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1 Introduction
In the following, consider a closed and bounded convex subset D ofℝ2. Define by

AD := ∬
D

dxdy

the area of D and by (xD , yD) the center of mass for D, where

xD := 1
AD
∬
D

xdxdy, yD := 1
AD
∬
D

ydxdy.

Consider the function of two variables f = f(x, y) and denote by ∂f
∂x the partial derivative with respect to

the variable x and by ∂f
∂y the partial derivative with respect to the variable y.

In the recent paper [9], we obtained the following Hermite–Hadamard type inequalities.

Theorem 1.1. Let f : D → ℝ be a differentiable convex function on D, a closed and bounded convex subset
ofℝ2 surrounded by the smooth curve ∂D. Then for all (u, v) ∈ D we have

∂f
∂x
(u, v)(xD − u) +

∂f
∂y
(u, v)(yD − v) + f(u, v) ≤

1
AD
∬
D

f(x, y)dxdy

≤
1
3 f(u, v) +

1
3AD
∮
∂D

[(v − y)f(x, y)dx + (x − u)f(x, y)dy].
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In particular,

f(xD , yD) ≤
1
AD
∬
D

f(x, y)dxdy

≤
1
3 f(xD , yD) +

1
3AD
∮
∂D

[(yD − y)f(x, y)dx + (x − xD)f(x, y)dy].

We also have the following corollary.

Corollary 1.2. With the assumptions of Theorem 1.1, we have

f(xD , yD) ≤
1
AD
∬
D

f(x, y)dxdy

≤
1

2AD
∮
∂D

[(yD − y)f(x, y)dx + (x − xD)f(x, y)dy].

Some examples for rectangles and disks on the plane were also provided in [9].
The case of a convex function defined on a convex body in the space was considered in [10], where we

obtained the following result.

Theorem 1.3. Let B be a convex body in the three-dimensional spaceℝ3 bounded by an orientable closed sur-
face ∂B and let f : B → ℂ be a continuously differentiable function defined on an open set containing B. If f is
convex on B, then for any (u, v, w) ∈ B we have

f(u, v, w) + (xB − u)
∂f(u, v, w)

∂x
+ (yB − v)

∂f(u, v, w)
∂y
+ (zB − w)

∂f(u, v, w)
∂z

≤
1

V(B) ∭
B

f(x, y, z)dxdydz

≤
1
4 f(u, v, w) +

1
4

1
V(B)[∬

∂B

(x − u)f(x, y, z)dy ∧ dz

+∬
∂B

(y − v)f(x, y, z)dz ∧ dx +∬
∂B

(z − w)f(x, y, z)dx ∧ dy],

where

xB := 1
V(B) ∭

B

xdxdydz,

yB := 1
V(B) ∭

B

ydxdydz,

zB := 1
V(B) ∭

B

zdxdydz.

In particular, we have

f(xB , yB , zB) ≤
1

V(B) ∭
B

f(x, y, z)dxdydz

≤
1
4 f(xB , yB , zB) +

1
4

1
V(B)[∬

∂B

(x − xB)f(x, y, z)dy ∧ dz

+∬
∂B

(y − yB)f(x, y, z)dz ∧ dx +∬
∂B

(z − zB)f(x, y, z)dx ∧ dy].

We also have the following corollary.
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Corollary 1.4. With the assumptions of Theorem 1.3,

1
V(B) ∭

B

f(x, y, z)dxdydz

≤
1
3

1
V(B)[∬

S

(x − xB)f(x, y, z)dy ∧ dz +∬
S

(y − yB)f(x, y, z)dz ∧ dx +∬
S

(z − zB)f(x, y, z)dx ∧ dy].

Examples for three-dimensional balls and spheres were also considered in [10].
For other Hermite–Hadamard type integral inequalities for multiple integrals, see [2–8, 11–15, 17–19].
Motivated by the above results, in this paper, by the use of the divergence theorem, we establish some

integral inequalities of Hermite–Hadamard type for convex functions of several variables defined on closed
and bounded convex bodies in the Euclidean spaceℝn for any n ≥ 2.

2 Some preliminary facts
Let B be a bounded open subset ofℝn (n ≥ 2) with smooth (or piecewise smooth) boundary ∂B. Assume that
F = (F1, . . . , Fn) is a smoothvector fielddefined inℝn, or at least inB ∪ ∂B. Letnbe theunit outward-pointing
normal of ∂B. Then the divergence theorem states (see for instance [16]):

∫
B

div FdV = ∫
∂B

F ⋅ ndA, (2.1)

where

div F = ∇ ⋅ F =
n
∑
k=1

∂Fk
∂xk

,

dV is the element of volume inℝn and dA is the element of surface area on ∂B.
Ifn = (n1, . . . , nn), x = (x1, . . . , xn) ∈ B andusing thenotation dx for dV, we canwrite (2.1)more explic-

itly as
n
∑
k=1
∫
B

∂Fk(x)
∂xk

dx =
n
∑
k=1
∫
∂B

Fk(x)nk(x)dA. (2.2)

By taking the real and imaginary parts, we can extend the above equality for complex-valued func-
tions Fk, k ∈ {1, . . . , n}, defined on B.

If n = 2, the normal is obtained by rotating the tangent vector by 90∘ (in the correct direction so that it
points out). The quantity tds can be written (dx1, dx2) along the surface, so that

ndA := nds = (dx2, −dx1).

Here t is the tangent vector along the boundary curve and ds is the element of arc-length.
From (2.2) we get for B ⊂ ℝ2 that

∫
B

∂F1(x1, x2)
∂x1

dx1dx2 + ∫
B

∂F2(x1, x2)
∂x2

dx1dx2 = ∫
∂B

F1(x1, x2)dx2 − ∫
∂B

F2(1, x2)dx1,

which is Green’s theorem in the plane.
If n = 3 and if ∂B is described as a level-set of a function of three variables, i.e.,

∂B = {x1, x2, x3 ∈ ℝ3 | G(x1, x2, x3) = 0},

then a vector pointing in thedirection ofn is gradG.We shall use the casewhereG(x1, x2, x3) = x3 − g(x1, x2),
(x1, x2) ∈ D, and a domain inℝ2 for some differentiable function g on D and B corresponds to the inequality



70 | S.S. Dragomir, Some Hermite–Hadamard type inequalities

x3 < g(x1, x2), namely
B = {(x1, x2, x3) ∈ ℝ3 | x3 < g(x1, x2)}.

Then

n =
(−gx1 , −gx2 , 1)
(1 + g2x1 + g2x2 )1/2

,

dA = (1 + g2x1 + g
2
x2 )

1/2dx1dx2,
ndA = (−gx1 , −gx2 , 1)dx1dx2.

From (2.2) we get

∫
B

(
∂F1(x1, x2, x3)

∂x1
+
∂F2(x1, x2, x3)

∂x2
+
∂F3(x1, x2, x3)

∂x3
)dx1dx2dx3

= −∫
D

F1(x1, x2, g(x1, x2))gx1 (x1, x2)dx1dx2 − ∫
D

F1(x1, x2, g(x1, x2))gx2 (x1, x2)dx1dx2

+ ∫
D

F3(x1, x2, g(x1, x2))dx1dx2, (2.3)

which is the Gauss–Ostrogradsky theorem in the space.
Following Apostol [1], we can also consider a surface described by the vector equation

r(u, v) = x1(u, v)
󳨀→
i + x2(u, v)

󳨀→
j + x3(u, v)

󳨀→
k ,

where (u, v) ∈ [a, b] × [c, d].
If x1, x2, x3 are differentiable on [a, b] × [c, d], we consider the two vectors

∂r
∂u
=
∂x1
∂u
󳨀→
i + ∂x2

∂u
󳨀→
j + ∂x3

∂u
󳨀→
k

and
∂r
∂v
=
∂x1
∂v
󳨀→
i + ∂x2

∂v
󳨀→
j + ∂x3

∂v
󳨀→
k .

The cross product of these two vectors ∂r
∂u ×

∂r
∂v will be referred to as the fundamental vector product of the

representation r. Its components can be expressed as Jacobian determinants. In fact, we have (see [1, p. 420])

∂r
∂u
×
∂r
∂v
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∂x2
∂u

∂x3
∂u

∂x2
∂v

∂x3
∂v

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→
i +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∂x3
∂u

∂x1
∂u

∂x3
∂v

∂x1
∂v

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→
j +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∂x1
∂u

∂x2
∂u

∂x1
∂v

∂x2
∂v

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→
k

=
∂(x2, x3)
∂(u, v)

󳨀→
i + ∂(x3, x1)

∂(u, v)
󳨀→
j + ∂(x1, x2)

∂(u, v)
󳨀→
k .

Let ∂B = r(T) be a parametric surface described by a vector-valued function r defined on the box
T = [a, b] × [c, d]. The area of ∂B denoted by A∂B is defined by the double integral (see [1, pp. 424–425])

A∂B =
b

∫
a

d

∫
c

󵄩󵄩󵄩󵄩󵄩󵄩
∂r
∂u
×
∂r
∂v
󵄩󵄩󵄩󵄩󵄩󵄩dudv

=
b

∫
a

d

∫
c

√(
∂(x2, x3)
∂(u, v) )

2
+ (

∂(x3, x1)
∂(u, v) )

2
+ (

∂(x1, x2)
∂(u, v) )

2
dudv.

We define surface integrals in terms of a parametric representation for the surface. One can prove that
under certain general conditions the value of the integral is independent of the representation.

Let ∂B = r(T) be a parametric surface described by a vector-valued differentiable function r defined on
the box T = [a, b] × [c, d] and let f : ∂B → ℂ be defined and bounded on ∂B. The surface integral of f over ∂B
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is defined by (see [1, p. 430])

∬
∂B

fdA =
b

∫
a

d

∫
c

f(x1, x2, x3)
󵄩󵄩󵄩󵄩󵄩󵄩
∂r
∂u
×
∂r
∂v
󵄩󵄩󵄩󵄩󵄩󵄩dudv

=
b

∫
a

d

∫
c

f(x1(u, v), x2(u, v), x3(u, v))√(
∂(x2, x3)
∂(u, v) )

2
+ (

∂(x3, x1)
∂(u, v) )

2
+ (

∂(x1, x2)
∂(u, v) )

2
dudv.

If ∂B = r(T) is a parametric surface, the fundamental vector product N = ∂r
∂u ×

∂r
∂v is normal to ∂B at each

regular point of the surface. At each such point there are two unit normals, a unit normal n1, which has the
same direction as N, and a unit normal n2, which has the opposite direction. Thus

n1 =
N
‖N‖

and n2 = −n1.

Letn be one of the two normalsn1 orn2. Let also F be a vector field defined on ∂B and assume that the surface
integral

∬
∂B

(F ⋅ n)dA,

called the flux surface integral, exists. Here F ⋅ n is the dot or inner product.
We can write (see [1, p. 434])

∬
∂B

(F ⋅ n)dA = ±
b

∫
a

d

∫
c

F(r(u, v)) ⋅ ( ∂r∂u ×
∂r
∂v )

dudv,

where the sign “+” is used if n = n1 and the “−” sign is used if n = n2.
If

F(x1, x2, x3) = F1(x1, x2, x3)
󳨀→
i + F2(x1, x2, x3)

󳨀→
j + F3(x1, x2, x3)

󳨀→
k

and
r(u, v) = x1(u, v)

󳨀→
i + x2(u, v)

󳨀→
j + x3(u, v)

󳨀→
k , where (u, v) ∈ [a, b] × [c, d],

then the flux surface integral for n = n1 can be explicitly calculated as (see [1, p. 435])

∬
∂B

(F ⋅ n)dA =
b

∫
a

d

∫
c

F1(x1(u, v), x2(u, v), x3(u, v))
∂(x2, x3)
∂(u, v) dudv

+
b

∫
a

d

∫
c

F2(x1(u, v), x2(u, v), x3(u, v))
∂(x3, x1)
∂(u, v) dudv

+
b

∫
a

d

∫
c

F3(x1(u, v), x2(u, v), x3(u, v))
∂(x1, x2)
∂(u, v) dudv.

The sum of the double integrals on the right-hand side is often written more briefly as (see [1, p. 435])

∬
∂B

F1(x1, x2, x3)dx2 ∧ dx3 +∬
∂B

F2(x1, x2, x3)dx3 ∧ dx1 +∬
∂B

F3(x1, x2, x3)dx1 ∧ dx2.

Let B ⊂ ℝ3 be a solid in the 3-space bounded by an orientable closed surface ∂B, and let n be the
unit outer normal to ∂B. If F is a continuously differentiable vector field defined on B, we have the Gauss–
Ostrogradsky identity

∭
B

(div F)dV = ∬
∂B

(F ⋅ n)dA.
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If we express
F(x1, x2, x3) = F1(x1, x2, x3)

󳨀→
i + F2(x1, x2, x3)

󳨀→
j + F3(x1, x2, x3)

󳨀→
k ,

then (2.3) can be written as

∭
B

(
∂F1(x1, x2, x3)

∂x1
+
∂F2(x1, x2, x3)

∂x2
+
∂F3(x1, x2, x3)

∂x3
)dx1dx2dx3

= ∬
∂B

F1(x1, x2, x3)dx2 ∧ dx3 +∬
∂B

F2(x1, x2, x3)dx3 ∧ dx1 +∬
∂B

F3(x1, x2, x3)dx1 ∧ dx2.

3 General identities
We have the following identity of interest.

Lemma 3.1. Let B be a bounded open subset of ℝn (n ≥ 2) with smooth (or piecewise smooth) boundary ∂B.
Let f be a continuously differentiable function defined in ℝn, or at least in B ∪ ∂B and with complex values. If
αk, βk ∈ ℂ for k ∈ {1, . . . , n} with∑nk=1 αk = 1, then

∫
B

f(x)dx =
n
∑
k=1
∫
B

(βk − αkxk)
∂f(x)
∂xk

dx +
n
∑
k=1
∫
∂B

(αkxk − βk)f(x)nk(x)dA. (3.1)

We also have

∫
B

f(x)dx = 1
n

n
∑
k=1
∫
B

(γk − xk)
∂f(x)
∂xk

dx + 1
n

n
∑
k=1
∫
∂B

(xk − γk)f(x)nk(x)dA (3.2)

for all γk ∈ ℂ where k ∈ {1, . . . , n}.

Proof. Let x = (x1, . . . , xn) ∈ B. We consider

Fk(x) = (αkxk − βk)f(x), k ∈ {1, . . . , n},

and take the partial derivatives ∂Fk(x)
∂xk to get

∂Fk(x)
∂xk
= αk f(x) + (αkxk − βk)

∂f(x)
∂xk

, k ∈ {1, . . . , n}.

If we sum this equality over k from 1 to n we get
n
∑
k=1

∂Fk(x)
∂xk
=

n
∑
k=1

αk f(x) +
n
∑
k=1
(αkxk − βk)

∂f(x)
∂xk
= f(x) +

n
∑
k=1
(αkxk − βk)

∂f(x)
∂xk

(3.3)

for all x = (x1, . . . , xn) ∈ B.
Now, if we take the integral in equality (3.3) over (x1, . . . , xn) ∈ B, we get

∫
B

(
n
∑
k=1

∂Fk(x)
∂xk
)dx = ∫

B

f(x)dx +
n
∑
k=1
∫
B

[(αkxk − βk)
∂f(x)
∂xk
]dx. (3.4)

By the divergence theorem (2.2), we also have

∫
B

(
n
∑
k=1

∂Fk(x)
∂xk
)dx =

n
∑
k=1
∫
∂B

(αkxk − βk)f(x)nk(x)dA. (3.5)

By making use of (3.4) and (3.5), we get

∫
B

f(x)dx +
n
∑
k=1
∫
B

[(αkxk − βk)
∂f(x)
∂xk
]dx =

n
∑
k=1
∫
∂B

(αkxk − βk)f(x)nk(x)dA,

which gives the desired representation (3.1).
Identity (3.2) follows by (3.1) for αk = 1

n and βk =
1
n γk, k ∈ {1, . . . , n}.
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For the body B we consider the coordinates for the center of gravity

GB := G(xB,1, . . . , xB,n)

defined by
xB,k :=

1
V(B) ∫

B

xkdx, k ∈ {1, . . . , n},

where
V(B) := ∫

B

xdx

is the volume of B.

Corollary 3.2. With the assumptions of Lemma 3.1, we have

∫
B

f(x)dx =
n
∑
k=1
∫
B

αk(xB,k − xk)
∂f(x)
∂xk

dx +
n
∑
k=1
∫
∂B

αk(xk − xB,k)f(x)nk(x)dA

and, in particular,

∫
B

f(x)dx = 1
n

n
∑
k=1
∫
B

(xB,k − xk)
∂f(x)
∂xk

dx + 1
n

n
∑
k=1
∫
∂B

(xk − xB,k)f(x)nk(x)dA.

The proof follows by (3.1) on taking βk = αkxB,k, k ∈ {1, . . . , n}.
For a function f as in Lemma 3.1 above, we define the points

xB,∂f,k :=
∫B xk

∂f(x)
∂xk dx

∫B
∂f(x)
∂xk dx

, k ∈ {1, . . . , n},

provided that all denominators are not zero.

Corollary 3.3. With the assumptions of Lemma 3.1, we have

∫
B

f(x)dx =
n
∑
k=1
∫
∂B

αk(xk − xB,∂f,k)f(x)nk(x)dA

and, in particular,

∫
B

f(x)dx = 1
n

n
∑
k=1
∫
∂B

(xk − xB,∂f,k)f(x)nk(x)dA.

The proof follows by (3.1) on taking βk = αkxB,∂f,k, k ∈ {1, . . . , n}, and observing that
n
∑
k=1
∫
B

(βk − αkxk)
∂f(x)
∂xk

dx =
n
∑
k=1

αk ∫
B

(xB,∂f,k − xk)
∂f(x)
∂xk

dx = 0.

For a function f as in Lemma 3.1 above, we define the points

x∂B,f ,k :=
∫∂B xk f(x)nk(x)dA
∫∂B f(x)nk(x)dA

, k ∈ {1, . . . , n},

provided that all denominators are not zero.

Corollary 3.4. With the assumptions of Lemma 3.1, we have

∫
B

f(x)dx =
n
∑
k=1
∫
B

αk(x∂B,f ,k −xk)
∂f(x)
∂xk

dx

and, in particular,

∫
B

f(x)dx = 1
n

n
∑
k=1
∫
B

(x∂B,f ,k −xk)
∂f(x)
∂xk

dx.
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The proof follows by (3.1) on taking βk = αkx∂B,f ,k, k ∈ {1, . . . , n}, and observing that
n
∑
k=1
∫
∂B

(αkxk − βk)f(x)nk(x)dA =
n
∑
k=1

αk ∫
∂B

(xk − x∂B,f ,k )f(x)nk(x)dA = 0.

4 Inequalities for convex functions
We have the following result that generalizes the inequalities from Section 1.

Theorem 4.1. Let B be a bounded convex and closed subset of ℝn (n ≥ 2) with smooth (or piecewise smooth)
boundary ∂B. Let f be a continuously differentiable convex function defined on an open neighborhood of B.
Then for all y ∈ B we have

f(y) +
n
∑
k=1

∂f(y)
∂xk
(xB,k − yk) ≤

1
V(B) ∫

B

f(x)dx ≤ 1
n + 1 f(y) +

1
n + 1

n
∑
k=1

1
V(B) ∫

∂B

(xk − yk)f(x)nk(x)dA. (4.1)

In particular,

f(GB) ≤
1

V(B) ∫
B

f(x)dx ≤ 1
n + 1 f(GB) +

1
n + 1

n
∑
k=1

1
V(B) ∫

∂B

(xk − xB,k)f(x)nk(x)dA, (4.2)

where GB ∈ B is the center of gravity for B, i.e., GB := G(xB,1, . . . , xB,n).

Proof. Since f : B → ℝ is a differentiable convex function on B, for all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ B
we have the gradient inequalities

n
∑
k=1

∂f(y)
∂xk
(xk − yk) ≤ f(x) − f(y) ≤

n
∑
k=1

∂f(x)
∂xk
(xk − yk). (4.3)

Taking the integral mean 1
V(B) ∫B in (4.3) over the variable x ∈ B, we deduce

n
∑
k=1

∂f(y)
∂xk
(

1
V(B) ∫

B

xkdx − yk) ≤
1

V(B) ∫
B

f(x)dx − f(y) ≤
n
∑
k=1

1
V(B) ∫

B

∂f(x)
∂xk
(xk − yk)dx. (4.4)

From equality (3.2) we get for γk = yk, k ∈ {1, . . . , n}, that

∫
B

f(x)dx = 1
n

n
∑
k=1
∫
B

(yk − xk)
∂f(x)
∂xk

dx + 1
n

n
∑
k=1
∫
∂B

(xk − yk)f(x)nk(x)dA,

namely
n
∑
k=1
∫
B

(xk − yk)
∂f(x)
∂xk

dx =
n
∑
k=1
∫
∂B

(xk − yk)f(x)nk(x)dA − n∫
B

f(x)dx.

Since
n
∑
k=1

∂f(y)
∂xk
(

1
V(B) ∫

B

xkdx − yk) =
n
∑
k=1

∂f(y)
∂xk
(xB,k − yk)

and
n
∑
k=1

1
V(B) ∫

B

∂f(x)
∂xk
(xk − yk)dx =

n
∑
k=1

1
V(B) ∫

∂B

(xk − yk)f(x)nk(x)dA − n
1

V(B) ∫
B

f(x)dx,

by (4.4) we get
n
∑
k=1

∂f(y)
∂xk
(xB,k − yk) ≤

1
V(B) ∫

B

f(x)dx − f(y) ≤
n
∑
k=1

1
V(B) ∫

∂B

(xk − yk)f(x)nk(x)dA − n
1

V(B) ∫
B

f(x)dx. (4.5)
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Now, from the first inequality in (4.5) we get the first inequality in (4.1).
The second inequality in (4.5) can be written as

1
V(B) ∫

B

f(x)dx + n
V(B) ∫

B

f(x)dx ≤ f(y) +
n
∑
k=1

1
V(B) ∫

∂B

(xk − yk)f(x)nk(x)dA,

which is equivalent to the second part of (4.1).

Corollary 4.2. With the assumptions of Theorem 4.1, we have

1
V(B) ∫

B

f(x)dx ≤ 1
n

n
∑
k=1

1
V(B) ∫

∂B

(xk − xB,k)f(x)nk(x)dA. (4.6)

Proof. From (4.2) we have

1
V(B) ∫

B

f(x)dx ≤ 1
n + 1 f(GB) +

1
n + 1

n
∑
k=1

1
V(B) ∫

∂B

(xk − xB,k)f(x)nk(x)dA. (4.7)

Since
f(GB) ≤

1
V(B) ∫

B

f(x)dx,

we obtain
1

n + 1 f(GB) +
1

n + 1

n
∑
k=1

1
V(B) ∫

∂B

(xk − xB,k)f(x)nk(x)dA

≤
1

n + 1
1

V(B) ∫
B

f(x)dx + 1
n + 1

n
∑
k=1

1
V(B) ∫

∂B

(xk − xB,k)f(x)nk(x)dA. (4.8)

By (4.7) and (4.8), we get

1
V(B) ∫

B

f(x)dx ≤ 1
n + 1

1
V(B) ∫

B

f(x)dx + 1
n + 1

n
∑
k=1

1
V(B) ∫

∂B

(xk − xB,k)f(x)nk(x)dA,

which is equivalent to (4.6).

Corollary 4.3. With the assumptions of Theorem 4.1 and for (x∂B,f ,1 , . . . , x∂B,f ,n ) ∈ B, we have

f(x∂B,f ,1 , . . . , x∂B,f ,n ) +
n
∑
k=1

∂f(y)
∂xk
(xB,k − x∂B,f ,k ) ≤

1
V(B) ∫

B

f(x)dx ≤ 1
n + 1 f(x∂B,f ,1 , . . . , x∂B,f ,n ).

The proof follows by (4.1) observing that
n
∑
k=1

1
V(B) ∫

∂B

(xk − x∂B,f ,k )f(x)nk(x)dA = 0.

We also have the following result.

Corollary 4.4. With the assumptions of Theorem 4.1, if we define

s∂B,k :=
1

A(∂B) ∫
∂B

ykdS, k ∈ {1, . . . , n}, (4.9)

where A(∂B) is the area of the surface ∂B, then we have the inequality

1
A(∂B) ∫

∂B

f(y)dS +
n
∑
k=1

1
A(∂B) ∫

∂B

∂f(y)
∂xk
(xB,k − yk)dS

≤
1

V(B) ∫
B

f(x)dx

≤
1

n + 1
1

A(∂B) ∫
∂B

f(y)dS + 1
n + 1

n
∑
k=1

1
V(B) ∫

∂B

(xk − s∂B,k)f(x)nk(x)dA. (4.10)
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Proof. If we take the integral mean 1
A(∂B) ∫∂B( ⋅ )dS over the variable y ∈ ∂B, then we get

1
A(∂B) ∫

∂B

f(y)dS + 1
A(∂B) ∫

∂B

(
n
∑
k=1

∂f(y)
∂xk
(xB,k − yk))dS

≤
1

V(B) ∫
B

f(x)dx

≤
1

n + 1
1

A(∂B) ∫
∂B

f(y)dS + 1
n + 1

1
A(∂B) ∫

∂B

(
n
∑
k=1

1
V(B) ∫

∂B

(xk − yk)f(x)nk(x)dA)dS. (4.11)

Now, observe that

1
A(∂B) ∫

∂B

(
n
∑
k=1

∂f(y)
∂xk
(xB,k − yk))dS =

n
∑
k=1

1
A(∂B) ∫

∂B

∂f(y)
∂xk
(xB,k − yk)dS

and

1
A(∂B) ∫

∂B

(
n
∑
k=1

1
V(B) ∫

∂B

(xk − yk)f(x)nk(x)dA)dS

=
n
∑
k=1

1
V(B)

1
A(∂B) ∫

∂B

( ∫
∂B

(xk − yk)f(x)nk(x)dA)dS

=
n
∑
k=1

1
V(B) ∫

∂B

(xk −
1

A(∂B) ∫
∂B

ykdS)f(x)nk(x)dA (by Fubini’s theorem)

=
n
∑
k=1

1
V(B) ∫

∂B

(xk − s∂B,k)f(x)nk(x)dA (by (4.9)).

By making use of inequality (4.11), we then obtain the desired result (4.10).

Remark. By taking n = 2 in the above inequalities, we recapture some results from [9], while for n = 3 we
obtain results from [10]. The details are omitted.
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