

Mapping Robust Genetic Variants Associated with Exercise Responses

This is the Accepted version of the following publication

Alvarez-Romero, Javier, Voisin, Sarah, Eynon, Nir and Hiam, Danielle (2020) Mapping Robust Genetic Variants Associated with Exercise Responses. International Journal of Sports Medicine. ISSN 0172-4622

The publisher's official version can be found at https://www.thieme-connect.de/products/ejournals/abstract/10.1055/a-1198-5496 Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/41574/

Mapping robust genetic variants associated with exercise responses

2 Abstract

3 This review summarised robust and consistent genetic variants associated with aerobicrelated and resistance-related phenotypes. In total we highlight 12 SNPs and 7 SNPs that 4 5 are robustly associated with variance in aerobic-related and resistance-related phenotypes 6 respectively. To date, there is very little literature ascribed to understanding the interplay 7 between genes and environmental factors and the development of physiological traits. We 8 discuss future directions, including large-scale exercise studies to elucidate the functional 9 relevance of the discovered genomic markers. This approach will allow more rigour and 10 reproducible research in the field of exercise genomics.

11

12 Introduction

13 Both aerobic and strength exercise training lower the incidence of many chronic diseases 14 via a number of mechanisms, including increased skeletal muscle mitochondrial function 15 [1], modulation of the sympathetic nervous and immune systems, and optimization of the 16 neuroendocrine system [2]. These mechanisms act as buffers against chronic diseases, 17 minimizing inflammatory state, and enhancing neuroplasticity and growth factor 18 expression [3]. However, large inter-individual differences exist in the physiological 19 responses to any given exercise training (also called "trainability") [4, 5], and recently 20 new statistical methods have been developed to properly isolate individual responses 21 from random error [6]. Large trainability has been observed in many physical fitness 22 parameters [7], including maximal oxygen uptake (VO₂max) [8, 9], resting heart rate [9], 23 exercise heart rate [9], aerobic threshold [10], anaerobic threshold [9], resting muscle 24 glycogen content, muscle enzyme activity [11], as well as muscle mass and strength [12, 25 13].

26

The heritable component of trainability is large, with genetics explaining 47% of the variance in VO₂ peak trainability, and around 52% in resistance variability [14]. The contribution of familial factors (genetics and environment) to trainability was demonstrated in the seminal HERITAGE family study [15]. This study indicated that VO₂max was more variable between families than within families at baseline [16], and in response to exercise training [17], thus suggesting that DNA sequence variations could

modulate exercise responses [4, 18]. Pinpointing the responsible gene variants could
illuminate the fundamental mechanisms driving this heterogeneity in response to exercise
training [18].

36

37 The genetic contribution to trainability has been investigated by two different approaches: 38 candidate genes and genome-wide association (GWAS) study. The GWAS approach 39 involves scanning several hundred thousand (currently up to 5 million) DNA markers 40 across the human genome to find genetic variations associated with a particular trait. One 41 of the advantages of the GWAS approach is that it is unbiased and hypothesis-free. In 42 contrast, candidate gene studies require knowledge of the trait of interest and is 43 particularly useful to validate the functional impact of gene loci such as those identified 44 by GWAS [19]. GWAS have demonstrated that trainability is polygenic (i.e., influenced 45 by many genetic variants), and that people harbouring the same genotypes in specific 46 gene variants respond more similarly to exercise training than people harbouring different 47 genotypes [20-23]. These variants may modulate gene expression that is essential to the 48 molecular adaptation to exercise training, since molecular processes mediate metabolism, 49 angiogenesis, cardiac and skeletal myofibre hypertrophy, and other processes that lead to 50 better fitness [24].

51

52 While many SNPs have been associated with exercise response and trainability. The vast 53 majority of the genes previously identified have not been replicated [25]. Replication in 54 an independent cohort is important as it increases the likelihood that results are true and 55 reduces the number of false positives [26, 27]. In this review we summarised SNPs 56 associated with both resistance and aerobic trainability and have been replicated in two 57 independent cohorts. In addition, we have screened these SNPs with the goal of 58 identifying SNPs at trainability-associated loci that may have functional relevance. 59 Further, we discussed future directions of performing large-scale exercise studies to 60 elucidate the functional relevance of the discovered genomic markers. This approach will 61 allow more rigour and reproducible research in the field of exercise genomics.

62

63 Materials and methods

To provide a robust and comprehensive narrative review, a semi-structured search was performed (July 2019) to identify all studies relating to genetic variants and exercise trainability. Three electronic databases (PUBMED, MEDLINE and SCOPUS) were used to identify relevant articles using the following keywords "genes", "genome", "exercise",
"physical activity", "aerobic capacity", "resistance", "strength", "power". We excluded
studies where the sole focus was on populations with a diagnosed medical condition such
type 2 diabetes mellitus, any inflammatory conditions, and cardiovascular disease.
Articles were separated in two categories: genetic variants associated with either aerobic
or resistance trainability (Table 1 and 2). This review was conducted in accordance with
the IJSM's ethical standards of the journal [28]

74

Finally, we selected SNPs that were classified as robust and separated them according to whether they were related to the aerobic trainability or resistance trainability. We chose this criteria as it reflects the reliability of the findings and increases the likelihood that there is true association of the SNP with trainability [27]. It also allows us to identify and summarise SNPs with biological relevance which is useful for researchers to 'select' candidate SNPs to identify causality and purpose of gene [29].

81 SNPs were considered robust if:

82 1) Consistent association with a given phenotype in at least *two independent* cohorts.

2) SNPs were shown to have functional relevance in an animal model or cell culture, with
gene expression/DNA methylation Quantitative Trait Loci (QTLs) analysis or network,

gene expression Divit memylation Quantitative That Loer (QTES) analysis o

and enrichment analysis.

86

87 Aerobic Trainability

Twin and family studies indicate that ~22–57% of aerobic fitness variability between individuals can be explained by genetics and therefore plays an important role in the range of aerobic phenotypes observed in a population [30]. Here, we briefly describe some of the robust SNPs that have been associated with aerobic trainability, which means they were replicated in at least 2 independent cohorts and were shown to have functional relevance.

94

A bioinformatic analysis study conducted by Ghosh *et al.* found that the greatest number of SNPs were annotated to the PPAR signalling pathway suggesting its importance in VO_{2max} trainability [31]. As such the most widely studied genes within this pathway are the peroxisome proliferator-activated receptors (*PPARA, PPARG,* and *PPARD*) and their transcriptional coactivators (*PPARGC1A* and *PPARGC1B*). These genes have been linked to multiple aerobic phenotypes, including muscle morphology, aerobic capacity

101 and endurance performance [32, 33]. PPARD is expressed predominantly in adipocytes 102 and skeletal muscle where it promotes fatty acid oxidation [34]. In the HERITAGE family 103 study, the rs2016520 SNP (C allele) located in PPARD was associated with reduced 104 VO_{2max} and maximal power output after a 20 week endurance training intervention in 105 African-Americans but not in Caucasians [35]. In vitro and animal studies show that the 106 minor allele (C allele) in this SNP (rs2016520) results in higher PPARD transcriptional 107 activity, which in turn promotes lipid accumulation and the alters normal regulation of 108 lipid uptake and storage [34, 36, 37]. In a European cohort it was shown that the PPARD rs2267668 SNP was associated with VO_{2peak} and anaerobic threshold after a 9-month 109 110 lifestyle intervention [38]. They then confirmed that in human primary cell lines that those 111 carrying the minor allele at rs2267668 (G allele) were associated with lower 112 mitochondrial activity, demonstrating a potential functional effect [38]. Taken together, 113 PPARD locus may play a role in aerobic trainability, but larger cohorts of different 114 ancestries and, more in depth functional studies to determine causal SNP are needed to 115 confirm this.

116

117 The transcriptional co-activator PPARGC1A interacts with PPARD and regulates 118 mitochondrial biogenesis, angiogenesis, lipolysis and adipogenesis [39]. Four candidate 119 gene studies, predominantly in men, found consistent associations of rs8192678 within 120 PPARGC1A and aerobic capacity in Europeans [38, 40-42]. While in the Han Chinese 121 cohort another nearby SNP (rs6821591) was associated with VO_{2max} specifically, the G 122 allele was associated with increased VO_{2max} compared to those carrying the A allele [43]. 123 Work conducted in a Han Chinese cohort found that the PPARGC1A rs6821591 SNP had 124 functional significance as gene expression was altered and this was dependent on 125 genotype (A v G allele) with the G allele displaying increased PGC-1 α gene expression 126 [44]. Overexpression of PGC-1α in an animal model showed increased Type 1 fibres in 127 muscles that are normally Type II fibre type dense and this induced increases in resistance 128 to fatigue, inferring increased aerobic capacity [45]. These population-specific results 129 indicate that it is the PPARGC1A locus itself, rather than individual SNPs located within 130 that locus, may be important for trainability [43, 46].

131

132 Currently 26 SNPs associated with VO_{2max} trainability were identified in a GWAS and 133 were validated in 2 separate cohorts (detailed in **Table 2**) [23]. They accounted for 49% 134 of VO_{2max} trainability and were able to classify responders and non-responders [23, 47].

135 Whether these SNPs are directly involved in gene function or regulation of genes is the 136 next step to validate these findings. The most robust is the SNP rs6552828 located near 137 the ACSL1 gene which was the strongest predictor (~6%) of aerobic trainability (VO_{2max}) 138 [23]. It has subsequently been validated in a bioinformatics pathway analysis and found 139 to be strongly correlated to the aerobic electron transport chain phenotype and the PPAR 140 signalling pathway providing a robust candidate gene in VO_{2max} trainability [31]. ACSL1 141 regulates lipid metabolism by facilitating the transport of long chain fatty acids into the 142 mitochondria and is an essential step in fatty acid oxidation [48]. Timmons et al. 143 integrated RNA profiles with genetic variants and found the following genes CD44, and 144 DAAM1, also discovered in the Bouchard et al. GWAS, were associated with gene 145 expression changes [49]. Gene expression of CD44 was up-regulated in response to 146 endurance training [49] and was strongly associated with phenotypic terms associated 147 with aerobic exercise such as; cardiovascular physiological processes, muscle 148 contraction, physical fitness and aerobic electron transport chain [31] indicating that this 149 gene and any alterations to its function (i.e. via SNPs) may play in important role in 150 aerobic trainability. While these genes certainly provide robust genes, there are still 151 limitations in determining the causality of these particular SNPs in the molecular 152 mechanisms affecting aerobic trainability.

153

154 Many candidate gene and GWAS studies have been conducted and this review highlights 155 the large collection of candidate genes that have been associated with aerobic trainability. 156 Only 12 SNPs have been robustly associated with aerobic trainability (Table 3) meaning 157 that have been validated in at least 2 independent cohorts and were shown to have some 158 functional relevance. Subsequent studies should focus on understanding the functional 159 role of the SNPs that have been replicated as this review highlights the lack of 160 understanding of the molecular mechanism and limits our understanding of aerobic 161 trainability.

162

163 **Resistance Trainability**

Muscular strength and power show a heritability estimated around 52% [14]. Skeletal muscle strength is defined as the force produced by muscle contraction. A variety of measures have been investigated, including muscle strength, maximal voluntary contraction (MVC), 1 repetition maximum (1RM) and handgrip strength. While the production of skeletal muscle power is defined as how much force can be produced and the velocity at which it is produced. The production of power can be measured at the by
undertaking tests such as Wingate's, counter movement jumps (CMJ) and vertical jumps
(VJ).

172

173 The ACE I/D and ACTN3 R/X SNPs are two of the most extensively studied gene loci. 174 We have chosen not to discuss ACTN3 here as it has recently been reviewed in detail by 175 Del Coso et al. [50] and instead focus on the ACE I/D SNP. The ACE gene encodes the 176 angiotensin-converting enzyme that is a central component of the renin-angiotensin-177 system [51]. The ACE I/D results in either an insertion (I) or deletion (D) of a 287-178 basepair region in intron 16 of the gene [52] and can alter the levels of ACE in the blood 179 [52]. It has recently been shown that the polymorphism can manipulate the activity of the 180 C- and N-terminal domain in the enzyme [53]. Further, exercise can decrease the enzyme 181 activity in the C-terminal domain and increase the activity in the N- terminal domain 182 which results in improved blood flow and proliferation of red blood cells [53]. It is 183 thought that the I allele confers enhanced endurance performance while the D allele is 184 thought to confer increased muscle power and strength [54]. The D allele was consistently 185 shown across 6 separate candidate gene studies to be associated with greater gains in 186 strength after resistance training and this was consistent across sex and age [55-60]. While 187 the literature is consistent regarding muscular strength, the association with muscular 188 power is less convincing [55, 61-63]. The D allele in ACE was associated with CMJ in 189 older females after a 12-week power training program [58] and in young males after a 190 high intensity training program [13]. However, it was the I allele in ACE that was 191 associated with a higher baseline VJ at baseline in males and females [62]. Another two 192 studies did not find any association between the ACE I/D and skeletal muscle power at 193 baseline or in response to resistance training [61, 63]. ACE provides a robust candidate 194 gene for explaining variation in muscular strength but not muscular power suggesting that 195 this gene loci may only explain some of the inter-individual resistance variability 196 dependent on type of resistance exercise.

197

Many of the candidate genes in resistance trainability came from a large multi-centre trial
(FAMuSS) which aimed to identify nonsynonymous SNPs with functional effects on
muscle power and strength [64]. These include: *Glucocorticoid receptor (NR3C1)* [65], *alpha-actinin 3 (ACTN3)* [66], *Chemokine (C-C motif) ligand 2 (CCL2)* [67], *Chemokine*(C-C motif) ligand 2 Receptor (CCR2) [67], ACE [60], Solute carrier family 30 (zinc

transporter), member eight gene (SLC30A8) [68], Leptin (LEP) and Leptin receptor 203 204 (LEPR) [69]. The FAMuSS study was conducted in young (18-40 years old) males 205 (N=247) and females (N=355) of predominantly European-American ancestry. 206 Participants underwent a 12-week unilateral resistance program consisting of upper arm 207 exercises in the non-dominant arm [60]. Only IL-15RA, ACTN3 and ACE from this series 208 of studies were replicated in separate cohorts and have functional relevance. In the IL-209 15RA locus the rs2296135 SNP was associated gains in muscular strength and replicated 210 in two different studies in cohort of European ancestry [70, 71]. When the gene IL-15RA 211 is knocked down in an animal model it altered the contractile properties and fatigability 212 in skeletal muscle fibres [72]. While the locus is important it not yet clear which SNPs is 213 responsible for altering the function of *IL-15RA* protein. Although SNPs within CCL2, 214 CCR2 and CNTF have not been replicated they interestingly showed sex-specific 215 associations with muscle strength. CTNF polymorphisms were associated with strength 216 gains only in females [73], which was subsequently confirmed in a South Korean cohort 217 [74]. SNPs in CCL2 and CCR2 were associated strength gains in males only [67]. This 218 indicates potential sex-specific differences in the genetic architecture of complex traits 219 and should be incorporated into study design [75, 76]. In addition PTK2, CNTF, IL-6, 220 PPARA and VDR candidate genes have been replicated with functional relevance [13, 221 73].

222

In total 7 SNPs (**Table 3**) were robustly associated with resistance variability. While there are plethora of candidate gene studies no GWAS have been conducted that specifically focuses on resistance trainability.

226

227 Functional Validation

228 We have identified 12 SNPs and 7 SNPs that are robustly associated with variance in 229 aerobic and resistance trainability respectively. The next steps are to a) identify the causal 230 SNP, b) annotate the casual SNP to the correct gene and then c) to establish the functional 231 relevance of the gene [47]. The overall evidence from literature connecting causal genes 232 to trainability is relatively low [31]. If we hope to identify the casual variants or genes it 233 is vital that we begin to integrate 'omic' technologies from the genome and epigenome to 234 transcriptome to proteome and metabolome which can capture a complete picture of 235 complex human traits such as aerobic and resistance trainability [77, 78].

237 There have been attempts to associate molecular pathways or 'molecular phenotypes' 238 with physiological phenotypes of aerobic and resistance trainability [79-81]. Sarzynski et 239 al. applied this systems biology approach by combining the 21 SNP identified in a GWAS 240 from the HERITAGE study cohort (Table 2) [15, 23] and examined the joint contributions 241 of these SNPs to exercise response [47]. This approach identified potential pathways in 242 calcium signalling, energy sensing and partitioning, mitochondrial biogenesis, 243 angiogenesis, immune functions, and regulation of autophagy and apoptosis, providing 244 important pathways that can be investigated more closely [47]. Another integrative 245 approach is expression quantitative trait loci (eQTLs) analysis that leverages gene loci 246 identified from GWAS and integrate these with gene expression data to identify 247 differential gene expression levels to try and uncover the 'molecular phenotype' that lead 248 to these variations in exercise response [82, 83]. Willems et al. identified the rs6565586 249 SNP in ACTG1 as a strong candidate gene in inter-individual variability in the resistance-250 related phenotype (hand grip strength) and correlated this with a lower expression of 251 mRNA in skeletal muscle. ACTG1 encodes Actin Gamma 1 and is involved in the 252 structure and function of skeletal muscle fibres. Interestingly, in a knock out mouse 253 model, animals displayed overt muscle weakness [84]. This type of analysis presented an 254 ideal candidate gene to begin understanding the molecular mechanisms in human skeletal 255 muscle.

256

257 To establish causality of genetic variants in aerobic and resistance trainability the field 258 needs to move forward beyond association analysis. The type of follow-up experiment 259 will depend on the location of SNP within the gene. For SNPs within coding regions 260 ideally experiments are performed to study the effect of the SNP has on protein structure 261 and function. For SNPs within in non-coding regions it more difficult to determine as 262 they may not directly affect a gene but alter/regulate transcription factors and mediate 263 alterations in genes this way [77]. However, with the introduction of the large epigenetic 264 database ENCODE (Encyclopaedia of DNA elements) we can now identify the 265 transcription factor association, chromatin structure and histone modification of target 266 genes [85] and more recently enhancers providing candidate gene targets for follow up 267 analysis [86]. With the discovery of CRISPR Cas-9 genome-editing tool in 2012 [87] this 268 has paved the way for establishing causality of SNPs and the functional effects of them. 269 This has been used to great effect for establishing causal genes implicated in insulin 270 resistance whereby they were able to determine the casual effect of 12 candidate genes that had previously been identified in a GWAS [88]. To date no experiments have been
conducted using this gene-editing tool to establish the function and causality of candidate
genes of trainability beyond association analysis.

274

275 There is still much work to do before personalised exercise prescription (both in a clinical 276 and elite athlete setting) can be based on an individual's genetics. However, there are 277 concerted efforts taking place to make this possible such as the Athlome Project 278 Consortium and the Gene SMART (Skeletal Muscle Response to Training), recently 279 launched with the aim of uncovering the genetic variation underlying athletic 280 performance, adaptation to exercise training, and exercise-related musculoskeletal 281 injuries [89, 90]. These, and other initiatives will allow for population-based approach to 282 understand the role of genes and environmental factors contributing to the complex 283 exercise response phenotype [91].

284

This review summarised robust genetic variants that have been associated with aerobic and resistance trainability. To date, there is very little literature ascribed to understanding the interplay between genes and environmental factors and the development of physiological traits. Therefore, much work remains to identify causal variants and functional relevance of genes associated with aerobic and resistance trainability.

- 290
- 291
- 292 293

References

- Bishop, D.J., C. Granata, and N. Eynon, *Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content?* Biochim Biophys Acta, 2014. **1840**(4): p. 1266-75.
- 2972.Wilson, M.G., G.M. Ellison, and N.T. Cable, Basic science behind the298cardiovascular benefits of exercise. Br J Sports Med, 2016. **50**(2): p. 93-9.
- 3. Silverman, M.N. and P.A. Deuster, *Biological mechanisms underlying the role*of physical fitness in health and resilience. Interface Focus, 2014. 4(5): p.
 20140040.
- 3024.Bouchard, C., Human adaptability may have a genetic basis. Health Risk303Estimation, Risk Reduction and Health Promotion. , 1983: p. 463-476.
- 3045.Bouchard, C., DNA Sequence Variations Contribute to Variability in Fitness and305Trainability. Med Sci Sports Exerc, 2019. **51**(8): p. 1781-1785.
- 3066.Voisin, S., et al., Statistical Considerations for Exercise Protocols Aimed at307Measuring Trainability. Exerc Sport Sci Rev, 2019. 47(1): p. 37-45.

308	7.	Mann, T.N., R.P. Lamberts, and M.I. Lambert, High responders and low
309		responders: factors associated with individual variation in response to
310		<i>standardized training.</i> Sports Med, 2014. 44 (8): p. 1113-24.
311	8.	Kohrt, W.M., et al., Effects of gender, age, and fitness level on response of
312		<i>VO2max to training in 60-71 yr olds.</i> J Appl Physiol (1985), 1991. 71 (5): p.
313		2004-11.
314	9.	Scharhag-Rosenberger, F., et al., Differences in adaptations to 1 year of aerobic
315		endurance training: individual patterns of nonresponse. Scand J Med Sci
316		Sports, 2012. 22 (1): p. 113-8.
317	10.	McPhee, J.S., et al., Inter-individual variability in adaptation of the leg muscles
318		following a standardised endurance training programme in young women. Eur
319		J Appl Physiol, 2010. 109 (6): p. 1111-8.
320	11.	McPhee, J.S., et al., Variability in the magnitude of response of metabolic
321		enzymes reveals patterns of co-ordinated expression following endurance
322		<i>training in women.</i> Exp Physiol, 2011. 96 (7): p. 699-707.
323	12.	Ahtiainen, J.P., et al., Heterogeneity in resistance training-induced muscle
324		strength and mass responses in men and women of different ages. Age (Dordr),
325		2016. 38 (1): p. 10.
326	13.	Jones, N., et al., A genetic-based algorithm for personalized resistance training.
327		Biol Sport, 2016. 33 (2): p. 117-26.
328	14.	Zempo, H., et al., Heritability estimates of muscle strength-related phenotypes:
329		A systematic review and meta-analysis. Scand J Med Sci Sports, 2017. 27(12):
330		p. 1537-1546.
331	15.	Bouchard, C., et al., The HERITAGE family study. Aims, design, and
332		<i>measurement protocol.</i> Med Sci Sports Exerc, 1995. 27 (5): p. 721-9.
333	16.	Bouchard, C., et al., Familial resemblance for VO2max in the sedentary state:
334		<i>the HERITAGE family study.</i> Med Sci Sports Exerc, 1998. 30 (2): p. 252-8.
335	17.	Bouchard, C., et al., Familial aggregation of VO(2max) response to exercise
336		training: results from the HERITAGE Family Study. J Appl Physiol (1985),
337	10	1999. 87 (3): p. 1003-8.
338	18.	Bouchard, C., T. Rankinen, and J.A. Timmons, <i>Genomics and Genetics in the</i>
339		Biology of Adaptation to Exercise, in Comprehensive Physiology. 2011. p. pp.
340	10	
341	19.	Ahmetov, I., et al., <i>Genome-wide association study identifies three novel genetic</i>
342		markers associated with elite endurance performance. Biol Sport, 2015. 32 (1):
343	20	p. 3-9.
344 245	20.	Leonska-Duniec, A., et al., Leptin and Leptin Receptor Genes Are Associated
345		With Obesity-Related Traits Changes in Response to Aerobic Training Program.
340	21	J Strength Cond Res, 2018. 32 (4): p. 1036-1044.
347 249	21.	MIOLLO, P.M. and G.P. Holloway, Exercise-induced reductions in milochonarial
240 240		ADF sensitivity contribute to the induction of gene expression and mitochondrial biogenesis through enhanced mitochondrial U202 emission
349		Mitochondrian 2010 46 : p 116 122
351	22	Millocholiul Ioli, 2019. 40. p. 110-122. McKonzio IA ot al AKTI C205T genotyne influences obesity-related
352	22.	metabolic phonotypes and their responses to aerobic evercise training in older
352		Caucasians Exp Physiol 2011 96 (3) n 338-47
354	23	Bouchard C et al Genomic predictors of the maximal O(2) untake response
355	23.	to standardized exercise training programs I Appl Physiol (1985) 2011
356		110 (5) n 1160-70
550		

- Soci, U.P.R., et al., *Exercise Training and Epigenetic Regulation: Multilevel Modification and Regulation of Gene Expression.* Adv Exp Med Biol, 2017. **1000**: p. 281-322.
- Cagnin, S., F. Chemello, and I.I. Ahmetov, *Genes and response to aerobic training*, in *Sports, Exercise, and Nutritional Genomics*. 2019. p. pp. 169-188.
- 362 26. Huffman, J.E., *Examining the current standards for genetic discovery and*363 *replication in the era of mega-biobanks.* Nat Commun, 2018. 9(1): p. 5054.
- Chanock, S.J., et al., *Replicating genotype-phenotype associations*. Nature, 2007. 447(7145): p. 655-660.
- 366 28. Harriss, D.J., A. MacSween, and G. Atkinson, *Ethical Standards in Sport and*367 *Exercise Science Research: 2020 Update.* Int J Sports Med, 2019. 40(13): p.
 368 813-817.
- 369 29. Tam, V., et al., *Benefits and limitations of genome-wide association studies.* Nat
 370 Rev Genet, 2019. 20(8): p. 467-484.
- 30. Zadro, J.R., et al., *The Beneficial Effects of Physical Activity: Is It Down to Your*372 *Genes? A Systematic Review and Meta-Analysis of Twin and Family Studies.*373 Sports Med Open, 2017. 3(1): p. 4.
- 374 31. Ghosh, S., et al., *Integrative pathway analysis of a genome-wide association*375 *study of VO2max response to exercise training.* J Appl Physiol (1985), 2013.
 376 **115**(9): p. 1343-59.
- 377 32. Petr, M., et al., The Role of Peroxisome Proliferator-Activated Receptors and
 378 Their Transcriptional Coactivators Gene Variations in Human Trainability: A
 379 Systematic Review. Int J Mol Sci, 2018. 19(5).
- 380 33. Franks, P.W., et al., *PGC-1alpha genotype modifies the association of volitional*381 *energy expenditure with VO2max.* Med Sci Sports Exerc, 2003. **35**(12): p.
 382 1998-2004.
- 383 34. Wang, Y.X., et al., *Regulation of muscle fiber type and running endurance by*384 *PPARdelta.* PLoS Biol, 2004. 2(10): p. e294.
- 385 35. Hautala, A.J., et al., Peroxisome proliferator-activated receptor-δ
 386 polymorphisms are associated with physical performance and plasma lipids:
 387 the HERITAGE Family Study. Am J Physiol Heart Circ Physiol, 2007. 292(5): p.
 388 H2498-H2505.
- 389 36. Skogsberg, J., et al., Evidence that peroxisome proliferator-activated receptor
 390 delta influences cholesterol metabolism in men. Arterioscler Thromb Vasc
 391 Biol, 2003. 23(4): p. 637-43.
- 392 37. Karpe, F. and E.E. Ehrenborg, *PPARdelta in humans: genetic and pharmacological evidence for a significant metabolic function.* Curr Opin Lipidol, 2009. 20(4): p. 333-6.
- 395 38. Stefan, N., et al., *Genetic variations in PPARD and PPARGC1A determine*396 *mitochondrial function and change in aerobic physical fitness and insulin*397 *sensitivity during lifestyle intervention.* J Clin Endocrinol Metab, 2007. 92(5):
 398 p. 1827-33.
- 399 39. Franks, P.W., et al., Common variation at PPARGC1A/B and change in body
 400 composition and metabolic traits following preventive interventions: the
 401 Diabetes Prevention Program. Diabetologia, 2014. 57(3): p. 485-90.
- 402 40. Ring-Dimitriou, S., et al., *Does Genetic Variation in PPARGC1A Affect Exercise*403 *Induced Changes in Ventilatory Thresholds and Metabolic Syndrome?* J Exerc
 404 Physiol Online, 2014. 17(2): p. 1-18.

405	41.	Steinbacher, P., et al., The single nucleotide polymorphism Gly482Ser in the
406		PGC-1alpha gene impairs exercise-induced slow-twitch muscle fibre
407		<i>transformation in humans.</i> PLoS One, 2015. 10 (4): p. e0123881.
408	42.	Pickering, C., et al., The magnitude of Yo-Yo test improvements following an
409		aerobic training intervention are associated with total genotype score. PLoS
410		One, 2018. 13 (11): p. e0207597.
411	43.	He, Z., et al., Is there an association between PPARGC1A genotypes and
412		endurance capacity in Chinese men? Scand J Med Sci Sports, 2008. 18(2): p.
413		195-204.
414	44.	He, Z.H., et al., PGC-related gene variants and elite endurance athletic status in
415		a Chinese cohort: a functional study. Scand J Med Sci Sports, 2015. 25(2): p.
416		184-95.
417	45.	Lin, J., et al., Transcriptional co-activator PGC-1 alpha drives the formation of
418		<i>slow-twitch muscle fibres.</i> Nature, 2002. 418 (6899): p. 797-801.
419	46.	Huang, T., Y. Shu, and Y.D. Cai, Genetic differences among ethnic groups. BMC
420		Genomics, 2015. 16 : p. 1093.
421	47.	Sarzynski, M.A., S. Ghosh, and C. Bouchard, Genomic and transcriptomic
422		predictors of response levels to endurance exercise training. J Physiol, 2017.
423		595 (9): p. 2931-2939.
424	48.	Lobo, S., B.M. Wiczer, and D.A. Bernlohr, Functional analysis of long-chain
425		acyl-CoA synthetase 1 in 3T3-L1 adipocytes. J Biol Chem, 2009. 284(27): p.
426		18347-56.
427	49.	Timmons, J.A., et al., Using molecular classification to predict gains in maximal
428		aerobic capacity following endurance exercise training in humans. J Appl
429		Physiol (1985), 2010. 108 (6): p. 1487-96.
430	50.	Del Coso, J., et al., More than a 'speed gene': ACTN3 R577X genotype,
431		trainability, muscle damage, and the risk for injuries. Eur J Appl Physiol, 2019.
432		119 (1): p. 49-60.
433	51.	Sparks, M.A., et al., Classical Renin-Angiotensin system in kidney physiology.
434		Compr Physiol, 2014. 4 (3): p. 1201-28.
435	52.	Rigat, B., et al., An insertion/deletion polymorphism in the angiotensin I-
436		converting enzyme gene accounting for half the variance of serum enzyme
437		<i>levels.</i> J Clin Invest, 1990. 86 (4): p. 1343-6.
438	53.	Alves, C.R., et al., Aerobic exercise training differentially affects ACE C- and N-
439		domain activities in humans: Interactions with ACE I/D polymorphism and
440		association with vascular reactivity. J Renin Angiotensin Aldosterone Syst,
441		2018. 19 (2): p. 1470320318761725.
442	54.	Ma, F., et al., The association of sport performance with ACE and ACTN3 genetic
443		polymorphisms: a systematic review and meta-analysis. PLoS One, 2013. 8 (1):
444		p. e54685.
445	55.	Charbonneau, D.E., et al., ACE genotype and the muscle hypertrophic and
446		<i>strength responses to strength training.</i> Med Sci Sports Exerc, 2008. 40 (4): p.
447		677-83.
448	56.	Folland, J., et al., <i>Angiotensin-converting enzyme genotype affects the response</i>
449		of human skeletal muscle to functional overload. Exp Physiol, 2000. 85 (5): p.
450		575-9.
451	57.	Giaccaglia, V., et al., Interaction between angiotensin converting enzyme
452		insertion/deletion genotype and exercise training on knee extensor strength in
453		older individuals. Int J Sports Med, 2008. 29 (1): p. 40-4.

- 45458.Pereira, A., et al., ACE I/D and ACTN3 R/X polymorphisms as potential factors455in modulating exercise-related phenotypes in older women in response to a456muscle power training stimuli. Age (Dordr), 2013. **35**(5): p. 1949-59.
- 457 59. He, L., et al., Effects of 8 weeks of moderate-intensity resistance training on
 458 muscle changes in postmenopausal women with different angiotensin459 converting enzyme insertion/deletion polymorphisms of interest. Menopause,
 460 2019. 26(8): p. 899-905.
- 461 60. Pescatello, L.S., et al., ACE ID genotype and the muscle strength and size
 462 response to unilateral resistance training. Med Sci Sports Exerc, 2006. 38(6):
 463 p. 1074-81.
- 464 61. Erskine, R.M., et al., *The individual and combined influence of ACE and ACTN3*465 *genotypes on muscle phenotypes before and after strength training.* Scand J
 466 Med Sci Sports, 2014. 24(4): p. 642-8.
- 467 62. Gineviciene, V., et al., Genetic variation of the human ACE and ACTN3 genes
 468 and their association with functional muscle properties in Lithuanian elite
 469 athletes. Medicina (Kaunas), 2011. 47(5): p. 284-90.
- 470 63. Thomis, M.A., et al., Exploration of myostatin polymorphisms and the 471 angiotensin-converting enzyme insertion/deletion genotype in responses of 472 human muscle to strength training. Eur J Appl Physiol, 2004. 92(3): p. 267-473 74.
- 474 64. Pescatello, L.S., et al., *Highlights from the functional single nucleotide*475 *polymorphisms associated with human muscle size and strength or FAMuSS*476 *study.* Biomed Res Int, 2013. 2013: p. 643575.
- 477 65. Ash, G.I., et al., *Glucocorticoid Receptor (NR3C1) Variants Associate with the*478 *Muscle Strength and Size Response to Resistance Training.* PLoS One, 2016.
 479 **11**(1): p. e0148112.
- 480 66. Clarkson, P.M., et al., ACTN3 genotype is associated with increases in muscle
 481 strength in response to resistance training in women. J Appl Physiol (1985),
 482 2005. 99(1): p. 154-63.
- 483 67. Harmon, B.T., et al., *CCL2 and CCR2 variants are associated with skeletal*484 *muscle strength and change in strength with resistance training.* J Appl Physiol
 485 (1985), 2010. **109**(6): p. 1779-85.
- 486 68. Sprouse, C., et al., *SLC30A8 nonsynonymous variant is associated with recovery*487 *following exercise and skeletal muscle size and strength.* Diabetes, 2014.
 488 **63**(1): p. 363-8.
- 489 69. Walsh, S., et al., Leptin and leptin receptor genetic variants associate with
 490 habitual physical activity and the arm body composition response to resistance
 491 training. Gene, 2012. 510(1): p. 66-70.
- 492 70. Pistilli, E.E., et al., Interleukin-15 and interleukin-15R alpha SNPs and
 493 associations with muscle, bone, and predictors of the metabolic syndrome.
 494 Cytokine, 2008. 43(1): p. 45-53.
- Riechman, S.E., et al., Association of interleukin-15 protein and interleukin-15
 receptor genetic variation with resistance exercise training responses. J Appl
 Physiol (1985), 2004. 97(6): p. 2214-9.
- 49872.Loro, E., S. Bisetto, and T.S. Khurana, Mitochondrial ultrastructural499adaptations in fast muscles of mice lacking IL15RA. J Cell Sci, 2018. 131(21).
- 500
 73.
 Walsh, S., et al., CNTF 1357 G -> A polymorphism and the muscle strength

 501
 response to resistance training. J Appl Physiol (1985), 2009. 107(4): p. 1235

 502
 40.

503	74.	Hong, A.R., S.M. Hong, and Y.A. Shin, <i>Effects of resistance training on muscle</i>
504		strength, endurance, and motor unit according to ciliary neurotrophic factor
505		polymorphism in male college students. J Sports Sci Med, 2014. 13(3): p. 680-
506		8.
507	75.	Khramtsova, E.A., L.K. Davis, and B.E. Stranger, <i>The role of sex in the genomics</i>
508		of human complex traits. Nat Rev Genet, 2019. 20 (3): p. 173-190.
509	76.	Landen, S., et al., Genetic and epigenetic sex-specific adaptations to endurance
510		<i>exercise.</i> Epigenetics, 2019. 14 (6): p. 523-535.
511	77.	Karczewski, K.J. and M.P. Snyder, <i>Integrative omics for health and disease</i> . Nat
512		Rev Genet, 2018. 19 (5): p. 299-310.
513	78.	Sun. Y.V. and Y.I. Hu. Integrative Analysis of Multi-omics Data for Discovery and
514		Functional Studies of Complex Human Diseases. Adv Genet. 2016. 93: p. 147-
515		90.
516	79.	Battle, A., et al., <i>Genomic variation</i> , <i>Impact of regulatory variation from RNA to</i>
517		<i>protein</i> . Science, 2015, 347 (6222): n, 664-7.
518	80.	Vevrieras, I.B., et al., <i>High-resolution mapping of expression-OTLs vields insight</i>
519	001	into human gene regulation PLoS Genet 2008 4 (10): n e1000214
520	81	Taylor DL et al Integrative analysis of gene expression DNA methylation
520	01.	nhysiological traits and genetic variation in human skeletal muscle Proc Nat
522		Acad Sci II S A 2019 116 (22): n 10883-10888
522	82	Nicolae DL et al Trait-associated SNPs are more likely to be $eOTIs$:
523	02.	annotation to enhance discovery from GWAS PLOS Conet 2010 6(4): n
525		
525 526	83	Kaildson S at al Expression of phosphofructokingse in skeletal muscle is
520	05.	influenced by genetic variation and associated with insulin sensitivity
528		Dispetes 2014 63 (3) n 1154-65
520	84	Sonnemann KI et al Cytonlasmic aamma-actin is not required for skeletal
530	01.	muscle development but its absence leads to a progressive myonathy Dev Cell
531		2006 11 (3): n 387-97
532	85	Dunham I et al An integrated encyclonedia of DNA elements in the human
532	05.	genome Nature 2012 489 (7414): n 57-74
534	86	Fishilewich S et al GeneHancer: genome-wide integration of enhancers and
535	00.	target genes in Genefards Database (Oxford) 2017 2017
536	87	linek M et al A Programmable Dugl-RNA-Guided DNA Endonuclease in
537	07.	Adantive Bacterial Immunity Science 2012 337 (6096): n 816-821
538	88	Chen 7 et al Eurotional Screening of Candidate Causal Cones for Insulin
530	00.	Resistance in Human Preadinocytes and Adinocytes Circ Res 2019
540	80	Wang C ot al. The Future of Conomic Possarch in Athlatic Performance and
540	09.	Adaptation to Training Mod Sport Sci 2016 61 p 55 67
542	90	Yan Y ot al. The game SMAPT study: method study design and preliminary
542	90.	findings BMC Conomics 2017 19 (Suppl 9), p. 921
545	01	Palica NS at al. The State of Systems Canatics in 2017 Call Syst 2017 A(1).
544	91.	Daliga, N.S., et al., The state of systems denetics in 2017 . Cell Syst, 2017 . 4(1).
545	02	p. /-13. Alves C.P. at al. Influence of angiotensinegen and angiotensin converting
540	92.	Alves, G.D., et al., Influence of unglotensinogen and improvement on maximal
541 519		archic canacity caused by everying training Eyr I Cardiovace Drey Debabil
J40 540		2000 16 (4), n 497.02
J49 550	02	2007. 10(4): μ. 40/-72. Dianna ET at al Mitaghandrial DNA sequence notimerrism VO2may and
550	73.	pionne, F. I., et al., <i>Milochonania DivA sequence polymorphism, v02max, and</i>
221		response to endurance training. Med Sci Sports Exerc, 1991. 23(2): p. 177-85.

- 55294.He, Z., et al., NRF-1 genotypes and endurance exercise capacity in young553Chinese men. Br J Sports Med, 2008. 42(5): p. 361-6.
- He, Z., et al., Polymorphisms in the HBB gene relate to individual
 cardiorespiratory adaptation in response to endurance training. Br J Sports
 Med, 2006. 40(12): p. 998-1002.
- 557 96. He, Z., et al., *NRF2 genotype improves endurance capacity in response to training.* Int J Sports Med, 2007. **28**(9): p. 717-21.
- 559 97. He, Z.-H., et al., *Are calcineurin genes associated with endurance phenotype traits?* Eur J Appl Physiol, 2010. **109**(3): p. 359-369.
- 98. He, Z.H., et al., *Polymorphisms in the calcineurin genes are associated with the training responsiveness of cardiac phenotypes in Chinese young adults.* Eur J Appl Physiol, 2010. **110**(4): p. 761-7.
- Leon, A.S., et al., Association of apolipoprotein E polymorphism with blood
 lipids and maximal oxygen uptake in the sedentary state and after exercise
 training in the HERITAGE family study. Metabolism, 2004. 53(1): p. 108-16.
- 567 100. McPhee, J.S., et al., *HIF1A P582S gene association with endurance training* 568 *responses in young women.* Eur J Appl Physiol, 2011. **111**(9): p. 2339-47.
- 569 101. Prior, S., et al., Sequence variation in hypoxia-inducible factor 1 (HIF1A):
 570 association with maximal oxygen consumption. Physiol Genomics 15: 20–26,
 571 2003., 2003. 15: p. 20-26.
- 572 102. Prior, S.J., et al., DNA sequence variation in the promoter region of the VEGF
 573 gene impacts VEGF gene expression and maximal oxygen consumption. Am J
 574 Physiol Heart Circ Physiol, 2006. 290(5): p. H1848-55.
- 575 103. Rankinen, T., et al., *The Na K ATPase 2 gene and trainability of cardiorespiratory endurance: the HERITAGE Family Study.*. J Appl Physiol (1985), 2000. 88: p. 346–351.
- Rankinen, T., et al., *AGT M235T and ACE ID polymorphisms and exercise blood pressure in the HERITAGE Family Study.* Am J Physiol Heart Circ Physiol, 2000. **279**: p. 368-374.
- 105. Rico-Sanz, J., et al., Associations between cardiorespiratory responses to
 exercise and the C34T AMPD1 gene polymorphism in the HERITAGE Family
 study. Physiol Genomics 2003. 14: p. 161–166,.
- 584106.Rivera, M.A., et al., Muscle-specific creatine kinase gene polymorphism and585VO2max in the HERITAGE Family Study. Med Sci Sports Exerc, 1997. 29(10):586p. 1311-7.
- 587 107. Sonna, L.A., et al., Angiotensin-converting enzyme genotype and physical
 588 performance during US Army basic training. J Appl Physiol (1985), 2001.
 589 91(3): p. 1355-63.
- 590 108. Yoo, J., et al., *Genetic polymorphisms to predict gains in maximal O2 uptake and*591 *knee peak torque after a high intensity training program in humans.* Eur J Appl
 592 Physiol, 2016. **116**(5): p. 947-57.
- 593 109. Yu, B., et al., Association of apolipoprotein E polymorphism with maximal
 594 oxygen uptake after exercise training: a study of Chinese young adult. Lipids
 595 Health Dis, 2014. 13(40).
- 596 110. Zarebska, A., et al., *THE GSTP1 c.313A>G POLYMORPHISM MODULATES THE*597 *CARDIORESPIRATORY RESPONSE TO AEROBIC TRAINING.* Biol Sport, 2014.
 598 **31**(4): p. 261-6.

- 599111.Zhou, D.Q., et al., Muscle-specific creatine kinase gene polymorphism and600running economy responses to an 18-week 5000-m training programme. Br J601Sports Med, 2006. **40**(12): p. 988-91.
- belmonico, M.J., et al., *Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women.* J Gerontol A Biol Sci Med Sci, 2007. 62(2): p. 206-12.
- Erskine, R.M., et al., Do PTK2 gene polymorphisms contribute to the
 interindividual variability in muscle strength and the response to resistance
 training? A preliminary report. J Appl Physiol (1985), 2012. 112(8): p. 132934.
- In the second second
- Keogh, J.W., et al., ACE and UCP2 gene polymorphisms and their association
 with baseline and exercise-related changes in the functional performance of
 older adults. PeerJ, 2015. 3: p. e980.
- Kostek, M.C., et al., *Muscle strength response to strength training is influenced by insulin-like growth factor 1 genotype in older adults.* J Appl Physiol (1985),
 2005. 98(6): p. 2147-54.
- Li, X., et al., *The A55T and K153R polymorphisms of MSTN gene are associated with the strength training-induced muscle hypertrophy among Han Chinese men.* J Sports Sci, 2014. **32**(9): p. 883-91.
- 621
- 622 Table legends
- 623
- 624 **Table 1. Gene variants associated with aerobic trainability.**
- 625 AT, Anaerobic Threshold; CO, Cardiac Output; VT, Ventilatory Threshold; RE,
- 626 Running Economy; LVM, left ventricular mass; N/A, information not available; RP,
- 627 Running Performance; SV, Stroke Volume.
- 628

629 **Table 2. Gene variants associated with resistance trainability.**

- 630 1RM, one maximal repetition; CMJ, counter movement jump; CSA, cross sectional area;
- 631 LVM, Left ventricle mass; MVC, maximal voluntary contraction; N/A, information not
- 632 available; RT, resistance training; STS, sit to stand test.
- 633

634 **Table 3. Robust SNPs associated with aerobic or resistance trainability.**

- TBC, Allele to be confirmed; *Linkage Disequilibrium above 80% according to ensemble
- 636 LD calculator.
- 637

Author, Date	Sample Size	Sex (% Males)	Age	Ancestry/Country /ethnicity	Chromosome	Annotated gene	Variant	Genotype and training response (+/-/0)	Intervention (if any)/exercise	Duration	Type of study
Alves (2009) [92]	N= 83	Males only	20-35yrs	Brazil	17 1	ACE ATG	rs4340 rs699	ACE (0) VO _{2max} TT (+) LVM	Moderate intensity endurance training	3 days/week 16 weeks	Candidate Gene
Bouchard 2011 [23]	N= 742	Males (N/A) and Females	17-65yrs	HERITAGE study Caucasian and African-American U.S.A	$ \begin{array}{c} 4\\ 6\\ 9\\ 3\\ 9\\ 3\\ 1\\ 1\\ 20\\ 11\\ 14\\ 15\\ 11\\ 14\\ 2\\ 4\\ 11\\ 3\\ 22\\ 11\\ 6\\ \end{array} $	ACSL1 PRDM1 GRIN3A KCNH8 C9orf27 ZIC4 CAMTA1 RGS18 BIRC7 DBX1 DAAM1 NDN CXCR5 TTC6 LOC400950 LOC100289626 LOC100289626 LOC100130460 NLGN1 MN1 CD44 ENPP3	rs6552828 rs10499043 rs1535628 rs4973706 rs12115454 rs11715829 rs884736 rs10921078 rs6090314 rs10500872 rs1956197 rs824205 rs7933007 rs12896790 rs4952535 rs2053896 rs2198009 rs2030398 rs738353 rs353625 rs10452621	(+) VO2max	Endurance training Moderate: at 55% HR first two weeks and intense: last 6 weeks 75% HR	20 weeks	GWAS
Dionne (1991)[93]	Males N=46	Males only	17-29yrs	Canada, USA	Mitochondria	MTND2 MTND5		$\begin{array}{c} \text{MTN2 (-)} \\ \text{VO}_{2\text{max}} \\ \text{MTND5 (+)} \\ \text{VO}_{2\text{max}} \end{array}$	Endurance training at 85% of HRR	3-5 days/week 20 weeks	Candidate gene
Hautala et al. 2007 [35]	N= 478	Males (48.3%) and Females	17-65yrs	HERITAGE study Caucasian and African-American Canada, U.S.A	22	PPARD	rs2016520 rs2076167	African American only rs2016520 CC (-) VO _{2max,} PPO rs2076167 (0)	Endurance training moderate 55% of VO2 and absolute 75% of VO2 intensity	20 weeks	Candidate gene
He et al. 2008 [94]	N= 181	Males only	19±1	Han Chinese	7	NRF-1	rs2402970	rs2402970 CC (+) VT, RE	Endurance training	18 weeks	Candidate gene

1 Table 1. Gene variants associated with aerobic trainability.

					15	NRF-1	rs6949152	rs6949152	95% to 105%		
								AA (+) VT, RE	ventilatory		
						NRF-2	rs6949152	rs6949152	threshold		
								AA (+)			
								VO2max	F 1		
He et al. 2006 [95]	N= 181	Males only	19± 1	Han Chinese	11	HBB	rs10768683	C (+) RE	training 95% to 105% ventilatory threshold	18 weeks	Candidate gene
He et al. 2007 [96]	N= 181	Males only	19± 1	Han Chinese	15	NRF-2 NRF-2 NRF-2	rs12594956 rs8031031 rs7181866	ATG haplotype (+) RE	Endurance training 95% to 105% ventilatory threshold	18 weeks	Candidate gene
He et al. 2008 [43]	N= 181	Males only	19±1	Han Chinese	4 4 4	PPARGCIA PPARGCIA PPARGCIA	rs17847357 rs8192678 rs6821591	rs17847357, rs8192678 (0) VO2max rs6821591 G (+) VO2max	Endurance training High intensity 95% to 105% HR	18 weeks	Candidate gene
					4	PPP3CA	rs2850965	G(+) VO2max	Aerobic		Candidata
He et al.	N= 181	Males only	10+1	Han Chinese	4	PPP3CA	rs380/4425	G(+) VO2max	to 105% of	18 weeks	gene
2010 [97]		Wates only	1)±1	Hun Chinese	2	PPP3R1	rs4671887	A (+) VO2max	ventilatory	10 weeks	gene
					9	PPP3R2	rs3739723	A(+) RE	threshold		
					8	PPP3CC	rs1879793	CC (+) SV	Aerobic		
He et al	N= 191				8	PPP3CC	rs1075534	AA (+) SV, CO	endurance 95%		Candidate
2010 [08]	N= 101	Males only	19±1	Han Chinese	8	PPP3CC	rs7430	GG (+) SV	to 105% of	18 weeks	gene
2010 [90]					8	PPP3CC	rs2461483	CC (+) SV	ventilatory		
					8	PPP3CC	rs10108011	GG (+) SV	threshold		
Leon et al. 2004 [99]	N= 766	Males (43%) and Females	17-65yrs	HERITAGE study Caucasian and African-American U.S.A	19	APOE	E2, E3, E4	(0)VO2max	Endurance training Moderate: at 55% HR first two weeks and intense: last 6 weeks 75% HR	20 weeks	Candidate Gene
McKenzie 2011 [22]	N= 109	Males (46.7%) and Females	50-75yrs	Caucasian U.S.A	14	AKTI	rs1130214	Men: GG (+) VO2max Females: (0)	Aerobic training moderate 50- 70%	24 weeks	Candidate gene
McPhee et al 2011 [100]	N=58	Females only	Age 18- 37yrs	Caucasian UK	14	HIF1A	rs11549465	T (+) VO2max	Aerobic 75-90% of HRmax	6 weeks	Candidate gene

Pickering et al 2018 [42]	N=42	Males only	16-19 yrs	European (UK)	4	PPARGC1A VEGF ADBR2 ADBR2 CRP	rs8192678 rs2010963 rs1042713 rs1042714 1205	Endurance genotype (+) Yo-Yo Test	Aerobic training moderate to intense	8 weeks	Candidate gene
Prior et al. 2003 [101]	N=233	Males (39.3%) and Females	50-75 yrs	Caucasian and African-American U.S.A	14	HIF1A	rs28708675 rs11549465	African American cohort: rs28708675 AA (+) VO2max Caucasian cohort: rs11549465 CC (+) VO2max	Aerobic training moderate 50- 70%	24 weeks	Candidate gene
Prior et al. 2006 [102]	N=146	Males (42%) and Females	50-75 yrs	Caucasian and African-American U.S.A	6	VEGF	rs699947 rs1570360 rs2010963	AAG & CGC haplotypes (+) VO2max	Aerobic training moderate 50- 70%	24 weeks	Candidate gene
Rankinen et al 2000 [103]	N= 472	Males (49%) and Females	Age 17- 65yrs	HERITAGE study Caucasian U.S.A	1	ATP1A2	Polymorphisms at exon 1 and 21-22	2α haplotype (+) VO2max and PP	Endurance training Moderate: at 55% HR first two weeks and intense: last 6 weeks 75% HR	20 weeks	Candidate Gene
Rankinen et al 2000 [104]	N= 472	Males (48.7%) and females	Age 17- 65yrs	HERITAGE study Caucasian U.S.A	17 1	ACE ATG	rs4340 rs699	Males: ACE I/D (0) ATG M (+) reduced diastolic blood pressure. Females: ACE I/D (0) ATG M/T (0)	Endurance training Moderate: at 55% HR first two weeks and intense: last 6 weeks 75% HR	20 weeks	Candidate Gene
Rico-Sanz et al 2003[105]	N= 779	Males (N/A) and Females	Age 17- 65yrs	HERITAGE study Caucasian and African-American U.S.A	1	AMPD1	rs17602729	TT (-) VO2max	Endurance training Moderate: at 55% HR first two weeks and intense: last 6 weeks 75% HR	20 weeks	Candidate Gene

Ring- Dimiriou et al 2014 [40]	N=24	Males only	45-65yrs	Austria	4	PPARGC1A	rs8192678	GG (+) VO _{2peak}	70-90% of Vo2peakk	3 days/week 10 weeks	Candidate Gene
Rivera et al 1997 [106]	N= 240	Males (47.5%) and Females	17-65yrs	HERITAGE study Caucasian and African-American U.S.A	19	СКММ	rs8111989	CC (-) VO2max	Endurance training Moderate: at 55% HR first two weeks and intense: last 6 weeks 75% HR	20 weeks	Candidate Gene
Sonna et al 2001 [107]	N=147	Males (42.2%) and Female	Age 21.7 ± 3.6yrs	USA: 57% Caucasians, 25% African- Americans, 14% Hispanics, 3% Asians, and 1% Native American	17	ACE	rs1799752	ACE I/D (0) VO _{2max}	2 aerobic days and 2 strength training days per week	8 weeks	Candidate Gene
Stefan et al (2007) [38]	N= 136	Males (46%) and Females	Age 19- 67 yrs	Germany	22 22 22 22 22 4	PPARD PPARD PPARD PPARD PPARGCIA	rs2267668 rs6902123 rs2076167 rs1053049 rs8192678	rs2267668 G (-) AT, VO _{2peak} rs6902123 (0) rs2076167 (0) rs1053049 (0) rs8192678 A (-) AT	Unsupervised: 3h of moderate sports per week	9 months	Candidate Gene
Steinbacher et al. 2015 [41]	N=28	Males Only	50-69yrs	Austria	4	PPARGC1A	rs8192678	AA (-) decreased fibre type 1 transformation	70-90% of Vo2peakk	3 days/week 10 weeks	Candidate Gene
Yoo et al 2016 [108]	N= 79	Males (64.6%) and Females	Age 30- 60yrs	Korea	12 18 2 3 6 2 2	AMNI CDH2 ASB3 SRGAP3 UST PUM2 KCNH7	rs11051548 rs2542729 rs1451462 rs13060995 rs6570913 rs11096663 rs12613181	 (+) VO2 max 	HIIT 60%-84% of VO2max	9 weeks	GWAS
Yu et al. 2014 [109]	N= 360	Males (50%) and Females	Age 18- 40yrs	China	19	APOE	E2, E3, E4	E2/E3 (+) VO2max E3/E4 (+) VO2max	Aerobic 60%- 85%	6 months	Candidate gene
Zarebska et al 2014 [110]	N=66	Females only	Age 19- 24yrs	Caucasian Poland	11	GSTP1	rs1695	G (+) VO2max and VEmax	Aerobic training 50% to 70% of HRmax	12 weeks	Candidate gene

Zhou et al. 2006 [111]	N=102	Males Only	$\begin{array}{c} 18.8 \pm \\ 0.9 yrs \end{array}$	China	19	СКММ	rs1803285	AG (-) RE	Distance running program 95- 105% of VT	18 weeks	Candidate Gene
---------------------------	-------	------------	--	-------	----	------	-----------	-----------	---	----------	-------------------

Author, Date	Sample Size	Sex (% Males)	Age	Ancestry/County of origin/ethnicity	Chromosome	Gene	Variant	Genotype and training response (+/-/0)	Intervention	Duration	Type of study
Ash (2016) [65]	N=602	Males (38.5%) and Females	Age 18- 40yrs	FAMuSS study: Predominately European-American Ancestry	5	NR3C1	rs10482614 rs10482616 rs4634384	Females: rs4634384 T (+) Hypertrophy Males: rs10482616 GG (+) MVC rs10482614 AA (+) MVC	Upper arm, Unilateral resistance program	12 weeks	Candidate Gene
Charbonneau (2008) [55]	N=243	Males (35.3%) And Females	Age 50- 85yrs	U.SA. Caucasian	17	ACE	rs1799752	Females: ACE (0) Males: ACE (0)	Knee Extension unilateral resistance program	10 weeks 3days/weeks	Candidate Gene
Clarkson (2005) [66]	N=602	Males (41%) and Females	Age 18- 40yrs	FAMuSS study: Predominately European-American Ancestry	11	ACTN3	rs1815739	Females: ACTN3 XX (+) Maximal dynamic strength (1RM). Males: ACTN3 (0)	Upper arm, Unilateral resistance program	12 weeks	Candidate Gene
Delmonico (2007) [112]	N=157	Males (45.2%) and Females	Age=50- 85yrs	Caucasian USA	11	ACTN3	rs1815739	Females: ACTN3 RR (+) PP Males: ACTN3 (0)	Knee Extension unilateral resistance program	3days/week 10 weeks	Candidate Gene
Erskine (2012) [113]	N=51	Males only	Age 20.3± 3.1yrs	Caucasian UK	8	PTK2	rs7843014 rs7460	rs7843014 AA (+) Strength (MVC) rs7460 TT (+) Strength (MVC)	Knee Extension unilateral resistance program	3days/week 9 weeks	Candidate Gene
Erskine (2013) [61]	N=51	Males only	Age 20.3± 3.1yrs	Caucasian UK	17 11	ACE ACTN3	rs1799752 rs1815739	ACE (0) ACTN3 (0)	Knee Extension unilateral resistance program	3days/week 9 weeks	Candidate Gene
Folland (2000) [56]	N=33	Males only	Age 18- 30yrs	UK	17	ACE	rs4646994	Isometric training: ACE DD/ID (+) Isometric strength (MVC) Dynamic training: ACE DD/ID (0)	Isometric Training Dynamic training	3days/week 9 weeks	Candidate Gene
Giaccaglia (2006) [57]	N=213	Males (N/A) and Females	Age>60yrs	Predominately Males and Females of European-American Ancestry	17	ACE	rs4646994	ACE DD (+) strength (MVC)	Light resistance training	3days/week 18 months	Candidate Gene

1 Table 2: Gene variants associated with resistance trainability.

Harmon (2010) [67]	N=874	Male (41.1%) and Females	Age 18- 40yrs	FAMuSS study: Predominately European-American Ancestry	17 3	CCL2 CCR2	CCL2 (rs17652343), (rs1860189), (rs3917878), (rs2857654), (rs1024611), (rs1024610), (rs3760396), (rs2857656), (rs2857657), (rs4586),	Females: CCL2 (0) and CCR2 (0) Males: CCL2 T (rs1024610) (+) Maximal Isometric strength (MVC) Males and Females CCR2 (AA) rs3918358 and (TT) rs1799865 (+) Isometric strength (MVC)	Upper arm, Unilateral resistance program	2 days/week 12 weeks	Candidate Gene
							(rs13900) CCR2 (rs17141010), (rs768539), (rs3918358), (rs1799864), (rs1799865).				
He (2019) [59]	N=40	Females only	Age 53- 66yrs	Chinese, Beijing	17	ACE	rs4646994	ACE DD (+) Maximal Isometric strength (MVC), muscle hypertrophy and grip strength	Whole body resistance training	3 days/week 8 weeks	Candidate Gene
Hong (2014) [74]	N=83	Males only	Age 22.6 ± 1.4 yrs	South Korean	11	CNTF	rs1800169	CNTF G/A (0)	Resistance training of the upper extremities	3 days/week 8 weeks	Candidate Gene
Jamshidi et al (2002) [114]	N=144	Males only	19.6 (2.4) yrs	UK	6	PPARA	rs425778	C (+) LV mass	Upper and lower body training program	10 weeks	Candidate Gene
Jones (2006) [13]	Study 1, N=28. Study 2 N=39	Males only	18-20 yrs	Caucasian UK	17	(Power- related polygenic risk score)	ACE D (rs1799752) ACTN3 (rs1815739) ADRB2 C (rs1042714) AGT C (rs699) IL-6 G/C (rs1800795) PPARA C (rs4253778) TRHR G (rs8192676)	Power genotype (+) Power (CMJ) after high intensity resistance training but not low intensity resistance training.	Low intensity (~30% of 1 RM and high repetitions) and high- intensity (~70% of 1 RM and low repetitions) resistance training	8 weeks of high or low resistance training 1 to 2 days per week	Polygenic Score

							VDR A (rs1544410)				
Keogh (2015) [115]	N=58	Males (31%) and Females	Age 69.8 ± 5.3	New Zealand (European ancestry)	17	ACE UCP2	rs4646994 rs7109266	ACE ID (0) UCP2 GG (+) Lower body strength (8ft Up and Go time)	Resistance training light to moderate intensity	2days/week, 12 weeks	Candidate Gene
Kostek (2005) [116]	N=67	Males (47.7%) and females	50-85yrs	U.S.A Caucasian	12	IGF1	IGF1 192	IGF1 192/192 + 192/- (+) dynamic (1RM) muscle strength	Unilateral resistance program	10 weeks 3days/wk	Candidate Gene
Li (2014) [117]	N=94	Males only	Age 18- 22years	Han Chinese	2	MTSN	rs1805086 rs1805065	MTSN KR (+) Hypertrophy in Biceps and Quadriceps MTSN AT + TT (+) Hypertrophy in Biceps	Arm and Leg resistance training	3-4 days/ wk 8 weeks	Candidate Gene
Pereira (2013) [58]	N=139	Females only	Age 65.5 (8.2)	Portugal, Caucasian	17 11	ACE ACTN3	rs1799752 rs1815739	ACE D/D (+) maximal dynamic strength 1RM, power (CMJ), functional capacity (STS) ACTN3 RR (+) maximal dynamic strength (1RM), power (CMJ), functional capacity (STS)	High-speed power training	12 weeks 3days/week	Candidate Gene
Pescatello (2006) [60]	N=631	Males (42%) and females	Age 18- 40yrs	FAMuSS study: Predominately European-American Ancestry	17	ACE	rs4646994	Trained Arm Post Intervention: ACE II/ID (+) Maximal Isometric strength (MVC) Untrained Arm Post Intervention: ACE DD/ID (+) maximal dynamic strength (1RM), muscle size (CSA of Type II fibres).	Upper arm, Unilateral resistance program	12 weeks, 2days/week	Candidate Gene
Pistilli (2008) [70]	N= 748	Males (40.2%) and Females	18-40yrs	Caucasian	10	IL15RA	rs2296135	rs2296135 CC (+) MVC	RT program	12 weeks 2 day/week	Candidate gene
Reichman (2004) [71]	N= 153	Males (49.6%) and Females	Aged 18-31 years	Predominantly European-American Ancestry	10	IL15RA	rs3136617 rs3136618 rs2296135	rs3136617 C (+) muscle hypertrophy rs2296135 C (+) muscle hypertrophy	Whole body resistance training @75% of 1RM	10 weeks, 3days/week	Candidate Gene
Sprouse (2014) [68]	N= 874	Males (50%) and females	Age: 18-40 years	FAMuSS study: Predominately European-American Ancestry	8	SLC30A8	rs13266634	Females: SCL30A8 (0) Males: SCL30A8(0)	Upper arm, Unilateral resistance program	Acute and 12-week Intervention	Candidate Gene
Thomis (2004) [63]	N=57	Males only	22.4 (3.7) yrs	Flemish Brabant, Belgium	17	ACE	rs4646994	ACE (I/D) (0) strength, isometric and concentric torque	High resistance	10 weeks, 3days/week	Candidate Gene

					2	MTSN	rs1805086 rs1805065	or arm muscle cross-sectional area MTSN: Unable to be determined	training program		
Walsh (2009) [73]	N=745	Males (40%) and Females	Age 18- 40yrs	FAMuSS study: Predominately European-American Ancestry	11	CNTF	rs1800169	Females: CNTF GG (+) isometric (MVC) and dynamic (1RM) muscle strength Males: CNTF (0)	Upper arm, Unilateral resistance program	12 weeks, 2 days/wk	Candidate Gene
Walsh (2012) [69]	N=560	Males (N/A) and Females	Age 18- 40yrs	FAMuSS study: Predominately European-American Ancestry	1	LEP LEPR	rs2167270 rs1137100 rs1137101 rs1805096 rs8179183	LEP (GG/GA) rs2167270 (+) Muscle hypertrophy LEPR (0)	Upper arm, Unilateral resistance program	12 weeks, 2 days/wk	Candidate Gene

12

Aerobic trainability			Resistance trainability		
SNP	Nearest Gene	Beneficial allele	SNP	Nearest Gene	Beneficial allele
rs6552828	ACSL1	G	rs4646994*	ACE	D
rs699	AGT	Т	rs1799752*	ACE	D
rs6090314	BIRC	A	rs4340*	ACE	D
rs12580476	C12orf36	TBC	rs13447447*	ACE	D
rs884736	CAMTA1	G	rs1815739	ACTN3	R
rs353625	<i>CD44</i>	TBC	rs2296135	IL15 RA	C
rs1956197	DAAM1	G	rs4253778	PPARA	C
rs17117533	NDN	A			
rs8192678	PPARGC1A	G			
rs10921078	RGS18	A			
rs7531957	RYR2	TBC			
rs11715829	ZIC4	G			

Table 3. Robust SNPs associated with aerobic or resistance trainability.