common LSTM unit consists of a cell ct, an input gate it, a forget gate ft and

an output gate ot, as shown in Fig.6.3. The cell remembers the time dependency

between elements in the input sequence. Its memory can be effectively conveyed

along the entire processing chain with just limited linear interactions. The input

gate controls the new information to be stored in the cell. The forget gate decides

the information to be thrown away from the cell. The unit output is managed by

the output gate based on the current cell ’s memory.

As an illustration, let Wn and Un be the weights of inputs and recurrent con-

nections respectively, and bn be the bias. The subscript n can be the forget gate

f , input gate i, output gate o or the cell c. Given the input xt, the LSTM unit at

time t is updated as follows:

ft = σ (Wfxt + Ufht−1 + bf ) (6.3)

it = σ (Wixt + Uiht−1 + bi) (6.4)
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Figure 6.3: A LSTM Unit.

ot = σ (Woxt + Uoht−1 + bo) (6.5)

ct = ft ◦ ct−1 + it ◦ tanh (Wcxt + Ucht−1 + bc) (6.6)

ht = ot ◦ tanh (ct) (6.7)

where σ represents the sigmoid function and the operator ◦ denotes the element-

wise product.

6.4 The Proposed Framework for Arrhythmia Detection

The proposed framework consists of DDCNN and CLSM. DDCNN is used to cap-

ture both the morphological and frequent patterns of heartbeats, and CLSM is

specially designed to handle the temporal information between heartbeats. De-

tails of these two models and the proposed data augmentation for driving CLSM

are stated below.
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6.4.1 Deep Dual-channel Convolutional Neural Network

The architecture of DDCNN is presented in Fig.6.4. The network accepts seg-

mented ECG heartbeats (modified limb lead II, sampled at 360Hz) as input, and

outputs a prediction of probabilities of the N &S -bundle, V, F and Q classes. Be-

ing inspired by the fact that signal processing experts capture the temporal and

frequency patterns in electroencephalogram (EEG) signals with different sizes of

convolutional filters [170], the proposed DDCNN is designed as a dual-channel con-

volutional neural network, with the small filter channel Conv(8, 32) dealing with

the temporal information and the larger filter channel Conv(64, 32) handling the

frequency information. The learned temporal and frequency information are added

together before the pooling operation. The entire DDCNN contains 18 convolu-

tional layers, a pooling layer, a concat layer, a dense layer, and a softmax output

layer. Specifically, the concat layer is designed to concatenate rhythm information

(RR-intervals) to assist heartbeat classification. Each convolution operation is fol-

lowed by a batch normalization and a ReLU activation. Every three convolutional

layers of each channel are packed into a residual block and bypassed by a shortcut

connection. The stacked residual blocks design reduces the network degradation

risk and accelerates the training process.

6.4.2 Central-towards LSTM Supportive Model

The proposed CLSM consists of two specially designed central-towards LSTM lay-

ers and one softmax output layer. The term ’central-towards ’ means that informa-

tion in an LSTM chain flows from the farthermost units in both sides towards the

central unit, without crossing over with each other. A graphical representation of

our model is provided in Fig. 6.5.

The proposed CLSM accepts heartbeats’ previous-RR-interval sequences as
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Figure 6.4: Architecture of DDCNN, where Conv(x, y) denotes a convolutional
layer with a kernel in size x and an output of y feature maps.
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Figure 6.5: Central-towards LSTM Supportive Model architecture.

inputs. A previous-RR-interval sequence of the tth heartbeat hbt is defined as

St = [Rt−NeRan, ..., Rt−1, Rt, Rt+1, ..., Rt+NeRan] (6.8)

where Rt denotes the RR-interval between the t − 1th and tth heartbeats, and

NeRan defines the range of a heartbeat’s neighborhood. The default value of

NeRan is 25. A previous-RR-interval sequence St is labeled as the same label of

the central heartbeat hbt, which is N -type or S -type.

Each central-toward LSTM layer contains 2 ∗ (NeRan + 1) common LSTM

units. The outputs of the 1st layer serve as the inputs to the 2rd layer. Particularly,

the central units receive and process the learned temporal dependencies from the

previous and the next heartbeats, respectively. There is no pathway between the

two central LSTM units in each layer, which is to avoid the mutual-interruption

of the learned temporal dependencies from both directions.

Given an input St, update equations of a unit in the proposed central-towards
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LSTM layer depend on the unit’s position n at the layer, where n ∈ [0, 2∗NeRan+

1]. Let gf,n, gi,n, go,n, hn denote the forget gate, input gate, output gate, and the

output of the nth unit, respectively.

gq,n =


σ (WqSt[n] + Uqhn−1 + bq) , n < NeRan+ 1

σ (WqSt[n] + Uqhn+1 + bq) , n ≥ NeRan+ 1

, q ∈ f, i, o (6.9)

where W and U are the weight matrix of inputs and recurrent connections, respec-

tively, and b denotes the bias. We define the change of the memory as:

c̃n =


tanh (WcSt[n] + Uchn−1 + bc) , n < NeRan+ 1

tanh (WcSt[n] + Uchn+1 + bc) , n ≥ NeRan+ 1

(6.10)

Then the cell state is determined by the following equation:

cn =


gf,n ◦ cn−1 + gi,n ◦ c̃n, n < NeRan+ 1

gf,n ◦ cn+1 + gi,n ◦ c̃n, n ≥ NeRan+ 1

(6.11)

The output of the unit depends on the cell state, which is given by:

hn = go,n ◦ tanh (cn) (6.12)

In the 2nd central-towards LSTM layer, the central units output 32 feature

maps in size 1 × 1. The feature maps are flattened before being processed by a

softmax function for classification. The model outputs probabilities of the central

heartbeat being normal and S -type.

6.4.3 Rule-based Data Augmentation

The sporadic occurrence of the S -type heartbeats has resulted in a serious class im-

balance problem in the benchmark training heartbeat data, which puts an obstacle
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to the successful training of CLSM. To generate synthetic samples for the under-

represented S -type heartbeats becomes necessary and critical. Many oversampling

techniques, such as SMOTE [21], have been introduced for data augmentation

purpose, but these techniques are mainly designed for data samples that are rep-

resented by extracted features. Elements in a heartbeat’s previous-RR-interval

sequence St = [Rt−NeRan, ..., Rt−1, Rt, Rt+1, ..., Rt+NeRan] have evident linear corre-

lations, which are different from the mutual-independent features. Applying the

existing oversampling methods will introduce invalid samples and make the train-

ing even worse.

To solve the problem, we propose a rule-based data augmentation method to

generate synthetic previous-RR-sequences of the S -type heartbeats. Basically, a

valid synthetic previous-RR-interval sequence is subject to 3 medical facts:

a. S -type heartbeats normally have shorter previous-RR-intervals than the nor-

mal ones.

( question1: what is the valid range of distance between previous-RR-intervals

of S-type and normal heartbeats? )

b. Heartbeats of the same type exhibit a limited variation in the previous-RR-

intervals within a short period.

( question2: how much the variation is? )

c. Some normal heartbeats can be found within the neighborhood scope of a

S -type beat.

( question3: how many normal heartbeats can be found? )

The above medical facts provide a qualitative overview of what a valid synthetic

sample should be. To synthesize a new valid sample, we still need to explicitly

answer the questions following each medical fact.
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The proposed method seeks for the answers via performing a statistical analysis

on the benchmark training set (DS1 of MIT-BIH-AR [137]). We define three

variables, gap, varPct and nAmt for question 1, 2 and 3, respectively. Statistically,

we have:

gap ≈ 0.1;

varPct ≈ 3%;

given NeRan = 25, nAmt = Range([0, 48]).

Let nV als and sV als be the collections of previous-RR-intervals of the normal

and the S -type heartbeats in the training set, respectively. The proposed rule-

based data augmentation method is thoroughly illustrated in Algorithm 7.

By complying with the rules (line 3, 4 & 6 in Alg.7) and creating new com-

binations (line 2, 5 & 7 in Alg.7) from the existing data, our method is able to

generate high-quality and diversified training samples for activating CLSM.

Algorithm 7 Rule-based Data Augmentation

Require: gap, varPct, nAmt, nV als and sV als;

Ensure: synSeq;

1: synSeq ← new(list);

2: centralS ← a random pick from sV als;

3: amount← a random pick from nAmt;

4: var ← a random float in [1− varPct, 1 + varPct];

5: candidate← a random pick from nV als;

6: while candidate < centralS + gap do

7: candidate← a random pick from nV als;

8: end while

9: for i in range(amount) do
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10: synSeq.add(candidate ∗ var);

11: end for

12: for i in range(2 ∗NeRan− amount− 2) do

13: synSeq.add(centralS ∗ var);

14: end for

15: shuffle(synSeq);

16: Insert centralS into the central position of synSeq;

17: return synSeq;

6.5 Experimental Evaluation

Extensive experiments on three real-world ECG databases are implemented to

evaluate the proposed framework and the rule-based data augmentation method.

Experimental databases, settings, and results are discussed as follows.

6.5.1 Arrhythmia Datasets

The real-world ECG datasets used in this study are: (1) MIT-BIH Arrhythmia

database (MIT-BIH-AR); (2) MIT-BIH Supraventricular Arrhythmia database

(MIT-BIH-SUP) and (3) St.-Petersburg Institute of Cardiological Technics 12-lead

Arrhythmia database (INCART). The databases are all publicly available in the

Physiobank [137].

MIT-BIH-AR is the benchmark database for arrhythmia detection, which is

used in most published research [119]. To fairly compare against existing meth-

ods, we train and test our framework in this database following the well-recognized

inter-patient evaluation paradigm [38]. MIT-BIH-SUP and INCART are used to
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demonstrate the generalizability of the proposed framework to external data. De-

tails of the databases are listed as follows.

� MIT-BIH-AR contains 48 two-lead ambulatory ECG recordings from 47

patients (including 22 females and 25 males). Each recording is denoted

by a 3-digits number. The recordings were digitized at 360 Hz per second

per channel with 11-bit resolution over a 10-mV range. For most of them,

the first lead is modified limb lead II (except for the recording 114). The

second lead is a pericardial lead (usually V1, sometimes are V2, V4 or V5,

depending on subjects). In this study, only the modified limb lead II is used.

� MIT-BIH-SUP consists of 78 two-leads recordings, with each of them ap-

proximately 30 minutes in length. The recordings are sampled at 128 Hz.

They were chosen to supplement the examples of supraventricualr arrhyth-

mias in the MIT-BIH-AR database. Heartbeats in the recordings are well

annotated and the original labeling can be adapted to the AAMI recommen-

dations.

� INCART consists of 75 ECG recordings sampled at 257 Hz. Each record-

ing contains 12 standard leads. Similarly, only the modified limb lead II is

used in this study. The annotations were first produced by an automatic

algorithm and then corrected manually based on the standard PhysioBank

beat annotation definitions. None of the recordings contains pacemakers, but

most of them have ventricular ectopic heartbeats.

6.5.2 Experiment Setup

The experimental setup procedures are shown as follows.

� Benchmark Training and Test Datasets. We divide MIT-BIH-AR into a
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training and a test set at patient level following the well-recognized inter-

patient evaluation scheme [38]. Table 6.1 presents the division in detail,

where DS1 is the training set and DS2 in the test set. The division scheme

balances the heartbeat distribution on both DS1 and DS2, and more impor-

tantly, it avoids the training and the test heartbeats coming from the same

patient.

� Heartbeats Segmentation. We segment each recording to heartbeats based

on the R peak locations in notations. For each R peak, 70 samples (200-

ms) before R peak and 100 samples (280-ms) after R peak were taken to

represent a heartbeat. This is long enough to catch the samples representing

the re-polarization of ventricular and short enough to exclude the neighbor

heartbeats. After segmentation, the heartbeat distributions of each dataset

are shown in Table 6.2.

� Previous-RR-Interval Sequence Generation. For each segmented normal or

S -type heartbeat hbt, we extract the previous-RR-intervals of 25 heartbeats

previous and next to hbt, respectively. The previous-RR-interval sequence

of hbt is then given by St = [Rt−25, ..., Rt−1, Rt, Rt+1, ..., Rt+25], where Rt

denotes the previous-RR-interval of hbt.

� Data Augmentation. We generate synthetic S -type previous-RR-interval se-

quences from the training set (DS1) using our rule-based data augmentation

method. After data augmentation, the sequences for training CLSM are

made up of 44738 normal and 45908 S -type sequences.

� Training Specification. Both the proposed DDCNN and CLSM are trained

with a variant of the gradient decent algorithm named Adam [92]. The

learning rate is set to 0.001 with no decay. The Categorical Cross-Entropy

function is used to measure the loss.
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Table 6.1: The inter-patient division paradigm (for MIT-BIH-AR)

dataset Recordings1

DS1 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124,
201, 203, 205, 207, 208, 209, 215, 220, 223, 230

DS2 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212,
213, 214, 219, 221, 222, 228, 231, 232, 233, 234

1 Recordings 102, 104, 107 and 217 containing paced beats are excluded [8].

Table 6.2: Heartbeat distributions in MIT-BIH-AR, MIT-BIH-SUP and INCART

Database N S V F Q

DS1 45808 943 3786 414 8

DS2 44198 1836 3219 388 7

MIT-BIH-SUP 158760 11976 9718 23 76

INCART 150210 1917 19621 218 6

� Evaluation Metrics. The evaluation metrics used in this study are accuracy

(ACC), precision (PRE), recall (REC) and f1 score (F1).

6.5.3 Experiment1: Overall heartbeat classification

In this section, we evaluate the heartbeat classification performance of the proposed

framework on the benchmark database and compare the results against multiple

baseline algorithms [3,23,38,115,200,209] derived from literature. Table 6.3 sum-

marizes the comparative results. The comparison focuses on the normal, S -type

and V -type heartbeats because, according to the AAMI standard [38], the F -type

and Q-type heartbeats are naturally unclassifiable and penalties should not be

applied for the misclassification of these heartbeats. The proposed DDCNN +

CLSM architecture performs significantly better than the baseline algorithms on

the overall accuracy (95.1% vs 78.0% - 93.1% ), F1 score of normal heartbeats

(97.6% vs 87.3% - 96.9% ), recall rate of S -type heartbeats (83.8% vs 29.5% -
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76.0% ), precision rate of S -type heartbeats (59.4% vs 36.0% - 52.3% ), and F1

score of S -type heartbeats (69.5% vs 33.4% - 56.3% ). The performance on V -type

beats is above the average, ranking the 3rd place of the listed works.

It is apparent from Table 6.3 that most of the listed works struggled in the de-

tection of the S -type heartbeats. We re-implement and evaluate the DNN model

proposed in [3] following the inter-patient paradigm. The result confirms that,

without considerations of heart rhythm, a DNN is less likely to identify S -type

heartbeats. Zhang et al. [209] and Mariano et al. [115] achieve close recall rates

of the S -type heartbeats as our framework, but they sacrifice S -type heartbeats

precision rates (36.0% and 41%, respectively) and normal heartbeats recall rates

(88.9% and 78.0%, respectively). This implies that both these two works misclas-

sify a large portion of normal heartbeats as S -type heartbeats. In clinical practice,

the erroneous misclassification of normal heartbeats as disease heartbeats leads to

unnecessary additional tests, unnecessary patient treatments, expensive costs, and

risks for patients.

An ablative analysis is also performed. We remove CLSM from the proposed

framework and use standalone DDCNN for overall classification of all five types

of heartbeats. The result is shown as DDCNN Only in Table 6.3. To further

investigate whether raw RR-intervals help to identify problematic heartbeats, we

train a DDCNN without the concat layer for comparison. The result is denoted as

DDCNN Only (without Concat). It is clear that, without the proposed CLSM,

both standalone DDCNNs can hardly detect the S -type heartbeats. The DDCNN

with the concat layer performs better on both S -type and V -type heartbeats than

the DDCNN without the concat layer. The outcome indicates that RR-intervals

help to identify problematic heartbeats, especially for S -type heartbeats, but the

assistance of raw RR-intervals is limited because they are likely to be influenced
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Table 6.3: Performance comparison on DS2 of MIT-BIH-AR
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Table 6.4: Generalization performances (%) on MIT-BIH-SUP and INCART

Method Dataset ACC
N S V

REC PRE REC PRE REC PRE

Proposed MIT-BIH-
SUP

88.2 90.6 97.8 72.6 53.5 70.0 43.0

Proposed INCART 91.6 92.0 99.6 81.0 14.4 91.0 81.9

Mariano L
[115]

INCART 91.0 92.0 99.0 85.0 11.0 82.0 88.0

by the intra- and inter-patients variations. Therefore, having a consideration of

neighbor heartbeats and performing an abstraction of the temporal dependency

from the raw RR-intervals is necessary.

6.5.4 Experiment2: Generalization of the proposed frame-

work

We apply the proposed framework (trained in DS1) to MIT-BIH-SUP and INCART

to demonstrate its generalizability. To be fitted, ECG recordings in these two

databases are re-sampled to 360 Hz. Table 6.4 summarizes the results.

To the best of our knowledge, this work is the first one to report heartbeat

classification results on MIT-BIH-SUP. When being applied on MIT-BIH-SUP,

the proposed framework experiences a slight performance drop on the V -type

heartbeats detection. However, this is mainly due to the low-resolutions of the

source ECG recordings which are originally sampled at 128 Hz.

We compare the proposed framework to Mariano’s work [115] on INCART.

Mariano’s work is one of the few works that conduct model evaluation on both

MIT-BIH-AR and INCART. The results show that both works achieve promis-

ing performances, where the proposed framework slightly outperform Mariano’s
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Table 6.5: The impact of data augmentation method on CLSM’s performance

Method ACC
N S

REC PRE REC PRE

CLSM + Rule-based
Method

97.7 98.2 99.4 85.6 65.7

CLSM + SMOTE 94.7 97.7 96.8 19.6 25.5

work [115] in majority metrics. The commonly low precision rates of the S -type

heartbeats are due to the extreme imbalance of the INCART database.

6.5.5 Experiment3: Rule-based data augmentation versus

SMOTE

We investigate the effectiveness of our rule-based data augmentation method in

this section. The SMOTE algorithm [21] is used as a baseline. We train individual

CLSMs with the rule-based augmented sequences and the SMOTE augmented

sequences, respectively, and evaluate their classification performances using all the

normal and S -type heartbeats in DS2. Table 6.5 summarizes the results.

Apparently, SMOTE failed to generate valid previous-RR-interval sequences for

training the proposed CLSM. The CLSM trained with SOMTE-generated samples

couldn’t effectively identify the S -type heartbeats, with both the recall and pre-

cision rates being lower than 30%. The poor result is not surprising because the

SMOTE method is designed for featurized data oversampling. Thus, data like

previous-RR-interval sequences with internal connections between elements will

disable the SMOTE method. By contrast, using the medical rules as a guide, the

proposed rule-based data augmentation method can generate high-quality syn-

thetic sequences that reflect the true distribution of the real-world data to support

the CLSM.
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6.5.6 Discussion

Experimental results achieved on the three real-world ECG databases have proven

the effectiveness and the robustness of the proposed framework and indicated that

the proposed framework has the potential to make a substantial clinical impact.

In particular, the proposed CLSM structure distinguishes our framework from the

others. It provides a promising solution for separating S -type heartbeats from nor-

mal heartbeats which is one of the most problematic tasks for existing arrhythmia

detection methods.

While CLSM has provided a novel idea of how to incorporate heart rhythm to

help individual heartbeat classification, we have implemented several experiments

to demonstrate how CLSM outperforms traditional LSTMs, and to investigate the

performance-influencing factors of CLSM. Moreover, we have also implemented an

experiment to explore the supportive nature of CLSM.

Central-towards LSTM V S traditional LSTMs

We compare the proposed central-towards LSTM layer against two baseline LSTM

layers, the ordinary LSTM and the bidirectional LSTM. For a fair comparison, we

replace the central-towards LSTM layers in the proposed CLSM with ordinary

LSTM and bidirectional LSTM layers, respectively, keeping other layers and train-

ing data unchanged and all hyperparameters in default. The results are shown in

Table.6.6, which are obtained on all the normal and S -type heartbeats in DS2.

Apparently, the proposed central-towards LSTM layers exhibits an overwhelming

superiority against the ordinary and bidirectional LSTM layers in discovering use-

ful temporal dependencies from a previous-RR-interval sequence for classification

of the central heartbeat. One possible explanation is that, in ordinary LSTM and

bidirectional LSTM networks, the learned temporal dependencies are gathered and
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Table 6.6: Central-towards LSTM versus baselines

Method ACC
N S

REC PRE REC PRE

central-towards LSTM 97.7 98.2 99.4 85.6 65.7

ordinary LSTM 88.5 91.0 96.9 27.2 10.6

bidirectional LSTM 84.1 86.1 97.0 32.9 8.6

outputted at the first or the last unit instead of the central unit, which leads to

the outcome that the learned information is less relevant to the central target

heartbeat.

Hyperparameters of CLSM

The proposed CLSM has two hyperparameters: NeRan and FeMaps. The for-

mer denotes the neighborhood range of a heartbeat in a previous-RR-interval se-

quence. The latter decides the number of feature maps generated in the CLSM.

As mentioned in Sec.6.4, the default values of NeRan and FeMaps are 25 and

32, respectively. Fig. 6.6 shows how model performance varies with different value

of NeRan. The results are obtained on all the normal and S -type heartbeats in

DS2. When NeRan is smaller than 16, the model performances exhibit some fluc-

tuations. The most representative one is the recall rate of the S -type heartbeats

in Fig. 6.6 (a). The fluctuations imply that there is not enough information stored

in the previous-RR-interval sequence for supporting the model to make decisions,

which makes the model fall into a ’random guess’ state for a portion of S -type

heartbeats. In spite of the fluctuations, if we have a bird’s-eye view of all three

sub-figures, we can still see a growing trend of model performances with NeRan

increasing from 2 to 16. The model performances become stable and optimal when

NeRan is set to 20 or over. Therefore, we suggest that NeRan > 20 is necessary
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for CLSM to achieve near-optimal performance. The impact of FeMaps on model

performance is shown in Fig. 6.7, where FeMaps is set to 8, 16, 32, 64, and 128

for comparison. The statistics curves exhibit a visible pattern: with the increase

of FeMaps, the proposed CLSM presents a steady growth in performance. The

optimal performance is achieved on FeMaps = 32. For FeMaps > 32, the model

is kept on its optimal status.
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(a) recall and precision rate of class N (b) recall and precision rate of class S (c) overall classification accuracy

Figure 6.6: The impact of NeRan on CLSM’s performance. (a): recall rate
(N-REC) and precision rate (N-PRE) of the normal heartbeats as a function of
NeRan. (b): recall rate (S-REC) and precision rate (S-PRE) of the S -type heart-
beats as a function of NeRan. (c): overall classification accuracy (ACC) as a
function of NeRan.

Number of layers on CLSM

Next, we consider the impact of the number of central-towards LSTM layers on

model performance. Fig. 6.8 (a) shows the overall classification accuracy, F1 scores

for normal and S -type heartbeats as functions of the number of central-towards

LSTM layers, in which results are obtained on all the normal and S -type heartbeats

in DS2. The F1 score for the S -type heartbeats experience a slight decline when the

number of layers increased from 2 to 6, whereas the F1 score for normal heartbeats

and the overall classification accuracy are maintained at the same level with the

increasing layers. The results indicate that the number of layers has a limited
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Figure 6.7: The impact of FeMaps on CLSM’s performance. (a): recall rate
(N-REC) and precision rate (N-PRE) of the normal heartbeats as a function of
FeMaps. (b): recall rate (S-REC) and precision rate (S-PRE) of the S -type
heartbeats as a function of FeMaps. (c): overall classification accuracy (ACC) as
a function of FeMaps.

influence on CLSM’s performance. On the other hand, however, with the increase

of layer amount, the training time of an epoch steadily grows, as shown in Fig. 6.8

(b). Therefore, we suggest that the optimal layer number of the proposed CLSM

is two.

The supportive nature of CLSM

Although CLSM is initially designed as the second-step structure in the proposed

framework, it is a general and flexible binary classifier. We gather all normal

and S -type heartbeats from the DS2, MIT-BIH-SUP and INCART databases for

individual performance evaluations of the proposed CLSM which is trained on

DS1. The results are shown in table 6.7. It can be seen that CLSM achieves

decent performances on all three datasets, except for a relative low precision rate

of the S -type heartbeats on the NS-INCART dataset where the normal heartbeats

are nearly 80 times to the S -type heartbeats. In spite of the low precision rate,

the CLSM makes a breakthrough on the S -type recall rate (94.7%) on the NS-

INCART dataset. The results demonstrate the effectiveness of CLSM in identifying
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Figure 6.8: The impact of number of layers on CLSM’s performance. (a): overall
classification accuracy (ACC) and F1 scores for the normal (N-F1) S -type heart-
beats (S-F1) as a function of the number of layers. (b): epoch training time of the
proposed CLSM as a function of the number of layers.
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Table 6.7: Individual performance evaluations of CLSM

Database ACC
N S

REC PRE REC PRE

NS-DS21 97.7 98.2 99.4 85.6 65.7

NS-MIT-BIH-SUP2 94.9 96.0 98.6 81.3 60.4

NS-INCART3 94.7 94.7 99.9 94.7 18.6

1 A dataset consisting of all normal and S -type heartbeats of the MIT-BIH-
AR database.

2 A dataset consisting of all normal and S -type heartbeats of the MIT-BIH-
SUP database.

3 A dataset consisting of all normal and S -type heartbeats of the INCART
database.

the S -type heartbeats from the normal ones. For those works suffering from the

confusion of the S -type and the normal heartbeats, CLSM can be easily integrated

as a complement without changing their original structures. This is why we define

CLSM as a supportive model.

6.6 Conclusion

This work presents a two-step DNN-based classification framework to identify

arrhythmia-related heartbeats from ECG recordings. The framework consists of a

deep dual-channel convolutional neural network (DDCNN) and a central-towards

LSTM supportive model (CLSM). In step-1, DDCNN incorporates both tempo-

ral and frequent patterns to identify the V, F and Q-type heartbeats. In step-2,

CLSM distinguishes S -type heartbeats from normal ones by taking advantage of

the central-towards LSTMs to learn and abstract hidden temporal information of

each heartbeat. The experimental results obtained on three real-world databases

show that the proposed framework has the potential to make a substantial clinical

impact.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

Heart arrhythmia is a severe heart problem. Automated heartbeat classification

provides a cost-effective screening for heart arrhythmia and allows at-risk patients

to receive timely treatments, which is a highly demanded but challenging task.

In this thesis, the author tries to tackle the automated heartbeat classification

problem. The main contributions of this thesis are to mathematically represent the

problem, to analyze the challenges, and to propose methods to solve the problem.

There are four practical heartbeat classification models proposed in this work.

The first model is named D-ECG, which introduces the dynamic ensemble selection

techniques and designs a result regulator to improve the detection performance of

disease heartbeats. However, due to the dynamic nature, it is difficult for D-

ECG to provide a real-time response to the streaming ECG signals. To tackle

the heartbeat classification problem in real-time scenarios, the second model, a

pyramid-like model, is proposed. This model separates the classification of normal

and supraventricular ectopic beats from the overall heartbeat classification, and

customizes an algorithm to take advantage of the neighbor-related information to

assist identification of supraventricular ectopic bests. Compared to D-ECG, the

pyramid-like model can provide more timely response to an unknown heartbeat

while maintaining a good overall classification performance.

Since recent advances in heartbeat classification are brought by deep neural

networks, the author examines these advances and proposes a DNN-based solu-

tion named Multi-channels Convolution Neural Network (MCHCNN) to solve the

problems of current deep-learning based heartbeat classification models. As an
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improvement to other networks, MCHCNN considers heart rhythm to assist iden-

tification of disease heartbeats. Moreover, MCHCNN uses different sizes of con-

volution filters in parallel to capture temporal and frequency patterns from ECG

signals. However, there is still a long way before MCHCNN can make practical

impacts because its detection performance of S -type heartbeats is still relatively

low. In fact, not just for MCHCNN, the identification of S -type heartbeats is

one of the most problematic tasks for majority existing methods. To tackle this

problem, the author investigates the potential causes and proposes an advanced

two-step DNN-based classification framework. Specifically, in the first step, a deep

dual-channel convolutional neural network (DDCNN) is proposed to classify all

heartbeat classes, except for the normal and S -type heartbeats. In the second

stage, a central-towards LSTM supportive model (CLSM) is specially designed to

distinguish S -type heartbeats from the normal ones. By processing heart rhythms

in central-towards directions, CLSM learns and abstracts hidden temporal informa-

tion between a heartbeat and its neighbors to reveal the deep differences between

the two heartbeat types.

The author has conducted extensive experiments to provide a comprehensive

evaluation for each proposed model. The results prove that this thesis brings

practical ideas and solutions to the automated heartbeat classification problem.

7.2 Future Work

Future work will focus on performing clinical deployment tests for the proposed

methods, which includes generalization performance test and efficiency test. Based

on the test results, further improvements and upgrades will be made to the pro-

posed methods. Specifically, for D-ECG, the pyramid-like model, MCHCNN, and

DHCAF which are designed for IoT applications, the author aims to improve these
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methods to provide a timely response, whereas for the DNN-based methods, the

author will pay more attentions to improve the classification performance. Be-

sides, as mentioned above, since the identification of S -type heartbeats is one of

the most problematic tasks for majority existing methods, the author will continue

to improve the proposed CLSM, making it easier to be incorporated into exiting

methods to assist the identification of disease heartbeats.

Additionally, the information contained in ECG are not just useful in identifica-

tion of heart disease. In the next study, the author plans to explore the relationship

between ECG and sleep. The author aims to identify the sleep stages from ECG

signals. Traditionally, this is achieved by analyzing the electroencephalography

(EEG) data. However, as compared to EEG data, the acquisition of ECG data is

easier. Therefore, building a connection between ECG and sleep stages will allow

broader applications of a sleep stages classification model.

154



BIBLIOGRAPHY

[1] Jemal H Abawajy, Andrei V Kelarev, and M Chowdhury. Multistage ap-
proach for clustering and classification of ecg data. Computer methods and
programs in biomedicine, 112(3):720–730, 2013.

[2] U Rajendra Acharya, Hamido Fujita, Shu Lih Oh, Yuki Hagiwara, Jen Hong
Tan, and Muhammad Adam. Application of deep convolutional neural net-
work for automated detection of myocardial infarction using ecg signals. In-
formation Sciences, 415:190–198, 2017.

[3] U Rajendra Acharya, Shu Lih Oh, Yuki Hagiwara, Jen Hong Tan, Muham-
mad Adam, Arkadiusz Gertych, and Ru San Tan. A deep convolutional neu-
ral network model to classify heartbeats. Computers in biology and medicine,
89:389–396, 2017.

[4] Rashid Ghorbani Afkhami, Ghanbar Azarnia, and Mohammad Ali Tinati.
Cardiac arrhythmia classification using statistical and mixture modeling fea-
tures of ecg signals. Pattern Recognition Letters, 70:45–51, 2016.

[5] Foteini Agrafioti, Dimitris Hatzinakos, and Adam K Anderson. Ecg pattern
analysis for emotion detection. IEEE Transactions on Affective Computing,
3(1):102–115, 2011.
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[63] Isabelle Guyon and André Elisseeff. An introduction to variable and feature
selection. Journal of machine learning research, 3(Mar):1157–1182, 2003.

[64] Fredric M Ham and Soowhan Han. Classification of cardiac arrhythmias us-
ing fuzzy artmap. IEEE Transactions on Biomedical Engineering, 43(4):425–
429, 1996.

[65] Awni Y Hannun, Pranav Rajpurkar, Masoumeh Haghpanahi, Geoffrey H Ti-
son, Codie Bourn, Mintu P Turakhia, and Andrew Y Ng. Cardiologist-level
arrhythmia detection and classification in ambulatory electrocardiograms us-
ing a deep neural network. Nature medicine, 25(1):65, 2019.

[66] Hassan Hamsa Haseena, Abraham T Mathew, and Joseph K Paul. Fuzzy
clustered probabilistic and multi layered feed forward neural networks for
electrocardiogram arrhythmia classification. Journal of Medical Systems,
35(2):179–188, 2011.

[67] Ahnaf Rashik Hassan and Md Aynal Haque. An expert system for automated
identification of obstructive sleep apnea from single-lead ecg using random
under sampling boosting. Neurocomputing, 235:122–130, 2017.

[68] Jinyuan He, Le Sun, Jia Rong, Hua Wang, and Yanchun Zhang. A
pyramid-like model for heartbeat classification from ecg recordings. PloS
one, 13(11):e0206593, 2018.

[69] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[70] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In
Neural networks for perception, pages 65–93. Elsevier, 1992.

161



[71] Frank L Hitchcock. The distribution of a product from several sources to
numerous localities. Journal of mathematics and physics, 20(1-4):224–230,
1941.

[72] Tin Kam Ho. Random decision forests. In Proceedings of 3rd international
conference on document analysis and recognition, volume 1, pages 278–282.
IEEE, 1995.

[73] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[74] Huifang Huang, Jie Liu, Qiang Zhu, Ruiping Wang, and Guangshu Hu. A
new hierarchical method for inter-patient heartbeat classification using ran-
dom projections and rr intervals. Biomedical engineering online, 13(1):90,
2014.

[75] Aapo Hyvärinen and Erkki Oja. Independent component analysis: algo-
rithms and applications. Neural networks, 13(4-5):411–430, 2000.

[76] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[77] Mehrdad Javadi, Seyed Ali Asghar Abbaszadeh Arani, Atena Sajedin, and
Reza Ebrahimpour. Classification of ecg arrhythmia by a modular neural
network based on mixture of experts and negatively correlated learning.
Biomedical Signal Processing and Control, 8(3):289–296, 2013.

[78] Fei Jiang, Yong Jiang, Hui Zhi, Yi Dong, Hao Li, Sufeng Ma, Yilong
Wang, Qiang Dong, Haipeng Shen, and Yongjun Wang. Artificial intelli-
gence in healthcare: past, present and future. Stroke and vascular neurology,
2(4):230–243, 2017.

[79] Wei Jiang and Seong G Kong. Block-based neural networks for personalized
ecg signal classification. IEEE Transactions on Neural Networks, 18(6):1750–
1761, 2007.

[80] Md Enamul Kabir, Hua Wang, and Elisa Bertino. A role-involved purpose-
based access control model. Information Systems Frontiers, 14(3):809–822,
2012.

[81] S Karimifard, A Ahmadian, Mohammad Khoshnevisan, and MS Nambakhsh.

162



Morphological heart arrhythmia detection using hermitian basis functions
and knn classifier. In 2006 International Conference of the IEEE Engineering
in Medicine and Biology Society, pages 1367–1370. IEEE, 2006.

[82] Walter Karlen, Claudio Mattiussi, and Dario Floreano. Sleep and wake
classification with ecg and respiratory effort signals. IEEE Transactions on
Biomedical Circuits and Systems, 3(2):71–78, 2009.

[83] JS Karthika, Jan Mary Thomas, and Jubilant J Kizhakkethottam. Detection
of life-threatening arrhythmias using temporal, spectral and wavelet features.
In Computational Intelligence and Computing Research (ICCIC), 2015 IEEE
International Conference on, pages 1–4. IEEE, 2015.

[84] Aya F Khalaf, Mohamed I Owis, and Inas A Yassine. A novel technique
for cardiac arrhythmia classification using spectral correlation and support
vector machines. Expert Systems with Applications, 42(21):8361–8368, 2015.

[85] Ahsan H Khandoker, Marimuthu Palaniswami, and Chandan K Karmakar.
Support vector machines for automated recognition of obstructive sleep ap-
nea syndrome from ecg recordings. IEEE transactions on information tech-
nology in biomedicine, 13(1):37–48, 2008.

[86] Ali Khazaee. Heart beat classification using particle swarm optimization.
International Journal of Intelligent Systems and Applications, 5(6):25, 2013.

[87] Ali Khazaee and Ataollah Ebrahimzadeh. Classification of electrocardiogram
signals with support vector machines and genetic algorithms using power
spectral features. Biomedical Signal Processing and Control, 5(4):252–263,
2010.

[88] Hamid Khorrami and Majid Moavenian. A comparative study of dwt, cwt
and dct transformations in ecg arrhythmias classification. Expert systems
with Applications, 37(8):5751–5757, 2010.

[89] Rami N Khushaba, Sarath Kodagoda, Sara Lal, and Gamini Dissanayake.
Driver drowsiness classification using fuzzy wavelet-packet-based feature-
extraction algorithm. IEEE Transactions on Biomedical Engineering,
58(1):121–131, 2010.

[90] Rami N Khushaba, Sarath Kodagoda, Sara Lal, and Gamini Dissanayake.
Uncorrelated fuzzy neighborhood preserving analysis based feature projec-
tion for driver drowsiness recognition. Fuzzy Sets and Systems, 221:90–111,
2013.

163



[91] Jinkwon Kim, Hang Sik Shin, Kwangsoo Shin, and Myoungho Lee. Ro-
bust algorithm for arrhythmia classification in ecg using extreme learning
machine. Biomedical engineering online, 8(1):31, 2009.

[92] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[93] Serkan Kiranyaz, Turker Ince, and Moncef Gabbouj. Real-time patient-
specific ecg classification by 1-d convolutional neural networks. IEEE Trans-
actions on Biomedical Engineering, 63(3):664–675, 2015.

[94] Serkan Kiranyaz, Turker Ince, and Moncef Gabbouj. Real-time patient-
specific ecg classification by 1-d convolutional neural networks. IEEE Trans-
actions on Biomedical Engineering, 63(3):664–675, 2016.

[95] Albert HR Ko, Robert Sabourin, and Alceu Souza Britto Jr. From dy-
namic classifier selection to dynamic ensemble selection. Pattern Recognition,
41(5):1718–1731, 2008.
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