VICTORIA UNIVERSITY

MELBOURNE AUSTRALIA

A Niching Memetic Algorithm for Multi-Solution
Traveling Salesman Problem

This is the Published version of the following publication

Huang, Ting, Gong, Yue-Jiao, Kwong, Sam, Wang, Hua and Zhang, Jun
(2020) A Niching Memetic Algorithm for Multi-Solution Traveling Salesman
Problem. IEEE Transactions on Evolutionary Computation, 24 (3). pp. 508-
522. ISSN 1089-778X

The publisher’s official version can be found at
https://ieeexplore.ieee.org/document/8807246
Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/41673/

508 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 24, NO. 3, JUNE 2020

A Niching Memetic Algorithm for Multi-Solution
Traveling Salesman Problem

Ting Huang, Yue-Jiao Gong
and Jun Zhang

Abstract—Multi-solution problems extensively exist in prac-
tice. Particularly, the traveling salesman problem (TSP) may
possess multiple shortest tours, from which travelers can choose
one according to their specific requirements. However, very few
efforts have been devoted to the multi-solution problems in
the discrete domain. In order to fill this research gap and to
effectively tackle the multi-solution TSP, we propose a niching
memetic algorithm in this article. The proposed algorithm is
characterized by a niche preservation technique to enable the
parallel search of multiple optimal solutions; an adaptive neigh-
borhood strategy to balance the exploration and exploitation; a
critical edge-aware method to provide effective guidance to the
reproduction; and a selective local search strategy to improve the
search efficiency. To evaluate the performance of the proposed
algorithm, we conduct comprehensive experiments on a recently
published multi-solution optimization test suite. The experimen-
tal results show that our algorithm outperforms other compared
algorithms. Furthermore, the proposed algorithm is adopted to
tackle problems from the well-known TSPLIB library to obtain
a set of distinct but good solutions.

Index Terms—Memetic algorithm, multimodal optimization
(MMOP), multi-solution traveling salesman problem (MSTSP),
neighborhood niching strategy.

I. INTRODUCTION

TRAVELING salesman problem (TSP) [1], [2] is one of
the most intensively studied combinational optimization
problems. Many engineering and academic issues involve

Manuscript received October 22, 2018; revised March 14, 2019 and June
11, 2019; accepted August 13, 2019. Date of publication August 20, 2019;
date of current version May 29, 2020. This work was supported in part by
the National Natural Science Foundation of China under Grant 61873095,
Grant 61873097, and Grant U1701267, in part by the Guangzhou Science
and Technology Planning Project under Grant 201904010211, in part by the
Guangdong Natural Science Foundation Research Team Project under Grant
2018B030312003, and in part by the Guangdong-Hong Kong Joint Innovation
Platform Project under Grant 2018B050502006.

T. Huang and Y.-J. Gong are with the School of Computer Science
and Engineering, South China University of Technology, Guangzhou
510006, China, and also with the Guangdong Provincial Key Laboratory
of Computational Intelligence and Cyberspace Information, South
China University of Technology, Guangzhou 510006, China (e-mail:
gongyuejiao @gmail.com).

S. Kwong is with the Department of Computer Science, City University of
Hong Kong, Hong Kong.

H. Wang is with the College of Engineering and Science, Institute for
Sustainable Industries and Liveable Cities, Victoria University, Melbourne,
VIC 8001, Australia.

J. Zhang is with Victoria University, Melbourne, VIC 8001, Australia
(e-mail: junzhang@ieee.org).

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2019.2936440

, Senior Member, IEEE, Sam Kwong

, Fellow, IEEE, Hua Wang
, Fellow, IEEE

TSPs as subproblems, such as the vehicle routing prob-
lems [3]-[5], the coding order optimization problem [6], and
the in-port ship routing and scheduling problem [7]. In the
TSP, a salesman leaves from a city, travels each city once and
only once, and finally returns to the beginning city. The goal
of the salesman is to find the shortest traveling tour. In order to
meet different needs of practical applications, researchers have
proposed a variety of TSP variants, including multi-objective
TSP [8], [9], multi-salesman TSP [10], [11], and Dubins
TSP [12], [13]. Most TSP applications and TSP variants focus
on locating one optimal solution, regardless of the fact that
there may be multiple high-quality solutions. However, in
practice, it is equally important to provide diverse optimal
alternatives to decision makers so that: 1) quick actions can
be made under emergency events (e.g., traffic congestion due
to road works in the city or the cancelation of flights due to
bad weathers) and 2) traffic load can be balanced because of
different choices of routes. This requirement gives rise to the
research on multi-solution TSP (MSTSP).

Because of the NP-hard nature, it is quite difficult to
tackle MSTSPs by deterministic algorithms. The evolution-
ary algorithms (EAs) are population-based optimizers with
meta-heuristic search nature, which avoids the need of exhaus-
tively exploring the entire problem space and allows to find
an optimum within a reasonable time [14]. There are sev-
eral related studies of applying EAs for MSTSPs [15]-[18].
However, we found that the algorithms failed to find any opti-
mum when the city size increases. Therefore, a more powerful
and effective algorithm is highly desired to tackle MSTSPs.
Besides, dealing with the MSTSP belongs to the multimodal
optimization (MMOP) area. In the literature, most efforts paid
to the MMOP concentrate on the continuous optimization
domain [19]-[29]. In order to deal with the discrete MMOP
such as the MSTSP, it is highly desired to develop new
optimization algorithms or to conduct domain extension on
the available continuous algorithms. Generally, two critical
issues need to be considered when designing an effective
algorithm for the discrete MMOP: 1) the choice of an appro-
priate discrete baseline algorithm, so as to offer promising
search capability and 2) the technique of population diversity
preservation in the discrete domain, so as to maintain diverse
candidate solutions during the search.

Paying attention to the baseline algorithm, tradition-
ally, differential evolution (DE) [19]-[22], particle swarm
optimization (PSO) [23], [24], and covariance matrix
adaptation evolutionary strategies (CMA-ES) [25]-[27] are

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5648-1160
https://orcid.org/0000-0001-7484-7261
https://orcid.org/0000-0002-8465-0996
https://orcid.org/0000-0001-7835-9871

HUANG et al.: NMA FOR MSTSP

extensively studied for the continuous MMOP, because these
algorithms are originally designed for the continuous search
space. As for discrete or combinatorial optimization, the other
evolutionary computation optimizers, such as ant colony algo-
rithm (ACO) and genetic algorithm (GA), could be more
favored [30]-[34].

As another critical issue, the population diversity should be
considered when tackling MSTSPs. In the population-based
algorithms, the population would eventually converge toward
one basin of attraction due to the diversity loss caused by
genetic drift and selection pressure [35]. The genetic drift
causes the disappearance of gene variants in the population,
while the selection pressure biases the evolution of individuals
to a small part of the search space but ignores the population
diversity. To avoid converging toward one basin of attraction
and preserve the population diversity, most MMOP solvers uti-
lize niching techniques, which are inspired from biology. In
the niching techniques, similar species compete for regional
resources. By putting restrictions on the competition of
species, the effect of the genetic drift and the selection pressure
on the entire population can be eliminated, and the potential
candidates of different basins of attraction can survive across
generations. Currently, popular niching techniques include
crowding [36], [37], speciation [38], clustering [22], [39], [40],
and neighborhood strategies [19]. These niching techniques are
mainly used for the continuous MMOP, where the Euclidean
distance is commonly adopted as a similarity indicator.

In order to deal with MSTSP, in this article, we propose
a niching memetic algorithm (NMA) framework. The reason
for choosing MA as the baseline algorithm is that MAs have
been widely validated as powerful TSP optimizers in [32] and
[41]-[52]. (A more detailed MA-related review is presented in
Section SI in the supplementary material, where we introduce
various MAs specified for TSPs.) Generally, the local search
endows MA a promising exploitation ability in the combi-
natorial search space. However, the previous studies conduct
a global optimization for TSP and finally obtain one single
optimum. For solving MSTSP, the proposed NMA incorpo-
rates a neighborhood niching strategy that enables parallel
search for multiple optima. Under the framework of NMA,
we specifically design four strategies to improve the algorithm
performance. The four auxiliary methods help in achiev-
ing exploration—exploitation balance, critical edge awareness,
fitness evaluation saving, and decision-maker-friendliness,
respectively. Generally speaking, the main contributions of this
article are summarized as follows.

A. Filling the Gap of Benchmark Studies of the Discrete
Multi-Solution Optimization

Currently, the research progresses on continuous and dis-
crete MMOPs are proceeded at different paces. The for-
mer study maintains a momentum of vigorous growth [29],
whereas very few attention has been paid to the discrete
MMOP area. Many practical problems are discrete in nature
and it is appealing to suggest multiple optima for them,
such as truss-structure optimization [53], protein structure
prediction [54], and job shop scheduling optimization [55],

509

[56]. However, MSTSP, which is derived from the most well-
known discrete optimization problem—TSP, has not yet been
comprehensively researched. This article targets on promot-
ing the benchmark studies of the discrete MMOP by taking
MSTSP as an example. The method and experimental analy-
sis can provide some guidelines for this area and stimulate the
further research progress.

B. Designing Novel NMA for MSTSP

NMA takes MA as the baseline algorithm to promise effi-
cient search ability and incorporates a niching strategy to
maintain population diversity. Besides, we specifically design
four strategies for performance enhancement.

1) Adaptive Neighborhood Strategy: For a neighborhood-
based EA, the number of group members indicates the amount
of the search resource assigned to the group. The allocation
of search resource has an influence on the final solution qual-
ity. In NMA, we adaptively determine the neighborhood size
according to the search state of each neighborhood, so as to
achieve a balance between the exploration and exploitation
during the optimization.

2) Critical Edge-Aware Method: For discrete multi-solution
optimization, different optimal solutions may share some com-
mon elements. We develop a concept of critical edge and
design critical edge-aware (CEA) evolution strategies in NMA.
The CEA method not only provides auxiliary guidance to the
reproduction of population but it also avoids the unnecessary
exploitation in the selective local search introduced below.

3) Selective Local Search: Local search facilitates quick
convergence, but the side effect is that it usually brings
enormous consumption of fitness evaluations by exhaustively
exploring the neighborhood region of any given solution. In
NMA, to save the inefficient local search on some inferior and
redundant solutions, we design a selective local search strat-
egy, which biases promising and distinct individuals, as well
as uncritical edges, to maximize the search efficiency.

4) Elite Selection Approach: It is unnecessary to provide all
candidate solutions to a decision maker, but a set of represen-
tative optima is more appealing. The elite selection approach
eliminates redundant and inferior solutions and, subsequently,
outputs the distinct and superior ones.

C. Conducting Rich Experiments and Showing Promising
Results

A few existing MSTSP optimizers are tested on some
toy instances, whereas we have developed a standard bench-
mark test suite in [18]. The test suite consists of 25 MSTSP
instances with different characteristics, which are used to test
the performance of NMA and the others in this article. In addi-
tion, we also adopt TSPLIB [57] repository to make further
investigation and show that many instances in the repository
have multi-solution nature. The experimental results show that
compared with the rivals, NMA can obtain more high-quality
and diverse solutions in a relatively short time, while being less
affected by the problem size. Further investigations validate
that the proposed auxiliary strategies strengthen the algorithm
on their respective advantages. We are the first attempt to

510 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 24, NO. 3, JUNE 2020

performing the algorithms on such abundant MSTSP instances.
The results of NMA provides the baselines for future studies
in the MSTSP optimization area.

The rest of this article is organized as follows. Section II
introduces MSTSP and reviews multi-solution optimization
algorithms for MSTSP. Section III describes the proposed
algorithm and gives the details of its components. The exper-
imental results and relevant analysis are demonstrated in
Section IV. Section V shows the extension work on TSPLIB.
Finally, the conclusions are summarized in Section VI.

II. BACKGROUND
A. Multi-Solution Traveling Salesman Problem

In many TSP-related practical applications, multiple approx-
imately good solutions are required. For example, for route
scheduling applications, it is always suggested to provide
multiple acceptable routes so that the drivers can select the
most favorable one according to his own knowledge. In addi-
tion, because the road condition is dynamically changed, one
route may become invalid due to traffic jam or road main-
tenance. In these cases, the drivers would like to quickly
change to a candidate route with the same quality to accom-
plish his/her task in time. Moreover, the traffic load can be
balanced with different options of routes. These application
backgrounds motivate us to research into the MSTSP area.

This section introduces and formulates MSTSP, which has
exactly the same mathematical form as TSP. Given a list of
cities, a salesman travels each city once and only once, con-
structing a Hamilton path. The aim of the MSTSP solver is to
find all the shortest Hamilton paths. Mathematically, consider a
graph G = (V, E), where V = {1, 2,3, ..., N} is a set of cities
(denoted by the city indices), and E = {(i,))|i,j € V,i # j}
is a set of edges, indicating the road/edge between the cities
i and j. Each edge (i,j) has a weight value, denoted as dj;
that measures the distance between the two cities i and j. The
distance is rounded to the nearest integer, as the edge weight
type EUC_2D described in TSPLIB [57]. The Hamilton path
can be formulated as the permutation 7. Thereafter, MSTSP
is to find a shortest length in all possible permutations. More
precisely, we consider

N—1
minf () = Z dr(om (k1) + dr (N7 (1) (1
k=1
where N is the number of cities and 7 (k) is the kth element
of the permutation 7. The target of MSTSP is to find a set of
solutions with the exactly same minimum tour length.

Recently, we released a comprehensive benchmark of
25 MSTSP instances of different characteristics [18].
According to the design methods, the MSTSPs are classified
into three categories, i.e., simple MSTSPs, geometry MSTSPs,
and composite MSTSPs.

1) Simple MSTSPs are randomly generated and the number
of optima is uncontrollable, but we apply an accurate
algorithm to obtain the optimal solution set.

2) Geometry MSTSPs are designed using different sym-
metrical geometries, such as the rectangle, the regular
pentagon, and the regular hexagon. The optima can

72 72 72 72
20 20 20 20
0 0 0 0

0 10 20 0 10 20 0 10 20 0 10 20

Fig. 1. Optimal solutions of MSTSP9.

be adjusted by controlling the combination of specific
geometries, the location of geometries, and the rotation
of the geometries. Fig. 1 illustrates MSTSP9, one of
the geometry MSTSPs, with ten cities and four optimal
solutions. In the subfigures, the black circles represent
city locations and the red polyline connecting all cities
indicates an optimal route. Besides, the numbers at the
top of the subfigures represent the lengths of the routes.

3) Composite MSTSPs are more complicated, which apply

several small-scale MSTSPs to construct a larger
instance. Each small-scale MSTSP is a city cluster,
and the city clusters are distributed at different geo-
metric locations. The multi-solution characteristics are
derived from two relationships: a) the intra-cluster and
b) the inter-cluster relationships. The number of optima
is under control by assembling different types of small-
scale MSTSPs. In general, for the 25 MSTSP instances,
the number of cities ranges from 9 to 66, and the number
of optima scales from 2 to 196.

Note that some accurate algorithms can deal with small-
scale MSTSPs based on the current computation condition. For
example, we utilize the branch-and-bound (BnB) algorithm to
solve the problems and find that for the MSTSP3/6/12 with
10/12/15 cities, the BnB algorithm consumes 0.07 s, 2.87 s,
and 2255.74 s, respectively, to obtain the complete optima set.
The time cost increases dramatically by the city size. When
dealing with MSTSPs with even larger sizes, such as the com-
posite MSTSPs (N > 28), the time overhead of the accurate
algorithm becomes intolerable. Note that since it requires to
find multiple optimal routes, the MSTSPs are much harder
than the traditional TSPs, so that the perception of “large
scale” is different between MSTSPs and TSPs. In this arti-
cle, the MSTSPs with N > 28 are regarded as large-scale
cases, for which the accurate algorithm cannot stop execution
in an acceptable time.

B. Multi-Solution Optimization Algorithms for MSTSP

TSP is an NP-hard problem that the accurate algorithms
endure the “curse of dimensionality.” Requiring to obtain
multiple optima, MSTSP is even harder than TSP. The opti-
mizers for MSTSP should not only possess a high search
efficiency for satisfactory solutions but also maintain a good
population diversity for diverse solutions. With limited search
resources, these two targets are somewhat contradictory, which
are hard to be accomplished simultaneously.

There are several multi-solution optimization algo-
rithms available for tackling MSTSP, including the
multi-chromosome cramping-based GA (MCC-GA) [15],
niche-based ant colony system (NACS) [17], and the
neighborhood-based GA (NGA) [18]. MCC-GA encodes a

HUANG et al.: NMA FOR MSTSP

set of s solutions into one chromosome. The problem space
grows exponentially with the solution size s. From this point
of view, it is difficult to locate all the optima without the
prior knowledge of the number of optima. Different from the
previous algorithms, NACS uses multiple pheromone matrices
to locate diverse solutions. When ants find out a superior
and distinct solution, a new pheromone matrix is created
according to the solution. Ants on the different pheromone
matrices tend to locate distinct optima. The problem encoun-
tered by NACS is about the niche parameters, which are
difficult to appropriately set without the prior knowledge
of problems. NGA gathers similar neighbors as a group
and performs the basic genetic operations of GA within the
group. The genetic drift and the selection pressure are limited
in the corresponding groups, so as to locate diverse optima.
However, NGA suffers from slow convergence and difficulties
in setting an appropriate neighborhood size. To summarize,
the development of discrete MMOP algorithms predominantly
considers the diversity preservation, the convergence speed,
and the appropriate parameter settings.

III. NICHING MEMETIC ALGORITHM FOR MSTSP

This section introduces the proposed algorithm NMA. The
algorithm is outlined first and described in part subsequently.

A. Framework

NMA takes MA as the baseline algorithm and incorporates
a neighborhood niching strategy. The neighborhood niching
strategy partitions the whole population into several neigh-
borhood groups and every group tends to locate a different
optimum. MA is applied to search effectively within the
given search space. Under this framework, we design sev-
eral enhancement strategies to improve the performance of
the proposed algorithm.

The chromosomes adopt the permutation-based representa-
tion defined in Section II-A. Then, the procedure of NMA
is described as follows. First, we initialize NP chromosomes
using a partially greedy strategy. For one chromosome with
N genes (N denotes the number of cities), the first |[N/2]
genes are constructed with randomly selected but distinct
cities, and the last [N/2] genes choose the city one by
one using the greedy strategy—it picks the closest uncho-
sen city to the last determined city in the chromosome.
Then, the order of the chromosomes is rearranged using a
neighborhood niching strategy, where the topologically close
chromosomes are grouped to compose a mating pool. Note
that the permutation-based presentation contains both the node
and edge information of a TSP route. When measuring the dis-
tance between two solutions, the edge set of the solution is
adopted rather than the absolute node position set, which is
going to be expounded in Section III-B. Meanwhile, a diver-
sity enhancement approach is adopted to avert being trapped
in local optima. The neighborhood leaders are utilized to con-
struct a critical edge set (CES) for the problem. The CES is
then adopted by the reproduction and local search strategies to
provide additional guidance. According to the routine of GA,
we perform the crossover operation with the probability P,

Algorithm 1 Niching Memetic Algorithm

Input: An MSTSP instance T, the population size NP, the
crossover rate P, the mutation rate P,,;, a termination criteria, and
the minimum (maximum) neighborhood size My in (Mmax)
Output: A representative solution set S

1: Parent < Initialize(NP)

2: Evaluate(Parent)

3: CES < {}

4: while the termination criterion not satisfied do

5. MatingPool < NeighborhoodStrategy(Parent, Myin, Mmax) /*
Algorithm 2 */

6: eMatingPool < DiversityEnhancement(MatingPool, CES) /*
Algorithm 3 */

7. UpdateCriticalEdgeSet(eMatingPool, CES) /* Algorithm 4 */

8: cOffspring < Crossover(eMatingPool, CES, P.)

9: mOffspring < Mutation(cOffspring, CES, Py;)

10: IsOffspring < LocalSearch(mOffspring, CES)

11: Evaluate(IsOffspring)

12: Parent < Replacement(/sOffspring, MatingPool, CES)

13: end while

14: S < Preserve (Parent) /* Algorithm 5 */

and the mutation operation with the probability P,. Then, a
selective local search is applied to strengthen the exploitation
ability. Now, we obtain offspring and subsequently determine
the next generation using a replacement operation. The above
process is repeated until the terminal condition is met. When
it comes to the end of the algorithm, we obtain a set of final
solutions. A post-processing procedure is adopted to select
elites from the final solution set. The overall process of NMA
is outlined in Algorithm 1. The subcomponents are described
in details one by one in the following.

B. Adaptive Neighborhood Strategy

With regards to the MMOP, it is essential to maintain pop-
ulation diversity, so as to hold multiple potential solutions
during the search. To preserve the population diversity, we
utilize the neighborhood niching strategy, whose essence is
to limit the reproduction or selection pressure of a niche (or
group) within a subspace. Through this method, members of
the same niche can produce spatially close offspring or survive
competitive and geographically close offspring. Eventually,
diverse niches locate distinct solutions. One important part
of the neighborhood niching strategy is how to set an appro-
priate neighborhood size. The group with too many members
would lead to excessive search when the group tends to con-
verge, while the group with too few members would result
in insufficient search for the group requires exploration. To
address this issue, we adaptively determine the neighborhood
size according to the niche state. Here, the neighborhood size
m is an integer number ranging from Mpyi, to Mpax, Where
Mpin and My« denote the allowable minimum and maximum
neighborhood size, respectively. In the rest of this section, we
first introduce the neighborhood partition method and then
elaborate on the adaptation mechanism of the neighborhood
size.

Ilustrated in Algorithm 2, the algorithm determines neigh-
borhood groups iteratively. First, the unprocessed chromosome
with the shortest length is identified as the group leader

512 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 24, NO. 3, JUNE 2020

Algorithm 2 MatingPool < NeighborhoodStrategy(Parent,
Minin, Mmax)

1: tmpParent <— Parent

2: MatingPool < {}

3: Lpin < MinLength(Parent)

4: Lg < betalength(Parent, NP/Mmin)

5. while rmpParent # & do

6 leader < FindBest(tmpParent) /*Find out the best individual
in tmpParent.*/

7. if [tmpParent| > Mmax then

8: y < min((leader.Len —Lyin)/(Lg — Lmin), 1.0)
9: m <= floor(y x (Mmax — Mmin) + Mmin)

10: if mod(m, 2) # 0 then

11: m=m+1

12: end if

13: else

14: m <— |tmpParent|

15: end if

16: CalculateShareDist(tmpParent, leader) /*Calculate the sharing
distance between each individual in tmpParent and leader.*/
17: sortParent < Sort(tmpParent.shareDist, “desc”) /*Sort the
individuals by the sharing distance in an descending order.*/
18: NeighborGroup < sortParent[1, ..., m] /*Assign the first m
closest sorted individuals to NeighborGroup.*/
19: Shuffle(NeighborGroup) /*Shuffle the
NeighborGroup.*/
20: MatingPool < MatingPool + NeighborGroup
21: tmpParent < tmpParent — NeighborGroup
22: end while

order of

(leader). If the number of the unprocessed chromosomes is
larger than or equal to Mp,x, the neighborhood size m is
adaptively determined according to the length of the leader
(which will be detailed afterward). Then, the unprocessed
members are sorted by the sharing distance defined in Eq. (2),
in a descending order. The first m sorted members (includ-
ing the leader) form a new neighborhood group. The newly
formed group is shuffled and then added to the mating pool.
In the meantime, the added members are labeled processed
and eliminated from the current population. The above pro-
cess is repeated until all the members are processed and all
the neighborhood groups are settled.

In the above neighborhood partition process, we need to
calculate the pairwise similarity between the current leader
and each unprocessed members. In this article, the similarity
of two permutations 7r; and 7r; is measured by sharing distance
as follows:

O () N P(;

Strm) = 2N o
where ®(;) and ®(r;) denote the edge set of m; and mj,
respectively; ® (r;)N® (7r;) means the intersection set of ® (7r;)
and ®(7mj); and | - | denotes the number of edges in @ (r;) N
@ (7). The sharing distance measure operates on the edge set
of a route rather than the absolute node positions. So that the
solutions having different absolute node orders but the same
visiting edge set are identified as the same solution.

The neighborhood size m is adaptively adjusted to improve
the generalization performance of the proposed algorithm. In
niching methods, the neighborhood size can be regarded as the
allocated search resources for each solution. The motivation
of our adaptive neighborhood strategy is to allocate the search

resources according to the current search state of the niche. In
the proposed algorithm, a niche is covered by a neighborhood
group, and the neighborhood members are dominated by the
neighborhood leader. First, we calculate a niche state measure
y € [0, 1] according to the fitness value (i.e., length) of the
neighborhood leader leader:

y = min(Lleader — Linin ’ 1.0) 3)

Lﬁ — Lmin

where Lijeqger is the length of leader; Lyin and Lg are the
shortest length and the Sth shortest length of the population,
respectively; and B = NP/Mp, indicates the maximum num-
ber of possible neighborhood leaders. The fitness value Lg
can be considered as a cutoff point to identify whether the
neighborhood leader is “superior” or “inferior.”

Then, the neighborhood size m is adjusted based on y using

m= |y X (Mmax — Mmin) + Mmin]. 4)

Based on Egs. (3) and (4), there are three situations as
follows.

1) If Ljegqer is shorter than Lg and equal to Ly, indicat-
ing that the leader is superior. The calculated y value
is 0 and, hence, the neighborhood size m is Mpy;,. The
superior leader is allocated with the least search resource
since this solution requires minor improvements than the
other solutions.

2) If Lyeaqer is larger than Lg, meaning that the leader is
inferior. According to Egs. (3) and (4), y equals to 1 and
m equals to Max. The algorithm assigns the most search
efforts to the inferior neighborhood groups to help them
quickly identify good solutions.

3) If Licagder is shorter than Lg but larger than Ly, imply-
ing that the leader is neither the best nor the worst but
between the two extremes. The niche state measure y is
a real value between 0 and 1 for quantifying the qual-
ity of this point between the two extremes. Next, based
on Eq. (4), the neighborhood size is between My, and
Mpax, depending on y.

Note that Mpyin and Mpax are utilized to limit the lower
and upper bounds of the neighborhood size. These boundary
settings are commonly necessary for the parameter adaptation
methods [58]-[60]. Although they are additional parameters,
the boundary parameters are not problem-dependent, which
will not reduce the generalization performance of the algo-
rithms. As the GA requires pairs of chromosomes to conduct
the crossover, we recommend to set My, and My,x value as
even integers larger than 2.

Explanatory Diagram: Suppose the population has six chro-
mosomes (i.e., NP = 6), which are illustrated in Fig. 2. In
addition, assume that the minimum neighborhood size Mp;,
= 2 and the maximum neighborhood size Mpy.x = 4. Thus,
we have f = 6/2 = 3. The tour lengths of the chromosomes
are listed in dashed boxes. It can be calculated from Fig. 2
that the minimum length Ly, and the Bth length Lg are 150
and 250, respectively. After that we calculate the pairwise shar-
ing distances of chromosomes, which are shown in the lower
triangular matrix of Fig. 3, where the values in the diagonal
represent the sharing distance to itself, i.e., S(;, ;) = 1.00.
Specifically, the first best chromosome, P1, is chosen as the

HUANG et al.: NMA FOR MSTSP

Pl | P2 | P3| P4]| P5|P6

150§ 250 ;250 ¢ 300 ; 400 § 500

Fig. 2. Sorted parental chromosomes with their lengths shown below.

P1 [1.00

P2 [0.96]1.00

P3 10.50/0.48{1.00

P4 10.46]0.38(0.84[1.00

Adaptive

P5 |0.60{0.62(0.74[0.80[1.00 neighborhood strategy

P3 P4
P5 P6

P6 [0.20{0.24|0.70{0.76]0.66| 1.00

P1 [P2| P3| P4 |P5|P6

Pairwise sharing distance of parents Partitioned neighborhood groups

Fig. 3. Diagram of the adaptive neighborhood strategy. The lower triangular
matrix on the left lists the pairwise sharing distance of the parental chromo-
somes. The two ellipses on the right represent two partitioned neighborhood
groups.

first neighborhood leader. Recalling Egs. (3) and (4), we
obtain the first neighborhood size being 2. Thereafter, we
choose the first two nearest neighbors, i.e., P1 and P2, to
comprise the first neighborhood group. When it turns to the
second neighborhood group, another similar process goes over.
The neighborhood leader in the remaining members is cho-
sen, that is, P3. The neighborhood size is 4 according to
Eqgs. (3) and (4). Thus, the first four nearest neighbors to P3 are
chosen to comprise the second neighborhood group. The two
resultant neighborhood groups are drawn within the ellipses
on the right of Fig. 3.

C. Diversity Enhancement Approach

The adaptive neighborhood strategy rearranges the order of
chromosomes and forms an ordered mating pool. However,
with the population evolving, group members gather around,
being trapped in a local optimum, which leads to diversity loss
to some extent. The evolution with converged neighborhoods
makes the group members similar or even the same. The fur-
ther search within this kind of converged group can neither
bring in more diversity nor locate any better solution. Out
of this concern, we design a diversity enhancement approach
to help the converged group jumping out of local attraction
and moving toward other spatially near better locations. To
be specific, for each neighborhood group in the mating pool,
we calculate the sharing distances between the first member
and each member in the group to check whether they pos-
sess the same permutations (i.e., the sharing distance of the
same permutations equals to 1). If all members are the same,
we consider this group is converged and subsequently adopt
the mutation operation (will be introduced in Section III-E)
to perturb all the members except the leader in the con-
verged group. After the perturbation, the converged members
are redistributed to the near region. The procedure is described
in Algorithm 3.

D. Update of Critical Edge Set

The MSTSP has some features, including that it has a dis-
crete (finite) problem space and it requires to find multiple

Algorithm 3 eMatingPool
(MatingPool, CES)
1: eMatingPool = {}
2: for each NeighborGroup € MatingPool do
3: leader < NeighborGroup.Leader

< DiversityEnhancement

4. flag < true

5. for each p € NeighborGroup do

6: if S(p, leader) # 1 then

7: flag < false

8: break

9: end if

10: end for

11: if flag == true then

12: newNeighborGroup <— Mutation(NeighborGroup — leader,
CES, 1.0)

13: eMatingPool = eMatingPool + newNeighborGroup

14: else

15: eMatingPool = eMatingPool + NeighborGroup

16: end if

17: end for

optimal solutions. Therefore, the different optimal solutions of
an MSTSP may share some common elements. This conforms
to the practical situations such as in the route scheduling appli-
cations that the multiple optimal routes may share the same
subset of visiting edges. The MSTSP benchmark test suite
also well characterizes this situation. These common edges
are critical for constructing an optimal solution. Thus, if the
critical edges can be identified, it would be helpful to enhance
the operators of NMA, so as to further improve the search
efficiency, especially for the large scale MSTSPs. Therefore,
we bring in the concept of critical edge and develop CEA
evolution strategies in NMA.

The CES is incrementally updated during the evolution. The

insertion and deletion mechanisms are described as follows.

1) Insertion: Each chromosome in the population is
attached with a stagnation generation value sg that indi-
cates how long the fitness of the chromosome has not
been updated. The neighborhood leaders whose sg val-
ues are larger than N are identified as persistent leaders
and added to the set pLeader. The algorithm inserts each
edge belongs to the intersection of solutions’ edges in
the pLeader into CES.

2) Deletion: The insertion of an edge may cause the fol-
lowing invalid situations: a) the edge is already existed
in the CES and b) a node is connected with more than
two other nodes in CES. The first in first out (FIFO)
method is adopted to deal with these invalid situations.
Namely, for the conflicted edges in CES, the earliest
inserted one is deleted. Besides, to keep the CES up-
to-date, in each generation, the edges inserted before N
earlier generations are also deleted from the CES.

The overall procedure of CES update is summarized in

Algorithm 4. Afterward, the CES is adopted to improve the
following reproduction and local search operations of NMA.

E. Critical Edge-Aware Reproduction

Taking GA as the baseline, the reproduction of the proposed
algorithm consists of a crossover and a mutation operation.
The crossover operation mates parental chromosomes to breed

514 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 24, NO. 3, JUNE 2020

Algorithm 4 UpdateCriticalEdgeSet(eMatingPool, CES)

1: pLeader = {}

2: for each NeighborGroup € eMatingPool do

3. leader <— NeighborGroup.Leader

4: if leader.sg > N then

5: pLeader = pLeader + leader

6: end if

7: end for

8: candidates = N @ (leader) [*Calculate the

leaderepLeader
intersection of solutions’ edges in pLeader.*/
9: for each edge € candidates do
10: CES = CES + edge
11: conflictedFIFO(CES, edge) /*Once conflicted, use FIFO.*/
12: end for
13: deleteOldest(CES) /*Delete the edges inserted before N earlier
generations.*/

children, expecting to generate new competitive individuals.
The crossover operation working on the entire population
would cause genetic drift that makes all the candidate solu-
tions tend to be same. However, it should be avoided for
multi-solution problems. Derived from the idea that similar
parents would generate similar offspring, we limit the scope
of the crossover operation in the neighborhood group that
comprises with similar chromosomes. In the adaptive neigh-
borhood strategy (described in Section III-B), we gather the
similar chromosomes in the same neighborhood group, and
meanwhile construct the mating pool in groups. Thereafter,
the crossover operation can conveniently pair two parents in
the sequence of the resultant mating pool.

This article improves the partially mapped -crossover
(PMX) [61] by incorporating a CEA method. The resultant
crossover is named CEA-PMX. First, two exchange points are
randomly chosen from the chromosome. The segmental genes
between the two exchange points of one parent are picked
out and passed to a child directly. Second, the edges in the
intersection of the parent and the CES are also inherited by the
child. Third, the remaining part of this child is inherited from
another parent. During the inheritance process, if the candidate
gene has already been included in the child, the corresponding
mapping gene (the allele of the other parent) is copied instead.
The other child is generated in a similar way.

Explanatory Diagram: The operation of CEA-PMX is illus-
trated in Fig. 4. Suppose that we have CES = {(6, 7)}. First,
two exchange points are randomly generated at the positions
of three and six, respectively. In the following, the segmental
genes between the exchange points of P1 are directly passed
into O1 (the passed genes are marked blue in O1). Then, the
critical edge (6, 7) in P1 is also inherited by O1. For the vacant
locus of Ol, they inherit the genes from P2 in the correspond-
ing vacant positions (the inherited genes are marked red in
O1). However, three genes to be inherited have already been
included in Ol, i.e., genes 7, 6, and 5, and thus their mapping
genes, 1 for 7, 10 for 6, and 3 for 5, take the places instead
(the alternate genes are marked black in O1). The child O2 is
generated by the similar method.

The mutation operation perturbs chromosomes to bring in
diversity. We amend the exchange mutation (EM) proposed

PI|| 2 3 4 5 6 7 8 9 l()|
¢¢¢¢mapping
P2|X 7 2 9 3 10 1 6 4 5|
01|8|1|2|4|\a|'\10|4|3|
I I 1
02|1|2|5|9|3|10|" 8 4|6|

Fig. 4. Sorted parental chromosomes with their lengths shown below.

by Banzhaf [62] to make it fit the proposed algorithm. For
a candidate chromosome, EM randomly exchanges two genes.
The number of exchanged edges is two when the selected
genes are adjacent; otherwise, the number is four. However,
considering that the former case is similar to the 2-opt used
in our local search, such operation is inefficient, since the
mutated part could be reverted back after the following local
search. To avoid such inefficient situations, we force to select
nonadjacent genes in the mutation. Besides, the mutation pre-
serves critical edges on the chromosomes, if there are any. The
mutation is named CEA nonadjacent EM (CEA-NEM).

F. Selective Local Search

Local search expects to exploit within a small vicinity of a
given solution, which is a promising technique for enhancing
the exploitation. Particularly, when the local search is per-
formed to the same neighborhood group, it is regarded to
search around the covering subspace of this group. We adopt
2-opt as our local search approach, as 2-opt consumes the
least time among the common local search operations. Each
search step of 2-opt exchanges two edges of a permutation.
Owing to the particularity of permutation, it is unnecessary
to re-evaluate the length of the tour after each move (one re-
evaluation consumes one fitness evaluation). In the view of
operational complexity, each search step subtracts two edges
and adds two edges, that is to say the number of operations
is 4. One complete evaluation takes N operations (N denotes
the number of elements in the permutation), and therefore,
we count one fitness evaluation when the 2-opt exchanging
operations achieve N /4 times.

Typically, local search is performed on each individual in
each generation. However, some search efforts could be less
effective because of the following reasons. First, the individ-
uals in the small neighborhood are very similar to each other.
The local search could be repetitive for these similar indi-
viduals. Second, the improvement that local search brings to
some inferior individuals would disappear, since new competi-
tive children are generated by evolutionary operations and take
the place of the inferior parental individuals. Third, the edges
in CES are the currently identified critical edges, which can be
protected owing to its high possibility of optimality. Therefore,
to save unnecessary search steps, the proposed selective strat-
egy biases the local search on the uncritical edges of the
promising and diverse candidate solutions. To be specific, by
the adaptive neighborhood strategy described in Section III-B,

HUANG et al.: NMA FOR MSTSP

P1 1150 Crossover + Mutation Ol | 160
P2 250 + Local search g 021100
P3 {250 03 i 450
P6 {500 Crossover + Mutation 04 | 260
P5 $400 + Local search 05 | 420
P4 {300 06 i 110

Fig. 5. Diagram of neighborhood groups. The parental neighborhood groups
are listed on the left; the corresponding offspring groups, generated with
crossover, mutation, and local search, are listed on the right.

we roughly classify the neighborhood groups into two cases
as follows.

1) The neighborhood group whose size is exactly Mmin
tends to be converged. Converged group comprises close
individuals. Therefore, it is redundant to perform local
search on all the group members. Consequently, for such
groups, one of the best members performs local search.

2) For the other neighborhood groups, they are relatively
diverse and require explorative search. Hence, the first
half of the members with the shortest tours are selected
to adopt local search. Meanwhile, in the above proce-
dure, the critical edges in CES are neglected, which do
not undergo the 2-opt.

G. Replacement Operation

After a series of operations are performed, we obtain final
offspring. Replacement operation brings in selection pres-
sure to determine which offspring survive to next generation.
Selection pressure promotes the evolution process, but it forces
the population converging toward one optimum. In order to
effectively maintain multiple solutions, we limit the selection
pressure within respective neighborhood groups, rather than
on the global space, so as to simultaneously search in differ-
ent potential subspaces. The specific operation is that every
child competes with the spatially nearest member/members of
the corresponding parental neighborhood group. Meanwhile, if
more than one member has the same largest sharing distance
with the child, the member with the longest tour is selected
as the competitor. After the competition, the winner survives
and enters the next generation.

Explanatory Diagram: Fig. 5 shows the diagrammatic rep-
resentation of offspring generated by the preceding crossover,
mutation, and local search operations. Afterward, the replace-
ment operation is visually illustrated in Fig. 6. O1 is compared
with the members in the corresponding parental group, i.e., P1
and P2. P1 is the nearest chromosome to O1, and thus O1 is
compared with P1. As P1 has a shorter tour than O1, Ol is
discarded. In a similar way, the competitor of O2 is P2. O2
with the tour length 100 surpasses P2 with the tour length 250,
and thus O2 takes the place of P2. In the second neighbor-
hood group, O3 has two nearest neighbors P6 and P4 with the
largest sharing distance 0.90. The tour length of P6 is worse
than that of P4. Therefore, P6 becomes the rival to O3. The
outcome is that P6 fails and O3 displaces P6. In a similar

515

P3| P6 | PS5 | P4

03 [0.86[0.90(0.84(0.90

Pl | P2 04 {0.92(0.88(0.74(0.80
01 [0.94]0.88 05 [0.82[0.84(0.86(0.66
02{0.90{0.92 06 [0.90(0.86(/0.82(0.86

() (b)

Replacement operation

Two parental/—lﬁ The parents to the
s

neighborhood grou next generation

O1[02]]03]|04]| 05|06
e [P |
(2| [o2 [0z

P3 04 06 06
s | o3 [03]
s | os| | [os]
[p4 | [ps |

()

Fig. 6. Diagram of replacement operation. (a) Similarity matrix between
the offspring and the parents of the first neighborhood group. (b) Similarity
matrix between the offspring and the parents of the second neighborhood
group. (c¢) Choice of the parents to the next generation.

way, finally, members of the second neighborhood group are
settled. Thus far, we obtain the parents in the next generation.

H. Elite Selection Approach

When the terminal condition is met, the algorithm stops
and provides the final solutions. Most MMOP algorithms sim-
ply offer the final NP solutions to decision makers. However,
decision makers actually do not care about the whole search
solution set, as they make choices depending on those rep-
resentative ones. In consideration of improving the decision
maker experience, we downsize the final solutions. Redundant
and insufficient solutions are pruned, while the representative
ones are finally provided.

A neighborhood group is supposed to cover a subspace
and the best member of the group dominates other members.
In this context, the best solution in the neighborhood group
should be provided. Besides, we also consider the occasion
that more than one optimum are included in the same neigh-
borhood group, when these optima locate closely. The specific
operations to determine which solutions are provided are
described as follows. The shortest length of the final solution
set is found out and set to L. Lyin is amplified (1 + €) to
obtain the threshold length Lnresholg- The threshold ratio € is
set to 0.01 in this article. We also create an empty archive to
store the provided solutions. Afterward, we go through neigh-
borhood groups to collect representative solutions. For every
neighborhood group, we sort the members by the tour length,
in a descending order. Before examine them one by one, we
first check whether they exist in the archive. If the candidate
solution has already existed, we skip it. Otherwise, we
examine the candidate solution on three occasions as follows.

1) If the length of the candidate is in accordance with Ly;p.

This candidate is added to the archive directly.

516 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 24, NO. 3, JUNE 2020

Algorithm 5 S < Preserve(Parent)
I: Lyjn < MinLength(Parent)
2: Lthreshold < Lmin X (1 +¢€)
3: S={}

4. for each NeighborGroup € Parent do

5. sort(NeighborGroup.Len, “acs”) /*Sort the members in
NeighborGroup by length, in a descending order.*/

6 for i = 1 to |NeighborGroup| do

7: ¢ < NeighborGroupli]

8: if existed(S, ¢) then

9: continue

10: end if

11: /* Occasion 1 */

12: if c.Len == Lyj, then

13: S < S + ¢ /*Preserve the chromosome best so far.*/

14: /* Occasion 2 */

15: else if i == 1 and c.Len < Lireshold then

16: Shmax < 0

17: for s € S do

18: if S(s, ¢) > Shmax then

19: Shmax < S(s, ¢)

20: end if

21: end for

22: if Shmax < 0.8 then

23: S <« S + ¢ /*Preserve the superior and diverse

solution.*/

24: break

25: end if

26: /*Qccasion 3 */

27: else

28: break

20: end if

30: end for

31: end for

2) If the candidate solution is the best member of its asso-
ciated group and its length is greater than Ly, but
less than or equal to Lireshold, then the candidate solu-
tion falls in the second occasion. The sharing distance
between the candidate solution and members in the
archive is calculated one by one. The maximum sharing
distance is recorded as Shmax. The candidate solution is
distinguished from other members in the archive when
the Shmax is less than 0.8 x N (N denotes the number
of cities). When the candidate solution is distinguished
or when the archive is empty, the candidate solution is
allowed to enter the archive.

3) If the candidate is not qualified for the first two
occasions, it indicates that the candidate solution is
insufficient and undistinguished and, therefore, the solu-
tion is ignored. The overall procedure is concluded
in Algorithm 5. Note that the proposed elite selec-
tion approach is defined on the neighborhoods (or
niches), which is inapplicable to some niching strate-
gies without explicit niche partition, such as those in
the crowding-based GA (CGA) and sharing-based GA
(ShGA) [63].

Explanatory Diagram: To make a clear explanation, sup-
pose that there are three neighborhood groups with N = 50.
The process of the elite selection approach on the groups is
further described in Fig. 7. In the diagram, the three sorted
groups with their tour lengths are shown on the left, and the

02 {500 Elite selection
o1 | 560 approach
(a)
03 {502 02 Elite selection
04 | 535 03 |0.88 approach
(b)
08 § 506
07 i 560
05 650 02 Elite selection
06 1772 03 |0.60 approach
(©

Fig. 7. Diagram of elite selection approach. (a) First neighborhood group.
(b) Second neighborhood group. (c) Third neighborhood group.

archive in process is shown on the right. From the provided
graph, we have the minimum length Ly, = 500 and the thresh-
old length Lyreshold = 500 x (1 4+ 0.01) = 505. Initially, the
archive is empty. In the first neighborhood group, the best
chromosome O2 has the minimum length 500, which is less
than Lireshold. It satisfies the second occasion, and thus O2
is inserted into the archive directly. Then it is O1’s turn, as it
has the tour length 560 exceeding Linreshold and thus meets the
third occasion. Thereafter, O1 is rejected. Then, in the second
neighborhood group, O3 first checks its qualification to enter
the archive. O3 has the tour length 502 exceeding Lnreshold, but
its sharing distance with the only member in the archive O2
is 0.88 larger than 0.8. Therefore, O3 meets the rejection con-
dition in the second occasion. Then, O4 is refused as it meets
the third occasion. As to the third group, O8 has the accept-
able length 506 and possesses the allowable sharing distance
0.60 to O2 and, consequently, it is appended to the archive.
The rest members O7, O5, and O6 are rejected as they all in
the third occasion. In the end, we obtain two superior (i.e., O2
and O8) and distinct solutions from the eight chromosomes.

1. Complexity Analysis

In TSP or MSTSP, evaluating a solution is to sum up the
length of edges in the tour represented by the solution. The
complexity of the fitness evaluation is thus O(N) for one
evaluation. The similarity calculation measures the number
of the common edges of two solutions, whose complexity
is also O(N). Next, we discuss the computational complex-
ity of each major component of NMA in each generation.
For simplicity, the neighborhood size is represented as a
fixed value m. The computational overhead of the adaptive
neighborhood strategy in Algorithm 2 is dominated by calcu-
lating the sharing distance between each pair of individuals,
which is O(N x NP?/m). The diversity enhancement strategy
in Algorithm 3 costs (NP/m) x O(N x m) = O(NP x N) to
check whether the niche is converged. For the CES update
strategy in Algorithm 4, its most costly step is to identify
the common edges among different persistent leaders. Since

HUANG et al.: NMA FOR MSTSP

there are at most (NP/m) persistent leaders, this strategy is
O(N x NP/m) complex. The reproduction of NMA consumes
O(NP x N) because of the crossover and mutation operations.
In the worst case, the selective local search also consumes
O(NP x N?). The fitness evaluations for the population aver-
agely cost O(NP x N) in each generation. Finally, the elite
selection approach in Algorithm 5 takes O(NP x N x AN) to
calculate the distance between solutions in the population and
those in the archive, where AN is the archive size. However,
this step is only performed at the end of optimization, which
can be neglected in calculating the complexity of the entire
algorithm. Summarizing the above analysis, the computational
complexity of the algorithm in each generation is dominated
by the complexity of the local search, i.e., O(NP x N?),
which is identical to the classical MA using the 2-opt as local
search. In addition, Table V in the experiment section com-
pares the real execution time of different algorithms, which
indicates that the proposed NMA is the fastest among the peer
algorithms.

IV. EXPERIMENTAL RESULTS OF MSTSP
A. Experimental Setup

In the experiments, the proposed NMA is compared with
four discrete MMOP algorithms. First, NACS [17] and
NGA [18] are two previously published MMOP algorithms
that have been reviewed in Section II of this article. The
parameters of these two algorithms are set according to their
corresponding publications [17], [18]. Besides, we implement
two basic MMOP algorithms, i.e., CGA [63] and fitness
sharing-based GA (ShGA) [63]. They incorporate two nich-
ing strategies, i.e., crowding and fitness sharing, which are
commonly used in the continuous MMOPs, into GA. In addi-
tion, they two measure the distance between two permutations
m; and 7; using 1 — S(7m;, ;). Their crossover operation and
mutation operation are PMX [61] and EM [62], respectively.
The GA-related parameters are as follows: the crossover rate
P. = 0.9, the mutation rate P, = 0.01, the crowding factor
CF = NP for CGA, and the niche radius is set to 0.2 for
CGA and ShGA. Besides, in the adaptive neighborhood strat-
egy of our NMA, the neighborhood size m is restricted in the
range [Mmin = 4, Mmax = 12]. For all the algorithms, the pop-
ulation size NP is uniformly set to 150, the maximum fitness
evaluations (MaxFEs) are listed in Table I, and the terminal
condition is the exhaustion of the MaxFEs. The five algorithms
are tested on the 25 MSTSTP test instances [18], and more
available details about the benchmark suite are available on
the website.! All algorithms run 50 times independently.

B. Performance Measure

Two evaluation indicators are in accordance with that in the
technical report [18]. For the sake of completeness, we give
the detailed information below.

1) Fg Measure: Fpg is the comprehensive indicator of the
precision value P and the recall value R to evaluate the quality
of obtained solutions. P is the fraction of the obtained solutions

1 https://github.com/GnauhGnit/MSTSP

517
TABLE 1
MAXFES APPLIED FOR TWO RANGES OF MSTSP INSTANCES
Two Ranges of MSTSP instances MaxFEs
MSTSP1 - MSTSP12 6.00E+04
MSTSP13 - MSTSP25 1.20E+06
that are optimal solution:
TP
P=_—-" (5)
TP + FP

where TP is the number of optimal solutions in returned solu-
tions, and FP is the number of non-optimal solution in the final
solution set. R is the fraction of the ground-truth solutions that
are successfully located:

TP

R=——

TP + FN

where FN is the number of the optimal solutions that the algo-

rithm misses. Actually, the sum of TP and FN is the number of

total desired solutions in the benchmark. Based on the values
of P and R, Fg [64] is calculated as

(1+p8% xPxR

Fg = 3 .

B xP+R

(6)

)

Typically, B2 is set to 1 that attaches the same importance to
P and R. However, for the test instance with a large number of
optima, it is more important to obtain the most representative
ones than to exhaustively locate them all. So that the value of
B2 is set to 0.3 to magnify the effect of precision to evaluate
the obtained solutions. In addition, the three indicators (P,
R, and Fpg) are real values in [0, 1]. Particularly there are
two extreme cases: when the algorithm provides the exactly
desired solutions in an ideal condition, the F'g score is 1; when
the algorithm fails to locate any satisfactory solution, the Fg
score is 0.

2) Diversity Indicator: Diversity indicator (DI) is another
essential measure for evaluating the algorithm performance.
When algorithms fail to find any desired solutions, their Fg
values are all zero. In these cases, DI helps to further differ-
entiate the performance of different algorithms. Inspired by
the evolutionary multi-objective optimization area where the
algorithm also provides a solution set that needs to be eval-
uated [21], DI measures the diversity of the finally provided
solution set S based on the convergence of the solutions toward
different optimal solutions in the ground-truth set IP. To be spe-
cific, DI is defined based on the average maximum similarity
between the obtained solutions and the ground-truth solutions,
which is calculated as

ig
Zl:l1 max S(pi, s;) |j:1 ,,,,, S|

DI(P, S) = 8

I, S) N x || (8)

where p; is the ith permutation of P, while s; is the jth
permutation of S. max S(p;, sj)|j=1,...,|s) measures the maxi-

mum sharing distance between the permutation p; and every
permutation in S using Eq. (2).

C. Comparisons With Discrete Multi-Solution Optimizers

1) Fg Score: Fpg score measures the solution quality. A high
score indicates a good solution quality. We conduct simulation

518 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 24, NO. 3, JUNE 2020

TABLE 11
Fg SCORE ON 25 MSTSPs OVER 50 RUNS. THE PROPOSED ALGORITHM
Is COMPARED WITH FOUR OTHER DISCRETE MMOP ALGORITHMS. THE
COMPARISON RESULTS WITH WILCOXON RANK-SUM TEST AT @ = 0.05
ARE LISTED ON THE RIGHT, AND THE CORRESPONDING SUMMARY

TABLE III
P, R, AND Fg OF FOUR COMPARED ALGORITHMS AND NMA ON
MSTSP10 AND MSTSP12 ARE LISTED

Instance Valuee NACS NGA CGA ShGA NMA
RESULTS ARE SHOWN IN THE LAST ROwW
P 1.000 1.000 0.027 0.027 1.000
MSTSPI0 R 0.500 0428 1.000 1.000 1.000
Fg NACS NGA CGA ShGA NMA Fg 0.813 0.969 0.034 0.034 1.000
MSTSP1 0684 — 0973 — 0024 — 0.026 — 1.000 P 0.770 0.557 0.295 0.984 1.000
MSTSP2 0804 — 0959 — 0030 — 0034 — 1.000 MSTSPI2 R 0023 0192 0226 0753 0211
MSTSP3 0497 — 0936 — 0078 — 0.110 — 1.000 Fg 0.090 0.331 0.275 0.919 0.535
MSTSP4 0724 — 0932 — 0034 — 0034 — 1.000
MSTSP5 0989 ~ 0846 — 0017 — 0017 — 1.000
MSTSP6 0.643 — 0.877 — 0034 — 0.034 — 1.000
MSTSP7 0.125 — 0769 — 0261 — 0435 — 0923 TABLE IV
Mg%gg 8%% — 88;8‘ - 8(3)31 — 88(3)2 — (1)(7)3(2) PROPOSED ALGORITHM Is COMPARED WITH FOUR DISCRETE MMOP
MSTSPIO 0813 — 0065 — 0034 — 0034 — 1000 ALGORITHMS IN TERMS OF DI. THE SUMMARY COMPARISON RESULTS
MSTSP11 0.459 — 0949 — 0072 — 0.118 _ 1.000 WITH WILCOXON RANK-SUM TEST AT o=0.05 ARE LISTED
NeRei don g - win - s o g
T T -
MSTSP16 0000 — 0054 — 0211 — 0000 — 0.554 NAES vs. NMA 23
MSTSPIE 0000 — 0031 — 006 — 0000 — 0en G9A v YA e
MSTSPI9 0000 — 0007 — 0040 — 0000 — 0.168 ShGA vs. NMA 3013
MSTSP20 0.000 — 0.000 — 0.015 — 0.000 — 0.165
MSTSP21 0.012 ~ 0.000 — 0.001 =~ 0000 — 0.023
MSTSP22 0.000 — 0.000 — 0.000 ~ 0.000 — 0.013
MSTSP23 0.000 — 0000 — 0000 — 0000 — 0.016 . .))
MSTSP24 0.000 — 0.000 — 0009 =~ 0.000 — 0.010 desired solutions, they may obtain poor F'g values with the pro-
MSTSP25 0.000 =~ 0.000 ~ 0.000 =~ 0.000 = 0.002
vision of a quite large population of solutions. For MSTSP12
+/~— 0/3/22 0/1/24 0/4/21 1/1/23

experiments with four compared algorithms and NMA on
25 MSTSPs concerning Fg score. In order to further validate
the performance, a Wilcoxon rank-sum test is also applied.
The notations “+”, “~”, and “—” indicate that the algorithm
is significantly better than, similar to, and significantly worse
than the proposed NMA, respectively. Note that the notations
of the significant results in the remaining parts are shown in
the same way. The numerical results along with the signifi-
cant results are shown in Table II. The first row shows the
algorithm names, and the numerical results are reported in the
following rows, where the corresponding significant results are
placed on the right. In addition, summary results are presented
in the last row. As seen in the table, NMA achieves signifi-
cantly better results on most MSTSPs (at least 21 out of 25),
especially on simple MSTSPs and geometry MSTSPs. Two
modified basic MMOP algorithms, CGA and ShGA, perform
poorly on most MSTSPs, except for MSTSP12 with ShGA.
Particularly, MSTSP12 holds the largest number of optima,
i.e., 196. These Fg values of the five algorithms fall rapidly
along with city size increasing, but NMA performs slightly
better among them.

To make a further investigation of the performance con-
cerning Fg, considering that Fg is evaluated with P and R
in Eq. (7), we display values of P, R, and Fg on MSTSP10
and MSTSP12 in Table III. For MSTSP10, NACS and NGA
reach 1.000 precision values but less than or equal to 0.500
recall values, which still results in high Fg values (greater
than 0.8); CGA and ShGA obtain small precision values
(smaller than 0.03) but the highest 1.000 recall values, which
leads to small Fg values (lower than 0.04); the precision
and recall values of NMA are both 1.000, therefore, Fyg is
1.000 according to Eq. (7). The observations indicate that
although CGA and ShGA have advantages over covering more

with 196 optima, ShGA gets a high precision value (greater
than 0.9) and a moderate recall value (greater than 0.7), while
NMA obtains the highest precision value but a small recall
value (smaller than 0.3). The outcome shows that ShGA is
better than the other MMOP algorithms with respect of Fpg
score. NACS, NGA, and NMA provide the best solutions of
each niches, while CGA and ShGA offer with overall obtained
solutions that increase the possibility of obtaining spatial near
optima. But for such instance with massive optima, NMA can
still obtain good performance with a high precision value by
providing a few and distinct obtained solutions.

The experimental results validate that NMA outperforms the
other compared algorithms concerning Fg score, but they all
encounter difficulty in dealing with MSTSPs with a large city
size. Furthermore, NMA can achieve a high precision value
for instances with various optima size to further obtain good
Fg value.

2) DI: DI evaluates the solution diversity. Higher DI means
a better diversity. We illustrate with a quick overview of DI
score by plotting pseudocolor image in Fig. 8. The figure
indicates that, relatively speaking, CGA and NMA have a
good diversity on overall MSTSP instances; ShGA performs
well on simple and geometry MSTSPs but behaves badly on
composite MSTSPs; NACS and NGA present unsatisfactory
results on overall problem instances. The significant test is
also conducted and the results are reported in Table IV. As
seen from the table, NMA is significantly better than NACS
and NGA, 23 out of 25 and 25 out of 25, respectively. In con-
trast, CGA and ShGA have a good performance, and possess
similar significant results when compared with NMA, 12 out
of 25 and 9 out of 25, respectively. These results suggest that
CGA and ShGA can obtain a high DI as they provide a large
archive, while NMA can also achieve the similar performance
by providing representative optima.

3) Execution Time: The execution time is another essential
metric for assessing algorithms. The time overhead for tackling

HUANG et al.: NMA FOR MSTSP

MSTSPI1
MSTSP2

MSTSP3 09
MSTSP4
MSTSP5
MSTSP6
MSTSP7
MSTSP8
MSTSPY
MSTSP10
MSTSP11
MSTSP12
MSTSP13 0.5
MSTSP14
MSTSP15
MSTSP16
MSTSP17
MSTSP18 03

i 0

NACS NGA CGA ShGA NMA

MSTSP19
MSTSP20
MSTSP21
MSTSP22
MSTSP23
MSTSP24
MSTSP25

Fig. 8. Pseudocolor plot of 25 MSTSPs in terms of DI with four compared
algorithms and the proposed algorithm.

NP-hard problems rises dramatically along with the increas-
ing city size. The average execution time of the algorithms is
summarized in Table V, where the best results are displayed
in bold. In the table, over the overall test instances, NMA
or NACS always performs best. Taking a close look, NACS
ranks the first on simple MSTSPs and geometry MSTSPs, fol-
lowed by NMA. When it comes to composite MSTSPs, NACS
consumes more time than NMA does, and thus NMA is obvi-
ously the winner. For MSTSP1 with nine cities, NACS, NMA,
NGA, CGA, and ShGA averagely consume 0.20 s, 0.37 s,
1.66 s, 12.57 s, and 33.17 s, respectively, in an ascending order.
As to MSTSP25 with 66 cities, the time consuming order is
slightly changed. NMA, NACS, NGA, CGA, and ShGA aver-
agely consume 23.08 s, 642.49 s, 957.32 s, 6280.10 s, and
14103.00 s, respectively. The running time of NGA, CGA,
and ShGA increases rapidly as the city size increases. NMA
is slightly affected by the city size.

D. Comparisons With Algorithms Extended From the
Continuous Multimodal Optimization Area

The MSTSP is a relatively new area, for which the bench-
mark was released in 2018 [18]. There are only a few
algorithms existed in this area, which are available for com-
parison. Besides, the most related area to MSTSP is the
continuous MMOP. There are many state-of-the-art continuous
niching EAs for continuous MMOPs. We choose three state-
of-the-art and representative algorithms to perform additional
comparisons: the dynamic archive niching DE (dADE) [65],
the neighborhood-based speciation DE (NSDE) [19], and the
dual-strategy DE (DSDE) with crowding technique [22]. In
order to extend the three continuous niching EAs to the dis-
crete domain specifically for MSTSPs, we adopt two methods:
1) a discretization-based method and 2) a random key-based
method [66], [67].

For the discretization-based method, the following modifi-
cations are made to the algorithms.

1) Solution Encoding: In DE, the candidate solution is
encoded into a real number parameter vector. The
encoding method is changed into a permutation-based
encoding scheme as NMA.

2) Evolution Operators: Using DE as the baseline, the
crossover and mutation operators in the algorithms are
unsuitable to deal with MSTSPs. Thus, we substitute

519

TABLE V
AVERAGE EXECUTION TIME ON 25 MSTSPS. THE OVERALL AVERAGE
RUNNING TIME IS LISTED IN THE LAST Row

Avg. Time (s) NACS NGA CGA ShGA NMA
MMTSP1 0.20 1.66 12.57 33.17 0.37
MMTSP2 0.28 2.01 15.09 39.66 0.33
MMTSP3 0.29 1.92 14.72 40.71 0.75
MMTSP4 0.22 2.25 17.16 45.65 0.33
MMTSP5 0.24 2.74 19.62 51.96 0.32
MMTSP6 0.23 2.69 19.31 52.14 0.30
MMTSP7 0.17 2.06 14.82 42.93 0.82
MMTSP8 0.27 2.64 19.67 51.65 0.58
MMTSP9 0.17 1.91 14.93 39.10 0.40
MMTSP10 0.17 1.93 14.97 40.82 0.38
MMTSPI11 0.22 2.00 13.81 42.13 0.49
MMTSP12 0.50 4.01 25.29 63.23 0.66
MMTSP13 55.46 192.33 1099.20 3886.70 12.39
MMTSP14 54.50 27697 1451.90 4251.40 15.95
MMTSPI15 100.98 104.48 738.52 2715.50 10.86
MMTSP16 275.20 26293 1414.40 4077.60 14.91
MMTSP17 217.79 23572 1580.40 5249.20 17.28
MMTSP18 542.46 377.04 2520.80 7374.50 17.85
MMTSP19 385.10 405.14 2241.60 6652.50 19.72
MMTSP20 492.69 500.81 3237.30 8672.90 20.24
MMTSP21 293.42 561.17 3575.00 9149.90 21.18
MMTSP22 614.00 706.78 4512.10 10903.00 23.66
MMTSP23 1033.10 785.61 5012.10 11876.00 24.59
MMTSP24 382.57 766.16 552620 10757.00 24.42
MMTSP25 642.49 957.32 6280.10 14103.00 23.08

Overall 106.36 119.16 724.30 2171.17 10.07
TABLE VI

AVERAGE PERFORMANCE EVALUATIONS ON 25 MSTSPS. THE PROPOSED
ALGORITHM IS COMPARED WITH THE NICHING EAS EXTENDED FROM
THE CONTINUOUS AREA BY USING THE DISCRETIZATION-BASED
METHOD AND THE RANDOM KEY-BASED METHOD

Avg. Value d_dADE rk_dADE d_NSDErk_NSDE d_DSDErk_DSDE NMA

Fg 0.145 0.034 0.123 0.027 0.133 0.048 0.623
DI 0836 0.652 0.810 0.612 0.815 0.585 0.925
Used Time 1257.772 41.861 143.749 17.455 207.747 11.046 10.074
Q 0445 0.180 0413 0.132 0382 0.138 0.519

the PMX [61] and the EM [62] for the crossover and
mutation operators to make the algorithms available for
MSTSPs.

3) Distance Measure: The Euclidean distance measure used
in the compared algorithms is replaced by a mea-
sure defined on our proposed sharing distance (i.e.,
1— S(Tl'i, JTj)).

The random key-based method represents the solution with
real values and maps the solution to the literal space by
numeric sorting. Subsequently, it enables the algorithm to
evolve population in the continuous space and to evaluate solu-
tions in the literal space. Incorporating the random key-based
method has the advantages that it allows to make the mini-
mal adjustments to the continuous niching EAs and ensures
candidate solutions feasible. The disadvantage is also promi-
nent: the represented solution in the evolution space and the
mapped solution in the literal space are loosely coupled, so
that the effect of the niching techniques (to identify multiple
diverse solutions) is weakened.

The competitors are tested on 25 MSTSPs with the same
parameter settings proposed in Section IV-A. Table VI pro-
vides the comparison results. For the sake of brevity, the names
of the tailored EAs prefixed with “d_" and “rk_" indicate the
usages of the discretization-based method and the random key-
based method, respectively. It can be seen that NMA possesses
superior performance over the other compared algorithms in

520 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 24, NO. 3, JUNE 2020

terms of Fg, DI, and execution time. In addition, the Q2 in
the last row of Table VI is a supplementary indicator for the
solution quality Fg. The comparison algorithms directly return
the final solution set including some unnecessary inferior solu-
tions, which degrade the Fjg value. For further performance
investigation, the 2 divides the number of obtained optima
(presented by the intersection of the finally provided solu-
tion set and the optimal solution set PP) by the number of
known optima, i.e., 2 = |PNS|/P. The data of Q2 show that
NMA can find more optimal solutions than the competitors do.
Additionally, the pair comparisons between the extended algo-
rithms show that the discretization-based method outperforms
the random key-based method except for the elapsed time.

The above results indicate that although the existed con-
tinuous niching EAs can be extended into discrete ones
for MSTSPs, the tailored algorithms may endure very low
performance. Neither the direct discretization nor the mapping
method can achieve a satisfactory result. This also gives the
reason why more research efforts should be paid specifically
into the discrete multi-solution optimization domain.

E. Investigations on Parameters and Subcomponents of NMA

In Section SII in the supplementary material, we provide
experimental investigations on the parameter settings as well
as the effects of different subcomponents in NMA. Due to
the page limit, here, we provide the summary of the inves-
tigations only. Section SII-A in the supplementary material
suggests P. between [0.9, 1.0], P, smaller than 0.1, and NP
between [100, 250]. The Section SII-B in the supplementary
material reports the effects of subcomponents: 1) the proposed
adaptive neighborhood strategy helps NMA to maintain good
performance in terms of solution quality and diversity on dif-
ferent MSTSP instances; 2) the selective local search improves
the search efficiency by avoiding unnecessary exploitation;
and 3) the elite selection strategy finally returns representative
solutions without impairing the solution set quality.

V. EXPERIMENTAL RESULTS ON THE TSPLIB

TSPLIB is a well-known TSP library, which includes 112
TSP instances. The corresponding known optimal solution are
published on the website.> However, the publication of TSP
library only considers the global optimality but ignores the
multi-solution characteristic. In order to mine the latent charac-
teristic of multi-solution, we employ NACS, NGA, and NMA
to solve eight TSP instances. The MaxFEs is set to 50000 x N
(N denotes the number of cities). These algorithms will pro-
vide distinct solutions. The solutions are identified as optima
when their lengths are shorter than a certain threshold length
(140) x (tour length). The o is set to 0.1 here. Average num-
bers of qualified solutions are presented in Table VII. The best
results are boldface. NMA always ranks the first, which indi-
cates that NMA obtains more satisfactory solutions than that
obtained by the other two compared algorithms.

In order to show the multi-solution characteristic more
clearly, we choose four representative solutions (i.e., the best

2http://elib.zib.de/pub/mp—testdata/tsp/tsplib/tsplib.htmls

TABLE VII
NUMBER OF SATISFACTORY SOLUTIONS OBTAINED BY NACS, NGA,
AND NMA ARE LISTED, RESPECTIVELY

No. Solution NACS NGA NMA

eil51 1.18 1.14 5.84
berlin52 1.28 1.02 4.54
st70 1.26 1.02 6.00
pr76 1.40 0.84 5.12
kroA100 1.08 0.90 5.36
lin105 1.02 0.06 4.54
Overall 1.20 0.83 5.23

441
«7 100 100
& i E’/%)
0 0

0 20 4 60 0 50 100 0 50 100

441
100

@g)
0

0 20 4 60 0 50 100 0 50 100

(2) (b)

0 20 40 60

Fig. 9. Diagram of representative solutions obtained by NMA. The subgraphs
on the top-left and on the bottom-left are the best and the second best tours.
Their most dissimilar tours are drawn on their right. (a) TSP instance eil51.
(b) TSP instance st70.

solution and the second best solution, as well as their cor-
responding the most dissimilar ones) obtained by NMA and
further draw them in Fig. 9. In each subfigure, the best solu-
tion and its corresponding dissimilar solution locate in the
top-left and top-right, while the second best solution and
its corresponding dissimilar one are in the bottom-left and
bottom-right. In Fig. 9(a), we first compare tours in the left
column, which shows the best solution with a length of 436
and the second best solution with a length of 437 for eil51.
They have equally good tour length, but possess very differ-
ent topologies. Moreover, horizontal comparison indicates that
even the very different tours can achieve a similar performance
with a small gap. The observation in Fig. 9(b) is similar to
the observation obtained by Fig. 9(a). Although NMA fails to
obtain the known optimal solutions (for €il51, optimal length/
best obtained length is 426/436; for st70, optimal length/ best
obtained length is 675/683), it provides good and diverse solu-
tions instead. Even so, the observations are in agreement with
the multi-solution characteristic of TSP.

VI. CONCLUSION

This article presented an NMA to solve MSTSPs. The
neighborhood niching strategy and MA are effectively
employed to accomplish the target of locating multiple solu-
tions of MSTSP. The neighborhood niching strategy maintains
diverse candidates during the search, and MA promises the
search ability. To further enhance the performance, four aug-
mentation methods are developed. The adaptive neighborhood
strategy allocates the search effort with an adjusting neighbor-
hood size, and further balances the exploration and exploita-
tion. The diversity enhancement approach perturbs converged

HUANG et al.: NMA FOR MSTSP

group members to alleviate the problem of being trapped in
local optima. The CEA strategies provide additional guidance
to evolutionary operations and avert unnecessary exploitation
of local search. The selective local search biases the local
search to potential candidate solutions to maximize fitness
evaluations utilization.

To validate the efficiency and effectiveness of the proposed
algorithm, the proposed NMA is compared with two existing
discrete MMOP algorithms and two modified niching MMOP
algorithms. NMA outperforms the four compared algorithms
in terms of two evaluation metrics: Fg and DI. Meanwhile, the
comparison of running time demonstrates that NMA is less
influenced by the city size, which consumes the least running
time in average when compared to the competitors. Moreover,
the effect of each subcomponent of NMA is thoroughly tested
and validated in our investigation experiments. The additional
experiments on the TSPLIB also show that NMA obtains more
diverse and better solutions than the other algorithms do. Much
work remains to be done in the future. There is still room
to improve the performance of NMA to solve instances with
large city sizes. In addition, some other niching algorithms
can be adapted and improved to settle discrete multi-solution
problems. Besides, the multi-solution (or multimodal) charac-
teristic, which is always omitted in some global optimization
problems, can be further exploited and utilized with the help
of MMOP techniques.

REFERENCES

[1] G. Gutin and A. P. Punnen, The Traveling Salesman Problem and Its
Variations. New York, NY, USA: Springer, 2007, pp. 1-15.

[2] K. Ilavarasi and K. S. Joseph, “Variants of travelling salesman problem:
A survey,” in Proc. Int. Conf. Inf. Commun. Embedded Syst., Feb. 2014,
pp- 1-7.

[3] K. Dorling, J. Heinrichs, G. G. Messier, and S. Magierowski, “Vehicle
routing problems for drone delivery,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 47, no. 1, pp. 70-85, Jan. 2017.

[4] J.-H. Wang, Y. Zhou, Y. Wang, J. Zhang, C. L. P. Chen, and Z.-B. Zheng,
“Multiobjective vehicle routing problems with simultaneous delivery
and pickup and time windows: Formulation, instances, and algorithms,”
IEEE Trans. Cybern., vol. 46, no. 3, pp. 582-594, Mar. 2016.

[5] R. Roberti and M. Wen, “The electric traveling salesman problem with
time windows,” Transp. Res. E Logist. Transp. Rev., vol. 89, pp. 32-52,
May 2016.

[6] A. Zheng, Y. Yuan, J.-T. Zhou, Y.-FE. Guo, H.-T. Yang, and O. C. Au,
“Adaptive block coding order for intra prediction in HEVC,” IEEE Trans.
Circuits Syst. Video Technol., vol. 26, no. 11, pp. 2152-2158, Nov. 2016.

[71 M. J. Armesen, M. Gjestvang, X. Wang, K. Fagerholt, K. Thun, and
J. G. Rakke, “A traveling salesman problem with pickups and deliveries,
time windows and draft limits: Case study from chemical shipping,”
Comput. Oper. Res., vol. 77, pp. 20-31, Jan. 2017.

[8] T. Lust and J. Teghem, “The multiobjective traveling salesman problem:
A survey and a new approach,” in Proc. Adv. Multi Objective Nat.
Inspired Comput., 2010, pp. 119-141.

[9] L.-J. Ke, Q.-F. Zhang, and R. Battiti, “MOEA/D-ACO: A multiobjective

evolutionary algorithm using decomposition and antcolony,” IEEE Trans.

Cybern., vol. 43, no. 6, pp. 1845-1859, Dec. 2013.

V. A. Shim, K. C. Tan, and C. Y. Cheong, “A hybrid estimation of

distribution algorithm with decomposition for solving the multiobjective

multiple traveling salesman problem,” IEEE Trans. Syst., Man, Cybern.

C, Appl. Rev., vol. 42, no. 5, pp. 682-691, Sep. 2012.

A. Khan, E. Yanmaz, and B. Rinner, “Information exchange and decision

making in micro aerial vehicle networks for cooperative search,” IEEE

Trans. Control Netw. Syst., vol. 2, no. 4, pp. 335-347, Dec. 2015.

J. Faigl and P. Vana, “Surveillance planning with Bézier curves,” IEEE

Robot. Autom. Lett., vol. 3, no. 2, pp. 750-757, Apr. 2018.

K. J. Obermeyer, P. Oberlin, and S. Darbha, “Sampling-based path plan-

ning for a visual reconnaissance unmanned air vehicle,” J. Guid. Control

Dyn., vol. 35, no. 2, pp. 619-631, 2012.

Z. Beheshti and S. M. H. Shamsuddin, “A review of population-based

meta-heuristic algorithms,” Int. J. Adv. Soft Comput. Appl., vol. 5, no. 1,

pp. 1-35, 2013.

[10]

(11]

[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

(34]

[35]

(36]

(371

[38]

(39]

[40]

[41]

[42]

S. Ronald, “Finding multiple solutions with an evolutionary algorithm,”
in Proc. IEEE Int. Conf. Evol. Comput., vol. 2, Nov. 1995, pp. 641-646.
D. Angus, “Niching for population-based ant colony optimization,” in
Proc. IEEE Int. Conf. e-Sci. Grid Comput., Dec. 2006, p. 115.

X.-C. Han, H.-W. Ke, Y.-J. Gong, Y. Lin, W.-L. Liu, and J. Zhang,
“Multimodal optimization of traveling salesman problem: A niching ant
colony system,” in Proc. Genet. Evol. Comput. Conf. Companion, 2018,
pp. 87-88.

T. Huang, Y.-J. Gong, and J. Zhang, “Seeking multiple solutions of
combinatorial optimization problems: A proof of principle study,” in
Proc. IEEE Symp. Comput. Intell., 2018, pp. 1212-1218.

B.-Y. Qu, P. N. Suganthan, and J.-J. Liang, “Differential evolution with
neighborhood mutation for multimodal optimization,” IEEE Trans. Evol.
Comput., vol. 16, no. 5, pp. 601-614, Oct. 2012.

Y.-J. Gong, J. Zhang, and Y. Zhou, “Learning multimodal parameters: A
bare-bones niching differential evolution approach,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 7, pp. 2944-2959, Jul. 2018.

S. Biswas, S. Kundu, and S. Das, “Inducing niching behavior in differ-
ential evolution through local information sharing,” IEEE Trans. Evol.
Comput., vol. 19, no. 2, pp. 246-263, Apr. 2015.

Z.-J. Wang et al., “Dual-strategy differential evolution with affinity prop-
agation clustering for multimodal optimization problems,” IEEE Trans.
Evol. Comput., vol. 22, no. 6, pp. 894-908, Dec. 2018.

X.-D. Li, “Niching without niching parameters: Particle swarm
optimization using a ring topology,” IEEE Trans. Evol. Comput., vol. 14,
no. 1, pp. 150-169, Feb. 2010.

C. Shi, Q.-D. Qin, W. Zhou, Y.-H. Shi, and Q.-Y. Zhang, “Multimodal
optimization using particle swarm optimization algorithms: CEC 2015
competition on single objective multi-niche optimization,” in Proc. IEEE
Congr. Evol. Comput., May 2015, pp. 1075-1082.

M. Preuss, “Niching the CMA-ES via nearest-better clustering,” in Proc.
Genet. Evol. Comput. Conf. Companion, 2010, pp. 1711-1718.

P. Kerschke, M. Preuss, S. Wessing, and H. Trautmann, “Detecting fun-
nel structures by means of exploratory landscape analysis,” in Proc.
Genet. Evol. Comput. Conf. Companion, 2015, pp. 265-272.

A. Ahrari, K. Deb, and M. Preuss, “Multimodal optimization by
covariance matrix self-adaptation evolution strategy with repelling sub-
populations,” Evol. Comput., vol. 25, no. 3, pp. 439-471, 2017.

Q. Yang et al, “Adaptive multimodal continuous ant colony
optimization,” IEEE Trans. Evol. Comput., vol. 21, no. 2, pp. 191-205,
Apr. 2017.

X.-D. Li, M. G. Epitropakis, K. Deb, and A. Engelbrecht, “Seeking
multiple solutions: An updated survey on niching methods and their
applications,” IEEE Trans. Evol. Comput., vol. 21, no. 4, pp. 518-538,
Aug. 2017.

Y.-X. Liu et al., “Solving NP-hard problems with physarum-based ant
colony system,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 14, no. 1,
pp- 108-120, Jan./Feb. 2017.

R.-W. Gan, Q.-S. Guo, H.-Y. Chang, and Y. Yi, “Improved ant colony
optimization algorithm for the traveling salesman problems,” J. Syst.
Eng. Electron., vol. 21, no. 2, pp. 329-333, Apr. 2010.

M. Mavrovouniotis, F. M. Miiller, and S. Yang, “Ant colony optimization
with local search for dynamic traveling salesman problems,” I[EEE Trans.
Cybern., vol. 47, no. 7, pp. 1743-1756, Jul. 2017.

M. Mahi, O. K. Baykan, and H. Kodaz, “A new hybrid method based on
particle swarm optimization, ant colony optimization and 3-Opt algo-
rithms for traveling salesman problem,” Appl. Soft Comput., vol. 30,
pp. 484-490, May 2015.

A. F. El-Samak and W. Ashour, “Optimization of traveling salesman
problem using affinity propagation clustering and genetic algorithm,” J.
Al Intell. Soft Comput. Res., vol. 5, no. 4, pp. 239-245, 2015.

Y. Wang, H-X. Li, G. G. Yen, and W. Song, “MOMMOP:
Multiobjective optimization for locating multiple optimal solutions of
multimodal optimization problems,” IEEE Trans. Cybern., vol. 45, no. 4,
pp. 830-843, Apr. 2015.

S. W. Mahfoud, “Crowding and preselection revisited,” in Proc. Parallel
Problem Solving Nat., 1992, pp. 27-34.

O. J. Mengshoel and D. E. Goldberg, “Probabilistic crowding:
Deterministic crowding with probabilistic replacement,” in Proc. Genet.
Evol. Comput. Conf., 1999, pp. 409-416.

J.-P. Li, M. E. Balazs, G. T. Parks, and P. J. Clarkson, “A species con-
serving genetic algorithm for multimodal function optimization,” Evol.
Comput., vol. 10, no. 3, pp. 207-234, Sep. 2002.

W.-E. Gao, G. G. Yen, and S.-Y. Liu, “A cluster-based differential evo-
lution with self-adaptive strategy for multimodal optimization,” IEEE
Trans. Cybern., vol. 44, no. 8, pp. 1314-1327, Aug. 2014.

Q. Yang, W.-N. Chen, Y. Li, C. P. Chen, X.-M. Xu, and J. Zhang,
“Multimodal estimation of distribution algorithms,” IEEE Trans.
Cybern., vol. 47, no. 3, pp. 636-650, Mar. 2017.

Y.-S. Ong, M. H. Lim, and X.-S. Chen, “Memetic computation—Past,
present & future,” IEEE Comput. Intell. Mag., vol. 5, no. 2, pp. 24-31,
May 2010.

X.-S. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan, “A multi-facet survey
on memetic computation,” IEEE Trans. Evol. Comput., vol. 15, no. 5,
pp. 591-607, Oct. 2011.

522 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 24, NO. 3, JUNE 2020

[43] A. Gupta and Y.-S. Ong, Memetic Computation: The Mainspring of
Knowledge Transfer in a Data-Driven Optimization Era. New York,
NY, USA: Springer, 2018.

L. Feng, A. Gupta, and Y.-S. Ong, “Compressed representation for
higher-level MEME space evolution: A case study on big knapsack
problems,” Memetic Comput., vol. 11, no. 1, pp. 3-17, 2017.

Q. H. Nguyen, Y.-S. Ong, and M. H. Lim, “A probabilistic memetic
framework,” IEEE Trans. Evol. Comput., vol. 13, no. 3, pp. 604-623,
Jun. 2009.

J.-Y. Lin and Y.-P. Chen, “Analysis on the collaboration between global
search and local search in memetic computation,” [EEE Trans. Evol.
Comput., vol. 15, no. 5, pp. 608-623, Oct. 2011.

N. Krasnogor and J. Smith, “A memetic algorithm with self-adaptive
local search: TSP as a case study,” in Proc. Conf. Genet. Evol. Comput.,
2000, pp. 987-994.

P. Merz and B. Freisleben, “Memetic algorithms for the traveling
salesman problem,” Complex Syst., vol. 13, no. 4, pp. 297-346, 2001.
L. T. Kbczy, P. Foldesi, and B. Tiiti-Szabd, “A discrete bacterial memetic
evolutionary algorithm for the traveling salesman problem,” in Proc.
IEEE Congr. Evol. Comput., 2016, pp. 3261-3267.

H. D. Nguyen, I. Yoshihara, K. Yamamori, and M. Yasunaga,
“Implementation of an effective hybrid GA for large-scale traveling
salesman problems,” [EEE Trans. Syst, Man, Cybern. B, Cybern.,
vol. 37, no. 1, pp. 92-99, Feb. 2007.

H. Ismkhan, “Effective heuristics for ant colony optimization to handle
large-scale problems,” Swarm Evol. Comput., vol. 32, pp. 140-149, Feb.
2017.

X.-Y. Chen, P. Zhang, G.-L. Du, and F. Li, “Ant colony optimization
based memetic algorithm to solve bi-objective multiple traveling
salesmen problem for multi-robot systems,” [EEE Access, vol. 6,
pp. 21745-21757, 2018.

K. Deb and S. Gulati, “Design of truss-structures for minimum weight
using genetic algorithms,” Finite Elements Anal. Design, vol. 37, no. 5,
pp. 447465, 2001.

K.-C. Wong, K.-S. Leung, and M.-H. Wong, “Protein structure
prediction on a lattice model via multimodal optimization techniques,” in
Proc. ACM Genet. Evol. Comput. Conf. Companion, 2010, pp. 155-162.
E. Pérez, F. Herrera, and C. Herndndez, “Finding multiple solutions in
job shop scheduling by niching genetic algorithms,” J. Intell. Manuf.,
vol. 14, nos. 3—4, pp. 323-339, Jun. 2003.

E. Pérez, M. Posada, and F. Herrera, “Analysis of new niching genetic
algorithms for finding multiple solutions in the job shop scheduling,” J.
Intell. Manuf., vol. 23, no. 3, pp. 341-356, 2012.

G. Reinelt, “TSPLIB—A traveling salesman problem library,” ORSA J.
Comput., vol. 3, no. 4, pp. 376-384, 1991.

A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution
algorithm for numerical optimization,” in Proc. IEEE Congr. Evol.
Comput., vol. 2, Sep. 2005, pp. 1785-1791.

J.-Q. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Trans. Evol. Comput., vol. 13,
no. 5, pp. 945-958, Oct. 2009.

C. Li, T. T. Nguyen, M. Yang, M. Mavrovouniotis, and S. Yang, “An
adaptive multipopulation framework for locating and tracking multiple
optima,” IEEE Trans. Evol. Comput., vol. 20, no. 4, pp. 590-605, Aug.
2016.

D. E. Goldberg and R. Lingle, “Alleles, loci, and the traveling salesman
problem,” in Proc. Int. Conf. Genet. Algorithms Appl., vol. 154, 1985,
pp. 154-159.

W. Banzhaf, “The ‘molecular’ traveling salesman,” Biol. Cybern.,
vol. 64, no. 1, pp. 7-14, 1990.

R. Thomsen, “Multimodal optimization using crowding-based differ-
ential evolution,” in Proc. IEEE Congr. Evol. Comput., vol. 2, 2004,
pp. 1382-1389.

P. Flach and M. Kull, “Precision-recall-gain curves: PR analysis done
right,” in Proc. Int. Conf. Neural Inf. Process. Syst. (NIPS), 2015,
pp. 838-846.

M. G. Epitropakis, X. Li, and E. K. Burke, “A dynamic archive niching
differential evolution algorithm for multimodal optimization,” in Proc.
IEEE Congr. Evol. Comput., Jun. 2013, pp. 79-86.

J. C. Bean, “Genetic algorithms and random keys for sequencing and
optimization,” ORSA J. Comput., vol. 6, no. 2, pp. 154-160, 1994.

F. Samanlioglu, M. B. Kurz, W. G. Ferrell, and S. Tangudu, “A hybrid
random-key genetic algorithm for a symmetric travelling salesman
problem,” Int. J. Oper. Res., vol. 2, no. 1, pp. 47-63, 2007.

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571
[58]

[591

[60]

[61]

[62]
[63]

[64]

[65]

[66]

[67]

Ting Huang is currently pursuing the Ph.D.
degree with the School of Computer Science and
Engineering, South China University of Technology,
Guangzhou, China.

Her current research interests include evolution-
ary computation, swarm intelligence, multi-solution
optimization, and their real-world applications.

Yue-Jiao Gong (S’10-M’15-SM’19) received the
B.S. and Ph.D. degrees in computer science from
Sun Yat-sen University, Guangzhou, China, in 2010
and 2014, respectively.

She is currently a Full Professor with the School
of Computer Science and Engineering, South China
University of Technology, Guangzhou. Her current
research interests include evolutionary computation,
swarm intelligence, and their applications to intelli-
gent transportation and smart city scheduling. She
has published over 80 papers, including over 30
IEEE TRANSACTIONS papers, in the above areas.

Sam Kwong (M’93-SM’04-F’14) received the
B.Sc. degree in electrical engineering from the State
University of New York at Buffalo, Buffalo, NY,
USA, in 1983, the M.Sc. degree in electrical engi-
neering from the University of Waterloo, Waterloo,
ON, Canada, in 1985, and the Ph.D. degree from
Fernuniversitaet, Hagen, Germany, in 1996.

From 1985 to 1987, he was a Diagnostic
Engineer with Control Data Canada, Mississauga,
ON, Canada. He later joined Bell Northern Research
Canada, Ottawa, ON, Canada, as a Member of
Scientific Staff, and the City University of Hong Kong, Hong Kong, as a
Lecturer with the Department of Electronic Engineering, in 1990, where he
is currently a Chair Professor with the Department of Computer Science. His
current research interests include video coding, pattern recognition, and evo-
lutionary algorithms.

Dr. Kwong was elevated to an IEEE Fellow for his contributions on
optimization techniques for cybernetics and video coding in 2014. He is
also appointed as an IEEE Distinguished Lecturer of the IEEE SMC Society
in 2017. He is currently the Vice-President of Cybernetics with the IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS and also serves
as an Associate Editor for the IEEE TRANSACTIONS ON EVOLUTIONARY
COMPUTATION, the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,
the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, and the Journal
of Information Science.

Hua Wang received the Ph.D. degree from the
University of Southern Queensland, Toowoomba,
QLD, Australia.

He was a Professor with the University of
Southern Queensland. He is currently a full time
Professor with Victoria University, Melbourne, VIC,
Australia. As a Chief Investigator, three Australian
Research Council Discovery grants have been
awarded since 2006, and 200 peer-reviewed scholar
papers have been published. Six Ph.D. students have
already graduated under his principal supervision.
He has over ten years teaching and working experience in Applied Informatics
with both enterprise and university. He has expertise in electronic commerce,
business process modeling, and enterprise architecture.

Jun Zhang (F’17) received the Ph.D. degree from
the City University of Hong Kong, Hong Kong, in
2002.

He is currently a Visiting Scholar with Victoria
University, Melbourne, VIC, Australia. His current
research interests include computational intelligence,
cloud computing, high-performance computing,
operations research, and power electronic circuits.

Dr. Zhang was a recipient of the Changjiang Chair
Professor from the Ministry of Education, China, in
2013, the China National Funds for Distinguished

-

Young Scientists from the National Natural Science Foundation of China
in 2011, and the First-Grade Award in Natural Science Research from
the Ministry of Education, China, in 2009. He is currently an Associate
Editor of the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, the
IEEE TRANSACTIONS ON CYBERNETICS, and the IEEE TRANSACTIONS ON
INDUSTRIAL ELECTRONICS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

