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AMPK and exercise 28 

In the late 1990s it was shown in vivo that skeletal muscle AMP-activated protein kinase 29 

(AMPK) activity is increased during exercise whilst pharmacological activation of 30 

AMPK could also increase skeletal muscle glucose uptake and free fatty acid (FFA) 31 

oxidation in vivo (22, 37). Taken together, these findings provided the impetus for the 32 

multitude of subsequent studies that have been undertaken to elucidate the role of AMPK 33 

in skeletal muscle metabolism. AMPK is a αβγ heterotrimer comprised of two α, two β, 34 

and three γ subunits (8). The α-subunits contain the catalytic domain responsible for 35 

activation which, during contraction, occurs via an increase in cellular stress due to 36 

increases in AMPfree and ADPfree levels. The increase in AMPfree allosterically activates 37 

AMPK, makes AMPK more susceptible to phosphorylation by upstream AMPK 38 

kinase(s), and the increase in AMPfree and ADPfree antagonizes the effect of protein 39 

phosphatases on AMPK, reducing the likelihood of dephosphorylation of AMPK (8, 40). 40 

AMPK is activated during moderate or harder exercise in humans (3, 6, 39) and there is 41 

evidence that AMPK phosphorylates and inactivates acetyl-CoA carboxylase (ACC)-β 42 

which is then thought to increase fat oxidation (37). However, AMPK cannot 43 

simultaneously act as a primary regulator of both glucose uptake and FFA oxidation 44 

during exercise because there are situations (e.g. increases in exercise intensity, pre- vs. 45 

post-training exercise, high vs. low carbohydrate diets) whereby increases in glucose 46 

uptake are accompanied by simultaneous decreases in fat oxidation, and vice-versa.  47 

Indeed, below I will discuss evidence that AMPK actually does not regulate either 48 

glucose uptake or fat oxidation during exercise.  49 

 50 
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 51 

AMPK is not required for skeletal muscle glucose uptake during exercise 52 

Support for a role of AMPK in the regulation of skeletal muscle glucose uptake were 53 

initially derived from pharmacological studies whereby the cell permeable agent 5-54 

aminoimidazole-4-carboxamide-1-β-O-ribofuranoside (AICAR), an AMP mimetic, was 55 

shown to increase AMPK activity, Glut-4 translocation and glucose uptake (16, 22). 56 

However, it is important to note that whilst AICAR and contraction both activate AMPK 57 

and increase glucose uptake, this appears to be mediated via different pathways. While 58 

skeletal muscle glucose uptake in response to hypoxia/AICAR appears to be highly 59 

dependent on AMPK (7, 13, 25), as explained below there is evidence that this is not the 60 

case for contraction-stimulated glucose uptake. Thus, attempting to compare between 61 

AICAR, hypoxia, and contraction studies in relation to AMPK and glucose uptake can be 62 

problematic. 63 

 64 

Although skeletal muscle AMPK α2 activity activation and glucose uptake go hand in 65 

hand with increases in exercise intensity in humans (2) and rats (27), one cannot simply 66 

assume that this indicates a cause and effect relationship.  Indeed, most human and rodent 67 

studies have found clear dissociations between skeletal muscle AMPK activation and 68 

glucose uptake. Already in 2002 Wojtaszewski et al. (38) found increases in leg glucose 69 

uptake during the first hour of cycling at ~45% VO2peak, yet muscle AMPK α2 activity 70 

and AMPKαThr172 phosphorylation only significantly increased at the end of exercise 71 

(~3.5 hours). In addition, glucose uptake at the end of exercise was actually lower than 72 

earlier in exercise (38). Also, whole-body glucose uptake and skeletal muscle AMPK 73 
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activity increase 8-10 fold during prolonged cycling exercise at ~66% VO2 peak in 74 

untrained humans, but after just 10 days of exercise training there is no measurable 75 

increase in AMPK activity at all during the same absolute intensity of exercise in these 76 

individuals (19). The exercise training did attenuate the increase in glucose uptake during 77 

prolonged exercise, but it was still substantial, so if AMPK was playing a role one would 78 

expect some increase in skeletal muscle AMPK activity but none occurred (19). 79 

Similarly, there is no activation of skeletal muscle AMPK during 120 min of exercise at 80 

~65% VO2 peak in well trained endurance athletes (McConell et al. in review), despite 81 

substantial glucose uptake at this intensity in well trained individuals (34). It should be 82 

noted though that there may have been activation of some subunits of AMPK that were 83 

missed when only total AMPK activity is measured. Indeed, although increases in AMPK 84 

activity that occur before exercise training are totally nonexistent during exercise at the 85 

same relative intensity (~65% VO2 peak) after 12 weeks of exercise training, there is still 86 

20% of the pre-training increase in the AMPKα2β2γ3 trimer of AMPK during such 87 

exercise (24).  88 

 89 

Whole-body deletion of AMPK α1 or α2 fails to inhibit contraction-stimulated glucose 90 

uptake in vitro (13), whilst muscle glucose uptake during ex vivo contraction is either 91 

normal or only partially reduced in mice expressing a dominant-negative AMPK α2 92 

isoform (7, 23, 25, 35)). When interpreting these findings one should consider the 93 

potential confounding effects of knocking-out or suppressing AMPK or LKB1, such as 94 

alterations and/or compensation of enzymes upstream and/or downstream. For example, 95 

knocking-out AMPK α2 results in compensatory increases in AMPK α1 expression in 96 
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mouse skeletal muscle (15), whilst skeletal muscle of the AMPK α2 dominant-negative 97 

mouse has attenuated force generation ex vivo (7, 25). Importantly, muscle-specific 98 

AMPKα1α2 double knockout (mdKO) mice, which have only 3-4% of normal AMPK α2 99 

activity and no activation of AMPK during exercise, have normal increases in skeletal 100 

muscle glucose uptake during exercise at the same relative intensity (14). 101 

 102 

Some findings over the years have provided small indications that AMPK may play a role 103 

in glucose uptake with contraction in rodents but it is important to consider that these 104 

situations are often non physiological.  For example, it was shown that glucose uptake 105 

was lower during ex vivo twitch contractions in AMPKα1 KO mouse muscle than wild 106 

type mouse muscle and it was suggested that this may indicate that AMPKα1 plays a role 107 

in glucose uptake during short-duration low intensity exercise (11).  But AMPKα1 is 108 

usually not activated during short-duration low-moderate intensity exercise (40-70% VO2 109 

max) (6, 11, 26, 38, 39). 110 

 111 

A recent transgenic mouse study by Kjobsted et al. (14) convincingly showed that AMPK 112 

is not required for glucose uptake during contraction/exercise but rather is important for 113 

metabolism after exercise. Using muscle specific AMPKα1α2 double KO and inducible 114 

muscle specific AMPKα1α2 double KO mice, that have extremely low AMPK activity, 115 

they showed that glucose uptake was normal during ex vivo and in situ contraction. They 116 

also mentioned in the discussion (“unpublished observations”) that glucose uptake is 117 

normal in these mice during exercise (14). The authors said “We cannot ultimately rule 118 

out that AMPK may be necessary for regulating muscle glucose uptake during longer 119 
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periods of exercise (>30 min) and contraction (>10 min) where the myocellular stress 120 

may be further elevated” (14). However, as mentioned above, dissociations between 121 

glucose uptake and AMPK activation have been observed in humans during exercise 122 

lasting up to 3.5 hours (19, 38). 123 

An important point made by the authors of the recent rodent study (14) was that of the 10 124 

studies conducted previously that found impaired glucose uptake with contractions in 125 

AMPK-deficient mouse muscle, 8 of these actually examined the glucose uptake after, 126 

rather than during the contractions. As we pointed out previously in regards to a similar 127 

situation in studies examining the role of nitric oxide in glucose uptake with contraction 128 

(18), such study designs more investigate the effect of the intervention on glucose uptake 129 

after, than during, exercise.  130 

Therefore, it is clear from both mouse and human studies that AMPK is not required for 131 

glucose uptake during exercise. It is not possible however to discount it altogether 132 

however because there is likely redundancy in signalling to skeletal muscle glucose 133 

uptake during exercise.  134 

AMPK is not required for skeletal muscle fat oxidation during exercise 135 

In skeletal muscle, malonyl-CoA is believed to be a major factor involved in the 136 

regulation of FFA oxidation due to its inhibitory effects on carnitine palmitoyltranferase 137 

(CPT) 1, the main enzyme controlling fatty acid flux into the mitochondria for oxidation.  138 

Malonyl-CoA is synthesized by ACC-β, and skeletal muscle contraction and AMPK 139 

activation phosphorylates ACC-β at a serine residue (212 in rodents, 221 in humans) in 140 

skeletal muscle (2, 8, 31), and in vitro this phenomenon inhibits ACC-β (37). This has led 141 
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to the assumption that the activation of AMPK during exercise increases FFA oxidation 142 

due to AMPK phosphorylating and inhibiting ACC-β and thus reducing malonyl-CoA 143 

and removing the inhibition of CPT1.  However, as with glucose uptake, many 144 

dissociations have been observed between AMPK activation, ACC-β phosphorylation, 145 

ACC-β activity  and FFA oxidation during contraction and exercise. 146 

 147 

Low intensity exercise performed for ~3.5 hours in humans progressively increases 148 

skeletal muscle net FFA uptake and fat oxidation, despite the fact that ACC-β 149 

phosphorylation is only increased at 1hr, and AMPK activity and is only elevated at the 150 

end of exercise (38). Similarly, low intensity contraction increases FFA oxidation in rat 151 

skeletal muscle despite no alterations in AMPK or ACC-β activity (32). It has also been 152 

shown in humans that increasing exercise from moderate- to high-intensity results in a 153 

suppression of fat oxidation, but AMPK activity and ACC-β phosphorylation both 154 

increase (2) and ACC activity decreases (4). Furthermore, 10 days of exercise training in 155 

previously untrained individuals augments fat oxidation during prolonged exercise, yet 156 

skeletal muscle AMPK activity was not increased at all and ACC-β phosphorylation only 157 

increased slightly unlike larger increases during exercise before training (19).  158 

 159 

AMPK α2 DN mice, despite having very low AMPK activity, have normal increases in 160 

FAT/CD36 translocation to the plasma membrane (12), palmitate uptake (12) and fat 161 

oxidation (5) during contraction/exercise. Surprisingly, they also have normal increases 162 

in ACCβ phosphorylation (5) and reductions in malonyl CoA (5) during contraction. It 163 

has also been shown in perfused rat hindlimbs that fat uptake increases within one minute 164 
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of in situ contractions but AMPK is not activated until later (12). A study that did find a 165 

reduction in fat oxidation during ex vivo contraction of muscle specific AMPK a1α2 KO 166 

mice also found that these mice had reduced CD36 and FABPpm, important for fatty acid 167 

uptake and oxidation, which likely accounted for these findings (15).  Finally, there is 168 

evidence from skeletal muscle ACCβ Ser 212 knock in mice that ACCβ is important for 169 

AICAR-activated fatty acid oxidation at rest (30), but ACCβ is not required for fatty acid 170 

oxidation during ex vivo contraction or during treadmill exercise (29). Therefore, 171 

transgenic models support the human findings that there are dissociations between 172 

AMPK and fat oxidation during contractions and exercise.   173 

 174 

Conclusions 175 

In conclusion, although activation of AMPK during exercise appears to be critical for 176 

adaptations after exercise (10, 14, 17, 21, 28), AMPK activation is not necessary for 177 

increases in glucose uptake or fat oxidation during exercise. In 2005 George Brooks 178 

wrote “Now, with the results of McConell et al. (19). ….. it is time to reassess the 179 

relevance of the AMPK signalling pathway for the regulation of metabolism in working 180 

human muscle” (1). Despite this, 14 years later most papers related to AMPK still state in 181 

the introduction that AMPK regulates glucose uptake and fat oxidation during exercise. 182 

Although redundancy likely exists, it really is time to move on and look more closely at 183 

other possible regulators of glucose uptake and fat oxidation during exercise such as 184 

nitric oxide (20, 33), Rac1 (33, 36) and ROS production (9, 33).  185 

 186 
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