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In this article, we present several new inequalities involving the x-fractional integral for the integrable function & which satisfies
one of the following conditions: (a) |F|7 is preinvex for some g>1; (b) &' is bounded; (c) &' is a Lipschitz function. As

applications, we establish new inequalities for the weighted arithmetic and generalized logarithmic means.

1. Introduction

Let ECR be a nonempty interval. Then, a real-valued
function f: E — R is said to be convex (concave) on E if
the inequality

fAo+ (1 =N1]< (2)Af (o) + (1 = 1) f (1), (1)

takes place for any 0,7 € E and 0<A<1.

We all know that the convexity theory has penetrated
into every branch of pure and applied mathematics [1-20],
and it has more and more practical applications in physics,
mechanics, statistics, operations research, and even in
economics and meteorology [21-40]. Many remarkable
inequalities in mathematics, control theory, and game theory
can be found in the literature [41-60] by use of the convexity
theory. In the past half century, to research the general-
izations and variants for the convexity has always been a hot
topic for mathematicians and physicists as well as engineers.
Recently, a great deal of generalizations and variants has
been made for the convexity, for example, the GA-convexity

and GG-convexity [61], s-convexity [62, 63], preinvex
convexity [64], strong convexity [65-68], and Schur con-
vexity [69].

When we talk about convex functions, we have to
mention a classical and most important inequality, which is
the well-known Hermite-Hadamard inequality [70] which
states that the double inequality
F (e + F (),

¢
9«“(%“) < (z)ﬁ j F (x)dx < (2)

(2)

holds for all &, { € J with e+ if #: ] — R is a convex
(concave) function on J and JCR is a nonempty interval.
For a long time, numerous researchers have been devoted to
the generalizations, improvements, refinements, and vari-
ations for inequality (2) [71-73].

The aim of this article is to provide new Hermite-
Hadamard-type inequalities for certain classes of functions
via the x-fractional integral and give their applications to the
bivariate means.
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In order to clearly describe and prove our main results in
the next sections, we have to recall some definitions which
we present in this section.

Definition 1. Let QCR" be a nonempty set and
n: QA x Q — R" be a mapping. Then, Q is said to be an
invex set with respect to the mapping # if

e+0n((,e) €, (3)

for all &,{ € Q and 6 € [0,1].

Definition 2. Let Q CR” be an invex set with respect to the
mapping 7: Q x QO — R". Then, the mapping ¢: Q@ — R
is said to be preinvex with respect to the mapping # if the
inequality

@ (e+6n(C, )< (1-0)¢(e) + 09 (0), (4)
holds for all &, € Q and 0 € [0,1].
Definition 3 (see [74]). Let B, x>0, &, { € R with e<{, and

F € Lle, (]. Then, the  order k-fractional integral operators
K]ﬁ and ]? of & are defined by
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1 X
ThF () = — (ﬂ)j (x = D) F (7)dr,
x &
. (5)
1
T =1 ], o0
respectively, where
(o)
I, (x)= IO e " gy, (6)

is the xk-gamma function.

2. Main Results

Throughout this section, we always assume that Z* is the set
of positive integers, 5,x>0, 6 € [0,1], QCR is an open
invex set with respect to the mapping 7: Q x Q — R\{0},
(e with e<{, and %: QO — R is a differentiable
mapping such that &' is integrable on [e, &+ 7((,¢)] for
n({,€)>0, and

(1 (x, ™[ F (&) + F (e + n(x, )} + (7 (L ))PH(F (%) + F (x + (X))}

A, (Bx, 0;x) =(1-0)

0
n(¢ e

+

n(( e

[(q(x,s))ﬁ/'({fi<8+ﬁn(x,s)> + 9’(8+n—zln(x,e))}

@ F (e @)+ F (@)} 7)

_(n+ )T (B+x) [ o
n((e) .

(e+1(x,€))”

n B < 1 )
9<s+—n+111(x,s)> + T F £+—n+111(x,s)

B 1 n
+ Kgx*g<x + mn((: x)) + K (xm(()x))—g(x +ﬁ’7((3 x))]

Lemma 1. Let A, (B, , 0; x) be defined by (7). Then, we have
the identity

&y (B 6:3) = T

0

) N e
{JO(T G)J <x+

S (n+ (G

0 n+1

+1

(1 (x, €))F {Jl(Tﬁ/K _ 9)9’(5 +:—i:77(x, e))dr - J;(Tﬁ/" - 9)97'(s+?’1(x, 5)>dr

n+rt
n+111((,x))dr 8)

_ Jl(rﬁ“‘ - 0)5 (xr Tn((,x))dr}.
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Proof. Making use of integration by parts and variable
transformation, one has

1
+
II=J- (T,B/K_g)g!<8+n T
n+1

0

;_M Jlrﬁ/"?<e+n+‘[;7(x,s))dr]

OB 1)

CD) xn (x,€) Jo n+l
(n+1) )
n n
- oD (=07 4 ey + 07 (e + - "nno)
(n+ 1)PPOHIT (B+x) _p _ n
B (1(x, £)) B o (”'7(”))_J<€ Tt U 8))]'
Analogously, we also have
__ (n+1) o> o 1
2T p(xe) [(1 07 +9‘/<8+n+ ln(x,e))
B/ (10)
(m+ D" +T (B+x) _p (. 1
- (n(x)s))(ﬁ/x)ﬂ KJ£+‘/<8+n+1’1(x’8)):|)
B (n+1) o _ n
370G [(1 -0)F (x+n((,x))+ 0J(x+n+ lq((,x)> "
(n+ 1)(l3lx)+1l—~K (ﬁ +5) s _ »
@t e P "’>]’
_ (n+1) . n
L= [(1 OF (x +1((,x) + 9g<x+n+ 1 q((,x)) N
(n+ 1)(/3/’0“1“,{ B+u) _p 1
- (,,,((,x))(ﬁ/x)ﬂ K*/x+g<€+m'1((’x)>]-
Therefore, identity (8) follows from multiplying (9) and (i) Letn = 1. Then, Lemma 1 leads to Lemma 2.1 of [75].
(10) by (17(x,&)P*2/[(n+ 1) ({, &)], multiplying (11) and (ii) Let #(w,v) = w — v. Then, one has
12) by (n(&x)P*?/[(n+1)5((,¢)], and then adding
them. n
Remark 1. Lemma 1 leads to the conclusions as follows:
_ )Pl _ Blx
A K 0:x) = (1 - ) EZ T @+ F )+ (=T (0 + F ()
((-e
0 N ne+Xx\ __(nx+e N . x+nl\ _(nx+{
' (X)) [(X 9 {g(n+1>+J<n+l>}+(( *) {Jf< n+1 >+J( ntl )H (13)

Blx
_(n+1) FK(ﬂ+K)[gig(nx+s>+ 9+g<ns+x> 7P nx +( . P x +n( '
(e T \n+l/) T \n+1 ) n+l ) ¢ n+1
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(iii) If 0 = 0 and § = x = 1, then (13) reduces to (iv) If 0 =1 and f = x = 1, then (13) becomes

((=x)F ({) + (x - ) F (¢)

(-¢

A(1,1,0;x) = F (x) +
(14)

(n+1) (¢
N (-¢ J

F (z)dz.

&

(x—e){F (ne+x)/(n+1) + F(e+nx) (n+ 1)} + ({ — x){F (n{ + x)/ (n+ 1)) + F ({ +nx)/ (n+ 1))}

A(1,1,1;x) = :
— &

:
- (’g:) j F (2)dz.

(15)

(v) If #(w,v) = w—v and n =1, then Corollary 2.1 of = Theorem 1. Let p,q> 1 such that 1/p + 1/q = 1 and |F|? be
[75] can be derived from Lemma 1. preinvex on Q. Then, the inequality

I(r](x, s))|(ﬁ/1<)+1 { (|g’ (e)|q +(2n+ 1)|9’ (X)|q)1/q

|A,1 (ﬁ, . 9; x)| S\I,I/p(ﬁ’ K, Q,P)|: (n+ 1)|11(<‘,£)| 2(n+1)

+< @2n+1)|F' ()" +|F' (x)|‘7)”q }

2(n+1)
(16)
() [ ()F (0|7 + @+ D]F (O]
T DnGe) ( 20+ 1) )
<(2n+ D|F' ()] +|F' (()|q)l/q}:|
+ >
2(n+1)
holds for all x € [e,e + n((,€)], where
K
Bp+i 0=0
f(1-207"%) s
¥ (B, x, 0, p) = 1 Wueﬁ -0°, 0<0<1, (17)
L(p+ DI((B/x)+1) 01
T((Bix)+1+p) ~
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Proof. 1t follows from Lemma 1 and the preinvexity of |4
together with the Holder’s inequality that

[y (B 80| < mSE S

.

o n+rt >"1 JI‘T,( 1-7 >
J«<5+—n+111(x,e) dr + OJ* s+n+117(x,£)

(1 (x,8) P! “ | BIx) 9| dr] v

q 1/q
dr]

(18)

(G [ | o 9|pdf]up
0

(n+1)n((,e)

U

Note that

1 q
J 9”<S+E11(x,£)>l dr
0 n+1

<[ Gz ore,

- |Z' ()] + 2n+ D|F' (x)|*
- 2(n+1)

|9'(>F) (19)

Analogously, we have

}
}

- 1 2n+ D|F' ()| +]F' (x|
9‘7'<e+¥11(x,s)> dr< @n+ DIF @ +]7 (1)
n+l 2(n+1)

9’<x+n

) |97’ )T+ @n+ D|F
2(n+1)

>

N, q Cn+ D|F ()" +|F (|
Jol (= )| dr< 20n+ 1) '
(20)
We clearly see that
Blx K
™" -0 (21)
J | | ﬂp+

I(x e)ﬂ{J (ne+x)/(n+1))+F

q 1
97’<x+m;1((,x)>‘ dT+J
n+1 0

F ((ne + x)/ (n+ D)} + (= )P {F (nl + x)/ (n+ 1)) +

97'<x +%17((, X)>lqdr]uq.

for 0 =0,
T nr 1
J |Tﬁ/1c 9| dr = Lp+ DI((Brx) + )’ (22)
T'((B/x)+ 1+ p)
for 0 =1, and
— 29 PBpi)Ip
Jl |T/3/K - 9|Pd'r = —K(l 20 ) +20PPHIB _ P,
0 ﬁ ptK
(23)
for 0<f<1.
Therefore, inequality (16) can be derived from the above
inequalities and identities. O

Remark 2. Theorem 1 leads to the conclusion as follows:
(i) Theorem 2.1 of [75] can be obtained from Theorem 1
if we take n = 1.

(ii) f 0 = x =1 and % (w, v)
to

= w — v, Theorem 1 reduces

F ((nx + )/ (n+1))}

[A(B, 1, 1: x)| |
(n+ 1) T(B+1)
()

T(p+1I(B+1) {u—aﬁl
TT(p+ B+ 1) (n+ 1)V | T

(- x)P*!
+?

Y

[Kgx

(HX+£>+ 9ﬁj

I:

ns+x)+ 9,5337 n{ + x . b nx +(
n+1l x n+1 LY n+l

[(F @17 + @n+ DIF (1) + (2n+ DIF ()| +|F (x)]9)"}

{unguM+mguwwhﬂm+mguWH9mmWﬂ.

(24)



(iii) Let n = 1. Then, (24) leads to Corollary 2.2 of [75].

Theorem 2. Let g>1 and |F|1 be preinvex on Q. Then, the
inequality

'A B« 9'x)|

<cDH1/q)|i (7 (x, i H 1

! q
DGy | 1 (@ ®)F @)

1/q
+(0, + nq)z)l?' (x)|q)]»

1 i i Y4
+{n+1((n® + )| F (@ + (D) - D,)|F (%) )} ]

(1 (x,)) P! [ { 1

o! q
s DG | fnr1 (@ @IF @

1/q
w@+wmwwwﬁ

~ogiE @} |

(25)

1 !
+{n .l ((nCD1 +@,)|F ()| + (@,

(1 (x, €)) P!

|40 8% 00 < G
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holds for x € [e, e+ 1({,€)], where

(B+x)/B
o, = J'1|Tﬂ/f< ~6|dr = (ke +2p0PF)
0 B+x
(26)
o, = Jl T|Tf5/;< _ 6|dT = M_g
| O B+ 2k >

Proof. It follows from Lemma 1 and the preinvexity of |F|?
together with the power-mean inequality that

1] e

(27)

(BlK)+1 1-(1/g)
_ (78, x)) {j |( Bix 'dr] [(X3)1/q+(x4)1/q])

(n+1n((,e)

where

:JI|( )| ‘g/ s+””

“qu(

n(x, s)) da
) "5 (e

n(x, e)) dr

e [l (5

J
<
n+l< 0

w= [ -7 (s

—

q
)dr

|
S
+ = o
—
r 1
—
o o~
—
h‘

ti= [ - 0)|5 (e s Tnt0) jae

m[(h'(fﬁ’” e [~ )oe )i o +{ [ [~ )oe o [ e~ = cor |
R R e C e (N G e R G ) L

1 1 1
Pl _ 0)|dr - JO ‘r'rﬁ/’C - 9|d‘r)|97' (x)|? +(JO'(Tﬁ/K - 9)|dT+ n JO T'(Tﬂ/K - 9)|dr)|97' (()|q],

0
< ! <nJ;(TB/K—9)dT+J;T|(Tﬁlk—0)|dr>|?’(x)|q+<J;|(Tﬁ/"—9)|dr—J;T|(Tﬁ/K—6)|d1)|97'(()|q:|.
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Substituting the above inequalities in (27), we get in-
equality (25). O

Remark 3. From Theorem 2, we have two conclusions as
follows:

| | B 1+(1/q)
IA(B, L, 1;x)| < (2(ﬁ+2))1/q((_£)<(n+ DB+ 1))

(i) If n = 1, then we get Theorem 2.2 of [76].
(ii) If 0 =k =1 and % (w,v) = w — v, then

x [ (x - s)'B{(([S F|F @+ (Bln+2) + (n+ D)|F )" +((B+2)|F )|+ (Bln+2) + (n+ 1)|F' (s)|q)”q}

+@—x%{«ﬂ+2wgwoﬁ+«ﬂ@+2»ﬂn+®n%%xWY“+«ﬂ+zm¢%xm+«ﬂm+2wxn+@ng%OVY”H.

Theorem 3. Ifr, ® € (0,00) withr <R, andr <F' ()< R

for all y € [e,e + 1 ((,€)], then we have

[ (1 G, ) + (1 (&, )| (% - 7)
(n+1)(n(C,¢)

(1 + 2B
N [T_ 6].

|A, (B, 6; x)| <

(30)

My B8 = 6

0

(n(¢x)P" {Jl(T/s/K_
0

C(n+ Do)

0

Making use of the fact that

r_r+=%sg,<£+zﬂ(£)x)>_r+%S%_r+%,
n+1 2 2
(32)
one has @ %
F¢(£+Eiln@na)—r+ ls T 33
n+1 2

Similarly, we have

(29)

Proof. It follows from Lemma 1 that

Blx
(11(x,€)) {J;(Tﬁm_9)[9,<8+n+;’1(x)8)> —H‘%]dr

n+

1-71 r+ %
o) %

—JIOWK—Q)L?(£+n

(31)

, + + R
6)[9 (x+%f7((,x)) T 5 ]d‘r

_ Jl(rﬁ/“ - 6)[9/(x+%;1(5,x)> . J;(%]dr}.

1- R R-
9“'(8+—T11(x,e))—r+ < r,
n+1 2 2

r+ A%
2 2

o (e 2tac0)-

1-71
+111(C,x)

lgr<x+ >_T+<% 92—1'.

n 2 2

Therefore,
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™ (e 1 )
8050 s LB [ =l (e + 2 ) -5
dT]»

@ (1Y g all s n+t r+R
"(n+1);1(c,e)“o|fﬁ/ '0”" (’”m”“””)‘ 2 ldT
dr}>

(o)’ R-r (Y g (&))" F-r
S+ Do) 2 J I M DG 2

1
B Bix , 1-7 )_r+%
J0|T 9”9 <s+n+111(x,s) 5

(35)
1 1-71 r+R
_ Blx ! =t _
UT ell‘j <x+n+1”((’x)> 2

ﬂjrﬁ“‘ —bldr

[+ ()] (R - 1) o
- (n+1)(n(( ) v

which completes the proof of Theorem 3. O (ii) If f=x=1 and 7(w,v) = w— v, then Theorem 3

leads to
Remark 4. From Theorem 3, we get two conclusions as

follows:

(i) Let n = 1. Then, Theorem 3.1 of [75] can be derived
from Theorem 3.

|A,7(1,1,9; x)l =|(1 _0) (x — F () + F ()} + ({ — ){F (O) + F (x)}

(-¢
L0 (x—e){F((ne+x)/(n+1))+ F (e +nx)/ (n+ 1)} +({ - x){F (n{ +x)/(n+1)) + F({ + nx)/ (n+ 1))}
()
n+l (¢ (R+r)((x=e+((-x)7) (20°-20+1
'ﬁjgg“)dz‘g CEDED ( 2 >
(36)
(iii) If n = 1, then (36) becomes Corollary 3.1 of [75].
(iv) If 6 = 0, then (36) leads to
I(x—S){g(e) +97(x)<};:r(£(—X){9(0+9”(X)}_fzti J(F/T(z)dz
(37)

(<%+r)((x—s)2 +((—x)2)
2(n+1)((—¢)
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(v) If 8 = 1/2, then (36) leads to the conclusion that

|(x = {F (¢) + F ()} + ({ - F () + F (%)}
| 2((—¢)

N (x—F (ne+x)/(n+1)+F(e+nx)/(n+1) +({ —x){F (n{ +x)/(n+1)) + F({ + nx)/ (n+ 1))}
2((-¢9

nel (4 (R +0)((x =) +({ - %)
e LJ«(z)dzls PRSI (38)
(vi) If 0 = 1, then (36) gives
| (x = F (ne + x)/ (n+ 1)) + F (e + nx)/ (n+ 1))} + ({ = x{F (n{ + x)/ (n + 1)) + F ({ + nx)/ (n + 1))}
| ()
( 2 2) (39)
n+l (¢ _ (Z+1)((x=)" +({-x)
R R e e
Theorem 4. If F' is a Lipschitz function on Q with the  holds for x € [e,e + 1({,€)].
Lipschitz constant £ >0, then the fractional integral
inequality 2 o Proof. It follows from Lemma 1 that
, (n(x,€) """ + Z (n(, x)) 7"
428 050] < 7 [ (n+ D (1)
n+1 B+x
2 <<K+ﬁ9(ﬁ+2k)/ﬁ) 6)}
+ -1
n+1 B +2x 2
(40)
L (n(x g)) Bl 1 Bix o n+t
An(ﬁ,K,e,x)—m JO(T —9){=/' (s+n+1n(x,s)>
i 1-7 GNP g N[ nET
- F <£+n+ . 1n(x, s))}dr} —7(’/” ) JO(T - 8){J~ (x +n+ 1 n((,x)) (41)

- 9'(x+%n((,x))}dr}.
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Since F' is a Lipschitz function on [e, & + 7 ({, )] with
Lipschitz constant & >0, we get

n(x, 8))

n+rt

97’<8+

n+1

—9'<s+ ! _In(x,e)>|sSf(2T+n_ 1)(11(x,(s)).

n+ n+1
(42)
Similarly, we have
1-
7 (v 0) - (e iine0)
(43)
2 -1
<2 @),

Therefore, one has

|A,7 (B, x, 0; x)|

e

T (n+1)(n(( ) n+

o 1-7
-F <£+n+117(x,s)> d‘r]

(11((>X))(ﬁlk)+l ! © , n+T1
_(n+1)<n(c,e>>“o|fﬂ/ ‘HHg )

—9'<x+%n((,x)>

dT]

Journal of Function Spaces

Remark 5. From Theorem 4, we clearly see that the fol-
lowing six results are true:

(i) If n =1, then we get

|A Ak x)|<g[(1’](x,g))(/3/x)+2 +(,7((,x))(ﬁ/x)+2]
VR AR <

2(n (¢, 9)

(K + ﬁe(ﬁ+21c)//3) 9
B+2c 2|

(45)
(ii) If n(w,v) = w — v, then (45) becomes
. (X _ 8) (BlK)+2 + (( _ x) (Bli)+2
IA(ﬂ,K,Q,x)Ig.Sf[ 2@ o) ]
(46)

(K +ﬁ6(ﬁ+21c)//3) 0
B+2k 2

(iii) If f = « = 1, then (46) reduces to

(x —¢)° +(C—x)3]<263 —30+2)

|A(1,1,9;x)|g5f[ =5 -

S 3)(21 +n— 1)[ (1 (x, ) P2 4 (5 (¢, x))(ﬁ/")”] (47)
n+l (n+1)(n(C ) . . .
B X 5 . (iv) If 6 = 0, then inequality (47) leads to
{n ! J |Tﬁ/K—9‘dT+ J T|Tﬁ/K—9'dT
n+1Jo n+1Jo
i g[ (7 (x, ) #9+2 4 (ﬂ((,x))(ﬁ/mz] AL 1,0 )] = | ({=2)F () + (x - &) F (¢)
(n+1) (1) I {-¢
n—1 [ (x+2po%F) 2
[n+1< B+ -0 (_SJSJ(Z)dZ (48)
2 [(x+poF*F) g <o - &) +((- x)3]
Tl B+2c 2| - 3(C-¢9) '
(44) (v) If 8 = 1/2, then inequality (47) gives
O
’A(l, L x)‘ |G- afF (e) + F ()} + (= NF () + F (%)}
2 | 2(¢-¢)
(x—e{F (e +x)/2) + (- xNF ((+x)/2)} 2 (¢
+ () —C_SJSJ(z)dz (49)

Sg,[l(x—efl+|(<“—x>3| _

6/(¢ - o)l




Journal of Function Spaces

(vi) If 0 = 1, then inequality (47) becomes

(x =) F ((e + x)/2) ({ = ) F (({ + x)/2)

A(1,1,1;%x) =

(-¢
—érg(z)dz

(x—¢ +({-x)

Sg[ 20 -¢) ]

(50)

3. Applications to Special Bivariate Means

A bivariate function Y: (0, 00) x (0,00) — (0, 00) is said
to be a mean if minfe, {} <Y (e, () <max{e (} for all
& { € (0,00). It is well known that the bivariate means are
closely related to the special functions. Recently, the in-
equalities between different bivariate means have attracted
the attention of many researchers [77-82].

In this section, we use our obtained results in Section 2 to
provide two new inequalities between the weighted arith-
metic mean

wi e+ w,(

‘Qi(s’ & wl’wz) = (5’ (wp,w, >0) (51)

w; + w,
and sth generalized logarithmic mean
s+1 e 1/s
A (E () [m] (E,(>O,£?€C,S€ Z\{—l,O})
(52)

Theorem 5. Let p,q>1 with 1/p+1/q=1, &{>0 with
e+(, and s>2 be a positive integer. Then, one has

|A(° (2,83, 1) |, o (£,4,1,3)) = Al (&,0)]

S((— €) 1+(2/q) 1 1/p
8 (2) (1 + p)

_ + a6 D
N [d”q<|slq(s nEES 2( ;1,3
q(s=1) (53)
+'Q[1/q(|€|q(31 €+( ’3,1)
+ q(s—1)
R (S R
+ (a6 _
¥ ﬂ“q< : 2*( 1173, ) .
Proof. Let f=xk=0=1, n(w,v) =w-v, and F(x) = x°.
Then, Theorem 5 follows from Theorem 1. |

11

Theorem 6. Let p,q>1 with 1/p+1/q=1, & (>0 with
e+ (, and s>2 be a positive integer. Then, one has

1/11\"4
(@0l=5(5)

|A e(31|.szi(s,(13))

q(s-1)
x[&fl/q(lslq(s”, ;3,8)

+ ﬂl/q(qu(s— 1)’

+.sz¢1/q(

+.szi”q<

e+(
2

q(s—1)

E+
hil! Y
2

e+ (|1
2

3)
o
119670, 3, 8)

q(s-1)
117 8,3>].

e+ (
2

(54)

Proof. Theorem 6 follows directly from Theorem 2 if we take
f=x=0=1 and #y(w,v)=w-v together with
F(x) = x°. O
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