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Prefectural Representation of the 
Regions of China in a Bottom-up CGE 

Model: SinoTERM365 

By GLYN WITTWERa AND MARK HORRIDGEb

We create an applied general equilibrium database that represents 162 sectors in 365 
prefectural regions of the Chinese economy. Our approach requires relatively modest 
data requirements to create a multi-region, sub-national database and extends 
methods used in The Enormous Regional Model (TERM). We call the new database 
‘SinoTERM365’. Where the database structure allows for more information than is 
available, we use simple assumptions to supply the deficiency. However, we hope 
that model users may collaborate to find more or better data. An illustrative 
simulation shows the long-run effects of a switch from coal to hydro electricity 
generation.   

JEL codes: C68,D58, O13. 

Keywords: Applied general equilibrium; China; Regional economic modeling.  

1. Introduction  

Sub-national multi-regional applied general equilibrium (AGE)1 modelers 
confront the problem that most available sub-national input-output (IO) or 
supply-use databases at the regional level are highly aggregated. Moreover, 
practitioners are often interested in scenarios that involve only part of a province 
or state and one or two industries that are not well represented in the coarse 
sectoral representation of most regional databases. Economic activity within a 
province or state may be dominated by one or two large cities. The appetite for 
regional modeling often involves finer levels of sectoral or regional representation 
than are depicted in provincial or state databases. In particular, small region 
representation may enhance natural resource modeling. This paper explains a 
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methodology for meeting this demand, by devising a multi-regional AGE model 
depicting small regions, with comprehensive links between regions.  

We call our methodology for depicting small regions in considerable sectoral 
detail in a multi-regional AGE model the (The Enormous Regional Model) TERM 
approach. The TERM methodology includes (1) a package of routines to generate 
sub-national, multi-regional databases, and (2) sub-national, multi-regional AGE 
models. We use this approach to devise a 162 sector, 365 region master database 
for China. This represents a challenge, as data at the small region level are not as 
abundant for China as for many other nations. Other countries have census data 
with considerable sectoral detail at the small region level to supplement existing 
national accounts data. Freely downloadable resources based on the TERM 
approach are listed in the conclusion. Examples cover China and other nations.  
Readers interested in gaining familiarity with SinoTERM365 or its predecessors 
can access materials via the link provided in Table 10, which all provides access to 
the database generation files. Those who wish to work with or contribute to 
ongoing SinoTERM365 development can contact the authors at the Centre of 
Policy Studies (see tpgw0712 at the Table 10 link or email 
glyn.wittwer@vu.edu.au). 

Section 2 outlines the procedure of data collection, multi-regional database 
generation and database aggregation for policy simulations using the TERM 
approach.  Section 3 includes the first comprehensive description of the core theory 
of TERM models, working through the levels equations and model code. A 
stylized simulation is presented in Section 4. Supplementary files enable the reader 
to reproduce the simulation. The article concludes with section 5. 

2. A method for devising a highly disaggregated, multi-regional, sub-national 
model  

2.1 Previous efforts at sub-national representation 

IO modelers have been analyzing economic activity in small regions for 
decades. One method is to use regional activity shares based on census data to 
estimate regional flows based on the IO table. The Economic Impact Analysis for 
Planning (IMPLAN) group devises tables for US state, city and county regions that 
appear to make substantial use of census data.  This provides both the sectoral 
resolution and small region detail we aim for with the TERM approach, but lacks 
detailed links to other regions. Moreover, the framework lacks the economic 
theory of AGE models, so that resource constraints are imposed in an ad hoc 
manner rather than through consistent theory. And, despite the sectoral detail 
present in such tables, there is still a shortage of detail in sectors such as agriculture 
and electricity. AGE models with desirable sectoral disaggregation of the US 
economy include USAGE-TERM, with 70 regions and 500+ sectors in the master 
database (Wittwer 2017), and the state-level open access National Open source 
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Tools for general Equilibrium analysis (blueNOTE) package (see 
https://aae.wisc.edu/blueNOTE/ and Rutherford and Schreiber, 2018). 

Other examples of IO tables include inter-regional linkages. In China, Mi et al. 
(2017) devised a full multi-regional use matrix inclusive of inter-regional trades 
for 30 sectors in 30 regions. Yamada (2015, table 1) provides a table of various 
multi-regional IO tables for Japan. The largest number of sectors represented in 
Japan for all 47 prefectures is 59. 

Typically, agriculture, mining and manufacturing are each represented by little 
more than a single sector in regional tables. The authors’ checks on China’s 
provincial tables indicate that they often do not sum reasonably to totals in the 
national table. This is not surprising, given that regional statistical bureaus prepare 
regional tables, with apparent limited harmonization between bureaus. But even 
with improved harmonization, a problem would remain, in that available regional 
IO tables do not take advantage of a great deal of regional data present in other 
sources. The TERM methodology is to make use of all available relevant data in 
preparing a multi-regional AGE database, and to allow for the possibility that as 
better data emerge, modelers can utilize it quickly in revising an AGE database. 

2.2 Overview of the TERM approach 

The TERM approach to devising a very detailed multi-regional sub-national 
AGE database starts with the national database. We disaggregate the official 
national IO or supply-use database into more sectors where we think it potentially 
useful. Next, we gather estimates of regional supply and regional demand shares 
of national activities at the small region level. Within the TERM suite of database 
generating programs, we devise value estimates of total regional supplies and 
demands. A modified version of the gravity assumption calculates estimates of 
inter-regional trade matrices. After running programs to balance the database, the 
master database is ready for use. In common with the Global Trade Analysis 
Project (GTAP) modeling approach, the master database is aggregated to preserve 
sectors and regions of interest in a particular scenario while reducing the 
dimensions of the database to a computationally manageable size for policy 
analysis.  

Where data is lacking, simple assumptions can fill the gap. The aim is to 
develop a multi-regional application relatively quickly.  Initial simulations often 
reveal data problems. Over time, new data sources may be found. 

The first implementation of the TERM approach was to Australia (Horridge et 
al., 2005).2 Versions for other countries developed in succeeding years cover Brazil 
(Ferreira Filho and Horridge, 2006), Indonesia (Horridge et al., 2006), Japan,3 China 

                                                 
2 Wittwer and Horridge (2010) lists the equations of TERM but does not include the code 
shown in section 3 of the present paper. 
3 See www.copsmodels.com/archivep.htm TPSY0054. 
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(SinoTERM at the provincial level, Horridge and Wittwer, 2008), USA (Wittwer 
2017), South Africa,4 Finland (Törmä 2008; Simola et al., 2011) and Poland 
(Zawali´nska et al., 2011).  

2.2.1 Disaggregation of national database into more sectors 

Sub-national regional IO or supply-use databases usually contain fewer sectors 
than national databases. The TERM approach is contrary to this for two reasons. 
First, disaggregation often simplifies data collection at the regional level. For 
example, we may know how much wheat is grown in a region and how much gold 
is produced, but we are less certain of the region’s share of national agricultural or 
mining activity.  

Second, with sectoral disaggregation we aim to improve the policy relevance 
and versatility of the multi-regional AGE framework. Many countries, including 
China, depict agriculture in national tables in two sectors, crops and livestock. A 
great deal of disaggregated data are usually available for small regions. In China, 
for example, provincial statistical yearbooks are reasonably comprehensive in 
their coverage of an array and crops and herd numbers for different animals at the 
prefectural level (see Table 2). Yet agricultural, forestry and fishing activities that 
still account for at least one quarter of national employment, are represented by a 
single sector in China’s provincial IO tables. The advantage of depicting primary 
industries at the small region level is that it enables us to model an array of land 
and water allocation issues.  

Some major policy issues that AGE modelers may wish to analyze require 
further splitting of sectors in official national IO tables. Adams and Parmenter 
(2013) and Adams (2003) detail different types of electricity generation at the state 
level in Australia. With different forms of generation within the model, estimates 
of carbon emissions are more accurate. Modeled responses to a carbon tax that 
induces changes in competitiveness among generators and modeled outcomes are 
more helpful to policy makers. There may be interest in disaggregating into 
smaller regions: electricity-generating stations are often located in clusters near 
coalfields. Decommissioning such plants will result in short-run local job losses, 
just as construction of wind or solar farms will result in additional short-run local 
jobs.  

Away from major cities, health services are limited. Patients requiring specialist 
services may need to travel hundreds of kilometers for care. Sub-dividing the 
health sector in an AGE model may help depict the divide between major cities 
and more remote regions concerning health services. This usually requires 
detailed census data in either the industrial or occupational dimensions at the 
small region level.   

                                                 
4 See www.copsmodels.com/archivep.htm TPMH0126. 
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Disaggregation of sectors also assists estimation of inter-regional trade matrices 
in some instances. We  assign activities as either local or traded at the small region 
level. For example, we treat elementary or primary schooling as strictly local 
(implying that the inter-regional trade matrix contains non-zeroes only on the 
diagonal), whereas higher forms of education are tradable between regions. 
Tertiary education is internationally traded. Suitable disaggregation enables 
modelers to analyze that otherwise would not be possible. For example, Waschik, 
et al. (2018) analyzed the economic impacts of regional universities in Australia.  

2.2.2 Estimates of regional supplies and regional demands in small regions 

We aim to devise small region representation in an AGE database because some 
of the most marked disparities in income and access to essential services are 
between regional capital cities and elsewhere in a province or state. In the example 
of Guangdong province in China, 2014 GDP per capita in Guangzhou city 
exceeded 130,000 RMB, whereas in Meizhou city, it was less than 20,000 RMB.5 The 
SinoTERM365 representation includes 21 prefectures in Guangdong. 

The strategy to deal with scarce sub-national regional data is to keep the data 
requirements modest while using a reproducible sequence of problems, into which 
inputs can be altered readily as improved data emerge. In the past, practitioners 
have often cited two constraints to regional modelling: the limited availability of 
regional IO tables; and an absence of inter-regional trade detail. 

Ideally, at the small region level, data on farm outputs, employment by 
industry data from the census and supplementary data on electricity generation 
may be available.6  Since customs posts exist at international ports, international 
trade data by port are available for many countries.   

2.2.3 Identical technologies 

A key assumption in the TERM methodology is that an identical technology or 
input cost structure is imposed on a given industry in all regions. By 
disaggregating the national database at the outset, we reduce the burden of this 
assumption. For example, in China, hydroelectric generation dominates Sichuan’s 
electricity generation, whereas coal-fired generation dominates Shanxi’s 
generation. Given the differing composition of generation types between regions, 
it is inappropriate to assume that all regions have an identical single electricity 
generation technology. It is defensible to assume that coal-fired generation has the 
same technology in different regions, but not defensible to assume that coal-fired 
and hydropower generation have identical technologies. In the case of known 

                                                 
5 The data source is the Guangdong Statistical Yearbook, no longer available through the 
University of Michigan online. 
6 The website carma.org detailing 50,000 power stations globally has been discontinued 
due to web security concerns (personal communication). 
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differences in technologies between regions, we prepare different industries in the 
national database to reflect different technologies. 

2.2.4 Strategy to reduce simulation times 

We deal with the first problem of slow simulations through two broad 
strategies, which are in common with the GTAP approach. First, several multi-
dimensional database matrices are partitioned into two smaller matrices. As in the 
GTAP Data Base, the intermediate and final use matrices (a single matrix in the 
TERM format) include the regional user but not the regional origin. The trade 
matrices include the regional origin and regional destination but not the user. The 
small cost that comes with the common sourcing assumption is that the use 
matrices added up over users must equal the trade matrices summed across 
regional origins. The separation of full data dimensions into two matrices 
distinguishes TERM from Australia’s Victoria University-Regional Model 
(VURM) (Adams et al. 2011), as it distinguishes GTAP (Corong et al., 2017) from 
its predecessor SALTER ((Sectoral Analysis of Liberalising Trade in the East Asian 
Region) (Jomini, et al. 1994).  

To illustrate the saving of using two matrices instead, consider a model in 
which there are 20 commodities, 20 industries, 4 final users and 20 sub-national 
regions plus imports. We assign a domestic and imported subscript to each origin 
so as to identify international port activity within the model. A use matrix 
identifying commodities (20), origins (20 x 2, i.e., domestic/imported), 
destinations (20), intermediate (20) plus final users (4) would contain 384,000 cells 
(=20x20x2x20x24). If we partition the data into a USE matrix excluding regional 
origins (20 commodities, 2 domestic/imported origins, 20 destinations and 24 
users), with 19,200 cells and a TRADE matrix excluding users (20 commodities, 20 
x 2 origins, 20 destinations) with 16,000 cells, the two matrices sum to 9.2% the size 
of a matrix that includes all relevant dimensions. The market clearing identity that 
enforces the two matrices to be equal will contain 800 cells (=20 commodities x 2 
sources x 20 destinations), adding only a few percent to database size.  

In practice, a second strategy in common with that of GTAP model users, is to 
aggregate sectors and regions of little or no interest in a scenario while maintaining 
detail in sectors and regions of interest.  This lowers the computational times for 
modelers.  

2.2.5 Canadian provincial supply-use tables: the case of abundant data 

Do cases of IO tables which are highly disaggregated in the sectoral dimension, 
and with estimates of inter-regional trades, render the TERM approach 
redundant? The most detailed sub-national multi-regional supply-use tables 
known to the authors are those prepared by Statistics Canada. These tables depict 
the sales of 446 commodities to 187 industries plus final users in 14 
provinces/territories. Statistics Canada puts much effort into estimating 
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international trades between sub-national regions and the rest of the world and 
inter-regional trades between provinces/territories. Many data sources are used 
in the estimation effort, including producer surveys, wholesale trade surveys and 
services surveys (UN, 2018).  

Statistics Canada uses around 50 staff to main their supply-use tables for 14 
regions plus the national tables (UN, 2018). No other statistical agency has made 
this level of commitment to the provision of such data. In the sectoral dimension, 
Statistics Canada match or exceed our desired detail in agriculture, mining, health, 
education and other sectors. The only segment in which we would seek more 
detail is in depicting different forms of electricity generation, as a single sector 
covers all generation, transmission and distribution.7  

The regional dimension is a different matter. We regard the Canadian data as 
an incomparable starting point for a potential disaggregation into smaller regions, 
so as to capture economic activities in regional centers that may be many hundreds 
of kilometers from the provincial capital. Canada has approximately 200 census 
divisions, which would be a feasible level at which to estimate regional activities, 
based on a combination of provincial tables, census division employment data and 
some sector-specific sources such as mining statistics.  

2.3 Preparing the SinoTERM365 database 

TERM offers a strategy in stark contrast to that of practitioners who believe that 
both regional IO tables and some inter-regional trade are necessary to devise a 
multi-regional AGE database. The SinoTERM365 database has been estimated 
from very limited regional data, even more scarce than the data typically used by 
TERM practitioners.  

Our technique of combining a national IO table with limited regional data to 
produce a detailed inter-regional table bears many similarities to methods 
developed over several decades by regional IO modelers. Indeed, published 
regional IO tables may well be in part constructed rather than observed. 
Unfortunately, the method of construction may be poorly documented or 
unrepeatable. The TERM data programs are downloadable and may be 
customized to suit particular needs (see Table 14).  

2.3.1 Preparation of national database for China 

In China as elsewhere, regional data are often available for sectors with more 
detail than in the national IO table. Beijing’s National Bureau of Statistics appears 
to have followed international convention in providing limited detail on 
agriculture in the national IO table, a convention that the GTAP Data Base creators 

                                                 
7 Our inspection of the Statistics Canada supply-use tables suggests that their default 
assumption, common with the TERM approach, is that each industry uses an identical 
technology in all regions.  
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from the beginning wisely chose not to follow. The official Chinese IO table 
includes a single crops sector, a single livestock sector and another sector covering 
services to agriculture. We know that climate, water availability and types of crop 
vary widely across China. Moreover, even with rapid structural change, around 
25% of China’s workforce (equal to 5% of the global workforce) is still employed 
in agriculture. Given that land and water availability is a major policy issue, we 
split the single crop sector from the available IO table into 14 (i.e., rice, wheat, corn, 
other cereals, soybeans, tubers, other vegetables, cotton, sugar cane, tea, apples & 
pears, citrus, grapes and other crops) and the single livestock sector into three 
(pigs, sheep & goats, other livestock). China accounts for one quarter of global 
meat consumption (Myers, 2016): the meat sector is split into two to separate pork 
from other meat types. Available data may provide good estimates of a region’s 
share of national output of the 14 crops we have chosen to represent. Similarly, 
herd numbers and other statistics are available for various types of livestock.  

The other split is of the electricity sector into 7 forms of generation plus a sector 
for transmission and distribution. The different generation forms are coal-fired, 
gas-fired, other thermal, nuclear, hydroelectric, wind and solar. Regional estimates 
rely heavily on data prepared by the Center for Global Development for 50,000 
power stations across the globe.8  

2.3.2 Estimates of the regional distribution of output and final demands  

The first version of SinoTERM (Horridge and Wittwer, 2008; Wittwer and 
Horridge, 2009) represented the 27 provinces and 4 municipalities of China 
separately. The new version, SinoTERM365, relied on China Data Center, 
University of Michigan (accessed via the National Library of Australia) as the main 
source for prefectural level data. In particular, the site provided access to 
provincial statistical yearbooks. Unfortunately, the University of Michigan’s 
resource is no longer accessible, ostensibly because it is no longer cost effective 
(Leung 2018). 

The census data used to estimate regional activity shares in the Australian 
TERM (Wittwer and Horridge, 2010) and USA TERM (Wittwer 2017) databases 
cover hundreds of sectors, whereas Chinese census data cover only 19 sectors. This 
means that such data are less specific in estimating regional activities in 
manufacturing and services sectors than in the USA and Australia. The available 
broad industry census employment numbers for China provide some measure of 
prefecture-level economic activity. At worst, this means that broad sector outputs 
(outside of agriculture, for which data are sufficient in most provinces) are split 
between the disaggregated sectors of the national database in identical 

                                                 
8 The website carma.org from which we downloaded data on the location, capacity and 
emissions of power generation stations has been discontinued due to cyber-security 
concerns (Center for Global Development, personal communication). 
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proportions across all prefectures in a given province. In addition, census data 
available to the authors for a number of provinces are only for 2005 (Table 2), 
whereas the base year of the national IO table is 2012.  

For some commodities, we were able to improve on yearbook data. For 
example, the Liaoning province yearbooks includes employment for a single 
manufactures sector. An online search indicates that within Liaoning, only Dalian 
and Shenyang produce motor vehicles (as distinct from the separate motor vehicle 
parts sector), so activities for this sector in other prefectures within the province 
are set to zero. Prefectural level data are also available for meat products. But in 
remaining manufactures, the broad manufacturing employment shares provide 
the sub-provincial split.  

Table 1 shows the sectoral detail in the SinoTERM365, national and provincial 
IO tables and, if available at the prefectural level, employment. 

Table 1. SinoTERM365, national IO, provincial IO and employment data representation 

Sector group 
SinoTERM365 

2012 
National IO 

2012 
Provincial IO 

2012 
Prefectural 

employmenta 

Primary     

Crops 14 1 

1 1 
Livestock 3 1 

Fishing, forestry & 
agri. srv. 

3 3 

Mining 6 6 4 1 
Manufactures     

Food & tobacco 15 14 1 

1 

TCFs 8 8 2 

Fuel & chemical 11 11 2 

Non-metal min 
prods 

7 7 1 

Metals 6 6 2 

Machinery 10 10 1 

Transport Eqp 5 5 1 

Electrical & 
electronic 

12 12 3 

Oth manufactures 11 11 3 

Other     
Utilities 10 3 2 1 
Construction 4 4 1 1 
Services 37 37 6 14 

Total 162 139 30 19 
 Notes: (a) In prefectural level national accounts data, mining, manufacturing and utilities are combined into 

a single sector. Otherwise, the employment (19) and national accounts (17) sectors are the same. 

Source: Authors calculations 
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Table 2. Summary of prefecture-level data 

 

No. of 
regions 

Agriculture 
(2013 or later)  

Manufacturing 
output (2013 or 

later)  

Employment or 
national accounts 
data (19 sectors if 

not stated) b 

Hebei 11 Complete  2005 census 
Shanxi 11 Complete 14 sectors 2014 6 sectors 
InnrMongolia 12 Complete 9 sectors 2005 census 
Liaoning 14 Complete  2013 
Jilin 9 Complete  nat ac 17 sectors  

2014 Heilongjiang 15 Complete  nat ac 17 sectors  
2014 Jiangsu 13 1 agri. sector 30 sectors 2005 census 

Zhejiang 12 Complete  2005 census 
Anhui 16 Complete  2013 
Fujian 9 5 agri. sectors  2005 census 
Jiangxi 11 Complete 18 sectors 2005 census 
Shandong 17 Complete  2014 
Henan 18 Complete 24 sectors 2014 
Hubei 17 Complete  Broad sector (5) only 
Hunan 14 4 agri. sectors  nat ac 17 sectors  

2014 Guangdong 21 Complete  2005 census + 2014 
nat ac 9 sectors Guangxi 14 10 agri. sectors  2005 census 

Hainan 18 7 agri. sectors 20 sectors detailed 2014 
Chongqing 5 7 agri. sectors  Broad sector (5) only 
Sichuan 21 11 agri. sectors  2005 census 
Guizhou 9 5 agri. sectors  2005 census 
Yunnan 16 Complete  2014 
Tibet 7 Complete  2014 
Shaanxi 11 Complete  2005 census 
Gansu 14 Complete  2014 
Qinghai 8 Complete  2005 census 
Ningxia 5 Complete  2005 census 
Xinjiang 14 Complete Meat only 2014 14 sectors 

Notes: nat ac —national accounts; (a) Beijing, Tianjin and Shanghai are each represented by a single 

region in SinoTERM365. (b) The file mappings.har within online materials accompanying this 
paper incudes mappings to the 162 sectors of the master database. 

Source: National Bureau of Statistics of China. 

The provincial IO tables have two main uses. The first is to provide value-added 
control totals as above, so that we scale the estimates of 162 sectoral activities for 
each prefecture to sum to 30 sectoral provincial activities. Without the IO table, we 
would default to 17 national accounts sectors at the provincial level for control 
totals. The other use of provincial IO tables is to provide provincial level targets 
for aggregate household consumption, public consumption and investment. Using 
either reported or estimated prefectural GDPs, we can allocate provincial shares 
implied by regional IO tables to the prefectural level.  
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International trade shares in the database are calculated from available 
information on port activities or, if available, customs data. In the case of 
merchandise, non-zero shares are limited to ports involved in international trade. 
For services, we may set export shares initially to regional output shares. We may 
base international services imports on prefectural aggregate demands. If we know 
more about international service trade shares, for example from regional 
university enrolments, we can improve on the shares we use as starting points. 

2.3.3 The TRADE matrix 

Using regional supply and final use shares, we generate regional activity levels 
by splitting the national AGE database. The next stage is to construct a TRADE 
matrix. For each commodity either domestic or imported, TRADE contains a 
365x365 submatrix, where rows correspond to region of origin and columns 
correspond to region of use. Diagonal elements show production which is locally 
consumed. We already know from regional shares used to split the national 
database both the row totals (supply by commodity and region) and the column 
totals (demand by commodity and region) of these submatrices. We use the 
gravity formula (trade volumes follow an inverse power of distance) to construct 
trade matrices consistent with pre-determined row and column totals. In defence 
of this procedure, note that wherever production (or, more rarely, consumption) 
of a particular commodity is concentrated in one or a few regions, the gravity 
hypothesis is called upon to do very little work. Because our sectoral classification 
is so detailed, this situation occurs more frequently than with a relatively 
aggregated sectoral dimension.  

The usual TERM gravity formula, as described in Horridge (2011) is:  

r,d

k
r,d

r,

,d

V V

V D

•

•

      rd (1) 

where Vr,d = value of flow from origin r to destination d, Vr,• = production in 
r,  V •,d = demand in d, Dr,d = distance from r to d, where K is a commodity-
specific parameter valued between 0.5 and 2, with higher values for commodities 
not readily tradable.  

Diagonal cells of the trade matrices are set according to: 

d,d

d,

V

V •

 = locally-supplied demand in d as share of local production 

= 
d,

,d

V
min ,1 F

V

•

•

  
 
  

        (2) 

where F is a commodity-specific parameter valued between 0.5 and 1, with a 
value close to 1 if the commodity is not readily tradable. The initial estimates of 
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V(r,d) are then scaled using a residual allocation system (RAS) procedure so that 

rV(r,d)= V( • ,d) and dV(r,d)= V(r,• ). Transport costs as a share of trade flows 

are set to increase with distance, T(r,d)/V(r,d)  D(r,d) 
where T(r,d) corresponds to margins on the TRADE matrix (TRADMAR in 

Section 3, Table 12). Again, the constant of proportionality is chosen to satisfy 
constraints derived from the initial national IO table. 

All these estimates are made with the fully-disaggregated database. In many 
cases, zero trade flows (i.e., local sectors) can be known a priori. At a maximum 
sectoral disaggregation, the load borne by gravity assumptions is minimized.  

2.3.4 Aggregation 

The master database of 162 sectors and 365 regions is far too large for 
simulations. The next stage in the data procedure is to aggregate the data to a more 
manageable size. The aggregation choice is application-specific. Our aggregation 
example is that of the simulation presented in section 4. This concerns a demand 
switch away from coal-generated electricity towards hydro-electric generation. 
The sectoral aggregation preserves the coal mining sector, coal-generated 
electricity, hydro-electric generation and electricity distribution from the master 
database, while reducing the number of sectors to 21. In the regional dimension, 
three prefectures in which coal accounts for a large share of regional GDP are 
represented individually (see Table 13). These are Erdos (Inner Mongolia), 
Shuoxhou (Shanxi) and Huaibei (Anhui). In each case, a regional composite covers 
the rest of the province. A seventh region is Shaanxi, in which coal accounts for a 
significant share of provincial GDP, and an eighth region the rest of China. The 
365 regions of the master database are aggregated to 8 regions (Figure 1).  

 

  

Figure 1. Aggregating from master database to policy simulation regions 

RoChina

RoIM

Shaanxi
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2.3.5 Working with and improving deficient regional data 

We use the example of Fujian province, for which the data are relatively limited, 
to show we how devise estimates in the absence of detailed data. Fujian’s 
agricultural data cover only 5 sectors (Table 2). However, since Fujian’s sub-
tropical climate favors rice cultivation ahead of wheat or corn, we treat grains 
output as referring to rice only. The available data include tea (a sector within 
SinoTERM365), fruit and sugarcane at the prefectural level. We use the fruit 
outputs to devise identical prefectural shares for apples & pears and citrus. If we 
know respective outputs at the provincial level for these two fruit groups, we can 
scale the prefectural shares for each group accordingly. For the remaining 
agricultural groups, we may use proxies. Livestock shares may be based on 
available meat output for each prefecture. We may use prefectural employment 
shares for all of agriculture, forestry and fishing as proxies for remaining 
agricultural commodities. 

Available data at the 19 sector level for each Fujian prefecture are based on the 
2005 census. Typically, we have either prefectural total value-added or three sector 
(primary, secondary, tertiary) value-added totals at the prefectural level, which 
provide another set of targets for scaling. Unfortunately, we did not have even 
those three sector control totals for Fujian prefectures.  

Aware of the limitations of the prefectural share estimates we have for Fujian, 
we proceed to the stage of generating a multi-regional AGE database. There are 
three broad approaches to maintaining and improving the regional database. The 
first is that through early generation of a database, we can discover problems at 
the regional level in the process of running and analyzing simulations focused on 
Fujian prefectures. Second, in collaboration with model users, we hope to improve 
our access to more detailed and more recent data. The third is that the TERM suite 
of programs (see Table 14) enables us to generate a new database rapidly as better 
data emerge. To make several changes to prefectural activity shares and regenerate 
a master database from the national database may take less than one hour.  

3. The equations of TERM 

The TERM suite of models follows the core theory elaborated in this section. 
The TERM methodology uses a set of database generating routines that are similar 
across all countries (see Table 14, TPMH0067). However, the user may modify 
programs to utilize more detailed sub-national data if they are available. Horridge 
et al. (2005) and Horridge (2012) describe the database methodology. This section 
elaborates the core theory of the TERM by presenting the levels version of each 
block of equations. Wittwer and Horridge (2010) present a previous outline of the 
core TERM theory; the present section explains the core theory comprehensively. 
The model is implemented using General Equilibrium Modelling Package 
(GEMPACK) software (Horridge et al., 2018). TABLO coding of the model’s 
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equations follows each block – here most equations appear in log-linearized form. 
Multi-step solution methods (Dixon et al., 1982, chapter 5) enable the modeler to 
combine the accuracy of the levels form with the relative simplicity and 
computational speed of linearized equations.  

3.1 Production 

Each industry uses a combination of intermediate and primary inputs to 
produce a unit of output. Producer decisions consist of a sequence of constant-
elasticity-of-substitution (CES) decisions, with a composite commodity entering 
the next stage. Figure 2 shows the production structure.  

 

 

Figure 2. Production structure  

Source: Authors’ own figure. 
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Users of commodities minimize costs subject to CES substitutability:  

( 1 , [ / 1 ])cs c cs c
ud ud ud udX f X CES P P=       (3) 

1 . 1 .c c cs cs
ud ud ud ud

s

P X X P=         (4) 

cs
udX  is the quantity demand of commodity c from (domestic composite or 

imported) source s by user u in region d. Users include industries plus final users 

(households, investors, exporters and government). cs
udP is the corresponding price, 

and 1c
udX  and 1c

udP  the respective domestic-import composite quantities and 

prices.  
Throughout the TABLO notation in this section, the index c refers to 

commodities (COM), s to domestic or imported source (SRC), d to destination 
(DST), u to users (USR) and i to industry (INDUSR).  

Table 3: Definitions of variables, values and parameters in intermediate and final usage 

Variables  
xint(c,s,i,d) Source-specific (dom./imp.) intermediate demands 

xint_s(c,i,d) Source-composite intermediate demands 

xhou(c,s,d) Source-specific (dom./imp.) household demands 

xhou_s(c,d) Source-composite household demands 

xinv(c,s,d) Source-specific (dom./imp.) investment demands 

xinv_s(c,d) Source-composite investment demands 

ppur(c,s,i,d) Source-specific (dom./imp.) tax-inclusive com.  price for user 

ppur_s(c,i,d) Source-composite  tax-inclusive commodity price for user 

puse(c,s,u,d)  Source-specific (dom./imp.) commodity price for user 

tuser(c,s,u,d) Powers of commodity taxes 

pint(i,d) Intermediate effective price indices 

pinvest(c,d) Purchaser's price for investment 

phou(c,s,d) Household price 

aint_s(c,i,d) Intermediate tech change 

Values, shares and parameters 

PUR_S(c,i,d) Purchasers' values summed over sources 

PUR_CS(i,d) Purchasers' expenditure summed over commodities 

SIGMADOMIMP(c) CES parameter, domestic v. import sources 
    Source: Authors’ construction. 

Listing 1 shows the percentage change quantity equations concerning equation 
(3) in TABLO format. 1 The indexes “hou” and “inv” refer to the household and 
investment elements of the user set. 

                                                 
1 Note that the TABLO equation numbering follows that of previous equations in text: i.e., 
(T5) corresponds with (5). 
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 Listing 1. Intermediate and final usage (partial GEMPACK coding) 

xint(c,s,i,d)  = xint_s(c,i,d) -      

SIGMADOMIMP(c)*[ppur(c,s,i,d)-ppur_s(c,i,d)];    (T3a) 

xhou(c,s,d) = xhou_s(c,d) -       

SIGMADOMIMP(c)*[ppur(c,s,"hou",d)-phou(c,d)];    (T3b) 

xinv(c,s,d) = xinv_s(c,d) -       

SIGMADOMIMP(c)*[ppur(c,s,"inv",d)-pinvest(c,d)];    (T3c) 

ppur(c,s,u,d) = puse(c,s,d) + tuser(c,s,u,d);    (T4a) 

PUR_CS(i,d))*pint(i,d)=        

sum{c,COM,PUR_S(c,i,d)*[ppur_s(c,i,d)+aint_s(c,i,d)]};   (T4b) 

pinvest(c,d) = ppur_s(c,"Inv",d);      (T4c) 

phou(c,d) = ppur_s(c,"hou",d);       (T4d) 

3.2 Commodity sourcing at the sub-national level 

Users in a given region source from sub-national regions in common 
proportions, so that the user subscript is dropped from the equation for sub-
national CES substitution:  
 

( 1 , [ / ]cs cs cs cs
rd d rd dXT f XT CES PD PU=      (5) 

. 1 .c cs cs cs
sd d rd rd

r

PU XT XT PD=        (6) 

The total demand for all users of commodity c, domestic or import source s, 

from sub-national origin r to destination d is cs
rdXT . Sub-national source composite 

demands are denoted by 1cs
dXT and user prices by 1cs

dXT . TERM substitutability 

possibilities involve two stages, between a domestic composite and imports, and 
between sub-national sources to form the domestic composite.  

Table 4. Definitions of variables, values and parameters in trade 

Variables  
xtrad_r(c,s,d)  Total demand for regional composite 

xtrad(c,s,r,d)  

 Quantity of commodity dom/imp commodity delivered 
from origin r to destination d 

pdelivrd(c,s,r,d)  All-user delivered price of commodity c 

Values and parameters 

DELIVRD(c,s,r,d)  Trade plus margins = delivered values 

DELIVRD_R(c,s,d) 
 Demand in region d for delivered commodities summed over 
origins 

SIGMADOMDOM(c)  CES parameter for substitution between origins 
   Source: Authors’ construction. 
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Listing 2.  Inter-regional trade (partial GEMPACK coding) 

xtrad(c,s,r,d) = xtrad_r(c,s,d)      

SIGMADOMDOM(c)*[pdelivrd(c,s,r,d)-puse(c,s,d)];    (T5) 

DELIVRD_R(c,s,d))*puse(c,s,d) =      

sum{r,ORG,DELIVRD(c,s,r,d)*pdelivrd(c,s,r,d)};    (T6) 

Next, we outline cost minimizing behaviour in primary factor demands by 
industry users. The occupation o mix of labor follows a CES form:  

( 1 , [ / 1 ])o o
id id id idL f L CES W W=       (7) 

1 . 1 .o o
id id id id

o

W L L W=         (8) 

Occupation-specific labor demands are o
idL  and labor composite demands 1idL  

with the corresponding wages being o
idW  and 1idW .  

1 ( , [ 1 / ])id id id idL f F CES W PF=       (9) 

( , ( / ])id id id idLND f F CES RLND PF=      (10) 

( , ( / ])id id id idK f F CES R PF=       (11) 

. . 1 . 1 .id id id id id id id idPF F LND RLND L W K R= + +     (12) 

Equations (9) to (12) show primary factor demands for the labor composite L1id, 
capital Kid and land LNDid subject to a composite factor demand Fid by industry i 
in region d. The factor prices are W1id for composite labor, Rid for capital rentals, 
RLNDid for land rentals and PFid for composite prices.  

Listing 3. Primary factor demands (partial GEMPACK coding) 
xlab(i,o,d) = xlab_o(i,d) –       

 SIGMALAB(i)*[plab(i,o,d) - plab_o(i,d)];     (T5) 

LAB_O(i,d))*wlab_o(i,d) =        

 sum{o,OCC,LAB(i,o,d)*[plab(i,o,d)+xlab(i,o,d)]};    (T6a) 

LAB_O(i,d)*plab_o(i,d)=sum{o,OCC, LAB(i,o,d)*plab(i,o,d)};  (T6b) 

xlab_o(i,d) - alab_o(i,d) = xprim(i,d) -     

SIGMAPRIM(i)*[plab_o(i,d) + alab_o(i,d) - pprim(i,d)];   (T7) 

xlnd(i,d) - alnd(i,d) = xprim(i,d) -      

SIGMAPRIM(i)*[plnd(i,d) + alnd(i,d) - pprim(i,d)];    (T8) 

xcap(i,d) - acap(i,d) = xprim(i,d) -      

SIGMAPRIM(i)*[pcap(i,d) + acap(i,d) - pprim(i,d)];   (T11) 

PRIM(i,d)*pprim(i,d) = LAB_O(i,d)*[plab_o(i,d) + alab_o(i,d)]  

+ CAP(i,d)*[pcap(i,d) + acap(i,d)]    

+ LND(i,d)*[plnd(i,d) + alnd(i,d)];     (T12) 
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Table 5.  Definitions of variables, values and parameters in primary factor demands 

Variables  
xlab(i,o,d)  Labor demands, occupation specific 

plab(i,o,d)  Wage rates, occupation specific 

xcap(i,d)  Capital usage 

xlnd(i,d)  Land usage 

pcap(i,d)  Rental price of capital 

plnd(i,d)  Rental price of land 

plab_o(i,d)  Price of labor composite 

xlab_o(i,d)  Effective labor input 

wlab_o(i,d)  Wage bills 

alab_o(i,d)  Labor-augmenting technical change 

acap(i,d)  Capital-augmenting technical change 

alnd(i,d)  Land-augmenting technical change 

xprim(i,d)  Primary factor composite 

pprim(i,d)  Effective price of primary factor composite 

Values and parameters 
LAB(i,o,d)  Wage matrix 

CAP(i,d)  Rentals to capital 

LND(i,d)  Rentals to land 

LAB_O(i,d)  Total labor bill in industry i 

PRIM(i,d)  Total factor input to industry i 

SIGMAPRIM(i)  CES parameter, primary factors 
    Source: Authors’ construction. 

The composite factor demand Fid is proportional to total output Qid subject to a 
primary-factor using technology Aid.  

.id id idF Q A=         (13) 

The demand 1c

idX  is related to output Qid by a CES relationship between the 

composite price 1c

idP  and the price composite of all intermediate commodities 

P11id. The CES is assumed to be 0.15 (i.e., weakly substitutable).  

1 ( , [ 1 / 11 ])c c
id id id idX f Q CES P P=      (14) 

11 . 11 . 1c c
id id id id

c

P X P X=        (15) 

The zero pure profit condition is that total revenue, valued at the output price 
net of production taxes, PCid, multiplied by Qid equals the total production cost.  

. . 1 . . .c c o o
id id id id id id id id id id

c o

PC Q P X W L R K RLND LND= + + +    (16) 
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Table 6. Definitions of variables and parameters in composite factor demands 

Variables  
xtot(i,d)  Industry outputs 

atot(i,d)  All-input-augmenting technical change 

aint_s(c,i,d)  Intermediate tech change 

delPTX(i,d)  Ordinary change in production tax revenue 

pcst(i,d)  Ex-tax cost of production 

ptot(i,d)  Industry output prices 

delPTXRATE(i,d)  Change in rate of production tax 

Values and parameters 

SRCSHR(c,s,u,d)  Imp/dom shares 

VCST(i,d)  Total cost of industry i 

PRODTAX(i,d)  Taxes on production 
    Source: Authors’ construction. 

Next, we introduce production taxes to industry costs. Production tax revenue, 
VPTXid, is calculated as the tax rate RPTXid multiplied by the value of output. The 
industry output price PTOTid is inclusive of production taxes.  

. .id id id idVPTX RPTX PC Q=       (17) 

. .[1 ].id id id id idPTOT Q PC RPTX Q= +      (18) 

Listing 4. Composite factor demands (partial GEMPACK coding)  
xprim(i,d) = xtot(i,d)+atot(i,d)+aprim(i,d);     (T13) 

xint_s(c,i,d) = atot(i,d) + aint_s(c,i,d) + xtot(i,d)   

-0.15*{ppur_s(c,i,d) + aint_s(c,i,d) - pint(i,d)};   (T14) 

ppur_s(c,u,d)=sum{s,SRC,SRCSHR(c,s,u,d)*ppur(c,s,u,d)};    (T15) 

VCST(i,d)*[pcst(i,d)-atot(i,d)] =      

 PRIM(i,d)*[aprim(i,d)+pprim(i,d)] + PUR_CS(i,d)*pint(i,d);   (T16) 

delPTX(i,d) =0.01*PRODTAX(i,d)*[xtot(i,d)+pcst(i,d)] +   

VCST(i,d)*delPTXRATE(i,d);       (T17) 

VTOT(i,d)*[ptot(i,d)+xtot(i,d)]=      

VCST(i,d)*[pcst(i,d)+ xtot(i,d)] + 100*delPTX(i,d);   (T18) 

In applications of the model in which industries have multi-product capability, 
supplies of commodity c by industry i in region d (MQcid) follow a CET relationship 
between industry output prices and the average commodity price PDOMcd, which 
is the basic domestic price (see (50)).  

( , ( / ])cid id cd idMQ f Q CET PDOM PTOT=     (19) 

.id id cd cid
c

PTOT Q PDOM MQ=       (20) 

We assume that the supply of imports is infinitely elastic. Hence, the price of 
imports, PMcd, is determined by foreign import prices, PFMcd and the nominal 

exchange rate . 
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.cd cdPM PFM =        (21) 

Table 7. Definitions of variables and parameters in industry supplies 

Variables  
xmake(c,i,d)  Output of commodity c by industry i in d 

pmake(c,i,d)  Price received by industries 

pdom(c,r)  Output prices = basic prices of domestic commodities 

xcom(c,d)  Total output of commodities 

Values and parameters 

phi  Exchange rate, local currency/$world 

pimp(c,r)  Import prices, local currency 

pfimp(c,r)  Import prices, foreign currency 

SIGMAOUT(i) Constant elasticity of transformation parameter (positive) 
   Source: Authors’ construction.. 

The TABLO coding for multi-product industries is: 

Listing 5. Industry supplies (partial GEMPACK coding)  

xmake(c,i,d)=xtot(i,d)+SIGMAOUT(i)*[pmake(c,i,d)-ptot(i,d)];   (T19) 

pmake(c,i,d)=pdom(c,d)-0.05*[xmake(c,i,d)-xcom(c,d)];   (T20) 

pimp(c,r) = pfimp(c,r) + phi;      (T21) 

Equation T20 above provides that where a commodity is produced by two 
different industries, the two sources are regarded as very good substitutes 
(CES=20). 

3.3 Household demands 

The linear expenditure system (LES) is based on a utility function (U) which 

splits household spending on each commodity (XHOUc) into two, a subsistence 

component XSUBc that depends only on the number of households (N) and 

preferences, and a luxury component, XLUXc,, which depends on prices and 

income in a Cobb-Douglas form. 
c is the marginal budget (i.e., aggregate 

spending minus aggregate subsistence spending) share of commodity c. Regional 
and household dimensions are omitted from equations (22) to (33).  

1
( ) c

c c
c

U XHOU XSUB
N

= −       (22)  

Aggregate spending (WHOU) is of the form:  

[ ]3 3 3c c c c c c
c c c

WHOU P XHOU P XSUB WHOU P XSUB= = + −    (23) 

From this, we obtain the linear expenditure function, where P3c is the price 
faced by household consumers of commodity c:  
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[ ]3 3 3c c c c d dc
d

WHOUP XHOU P XSUB P XSUB= + −     (24) 

Aggregate subsistence expenditure 
c
WSUBc is given by:  

3 .c c c
c c

WSUB P XSUB=        (25) 

The Frisch “parameter” is the (negative) ratio of total expenditure to luxury 
expenditure:  

Frisch= -WHOU/[WHOU – 
c
 WSUBc]     (26) 

The ORANI school (Dixon et al., 1982) typically assigns a Frisch “parameter” of 
-1.82 to a model for a relatively high income nation (footnote 2 at the end of this 
section refers to modeling dealing with rapid consumption growth over time).  

Differentiating equation (24) with respect to WHOU, and multiplying by 
WHOU/[XHOUc.P3c], we calculate the expenditure elasticity EPSc. This is equal to 
the marginal budget share divided by the budget share 
(SHOUc=P3c.XHOUc/WHOU) for each commodity: 

. / [ 3 . ]c c c cEPS WHOU P XHOU=      (27) 

BLUXc is the ratio of luxury expenditure to total expenditure on each 
commodity, given by: 

[ ] / [ . ]3c d c cc
d

WHOUBLUX WSUB P XHOU= −    (28) 

Substituting equations (26) and (27) into equation (28): 

/c cBLUX EPS Frisch= −       (29) 

Next, we calculate the matrix of price elasticities implied by LES. By 
differentiating equation (24) with respect to P3d [i.e., 

/ 3/ 3c ccd ddXHOU PdP XSUB= − ], we calculate the off-diagonal elements of the 

price elasticity matrix (cd): 

.[ ] ]/ 3 3 /c d d cdXHOU dP P XHOU =        

].( )( 3 )/( . 3 ).[ 3 /c d d c d cWHOU P XSUB WHOU P P XHOU−  (30) 

(1 ). /cd c d d cBLUX SHOU SHOU = −      (31) 

We obtain the diagonal elements by dividing equation (24) by P3c and 
differentiating with respect to P3c: 

./ 3 [ 3 / ]c c c cdXHOU dP P XHOU =  . ]/[ 3c c cWHOU P XHOU− +    

. .( ) 3 /[( . 3 ).[ 3 ]c d d c c cWHOU P XSUB WHOU P P XHOU   (32) 

Substituting equations (27) and (31) into equation (32), we obtain: 

cd
d c

ccc EPS 


= − −         (33)  
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LES does not allow for specific substitutability. Where appropriate, specific 
substitutes could form a CES nest, with the CES composite commodity entering 
LES within the model. In addition, LES does not allow for commodities with 
negative income elasticities.  

SinoTERM365 includes provision for multiple households in each bottom-up 
region. At present, there is only one household in the database in each region. 
Individual households are denoted by h.  

Table 8. Definitions of variables and shares in the household demand system 

Variables  
xhouh_s(c,d,h)  Household demands 

wlux(d,h)  Total nominal supernumerary household expenditure 

xhouhtot(d,h)  Total real household consumption 

whouhtot(d,h)  Total nominal household consumption 

phouhtot(d,h)  CPI 

nhouh(d,h)  Number of households 

xlux(c,d,h)  Household - supernumerary demands 

xsub(c,d,h)  Household - subsistence demands 

alux(c,d,h)  Taste change, supernumerary demands 

asub(c,d,h)  Taste change, subsistence demands 

ahou_s(c,d,h)  Taste change,household imp/dom compsite 

Values and shares 

BLUX(c,d,h) Luxury share of expenditure on commodity c 

BUDGSHR(c,d,h) Budget share 

SLUX(c,d,h) Marginal budget share 
   Source: Authors’ construction. 

Rather than include the general household demand equation in the model with 
the elasticities implied by equations (31) and (33), the LES in SinoTERM365 is 
coded as shown in Listing 5.  

Listing 6. Household demand system (partial GEMPACK coding)  

xlux(c,d,h) + phou(c,d) = wlux(d,h) + alux(c,d,h);   (T24a) 

xhouh_s(c,d,h) = BLUX(c,d,h)*xlux(c,d,h) + [1-BLUX(c,d,h)]*xsub(c,d,h); (T24b) 

alux(c,d,h) = asub(c,d,h) - sum{k,COM, SLUX(k,d,h)*asub(k,d,h)};  (T24d) 

asub(c,d,h) = ahou_s(c,d,h) - sum{k,COM, BUDGSHR(k,d,h)*ahou_s(k,d,h)}; (T24e) 

xsub(c,d,h) = nhouh(d,h) + asub(c,d,h);      (T25) 

xhouhtot(d,h)= sum{c,COM,BUDGSHR(c,d,h)*xhouh_s(c,d,h)};     

phouhtot(d,h)= sum{c,COM,BUDGSHR(c,d,h)*phou(c,d)};    

whouhtot(d,h)= phouhtot(d,h) + xhouhtot(d,h);     
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A formula within the TABLO code calculates the share term BLUXc from 
equation (29) and SLUXc based on equation (25). The Frisch “parameter” and 
expenditure elasticities are updated as the subsistence share of consumption 
changes. The usual practice has been to assign XSUBc as fixed. In modeling 
relatively local changes, this is not an issue. But in dynamic modeling, particularly 
when dealing with rapid income growth as in the case of the Chinese economy, 
growing aggregate consumption results in XSUBc shrinking as a share of total 
consumption of each commodity. This implies that the LES system will tends 
towards Cobb-Douglas. If this is unsatisfactory in a particular scenario, the 
modeler may choose to increase per capita subsistence consumption over time. 
This is justifiable on the basis that yesterday’s luxuries are today’s necessities. An 
alternative functional form to LES that copes better with growth in consumption 
over time is the AIDADS form, which also allows inferior commodities (Rimmer 
and Powell 1996).   

To accommodate changes in per capita subsistence quantities, we may add to 
SinoTERM365 an equation defining the percentage change in the Frisch 
“parameter”, wfrisch:  

wfrisch(d,h) = whoutot(d,h)-wlux(d,h);     (T26) 

A subsistence taste shifter asub_c is added to the following: 

xsub(c,d,h) = nhou(d,h) + asub(c,d,h) + asub_c(d,h);    (T24f) 

alux(c,d,h) =asub(c,d,h) -asub_c(d,h)      

-sum{k,COM, SLUX(k,d)*[asub(k,d,h)-asub_c(d,h)]};    (T24g) 

In order to target a given shift in subsistence expenditures, the variable wfrisch 
is made exogenous by swapping with asub_c.2 

 3.4 Investment demands 

Following ORANI, the commodity composition of investment varies between 
industries. The amount of commodity c demanded by investment industry i in 

region d, 2c
idX , is proportional to the industry investment quantity, X2TOTid, for a 

given investment technology 2c
idA . P2cd is the commodity-specific investment 

price.  

2 2 . 2c c
id id idX A X TOT=        (34) 

, ,2 . 2 1 . 1c c
cd cd Inv d Inv dP X P X=      InvUser (35) 

                                                 
2 In a dynamic simulation of an earlier SinoTERM version developed by the authors, 
aggregate consumption per capita grew by more than 785 percent between 2006 and 2030. 
In the forecast baseline, shocks to wfrisch were set equal to minus 15 percent of the growth 
in aggregate consumption. Starting with an absolute Frisch ratio of 2.5 in 2007, the ratio 
had moved in each region of the model to around 1.75 by 2030 (see 
http://www.copsmodels.com/archivep.htm item TPGW0169). 
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,2 . 2 2 . 1c c
id id id Inv d

c

PI X TOT X P=     InvUser (36) 

/ 2id id idGR R PI=        (37) 

Equation (34) calculates an industry investment price index. Equation (35) 
defines the gross rate of return (GRid) as the ratio of the capital rental to the price 
of new capital (i.e., the industry investment price index). 

2 /id id idIKRAT X TOT K=       (38) 
2 0.33[( ) / ]id idIKRAT f GR Islack=      (39) 

Equation (36) defines the investment-to-capital ratio (IKRATid). Typically the 
gross rate of return is exogenous in long-run simulations, with capital stocks (Kid) 
endogenous – and the converse in the short run. Islack is exogenous except when 
the simulation is accommodating a macro investment target. Equation (37) causes 
investment to grow when the rate of return increases (the 2 and 0.33 exponents are 
those used in the ORANI short-run investment rule). Dynamic applications of 
TERM have in addition a dynamic accumulation equation linking present capital, 
past capital net of depreciation and past investment (see Dixon and Rimmer, 2002, 
section 21).  

Table 9: Definitions of variables and shares in investment demands 

Variables  
xinvitot(i,d)  Investment by industry 

pinvitot(i,d)  Investment price index by industry 

gret(i,d)  Gross rate of return = Rental/[Price of new capital] 

ggro(i,d)  Gross growth rate of capital = Investment/capital 

finv1(i,d)  Investment shift variable 

invslack  Investment slack variable for exogenizing national investment 

fgret(i,d)  Shifter to lock together industry rates of return 

capslack  Slack variable to allow fixing aggregate capital 

Values  
INVEST_I(c,d)  Investment by commodity and region 

INVEST_C(i,d)  Investment by industry and region 
    Source: Authors’ calculation. 

Listing 7. Investment demands (partial GEMPACK coding) 

xinvi(c,i,d) = xinvitot(i,d);      (T26) 

INVEST_I(c,d)*xinv_s(c,d)= sum{i,IND,INVEST(c,i,d)*xinvi(c,i,d)}; T25) 

INVEST_C(i,d)*pinvitot(i,d)= sum{c,COM,INVEST(c,i,d)*pinvest(c,d)}; (T26) 

gret(i,d)= pcap(i,d) - pinvitot(i,d);     (T27a) 

gret(i,d) = fgret(i,d) + capslack;      (T27b) 

ggro(i,d)= xinvitot(i,d) - xcap(i,d);     (T31) 

ggro(i,d)=finv1(i,d)+0.33*[2.0*gret(i,d)-invslack];   (T32) 
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3.5 Other final demands 

Government demands XGcd are independent of prices and proportional to three 
corresponding shifters. They shift the demand function with different dimensions: 
by d as FGc, by c and d, as FGScd and by c, s, and d, as FGOVcsd. 

. .cd c cd csdXG FG FGS FGOV=       (40) 

Export demands follow a two-stage process. First, regional source-specific 
exports X4cd form a CES composite X4NATc, with the CES parameter for inter-
regional substitutability set to 5: 

4 ( 4 , [ 4 / 4 ])cd c cd cX f X NAT CES P P NAT=     (41) 

,4 1c
cd Exp dP P=       ExpUser (42) 

4 . 4 4 . 4c c cd cd
d

P NAT X NAT X P=       (43) 

Next, national exports are linked to international demands. FP4NATc and FQ4c 

are demand shifters, and  the export demand elasticity.  

4 ( 4 / 4 ) 4c c c cX NAT P NAT FP NAT FQ−=     (44) 

Inventories XSTid are proportional to XTOTid multiplied by a shifter, FSTid. 

.id id idXST Q FST=        (45) 

Table 10: Definitions of variables and parameters in other final demands 

Variables  
 

ppur_exp(c)  Export price P4NAT 

xpur_exp(c)  National export volume X4NAT 

natfqexp(c)  Export quantity shift variable 

natfpexp(c)  Export price shift variable 

natfpexp_c  Macro shifter 

xexp(c,s,d)  Export of all-region composite leaving port 

xgov(c,s,d)  Government demands 

fgov(c,s,d)   Government demand shifter 

fgov_s(c,d)   Government demand shifter 

fgovtot(d)   Government demand shifter 

xgov_s(c,d)   Government demands, dom+imp 

xstocks(i,d)   Inventories 
 Values and parameters 

TRADE_D(c,s,r)  TRADE matrix summed across destinations 

TRADE_R(c,s,d)  TRADE matrix summed across origins 

TRADE_RD(c,s)  TRADE matrix summed across origins and 
destinations EXP_ELAST(c)  Export demand elasticity 

PUR(c,s,u,d)  Purchasers' prices 
    Source: Authors’ construction. 
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Listing 8. Other final demands (partial GEMPACK coding) 

xgov(c,s,d) =  fgovtot(d) + fgov(c,s,d) + fgov_s(c,d);   (T40a) 

xgov_s(c,d) = sum{s,SRC, SRCSHR(c,s,"Gov",d)*xgov(c,s,d)};  (T40b) 

xexp(c,"dom",d) = xpur_exp(c)-5*[ppur(c,"dom","Exp",d)-ppur_exp(c)]; (T41)  

ppur_exp(c)= sum{d,Dst,PUR(c,"dom","exp",d)*ppur(c,"dom","Exp",d)}; (T43)  

xpur_exp(c) - natfqexp(c) = -EXP_ELAST(c)*    

[ppur_exp(c)- phi - natfpexp(c) - natfpexp_c];    (T44)  

xstocks(i,d) = xtot(i,d);       (T45) 

3.6 Margins 

TERM separates the market for margins from the market for commodities being 

delivered by margins m (Dixon et al., 1982). Demands for margins csm
rdXTM  are 

proportional to commodity demands cs
rdXT   subject to a margins-using technology 

csm
rdATM  (equation (46)).  

.csm csm cs
rd rd rdXTM ATM XT=       (46) 

In equation (47), cs
rPBAS  is the basic commodity price and m

rdPM  the margins’ 

prices. cs
dPU  is the margins-inclusive, tax-exclusive source-composite delivered 

price that appears in equation (3.4).  

. . .cs cs cs cs m csm
rd rd r rd rd rd

m

PD XT PBAS XT PM XTM= +      (47) 

. .m m pm m
rd rd rd r

p

PMR XMR XMP PDOM=        (48) 

( , [ / ])pm m m m
rd rd r rdXMP f XMR CES PDOM PMR=      (49) 

,c dom
d cdPBAS PDOM=        (50) 

,c imp
d cdPBAS PIMP=        (51) 

A third context is introduced for sub-national regions in equation (46). In 
addition to regional origins r and destinations d for commodity and services, 
regions p also produce margins. A shipping company that moves commodities 
from origin in Chongqing to a destination in Shanghai may be based in Wuhan 
(i.e., the margins producing region). The Wuhan company competes with 
shipping companies from other regions through CES substitution between 

regional providers p of margins in equation (49). m
rdPMR  is the price of margins 

summed across providers p. mp

rdXMP  is the level of margins provided by p to move 

commodities from region r to d and m

rdXMR  the provider composite.  

Table 11 contains the definition of variables, values and shares concerning 
margins, followed by the TABLO coding.  
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Table 11. Definitions of variables, shares and parameters in margins 

Variables  
xtradmar(c,s,m,r,d)  Margin m on commodity c,s going from r to d 

atradmar(c,s,m,r,d)  Tech change: margin m on commodity c,s going from r to d 

atradmar_cs(m,r,d)  Tech change: margin m on commodities going from r to d 

asuppmar(m,r,d,p) 
 Tech change, Margin m supplied by p on commodities 
    passing from r to d 

xsuppmar(m,r,d,p)  Demand for margin m (made in p) on commodities from r to 
d xsuppmar_d(m,r,p)  Total margins on commodities from r, produced in p 

pdelivrd(c,s,r,d)  All-user delivered price of commodity c,s from r to d 

psuppmar_p(m,r,d)  Price of composite margin m on commodities from r to d 

xsuppmar_p(m,r,d)  Quantity of composite margin m on commodities from r to d 

xsuppmar_rd(m,p)  Total demand for margins produced in p 

pbasic(c,s,r)  Basic prices 

Values, shares and parameters 

BASSHR(c,s,r,d)  Share of basic value in all-user delivered price 

MARSHR(c,s,m,r,d)  Share of margin m in all-user delivered price 

DELIVRD_R(c,s,d)  Demand in region d for delivered commodities from all 
regions SUPPMAR_P(m,r,d)  Total demand for margin m on commodities from r to d 

SUPPMAR_D(m,r,p)  Total demand for margin m (from p) on commodities from r 

SUPPMAR(m,r,d,p)  Margins supplied by p on commodities passing from r to d 

SIGMAMAR(m)  Substitution elasticity between margin origins 
    Source: Authors’ construction. 

Listing 9. Margins (partial GEMPACK coding) 

xtradmar(c,s,m,r,d)=xtrad(c,s,r,d)+atradmar(c,s,m,r,d);    (T46) 

pdelivrd(c,s,r,d) = BASSHR(c,s,r,d)*pbasic(c,s,r)  +  

sum{m,MAR,MARSHR(c,s,m,r,d)*[psuppmar_p(m,r,d)+atradmar(c,s,m,r,d)]};  (T47) 

SUPPMAR_P(m,r,d)*psuppmar_p(m,r,d) =      

sum{p,PRD, SUPPMAR(m,r,d,p)*[pdom(m,p)+asuppmar(m,r,d,p)]};   (T48) 

xsuppmar(m,r,d,p) = xsuppmar_p(m,r,d) + asuppmar(m,r,d,p)   

-SIGMAMAR(m)*[pdom(m,p)+asuppmar(m,r,d,p)-psuppmar_p(m,r,d)];   (T49) 

pbasic(c,"dom",r) = pdom(c,r);      (T50) 

pbasic(c,"imp",r) = pimp(c,r);      (T51) 

3.7 Market clearing equations and macro equations 

Equation (52) is the market clearing condition for industry outputs. Additional 
market clearing equations are required due to the common sourcing assumption. 
Equation (53) links non-margins (a subset of commodities, denoted by nm) 
commodity sales summed across destinations to regional supplies and equation 
(54) does so for the margins subset (m). Equation (55) links sales summed across 
users to supplies summed across regional origins.  
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.id id id cid
c

PTOT Q XST MQ+ =       (52) 

,
,.nm nm dom

rd rd nm ir
d i

PDOM XT MQ=        (53)  

,.m m dom pm
mip pd pd rd

i d r d

MQ PDOM XT XMP= +      (54)  

. . 1cs cs c cs
ud ud sd d

u

X P PU XT=       (55)  

m csm
rd rd

c s

XMR XTM=          (56)  

Next, we calculate GDP on the expenditure (GDPEd) and income sides (GDPEi). 
GDP on each side is set equal by the above market clearing equations.  

 

, ,

, , , ,

, ,

1 . 1 . .

( . . ) ( . . )

( . . )

c c c imp c imp
d ud ud id id dr dr

u i c r

m m m m cs cs cs cs
dst d dst d dp dp d dst d dst dd dd

m dst p c s dst

cs cs cs cs
org d org d dd dd

c s org

GDPE P X PTOT XST PT XT

PMR XMR PMR XMR PT XT PT XT

PT XT PT XT

= + −  

+ − + −    

− − 

 

(57) 

. . 1 .( 1)c cs cs
d id id id sd d ud

i i u c s

GDPI PF F VPTX PU XT T= + + −      (58) 

Equation (59) is the consumption function where APCd is the average 

propensity to consume based on labor income ( . )o o
d id id

i o

LTOT W L=   and a 

consumption function shifter (FHOUd).  

. .d d d dWHOU LTOT APC FHOU=       (59) 
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Table 12: Definitions of variables, values and mappings in market clearing and 
macro equations 

Variables  

xtrad_d(c,s,r) 
Total direct demands for commodities produced(dom) or 
landed(imp) in r  

delXGDPEXP(d,i)  Ordinary change in quantity expenditure G 

xgdpexp(d) Real expenditure GDP 

xfin(u,d) Final user quantity indices 

wlnd_i(d) Total rentals to land 

wcap_i(d) Total rentals to capital 

wlab_io(d) Total wage bill 

delTAXint(c,s,i,d) Ordinary change in intermediate input taxes 

delTAXhou(c,s,d) Ordinary change in household commodity taxes 

delTAXinv(c,s,d) Ordinary change in investment commodity taxes 

delTAXgov(c,s,d) Ordinary change in government commodity taxes 

delTAXexp(c,s,d) Ordinary change in export commodity taxes 

delGDPINC(d,i) Ordinary change in nominal income GDP composition 

wgdpinc(d) Nominal income GDP 

houslack 
Consumption slack variable to accommodate national 
constraint 

fhou(h,d) Regional propensity to consume from labor income 

Values and mappings 

MAKESHR2(c,i,d) Industry share in commodity supply 

MAKE_I(c,d) Total production of commodities 

SUPPMAR_RD(m,p) Total demand for margin m produced in p 

USE(c,s,u,d) Delivered value of demands: basic + margins 

USE_U(c,s,d) Total delivered value of regional composite 

USE_I(c,s,d) All-intermediate delivered value of regional composite 

TRADMAR(c,s,m,r,d) Margins on trade matrix 

TRADMAR_CS(m,r,d) Total demand for margin m on commodities fro 

SCOM2IND Mapping from SCOM commodity to industry  

STOCKS(i,d) Domestic inventories 

LAB_IO(d) Total wages 

LND_I(d) Total rentals to land 

CAP_I(d) Total rentals to capital 

GDPINCSUM(d,i) Income GDP breakdown 

GDPINC(d) Income GDP 
    Source: Authors’ construction. 
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In the TABLO coding, the commodities set is divided into two in (52). MCOM 
(denoted by mc) refers to commodities produced by several industries, and SCOM 
(sc) to commodities produced by a single industry. The set MCOMIND refers to 
industries producing commodities within the MCOM subset. There are 
computational efficiency gains from not assuming that all industries are 
potentially multi-product. Expenditure-side GDP in region q is computed by 
adding up elements of the set GDPEXPCAT. The set FINDEM (f), a subset of USR, 
refers to final demands. The add-up of income-side GDP follows. The set 
GDPINCCAT includes all factors, commodity taxes and production taxes. 

Listing 10. Market clearing and macro equations (partial GEMPACK coding)  

xcom(mc,d)=sum{i,MCOMIND,MAKESHR2(mc,i,d)*xmake(mc,i,d)};   (T52a) 

xcom(sc,d)=xmake(sc,SCOM2IND(sc),d);     (T52b) 

xcom(nm,r) = xtrad_d(nm,"dom",r);       (T53) 

MAKE_I(m,p)*xcom(m,p) = TRADE_D(m,"dom",p)*xtrad_d(m,"dom",p) 

+ SUPPMAR_RD(m,p)*xsuppmar_rd(m,p);     (T54) 

USE_U(c,s,d)]*xtrad_r(c,s,d) = USE_I(c,s,d)*xint_i(c,s,d)   

 + USE(c,s,"hou",d)*xhou(c,s,d) + USE(c,s,"inv",d)*xinv(c,s,d)  

+USE(c,s,"gov",d)*xgov(c,s,d)+USE(c,s,"exp",d)*xexp(c,s,d);   (T55) 

TRADMAR_CS(m,r,d))*xsuppmar_p(m,r,d) =      

sum{c,COM,sum{s,SRC,TRADMAR(c,s,m,r,d)*xtradmar(c,s,m,r,d)}};   (T56) 

delXGDPEXP(q,f) =0.01*PUR_CS(f,q)*xfin(f,q);     (T57a) 

delXGDPEXP(d,"Stocks")=       

0.01*sum{i,IND,STOCKS(i,d)*xstocks(i,d)};      (T57b) 

delXGDPEXP(q,"Imports") =      -

0.01*sum{c,COM,TRADE_D(c,"imp",q)*xtrad_d(c,"imp",q)};    (T57c) 

delXGDPEXP(q,"NetMar") = 0.01*sum{m,MAR,sum{r,ORG,sum{d,DST,  

SUPPMAR(m,r,d,q)*xsuppmar(m,r,d,q)} -sum{p,PRD, 

SUPPMAR(m,r,q,p)*xsuppmar(m,r,q,p)}}};      (T57d) 

delXGDPEXP(q,"Rexports") = 0.01*sum{c,COM,sum{s,SRC,   

TRADE_D(c,s,q)*xtrad_d(c,s,q)- TRADE(c,s,q,q)*xtrad(c,s,q,q)}};  (T57e) 

delXGDPEXP(q,"Rimports") =-0.01*sum{c,COM,sum{s,SRC,   

TRADE_R(c,s,q)*xtrad_r(c,s,q)-TRADE(c,s,q,q)*xtrad(c,s,q,q)}};   (T57f) 

GDPEXP(q)*xgdpexp(q)=100*sum{i,GDPEXPCAT, delXGDPEXP(q,i)};   (T57g) 

delGDPINC(d,"Land") =0.01*LND_I(d)*wlnd_i(d);    (T58a) 

delGDPINC(d,"Capital") =0.01*CAP_I(d)*wcap_i(d);    (T58b) 

delGDPINC(d,"Labor") =0.01*LAB_IO(d)*wlab_io(d);    (T58c) 

delGDPINC(d,"ProdTax") =sum{i,IND,delPTX(i,d)};    (T58d) 

delGDPINC(d,"ComTax") =sum{c,COM,sum{s,SRC,  

sum{i,IND,delTAXint(c,s,i,d)}+delTAXhou(c,s,d) 

+delTAXinv(c,s,d)+delTAXgov(c,s,d)+delTAXexp(c,s,d)}};    (T58e) 

GDPINC(d)*wgdpinc(d) =100*sum{i,GDPINCCAT,delGDPINC(d,i)};   (T58f) 

whouhtot(d,h)  =  wlab_io(d) + fhou(d,h) + houslack;    (T59) 
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4. Simulation: Reducing China’s Use of Coal 

4.1 The scenario 

This illustrative simulation with an aggregation of SinoTERM365 is based on 
global expectations that coal-fired electricity generation will fall in China and 
elsewhere in the long run in order to reduce greenhouse gas emissions. 

The two shocks imposed on each region in the aggregation are:  
1. A 50% increase in hydroelectricity output and capital. 
2. A 20% decrease in inputs of coal-generated electricity per unit of output 

and a 50% increase in hydroelectric inputs per unit of output in all industries.3 
We explain the change in real GDP for the biggest loser, RoShanxi (Shanxi 

excluding the prefecture of Shuozhou). Coal’s share of GDP in RoShanxi  is 12.2%, 
and the respective shares for coal- and hydro-generated electricity are 5.3% and 
0.4% (Table 13, columns 1 to 3). The coal output loss of 1% (Table 13, column 4) is 
equivalent to a real GDP loss of 0.12% (=12.2%*-0.01), the coal-generation output 
loss of 16.4% is equivalent to a real GDP loss of 0.9% (=5.3%*-0.164) and the hydro-
generated gain is equivalent to a real GDP gain of 0.2% (=0.4%*0.5). These 
contributions sum to a real GDP change of -0.82%, bigger than the modeled real 
GDP change of -0.6% (Table 13, column 6).   

Since real wages in RoShanxi fall by 0.3%, employment losses end up being less 
than 0.82% at 0.7%. That is, a weakened labor market adjusts partly through falling 
real wages and partly through labor migration to other regions. Some industries, 
notably services that are heavily reliant on local household demands (aggregate 
consumption falls by 1.0%), suffer output decreases due to the decline in local 
demand. Other sectors including farming, non-coal mining activity and 
manufactures increase output due to improved competitiveness arising from 
lower real wages.  

RoShanxi is a net exporter of coal and coal-generated electricity to other 
regions, so that a decline in national demand for coal-generated electricity has a 
negative impact on RoShanxi’s terms-of-trade (-0.2%). This reduction in spending 
power implies that real consumption (-1.0%) falls by a larger percentage than real 
GDP (-0.6%). 

 
 

                                                 
3 Equation (14) of the core model allows only weak endogenous substitutability between 
different forms of electricity. Adams and Parmenter (2013) include an additional CES nest 
to depict strong substitutability between generators, and Peters (2016) introduces 
electricity substitutability into the GTAP-E model: such modifications makes the 
exogenous demand switch modelled here unnecessary. The files to reproduce this 
simulation accompany the article. 
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Table 13. Long-run effects of 50% increase in hydropower supply, and demand 
switch from coal-generated electricity to hydropower 
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  Base year data 
   

  % change from base case 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

ErdosIM 62.2 1.9 0.2 -0.6 -16.9 -0.1 -0.2 -0.7 -0.5 -0.1 -1.0 

RoIM 7.8 3.5 0.3 -1.2 -16.8 -0.1 -0.1 -0.4 -0.4 0.0 -0.9 
ShuozhouS
X 

36.3 1.1 1.6 -0.7 -17.0 0.7 -0.6 0.0 -0.2 0.2 0.7 

RoShanxi 12.2 5.3 0.4 -1.0 -16.4 -0.6 -0.2 -1.0 -0.7 -0.3 -1.2 

Shaanxi 10.8 0.6 0.0 -1.0 -17.1 0.1 0.3 0.2 -0.1 0.3 -0.3 

HuaibeiAH 24.3 3.8 0.0 -1.0 -16.8 -0.4 0.2 -0.3 -0.4 0.0 -1.1 

RoAnhui 2.3 2.1 0.2 -1.6 -16.9 0.1 0.1 0.1 -0.1 0.3 -0.5 

RoChina 0.8 1.0 0.5 -0.9 -17.2 0.3 0.1 0.5 0.0 0.4 0.1 

National 1.9 1.2 0.5 -0.9 -17.1 0.3 0.0 0.4 0.0 0.4 0.0 

Source: Authors’ calculation 

On the income side, real GDP is a function of primary factor inputs, indirect tax 
income and technology.  Since aggregate primary factors are unchanged at the 
national level in the scenario (Table 13, bottom row), the modeled change in real 
GDP (0.3% nationally) is due to technological change. The targeted output increase 
of 50% for hydro-generated electricity in all regions was achieved by making 
primary factor productivity for sector endogenous. Net input savings also arose in 
the switch from coal- to hydro-generated electricity. A cost-neutral switch would 
have resulted in a lower real GDP gain.4  

Overall, even this stylized simulation shows that relatively coal-intensive 
regions are vulnerable to downturns if China’s energy mix switches away from 
coal towards renewables. As coal mines close, losses in regions such as the Erdos 
prefecture in Inner Mongolia (ErdosIM) may be more substantial than are modeled 
in this scenario.  

5. Conclusion 

This paper has outlined the TERM methodology, the objective of which is to 
depict more sectoral and regional disaggregation than other multi-regional, sub-

                                                 
4 Users of the online files for running the simulation will see the decomposition of national 
real GDP  into changes in factors, technology and taxes in the variable contincagg_d. This 
explanatory variable is excluded from the code shown in section 3. 
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national AGE models. The major contribution is to apply the approach to China, 
for which data are quite scarce. Other models of China, including earlier versions 
of SinoTERM, confine regional detail to the provincial level. SinoTERM365 is the 
first AGE model of China with prefectural detail in 365 regions. We make the most 
of scarce data using assumptions such as identical industry technologies in 
different regions and the gravity assumption to estimate inter-regional trades. In 
examples in which the assumption of identical technologies is suspect, such as in 
electricity generation, we disaggregate the sectoral dimension further so as to 
make the assumption defensible.  

Table 14. TERM and SinoTERM online resourcesa 

Description Reference 

TERM database generation programs tpmh0067 

Files to replicate SinoTERM simulation reported in Horridge and 
Wittwer (2008) 

tpgw0079 

Files to replicate SinoTERM simulation reported in Wittwer and 
Horridge (2009) 

tpgw0086 

Files to replicate Australian TERM simulation reported in Wittwer 
and Horridge (2010) 

tpmh0116 

Example of Polish TERM tpmh0117 

Example of Indonesian TERM tpmh0118 

Files required for simulations in South African version of TERM 
teaching course 

tpmh0126 

Files to replicate TERM-BR simulations reported in Ferreira Filho et 
al. (2015) 

tpmh0144 

Dynamic aggregation of SinoTERM with increasing household 
subsistence quantities over time (see Section 3.3) 

tpgw0169 

Guide for potential subscribers of SinoTERM365  tpgw0172 

Notes: (a) The URL for all resources in the table is www.copsmodels.com/archivep.htm. 

Source: Authors’ construction. 

Table 14 shows freely downloadable resources concerning SinoTERM or other 
TERM models.  These resources include TERM database generation programs, and 
specific databases and model ingredients for replicating published applications. 

As shown in Table 2, we catalogue rather than hide data deficiencies. Yet we 
cannot anticipate all relevant deficiencies in such a large database. We are likely 
to discover some deficiencies arising from specific studies using SinoTERM365 

http://www.copsmodels.com/archivep.htm
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aggregations. If the SinoTERM365 database is to be improved and updated, it will 
in the medium term rely increasingly on researchers within China. One reason for 
this is that the University of Michigan discontinued hosting the China Data Center 
in 2018. We relied heavily on this online resource in compiling regional data. 
Cyber-security concerns have also resulted in international data on electricity 
generation plants no longer being available. 

Some model developments have already occurred in project collaboration 
between the Centre of Policy Studies (CoPS) and research groups within China. 
For example, Feng et al. (2018) built on the methodology of Adams and Parmenter 
(2013) to develop auxiliary greenhouse gas accounts, using a dynamic version of 
SinoTERM originally developed at CoPS. Our hope is that by making aggregations 
of SinoTERM365 available,  combined with short course training, on a subscription 
basis (see Table 14), a growing community of users will sustain database and 
model developments.   
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