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Abstract

Training prescription and monitoring of team-sport athletes rely on accurate quantification of

player movement. Our aim was to determine the sensitivity, reliability and construct validity

of measures derived from a wearable device incorporating Global Positioning System

(GPS) and accelerometer technology to quantify the peak periods of rugby competition.

Match movement data were collected from 30 elite and 30 sub-elite rugby union players

across respective competitive seasons. Accelerometer and GPS measures were analysed

using a rolling average to identify peak movement for epochs ranging from 5 to 600 seconds.

General linear mixed modelling was used to quantify the effects of playing position and

match-half on the peak movement and variabilities within and between players represented

reliability of each measure. Mean positional differences and match-half changes were

assessed via standardisation and magnitude-based decisions. Sensitivity of measures was

quantified via evaluation of ("signal") and typical error of measurement ("noise"). GPS and

accelerometer measures had poor sensitivity for quantifying peak movement across all

epochs and both levels of rugby union competition (noise 4× to 5× the signal). All measures

displayed correspondingly low reliability across most epochs and both levels of competition

(ICC<0.50). Construct validity was evident in mean differences between playing positions

and match halves that were consistent with expected activity profiles in rugby union. How-

ever, it was clear from the pattern of differences across epoch durations and levels of com-

petition that GPS and accelerometer measures provided different information about player

movement. The poor sensitivity and low reliability of GPS and accelerometer measures of

peak movement imply that rugby union players need to be monitored across many matches

to obtain adequate precision for assessing individuals. Although all measures displayed

construct validity, accelerometers provided meaningful information additional to that of

GPS. We recommend using accelerometers alongside GPS to monitor and prescribe match

respresentative training.
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Introduction

Using wearable global positioning systems (GPS) and inertial sensors to quantify athletic

movement is an application of the technology long preceded by navigation and military appli-

cations [1]. Quantification of athletic movement via wearable technology is important for

sporting practitioners as it provides objective data to inform the decision-making process

around training load management [2], training prescription [3], player readiness to play [4],

injury risk [5], and player interchange decisions [6, 7]. The prolific adoption of GPS with inte-

grated inertial sensor technology in elite team sports is testament to its perceived worth and

impact on player and team preparation and performance.

Position, velocity and distance can be derived via GPS [8]. Subsequently, change in velocity

(acceleration and deceleration) may be calculated [9] and potentially used in combination

with velocity-based events to estimate the energy cost of exercise (metabolic power) [10].

Whilst GPS athlete tracking data can be of great value to practitioners, it has reduced validity

and reliability for quantifying rapid changes of direction [11] and velocity [12, 13], estimating

metabolic power [14] and for assessing short duration, high-velocity tasks that frequently

occur in team sports [13, 15]. Movements that incur little horizontal displacement (e.g., colli-

sions, tackles and many sport-specific movements) are also likely to be underestimated by GPS

[16]. Further, positional and match-half differences in athlete maximal movement were under-

estimated by GPS technology when compared to accelerometers during professional rugby

union match-play [17]. In light of these findings, authors recommended that researchers and

practitioners use accelerometers alongside GPS technology to adequately quantify important

positional differences and match-half changes in athlete movement during collision-based

team sports [17].

Manufacturers of accelerometer technology used by sporting practitioners and scientists

have created modified vector magnitude proprietary algorithms, with frequently published

measures being PlayerLoad™ (Catapult Sports) [16] and BodyLoad™ (GPSports) [18]. Vector

magnitudes sum the squared instantaneous rate of change in acceleration in three orthogonal

axes accumulated over time, providing an estimate of totality of movement often referred to as

external load. Accelerometers have been used to quantify athlete external load [16] and energy

expenditure [19] during training and competition, with PlayerLoad™ moderating the recovery

response of footballers [20]. Accelerometers are reliable in laboratory [21] and field settings

[22] and can accurately detect individual contact events [23], sport-specific movements [24],

and alterations in movement strategies, efficiency or kinematic changes [4, 25]. Unlike GPS,

accelerometers can also operate within indoor environments, providing greater utility [26].

Accelerometers provide valuable additive external load information to GPS that may aid prac-

titioners in more accurately quantifying player totality of movement in collision-based team

sports [17]. Quantifying external load during collision-based team sports may help practition-

ers to prescribe and monitor training in a more objective manner, carefully balancing the need

for physiological and biomechanical load to induce positive adaptations whilst mitigating

overuse to reduce injury likelihood, or put more simply, balance fitness and fatigue [27].

Team sports that contain a substantial collision-based component (e.g., rugby union, rugby

league, National Football League and Australian Rules Football) are characterised by low-

intensity activity interspersed with frequent bouts of high-intensity activity [28, 29]. Despite

the majority of team-sport competition being spent at submaximal intensity, high-intensity

activities are often aligned with key events that determine match outcome [30, 31], signifying

the importance of physically conditioning athletes for these intense periods of match-play. The

most intense or peak periods of football competition do not often fall completely within a pre-

defined period of time and therefore these methods underestimate the most intense periods of
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match-play and overestimate subsequent periods of activity [32–34]. During elite soccer com-

petition the peak periods of high-velocity running distance were identified using either pre-

defined (distance covered in 5-minutes at every 5-minute time point) or rolling time periods

(distance covered in 5 minutes from every time point). Rolling or moving average methods

involve analysing raw instantaneous data from the device used. For example, GPS device data

are commonly sampled at 10 Hz (i.e. ten times per second) and accelerometer data typically at

100 Hz (i.e. one hundred times per second). To identify the peak periods of competition using

a moving average approach, one must select a duration of interest (e.g. 5 minutes), with that

window of time then moved across every second of the competition, collecting a moving aver-

age from every single time point. For example, using a one-minute window that equates to 600

samples (60 s with ten samples per second using 10 Hz GPS), the moving average would be

applied to a player’s match data file as follows: 0–600, 1–601 s, 2–602 s, 3–603 seconds etc., to

identify the one-minute peak measure/s of interest [35]. During professional soccer competi-

tion, peak high-velocity running distance was underestimated by up to 25% using pre-defined

time period analysis, with the subsequent period distances overestimated by up to 31% when

compared to rolling time period analysis. When the distance decline in high-velocity running

between the peak and following period were examined, there was up to a 52% greater reduc-

tion in running performance using rolling vs. pre-defined periods [32]. Likewise during inter-

national rugby competition, both high-speed running (>5 m.s-1) and relative distance (m.

min-1) were consistently underestimated by pre-defined compared to rolling period analyses

of 60–300 seconds [33]. Pre-defined epoch analyses on average underestimated relative dis-

tances covered by ~11% and high-speed running by up to ~20% compared to rolling epoch

analyses, with the greatest underestimations occurring using the 60 second epoch (95% confi-

dence interval, high-speed running: -6.05 to -4.70 m.min-1, relative distance: -18.45 to -16.43

m.min-1) [33]. Similarly in English Championship soccer matches, pre-defined epoch analyses

of 60–600 seconds underestimated peak movement intensities of competition when compared

to rolling epoch analyses for both total distance (*7–10%) and high-speed (*12–25%) dis-

tance, irrespective of playing position [34]. Therefore, it is recommended that researchers and

practitioners use rolling/moving time period analyses when trying to accurately identify and

quantify the peak periods of football competition [32].

Duration- and position-specific player movement differences have been observed during

the most intense periods of match-play across various football codes including: rugby league

[3], rugby union [36], Australian Rules Football [37] and soccer [38]. These investigations pro-

vided valuable insights into the highly intermittent nature of team-sport movement and

highlighted that rolling time-motion analyses may assist practitioners in the design and pre-

scription of training that is more representative and specific to competition. However, the sen-

sitivity, reliability and construct validity of GPS- and accelerometer-derived measures for

quantifying player movement during the most intense periods of match-play in team sports is

not known, limiting a practitioner’s ability to interpret and use such data to inform practice.

Our aim was therefore to determine the sensitivity, reliability and construct validity of mea-

sures derived from GPS and accelerometer technology to quantify the most intense periods of

rugby union match-play.

Materials and methods

Participants

Movement data were collected via integrated GPS and accelerometer units for 60 professional

rugby union players (30 elite and 30 sub-elite) across two team’s respective seasons. The 30

elite players (18 forwards and 12 backs) played in the 2015 Super 15 Rugby competition, an
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international rugby union competition played between 5 Australian, 5 New Zealand and 5

South African teams. The Super 15 competitive season comprised of 18 rounds with 2 bye

rounds per team, making 16 total matches (8 home, 8 away). The 30 sub-elite players (16 for-

wards and 14 backs) played in the 2014 National Rugby Championship, an Australian compe-

tition played between 9 teams from 5 states and territories, with the season comprising of 8

matches (4 home, 4 away) prior to a finals series for the top 4 finishing teams. The National

Rugby Championship is the highest standard of rugby union played in Australia below Super

15 and international representative rugby. The data set for sub-elite includes 7 regular season

matches and the semi-final (8 matches total), as 1 match did not meet our inclusion criteria

(see Methods, data filtering and processing section). Players were grouped by playing position

into forwards and backs rather than more specific playing positions (e.g., prop, centre, scrum-

half) to increase precision of estimates and to first assess if the respective technologies were

sensitive enough to quantify broader positional classifications prior to comparing specific posi-

tional groupings. Elite and sub-elite participant numbers and physical characteristics can be

seen in Table 1. All players gave informed consent to participate and the study was approved

by the Victoria University Human Research Ethics Committee.

Equipment and data collection

Match movement data was collected via commercially available OptimEye™ S5 GPS and GLO-

NASS-enabled units with an embedded tri-axial piezoelectric accelerometer (firmware version

7.22, Catapult Sports, Melbourne, Australia). Prior to data collection during match-play, the

devices were turned on and left outside on the playing surface in an open area to attain a satel-

lite connection before placing them on the rugby players. The devices (96 mm × 52 mm × 14

mm, weighing 67 g) were placed within a custom-made tightly-fitting pouch within the back

of the player’s playing uniform, situated between their scapulae. To minimize inter-unit vari-

ability, each player was assigned the same unit for the entirety of the respective seasons [39].

Manufacturers of the technology used in the present study did not reveal to authors the spe-

cific model of accelerometer. However, we have attempted to provide high level specification

descriptions of the technology used where possible. Sampling frequencies for the GPS and tri-

axial accelerometer were 10 Hz and 100 Hz respectively, with the accelerometer having an out-

put range of ±16 g. Each unit has its own microprocessor, gyroscopes (3D, 8000 deg�s-1, up to

1000 Hz), magnetometers (3D, 100 Hz, full scale of 1200 micro tesla), 2 GB internal flash

Table 1. Participant numbers and physical characteristics of the rugby union players in the elite (Super 15) and

sub-elite (National Rugby Championship) professional teams.

Elite Sub-elite

Number of participants 30 30

Number of forwards 18 16

Number of backs 12 14

Mean age (y) 25 ± 4 24 ± 4

Mean height (cm) 187 ± 7 185 ± 7

Mean body mass (kg) 106 ± 12 106 ± 13

Forwards age (y) 25 ± 4 24 ± 3

Forwards height (cm) 187 ± 8 187 ± 8

Forwards body mass (kg) 113 ± 8 115 ± 10

Backs age (y) 25 ± 4 24 ± 4

Backs height (cm) 185 ± 5 183 ± 5

Backs body mass (kg) 95 ± 6 96 ± 9

https://doi.org/10.1371/journal.pone.0236024.t001
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memory, 250 m wireless frequency transmission, a high-speed USB interface to record, store

and retrieve data, a lithium ion rechargeable battery with 6-hours life and is water resistant.

Accelerometer signal drift errors from the baseline gravity measure are negligible with temper-

ature changes from 15 to 35˚C, using the predessor model accelerometer (Catapult MinimaxX

2.0, Kionix: KXP94) to that used in the present study [22]. Positioning the accelerometer

between player’s scapulae near the surface of the skin during a whole-body dynamic task such

as rugby union should not exceed the manufacturer specified operating temperature ranges of

-40 to 85˚C.

Measures of maximum mean movement

The three measures of maximum mean or peak movement investigated were: Playerload™ (au,

accelerometer-derived), mean speed (m.min-1, GPS-derived) and metabolic power (W.kg-1,

GPS-derived) as they provide estimates of global external load and are frequently reported in

research and used in practice. Acceleration, total distance, high-speed running distance and

estimated metabolic power were ranked as the most important variables in the eyes of elite

football practitioners [40], lending further support for the chosen measures.

PlayerLoad™ is a Catapult Sports proprietary vector magnitude, mathematically expressed

as the square root of the sum of the squared changes in acceleration in three orthogonal planes

over the sampling interval (set at 100 Hz):

PlayerLoad™ ¼
p
ðDForward2

þ DSide2
þ DUp2Þ;

where Forward, Side and Up refer to directions of acceleration, and Δ refers to the change over

the sampling interval (10 ms) [22].

The units of acceleration are m.s-2, but the Catapult software applies an arbitrary unknown

scaling factor when this measure is accumulated and may have applied such a factor to this

"instantaneous" measure. We have therefore shown its units as arbitrary (au).

Metabolic power is a GPS-derived measure of power that considers the energetic cost of

accelerated running on flat terrain to be energetically analogous to running on an equivalent

uphill slope at a constant speed [10]. Instantaneous metabolic power output (W.kg-1) of an

individual may subsequently be calculated if acceleration and velocity is known [10, 41].

Whilst the measure was lauded and widely applied when first published, extensive validity and

reliability testing had not yet been carried out. The application of metabolic power in team

sports has been questioned in recent years [14, 42], yet its perceived importance and applica-

tion is still prevalent [40]. We were therefore interested to investigate whether metabolic

power has merit for quantifying external load during the most intense periods of a collision-

based team sport like rugby union.

Mean speed or relative distance (m.min-1) is a GPS-derived measure that expresses the

absolute distance an athlete covers relative to the time they spent on the field. For instance, if

an athlete covers 8000 m during an 80-minute rugby union match, their relative distance

would be 100 m.min-1. Quantification of mean speed or relative distance may assist subsequent

training prescription and monitoring of intensity and enables reasonable comparison between

full-match and substitution players and between different sporting codes [26].

Data filtering and processing

The Doppler-shift method (change in frequency of the satellite signal) was used to calculate

the raw GPS data [43]. The raw velocity and subsequent acceleration and metabolic power

data were filtered by proprietary software (Catapult Sprint™ version 5.1.4) using a median filter

to reduce inherent signal noise [44]. Acceleration derived via GPS used for the calculation of
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metabolic power was derived over a 0.2 second time interval (smoothing filter width as defined

in the software). The intelligent motion filter option provided within Catapult Sprint™ software

was not activated. The processing algorithm for PlayerLoad™ was unfortunately not available

to authors for proprietary reasons.

Player match movement files were cropped to include only match time using Catapult

Sprint™.

Individual player files were then exported from Catapult Sprint™ via comma-separated val-

ues files into Microsoft Excel 2013 (version 15, Microsoft Corp, Redmond, WA, USA) and

then imported into the Statistical Analysis System (SAS, version 9.4; SAS Institute, Cary, NC)

for further data processing. A program was written within SAS to identify the maximum mean

value of each measure (PlayerLoad™, mean speed and metabolic power) using a rolling moving

average of a given duration (5, 10, 20, 30, 60, 120, 300 and 600 seconds). Stringent data inclu-

sion criteria were applied to individual player files before performing further analyses. Data

inclusion criteria for individual player files included mean horizontal dilution of position

(HDOP) of�1.5, mean number of satellites�4, and�600 seconds spent on field. Unrealistic

velocity spikes�11 m.s-1 and maximum accelerations�6 m.s-2 were also removed during this

process. The mean ± standard deviation (SD) number of satellites for the elite and sub-elite

cohort’s data sets were 13.5 ± 1.1 and 14.3 ± 1.7 respectively, whilst HDOP was 0.9 ± 0.3 and

0.8 ± 0.2 respectively. These values are indicative of good GPS signal quality as per manufac-

turer’s recommendations. A total of 421 elite and 256 sub-elite player match-half files

remained for further analysis.

Statistical analyses

Each of the three measures of maximum mean movement was analysed with the general linear

mixed modelling procedure (Proc Mixed) in SAS. The measures were log-transformed prior

to analysis to reduce non-uniformity of error [45] and to express effects and errors in percent

units after back-transformation. The fixed effects in the model were player position (backs, for-

wards) interacted with match-half (1st, 2nd) to provide estimates of means and differences

between the means of these variables; these effects were also interacted with time on the field

(numeric linear) to produce maximum mean values that adjust to the average time a player is

on the field across the positions and halves. The random effects in the model were player iden-

tity (to estimate differences between player means), match identity (to estimate differences

between match means), the interaction of player and match identities (to estimate changes

within players between matches); with different variances estimated for the random effects for

the two positions (forwards, backs). The residual in the model estimated within-athlete vari-

ability (typical error or "noise") between match halves; different residual variances were esti-

mated for the four position�half groups and to simplify presentation were averaged. The

random effects were combined into intraclass correlation coefficients (ICCs) representing reli-

ability of each measure. Compatibility limits for the correlations were generated with a boot-

strap method, in which the independent standard errors of the variances provided by the

mixed model were combined with random normal deviates to generate bootstrap samples.

The magnitudes of effects (differences or changes in means; standard deviations derived

from random effects) were evaluated by standardisation, which was performed by dividing

each effect by the between-player standard deviation in a typical match. This standard devia-

tion was derived for ease of calculation from four separate analysis (for each position and half)

by adding the variances for the random effects for player identity and the residual, converting

the resulting variances to standard deviations and deriving the harmonic mean, which pro-

vided an appropriate mean standard deviation for all pairwise comparisons of positions and
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halves [46]. The smallest worthwhile difference or change in means (the "signal", for compari-

son with "noise") is 0.2 standard deviations; thresholds for moderate, large and very large dif-

ferences are 0.6, 1.2 and 2.0, respectively [45]. Thresholds for evaluating standard deviations

(derived by taking square roots of random-effect variances) were half these values [47]. Typical

error was evaluated via the following thresholds: < 0.5 neligable error, 0.5–1.5 small, 1.5–3

moderate, 3–6 large, 6–10 very large > 10 extremely large.

Uncertainty in effects was expressed as 90% compatibility limits and as probabilities that

the true effect was substantially positive and negative (derived from standard errors, assuming

a normal sampling distribution). These probabilities were used to make a qualitative probabi-

listic non-clinical magnitude-based decisions about the true effect [45]: if the probabilities of

the effect being substantially positive and negative were both>5%, the effect was reported as

unclear; the effect was otherwise clear and reported as the magnitude of the observed value,

with the qualitative probability that the true effect was a substantial increase, a substantial

decrease, or a trivial difference (whichever outcome had the largest probability). The scale for

interpreting the probabilities was as follows: 25–75%, possible; 75–95%, likely; 95–99.5%, very

likely; >99.5%, most likely.

For a sample size of approximately 50, standardised residuals (t-statistics) of>3.5 can be

considered outliers [45]. Considering the cohort size (60 participants, 30 in each group) and

the number of subsequent player files in each cohort (421 and 256 files respectively), a stan-

dardised residual outlier threshold of>3.5 was applied, with those above the threshold

removed.

Evaluating measure sensitivity. Sensitivity of measures was quantified via evaluation of

("signal") and typical error of measurement ("noise"). The smallest worthwhile difference or

change in means (the "signal", for comparison with "noise") is 0.2 standard deviations; thresh-

olds for moderate, large and very large differences are 0.6, 1.2 and 2.0, respectively [45]. To

estimate the typical error or noise of each measure, the difference between observed and pre-

dicted values (the residual) was added as a random effect in the general linear mixed model as

stated previously.

Evaluating measure reliability. Variabilities within and between players represented reli-

ability of each measure. The random effects of: player identity, match identity, interaction of

player and match identities and the residual were combined into intraclass correlation coeffi-

cients, representing reliability of each measure. Magnitudes of ICCs were evaluated using the

following thresholds: >0.99, extremely high;�0.99 to�0.90, very high;<0.90 to�0.75, high;

<0.75 to�0.50, moderate; <0.50 to�0.20, low;<0.20, very low [48].

Evaluating measure construct validity. Construct validity (i.e. whether a tool measures

what it is supposed to measure) of the three measures (mean speed, PlayerLoad™ and metabolic

power) was assessed by comparing mean differences between playing positions and match

halves with findings from previous rugby union time-motion analyses that use other tools (e.g.

other GPS and accelerometer models, local positioning systems, optical systems, notational

analysis etc.) and measures (several high-intensity metrics) to quantify a common construct

(i.e. player movement). More specifically, many rugby union time-motion analyses have

observed differences in high-intensity movement between playing positions and match-halves

[28, 33, 36, 49–51]. If the peak intensity of competition differences observed in the present

study were consistent with expected positional and match-half activity profiles from previous

studies, then the measures were deemed to relate to previous findings and display construct

validity. For example, if the weight of rugby time-motion analysis literature revealed that backs

produce greater maximal speeds and accelerations than forwards during competition, and the

mean speed and metabolic power measures used in the present study quantified similar posi-

tional differences, the measures display some level of construct validity.
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Results

Duration-specific grand means and standard deviations (SD) of each measure of maximum

mean movement are shown in Tables 2, 3 & 4 to provide context for the positional differences

and match-half changes.

Sensitivity of measures

Global positioning system and accelerometer measures had poor sensitivity for quantifying

maximum mean movement across all epochs and both levels of competition, with noise 4× to

5× the signal (Tables 2, 3 & 4).

Within-match, between-half reliability

Maximum mean movement measured via GPS- and accelerometer-derived measures dis-

played very low to low within-match, between-half reliability (ICC range; 0.0 to 0.5) during

both sub-elite and elite rugby union match-play. Maximum mean PlayerLoad™ displayed

higher within-match, between-half reliability in the elite cohort than either mean speed or

Table 2. Maximum mean speed (m.min-1) descriptive, effect and inferential statistics for rolling epoch durations of 5 to 600-s within elite and sub-elite rugby union

competition.

Epoch duration

(s)

Grand mean (m.

min-1)

Between-subject SD

(%)

Typical error

(%)

SWC (%) Positional differences (backs–

forwards)

Match-half change (second–first

half)

Mean; ±90%CI

(%)

Inferencea Mean; ±90%CI

(%)

Inferencea

Super 15 Rugby (elite)
5 380 12.3 10.1 2.5 19.8; ±6.9 Large "���� -3.7; ±1.7 Small #��

10 309 13.6 12.3 2.7 18.3; ±6.7 Large "���� -5.4; ±2.1 Small #���

20 235 12.7 12.0 2.5 15.6; ±5.5 Large "���� -4.8; ±2.0 Small #���

30 201 11.0 11.1 2.2 14.5; ±5.0 Large "���� -5.1; ±1.9 Small #���

60 155 9.8 10.1 2.0 11.7; ±4.6 Large "���� -3.2; ±1.7 Small #��

120 123 9.5 9.8 1.9 8.2; ±4.9 Moderate

"���
-2.6; ±1.7 Small #��

300 91 10.6 11.1 2.1 7.8; ±5.4 Moderate

"���
-6.6; ±1.8 Moderate

#����

600 76 9.7 9.9 1.9 9.1; ±6.3 Moderate

"���
-5.7; ±1.7 Moderate

#����

National Rugby Championship (sub-elite)
5 387 13.6 11.5 2.7 22.3; ±9.6 Large "���� -3.8; ±5.8 Small #�

10 320 14.1 12.1 2.8 22.9; ±10.5 Large "���� -1.6; ±6.3 Trivial

20 236 12.3 11.3 2.5 22.3; ±9.4 Large "���� 2.1; ±5.9 Small "

30 201 11.8 10.0 2.4 13.7; ±8.8 Moderate

"���
0.6; ±5.4 Trivial

60 158 10.0 8.9 2.0 10.2; ±7.3 Moderate

"���
-3.6; ±3.7 Small #��

120 128 10.3 9.4 2.1 8.9; ±7.6 Moderate "�� -6.2; ±4.1 Moderate #���

300 98 10.0 9.5 2.0 4.3; ±8.4 Small " -2.3; ±4.8 Small #

600 82 10.1 8.0 2.0 2.7; ±7.6 Small " -6.2; ±3.7 Moderate #���

Grand means represent the mean of pooled positional (backs, forwards) and match-half (first, second) data.

SWC, smallest worthwhile change (0.2 of between-subject SD); 90%CI, 90% compatibility interval.
aInferences specify the magnitude, direction and likelihood of the true value of clear effects. Magnitudes were defined by standardisation (see text). Likelihood for clear

trivial effects: 0possible, 00likely, 000very likely. Likelihood for clear substantial effects: �possible, ��likely, ���very likely, ����most likely.

https://doi.org/10.1371/journal.pone.0236024.t002
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metabolic power for epoch durations�60-s, although this test-retest reliability was still low

(ICC; ~0.4). For the sub-elite backs, mean speed and metabolic power generally had slightly

higher ICCs (~0.4) than PlayerLoad™ (~0.2) for epochs�30-s.

Between-match, within-half reliability

Reliability of maximum mean movement within a specific match-half from match-to-match

was generally very low to low for all measures (ICC<0.5), with movement reliability typically

increasing with rolling epoch duration. PlayerLoad™ generally had lower reliability when com-

pared to either GPS-derived measure for both sub-elite forwards and backs for epoch dura-

tions�60-s in the 2nd match-half. However, during elite match-play maximum mean

movement quantified by accelerometer-derived PlayerLoad™ generally had higher between-

match, within-half reliability when compared to mean speed and metabolic power. As the

epoch duration increased in the elite cohort, so too did the reliability of maximum mean

PlayerLoad™, with moderate to high ICCs for both positions and match halves for the 300 and

600-s epochs respectively (ICC range; 0.5 to 0.8).

Table 3. Maximum mean metabolic power (W.kg-1) descriptive, effect and inferential statistics for rolling epoch durations of 5 to 600-s within elite and sub-elite

rugby union competition.

Epoch duration

(s)

Grand mean (W.kg-

1)

Between-subject SD

(%)

Typical error

(%)

SWC (%) Positional differences (backs–

forwards)

Match-half change (second–first

half)

Mean; ±90%CI

(%)

Inferencea Mean; ±90%CI

(%)

Inferencea

Super 15 Rugby (elite)
5 54.9 16.8 13.1 3.4 30.0; ±10.1 Large "���� -1.5; ±2.3 Trivial 00

10 41.2 16.7 13.7 3.3 29.3: ±9.4 Large "���� -4.3; ±2.3 Small #��

20 29.9 15.1 13.1 3.0 24.6; ±7.3 Large "���� -4.3; ±2.2 Small #��

30 25.0 12.7 11.9 2.5 23.5; ±6.1 Large "���� -4.6; ±2.0 Small #���

60 18.7 12.1 11.0 2.4 17.3; ±6.4 Large "���� -3.6; ±1.9 Small #��

120 14.3 11.8 10.6 2.4 11.8; 6.6 Moderate

"���
-3.3; ±1.8 Small #��

300 10.3 12.5 12.0 2.5 11.6; ±6.5 Moderate

"���
-7.0; ±2.0 Moderate

#����

600 8.4 11.7 11.6 2.3 11.9; ±7.0 Moderate

"���
-7.0; ±2.0 Moderate

#����

National Rugby Championship (sub-elite)
5 54.2 16.6 13.6 3.3 34.8; ±13.6 Large "���� -6.8; ±6.3 Small #��

10 41.4 17.2 14.2 3.4 35.9: ±14.3 Large "���� -4.9; ±6.8 Small #�

20 29.0 14.3 12.2 2.9 35.6: ±12.2 V. Large

"����
1.1; ±6.6 Trivial

30 23.7 13.0 9.6 2.6 28.5: ±11.1 V. Large

"����
3.9; ±5.6 Small "�

60 18.3 11.5 9.5 2.3 19.4; ±9.0 Large "���� -4.3; ±4.3 Small #��

120 14.4 11.3 10.4 2.3 17.0; ±8.9 Large "���� -7.7; ±4.7 Moderate #���

300 10.9 10.6 9.9 2.1 8.8; ±9.4 Moderate "�� -4.6; ±4.9 Small #��

600 9.0 11.2 8.7 2.2 4.9; ±8.9 Small " -7.3; ±4.0 Moderate #���

Grand means represent the mean of pooled positional (backs, forwards) and match-half (first, second) data.

SWC, smallest worthwhile change (0.2 of between-subject SD); 90%CI, 90% compatibility interval.
aInferences specify the magnitude, direction and likelihood of the true value of clear effects. Magnitudes were defined by standardisation (see text). Likelihood for clear

trivial effects: 0possible, 00likely, 000very likely. Likelihood for clear substantial effects: �possible, ��likely, ���very likely, ����most likely.

https://doi.org/10.1371/journal.pone.0236024.t003
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Playing position differences in maximum mean movement

Relative to the backs, forwards had greater accelerometer-derived PlayerLoad™ per unit of dis-

tance covered or metabolic power across all rolling epochs (5 to 600-s), during both elite and

sub-elite rugby union match-play (Figs 1 & 2). Elite backs produced clearly greater maximum

mean speed and metabolic power compared to elite forwards for all rolling epoch durations

(Table 2). A similar result was observed for the sub-elite cohort, with backs producing moder-

ate to large higher mean speeds and large to very large higher metabolic power compared to

the forwards for the shorter duration epochs of 5 to 30-s (Tables 2 & 3). However, there were

unclear positional differences as quantified by GPS-derived measures for the longer duration

300 and 600-s epochs (Fig 1). Metabolic power consistently estimated higher maximum mean

standardised differences between positions when compared to mean speed for both levels of

competition and match halves, whilst also estimating larger opposing positional differences

to PlayerLoad™ when compared to mean speed (Figs 1 & 2). As the rolling epoch duration

increased from 5 to 600-s, positional differences between backs and forwards decreased

Table 4. Maximum mean PlayerLoad™ descriptive, effect and inferential statistics for rolling epoch durations of 5 to 600-s within elite and sub-elite rugby union

competition.

Epoch duration

(s)

Grand mean

(au)

Between-subject SD

(%)

Typical error

(%)

SWC (%) Positional differences (backs–

forwards)

Match-half change (second–first

half)

Mean; ±90%CI

(%)

Inferencea Mean; ±90%CI

(%)

Inferencea

Super 15 Rugby (elite)
5 3.8 15.9 13.5 3.2 7.4; ±6.5 Small "�� -0.8; ±2.4 Trivial 00

10 2.8 15.3 12.1 3.1 7.0; ±6.8 Small "�� -1.2; ±2.2 Trivial 00

20 2.0 13.6 11.0 2.7 1.9: ±5.8 Small " -0.2; ±0.2 Trivial 000

30 1.8 12.2 9.8 2.4 -0.9; ±5.2 Trivial -0.2; ±1.8 Trivial 000

60 1.4 12.7 8.7 2.5 -5.3; ±5.9 Small #�� -0.2; ±1.7 Trivial 000

120 1.1 13.6 9.8 2.7 -11.3; ±6.3 Moderate

#���
0.1; ±1.8 Trivial 000

300 0.7 13.9 10.2 2.8 -11.4; ±7.2 Moderate

#���
-2.5; ±1.8 Small #�

600 0.6 14.1 9.8 2.8 -11.9; ±7.7 Moderate

#���
-1.8; ±1.7 Trivial 00

National Rugby Championship (sub-elite)
5 3.5 15.5 14.0 3.1 15.5; ±10.1 Moderate

"���
2.5; ±6.8 Small "

10 2.7 15.6 14.4 3.1 12.6; ±9.7 Moderate

"���
-2.7; ±6.6 Small #

20 2.0 12.9 12.1 2.6 10.1; ±8.2 Moderate "�� -0.9; ±6.2 Trivial

30 1.6 10.6 9.7 2.1 8.5; ±6.9 Moderate "�� 2.8; ±5.1 Small "

60 1.3 9.3 8.5 1.9 0.6; ±5.0 Trivial -8.3; ±3.5 Moderate

#����

120 1.0 10.0 10.5 2.0 -3.7; ±6.3 Small # -12.4; ±4.3 Large #����

300 0.7 9.5 9.7 1.9 -6.9; ±6.9 Moderate #�� -8.8; ±4.4 Moderate #���

600 0.6 10.0 8.1 2.0 -10.4; ±6.8 Moderate

#���
-11.8; ±3.7 Large #����

Grand means represent the mean of pooled positional (backs, forwards) and match-half (first, second) data.

SWC, smallest worthwhile change (0.2 of between-subject SD); 90%CI, 90% compatibility interval.
aInferences specify the magnitude, direction and likelihood of the true value of clear effects. Magnitudes were defined by standardisation (see text). Likelihood for clear

trivial effects: 0possible, 00likely, 000very likely. Likelihood for clear substantial effects: �possible, ��likely, ���very likely, ����most likely.

https://doi.org/10.1371/journal.pone.0236024.t004
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(especially for the sub-elite cohort), with an evident divergence of maximum mean movement

as measured by accelerometer-derived PlayerLoad™ when compared to GPS-derived mean

speed and metabolic power post the 30-s epoch for both levels of competition (Figs 1 & 2).

Elite forwards produced very likely greater maximum mean PlayerLoad™ compared to the

Fig 1. Sub-elite (National Rugby Championship) maximum mean standardised positional differences (backs–forwards) for rolling epoch

durations of 5 to 600-s by match-half (1st and 2nd match halves).

https://doi.org/10.1371/journal.pone.0236024.g001

Fig 2. Elite (Super 15 rugby) maximum mean standardised positional differences (backs–forwards) for rolling epoch durations of 5 to 600-s by

match-half (1st and 2nd match halves).

https://doi.org/10.1371/journal.pone.0236024.g002
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backs (moderate effects) for longer epoch durations of 120 to 600-s across both match halves

(Fig 2 & Table 4). Conversely, for the same epoch durations (120 to 600-s) the maximum

means for GPS-derived measures of mean speed and metabolic power were likely to most likely
higher for the backs compared to the forwards (Tables 2 & 3). Sub-elite forwards produced

likely to very likely greater PlayerLoad™ compared to the backs for the 300 and 600-s epochs

(small to large effects), compared to mostly unclear positional differences as quantified by

GPS-derived measures (Fig 1 & Table 4).

Match-half changes in maximum mean movement

Sub-elite match-half declines in maximum mean movement were more adequately quantified

with accelerometer-derived PlayerLoad™ when compared to either GPS measure, with clearer

and larger effects for epoch durations�60-s (Fig 3). For example, sub-elite forwards had large

reductions in PlayerLoad™ during the 2nd match-half for epoch durations�60-s, whilst mean

speed and metabolic power half changes were mostly unclear across comparable durations

(Fig 3, panel A and Table 4). Sub-elite match-half changes were mostly unclear for all measures

and both positions for epoch durations of 5 to 30-s (Fig 3). Conversely during elite match-

play, GPS-derived measures quantified larger and clearer 2nd match-half declines in maximum

mean movement than accelerometer-derived PlayerLoad™ (Fig 4). PlayerLoad™ displayed triv-

ial or unclear match-half changes for both positions and across all epoch durations during elite

match-play (Fig 4). Maximum mean mean speed and metabolic power generally declined in

the 2nd match-half by a small to moderate standardised extent, with the longer duration epochs

of 300 and 600-s displaying the largest 2nd match-half declines (Fig 4). Reductions in 2nd

match-half maximum mean movement were more evident for forwards than for backs for lon-

ger duration epochs during both sub-elite (�60-s) and elite (�300-s) match-play (Figs 3 & 4).

Fig 3. Sub-elite (National Rugby Championship) maximum mean match-half standardised changes (2nd match-half - 1st match-half) for rolling

epoch durations of 5 to 600-s by position (forwards and backs).

https://doi.org/10.1371/journal.pone.0236024.g003
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Discussion

Several key and novel findings were observed: (1) Both GPS- and accelerometer-derived

measures had poor sensitivity for quantifying rugby union maximum mean movement of 5

to 600-s; (2) To obtain adequate precision for assessing individual differences or changes in

maximum mean rugby union match movement, practitioners require ~16 full matches of

player movement data (approximate length of a team-sport season); (3) Maximum mean

movement of 5 to 600-s was inherently unreliable, with typically low to very low within-

match, between-half reliability and between-match, within-half reliability during both elite

and sub-elite match-play across all measures; (4) All measures displayed construct validity

by quantifying similar movement differences between playing positions and match halves to

previous rugby union time-motion analyses; (5) Relative to the backs, forwards had greater

PlayerLoad™ per unit of distance covered or metabolic power across all rolling epochs during

both elite and sub-elite rugby union match-play; (6) Backs produced clearly greater maxi-

mum mean speed and metabolic power compared to forwards for all epoch durations for

elites, and all epochs except for 300 and 600-s for sub-elites; (7) Elite and sub-elite forwards

produced clearly greater maximum mean PlayerLoad™ than backs during longer (�300-s)

epoch durations; (8) Larger 2nd match-half declines in maximum mean movement were evi-

dent as epoch duration increased, with greater declines for forwards than backs; (9) Maxi-

mum mean PlayerLoad™, mean speed and metabolic power of 5 to 600-s was of substantially

higher intensity than previously reported rugby union whole-period match averages; and

(10) Rolling epoch analysis of less than 1-minute (i.e., 5, 10, 20, 30-s) provided useful data

that may inform high-intensity interval training prescription and monitoring. The remain-

der of the discussion focusses on interpretation and application of our findings in the context

of others.

Fig 4. Elite (Super 15 rugby) maximum mean match-half standardised changes (2nd match-half—1st match-half) for rolling epoch durations of 5

to 600-s by position (forwards and backs).

https://doi.org/10.1371/journal.pone.0236024.g004
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Sensitivity of measures

Both GPS- and accelerometer-derived measures had poor sensitivity for quantifying athlete

movement during the most intense passages of rugby union match-play. A professional rugby

union athlete’s maximum mean movement of 5 to 600-s during match-play will vary on aver-

age from measurement to measurement by ~11% (mean range; 8 to 14%). This typical error of

measurement or noise represents the error that practitioners must contend with when assess-

ing individual differences or changes in athlete movement. The noise (~11%) can then be com-

pared to smallest worthwhile change or signal (mean SWC of 2.5%) to calculate the number of

repeated measurements required to attain adequate precision of estimates. If signal equal to

the noise was deemed acceptable precision by a practitioner, then using our data as an exam-

ple, approximately 16 measurements (16 match halves or 8 total matches) would be required

to reduce the noise 4 fold to ~2.5%. However, for more adequate precision of estimates ideally

the noise should be half that of the signal [48]. Thus practitioners of professional rugby union

athletes require ~32 match-half measurements or ~16 full matches of player movement data

(approximate length of a team-sport season) to obtain adequate precision (i.e., noise half that

of the signal) for assessing individual differences or changes in maximum mean match move-

ment of 5 to 600-s. It is our hope that in the future more researcher’s will report the sensitivity

of investigated external load measures to inform practitioners on the number of measurements

required to accurately interpret and confidently act on movement data.

Reliability of measures

Rugby union maximum mean movement of 5 to 600-s was inherently unreliable, with typically

low to very low within-match, between-half reliability and between-match, within-half reliabil-

ity during both elite and sub-elite match-play across all measures (ICC;<0.50). Similarly, in

English Championship professional rugby union matches, within- and between-player vari-

ability of high-intensity activity was large whilst player “match load” variables such as Player-

Load™ provided a more stable measure of between-match player movement with a coefficient

of variation of ~10% [52]. In agreeance, we found that maximum mean PlayerLoad™ displayed

improved between-match, within-half reliability (moderate to high) when compared to either

mean speed or metabolic power (low) as epoch duration increased past 60-s during elite rugby

union match-play (up to ICC; 0.8). PlayerLoad™ may therefore be a more reliable and stable

measure of external load than mean speed or metabolic power for monitoring elite rugby

union athletes during longer training drills or match bouts (e.g., match-half or whole match).

Our data provides further evidence that reliability of team-sport movement as measured by

both GPS and accelerometers is inversely related to speed of movement. This finding creates a

dilemma for practitioners when selecting measures and is in accordance with the suggestion

that validity and reliability of a measure is likely inversely related to its importance for external

load quantification and monitoring [40, 53]. Low measure reliability does not mean that

PlayerLoad™, mean speed and metabolic power should not be used in the context of quantify-

ing and monitoring maximum mean movement, but rather suggests that more caution is

needed when interpreting individual differences or changes. Defining a larger and more

conservative SWC [54] and/or having more repeated measures are possible solutions to this

dilemma, as highlighted by our poor measure sensitivity and correspondingly low reliability

findings.

Playing position differences in maximum mean movement

As expected, GPS was unable to quantify all forms of external load experienced by elite and

sub-elite rugby union athletes during the most intense periods of match-play, particularly
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underestimating external load of the forwards. Forwards are primarily responsible for engag-

ing in contests for possession involving contact such as scrums, lineouts, rucks, mauls and

tackles, whilst backs are primarily tasked with trying to gain territory and score points [55].

Compared to rugby union backs, forwards have increased frequency of impacts [56], “static”

exercise bouts (i.e., scrums, rucks & mauls) and durations of “static” bouts [57]. During com-

petition forwards also produce greater mean acceleration than backs [58] and “aggregated

accelerometer body demands” [59]. Our accelerometer-derived PlayerLoad™ findings corrobo-

rate with rugby union time-motion analysis positional movement differences, demonstrating

the construct validity of accelerometers to quantify many frequently occurring rugby union

movements that are underestimated by GPS. If the present rolling epoch analysis findings of 5

to 600-s were to be extrapolated in duration to well beyond 600-s (e.g., 40-min match-half)

that typically occurs in practice, then the gradual accumulation of many sport-specific and col-

lision-based movements that incur little horizontal displacement over time would likely result

in further underestimation of external load via the sole use of GPS. We recommend that prac-

titioners use accelerometers alongside GPS to more adequately quantify, monitor and pre-

scribe totality of athlete movement (external load) during collision-based team sports such as

rugby union.

Over shorter exercise bout durations, backs produced greater intensity of movement than

forwards. Elite backs produced greater mean speed and metabolic power compared to for-

wards for all durations of 5 to 600-s (ES>0.60), with similar results for the sub-elite cohort

with exception of the 300 and 600-s yielding unclear positional differences. Consistent with

our findings, outside backs and half-backs cover greater peak relative running distances than

tight 5 forwards (front row and locks, ES>0.60) for rolling average durations of 1 to 10-mins

[36]. Facilitating backs ability to produce higher peak running intensities during match-play is

greater recovery time to regenerate energy stores between efforts compared to forwards, with a

mean exercise: rest ratio of 1: 8.5 vs 1: 6.5 respectively. Increased rest time between efforts is

largely due to forwards spending ~33% of their time exercising throughout a match complet-

ing “static” movements (e.g., scrums, rucks and mauls) compared to ~8% for backs [58]. Rela-

tive to forwards, backs complete a greater frequency of accelerations and decelarations [59],

contributing to likely greater metabolic power for outside backs and half-backs when com-

pared to the tight 5 (ES range; 0.86 to 0.99) [36]. These findings are not surprising considering

backs are required to evade opponents with rapid acceleration, change of direction and/or

maximal speed to score tries or chase down and tackle opponents to deny try scoring, but do

highlight the need for position specific training prescription and monitoring. Practitioners

may alter the playing area, number of players, rules and the duration of small-sided games to

modify the frequency and intensity of player movements to achieve desired position-specific

activity profiles. For example, larger small-sided game playing areas with less players will facili-

tate more high-speed running whilst smaller playing areas with more players will facilitate

more acceleratory, change of direction and collision-based movements.

When compared to our Super 15 Rugby cohort findings, international rugby union players

cover more distance yet accelerate less during the most intense periods of competition [36].

International test-match players thus may complete a greater amount of “constant” speed run-

ning compared to Super 15 players, who run at a lower mean speed, yet accelerate more during

maximum mean periods of activity as reflected by the increased metabolic power production.

Super 15 mean speeds may be comparably lower than test-match rugby because our analysis

provided a maximum value for each match-half, whilst the test-match analysis produced one

maximum value from the entire match [36]. Maximum mean movement differences between

investigations may also be attributed to level of competition, team and opposition playing

styles, technologies used (Catapult Optimeye S5 vs GPSports SPI HPU units) and statistical
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analyses performed (e.g., fixed and random effects within model, data inclusion/exclusion cri-

teria etc.). Movement comparisions between levels of competition may help performance staff

to prescribe competition level match-specific training intensities to their athletes who are

“handed-over” from professional club to national team environments and vice-versa.

Our findings provide some evidence to support the construct validity of mean speed and

metabolic power for quantifying positional differences during the most intense periods of elite

and sub-elite rugby union match-play. Mean speed and metabolic power positional differences

of this study are in agreeance with prior rugby union investigations [36], positional playing

roles, and the metabolic power theoretical model accounting for both velocity and acceleration

based events. Our findings help to improve limited understanding of position- and duration-

specific peak energy expenditures of professional rugby union competition. We do however rec-

ognise the many limitations of the metabolic power method for estimating energy cost during

intermittent natured team-sport movement. Metabolic power grossly underestimates move-

ment during shuttle running by 13 to 16% [60], a soccer-specific circuit by 29% [14], a general-

ised team-sport circuit by ~44% [61] and a rugby-specific circuit by ~45% [42], underpinning

its lack of criterion validity versus portable gas analysers. Given metabolic power’s sensitivity

and reliability to quantify movement differences was no better than the other investigated mea-

sures, metabolic power data (W.kg-1) are hard to prescribe team-sport training from, and many

poor criterion validity findings from previous literature, we advise caution with its use.

Match-half changes in maximum mean movement

Our findings suggest that professional rugby union athletes preserve their ability to complete

maximal intensity movement over shorter durations (�30-s) across match halves by reducing

the amount of movement they perform at lower relative intensities. Similar declines in lower

relative intensity cruising and striding distances have been reported as match-half duration

progresses and between match halves during rugby union competition [49]. Reduced running

“performance” across the course of a match has been proposed to broadly identify physiologi-

cal impairment of a player, suggestive of acute fatigue [62]. Gradual declines in running inten-

sity throughout match-play are suggestive of players adopting a “slow-positive” pacing profile,

common amongst many team-sport activity profiles [63]. Whilst longer duration efforts of

lower relative intensity generally declined in the 2nd match-half (up to 12%), efforts of shorter

duration and higher relative intensity (�30-s) exhibited trivial or small match-half reductions.

The lack of decline in very high-intensity rugby union movement between halves is similar to

other elite rugby union time-motion analysis findings reporting “no change” in work-to-rest

ratios [58] and high-intensity running [57] between halves. Equally, high-intensity movements

(high-intensity running, sprinting, maximal accelerations, repeated high-intensity efforts and

contacts) did not substantially decrease between halves during professional rugby union as

quantified by GPS and integrated inertial sensors [49]. Consensus on match-half changes in

very high-intensity movement between our findings and other investigations across both GPS

and accelerometer measures and within both elite and sub-elite rugby union competition dem-

onstrates that the investigated wearable technology measures display construct validity in mea-

suring what they “ought” to measure. Duration- and position-specific match-half change data

may improve our understanding of athlete pacing strategies and this information may then be

used to inform substitution/rotation decisions.

Relationship between accelerometer and GPS measures

It was clear from the pattern of positional differences across epoch durations and levels of

competition that GPS and accelerometer measures provided different information about
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rugby union player movement. These findings demonstrate that use of either GPS or acceler-

ometers in isolation is inadequate to accurately quantify all forms of rugby union external

load. Our findings support a recent training load monitoring framework for team sports that

separates physiological and biomechanical load-adaptation pathways [64]. This framework

uses an analogy of a car to describe the physiological vs biomechanical external load that team-

sport athletes experience. The physiological load component can be viewed as a car engine

with GPS time, distance and speed derivatives providing an estimate of “fuel” in the player’s

“engine”, facilitating monitoring of external work to estimate internal energy demands or met-

abolic load (e.g., glycogen depletion, heart rate). Whereas biomechanical load refers to external

work performed by the body’s soft tissues (e.g., muscles, bones and ligaments, analogous to a

car’s suspension) against the ground and other player’s during impact, that can be estimated in

the field with highly responsive motion sensors such as accelerometers.

PlayerLoad™ has strong positive correlations with total distance in Australian Rules Football

[r = 0.63 to 0.76; [65] and r = 0.90; [26]], and is mainly derived from vertical axis accelerations

(44.1% ± 2.5%) during Australian Rules Football match-play [25] and treadmill running

(55.7% ± 5.3%) [66]. These results make intuitive sense as team-sport athletes run great dis-

tances leading to a high frequency of propulsive and breaking forces against the ground that

are quantified by accelerometers as vertical accelerations accumulated over time. Variations in

physiological and biomechanical loads are generally experienced together [64], hence why

total distance and PlayerLoad™ often correlate. Our results indicate that neither accelerometer

nor GPS measures should be used a proxy measure for the other when attempting to quantify

the most intense periods of collision-based team-sport match-play as whether they are corre-

lated or not, they clearly measure different constructs. Furthermore, the common use of total

distance as a proxy measure of overall training and/or match volume [53] should be under-

taken with caution and is not advised when monitoring and prescribing rugby union athlete

external training loads. If practitioners want to understand both the physiological and bio-

mechanical external loads of their athletes for informing subsequent recovery and training

design, both GPS and accelerometers should be used.

No research using optical or local positioning systems to quantify player movement has uti-

lised the methodological approach outlined in the present study, although this could be easily

achieved in future investigations. All that would be required are player positional x and y coor-

dinates for these alternate player tracking solutions to calculate distance, velocity, acceleration

and subsequently replicate mean speed and metabolic power measures we used. Global posi-

tioning systems may calculate velocity via positional differentiation (change in device location

with each satellite signal) or using the Doppler-shift method (change in frequency in the satel-

lite signal). Most GPS manufacturers now use the Doppler-shift method as it has been reported

to have greater precision and reduced measurement error [43] when compared to deriving

velocity via distance over time calculations that optical and local positioning systems use.

Another key advantage of wearable systems is the 3-dimensional (x, y and z) quantification of

athletic movement via integrated accelerometry, highlighted by our findings suggesting that

athlete external loads will be underestimated if only movement in x and y coordinates are mea-

sured, making intuitive sense.

Implications for training prescription

The most intense periods of rugby union match-play were of substantially higher intensity than

previously reported whole-period match averages. For example, Super 15 rugby union forwards

and backs produced match mean speeds of 56.1 and 68.7 m.min-1 respectively [67]. These

whole match mean speed numbers are lower than the longest epoch duration (600-s) maximum
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means of elite Super 15 forwards (72.3 m.min-1) and backs (79.1 m.min-1) (Table 2). Grand

mean speed reached 155 m.min-1 during the maximum mean 60-s epoch and 380 m.min-1 dur-

ing the most intense 5-s epoch (Table 2). Similar stark discrepancies between movement inten-

sities can be observed when comparing the 5 to 600-s maximum means of PlayerLoad™ and

metabolic power herein compared to previous rugby union investigations quantifying whole-

period averages. Our data illustrates that if professional rugby union training is prescribed

relative to the average activity profile of a match, players will be under-prepared for the most

intense periods or “worst case scenarios” of match-play.

Not surpringly our data indicate that as exercise duration increases, intensity of rugby

union match movement declines. The declines in movement are non-linear and logarithmic

in nature, with this intensity—duration physiological relationship often referred to as the

power-law relationship [38]. The power-law relationship will be further explored in an upcom-

ing manuscript of ours, however for the purpose of the present investigation it was clear that

although there are many complex interactions between central and peripheral fatigue and

numerous contextual match factors inherent within team sports, movement duration is still

very predictive of movement intensity. Subsequently, practitioners may use mathematical

modelling of the power-law relationship to predict movement intensity over a range of dura-

tions outside of those collected by wearable technology with reasonable accuracy, enabling

practitioners to prescribe training that is more specific to the physiological and biomechanical

rigors of competition.

Strengths, limitations & future directions

Whilst this investigation provides many novel and meaningful insights that may aid coach-

ing and performance staff in quantifying, monitoring and prescribing athlete external loads,

there are limitations that need to be acknowledged. Positional analyses were limited to posi-

tional forward and back packs rather than more specific playing positions (e.g., prop, centre,

scrum-half) to increase precision of estimates and to first assess if the respective technologies

were sensitive enough to quantify broader positional classifications prior to comparing spe-

cific positional groupings. The case study nature of the present study may be considered a

limitation and whilst two professional teams of two competitive levels with many repeated

measures were included, league-wide investigations with opposition analyses is the way for-

ward to better understand collision-based team-sport activity profiles. We acknowledge that

placement of an accelerometer to the trunk is only an estimate of whole-body accelerations

that is far from perfect, although offers a starting point for biomechanical load estimation in

the field. Future research should continue to investigate the influence of sensor location, sen-

sor harnessing and relationships between segmental and whole-body acceleration. Future

research should integrate and overlay video analysis with activity profile wearable technology

data to better understand how many individual and match contextual factors influence dura-

tion-specific maximum mean movement of individuals and the team as a whole. Further,

whether these intense periods of match-play have any bearing on individual and/or team key

performance indicators and/or match outcome is unclear. Understanding of player move-

ment immediately following these maximum mean periods of activity is also limited and

may provide valuable insights on player pacing strategies and accumulated or transient

fatigue that may inform real-time player substitution or rotation decisions. Altogether,

knowledge of the strengths and limitations of the technologies and the measures they provide

is crucial for both practitioners and researchers alike to accurately interpret the external load

data produced and subsequently provide recommendations for action to influence the train-

ing process.
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Practical applications

• Professional rugby union player movement needs to be monitored across many matches to

obtain adequate precision for assessing individuals during intense periods of match-play.

• Accelerometers should be used in addition to GPS to quantify, monitor and prescribe player

movement in rugby union and other collision-based team sports.

• Neither accelerometer nor GPS measures should be used a proxy measure for the other,

as they measure different external load constructs (biomechanical and physiological load

respectively).

• Duration- and position-specific player movement data derived from wearable technologies

and rolling epoch analyses may be used as a reference for training monitoring and prescrip-

tion to objectively prepare players for the most intense periods of competition. For example,

small-sided games may be modified (pitch size, number of players, rules, verbal encourage-

ment) to achieve desired duration- and position-specific physiological and biomechanical

external loads whilst simultaneously training technical and tactical skills.

• Given metabolic power’s sensitivity and reliability to quantify movement differences was no

better than the other investigated measures, and metabolic power data are hard to prescribe

team-sport training from, we advise caution with its use.

Conclusions

The poor sensitivity and low reliability of GPS and accelerometer measures of maximum mean

movement imply that rugby union players need to be monitored across many matches to

obtain adequate precision for assessing individuals. Although all measures displayed construct

validity, accelerometers provided meaningful information additional to that of GPS. We rec-

ommend that practitioners use accelerometers alongside GPS to quantify, monitor and pre-

scribe player movement in rugby union and other collision-based team sports.
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