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General abstract 

The psychostimulant, METH causes central nervous system damage, 

along with short and long-term changes to the innate and adaptive 

immune system. METH was investigated for its impact(s) across a range 

of physiological contexts. Specifically, crystal METH was investigated 

for its immune-modulatory effects, in cells of the innate immunity, as 

well as gene expression modifications in the mouse colon using open-

source gene ontology programs. In this regard, changes in differential 

gene expression and subsequent enrichment in gene ontology groups 

allowed for a deeper understanding of how METH impacts ontological 

pathways. Metagenomics was also employed to track changes to colon 

bacteria upon an escalating dose, followed by a withdrawal period. 

Together, results indicated that METH causes changes to some genes 

involved in innate immunity, and minor shifts to abundant bacterial 

species in the colon. Moreover, gene ontology networks showed several 

significantly up- and down-differentially regulated genes across 

functional, molecular and biological processes according to open-source 

software. Overall, this work represents a significant milestone in the 

amalgamation of bioinformatics, next-generation sequencing 

technology and metagenomic diversity profiling. Lastly, this work can 

initiate further research into how chronic METH use, and withdrawal 

could help construct models on weaving the relationship between mental 

health outcomes in METH users. 
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Chapter 1 – Literature Review 

 

Methamphetamine and its immune-modulating effects  
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The recreational use of methamphetamine (METH, or ice) is a global burden. It 
pervades and plagues contemporary society; it has been estimated that there are up to 
35 million users worldwide. METH is a highly addictive psychotropic compound 
which acts on the central nervous system, and chronic use can induce psychotic 
behaviour. METH has the capacity to modulate immune cells, giving the drug long-
term effects which may manifest as neuropsychiatric disorders, and that increase 
susceptibility to communicable diseases, such as HIV. In addition, changes to the 
cytokine balance have been associated with compromise of the blood–brain barrier, 
resulting to alterations to brain plasticity, creating lasting neurotoxicity. Immune-
related signaling pathways are key to further evaluating how METH impacts host 
immunity through these neurological and peripheral modifications. Combining this 
knowledge with current data on inflammatory responses will improve understanding 
of how the adaptive and innate immunity responds to METH, how this can activate 
premature-ageing processes and how METH exacerbates disturbances that lead to 
non-communicable age-related diseases, including cardiovascular disease, stroke, 
depression and dementia. 
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1.0 Introduction 

Methamphetamine (METH, also known as ice), is the second most popular 

recreational drug of choice worldwide [1]. In the 2014 United Nations office on 

drugs and crime, world drug report indicated that METH accounted for 80% of 

all amphetamine-type stimulant seizures [2]. In the 2017 World drug report, 

METH was reported to be used by around 37 million people across the globe, 

with other reports indicating between 14–53 million METH users globally [2]. 

Worrying, is the trafficking of METH around the world with data suggesting 

expanding METH markets in South East Asia, Oceania, along with growing 

concerns about METH use in North America, parts of Europe and China [ 

130;131]. In Australia, an increase of high purity crystalline METH has been 

documented since 2010. As a result, METH-related hospital admissions have 

been on the rise, from just under 2000 hospital admissions - from 2009 to 2010 

- to just over 10,000 cases from 2014 to 2015 [3]. Three forms of METH are 

currently found in Australia; powder methamphetamine, also known as speed; 

base METH, a damp oily form characterized by its yellow or brownish hue [1] 

and crystal METH, also known as ice, a crystalline and highly pure form of 

METH [4]. Crystal METH in its smoked form is the most popular choice of 

METH use in recreational and social settings; however, due to the attached 

health risks and high dependence of smoking METH there has been a substantial 

increase for METH treatment [5]. METH use disorders have been previously 

attributed to those subgroups, such as rural persons who are more likely to use 

METH in comparison to those residing in metropolitan areas [6]. This has been 

supported by reports that young people living in rural areas are twice as likely 
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to use METH in comparison to those living in urban areas [3,6]. Comparing the 

patterns and prevalence of METH users in rural and metropolitan areas, shows 

statistically significant differences in METH use, particularly crystal METH, in 

those living in rural locations [5]. These results were supported by the fact that 

rural men and employed rural Australians were more likely to use METH, with 

prevalence being mostly between the ages of 18–24 and 25–29 years – reported 

as higher than Australians residing in cities [5,7]. In addition, previous data has 

reported that older people who are HIV seronegative who have a high level of 

METH use are at risk of contracting the illness [8]. In assessing the oral health 

and quality of life, out of 545 METH users, the majority comprised older males 

– median age of 45 years – with a greater degree of worsening oral health [9]. 

The recent statistics show that out of 390 METH users, 24.36% were aged 35–

49, with 8.72% aged 50–64 [10]. METH’s ease of manufacture stems from its 

easily obtainable ingredients, which contribute to the final METH product. This 

ease of manufacture has led to the prevalence of local “METH” laboratories, 

along with “super-labs” operated by larger organizations [11]. Overall, a lack of 

well-rounded knowledge and perception is available on how this drug impacts 

the immune system, in the long-term. This long-term impact currently remains 

to be fully explored, and understanding this aspect of METH use in addiction 

and withdrawal scenarios can inform and guide public policy, and communicate 

communicable and non-communicable disease prevalence and risk. Moreover, 

long-term knowledge could inform METH’s relationship in the ageing process. 
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2.0 Methodology 

Searches were conducted through NCBI PUBMED using the following search 

terms: Methamphetamine OR METH AND population AND age, 

Methamphetamine OR METH AND immune system, methamphetamine OR 

METH AND immune dysregulation, methamphetamine OR METH AND 

cytokines OR chemokines, methamphetamine OR METH AND addiction, 

methamphetamine OR METH AND monocytes, methamphetamine OR METH 

AND macrophages, methamphetamine OR METH AND dendritic cells, 

methamphetamine OR METH AND T-cells, methamphetamine OR METH and 

natural killer cells, methamphetamine OR METH AND astrocytes, 

methamphetamine OR METH AND inflammation, methamphetamine OR 

METH AND immune pathways, methamphetamine OR METH AND Australia, 

methamphetamine OR METH AND global use, methamphetamine OR METH 

AND cell signalling. Articles included mainly those post-2000; and, within the 

reviewed articles other articles were assessed for suitability for this review. 

Inclusion criteria was based on peer-reviewed articles denoting experimental 

studies, both in vitro and in vivo, of methamphetamine and its impacts on the 

immune system and its constituents. Non-English language articles were 

excluded from being included in this review. 

 

3.0 Effects of METH on the immune system 

The effects of METH on the immune response have yet to be fully determined, 

however, there is growing evidence that METH suppresses and modulates the 

immune system (Fig. 1) [12,13]. Consequently, immune dysregulation through 

METH abuse could lead to lasting neuropsychiatric conditions [14]. METH has 
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significant effects on both the innate and adaptive immune responses [12,15], 

with reported reductions in the numbers of natural killer (NK) cells and 

leukocytes [16]. In addition, macrophages stimulated by METH show increased 

levels of the pro-inflammatory cytokine TNF-α [17–19]. METH causes 

decreased levels of dendritic cells (DCs) [20], impacting the adaptive immune 

system and rendering individuals susceptible to certain diseases and infections 

[16]. Furthermore, there is growing evidence that mood disorders are related to 

the changing levels of pro-inflammatory cytokines and their influence on the 

level of monoamines; along with the dysregulation of the hypothalamic pituitary 

adrenal (HPA) axis, activation of microglial cells, and changes in the 

neuroplasticity of the brain [21] (Tables 1 and 2; Fig 2). 
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Figure. 1. METH elicits changes to the innate and adaptive immune 

response, causing changes to pro-inflammatory cytokines and related 

oxidative stress molecules. METH also impacts frequencies of T cell subsets 
(CD4+ and CD8+) along with proliferation. 
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Figure 2. Overall effects and disturbances caused by METH use over time. Key features of METH use include changes 
to inflammatory cytokines, immune cells, and disturbances to the brain.
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3.1. Monocytes and macrophages 

Monocytes differentiate into both macrophages and DC as they circulate to sites 

of inflammation. Monocytes represent immune effector cells, in which 

chemokine receptors and adhesion receptors allow them to migrate from blood 

to sites of infection [22]. In healthy individuals, 90–95% of circulating 

monocytes are CD14+CD16-, whilst 5–10% are CD14+/CD16+ [23]. 

Macrophages secrete cytokines in response to external stimuli, which are 

involved in the recruitment of other immune cells to initiate a cascade of innate 

and adaptive immune responses [17]. In the presence of METH, macrophages 

secrete pro-inflammatory cytokines, interleukin-1 (IL-1) beta, IL-2, IL-6 and 

IL-8 [24] with IL-1β and IL-6 being significantly upregulated in the co-presence 

of bacterial lipopolysaccharide (LPS) [25]. Likewise, co-stimulation of 

macrophages with LPS and METH results in a significant increase in IL-1β, IL-

8 and TNF-α [26]. Furthermore, the number of monocytes and macrophages are 

reduced in the presence of METH, and their cell surface marker expression are 

altered with the upregulation of CD80 and down-regulation of CD11b whilst 

there are no effects on GR-1(high) monocyte/ macrophage cells [20]. In the 

context of human immunodeficiency virus (HIV-1) - METH increases 

expression of levels of galectin-1 which is involved in HIV-1 viral absorption 

[27]. 
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3.2. Dendritic cells 

DCs express a diverse range of cell surface receptors in order to sense their 

environment and activate immune-related functions [28]. Amongst these 

receptors are toll like receptors (TLRs), surface pattern recognition receptors 

(PRRs) and NOD-like receptors which assist in detecting signals such as those 

associated with pathogen-associated molecular patterns (PAMPs) or damage-

associated molecular patterns (DAMPs) [28]. DC are also professional antigen 

presenting cells, where they efficiently activate the adaptive immune system. 

Stimulation of DCs with METH results in altered chemokines, chemokine 

receptors, cytokines, G-protein signalling, cell cycle regulation and cell 

transcriptional regulation [16]. Specifically, METH was shown to increase HIV-

1 co-receptors CXCR4 and CCR5 in human monocyte-derived DC [29]. Similar 

work investigating METH use and HIV-1 infection, demonstrated the 

differential expression of the chemokine receptor CXCR3 in immature DCs 

(IDC) [30]. More broadly, METH has been shown to decrease the overall 

abundance of splenic DCs, which renders the effectiveness of the adaptive 

immune response [20]. Moreover, a highthroughput investigation study of 

genomic changes to mature DCs noted significant increased levels of CCR5, 

CCR2, IL-1β TNF-α and IL8; in addition, to decreases in IL-IR3 and TGF-β 

[16]. 
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Table 1: Effects of METH on immune cells. 
 
Cell type Impacts by METH Reference 
Monocytes ↑↑ Dose escalation mouse model assessing immune subsets [20] 

↓↓ THP-1 cell viability (after 24 hrs) Cytotoxicity on LPS-
stimulated IL-1β THP-1 monocytes 

[125] 

Macrophages ↑↑ IL-8, IL-1β and TNF-α in LPS-treated macrophages [25] 
↑↑ Activated brain macrophages [36] 

T cells ↓ CD4 
↑ CD8 
Effect of METH on systemic immune system 

[126] 

↓ CD4 
In vivo lymphocytic choriomeningitis virus infection model 

[30] 

CD8+ and CD4+ cell cycle progression disrupted (in vitro) [32] 
↓↓ frequency of CD4+ 
↓↓ frequency of CD8+ 

[126] 

Dysfunction of primary human T cells 
(mitochondrial oxidative damage.) 

[34] 

Inhibition of T cell proliferation [15] 
Dendritic cells Dose escalation mouse model assessing immune subsets [20] 

↑↑ infectivity of human immunodeficiency virus-1 in monocyte-
derived DC 

[29] 

Modulation of genes in pathogenesis of human immunodeficiency 
virus-1. 

[16] 

Natural killer cells ↑↑ Activation of NK cells [36] 
 ↓↓ Splenic NK lymphocytes [127] 
 
 
 
Table 2: METH causes changes in expression to several known pathways. 
 
Pathway METH-induction 

 
METH dose Study period Study type Reference 

JAK-STAT ↑ TNF-α and IL-6 
↓ Bax/Bcl-2 ratio (microglial cells) 

0.1-4mM 24hours In vitro  [58] 

JNK Activation of Src-JNK-Jun signalling 
cascade 
Activation via METH-induced oxidative 
stress 

 - In vivo  [89] 
 
[88] 

AKT-PI3K Activation by pro-inflammatory cytokines 
and chemokines 
 
Mediation of IL-8 and IL-1β 

250-1000µM 
 
500µM 
 

24 hours 
 
48 hours 

In vitro  
 
In vitro  

[62] 
 
[25] 

MAPK/ERK ↑ METH-induced HO-1 
Activation of p38 MAPK pathway  
 
(METH toxicity) Changes in MAPK 
pathways in mouse striatum and frontal 
cortex 
 
ERK1/2 activation via D1 and D2 
receptors 

0.1-10mM 
 
 
1mg/kg-
6mg/kg 
 
 
 

24 hours 
 
 
5 days 

In vivo/In 
vitro  
 
In vivo 
 
 
 
In vivo 

[84] 
 
 
[81] 
 
 
 
[128] 
 

NF-κB Pro-inflammatory cytokine and 
chemokine activation  
 
Inflammation, apoptosis, cell survival, 
gene expression: 
immune and inflammatory response 

250-1000µM 
 
 
0.1mg/kg-
20mg/kg 

24 hours 
 
 
24hours/8-10 
days 

In vitro  
 
 
In vivo/in 
vitro 

[62] 
 
 
[129] 
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3.3. T cells 

T cells play an important role in the orchestration of immune responses [30]. 

There are few studies that document the effects of METH on T cells. In mice, 

chronic METH administration reduces the number of CD4 and CD8 T cells in 

the spleen [20]. In addition, METH significantly increases expression of the 

inflammatory chemokine receptor CXCR3, suggesting that METH contributes 

to effector T cell function and migration [12,31]. METH also prolongs the 

transition from G1 to S phase of T cells [32]. In particular, METH alters gene 

expression by suppressing the CDK-cyclin E complex, a critical limiting factor 

which is suppressed in CD4 and CD8 T-cell subsets and disrupts cell cycle 

progression [32]. This finding was also consistent with changes in other cell 

cycle genes, such as E2F1, responsible for normal cell cycle regulation [32]. 

Similarly, METH causes down-regulation of cell-cycle genes and proteins 

involved in apoptosis in a rat study addressing acute hepatic injury from METH 

[33]. METH also alters intracellular calcium concentrations in T cells via 

reactive oxygen species (ROS) production, leading to mitochondrial injury [34]. 

 

3.4. Natural killer cells 

NK cells are primarily involved in the destruction of virally infected cells [35], 

and any dysfunction or numbers of NK cells, results to overall suppressed 

immunity [20]. METH has been shown to markedly increase the activation of 

NK cells [36] through an increase in simian immunodeficiency viral load and 

CNS damage in simian immunodeficiency virus-infected macaques. The 
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increase in NK cells were primarily present in the brain and in peripheral sites 

[36]. In addition, the cell surface marker, CD107a or lysosome-associated 

membrane protein-1, is increased in the presence of METH [37]. However, 

splenic NK cells have been shown to be significantly reduced in METH treated 

mice [20]. These results also showed a marked reduction in CD27 and killer cell 

lectin-like receptor expression [20]. CD27 is an important cell surface marker 

of NK cells as it is involved in its cytotoxic function [38]. Thus, METH induces 

a dysregulated NK cell profile, one that indicates a suppressed state. 

 

3.5. Astrocytes 

Primary astrocyte cell cultures cultured in the presence of METH for 24 h, 

significantly upregulates CXCL5, MAP2K5 and GPR65 as core gene network 

components with both neuroprotective and neuropathological roles [39]. 

MAP2K5 belongs to the MAP kinase family; CXCL5 has been implicated in 

the activation of the PI3K/AKT, MAP kinase and β-catenin pathway, and 

GPR65 has been described as a GCPR activated through extracellular acidic pH 

via protonation of histidine residues, regulating cell behaviour [40]. In addition, 

METH increases expression of Caspase-11 and TLR4 of primary astrocyte cell 

cultures [39]. This study also reported the downstream expression of nuclear 

factor kappa B (NF-κB) through the MyD88 independent pathway and MyD88 

dependent pathway, from expression of TLR4. Consequently, increased 

transcription of inflammatory cytokines is found in the nucleus [39]. 
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4.0 METH and inflammation 

METH abuse leads to severe dysregulation in the peripheral immune response, 

leading to an imbalanced expression in cytokines, chemokines and other 

molecular factors. In addition, expression of pro- and anti-inflammatory 

cytokines and chemokines have been implicated in METH-related neuronal 

injury which may also be related to METH addiction [41]. Further, METH-

induced immune dysfunction has potential to augment HIV replication [42]. 

Interestingly, inflammatory responses have the ability to pass through the blood 

brain barrier (BBB) which can relay messages responsible for inducing changes 

to motor function and motivation [43]. 

 

4.1. Tumour necrosis factor-alpha (TNF-α) 

Tumour necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine which 

has cell signalling functions and can cause chronic and acute inflammatory 

responses along with having a central role in the pathophysiology of 

autoimmune diseases such as ulcerative colitis, rheumatoid arthritis and 

multiple sclerosis. TNF-α can either be membrane bound or in soluble form, 

with roles in apoptosis, immunity development and tumour cell necrosis. It is 

primarily produced by macrophages and is encoded by the TNF-α gene present 

on chromosome 6 and 17 (Figure 2) [44]. TNF-α is known to be involved in 

activation of transcription factors such as AP-1 and NF-κB which can lead to a 

number of other physiological and pathological mechanisms [45]. In addition, 

METH stimulation of BV2 cells and primary microglial cells pre-treated with 

LPS, causes the expression of TNF-α via the cAMP/PKA/CREB signalling 



 13 

pathways [33]. Based on these findings, further studies are required that target 

the TNF-α cytokine pathway. Seeking to better define the role of METH in HIV-

1 pathogenesis, gene and protein expression of TNF-α was markedly increased 

by DCs [16]. Better understanding of this pathway can help to inhibit the 

harmful effects caused by METH abuse. 

 

 

 

 

 

 

 

 

 
Figure 2. Summary of TNF-a pathways. Chromosomes 6 and 17 produce 
TNF-a, and are directed to either inflammatory or apoptotic pathways. METH 
has been shown to express TNF-a across select in vitro cell lines. 
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1β has a significant effect on the metabolism and on the extracellular matrix of 

the cells as seen in patients with osteoarthritis [49]. Since NF-κB is activated 
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both in METH treatments and as a result of IL-1β stimuli, it is plausible to 

assume that METH may cause change in expression of IL-1β. In fact, METH 

stimulation of monocytic cell lines differentiated to macrophages resulted in 

elevated expression of IL-1β [33]. It was proposed that the pathways involved 

in such stimulation included NF-κB and mitogen-activation protein kinase 

(MAPK). Recently, in mice, METH-induced T-cell alterations of IL-1β profiles 

[12]. 

 

4.3. IL-10 

IL-10, is an anti-inflammatory cytokine that has a role in preventing 

inflammatory and autoimmune pathologies [50], and is secreted by a variety of 

activated immune cells [39]], having pleiotropic effects on T and B cells, long 

with myeloid cells [51]. In addition, IL-10 has been described as a soluble factor 

released by type-2 T helper cells, in which also inhibits the secretion of type-1 

T helper cytokines [51]. Upregulation of IL-10 has previously been reported in 

mice [32]. Recently, IL10 was shown to prevent metabolic programming 

induced, in macrophages, by inflammatory stimuli [39]. METH has been shown 

to increase IL-10 in human plasma [14]. Similarly, the evaluation of METH in 

microglial cell (ESdM) activation showed an increased IL-10 production 

following 48-hr METH treatment [52]. In a comprehensive gene array 

overview, macrophages stimulated over a time-dependent METH dose showed 

considerable upregulation of IL-10 at 6 h post METH exposure [17]. 
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4.4. IL-12 

The IL-12 family, comprising IL-12, IL-23, IL-27, and IL-35 are key players in 

the pathophysiology of immune responses in various disease conditions [53]. 

IL-12 family cytokines have been central targets in a number of inflammatory 

diseases, such as multiple sclerosis; along with rheumatoid arthritis and Crohn’s 

disease (CD) [Sun et al., 2015; Stetsko et al., 2008]. Monocytes, macrophages, 

DC and B-cells are able to secrete IL-12 [54]. In mouse spleen, IL-12 was shown 

to decrease; conversely, mouse liver and kidney revealed significantly increased 

expression of IL-12 [15]. Moreover, IL-12, in conjunction with other cytokines 

also function to inhibit HIV-1 expression and infectivity in macrophages [54]. 

 

4.5. IL-6 

IL-6 is a multipotent cytokine secreted by various immune cells, such as 

monocytes, macrophages, fibroblasts, mesenchymal cells, endothelial cells and 

fibroblasts [55; 134]. Additionally, the IL-6 receptor (IL-6R) system and signal 

transduction mechanism has importance in immune regulation and 

inflammation [56]. IL-6 has been implicated in Alzheimer’s disease, and may 

be used as a useful biomarker in determining the extent of cognitive impairment 

[57]. mRNA IL-6 expression is increased in mice in the hypothalamus, 

hippocampus, striatum, cortex and cerebellum following METH injection 

compared to saline treated mice [26]. In an astrocytic cell line cultured with 

METH for 3 days, IL-6 RNA levels increase 4-fold. In addition, METH 

exposure for 24 h increases both mRNA and protein expression of IL-6 [57]. In 

the same study, IL-6 expression found to be overridden by the IKK-b inhibitor 

SC415 [57]. Coelho-Santos et al. found that microglial cells exposed to METH 
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caused an increase in IL-6 expression and also upregulated IL-6 receptor (IL-

6R-a) after 24 h [58]. Interestingly, exogenous IL-6 expression was shown to 

have an antiapoptotic effect through activation of the JAK-STAT3 pathway 

[58]. Assessing the anti-neurotoxic agent asiatic acid, it was noted that METH-

induced neuronal cells treated with asiatic acid inhibited IL-6 secretion [59]. In 

addition, BV2 cells and primary glial cells treated with METH, showed an 

elevated expression in the levels of IL-6 along with TNF-α [60]. Likewise, an 

early increase in the levels of IL-6 expression in hippocampus and striatum in 

mouse brains is noted within 1.5 h post METH injection [19]. 

 

4.6. IL-2 

IL-2 is reported as having specific function in T cell homeostasis and memory 

differentiation [61]. The addition of METH to T cells in vitro increases IL-2 

secretion by 3-fold [34]. Furthermore, when METH was conjugated to 

lymphocytic choriomeningitis virus promoter, it further exacerbated IL-2 

secretion by splenocyte CD4 and CD8 T cells [30]. Likewise, METH-treated 

mice were found to exhibit an increased expression of IL-2 in the hippocampus 

[14]. Additionally, METH was shown to increase the IL-2RG system and IL-2 

ligand in an HIV-1 model, with the authors noting that this IL-2RG/IL-2 

expression representing an important mechanism contributing to neuro-

inflammation [61]. 
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4.7. IL-8 

IL-8 is a chemokine known to be associated with an inflammatory response in 

several neurological disorders, including Parkinson’s disease [62]. In astrocytes, 

METH was shown to increase IL-8 in a dose-dependent manner [62]. Other 

work has described a moderate IL-8 upregulation in the presence of METH on 

macrophages [17]. Similarly, macrophages treated with METH at 48–72 hours 

resulted in significant increase in IL-8; these findings, compared to 

macrophages treated with LPS alone showed higher IL-8 expression [25]. 

Huckans et al., through hypothesising the relationship between METH, immune 

factors and neuropsychiatric symptoms were able to show IL-8 to be a 

significant marker of anxiety and depression [63]. 

 

5.0 Other inflammatory responses to METH 

5.1. Cyclooxygenase-2 

Cyclooxygenase-2 (COX-2) is expressed by stimulation from an assortment of 

pro-inflammatory agents, with its expression in the brain signaling physical and 

psychological stress [64]. METH has been shown to increase striatal expression 

of COX-2 protein [65,66]. Induction of COX-2 through the NF-κB pathway 

results in nitric oxide, prostaglandins and inflammatory cytokine production 

[67]; and, induction of COX-2 might suggest drug-induced neurodegeneration 

[67]. METH significantly increases COX-2 protein expression in the striatum 

within 72 h after METH administration to mice with no changes in COX-2 

expression in the hippocampus and cerebral cortex. Interestingly, a relationship 

between depleted dopamine and a delay in COX-2 expression was observed. 
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Similarly in an acute METH dose, significant reduction in COX-2 positive cells 

are noted in the striatum after 24hours. In addition, upregulation of COX-2, with 

co-expression of NF-κB is noted after 72 h, and this is marked by reductions in 

dopamine in the striatum. Reports of COX-2 expression in METH models, 

suggests its targeting in early METH-related neurotoxicity during METH use. 

Increased COX-2 expression is noted in a METH-CUS (chronic unpredictable 

stress) model, and this has been suggested to enhance monoaminergic 

depletions in both the hippocampus and striatum [64].  

5.2. CXCR4 

METH enhances expression of chemokine receptor CXCR4 in the brain [24]. 

In HIV-1 infection, METH in a dose-dependent manner caused an increase of 

CXCR4 expression by DCs [68]. Due to the involvement of the CXCR4 

receptor, being a major co-receptor, along with CCR5 in HIV-1 infection, 

CXCR4 may be a likely candidate for targeting in the development of 

therapeutic prevention of HIV-1 entry into cells in METH addiction [27]. 

 

 

5.3. CXCL10 

CXCL10, known also as IFN-γ-induced protein 10, is a chemoattractant for 

immune cells such as T-cells and monocytes [59]. In response to IFN-γ, in an 

appropriate inflammatory environment, CXCL10 is secreted from the host’s 

immune cells upon activation of its receptor CXCR3 [59]. METH has been 

shown to significant increase CXCL10 in astrocyte cells and is involved in the 

activation of the innate immune system [69]. 
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5.4. CXCL5 

CXC chemokine ligand 5 (CXCL5) is a cytokine expressed in a range of cell 

types, including monocytes [70] and endothelial cells, along with several organs 

including the brain [70] and lung [71]. In the lung, and in response to microbial 

infection, CXCL5 orchestrates neutrophil trafficking by activating G-protein 

and arrestin signaling pathways [71]. Interestingly, through pro-inflammatory 

cytokines, CXCL5 is activated via activation of NF-κB, and produced by 

immune and vascular endothelial cells [70]. Additionally, tumor suppressors 

and oncogenes work to regulate CXCL5 expression. In astrocyte cell cultures, 

low to high concentrations of METH over 24-hour exposure significantly 

upregulates CXCL5 gene expression [39]. 

 

5.5. CXCR3 

The chemokine receptor, CXCR3 is the receptor for the IFN-inducible 

chemokines CXCL9, CXCL10 and CXCL11 and its expression on activated T 

cells. In addition, CXCR3 is crucial for amplifying IFN-γdependent recruitment 

of cells in peripheral sites of infection [31]. METH has been shown to 

significantly differentially regulate CXCR3 protein expression in immature-

DCs [72]. In addition, chronic METH exposure strongly increases CXCR3, 

which is important in CD8 T cell recruitment, in order to provide modulation of 

T cell memory [12]. CXCR3 is known to have roles in migrating T cells into 

the microenvironment of peripheral tissues, aiding in their interaction with 

antigen presenting cells leading to effector and memory T cells [31]. 
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6.0 Immune pathways activated in the presence of METH 

Immune pathways relating to drug addiction have been documented as falling 

into two categories: those pathways involved in upstream events of drug 

addiction, i.e., MAPK signaling and calcium signaling. The second are 

pathways involved in downstream effects, including those regulating glycolysis 

metabolisms, regulation of the actin cytoskeleton and apoptosis [37]. Pathways 

which are impacted upon by METH, and which increase the inflammatory 

response have been described as the AKT-PI3K, NF-κB, MAPK [25,62], along 

with the JAKSTAT pathway [58]. 

 

6.1. NF-κB signalling 

The NF-κB family of inducible transcription factor proteins exist as inactive 

cytoplasmic complexes, in which activation of NF-κB occurs via two main 

signalling pathways: canonical and non-canonical [73,74]. NF-κB proteins 

involve a cascade of events which begin outside the cell, converging in the 

nucleus [75], promoting immunity through controlling expression inflammatory 

genes [73,76,77]. Through the action of cytokines and PAMPs, receptors such 

as TLRs are consequently stimulated, resulting in a cascade that activates the 

NF-κB [76]. The NF-κB pathway is important in activation of naive T-cells 

through TCR signalling and is necessary for both the generation and 

maintenance of effector and memory T cells [76]. In B-cells, the NF-κB 

pathway mediates survival of naive B cells as well as influencing 

immunoglobulin class switching [74]. In METH, increases in the production of 

pro-inflammatory cytokines and chemokines has been attributed to dependence 
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on the NF-κB pathway [62]. Upon the expression of pro-inflammatory 

cytokines and chemokines, due to extracellular signals, NFκB is activated in 

which subsequent processes and regulation can include inflammation, 

apoptosis, cell survival, and inducing gene expression pertinent to immune and 

inflammatory responses [75]. Further data suggests that the NF-κB signalling 

pathway induces inflammatory cytokines in METH-treated macrophages. The 

NF-κB pathway has also been thoroughly described as influencing and being a 

mediator of reward following long-term drug abuse [78], having a role in 

learning and memory, and increasing expression of opioid receptors and 

neuropeptides [78]. In neuronal cells, asiatic acid was shown to inhibit METH-

induced NF-κB translocation, thus exhibiting an anti-neurotoxic effect [59]. 

Further, cytoplasmic and nuclear fractions of METH-exposed astrocytes 

showed an increased protein expression of NF-κB [39]. Heightened expression 

of NF-κB upregulated caspase-11 subsequently upregulating the NLRP3 

inflammasome and inducing IL1β and IL-8 expression [33]. In humans, METH 

induces the production of TNF-α which is involved in the BBB dysfunction. 

Animal and in vitro work using endothelial cells showed that METH initiated 

endothelial dysfunction, through activation of the NF-κB pathway [18]. This 

finding revealed the role of the NF-κB pathway in decreasing tight junction 

stabilization and increasing the permeability of the BBB. Conversely, blocking 

of the NF-κB pathway inhibits BBB dysfunction [18]. 
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6.2. MAPK/ERK and JNK signalling 

Extracellular signalling regulated kinase (ERK) and mitogen-activated proteins 

kinase (MAPKs) pathways have been reported to play a role in METH-mediated 

signalling [79,80]. MAPK signal cascades are important intracellular signalling 

pathways which transmit signals from cell membrane to nucleus [81], and 

possess a regulatory role of proinflammatory cytokines [82]. ERK contained in 

the nucleus is known as a target of stimulants [83]. Confirmatory experiments, 

determining the involvement of heme-oxygenase-1 (HO-1) – a crucial cellular 

mechanism mitigating oxidative damage - in METH-induced toxicity, showed 

that the p38 MAPK pathway was involved in upregulating METH-induced HO-

1 [84]. Authors of this study support the role of the p38 MAPK pathway in 

cellular defence against METH toxicity [84]. Single and multiple METH 

injections in mice revealed complex changes in MAPK-related pathways mouse 

striatum and frontal cortex [81]. More specifically, MAPK-related pathways 

significantly impacted, through repeated METH administration, included map 

kinase I, Erk1, Erk2 and MAP kinase 7; these MAPK-related pathways have 

been implicated in substance abuse [81]. Evidence supports the involvement 

and role of the nuclear and cytoplasmic trafficking of ERK1/2 in learning and 

memory and cell death [85] along with behavioural modifications in brain 

specific ERK pathway expression from drug abuse [86]. Similarly, assessments 

and the involvement of the sigma-1 receptor found downstream activation of 

ERK MAPK pathway was necessary for promoting the activation of astrocytes 

upon stimulation via METH [87]. The c-Jun NH2-terminal kinase (JNK) 

signalling pathway is an evolutionary conserved group of mitogen-activated 

protein kinases (MAPKs) [88]. This signalling pathway has been previously 
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implicated in its ability to respond due to activation of cytokines and exposure 

to extracellular signals [88]. METH has been reported to activate the SrcJNK-

Jun signalling cascade [89]. In line with METH addiction, and possible 

neurodegeneration, the JNK signalling pathway has been suggested to possibly 

mediate neurodegeneration in METH addiction [90]. A further report outlines 

the activation of the JNK signalling pathway via METH-induced oxidative 

stress’ ultimately, this leads to signal transduction into the nucleus through the 

activation of transcription factors, such as activator protein-1 (AP1) – a major 

target of JNK signalling [88] NF-κB and cAMP-responsive element binding 

protein (CREB) [91]. 

 

6.3. AKT-PI3K pathway signalling 

The protein kinase B (AKT) and phosphatidylinositol-3-kinase (PI3K) pathway 

is vital for many aspects of cell growth and survival [92] and is triggered through 

the result of growth factors and regulators [92]. This signal transduction cascade 

also supports a role in protein synthesis, metabolism and angiogenesis, with 

prevention of apoptotic events [93]. METH triggers cell survival-signalling 

events which involve dopamine receptors, PI3K and AKT [93]. Activation of 

the AKT/PI3K cascade was demonstrated through pro-inflammatory cytokine 

and chemokine expression by METH-induced astrocytes, in which METH 

caused alteration of mGluR5 receptor. In turn, this was shown to activate the 

Akt/PI3K pathway [62]. These results were in the context of METH-mediated, 

NF-κB dependent increases of cytokine and chemokine expression [62]. 

Similarly, the AKT/PI3K signalling pathway was also found to mediate METH-

induced IL-8 and IL-1β [25]. Using topiramate (TPM) as a potential treatment 
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for METH dependence, Niu et al. were able to elucidate enrichment of PI2K-

AKT signalling pathway amongst seven biologically relevant pathways [94]. 

Moreover, TPM’s effects on METH addiction further showed a decrease in 

oxidative stress and increased neuroplasticity, consistent with METH’s ability 

to increase oxidative stress through a perturbance of the PI3K-AKT pathway 

[94]. 

 

6.4. JAK/STAT signalling 

The JAK/STAT signalling pathway is utilized by several diverse cytokines, 

chemokines, interferons and growth factors. The simplicity of the JAK/STAT 

pathway allows for direct communication from transmembrane receptors to the 

nucleus, and cytokine receptor stimulation leads to phosphorylation events that 

ultimately recruit STAT, translocating to the nucleus and binding specific 

sequences to initiate gene expression [95]. METH has been shown to increase 

the Bax/Bcl-2 ratio, with the cytokine IL-6 being able to prevent this effect in 

microglial cells [58]. METH-induced microglial cells showed that IL-6 

expression served to disrupt this pro and anti-apoptotic protein ratio level [58]. 

The bcl-2 family of apoptotic regulators are related to cell death and survival, 

in which these regulators can either suppress or activate apoptosis 

programming. Expression of Bax proteins is correlated to pro-apoptosis, 

whereas Bcl-2 is related to anti-apoptosis events [96]. In addition, the same 

study reported that low concentration expression of TNF-α, which, with IL-6, 

had a protective effect – through activation of JAK/STAT signalling - on 

microglial cells from the toxic effects elicited from METH. 
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7.0 METH and its relationship to ageing 

METH use leads to a number of cellular changes, disrupting normal cell 

function which trigger events related to inflammation, oxidative stress and 

ageing [97]. METH abuse is also associated with neurotoxicity of the fronto-

striatal region, along with morphometric alterations in the hippocampus and 

cortex [98]. In particular, the hippocampus remains sensitive to drug abuse from 

adolescence years to adulthood, as it ensures structural and functional changes 

crucial for hippocampus maturation and function [99]. Adult METH users also 

experience cognitive impairments which impact on adaptive decision making, 

which also has long-term effects on reversal learning [100]. Long-term METH 

use on the brain neuro-biochemistry have been associated to age-related 

cognitive decline and neurochemical alterations [98]. Also, METH causes 

obvious changes to inflammatory immune responses leading to significant long-

term alternations. Chronic inflammatory modifications in immune response 

have been linked to the ‘inflamm-ageing’ phenomena [101]. 

 

7.1. METH contributes to age-related diseases, such as cardiovascular 

pathology, stroke and Alzheimer’s Disease 

Acute and chronic METH use has been attributed to stroke [102]. Binge METH 

doses have been shown to significantly alter cardiovascular function leading to 

cardiac pathology [103]. In addition, heart rate variability (HRV) measured 

across a cohort of abstinent individuals with a known history of METH 

dependence showed impairments in several parameters of HRV in comparison 

to drug-free individuals [104]. A decreased HRV has been associated with 
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cardiovascular pathology, along with psychiatric disorders such schizophrenia 

and bipolar disorder, and an impairment in social functioning and cognition 

[104]. Importantly, HRV is generally thought to decline as an individual age 

[105]. Other reports have assessed METH-associated cardiomyopathy 

(MACM) in which METH has been attributed to negative effects on the 

myocardium [106]. Changes to the myocardium at a structural, molecular, 

cellular and functional level are all related to cardiac ageing [107]. In assessing 

the link between METH exposure and the development of Alzheimer’s Disease 

(AD)-like changes, the formation of amyloid-β (Aβ) was used as a measurement 

to evaluate this relationship [108]. In an in vitro cell model, results indicated 

that, in a dose-dependent manner, METH increased the levels of the Aβ 

precursor protein (APP) [108]. Aβ accumulation is a crucial indicator of AD 

pathogenesis [109], in which neuroimmune cells such as astrocytes, neurons and 

microglia respond by upregulating NADH, COX-2 and proinflammatory 

cytokines [110]. 

 

7.2. Effect of METH on adolescence and adulthood, our learnings from 

animal models 

The development of drug seeking, and addiction behaviour is largely shaped at 

the adolescent stage of life [111], governed by the chronic exposure to the 

neurotoxic effects of several drugs of abuse. METH use in early-life increases 

risk of developing Parkinson-like symptoms [112]. In fact, in adult male rats, 

chronic binge METH dose revealed similar impairments in metabolites within 

the striatum, prefrontal cortex and hippocampus. In addition, METH impacts on 

neurotransmitters – dopamine and serotonin in adult rats [98]. In adolescent rats, 
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METH was modelled to assess reversal learning and the likelihood of continued 

METH use through to adulthood [100]. Results of this study indicated a positive 

correlation between METH taken at adolescent stages – specifically in the late 

adolescent period – to adult METH use [100]. METH was also found to have a 

discriminatory effect in adolescent and adult rat developmental age [99], with 

METH exhibiting impairments in hippocampal cell proliferation and survival in 

young adult rats [99]. 

 

7.3. Impacts of METH on mental health 

Other than the common withdrawal symptoms associated with METH use, such 

as excessive sleeping and severe cravings, METH also triggers depressive-like 

symptoms chronic METH users experiencing withdrawal [113], usually lasting 

for longer than two weeks of abstinence [114]. This is in stark contrast to the 

euphoric and elevated mood effects which METH brings on when initially 

consumed [115]. In a cross-sectional study using a self-reporting tool and 

comparing active adult METH users with early ex-users and no history of 

METH users, it was noted that METH-dependent users had greater anxiety and 

depressive symptoms; with 10 plasma immune factors being associated with, 

and contributing to neuropsychiatric function [63]. Another cross-sectional 

study evaluating the pervasiveness of major depression among 400 people 

accessing treatment for METH use, reported a higher proportion of individuals 

with depression upon entering treatment faculties [116]. Furthermore, authors 

noted that the high prevalence of substance-induced depression manifested 

greatly in symptoms associated with appetite, sleep perturbations, trouble 

focusing, fatigue and feelings of sadness and emptiness [116]. Comparisons 
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between regional volumes of cortical grey matter in adults with a history of 

METH showed age-related grey matter loss in several regions of the brain [117]. 

This finding is particularly important as it suggests that adult METH-users may 

be at higher risk of developing neurodegenerative disorders and cognitive 

decline at a younger age when compared with healthy non-METH uses. 

 

7.4. METH-induced inflammation and link to ageing 

METH creates an immune imbalance where changes in immune cell function, 

inflammatory cytokines and chemokines are apparent. METH creates an 

environment which disturbs the balance between oxidative stress and 

antioxidant defence [118]. IL-6 is over-expressed in METH addicted 

individuals and has been linked to the ageing process [119]. Moreover, IL-6 has 

been described as a central aspect of ‘inflamm-ageing’ [120], with an increase 

of this cytokine in serum is characteristic of ageing [121]. IL-6 has also been 

implicated in poor physical performance, with loss of muscle strength. 

Similarly, TNF-α, a cytokine impacted upon by METH, has also been associated 

with the ageing process [121]. Post-mortem analysis from human tissues have 

aligned METH with diseases characteristic of old age [122]. It was noted that 

METH fast-tracked cellular senescence and activated genes involved in the cell 

cycle and inflammation [122]. Moreover, METH caused an increase in 

ceramide biosynthesis, a process known to play a role in cellular replicative 

senescence, which led to the expression of senescent-associated biomarkers, IL-

6 and TNF-α. Results of this study indicated that METH initiated a cascade of 

genetic changes observed in rapid health decline, characteristic of chronic 

inflammation and ageing [122]. Indeed, the immune changes from chronic and 
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acute METH (increased inflammation and oxidative stress) have been suggested 

to lead towards a reduction in telomere length [123]. Shortened telomere length 

is associated to increased cellular ageing as well as a range of non-

communicable age-related diseases, including hypertension, cardiovascular 

disease, stroke, diabetes and dementia. In fact, drug abusers on METH, heroin 

or diazepam have shorter telomere length and accelerates cellular senescence 

[122,124]. 

 

8.0 Conclusion and future prospects 

METH carries out its immunomodulatory effects via a number of key changes 

to both pro- and anti-inflammatory cytokines, leading to a cascade of signalling 

responses in both innate and adaptive immune cells. Alterations to IL-6, TNF-

α, IL-10, COX-2 and IL-1β all play a vital role in METH-induced neurotoxicity. 

Although knowledge relevant to the effects of METH on several human cell 

types and in in vitro models has been well-established, there lacks a well-

described, accumulated understanding of METH’s immune-modulatory and 

immune-metabolomic effects. In addition, human peripheral immune cells have 

gained attention in recent years for their potential in being a valuable source for 

discovering biomarkers. Data supports the case that METH lowers an effective 

immune response in humans, leading to susceptibility of transmitting sexually 

transmitted diseases and infections. In addition, METH may contribute to the 

pathophysiology of inflammatory diseases through its association with 

inflammatory cytokine production. However, data is limited on the immune and 

oxidative-related pathways activated and maintained from changes in immune 

cell metabolism – glycolytic fluxes, mitochondrial respiration and reactive 
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oxygen species generation, which are disturbed through METH use. In 

particular, the Nod-like receptor pyrin containing 3 inflammasome (NLRP3), a 

multiprotein complex related to infection and inflammation, and its activation, 

could be relevant in METH abuse. The NLRP3 pathway ties immunity to cell 

metabolism, which holds significance in assessing the pathogenesis of 

psychiatric disorders and further research in this inflammasome complex might 

uncover peripheral markers associated with METH use for assessing major 

depressive disorders. Furthermore, a better understanding of the link between 

METH use in the younger years, and its consequence to health outcomes in the 

long term (after METH has been stopped) in regard to increased risk of 

communicable and non-communicable diseases and accelerating the ageing 

process are required. 
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Chapter 2 

Chronic Methamphetamine (METH) and withdrawal effects on 

distal colon tissue in an escalating-dose mouse model 

 

Abstract 

Methamphetamine (METH) is a powerful drug which causes considerable body, 

brain and behavioural alterations. Further, METH acts on a variety of systems 

within the body which are yet to be fully described. Research in the effects of 

METH on the gastrointestinal tract, gut-brain axis and immune system is still 

unclear and in early stages. This study sought to determine the effects of an 

escalating METH dose on C57BL/6 mice over a three-week period, followed 

by a withdrawal period of three days. Distal mouse colon was extracted and 

RNA-Seq data, via gene ontological software programs: DAVID, Gorilla and 

Amigo, showed a number of gene changes across several processes. The largest 

genes changes observed were traced to carboxylic acid metabolism, biological 

process, and response to bacterium gene ontologies. Moderate and minor fold 

gene changes were observed in neuropeptide signalling, and exogenous 

catabolic processing. More specifically, significantly upregulated, differentially 

expressed genes (DEG) included Leptin (Lep), caudal type homobox 2 (cdx2), 

gamma-glutamyltransferase 1 (Ggt1), adiponectin (adipoq), cytochrome P450 

Family 2 Subfamily E member 1 (cyp2e1), angiopoietin (Ang4) and resistin like 

beta (retnlb). Significantly down-regulated DEG included actinin alpha 2 

(actn2) (-30-fold) and myosin light chain, phosphorylatable, fast skeletal muscle 

(mylpf) (-81-fold). Fold-change genes, from this escalating METH mouse model 

indicates that METH plays a role across several ontological systems. 
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Figure 19. KEGG pathway map of metabolism of xenobiotics via cytochrome 
P450 
 
3.8 METH effects genes involved in the neuropeptide signalling pathway 
(GO: 0007218) 
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1.0 Introduction 

The highly addictive, and illicit psychostimulant and psychoactive drug, 

Methamphetamine (METH), has impacted society economically, socially and 

increased the burden of disease [Chen et al., 2019; Zhang et al., 2019], with an 

estimated 37 million users worldwide [Droutman et al., 2019]. METH is 

characterised by an aromatic ring and nitrogen along the aryl sidechain, which 

defines its agonistic behaviour, as it shares structural similarity to most 

monoamine neurotransmitters, such as dopamine (DA) and serotonin (5-HT) 

[Ferrucci et al., 2019]. Apart from its severe neurotoxic effects on the central 

nervous system (CNS), high METH doses, taken over a long-term, leads to the 

interference of presynaptic and synaptic processes [Wen et al., 2019; Zoubkova 

et al., 2019]. Moreover, over time METH leads to brain alterations as a result of 

ongoing neurotoxicity, via the degradation of dopaminergic terminals in the 

striatum, or from constant epigenetic changes in some brain regions 

[Shaerzadeh et al., 2018; Ferrucci et al., 2019]. Further, METH abuse has 

potential to lead to METH-related psychosis, better known as psychotic disorder 

methamphetamine-associated psychosis (MAP) [Vuletic et al., 2018]. Psychosis 

in some is characterised by delusions, auditory and visual hallucinations and 

thought broadcasting [Su et al., 2018], with other psychiatric behaviours related 

to mood, sleep, cognition and violence tendencies [Khalkhali et al., 2018]. In 

the body, METH exposure can also affect the male reproductive system, with 

impacts on testis (expression reduction of progesterone and estrogen receptors), 

quality of sperm and endocrine disruption [Kaewman et al., 2018]. METHs 

neurotoxicity is triggered by inflammation, which, in studies of METH, involve 

an increased production of inflammatory cytokines, T-cell proliferation, 
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perturbations to cytokine signalling and an increase in blood brain barrier (BBB) 

permeability [Cook et al., 2019]. METH also causes changes to gut wall 

integrity, increasing intestinal permeability which shifts the body’s microbiota 

leading to chronic inflammation [Cook et al., 2019]. Recent work investigating 

the impacts of METH on intestinal barrier integrity has shun a light on the 

involvement of major tight junction proteins [Persons, et al., 2018]. Two tight 

junction proteins, colon claudin-1 and zonula occludens-1 (ZO-1), which play a 

role in gut permeability, were shown to increase colon permeability after 

moderate METH doses were administered to transgenic and non-transgenic rats 

[Persons, et al., 2018]. Further, immunofluorescence data showed a reduction 

in claudin-1 and ZO-1 proteins, decreasing tight junction immunofluorescence 

in non-transgenic rats [Persons, et al., 2018]. Ning et al (2017) investigated the 

role of METH addiction and its possible modifications in the intestinal 

microbiota, supporting their hypothesis that CNS disorders are linked to 

alterations in gut microbiota [Ning et al., 2017].  Results of this work showed 

that METH caused significant gut dysbiosis, including repression of 

Phascolarctobacterium [Ning et al., 2017]. Indeed, there is a bidirectional flow 

of communication between the gut microbiome and brain, known as the gut-

brain axis [Temko et al., 2017]. This study sought to investigate gene expression 

changes in gene expression in the distal colon, after the administration of an 

escalating METH dose in mice. Little is known about the impacts of METH on 

the colon, along with how this perturbation may be linked to the gut-brain axis. 

Using a systematic gene ontological approach, incorporating established open-

source ontological software, and a stringent screening pipeline, this study 
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mapped several up and down differentially regulated genes to various gene 

ontological terms, against a mus musculus background.  

 

2.0 Materials and Methods  

2.1 Chronic METH mouse model 

C57BL/6 mice (5-9 weeks old; n=14) were obtained from the Australian 

Research council (ARC, Perth, Australia). Mice had free access to food, water 

and were kept under a 12-hour light/ dark cycle in a well-ventilated room and 

at an appropriate temperature of 22 °C. Mice acclimatized for up to 1 week prior 

to the onset of treatment cycle of METH / sham for 14 days. Mice were 

separated into two groups: sham treatment and METH treatment administered 

via daily intraperitoneal (i.p) injections in the morning and late evening (10-13 

hours apart). SHAM group received 100μl of saline water, whilst the METH 

group received METH beginning at 0.5mg/kg diluted in 100μl of saline water 

with an increment of METH concentration every two days (equivalent to the 

human dosage as per body surface area) (Table 1). This administrational regime 

was incorporated to overcome drug resistance and maintain a constant high for 

14 days. The mice were kept under observation for 3 days after their last 

treatment injection (withdrawal) after which mice were culled using lethobarb 

(pentobarbitone) and colon tissues collected. All procedures and protocols 

performed within this study were approved by the Victoria University Animal 

Experimentation Ethics committee (AEETH 15/010) and were conducted 

according to the guidelines of the Australian National Health and Medical 

Research Council.  
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Table 1: Chronic methamphetamine administration protocol. C57BL/6 
mice were administered two METH doses (morning and afternoon) over a 
seven-day period, lasting for two weeks. Week three, indicated by days 15, 16, 
and 17, allowed time for mice to experience withdrawal from METH. 
 

 

 

2.2 RNA extraction  

The distal colon was collected from mice, and colon was flushed with saline to 

removed faecal contents. Colon was then flash frozen in liquid nitrogen 

immediately after culling and stored at -80°C until RNA was extracted. RNA 

extraction was carried out according to ThermoFisher® RNA isolation and 

purification reference guidelines. Tissues were placed in separate tubes 

containing 1000µL of TRIzol® reagent at 4°C (Thermo Fisher Scientific, 

Australia) and two metallic beads each.  Tubes were then placed in a 

homogenising bead beater and was pulsed at 50 oscillations per second for 2x5 

minutes with a 1 min break in between to dissociate the tissue. To perform phase 

separation of RNA, the TRIzol tissue homogenate solution was removed from 

homogenisation tubes and 200µL of chloroform was added. Solutions were 

WEEK 1 Schedule  Day 1 
(mg/kg) 

Day 2 
(mg/kg) 

Day 3 
(mg/kg) 

Day 4 
(mg/kg) 

Day 5 
(mg/kg) 

Day 6 
(mg/kg) 

Day 7 
(mg/kg) 

 
 
WEEK 2 

Morning  0.5 1 1 2 2 3 3 

Afternoon  0.5 1 1 2 2 3 3 

 Day 8 
(mg/kg) 

Day 9 
(mg/kg) 

Day 10 
(mg/kg) 

Day 11 
(mg/kg) 

Day 12 
(mg/kg) 

Day 13 
(mg/kg) 

Day 14 
(mg/kg) 

 
 
 
WEEK 3 

Morning  4 4 5 5 6 6 7 

Afternoon 4 4 5 5 6 6 7 

 Day 15 
withdraw
al 

Day 16 
withdra
wal 

Day 17 
withdrawal 

Day 18 
Cull, 
collection of 
colon tissues 
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mixed by shaking for 15s, were incubated for 3 min at room temperature and 

were centrifuged at 12000 x g for 15 min at 4°C. From this solution the aqueous 

phase containing RNA was removed and incubated with 500µL of absolute 

isopropanol at room temperature for 10 min before centrifugation at 12000 x g 

for 10 min at 4°C to obtain RNA pellets. The RNA pellets were washed in 500 

µL of 75% ethanol and spun at 5000 x g for 5 min to remove contaminating 

phenols and recollect the pellet. Pellets were dissolved in 100 µL of pure 

nucleotide free H2O for processing using the RNeasy Mini Kit (Qiagen, 

Australia). Briefly, a mixture of 350µL RLT containing 1% 2-mercaptoethanol 

and 250 µL of absolute ethanol were added to the resuspended RNA which was 

then transferred to silica-membrane RNeasy spin columns and spun at 8000 x g 

for 15s to bind RNA. Samples were washed by spinning samples with 350µL 

of RW1 buffer at 8000 x g for 15s either side of an on-column DNA denaturing 

step with DNase (Qiagen, Melbourne Australia) incubated for 15 min at room 

temperature. Samples were then washed by two spins with 500µL RPE buffer 

for 15s at 8000 x g and spun dry at 8000 x g for 1 min. Purified RNA was 

collected in 36µL of nuclease-free water spun at 8000 x g for 1 min and frozen 

at -80°C for use in experiments. 

 

2.3 RNA concentrations and quality control   

The concentration of RNA in each sample was quantified by a Qubit 1.0 

fluorometer (Invitrogen, Thermofisher, Australia) using the Qubit® RNA 

Broad Range Assay Kit (Life Technologies, Thermofisher, Australia) as of 

manufacturers protocol. Briefly, 10µL of supplied standards and 10µL of 

sample RNA diluted 1:2 in nuclease-free water was added to 190 µL of Qubit® 
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RNA working solution containing an RNA-specific fluorometric dye in clear 

PCR tubes which were incubated for 2 min at room temperature before readings 

were taken for fluorometric quantitation of only RNA in the samples. 

Contaminates (such as phenol) were evaluated in RNA samples using a 

Nanodrop spectrophotometer. Absorbance (A) scores for all samples were 

between 1.8 – 2.0 for A260/A280 ratios. and 2.0-2.2 for A260/A230 ratios, 

suggesting that nucleotide purity was high. The quality of RNA was assessed 

using a 2100 Bioanalyzer (Agilent Technologies, Australia) microfluidics 

platform with the RNA 6000 Nano Kit (Agilent Technologies) as of 

manufacturer’s instructions. All sample were free from contamination of 

genomic DNA and 16S ribosomal RNA from bacteria. All samples were of very 

high quality and had minimal degradation with RNA integrity number (RIN) 

values between 9.9-10/10.    

  

2.4 High throughput RNA-Sequencing of mRNA 

An experimental design similar to Seaman et al. (2015) was employed for RNA-

sequencing experiments. Samples of RNA (n=7) from C57Bl/6 

and Winnie mice treated with either sham or MSC enemas were pooled into 

groups containing equal concentrations of RNA totalling at least 3 µg of RNA 

at 100ng/µL in nuclease-free water with concentrations and RIN verified 

(Figure 1). Samples were submitted to the Australian Genome Research Facility 

(AGRF) for polyA purification of mRNA from total RNA samples, RNA-Seq 

library perpetration and read high-throughput sequencing using a 100bp single-

end read protocol on the Illumina HiSeq 2500 System. A data yield of 

approximately 2.5-3.2 Gb were acquired per sample. Base calling was 
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performed using HiSeq Control Software (HCS) v2.2.68 and Real Time 

Analysis (RTA) v1.18.66.3. Sequencing data was generated using the Illumina 

bcl2fastq 2.20 pipeline. The quality of raw reads was assessed by FASTQC at a 

kmer size of 7. In addition, 1000 raw reads were randomly selected for 

alignment to the NCBI nonredundant nucleotide database using Blast+ v2.7.1, 

To map raw reads, the program STAR v2.6.0c was used to align to the mouse 

reference genome (GRCm38), Optical duplicates were removed, and the 

alignment file was sorted by coordinates using Sequence Alignment/Map 

(SAM)tools v1.8.0, Read summarisation of the raw counts per gene was 

determined using featureCounts v1.6.2 program of the software package 

subread. Differentially expressed genes (DEG) from raw mapped reads were 

evaluated by the R package DEGseq v 1.34.0 (Wang et al., 2009). DEGs were 

identified with a P value of <0.001 using the Benjamini-Hochberg correction. 

Resulting datasets were additionally cleaned by cut-offs for lowly expressed 

genes with <10 counts in a group and low changes in expression of between 

±0.5LogFC. Up and downregulated DEGs were analysed for enriched gene 

ontology (GO) terms associated with biological processes, molecular function 

and cellular components using a rank-based method with a P<0.001 threshold 

by the web-based tool GOrilla. Selected, enriched gene ontologies identified 

using GOrilla were visualised as interaction map. 
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Figure 1. Illustrative summary of RNA extraction and subsequent RNA purification, and bioinformational analysis. 
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3.0 Results  

From the gene list, only those genes with a (+/-) 2-fold change (fold change 

criteria) and p-value cut-off (p-value criteria of p=0.003) were selected for 

enrichment analysis using gene ontology tools, namely DAVID 

(https://david.ncifcrf.gov/geneReport.jsp) and Gorilla. Based on this criterion, a 

total of 602 genes were preselected for further GO analysis. Out of these 

selected 602 genes, DAVID Gene Ontology defined 560 genes aligned to mus 

musculus. Table 1 summarises alignments to Functional Categories, Gene 

Ontology, Pathways and Protein_domains. Another gene ontological program, 

Gorilla recognised 598 genes out of the 601 genes. All downstream analysis in 

the following sub-sections were derived from both exploratory analysis of 

DAVID and gorilla GO.  

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Workflow of NGS data filtering to gene ontologies. Process of 
filtering a large set of differentially expressed genes (DEGs) from distal colon 
tissue.  
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Table 2. Summary of 560 genes reported by DAVID Bioinformatics 
Resource 6.8 against a mus musculus background reference gene set. 
DAVID bioinformatics tool uses novel algorithms that allow for a gene-
annotation enrichment analysis of a set of genes, also permitting the reduction 
in size of large gene lists into functionally related groups of genes.  
 

Category  Database/reference Genes involved in 
annotation category  

% Overall genes 

Functional  Up_keywords 541 96.6 
Gene ontology  GOTERM_CC_DIRECT 508 90.7 
Pathways KEGG_PATHWAY 210 37.5 
Protein 
domains 

INTERPRO 515 92.0 
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Figure 3. Diagrammatic representation of the colon and gene ontological processes. Distal colon (left), abbreviated as 
DC, was found to have 601 genes up- or down-regulated by METH. The distal colon includes the descending colon and the 
sigmoid colon which connects to the rectum. Ontological processing of RNA-Seq data from DC showed a number of changes 
associated with intracellular molecular functioning, components and biological processing. DC: Distal colon, I: Ileum, M: 
medial colon, C: colon, P: proximal colon, R: rectum, A: anus.  
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Table 3. KEGG pathway annotation. 210 out of 560 genes were associated with mus musculus. Orange highlighted rows 
indicate ontological terms that were further investigated, as they contained genes with fold-changes that were considered 
significant for this study. 
 

Term p-value Genes % 

Metabolic pathways 3.5E-3 51 9.1 

Calcium signalling  1.2E-3 14 2.5 

Hypertrophic 

cardiomyopathy (HCM) 

4.8E-5 11 2.0 

PPAR signalling  5.4E-5 11 2.0 

Proteoglycans in cancer 4.9E-2 11 2.0 

Focal adhesion  5.5E-2 11 2.0 

Dilated cardiomyopathy 3.8E-4 10 1.8 

Serotonergic synapse  9.4E-3 10 1.8 

Tight junction 1.3E-2 10 1.8 

Arrhythmogenic right 

ventricular cardiomyopathy 

(ARVC) 

6.2E-4 9 1.6 

Bile secretion  6.2E-4 9 1.6 

Wnt signalling 3.7E-2 9 1.6 
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Adipocytokine signalling 3.2E-3 8 1.4 

Arachidonic acid 

metabolism  

1.0E-2 8 1.4 

Leukocyte trans-

endothelial migration  

4.6E-2 8 1.4 

Inflammatory mediator 

regulation of TRP channels 

5.5E-2 8 1.4 

Glycolysis/gluconeogenesis  8.6E-3 7 1.2 

Steroid hormone 

biosynthesis 

3.0E-2 7 1.2 

Chemical carcinogenesis  3.8E-2 7 1.2 

Glucagon signalling  5.4E-2 7 1.2 

Amoebiasis  9.7E-2 7 1.2 

Metabolism of xenobiotics 

by cytochrome P450 

2.9E-2 6 1.1 

Hematopoietic Cell lineage 7.7E-2 6 1.1 

Aldosterone synthesis and 

secretion  

8.3E-2 6 1.1 

ECM-receptor interaction  9.0E-2 6 1.1 
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Protein digestion and 

absorption  

9.0E-2 6 1.1 

Retinol metabolism 9.3E-2 6 1.1 

ABC transporters  3.5E-2 5 0.9 

Tyrosine metabolism 8.8E-2 4 0.7 

Mineral absorption  9.9E-2 4 0.7 

Nitrogen metabolism 7.6E-2 3 0.5 

Arginine biosynthesis 9.2E-2 3 0.5 

Cytokine-cytokine receptor 

interaction 

6.6E-2 12 2.1 
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Table 4. Functional Annotation of functional categories. A total of 541 genes were annotated using the Up_keywords 
database/reference. The majority of genes taken from the input gene list were mapped to membrane functional annotation. 
 

Term Genes P-value 

Membrane  230 2.6E-2 

Phosphoprotein 199 6.9E-2 

Glycoprotein 193 1.0E-26 

Signal 176 5.0E-12 

Disulfide bond 153 4.4E-19 

Cytoplasm 124 2.8E-2 

Cell membrane 102 9.9E-2 

Secreted 101 7.2E-18 

Metal-binding 99 2.3E-2 

Transport 63 7.0E-3 

Hydrolase  51 4.5E-2 

Calcium 42 8.7E-6 

Developmental 

protein 

37 6.5E-3 

ER 37 9.0E-3 

Lipoprotein 31 7.2E-3 
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Oxidoreductase 30 7.4E-4 

Ion transport  29 9.7E-4 

Cell junction  25 3.0E-4 

Extracellular 

matrix 

21 9.9E-7 

Iron 21 7.3E-4 

Immunoglobulin 

domain 

20 2.3E-2 

Protease 20 6.2E-2 

Signal-anchor  19 1.9E-2 

Cleavage on pair of 

basic residues  

18 1.0E-4 

Lipid metabolism  18 2.3E-2 

Heme 14 2.4E-4 

Ion channel 14 6.1E-2 

Actin-binding  13 1.8E-2 

Muscle protein 12 3.1E-8 

Monooxygenase 12 3.5E-4 

GPI-anchor 12 5.4E-4 
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Inflammatory 

response 

12 1.7E-3 

Hormone 11 2.6E-4 

Zymogen 11 3.2E-2 

Microsome  10 4.4E-3 

Wnt signalling 

pathway  

10 2.5E-2 

NAD 10 3.2E-2 

Lipid-binding  10 4.6E-2 

Glycosyltransferase  10 9.0E-2 

Pyrrolidone 

carboxylic acid 

9 7.5E-5 

Symport 9 5.1E-3 

Sodium transport  9 5.7E-3 

Sodium 9 8.1E-3 

Calmodulin-

binding  

9 1.8E-2 

NADP 9 5.9E-2 
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Sarcoplasmic 

reticulum  

8 2.8E-5 

LIM domain 8 1.9E-3 

Carbohydrate 

metabolism 

8 6.4E-3 

Protease inhibitor  8 2.6E-2 

Growth factor 8 3.2E-2 

Metalloprotease 8 5.5E-2 

Heparin-binding 7 6.9E-3 

Intermediate 

filament 

7 8.9E-3 

Collagen 7 1.6E-2 

Hydroxylation 7 1.9E-2 

Keratin 7 8.8E-2 

Integrin 6 8.4E-3 

Lipid degradation 6 9.1E-2 

Mysosin 5 2.7E-2 

Chloride  5 7.6E-2 

Keratinization  4 2.3E-2 
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Lipid droplet  4 3.7E-2 

Serine esterase  4 5.0E-2 

Antiport 4 5.4E-2 

Amino-acid 

transport  

4 5.7E-2 

Amidation 4 7.4E-2 

Diabetes mellitus 3 5.4E-3 

Urea cycle 3 1.1E-2 

Thick filament  3 3.2E-2 

Oxygen transport  3 5.4E-2 

Oxidation 3 6.1E-2 
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Figure 4. Frequency of genes enriched in the functional gene ontology. Bar 
chart representation of functional categories as indicated by Up_keywords
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Table 5. Functional annotation of Gene Ontology as annotated by reference to Goterm_CC_Direct. A total of 508 genes 
were mapped to the 560 gene reference list in DAVID.  

Term Genes P-value 

Membrane 228 9.9E-6 

Cytoplasm  188 7.1E-2 

Plasma membrane  140 9.2E-2 

Extracellular exosome  118 3.3E-9 

Extracellular region 105 3.4E-16 

Extracellular space 97 4.1E-17 

Integral component of plasma membrane  47 1.4E-3 

ER 45 5.0E-2 

Cell surface 29 3.7E-3 

Proteinaceous Extracellular matrix 28 5.9E-8 

Cell junction  28 3.3E-2 

Extracellular matrix 25 7.4E-7 

Neuronal cell body 22 3.8E-2 

Dendrite 20 5.2E-2 

Apical plasma membrane 19 2.3E-3 

Z disc 17 1.3E-7 
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Neuron projection  17 7.9E-2 

Sarcolemma 16 3.8E-7 

Anchored component of membrane 12 1.1E-3 

Myofibril 10 6.3E-7 

Sarcoplasmic reticulum  10 1.6E-5 

Sacromere 9 3.7E-6 

Vesicle 9 6.3E-2 

T-tubule  8 6.3E-4 

Collagen trimer 8 5.6E-3 

Receptor complex  8 5.9E-2 

Perikaryon 8 9.4E-2 

Striated muscle thin filament 7 7.2E-7 

I band 7 2.6E-5 

Cell periphery  7 9.9E-3 

Lateral plasma membrane 6 1.3E-2 

Lipid particle 6 2.8E-2 

Brush border membrane 6 3.4E-2 

Organelle membrane  6 9.6E-2 

M band 5 2.2E-3 
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Sarocplasmic recticulum membrane 5 9.9E-3 

Neuromuscular junction  5 8.3E-2 

Sarcoplasmic reticulum lumen 3 6.3E-3 

Muscle myosin complex  3 9.3E-3 

Junctional membrane complex 3 1.7E-2 

Membrane-bounded vesicle 3 4.3E-2 

Myosin filament  3 4.3E-2 

Interstitial matrix  3 7.0E-2 

Inhibin B complex  2 5.1E-2 

ATP-binding cassette (ABC) transporter 

complex  

2 5.1E-2 

Chromaffin granule  2 7.5E-2 
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Figure 5. Frequency of genes enriched in functional gene ontology from 
Goterm_CC_Direct.  Majority enriched genes belonged to membrane, cytoplasm, 
plasms membrane and extracellular exosome.
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3.1 Differentially expressed tight junction and leukocyte trans-

endothelial migration (LTM) genes are altered by METH in the 

distal colon. 

Tight junction, along with leukocyte trans-endothelial migration 

proteins play a key role in intestinal barrier integrity in METH use 

[Persons et al., 2018; Sajja et al., 2016]. To assess the role of tight 

junctions in the colon, a total of 10 tight junction genes were analysed, 

along with GO terms derived from KEGG pathway annotation: 

leukocyte trans-endothelial migration (LTM), and Inflammatory 

mediator regulation of TRP channels. Tight junction (TJ) genes (Figure 

4) were found to be differentially expressed by METH. Actinin alpha 2 

(actn2) showed a 30-fold decrease, whereas Mylpf was found at (-) 81-

fold. Also, Ctnna3, a gene classified within the LTM category (DAVID 

gene ontology) was found to be significantly upregulated in the colon 

tissue.  
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Figure 6. Tight junction genes. Diagram of the relationship between tight junction proteins and cell-cell adhesion. Claudins, occludins and 
JAMs are responsible for inhibiting permeability from the extracellular matrix (ECM) into the blood stream. D: Distal colon, I: Ileum, M: 
medial colon, P: proximal colon, R: rectum, A: anus.
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Figure 7. Leukocyte trans-endothelial migration (LTM). The perturbation of tight 
junctions is intrinsic to the collaboration between leukocytes and endothelium 
[Schimmel et al., 2017]. Several tight junction genes, claudin-1 and claudin-15, along 
with a myosin gene (Mylpf), were shown to be enriched in the LTM pathway from 
input gene list. Broken orange circles refer to genes found to be enriched within gene 
ontologies. 
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3.2 METH causes differential gene expression changes in serotonergic 

synapses. 

Serotonergic systems are known to contribute to a range of disorders and 

diseases, including insomnia, anxiety, depression, Parkinson’s disease and 

Alzheimer’s disease [Charnay et al., 2010]. METH has previously been reported 

to play a role in neurotoxicity of serotonergic axon arbours [Sekine et al., 2006] 

of mature neurons. Several genes, indicated by KEGG, including Alox12 (Lox), 

Alox15, Cacna1s (VGCC), Plcb4 (PLC), Prkcb (PKC) and Tph1 were shown to 

be associated with serotonergic synapses. In addition, four cytochrome P450 

genes were enriched to the serotonergic synapse pathway. Cacna1s, calcium 

voltage-gated channel subunit alpha 1S, is involved in excitation-contraction 

coupling in skeletal muscle. In this KEGG pathway, Cacna1s was found to be 

involved in the post-synaptic neuron.  Plcb4, known as phospholipase C beta 4, 

plays a role in the selective serotonin reuptake inhibitor pathway, and also is 

known to be a circadian gene which has been shown to be involved in alcohol 

dependence [Kovanen et al., 2010]. Prkcb was also found to be attributed to the 

repression of caspase 3, which leads to neuroprotection.  
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Figure 8. KEGG pathway of serotonergic synapses. KEGG pathway map indicating the 
genes enriched in this pathway. The majority of genes (indicated by broken orange circles) 
were found to be enriched in the postsynaptic cell. 
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3.3 Gene ontology of METH shows genes enriched in cytokine-cytokine 

receptor interactions. 

Cytokine-cytokine receptor interactions, and their networks, play crucial 

roles in inflammation [Dong et al., 2017]. Interestingly, this cytokine and 

chemokine response might lead to neuroinflammation, and also psychiatric 

manifestations. This is important to understand in the context of METH, 

since METH is known to lead to changes in psychiatric behaviour and 

immune modulation in the brain. Enriched in the gene list include, Ccl8, 

Ccr10, Cxcl5, Cxcl9, IL1b, IL2 receptor, beta chain, IL20 receptor beta and 

tumour necrosis factor receptor superfamily, member 19 (Tnfrsf19). Genes 

were assessed in KEGG pathway. Specifically, KEGG pathways breaks 

down each subfamily within the cytokine-cytokine receptor interaction map 

as:  

• Chemokine – CC and CXC subfamilies, 

• Class I and II helical cytokines, 

• IL-1-like cytokines 

• TNF family, and, 

• TGF-b family 

KEGG cytokine-cytokine receptor term brought back a total of 12 genes 

(Table 6) associated to this pathway, with a p-value calculation of 6.6x102.  
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Table 6. Summary of differentially expressed genes (DEG) from METH 

gene set. DEGs are shown along with fold change corresponding to unique 

pathway and subfamily class as mapped by DAVID bioinformatics 

resource.  

Pathway Sub-type  Gene Fold-
change  

Chemokines CC 
subfamily 

CCL8 -1.50 

CCR10 +1.95 

CXC 
subfamily 

CXCL5 -3.95 
CXCL9 +1.61 
  

Class I 
helical 
cytokines 

g chain 
utilising  

IL2RB -1.03 

IL4-like CSF2RB -0.63 
Prolactin 
family  

 
CSF3R 

-1.65 

LEP +2.92 

Class II 
helical 
cytokines 

IL10/28-
like 

IL20RB -1.03 

IL-1-like 
cytokines 

- IL1B -1.71 

TNF family - TROY 
(tnfrsf19) 

-1.69 

TGF-b 
family 

 INHBA 
(inha) 

-1.35 
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Figure 9A. Cytokine-cytokine receptor interaction map, highlighting the chemokine 
subfamilies: CC, and CX. In addition, class I helical cytokines (prolactin family) 
indicates Leptin (LEP) in this gene set. KEGG pathways were generated from DAVID 
Bioinformatics Resource, 6.8. Broken orange circles represent genes differentially 
regulated in this study. 
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Figure 9B. Class II helical cytokines (IL20, and IL-1-like cytokines (IL1B and IL1R2) 
were shown to be enriched in the overall DEG set. Broken orange circles represent 
genes differentially regulated in this study. 
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Figure 9C. TNF family-related genes. The TNF family and TGF-b family genes are 
indicated in broken orange circles. TNF: tumour necrosis factor; TROY: tumour 
necrosis factor receptor superfamily, member 19 (tnfrsf19); INHBA: inhibin beta-A 
(inha). Broken orange circles represent genes differentially regulated in this study. 
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3.4 Genes associated with METH are enriched across several ontological 

terms in Gorilla  

Using Gorilla gene ontology software, results indicated that the majority of 

genes belonged to the metabolic process (Table 3). In addition, significant 

gene enrichment was seen in response to bacterium (GO: 0009617), fatty acid 

metabolic process (GO: 0006631), neuropeptide signalling pathway 

(GO:0007218), and blood vessel development (GO:0001568). Within each 

ontological term described by Gorilla, a significant proportion of genes was 

concentrated in the fatty acid metabolic process (19 genes), response to 

bacterium (22 genes), and monocarboxylic acid metabolic process pathways 

(22 genes). 

 

Table 6. Biological process as retrieved from the Gorilla GO. Gene expression using 
set criteria using Gorilla, showing the major biological processes with Gorilla’s 
recognition of 598 genes 
 

GO Term Description P-value FDR q-value N b 
GO:0006631 
 

fatty acid metabolic 
process 
 

1.45E-04 
 

7.33E-01 
 

580 19 

GO:0001568 Blood vessel development  9.72E-5 4.97E-1 580 3 
GO:0001890 
 

placenta development 
 

4.30E-04 
 

1.00E+00 
 

580 2 

GO:0009617 
 

response to bacterium 
 

4.73E-04 
 

7.95E-01 
 

580 22 

GO:0007218 
 

neuropeptide signalling 
pathway 
 

6.60E-04 
 

6.65E-01 
 

580 5 

GO:0032787 
 

monocarboxylic acid 
metabolic process 
 

9.68E-04 
 

8.14E-01 
 

580 22 

GO: 
0042738 

Exogenous drug catabolic 
process 

9.58E-4 7.0E-1 580 6 

FDR q-value: correction of the p-value for multiple testing using Benjamini and Hochberg 
method 
N: total number of genes 
b: total number of genes associated with specific GO term 
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Figure 10. GO term response to bacterium. Bar chart of GO term response to 
bacterium and enriched genes containing fold-change values. Corresponding table 
available in Appendix 1. 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. Go term fatty acid metabolic process. Bar chart of GO term Fatty acid 
metabolism process and enriched genes containing fold-change values. Corresponding 
table available in Appendix 1 
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Figure 12. GO term neuropeptide signalling pathway. Bar chart of GO term 
Neuropeptide signalling pathway and enriched genes containing fold-change values. 
Corresponding table available in Appendix 1 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 13. Go term monocarboxylic acid metabolic process. Bar chart of GO term 
monocarboxylic acid metabolic process and enriched genes containing fold-change 
values. Corresponding table available in Appendix 1 
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Figure 14. GO term blood vessel development. Bar chart of GO term blood vessel 
development and enriched genes containing fold-change values. Corresponding table 
available in Appendix 1 
 

 

 

 

 

 

 

 

 

 

 
Figure 15. GO term placenta development. Bar chart of GO term placenta 
development and enriched genes containing fold-change values. Corresponding table 
available in Appendix 1 
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Figure 16. GO term exogenous drug catabolic process. Bar chart of GO term 
exogenous drug catabolic process and enriched genes containing fold-change values. 
Corresponding table available in Appendix 1 
 

 

 

 

2.1
2.2

3.3

2.4
2.6

5.1

0

1

2

3

4

5

6

Cyp2c55 Cyp2d12 Cyp2c69 Cyp2c44 Cyp2d9 Cyp2e1

F
O

L
D

 C
H

A
N

G
E

GENE

Exogenous drug catabolic process



85 

 

 

Figure 17. Flow chart and heat map indicating biological process. Derived from Gorilla gene ontology, heat map indicating most 
enriched ontologies which 598 genes were mapped to. Of particular interest are those highly significant (indicated by orange colour 
shade) gene terms.
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Table 7. Molecular function as annotated by Gorilla. GO terms associated to 
hormone activity, receptor activity and monooxygenase activity showed genes enriched 
in these categories. Genes associated with each GO term are listed below each 
description in a separate row. 
 

GO term Description P-value 
 

GO:0005179 hormone activity 2.30E-06 
 

Insl5, Gal, Ppy, Retn, Fndc5, Retnlb, Sst, Adipoq, Grp, Lep 
 

GO:0048018 receptor ligand activity 1.37E-04 
 

Gal, Klk1b4, Ppy, Adipoq, Cxcl9, Cmtm8, Lep, Insl5, Fgf10, Sectm1a, Nov, Fndc5, Retn, Gdf15, Retnlb, 
Sst, Nenf, Grp 

 
GO:0004497 monooxygenase activity 2.90E-04 

 
Cyp2c55, Cyp2d12, Cyp2c69, Cyp2c44, Cyp2d9, Cyp2e1 

 
 

GO:0030545 receptor regulator activity 7.72E-04 
 

Gal, Klk1b4, Adipoq, Cxcl9, Cmtm8, Lep, Insl5, Fgf10, Sectm1a, Nov, Retn, Fndc5, Retnlb, Gdf15, Sst, 
Mrap, Nenf, Grp 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 18A. Flow 
chart and heat map 
indicating molecular 
function. Left: 
Enriched genes in 
Gorilla associated to 
molecular function 
gene ontology. 
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Figure 18B. Overlapping genes from DEG list. Venn diagram showing common 
genes found between hormone activity, receptor ligand activity and receptor 
regulatory activity gene ontology terms. A total of 8 genes were found to have 
overlapping roles across (1) receptor ligand activity, (2) hormone activity, and (3) 
receptor regulator activity.  

 
 
 
 
 
 
 
 
 
 
 
 

 

Receptor 
ligand 

receptor

Receptor 
REGULATOR 

ACTIVITY

Hormone 
activity

Gal
Ppy
Retn
Fndc5
Retnlb

Adipoq
Lep
Sst

Galnin: Gal 
Pancreatic polypeptide: Ppy 
Resistin: Retn 
Fibronectin type III domain containing 5: Fndc5 
Resistin-like beta: Retnlb 
Adiponectin, C1Q and collagen domain containing: Adipoq 
Leptin: Lep 
Somatostatin: Sst 
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3.5 METH induces changes to genes enriched in the molecular function 

GO:0004497 monooxygenase activity category. 

 

Gorilla Gene Ontology and KEGG pathways mapped a total of seven genes 

(Table 7 and 8; figure 16 and 19) to the monooxygenase activity category. By 

definition, the monooxygenase activity gene ontology category is marked by 

the catalysis of the incorporation of one atom from molecular oxygen into a 

compound, and the subsequent reduction of a second oxygen atom to water.  

 
Table 8. Gorilla GO terms associated to cytochrome P450. Derived from Gorilla 
gene ontology, seven genes were enriched in the monooxygenase activity category.    
 

Cyp 
sub-

family 

Gene Fold 
change 

Cyp2 C55 +2.1 
C69 +3.3 
C44 +2.4 

Cyp2d D12 +2.2 
D9 +2.6 

Cyp4f F14 +2.1 
Cyp2e E1 +5.1 

 

Three genes were related to the CYP2C sub-family, two genes to the CYP2D 

sub-family, one gene within the CYP4F subfamily, and one gene to the 

CYP2E sub-family. Within the mouse genome, and genome organisation, 15 

functional CYP2C genes account for this cluster, whereas only 4 are defined in 

humans; making it futile to compare orthologs between these two species 

[Scheer et al., 2012]. In addition, two genes, Cyp2d12 (>2-fold) and Cyp2d9 

(>2-fold), belonged to the Cyp2d gene cluster. In mice, nine Cyp2d homologs 

exist: Cyp2d9, 2d10, 2d11, 2d12, 2d13, 2d22, 2d26, 2d34 and 2d40 [Ning et 

al., 2015]. Cyp2d12 possess a trans-membrane topology and is expressed in 
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adult colon. Furthermore, DAVID (KEGG pathway gene enrichment), mapped 

to the metabolism of xenobiotics by cytochrome P450, indicated Cytochrome 

P450, family 2, subfamily e, polypeptide 1, Cyp2e1, also known as 

cytochrome P450 2E1, throughout a series of xenobiotic pathways. Other 

cytochrome P450 molecules were not mapped onto the KEGG pathway. 

Cyp2e1 is a major enzyme that catalyses ethanol oxidation in the CNS [Heit et 

al., 2013]. In addition, Cyp2e1 is acted upon by inflammation and is highly 

conserved across species which signifies its relevance [Heit et al., 2013].  
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Figure 19. KEGG pathway map of metabolism of xenobiotics via cytochrome 
P450. Cyp2e1, known as cytochrome P450 2E1, was found to be associated to a number 
of metabolised xenobiotics. Broken orange circles refer to those enriched genes found 
in this study. 
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3.6 METH induces changes to receptor regulatory, receptor ligand and  

hormone activity. 

 

Hormone activity and levels can be significantly altered in chronic drug abuse, 

which can also lead to changes in the HPA axis [Zuloaga et al., 2015]. 

Moreover, galanin (gal), and galanin receptor-1 (GalR1) genes are upregulated 

in the locus coeruleus (LC) following opiate withdrawal [Picciotto et al., 

2008]. Leptin, considered a hormone, is involved in regulating food and also 

drug-related behaviour [Cota et al., 2006]. In addition, leptin has been shown 

to play a role in appetite reduction or induction, and also serves a dual role as a 

hormone and cytokinel thus, linking the immune and neuroendocrine systems 

[Gruzdeva et al., 2018]. A total of 8 genes were found to be expressed across 

three GO categories: receptor regulation, receptor ligand and hormone activity 

(Table 2) Gal (>2 fold), encoding a neuroendocrine peptide - a gene with 

known expression in the CNS, PNS, along with the gastrointestinal tract, 

adrenal gland and pancreas. Retn, resistin, (>4 fold) is a gene that plays several 

roles in inflammation, glucose homeostasis, and cardiovascular disease [Park 

et al., 2013]. In addition, Retnlb (resistin like beta) (>6 fold) encodes a colon 

and small intestine-specific cysteine rich protein which has a relation to the 

IL-4 mediated signalling pathway, along with microglia activation during 

neuroinflammatory events. Lep, leptin, was found to be highly expressed (>7 

fold) in colon tissue. Ppy (pancreatic peptide) was also found to be expressed 

in colon tissue. Ppy encodes a member of the neuropeptide Y (NPY) family of 

peptides. This gene encodes for a preproprotein which is synthesised in the 

pancreatic islets of Langerhans and are subsequently proteolytically processed 

to two peptides. Fibronectin type II domain-containing 5 (Fndc5) was also 
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significantly upregulated (>2 fold) in mouse colon, along with Adipoq (>5 

fold), known as adiponectin, c1q and collagen domain containing. 

Somatostatin, Sst, was found to be upregulated (>2 fold) in colon tissue. 

 

3.7 Genes involved in placenta and blood vessel development are 

differentially expressed in a chronic METH withdrawal mouse model. 

 

Placenta development and simultaneous drug use can impact both the 

developing fetus and newborn. In addition, birth defects can occur with illicit 

drug use in females, and cocaine is known to cross the placenta, constricting 

blood vessels, and subsequently reducing blood flow to the fetus [Sachdeva et 

al., 2009]. The implications of METH and its abuse by pregnant individuals 

may lead to fetus development deficiencies, exemplified by a growing 

evidence of literature which suggests that amphetamines, like METH, target 

both norepinephrine and serotonin transporters located in the placental 

syncytiotrophoblast [Ganapathy et al., 2011; Sachdeva et al., 2009]. In this 

work, colon tissue was analysed for DEG changes, and the involvement of a 

dysregulated colon and placental development in a chronic METH withdrawal 

mouse model is yet to be fully described. Gorilla GO placenta development 

(GO:0001890) biological process also showed two DEGs; Cdx2 (+10.2-fold-

change) and Lep (+7.6-fold-change). Cdx2 encodes a caudal type homeobox 2 

transcription factor, which is involved in allantoic development, The Cdx2 

homeobox gene has multiple functions, including trophectoderm specification, 

antero-posterior patterning and determination of intestinal identity [Benahmed 

et al., 2008]. In addition, Cdx2 is the first homeobox protein to be expressed 

extra-embryonically in order to specify the trophectoderm [Benahmed et al., 
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2008], and is considered the ‘master gene’ to initiate intestinal identity 

[Benahmed et al., 2008].  

 

3.8 METH effects genes involved in the neuropeptide signalling pathway 

(GO: 0007218) 

The neuropeptide signalling pathway is described as a series of molecular 

signals which are generated in response to a peptide neurotransmitter binding a 

cell surface receptor. Moreover, neuropeptides are signalling molecules that 

serve to regulate physiological processes in animals [Elphick et al., 2018]. 

Neuropeptide signalling pathway might be important in METH use since this 

particular pathway, and associated neuropeptides, may be linked to drug 

relapse, and drug taking behaviour. The secondary importance of better 

understanding this pathway in METH abuse is how to develop therapeutic 

outcomes for METH addicts, utilising neuropeptide pathways. The highest 

fold-change gene throughout the set of genes enriched in the neuropeptide 

signalling pathway was gastrin releasing peptide (Grp), with a fold-change of 

+3.6. Galanin, Gal, (+2.6) Pancreatic peptide, Ppy, (+3.0) and galanin receptor 

2, Galr2, (+2.3) showed a slightly lower expression from the overall genes 

enriched in this ontology term. 
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Table 9. GO terms of enriched genes in the neuropeptide signalling network. 
Summary and description of neuropeptides and fold-change. 
 

Gene 
 

Full name Function Expression 
(fold) 

Gal Galanin Modulation of processes: cognition, 
memory, sensing, pain processing, 
neurotransmission, hormone secretion 
and feeding behaviour [Kim et al., 2007]. 

+2.6 

Ppy Pancreatic polypeptide  Expressed by endocrine cells of the 
digestive system [Holzer et al., 2012]. 

+3.0 

Galr2 Galanin receptor-2 Mainly mediates stimulatory effects of 
galanin on neurotransmitter release; 
coupled to the phospholipase C pathway, 
intracellular calcium mobilisation and 
calcium – dependent Cl- channel 
activation [Ogren et al., 2010]. 

+2.3 

Grp Gastrin-releasing peptide  Gastrin releasing peptide, along with its 
receptor, is expressed in epithelial cell 
lining in the colon during gut 
development [Tell et al., 2011]. GRP and 
its receptor are upregulated in colon 
cancer [Ruginis et al., 2006]. GRP is 
known to regulate numerous 
physiological processes/responses in the 
GI tract including altering smooth muscle 
contractility, regulating secretion of the 
exocrine pancreas, and influencing 
release of other GI peptide hormones 
[Carroll et al., 2002]. 

+3.6 
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4.0 Discussion  

The obvious strength of gene ontologies (GO) rests within its capability to 

access around 40,000 terms across three broad ontologies: 1) molecular 

function, 2) biological process and 3) cellular component [Huntley et al., 2014]. 

Gene expression data require careful analysis in order to provide output that is 

both relevant and powerful [Dalman et al., 2012]. The incorporation of Gene 

Ontology (GO) annotation, p-value and fold change cut-offs and Bonferroni 

corrections [Dalman et al., 2012] all lead to a decrease in expression data, 

enriching and empowering search criteria. The aim of this work was to 

determine associated gene expression changes in the mouse distal colon from 

the chronic administration of a psychoactive drug – METH – followed by a 

withdrawal period. The purpose of understanding how METH affects colon 

gene expression is more specifically linked to how disruption to the colon may 

be linked to communication with the brain, from a chronic METH dose, and 

how this might lead to heightened neuro-inflammation. This study sought to 

interpret NGS colon data which could help better understand the role of the 

colon, impacted by a chronic METH dose, might play in a chronic drug model; 

and, how this role could be linked to alterations in neurological behaviour, such 

as the relationship between the gut-brain axis (GBA). Furthermore, gene 

ontological software assisted in building several informative ‘maps’ indicating 

the enrichment of groups of genes specific to one, or more, biological, 

functional and/or molecular function processes (Table 3; Table 4; Table 5; Table 

8; Figure 4; Figure 5). 
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In this study, a stringent criterion was utilised in order to study only genes with 

a differential expression of ³ 2-fold for analysis (Figure 3). Further, p-values 

were set at p = 0.003 to reduce gene list size, ensuring that the data analysis 

represented genes with significant associations with the research in question. To 

our knowledge, these results are the first to report the effects of METH on a 

multitude of differentially expressed genes (DEG) in the mouse distal colon. We 

found the majority of significantly expressed gene changes in processes 

associated with various cytochrome P450 genes and several metabolic processes 

(Figure 19; Figure 13; Table 9). A total of 34 genes: ³ 2-fold, 32 genes ³ 3- 

fold, 11 genes ³ 4-fold, 9 genes ³ 5-fold, 4 genes ³ 6-fold, 2 genes ³ 7-fold, 1 

gene ³ 8-fold and 4 genes above 10-fold were mapped to various gene 

ontological terms using, namely, DAVID bioinformatics and Gorilla gene 

ontology. The METH dose chosen for this animal model (0.5mg/kg-7mg/kg) 

reflects an escalating dose pattern that is usually observed in human METH 

addicts. In our model, escalating METH dose was administered in order for mice 

to acclimatize to the dose, wherein a three-day withdrawal period would allow 

time for withdrawal experience. 

 

Furthermore, a search within NCBI using ‘Methamphetamine AND colon’ 

brought back 11 PubMed results. To our knowledge, this study represents the 

first critical analysis of understanding how METH impacts the colon, 

specifically the distal colon, using NGS coupled with a gene ontological 

bioinformatics approach. However, a more holistic experimental approach to 

METH will be required in order to specify any significant connections between 

the colon and CNS in a mouse model. Moreover, gene expression profiles across 

several organs, including the brain, might provide invaluable data as to the role 
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of chronic METH in neuro-inflammation, as well as how this may impact 

behaviour. 

 

4.1 Tight junctions and METH 

Our data also suggests the involvement of tight junction genes in this chronic 

METH model (Figure 6). Previous data on the effects of METH on mouse colon 

has shown that self-administration of METH saw a reduction of protein claudin-

1 and ZO-1, indicating an increase in colon permeability. From our input of 602 

genes, we found a significant increase in claudin-15 (³ 2-fold), whilst observing 

a significant decrease in claudin-1 (-3.7-fold). This supports previous findings 

that have shown a marked reduction of protein claudin-1. Claudin-1 is a major 

tight junction protein (TJ) which is important for the correct maintenance of 

epithelial cell polarity [Huo et al., 2009], along with being involved in various 

cancers and inflammatory states [Forster, 2008]. We also found insignificant 

expression patterns with other tight junction genes such as Cldn23 (+0.73-fold) 

and Cldn-8 (-0.62-fold). The significance of tight junction proteins in 

endothelial cells is their necessary function to a create physical barrier that not 

only maintains adhesion of ECs, but also control leukocyte migration through 

striking a balance between several signalling molecules [Cerutti et al., 2017]. In 

general, claudins are major tight junction components [Samanta et al., 2018]. 

METH, in this escalating dose mouse model may alter tight junctions, during 

the withdrawal period. The apparent fold-increase of claudin-15 could be 

associated with the repair of tight junction permeability, as the chronic METH 

dose period was followed by three days of drug withdrawal. a-T-catenin 

(ctnna3) was found to be upregulated in our study and related to the KEGG 

pathway leukocyte trans-endothelial migration (Figure 7). Recently, a-T-

catenin was described as being expressed in the cerebellum, heart and skeletal 
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muscle and testis [Vite et al., 2015], with a role in cell adhesion [Ramoni et al., 

2009]. Interestingly, a-T-catenin is associated to the cadherin catenin complex, 

which makes up the core of the adherens junction (AJ) [Wickline et al., 2016]. 

Prior work has shown the role of a-T-catenin as an actin-binding a-catenin 

which couples the adherens junction to the actin cytoskeleton [Wickline et al., 

2016]. Our results confirm that METH plays a role in in regulating a-T-catenin. 

This increased expression in our chronic METH model could serve as 

preliminary data which suggests a-T-catenin, along with tight junctions, play 

important roles in adhesion of epithelial cells. Furthermore, the upregulation of 

a-T-catenin could be a response to a ‘leaky gut’, from colonic bacteria.  

Collectively, METH does play a role in altering several tight junction genes in 

the colon. However, obtaining protein expression profiles, juxtaposed to gene 

expression profiling in not only colon, but also brain tissue would serve as a 

robust comparison with other METH studies, along with providing vital 

information as to the relationship between tight junction expression, the CNS, 

and psychiatric behaviour. These should be studied in the context of both acute 

and chronic METH use, followed by drug withdrawal, as to ascertain the degree 

of similarity and/or difference in tight junction expression in inflammation. 

 

4.2 METH involvement in Serotonergic synapses  

Serotonergic systems contribute to several disorders and diseases, including 

insomnia, anxiety, depression, Parkinson’s disease and Alzheimer’s disease 

[Charnay et al., 2010]. In this study, alox12 (-1.15-fold), alox15 (-1.20-fold), 

cacna1s (-3.60-fold), plcb4 (-1.13-fold), prkcb (-1.62-fold) and tph1 (+1.04-

fold) showed differential gene expression (Figure 8). Alox12 and alox15 are 

both lipoxygenases, enzymes that are involved in oxidase polyunsaturated fatty 

acids and also which play roles in inflammation and oxidation [Singh et al., 
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2019]. In humans, alox12 is the predominant isoform of lipoxygenases, and 

produces 12-(S)-hydroxyeicosatetraenoic acid from arachidonic acid [Imai et 

al., 2017]. Significantly over-expressed, cacna1s (-3.60-fold) is involved in 

excitation and contraction in skeletal muscle. Little is known of cacna1s in 

METH studies, however previous work assessed METH and its impact on 

voltage-gated Calcium channels in an SH-SY5Y cell line which modelled 

dopaminergic neurons [Andres et al., 2015]. This work found that that a 

prolonged exposure of SH-SY5Y cells to METH led to up-regulation of the 

cacna1s gene. As a result, increases in L-type Ca2+ channels were observed. 

The long-term effects of this cacna1s upregulation has been attributed to 

neuronal death [Andres et al., 2015]. Our results of the cacna1s gene expression 

support this view, however, cannot be adequately compared due to differences 

in METH dose, study design and cell type being investigated. However, the over 

3-fold expression of the cacna1s gene in this study might suggest that a chronic 

METH plays a role in neuronal damage. Plcb4 (-1.13-fold), known as 

phospholipase C Beta 4, was shown, according to KEGG pathways, to be 

involved in calcium signalling. Little is known about Plcb4 and its role in 

METH, however due its ability to act as a second messenger and assist in the 

regulation of intracellular calcium stores, Plcb4, and its downregulation may be 

involved in calcium signalling processes.  
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4.3 Cytokine-cytokine receptor interactions caused by METH 

 

Our results show that distal colon cxcl9 (³ 3-fold) and cxcl5 ( £15-fold) were 

significantly impacted upon by chronic METH withdrawal in our mouse model 

(Table 6). Highest expression was seen with slc9a3 (88.50-fold), 

sodium/hydrogen exchanger 3 – also known as NHE3. Slc9a3 deficient mice 

have previously been reported to develop spontaneous colitis [Johansson et al., 

2014]. In addition, Slc9a3 has also been demonstrated to have a critical role in 

both sodium (Na+) and fluid absorption in the intestine, evident from NH3-/- 

(nullified) mice experiencing chronic diarrhoea [Engevik et al., 2013]. The high 

Slc9a3 gene expression could be due to an impaired expression caused by 

proinflammatory cytokines and/or bacteria [Laubitz et al., 2008]. Slc9a3 knock-

out mice showed a vast shift in colon gene expression. Furthermore, genes 

associated with this mouse knock-out were largely attributed to an exacerbated 

innate, adaptive immune and inflammatory response [Laubitz et al., 2008]. 

Another possibility for the high gene expression of Slc9a3 could be attributed 

to the action of short-chain fatty acids (SCFA) on colonic epithelial cell 

functioning [Musch et al., 2001]. Indeed, it has been shown that Slc9a3 was 

shown to be regulated by luminal SCFAs, which in turn was found to modulate 

Slc9a3 activity, and overall sodium (Na) absorption [Musch et al., 2001]. Other 

work has found that METH self-administration in mice elevated a-synuclein 

whilst reducing production of parkin, tyrosine hydroxylase (TH) and DbH 

(dopamine-b-hydroxylase) in the myenteric plexus of the distal colon [Flack et 

al., 2017]. Interestingly, a period of forced abstinence returned of all three 

METH biomarkers to control levels [Flack et al., 2017]. In this work, however, 

dbh was only over expressed slightly by +1.5-fold. Dbh is involved in 
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converting dopamine into norepinephrine in noradrenergic neurons [Gaval-

Cruz et al., 2012], and this enzyme plays as central role in the regulation of 

ration of dopamine and norepinephrine [Okahisa et al., 2014]. The +1.5-fold 

change seen in this chronic METH model may be due to the increased 

concentration of neurotransmitters such as dopamine, serotonin and 

norepinephrine, from the presence of METH. An increase in dopamine-b-

hydroxylase could signify an increased conversion of dopamine to 

norepinephrine in the colon tissue. The CXCR3 ligand, Cxcl9, plays a role in 

Ulcerative Colitis (UC) [Chen et al., 2017; Elia et al., 2018]. In this work, Cxcl9 

was upregulated (above +3-fold). Cxcl9, in the colon, is increased in response 

to inflammation [Trivedi et al., 2018]. Its role in chronic METH use has yet to 

be understood. Under normal physiological conditions, the colon epithelium 

expresses basal levels of Cxcl9, and its chemokine receptor, CXCR3, has an 

important role to play during leukocyte recruitment to an inflamed intestine 

[Trivedi et al., 2018]. The increased expression of Cxcl9 could be a consequence 

of local inflammation in the distal colon, which may be caused by the chronic 

METH dose used in this model (Figure 9A). Moreover, Cxcl5 (CXC chemokine 

ligand 5), also known as epithelial neutrophil-activating peptide-78 [Wang et 

al., 2016], revealed an expression of £15-fold, and is a chemokine which is 

known to bind to the chemokine receptor, CXCR2 [Koltsova et al., 2010]. Cxcl5 

is known to be produced by immune (neutrophils and monocytes) and vascular 

endothelial cells via NK-κB activation [Li et al., 2011; Wang et al., 2016]. The 

high gene fold-change could be attributed to one of several explanations. Firstly, 

its expression may be a response to microbial killing or tissue repair [Sepuru et 

al., 2014]. Secondly, Cxcl5 has been shown to be overexpressed in colon cancer, 

along with gastric and pancreatic cancer [Li et al., 2011]. Previous work has 

indicated that Cxcl5 was upregulated (above 27-fold) at a METH dose of 100µl 
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[Bortell et al., 2017]. This overexpression of Cxcl5 was associated with several 

gene networks involved in inflammation, and neuroactive ligand-receptor 

interactions [Bortell et al., 2017]. Furthermore, Cxcl5, along with MAP2K5 and 

GPR65, might play a role in neurological disease, from astrocytes exposed to a 

high METH dose [Bortell et al., 2017]. METH, after a chronic period, followed 

by drug withdrawal (this study) may induce Cxcl5 expression in the colon due 

to inflammation brought on by an escalating METH dose. However, further 

analysis on protein expression studies is required to determine its role in vivo.   

 

4.4 Placental and blood vessel development 

Placental and blood vessel development (Table 7) and drug abuse use can have 

harmful effects both the developing fetus and newborn. Further, birth defects 

can occur with illicit drug use in pregnant females. The illicit drug, cocaine is 

known to cross the placenta, constricting blood vessels, and subsequently 

reducing blood flow to the fetus [Sachdeva et al., 2009]. In this study three genes 

were differentially expressed – cdx2 (+3.35-fold), wt1(+2.65-fold), and lep 

(+2.92) (Figure 14; Figure 15). Cdx2, claudal-type homeobox-2, is involved in 

trophectoderm development, and is also significant in the self-renewal of 

trophoblast stem cells which form the placenta [Vadakke-Madathil et al., 2019]. 

Moreover, cdx2 is known as the master regulator of murine trophoblast 

development and is also expressed in human trophoblasts [Knofler et al., 2019]. 

In this work, cdx2 was observed as significantly differentially expressed, and, 

according to gene ontologies mapped to placental and blood vessel 

development. Wt1, known as Wilms tumour 1 gene, functions as an instruction 

to make a zinc-finger transcription factor protein required for kidney and gonad 

development [Ambu et al., 2015], along with prenatal development of other 

organs, such as adrenal glands, heart and spleen [Ferretti et al., 2005]. Moreover, 
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wt1 gene is also necessary for correct embryogenesis [Scholz et al., 2011]. Lep, 

leptin gene, also known as placental leptin in this context, is also hypothesized 

to play a role in fetal growth and development [Tsai et al., 2015]. It has also 

been suggested that leptin levels might have an effect on fetal brain 

development, through the activation of pro-inflammatory cytokines [Valleau et 

al., 2014]. The implications of METH and its abuse by pregnant individuals may 

lead to fetus development deficiencies, exemplified by a growing evidence of 

literature which suggests that amphetamines, like METH, target both 

norepinephrine and serotonin transporters located in the placental 

syncytiotrophoblast [Ganapathy et al., 2011; Sachdeva et al., 2009]. However, 

in this work, the collective over expression of cdx2, wt1 and lep is yet to be 

clearly defined in METH animal models. It might be that the chronic METH 

dose, followed by a withdrawal period could impact a range of genes, including 

those studied here, which may lead to the proper development of the fetus. 

However, this would require further METH research in animal models, 

investigating a wider spectrum of genes involved in placental and blood vessel 

development. 

 

4.5 Neuropeptide signalling  

Our data also showed significantly high expression of the neuropeptide galanin 

(gal: +2.6-fold) (Figure 12; Table 10), a 29-amino acid highly conserved 

neuroendocrine peptide found in both the brain and gut [Kim et al., 2007]; 

which, apart from being distributed and expressed in the CNS is also present in 

the gastrointestinal (GI) tract [Benya et al., 1999]. In addition, galanin is 

secreted by enteric nerves which function to inhibit pancreatic exocrine and 

endocrine secretions, enable smooth muscle contraction and relaxation, and to 

modulate other peptide hormones [Benya et al., 1999]. In the rat gastrointestinal 
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tract, galanin, Gal, serves multiple roles such as regulating transmitter release, 

secretion and motility [Anselmi et al., 2005]. In this work, Gal expression was 

observed (+1.4-fold). However, little has been reported on the role of galanin in 

METH research. Galanin may be involved in the gut-brain communication 

during METH consumption, along with a potential role in neuroinflammation. 

Further, galanin might also serve a role in neuromodulation in drug addiction, 

however this has yet to be fully uncovered [Genders et al., 2020]. Interestingly, 

galanin receptor-2 (galr2) gene expression was observed as +2.3-fold change. 

Galr2 is found primarily in peripheral tissues, such as the gastrointestinal tract, 

skeletal muscle, heart, kidneys, and also in the CNS.  Activation of Galr2 

receptor leads to both anti-depressant and anxiolytic effects [Genders et al., 

2020]. With both gal and galr2 showing a similar gene expression profile, their 

involvement in chronic METH administration in this study may be linked to 

both mood and neuromodulation. Gastrin-releasing protein (GRP), fold-change 

of +3.6 in this study, is known to mediate gastric acid secretion in the gut [Shirey 

et al., 2019]. Gastric-releasing protein (or peptide) bind to G-protein coupled 

receptors [Pendharkar et al., 2017]. Moreover, this 27-amino acid peptide is 

involved in a number of cellular responses, including cell growth, proliferation, 

inflammation and angiogenesis [Park et al., 2017]. Grp has also been shown to 

improve intestinal barrier function, along with decreasing inflammation 

[Pendharkar et al., 2017]. In METH, the increased gene expression of grp might 

be involved in brain function, through its gut-brain axis relationship. Moreover, 

since grp is also reported to regulate emotions, memory and feeding behaviour, 

it may play a role in these processes in chronic METH. Ppy, 

(MAAACRCLSLLLLSTCVALLL) pancreatic polypeptide, belongs to the 

neuropeptide Y family [Hoyle, 2008]. Furthermore, Ppy is a hormone and is 

known to have communication between the gut and the brain, influencing the 
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gut microbiota whilst also regulating the CNS [Li et al., 2019]. As an expression 

of +3.0-fold was observed in this study, Ppy may be another molecule which 

maintains communication between the gut and brain during chronic METH and 

chronic METH withdrawal models. Overall, the involvement of neuropeptides 

– ppy, grp, gal, and galr2 - in METH may all contribute physiological functions 

in the colon. Expanding this view, it could also be that there is considerable 

cross-communication between the peripheral (PNS) and central nervous (CNS) 

systems via the expression of these neuropeptides and neuropeptide receptors. 

Further work should focus on a better understanding of this particular signalling 

pathway in METH. 

 

4.6 Bacterial responses to METH 

Our results processed in GO Gene Ontology Enrichment analysis and 

visualisation tool (Gorilla) database also revealed genes associated with 

bacterial response. We found 23 genes related to the GO:0009617: Response to 

bacterium (Figure 10; Figure 17). Interestingly, ang4, known as angiogenin 4, 

and whose product encodes a bactericidal/antimicrobial gut protein [Hooper et 

al., 2003] was found to be highly expressed in distal colon tissue (³ 12-fold). 

Angiogenin-4 expression is induced by the gut microflora bacteria, Bacteroides 

thetaiotaomicron [Hooper et al., 2003], and is expressed in Paneth cells in which 

Ang4 product mediates epithelial host defence against L. monocytogenes and E. 

faecalis [Nelson et al., 2005]. In mice, five ANG genes sit on chromosome 14, 

whereas only one ANG gene (chromosome 14) is present in humans [Sheng et 

al., 2015]. Resistin-like molecule beta (Retnlb: ³ 6-fold), represents the gene 

name for RELM-b, which is synthesised and secreted by goblet cells, as a 

homodimer [Bhatia et al., 2015]. RELM-b is induced by enteric bacterial 

colonisation and helminth infection [Bhatia et al., 2015]. Goblet cells are known 
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to secrete a range of molecules, including mucins, and resistin-like molecule 

beta and are highly expressed in serval disease settings such as inflammatory 

bowel syndrome (IBS) [Nair et al., 2008]. The presence of increased Retnlb 

gene expression in this mouse model could suggest defence against gram-

negative bacteria, thereby enabling protection of host tissues [Propheter et al., 

2017]. Lesser expression, above 2-fold, however below 4-fold, was observed 

for Thrsp, Gpm6a, Fabp4, Serpine1, Hist1h2be and Gdap10. Thrsp, known as 

thyroid hormone responsive, is regulated and controlled by nutritional and 

hormonal factors. A genomics-based approach research on non-alcoholic fatty 

liver disease (NAFLD), chronic liver disease, showed Thrsp to be one gene, 

along with Fasn, Pklr and Chchd6, to have an involvement as a potential 

regulator of the NAFLD processes [Krishnan et al., 2018]. Gpm6a, known as 

stress-responsive neuronal membrane glycoprotein M6a, plays several roles in 

brain functioning, including synaptogenesis [Monteleone et al., 2014], and is 

primarily expressed in neurons [Fuchsova et al., 2015]. Its expression (+4.1-

fold) in distal colon tissue, in a chronic METH dose context, has yet to be fully 

described in the literature. One main finding of Gpm6a is its role in stress 

response in animals [Fuchsova et al., 2015]. Given that Gpm6a is expressed 

across multiple regions in the central nervous system (CNS), one likely 

explanation could be the presence of gut-brain communication instigated by 

chronic METH dose in mice. Fabp4 (+2.5-fold change), fatty acid binding 

protein 4, was differentially expressed in the mouse colon NGS data (Figure 

11). Fatty acid-binding proteins are low-molecular weight molecules which 

assist in transporting long-chain fatty acids in cells [Zhang et al., 2019]. Fabp4 

is expressed in differentiated adipocytes and macrophages [Zhang et al., 2019], 

and has been found to be expressed in intestinal epithelial cells and the colon 

[Mosinska et al., 2019]. Moreover, Fabp4 has roles in inflammation and 
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metabolism and may also regulate cyclooxygenase 2 (COX2) which in turn 

affect macrophage function [Qiao et al., 2019]. Its potential expression in 

chronic METH mice models could a response to inflammation. Little is known 

about Serpine1, Serpin family E member 1, and its role in chronic METH. 

Previously, Serpine1 has been linked to prognosis of patients with the colorectal 

cancer type known as colon adenocarcinoma [Zeng et al., 2019]. In addition, 

serpine1 was found to have a higher expression in gastric tumour tissues [Liao 

et al., 2018]. Although no data is currently available linking Serpine1 expression 

to METH, its expression (+3.1-fold change) in this study requires further 

investigation to better elucidate its role in chronic METH mice models. 

Hist1h2be, histone cluster 1 H2B family member E, is a unique homomorphic 

variant of H2B [Nayak et al., 2015]. Its expression (+2.3-fold) was observed in 

this work, and this may be related to several biological processes, as indicated 

by gene ontology studies, such as antibacterial humoral response, defence 

against gram-positive bacteria and innate immune response in mucosa. Overall, 

the genes related to bacterial responses in this chronic METH withdrawal model 

could play a significant role in responding to bacterial threats in the colon. In 

addition, inflammation in the colon might lead to changes in gene expression 

which could impact the gut-brain axis, upon METH administration. 
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Conclusion(s) 

Overall, this work represents the first NGS study that has investigated the role 

of chronic METH and its effects on mouse colon gene expression. Specifically, 

several ontological processes allowed for a closer investigation as to which 

genes were enriched in each process. This enrichment aspect of gene ontologies 

can lead to a more focused study on gene groups which can be further analysed 

in a drug abuse context, and subsequently compared to the literature. 

Changes in gene expression were observed across several ontological processes, 

including monooxygenase activity, responses to bacteria, tight junction and cell-

cell adherence, and neuropeptide signalling. Overlapping genes (Figure 18A 

and 18B) were noted in three molecular functions: hormone activity, receptor 

ligand activity and receptor regulator activity. Expression of these genes were 

hypothesised to serve a role in stress during METH withdrawal in mice, 

however this hypothesis requires further behavioural studies of animals, in a 

chronic METH context.  Of particular interest is the finding of neuropeptide 

signalling, in which minimal data exists in METH studies. Neuropeptide 

signalling is becoming increasingly discussed in its role in mental health – 

depression, motivation, reward. This is an important aspect of METH abuse, 

since METH causes profound changes in mood following drug withdrawal. 

Although further METH-related in vivo and in vitro studies should incorporate 

more detailed study designs to assess the role of neuropeptides, such as 

pancreatic polypeptide (ppy), our work provides a glimpse into the possible role 

of neuropeptide signalling in a chronic drug model, and how this may influence 

certain neurological processes which are linked to the gut. The colon is home to 

around between 1000-1,150 bacteria. The perturbation of these microbial 

communities can have downstream effects which greatly influence and can 
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cause conditions such as depression and immune system disorders. Since a part 

of this study found an enrichment of genes belonging to the gene ontology term, 

response to bacteria, this may indicate that chronic METH, in a mouse model, 

causes changes to genes responsible for regulating the defence against bacteria. 

Furthermore, this [bacterial] response, evidenced by the upregulation of the 

bactericidal/antimicrobial protein, angiogenin 4, could have severe implications 

that affect mood, and may lead to behavioural and mental health issues in 

chronic METH users. This data suggests that understanding gut homeostasis, or 

the presence of dysbiosis of gut microbiota is crucial to better understanding 

how METH might impact the gut-brain axis. More work regarding the 

elucidation and role of certain bacterial species in the gut, in an acute and 

chronic METH mouse model, would help build a case for how inflammatory 

states in the colon are communicative pathways across the gut and brain. Lastly, 

the role of genes involved in placental and blood vessel development in this 

work highlights, for the first time, the role of METH in these developmental 

processes. In order to gauge a stronger conclusion of these data, more exclusive 

in vivo work of METH with closer investigation of cdx2, wt1 and lep genes, 

could provide strengthened insights into how METH impacts fetal development.
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Chapter 3 

Microbial diversity within the colon from a chronic METH 

withdrawal mouse model 

 

Abstract 

Metagenomic diversity, resulting from the advancement in high-throughput 

metabolomics technology, can now provide comprehensive coverage of 

microbial communities. The investigation of microbial populations in the gut is 

important since the established gut-brain axis paradigm is crucial for better 

understanding the impacts of gut perturbations on brain functioning. Drugs of 

abuse, such as METH, can lead to major depressive disorder (MDD) with 

symptomology ranging from anxiety, to poor appetite and suicidal thoughts. 

Little is known regarding the effects of METH on the gut microbiota. In this 

study, faecal samples from METH withdrawal mice, and control mice, were 

collected and analysed using a metagenomic analysis pipeline. Microbiome data 

was analysed using open-source available software, notably METAGENassist, 

MicrobiomeAnalyst and MG-RAST, using a range of parametric, non-

parametric and supervised/unsupervised statistical methods. Microbial 

communities between METH and Sham were similar in their composition, 

however several significant differences were observed in Faecalibcterium, 

Dehalobacterium, Coprococcus, Anaerotruncus, Ruminococcus and Prevotella. 

Moreover, at a functional level alteration in METH faecal microbial samples 

based on metabolic phenotype showed lower abundances in cellulose 

degradation, aromatic hydrocarbon degradation, nitrogen fixation, chitin 

degradation, and sulphide oxidation metabolic categories. Taken together, 

METH causes several changes in microbial composition and abundance which 

may then trigger changes to several metabolic processes across a range of 
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bacteria. These findings could potentially be associated with changes in brain 

behaviour, following along the gut-brain axis (GBA) hypothesis, via possible 

reductions to key microbial metabolites necessary for proper immune 

functioning and brain health.  
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1.0 Introduction  

 

The dopaminergic stimulant, Methamphetamine, known as METH, is a public 

health concern across the world [Kish et al., 2017; Courtney et al., 2014], as its 

misuse has been on the rise globally [Luo et al., 2018]. METH exists in two 

stereoisomers, D- and L- form, with the D-methamphetamine having a potency 

3-5 times higher than that of L-methamphetamine [Courtney et al., 2014]. 

Chronic METH use has been attributed to causing serious neurotoxicity in both 

rodents and humans [Thanos et al., 2017]. Furthermore, after administration 

METH is readily taken up by the lungs, liver, brain, stomach, kidneys and 

pancreas, where it is eventually cleared [Thanos et al., 2017]. Also, after 

administration of the drug, METH initiates intense, often euphoric feelings, 

which are often accompanied by auditory and visual hallucinations [Zarrabi et 

al., 2016]. Interestingly, METH also causes hyperthermia [Matsumoto et al., 

2014]. Also, METH use has previously been associated with an increase in 

hospital admissions and arrests [Hart et al., 2012]. The very nature of METH 

addiction and misuse often includes many confounding variables which can 

often complicate experimental studies in human subjects [Szumlinski et al., 

2017]. In the brain, METH harbours the ability to affect behavioural 

performance through the alteration of the plasticity of the motor cortex [Huang 

et al., 2017]. Moreover, chronic METH use leads to long-term neuronal damage, 

with neuroimaging data showing modifications to prefrontotemporal and 

frontostriatal areas of the brain [Lyoo et al., 2015]. High METH doses can also 

result in severe physiological changes including weight loss, muscular wasting, 

along with impairments in attention and memory [Marshall et al., 2012]. More 

recently, links have been made between METH use and gut microbiota 
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dysbiosis [Ning et al., 2017]. The relevance of understanding how gut 

microbiota behaves in drug addiction studies has been reported in cocaine, since 

cocaine reduces blood flow to the gastrointestinal (GI) tract, possibly impacting 

gut barrier function [Chivero et al., 2019]. However, no supporting knowledge 

is available that can link chronic, long-term METH use to changes in gut 

microbial composition. An emerging paradigm reinforcing bidirectional 

communication between gut microbiota and the brain can help understand if the 

dysbiosis of gut flora from METH use, along with other drugs of abuse, plays a 

crucial role in not only causing psychiatric disorders, but also developing drug 

addiction [Ning et al., 2017]. The structure of the gut microbiome also has a 

signification impact on drug metabolism, which falls under the growing field of 

pharmaco-microbiomics, which describes the interplay of gut microbiota on 

drug pharmacokinetics and pharmacodynamics [Li et al., 2017]. Importantly, 

short-chain fatty acids (SCFAs) – main SCFAs being acetate, propionate and 

butyrate – are metabolised in different ways, and contribute to particular 

signalling pathways. Butyrate is by far the most dominant SCFA in the human 

gut, in which is produced mainly by the phylum Firmicutes, and the genus 

Roseburia [Chenard et al., 2020; Shin et al., 2019]. Moreover, SCFAs such as 

butyrate can influence tight junctions, with diminished levels disrupting barrier 

function [Chenard et al., 2020]. SCFA composition and abundance is influenced 

by several factors, including dietary intake, along with the microbial 

composition of the gut [Zhang et al., 2020]. Also, SCFA’s are vital for proper 

host physiology, with these molecules being required for a number of processes 

relating to gut hormone production, epigenetic regulation and redox balance 

[Skonieczna-Zydecka et al., 2018]. Without doubt, SCFAs play a crucial role in 

maintaining adequate gut health and can be perturbed via extraneous influences. 

The SCFA propionate was found in decreased amounts in faecal samples of 
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mice who were administered METH [Ning et al., 2017]. The full effect of 

METH on other SCFAs, from METHs impact on gut physiology and 

composition is yet to be fully realised. However, links between SCFA 

depletions and negative alterations in neuropathology have been linked to 

depressive-like symptoms [Caspani et al., 2019]. 

 

Metagenomics is a rapidly growing area of research which aims to determine 

the many microbial communities within environmental samples [Garrido-

Cardenas et al., 2017]. Currently, the addition of several high-throughput 

sequencing technologies has allowed for an inexpensive way to define bacterial 

communities in a given human sample. Indeed, one of the main challenges 

currently facing this field is the assembly of bacterial genomes within a single 

sample, which contains greater diversity [Ghurye et al., 2016]. The genome 

assembly process, usually achieved via 16S sequencing of variable regions, is 

further complicated by varying levels of microbial abundance (evenness and 

unevenness) and relatedness. To complement this growing need for 

metagenomic data analysis, several well-establish pipelines have been 

developed, which are still being optimised, along with their algorithms, to better 

analyse highly complex metagenomic data [Dudhagara et al., 2015]. Along with 

this problem of greater complexity, several freely available, online software 

tools have been created to address metagenomics studies which provide user-

friendly, graphical interfaces that can be readily adapted to research questions. 

Examples of these tools include, MG-RAST, MicrobiomeAnalyst and 

METAGENassist. The latter of these online metagenomic analysis tools can 

carry out multivariate statistical analyses on input sample data and is one of a 

handful of webservers that maps taxonomy to phenotype, across a range of 

functional [metabolic] categories. Output is in the form of graphs and plots – 
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describing uni- and multi-variate data analyses -, which can be readily 

downloaded and explored. 

 

The aim of this study was to determine and evaluate changes to mouse faecal 

microbiota composition structure and diversity richness and evenness, upon the 

administration of a chronic METH dose over a period of time, followed by 

METH withdrawal. Faecal samples were processed, and DNA extracted using 

an established protocol. 16S Illumina sequencing was carried out, followed by 

a metagenomic analysis pipeline that addressed microbial communities in both 

METH treated mice and control mice (Sham) samples. Prior to statistical 

analyses, sequence reads were processed in MG-RAST and Galaxy where reads 

were confirmed for their integrity and quality. Statistical analysis was 

performed – via METAGENassist, MicrobiomeAnalyst and MG-RAST - across 

METH and Sham groups to understand alpha and beta diversity between and 

across samples, respectively. Principle coordinate analysis (PCoA), PCA, and 

partial least squares – discriminant analysis (PLS-DA) plots were also generated 

to visualise plotted variances. PCoA and PLS-DA are both multivariate analysis 

methods, in which PLS-DA is a supervised method, and PCoA is unsupervised 

[Cao et al., 2016; Worley et al., 2013]. The main goal of PCA (unsupervised) 

and PLS-DA (supervised) analysis is to distinguish class (group) differences 

from a multivariate set of data. With an array of data, and with the transfer of 

multidimensional data onto a 2-dimensional space, without the loss of variance 

in the original data set, PCA and PLS-DA can then identify these variables (in 

this case, OTUs, or taxa labels) that can explain this class/group separation. In 

addition, dendrogram and heatmaps were generated to visualise and observe 

taxa abundance across several taxonomic levels. Other univariate measures such 

as fold change, t-tests (parametric and non-parametric) and volcano plots (based 
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on two group analysis) were utilised. In summary, both univariate and 

multivariate analysis tools were employed to predict and measure taxonomic 

changes across METH (experimental) and Sham (control) groups. Unsupervised 

and supervised data output explained the group similarities and dissimilarities, 

based on significance scoring and loading scores. Moreover, species 

composition and structure abundance were determined, which allowed for the 

characterisation of metabolism phenotype microbial identity. Overall, 

abundances varied between the METH and control groups, with several fold-

change and statistically significant abundance changes found in the METH 

group. In particular, lower abundances of Firmicutes and Verrucomicrobia were 

found in the METH group, Further, higher abundances of Akkermansia, 

Turibacter and Allobaculum were observed in the METH group. Results were 

confirmed by employing a series of well-established (supervised and 

unsupervised) ordination methods in order to reinforce that there were indeed 

distinct clusters that could explain the changes in microbial abundances. In 

addition to clustering and classification, metabolic phenotype, representing 

functional analysis, was carried out for both METH and control groups. Overall, 

the most important metabolic processes were, dehalogenation, cellulose 

degradation, and sulphide oxidation. Through substantial univariate and 

multivariate analysis, the METH group (and corresponding samples) had a 

much lower abundances of metabolic phenotypes associated with cellulose 

degradation, aromatic hydrocarbon degradation, nitrogen fixation, chitin 

degradation and sulphide oxidation, compared to control group. Overall, this 

analysis of microbial diversity and abundance, along with functional 

categorisation found changes in microbial composition in a chronic METH 

mouse model. METH may induce long-lasting impacts in the microbial 

communities residing in the colon, which could also create shifts in healthy 
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colon metabolism via the dampening of several important signalling 

metabolites, such as SCFAs – butyrate, propionate – and gut-derived serotonin. 

Alterations in microbial communities responsible for maintaining a homeostatic 

environment in the colon could also cause perturbations to other organs such as 

the brain, where pathologies associated with depression might develop. 
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2.0 Methods 

2.1 Sampling and DNA processing  

2.1.1 Chronic METH mouse model 

C57BL/6 mice (5-9 weeks old; n=14) were obtained from the Australian 

Research council (ARC, Perth, Australia). Mice had free access to food, water 

and were kept under a 12-hour light/ dark cycle in a well-ventilated room and 

at an appropriate temperature of 22 °C. Mice acclimatized for up to 1 week prior 

to the onset of treatment cycle of METH / sham for 14 days. Mice were 

separated into two groups: sham treatment and METH treatment administered 

via daily intraperitoneal (i.p) injections in the morning and late evening (10-13 

hours apart). SHAM group received 100μl of saline water, whilst the METH 

group received METH beginning at 0.5mg/kg diluted in 100μl of saline water 

with an increment of METH concentration every two days (equivalent to the 

human dosage as per body surface area) (Table 1). This administrational regime 

was incorporated to overcome drug resistance and maintain a constant high for 

14 days. The mice were kept under observation for 3 days after their last 

treatment injection (withdrawal) after which mice were culled using lethobarb 

(pentobarbitone) and colon tissues collected. All procedures and protocols 

performed within this study were approved by the Victoria University Animal 

Experimentation Ethics committee (AEETH 15/010) and were conducted 

according to the guidelines of the Australian National Health and Medical 

Research Council. 
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Table 1: Chronic methamphetamine administration protocol. C57BL/6 
mice were administered two METH doses (morning and afternoon) over a 
seven-day period, lasting for two weeks. Week three, indicated by days 15, 16, 
and 17, allowed time for mice to experience withdrawal from METH. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WEEK 
1 

Schedule  Day 1 
(mg/kg) 

Day 2 
(mg/kg) 

Day 3 
(mg/kg) 

Day 4 
(mg/kg) 

Day 5 
(mg/kg) 

Day 6 
(mg/kg) 

Day 7 
(mg/kg) 

 
 
WEEK 
2 

Morning  0.5 1 1 2 2 3 3 

Afternoon  0.5 1 1 2 2 3 3 

 Day 8 
(mg/kg) 

Day 9 
(mg/kg) 

Day 10 
(mg/kg) 

Day 11 
(mg/kg) 

Day 12 
(mg/kg) 

Day 13 
(mg/kg) 

Day 14 
(mg/kg) 

         

 
 
 
WEEK 
3 

Morning  4 4 5 5 6 6 7 

Afternoon 4 4 5 5 6 6 7 

 Day 15 
withdrawal 

Day 16 
withdrawal 

Day 17 
withdrawal 

Day 18 
Cull, 
collection 
of colon 
tissues 
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2.1.2 DNA isolation  

DNA isolation of faecal samples was performed using the PowerFecal DNA 

isolation kit (according to the manufacturers specifications). Figure 1 indicates, 

diagrammatically, the steps taken to achieve purification of microbial genomic 

DNA. Briefly, between 0.10 and 0.25 grams of faecal sample was used for the 

downstream protocol. Importantly, due to the wet nature of the samples each 

faecal sample was added to a dry bead tube and centrifuged at room temperature 

for 30 seconds at 10,000 x g. Carefully, a pipette tip was used to draw away as 

much liquid as possible. 

Table 2. Treatment and control (sham) groups. Two groups, chronic 
withdrawal and sham (control) indicated as A1-A8 (METH) and B1-B8 
(Sham). 
 

Group 1 (Chronic 
Withdrawal) 

Group 2 (Sham 
Withdrawal) 

A1 B1 
A2 B2 
A3 B3 
A4 B4 
A5 B5 
A6 B6 
A7 B7 
A8 B8 
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Figure 1. Workflow of DNA isolation from faecal samples. PowerFecal® 
DNA isolation stepwise approach to yield microbial DNA. 
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2.1.3 DNA storage  

To ensure DNA was protected from degradation, and to store until further 

analysis, DNA samples were eluted in 10mM Tris buffer and stored at -20 

degrees Celsius.  

 

2.1.4 DNA Yield  

DNA samples were assessed for yield. Briefly, 10µL DNA extracted from DNA 

isolation kit protocol was mixed with 2µL Loading Dye. Approximately 10µL 

of DNA-loading dye mix was loaded into an 8-well agarose gel, filled with 

1xTAE buffer. 7µL of DNA ladder was loaded into well 1, followed by 

remaining DNA samples. Gel images (figure 2) indicate DNA bands from all 

samples. 

Table 3. Outline indicating yielded DNA from treatment and sham 
samples. Gel electrophoresis plan, covering three separate gels, of chronic and 
sham withdrawal groups. Gel labels correspond to those labelled on Figure 2. 
 

Lane No. Gel 1 Gel labels according to image 2 
1 L* 1 
2 A1 2 
3 A2 3 
4 A3 4 
5 A4 5 
6 A5 6 
7 A6 7 
8 A7 8 

Lane No. Gel 2 - 
1 L 9 
2 A8 10 
3 B1 11 
4 B2 12 
5 B3 13 
6 B4 14 
7 B5 15 
8 B6 16 

Lane No. Gel 3 - 
1 L 17 
2 B7 18 
3 B8 19 
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Figure 2. DNA bands 
indicating successful 
DNA yield. Gel 
electrophoresis of 
genomic DNA bands 
indicating DNA yield 
from both groups. L: 
ladder. All DNA 
samples were mixed 
with 2µl 6x DNA 
loading dye and added 
to each corresponding 
wells. Red rectangles 
highlight DNA bands 
in both Meth and 
sham groups.   
 

 1      2      3      4      5     6    7     8  
        8 

 
ThermoScientific Lambda 
DNA/Eco/RI + HindIII 
Marker, 3.  
Final DNA concentration of 
0.1µg/µL. 

 9      10     11      12     13   14   15   16  
        8 
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2.2 Diversity profiling   
 

2.2.1 AGRF: Diversity profiling and Next-generation sequencing report. 

DNA samples were removed from the -20-degree freezer and placed on dry ice. 

Samples were then transported to Australian Genomics Research Facility 

(AGRF) for diversity sequencing and profiling. Primary analysis of samples was 

performed in real time using the MiSeq Control Software (MCS) v2.6.2.1 and 

Real Time Analysis (RTA) v1.18.54. Then, the Illumina bcl2fastq 2.20.0.422 

pipeline was utilised to generate sequence data. Regions V3 and V4 were 

amplified. 

 

Table 4. Paired ends and data yield from processed samples. A total of 
215,490 paired ends were generated. 
 

Lane Sample name  Paired end Data Yield (bp) 

1 A4-16S_V3-V4 215,490 0.13Gb 

Total 215,490 0.13Gb 

 

2.2.2 Raw data 

Raw data was provided in the following format: 

<Sample_name>_<flowcell_ID>_<index_lane>_<readNum>_fastq.gz – 

compressed FastQ sequence files contained untrimmed reads; <readNum> 

specified the first or second read of the pair. Raw data files consisted of read 

sequence output using the Illumina quality scores. Quality scores were encoded 

in symbolic ASCII format. Sequencing details were as follows: 
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Table 5. Forward and reverse primers used to amplify DNA. 341F and 
806R were used as primers to amplify DNA in samples. 
 

Target 341F-806R 

Forward 
Primer (341F) 

CCTAYGGGRBGCASCAG  

ReversePrimer 

(806R)  

GGACTACNNGGGTATCTAAT 

Application Amplicon sequencing  

ReadLength 300bpPE  

 

2.2.3 Bioinformatics Method 

Paired end reads were assembled by aligning the forward and reverse reads 

using PEAR
 
(version0.9.5). Primers were identified and trimmed. Trimmed 

sequences were processed using Quantitative Insights into Microbial Ecology 

(QIIME 1.8) USEARCH (version 8.0.1623) and UPARSE software. Using 

usearch tools sequences were quality filtered, full length duplicate sequences 

were removed and sorted by abundance. Singletons or unique reads in the data 

set were discarded. Sequences were clustered followed by chimera filtered using 

“rdp_gold” database as reference. A total of 170,082 reads were finalised from 

original raw read pre-processing of 215,40 reads. To obtain number of reads in 

each OTU, reads were mapped back to OTUs with a minimum identity of 97%. 

Using QIIME taxonomy was assigned using Greengenes database (Version 

13_8, Aug 2013).  
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2.2.4 Results Format 

The diversity profiling results were provided in various files contained within 

folder name “Diversity_profiling”. Results include bar and area charts, showing 

the breakdown of taxonomy by given levels. Formats included: OTU tables, 

Charts, Mg_blast, otu_table_taxa.biom, and absolutea_bundance.xlsx. 

 

 

 
Figure 3. Flowchart of metagenomic tools used for this study. A combination of open-
source tools – METAGENassist, MicrobiomeAnalyst and MetAmp, were employed in 
this study. Galaxy, an analysis tool, was used to score read quality and ensure sequences 
were of sufficient quality prior to in-depth analysis. 
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2.3 FastQC sequence analysis 

 

2.3.1 MG-RAST 

   

MG-RAST is a public resource that allows annotation and analysis of 

metagenomic sequence data. MG-RAST makes it possible to upload raw 

sequence reads (via fastq, fasta file format). Fastq files (R1 and R2) were 

uploaded to MG-RAST and submitted. The MG-RAST pipeline (Figure 4) 

provides an in-depth process from raw reads to results analysis/statistics.  

 

 

Figure 4. MG-RAST sequence processing pipeline. Prior to uploading fastqc files to 
METAGENassist and MicrobiomeAnalyst, fastq (R1/R2) sequence files were run on the 
MG-RAST pipeline. The resulting files were downloaded from the MG-RAST portal. 
Image adapted from Wilke et al., 2015.  
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2.3.2 GALAXY sequence analysis  

 

Galaxy Australia (https://usegalaxy.org.au/) was used to determine basic 

statistical analysis of sequence quality using fastq files from post-processing 

achieved in MG-RAST. Quality checking was previously carried out in 

USEARCH (AGRF), where adaptors were removed, and full-length duplicate 

sequences and singletons were removed. Illumina input reads were trimmed in 

QIIME 1.8 (USEARCH). In addition, per sequence quality scores, sequence 

duplication levels and adapter content were assessed in Galaxy, prior to further 

analysis in METAGENassist (Figure 5). The Galaxy pipeline described here 

served to ensure reads were re-checked for quality.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GALAXY 

Data upload 

FastQC 
Read Quality Reports 

Reads visualization 

Figure 5. Confirmation of sequence quality. Fastq 
files (R1/R2) were filtered prior to analysis. Galaxy 
workflow allows users to analyse sequence reads 
and visualise results. Galaxy was used to process 
fastq files for generating a FastQC Report. This 
report provides a summary statistic relating to 
sequence quality scores. Upon confirming quality 
score per base, fastq files and OUT data was 
processed in METAGENassist. 
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2.4 MicrobiomeAnalyst pipeline  

MicrobiomeAnalyst is a web-based tool that is made up of four modules, which can 

use taxonomic data, mainly in the form of OTU tables, BIOM and/or Mothur files. 

In addition, MicrobiomeAnalyst allows users to select parameters associated with 

quality, filtering and normalisation, prior to exploratory analysis and subsequent 

visualisations via PCoA plots, heatmaps, dendrograms and box/bar plots [Dhariwal 

et al., 2017]. BIOM and metadata (mapping) files were uploaded to 

MicrobiomeAnalyst and ‘Data Inspection’ step matched all 16 samples from both 

BIOM and metadata files. Average, maximum, minimum, and total counts were 

recorded, and library size overview plot was generated. Data integrity step found 

554 OTUs. Data filtering was performed to removed low counts and low variance 

counts. For low count filtering, a 20% prevalence filter (default) was set (20% of 

each samples’ reads should contain four counts). For low variance count filtering, 

coefficient of variance was chosen (this was also consistent with a data filtering step 

in METAGENassist). Coefficient of variance was chosen for low variance filtering. 

228 low abundance features were removed from the initial 554 OTUs, based on 

prevalence. Moreover, 33 low variance features were removed based on coefficient 

of variance filtering. Data normalisation was performed by rarefying and scaling. 

MicrobiomeAnalyst also performs alpha (within) and beta (between) diversity 

calculations supporting six and five diversity measures, respectively. For this study, 

diversity across METH and Sham samples was calculated using all diversity 

measures, and then compared. Results of diversity analysis were visualised as PCoA 

and non-metric multidimensional scaling (NMDS). Lastly, statistical significance 

was assessed using three statistical measures.  
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Figure 6. Library size of total read counts across METH and Sham samples. 
Average counts per sample was 55,108, with minimum counts per sample as 21 
(attributed to sample A4). 

 
 

2.4.1 MicrobiomeAnalyst rarefaction curve 
 

Rarefaction is a method used to standardise samples and involves randomly sub-

sampling the pool of accumulated samples/species (N), arriving at a subset size 

(m), and finally calculating the phylogenetic diversity (DV) of the subset (PDm). 

Selecting rarefaction as a method of normalisation ensures a standardisation 

across samples, as phylogenetic evenness, beta-diversity and dispersion can 

then be measured [Nipperess, 2016]. In general terms, a rarefaction curve is 

generated in order to determine if sequencing of a particular sample, or group 

of samples is efficient enough to warrant true species diversity. Rarefaction 

curves were constructed for each sample (A1-A8 | B1-B8). Shape of rarefaction 

curve for METH and Sham samples indicated that species richness was similar 
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(based on distribution). Sequencing depth was also calculated using Good’s 

coverage scores. METH samples ranged from between 18.8 – 81.8%; whereas 

Sham samples were significantly lower, ranging from between 54.4-18.1%.  

 

 

 
Figure 7. Rarefaction curve of filtered samples. Vertical (y) axis shows species 
richness; horizontal (x) axis indicates sample size.  
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2.5 METAGENassist pipeline  

METAGENassist is a comprehensive comparative tool that utilises high-level 

statistical analysis methods to assess bacterial diversity samples. In this a logical 

flow of steps were taken – from data upload, to statistical analysis – to interpret 

output (Figure 8). The benefits of using METAGENassist analysis is that it 

combines pre-processing steps, and data analysis all in one package. Moreover, 

statistical analysis can be univariate, multivariate, clustering, and supervised 

classification [Arndt et al., 2012]. One immediate advantage of the 

METAGENassist platform is its ability to perform all standard analysis featured 

on other packages, such as QIIME, Mothur, MG-RAST, MEGAN and STAMP; 

however, provides additional features such as, interactive normalisation, 

metadata overlay and taxonomy-to-phenotype mapping [Arndt et al., 2012]. 

Visualisations were obtained from METAGENassist, along with construction 

of diversity plots and graphs. 
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Figure 8. METAGENassist pipeline of samples.  METAGENassist provides a 
comprehensive analytic pipeline from data pre-processing to data visualisation. (1)  BIOM 
and CSV files were uploaded to the web interface (Samples in columns was selected). (2) 
Data pre-processing: 16 samples were read by METAGENassist, and 554 variables (OTUs) 
recorded. (3) Data filter step ensures removal of those variables unlikely to provide 
statistical relevance when modelling data.  Unassigned and unmapped reads were removed, 
and variables (OTUs) with >50%   are removed.  Removing variables at this threshold 
ensures tests such as SVM can be performed adequately. Lastly, mean abundance value 
was chosen to filter samples. (4) Column-wise normalisation enables features to be 
comparable; row-wise normalisation, normalises each sample (n=16). This step is crucial 
for downstream statistical analysis, as many tests assume normally distributed data. (5-6) 
Data visualisation and statistical analysis. Bar and pie charts were employed to visualise 
single and grouped samples. In addition, fold-change, PCA, heatmaps and k-means were 
assessed across all samples. 
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2.5.1 METAGENassist Data processing  
 
BIOM and mapping file (metadata) files were uploaded into METAGENassist, 

with 16 sample recognised (n=16: 8 METH, 8 Sham), and 554 OTUs (taxa) 

recognised. In addition, numbered OTU IDs (which is contained in this data) 

with low-read counts across matching taxonomic assignments were removed. 

Finally, OUT IDs were stripped and combined with OTUs with the same 

taxonomic assignment. 

 

 
 
 

2.5.2 Data filtering 
 
Data filtering was performed to remove low-quality reads.  Unclassified and 

unmapped reads were removed. Secondly, an option to remove variables 

(taxa) with >50% zeros was chosen This was to ensure that abundance OTU 

reads with null values could not interfere with modelling, such as SVM and 

PCA methods.  
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2.5.3 Data normalisation 

 
Data was normalised row-wise and column-wise. Normalisation for row-wise 

was carried out by normalisation by sums, whereas column-wise was 

normalised using Pareto scaling. METAGENassist first transforms the internal 

data structure, by assigning samples to rows, and variables (taxon) to columns. 

Normalisation by sum adjusts for differences in abundance coverage by 

normalising to the same total abundance for each sample. This normalisation 

is necessary to compare samples. The transformed OTU reads allows for 

comparisons between magnitude of each (OTU) to one another. Density 

curves showed normalised abundance (Figure 10). Pareto scaling (Figure 9) 

uses the square root of the standard deviation as the main scaling factor. In this 

way, large fold bacterial abundances are factored in, and thus reduced in 

comparison to small fold bacterial abundances; this rules out any dominance 

of large abundance readings that may skew overall samples. Moreover, pareto 

scaling is one normalisation method considered a ‘stable’ pre-treatment 

method [Berg et al., 2006]. Lastly, Pareto scaling/normalisation remains as 

close to original data measurement as possible [Worley et al., 2015].  

!"#$ = 	 !#$ − !̅)
√+#

 

 
Figure 9. Pareto scaling equation. Scaling samples is a pre-treatment method. Pareto 
scaling, similar to autoscaling, which uses standard deviation as the scaling factor. 
However, in Pareto scaling, the square root of the standard deviation is used for scaling. 
Importantly, original data does not lose its dimensionality upon scaling [Berg et al., 
2006]. 
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Figure 10. Normalisation of variables and samples. Pareto scaling was employed to 
normalise OTUs from each sample. The output of normalisation in METAGENassist 
assumes a Gaussian, or bell-shaped distribution (as visualised in plot below 
normalisation plot.) Row-wise (sample) normalisation is crucial when considering 
systematic differences (sequence depth).  
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3.0 Results  
 

3.1 Summary analysis statistics (MG-RAST) 

Based on the stringent pipeline from MG-RAST (Figure 4), 13 sequences (~0.01%) did 

not pass the QC pipeline. 213,029 sequences contained ribosomal RNA genes.  

MG-RAST, based on fastqc files, summarises and ranks abundances from most 

abundant to least abundant. Summary abundance pie charts show MG-RAST 

taxonomic hits distribution, which uses the contigLCA algorithm. Analysis statistics 

(Table 6) summarises sequence information pertaining to sequence filtering through 

MG-RAST’s pipeline. 

 

Table 6. Summary statistics of fastqc sequences from MG-RAST. 

Upload: bp Count 64,647,000 bp 
Upload: Sequences Count 215,490 
Upload: Mean Sequence Length 300 ± 0 bp 
Upload: Mean GC percent 56 ± 4 % 
Artificial Duplicate Reads: 
Sequence Count 

195,434 

Post QC: bp Count 5,617,409 bp 
Post QC: Sequences Count 20,043 
Post QC: Mean Sequence Length 280 ± 28 bp 
Post QC: Mean GC percent 55 ± 5 % 
Processed: Predicted Protein 
Features 

86 

Processed: Predicted rRNA 
Features 

39,275 

Alignment: Identified Protein 
Features 

6 

Alignment: Identified rRNA 
Features 

38,971 

Annotation: Identified Functional 
Categories 

undefined 
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3.2 Galaxy FastQC analysis  

 
The purpose of fastqc analysis in Galaxy was to confirm quality assessment prior 

to statistical analysis. A total of 211,362 sequences were identified in the fastq 

file, with sequence length of 236-300 bases. GC content was confirmed as 55%. 

Moreover, Galaxy confirmed the Sanger/Illumina 1.9 encoding, which is based on 

the pred-like quality score +33. Quality scores across all bases (Figure 11a), with 

box-whisker plots describing central red line (median), yellow box (interquartile 

range), upper and lower whiskers (representing the 10% and 90% points), and, 

blue line (mean quality). Y-axis represents quality scores, where the higher the 

score, the higher the base quality. Further, the backdrop of the y-axis provides: 

green (very good quality), orange (moderate/reasonable quality), and red (poor 

base quality). Quality of bases towards the end of an Illumina run will typically 

see a degradation of base quality. Also, per sequence quality score and adaptor 

content graphs showed a pass in quality (Figure 11b, 11c). 

 
 

Figure 11a Quality reads from Galaxy FastQC algorithm. Sequence quality scores per base 
was processed in Galaxy AU. MG-RAST was used to generate fastqc file after a series of 
pipeline steps were carried out. 
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Figure 11b. Per sequence quality score. Mean sequence quality (x-axis) with total number 
of reads on the y-axis plotted. The distribution of average read quality usually takes a 
characteristic peak in the upper range of the plot (as seen here).  
 

 
Figure 11c. Galaxy adapter content plot. No adapters were identified across the input 
sequences. 
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3.3 Diversity of microbial communities across METH and Sham groups 
 
By analysing ‘genus’ and ‘phylum’ – Domain – Phylum – Class – Order – Family – 

Genus - at the perspective level, individual samples (A1-A8 [METH] and B1-B8 

[Sham]) could be visualised and OTU mean abundances estimated and plotted. The 

richness of species within samples relates to the number of OTUs that have been 

mapped to bacterial species. The majority of taxonomies were mapped to Bacteriodes, 

Firmicutes and Veruucomicrobia; whereas minor bacteria were Tenericutes, 

Cyanobacteria, Proteobacteria and Actinobacteria. At the phylum level, pie charts of 

METH and Sham diversity (Figure 12a) showed several minor differences, including a 

higher abundance of Firmicutes in the Sham group compared to the METH group. In 

addition, METH was shown to have a higher abundance of Verrucomicrobia compared 

to Sham group. At the genus level, around 10% increase in Akkermansia bacteria, in 

the METH group was observed (Figure 12b). In addition, a 2-fold increase in Turibacter 

was observed in the METH group (2.8%) compared to the Sham group (1.4%). In 

contrast, the Sham group contained a doubling of Ruminococcus (1.6%), compared to 

the METH group Ruminococcus (0.7%). No distinct abundance changes were observed 

in Lactobacillus across the METH and Sham groups. An almost 3-fold difference was 

observed in Prevotella between both groups, with the METH group containing 3-fold 

less Prevotella than the Sham group. Another significant difference in abundance was 

observed in Allobaculum, with the METH group containing ~4-fold increased 

abundance in this bacterium compared to the Sham group. METH group also showed a 

much lower abundance in Coprococcus (1.0%) than Sham group (6.0%). One particular 

bacterium, Burkholderia was not present in the Sham group, however had a presence in 

the METH group (6.3%). Lastly, major abundance difference was noted in 

Desulfovibrio, with Sham containing a three-fold higher abundance (3.8%), compared 

to METH group (0.4%).  
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Figure 12a. Pie chart visualisation 
of Phylum level abundances. The 
Sham group showed higher 
abundance of Firmicutes compared 
to the METH group. METH showed 
higher abundances in 
Verrucomicrobia, and also an 
absence of Proteobacteria was 
observed in the Sham group. 

Figure 12b. Pie chart 
visualisation of Genus level 
abundances. A slight decrease in 
abundances of Akkermansia was 
observed in the Sham group. The 
majority of bacteria observed 
across both groups was the 
Akkermansia, Allobaculum, and 
Prevotella. All samples were 
normalised by total abundance 
prior to group mean calculations. 
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3.4 Significant fold-change differences in OTUs was observed in METH and 

Sham samples. 

Filtered and normalised OTU abundances at the genus level were investigated for 

significant fold-change. A +/-2-fold change was set as a threshold for OTUs. Overall, 

three OTUs had a fold-change above 2-fold; 14 OTUs had a significantly below 2-fold 

change (Figure 13a). Specifically, Dorea (+3.47) and Allobaculum (+2.17), were 

significantly higher in METH compared to Sham samples. In contrast, Faecaliacterium 

(-4.34), Butyricicoccus (-3.58), Desulfovibrio (-3.37), Anaerotruncus (-3.14), 

Dehalobacterium (-2.90), Roseburia (-2.82), Coprococcus (-2.58), Clostridium (+2.51), 

and Odoribacter (-2.02) were significantly downregulated. In addition to fold-change, 

univariate volcano plot was constructed and features that passed both thresholds (fold-

change and student’s t-test) were highlighted (Figure 13c). Faecalibacterium (p=0.002), 

Coprococcus (p=0.016), Dehalobacterium (p=0.020), Prevotella (0.027), 

Ruminococcus (p=0.030), and Anaerotruncus (p=0.046) were found to pass both p-

value and fold-change thresholds.  

 

 

 

Figure 13a. Fold Change (FC) 
plot of OTU features at the genus 
level. Fold change is calculated as 
the ratio between METH/Sham 
means. Fold-change values are log-
transformed (Log2) for the purpose 
of allowing symmetrical features. 
FC plot was generated by 
METAGENassist, and fold-change 
features are represented as pink 
dots. 
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Figure 13b. Box and whisker plots of OTU fold-
changes across METH and Sham samples. 
METAGENassist generates box and whisker plots of 
fold-changes associated with significantly abundant 
OTUs. Genus level was chosen for fold-change 
analysis, and fold-change threshold set at 2-fold. 
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Figure 13c. Fold-change and t-test scores for OTU 
Genus-level features. Top left: volcano plot 
highlighting fold-change [log2] (x-axis) and p-value 
(0.05) significance [-log10(p)] of OTUs. Top right 
and bottom right: Prevotella and Ruminococcus 
bacteria were found to be p-value significant - 0.027 
and 0.030 respectively. However, were below the 
minimum fold-change threshold. 
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Using MicrobiomeAnalyst, to confirm statistical significance, statistical analysis for 

sparse high-throughput sequencing data (MetagenomeSeq) was used to compute p-

values. This algorithm uses the OTU features (or taxa level) to determine abundance of 

features between two groups. Moreover, it considers under-sampling and normalisation 

using a zero-inflated Gaussian fit model. Further, this statistical model determines 

features that are differentially abundant between two groups. Using this method found 

a total of 27 significant features (OTUs), at a p-value cut-off of 0.05. At the genus level, 

a total of 5 features were significantly ranked (Figure 14). In particular, Desulfovibrio 

(p=6.22x10), Ruminococcus (p=6.22x107), Parabacteroides (p=7.35 x107), Coprococcus 

(p=3.10x104) and Allobaculum (p=0.02) were among those with a p-value <0.05. This 

confirmed METAGENassist’s p-value calculations (Figure 14); however, did not find 

Faecalibacterium, Dehalobacterium, Prevotella or Anaerotruncus to be significantly 

significant between METH and Sham groups.  
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Figure 14. MetagenomeSeq boxplots of significant 
microbes. Zero-inflated Gaussian statistical model fit to 
genus level (feature level) microbes. 
MicrobiomeAnalyst estimated five significant OTUs: 
Desulfovibrio (p=6.22x107), Ruminococcus 
(p=6.22x107), Parabacteroides (p=7.35 x107), 
Coprococcus (p=3.10x104), Allobaculum (p=0.02). 
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3.5 Alpha diversity indices of METH and Sham samples 
 
Alpha diversity is described as the within-sample microbial diversity based on OTU 

richness and evenness was calculated using Chao1, abundance-based coverage 

estimators (ACE), Shannon and Simpson indices (Figure 15a, 15b). Alpha diversity 

calculates and measures sample richness and evenness. Richness considers unique 

species within a given community, and methods include Chao1 and ACE (both non-

parametric methods) [Kim et al., 2017]. Evenness methods include Shannon and 

Simpson diversity metrics; Simpson method provides weight to more frequently 

occurring species; Shannon index method gives more weight to rare species in a given 

community. Alpha diversity (at the feature [OTU] and genus level) as calculated from 

MicrobiomeAnalyst resulted in an insignificant difference among samples belonging to 

both METH and Sham groups, as evidenced by p-value scores greater than 0.05 cut-

off. Observed, Chao1 and ACE alpha diversity boxplots at the OTU (feature) level 

showed a greater abundance in the METH group compared with Sham group samples. 

Moreover, evenness alpha diversity metrics – Shannon and Simpson indices – found a 

greater microbial evenness within the METH group than the Sham group (Figure 15a). 

However, p-value significance between Chao1 and ACE, and between Shannon and 

Simpson did not reveal significant differences in diversity and evenness, respectively. 

At the genus level, METH and Sham alpha diversity methods also did not reveal any 

significant differences between microbial diversity and evenness. Attributions to this 

observed insignificant difference in both METH and Sham samples might be linked to 

several individual METH and Sham samples which seemed to contribute to variations 

in diversity.  
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Figure 15a. OTU-level alpha diversity boxplots of METH and Sham groups. Observed, Chao1, ACE, Shannon 
and Simpson alpha diversity indices were used for METH and Sham calculations at the OTU level. Standard error 
(SE) was calculated for Chao1 and ACE, and were computed via MicrobiomeAnalysts’s bootstrap procedure, which 
resamples observed data and recomputes estimators several times. For Chao1 and ACE, the greater the indices the 
higher the richness of the microbiome. Moreover, the smaller the Simpson index, and higher the Shannon index, the 
higher the diversity of the microbiome. P-values for Chao1 (p=0.27294[Mann-Whitney]), ACE (p=0.2794[Mann-
Whitney]), Shannon (p=0.58358), and Simpson (p=0.62149) were calculated. Data and graphs of alpha indices for 
METH and Sham groups was obtained from MicrobiomeAnalyst. Boxplots: middle line is median; whiskers 
represent lowest and highest values within the interquartile range (IQR). All red (METH) and blue (Sham) dots 
represent individual samples in each group. 
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Figure 15b. Genus-level alpha diversity boxplots of METH and Sham groups. Observed, Chao1, ACE, 
Shannon and Simpson alpha diversity indices were used for METH and Sham calculations at the OTU level. 
Standard error (SE) was calculated for Chao1 and ACE, and were computed via MicrobiomeAnalysts’s 
bootstrap procedure, which resamples observed data and recomputes estimators several times. P-value 
calculations were produced using the Mann-Whitney statistic. Observed: p=0.231; Chao1: p=1.00; ACE: 
p=0.795; Shannon: p= 0.168; Simpson: p= 0.168. Boxplots: middle line is median; whiskers represent lowest 
and highest values within the interquartile range (IQR). All red (METH) and blue (Sham) dots represent 
individual samples in each group. 
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3.6 Beta diversity indices of METH and Sham groups 
 

Beta diversity of between-METH and Sham samples was calculated using a series of 

distance methods, including Bray-Curtis index, Jensen-Shannon divergence, and 

Jaccard distance. In general, beta diversity compares microbial communities between 

samples, premised on the distance or dissimilarity between sample pairs. Ordination 

plots, notably PCoA allows visual illustration in a low-dimensional space of group 

distance/dissimilarity.  

 

 

 
 

 

Figure 16a. Bray-Curtis 2D and 3D PCoA 
plots. Bray-Curtis index-generated PCoA 
plots of beta diversity distance between 
METH and Sham samples. Top plot: 2D 
PCoA plot; bottom plot: 3D PCoA plot. 
Analysis of Group Similarities (ANOSIM) 
statistical measure showed an R-value = 
0.0718, and p-value = <0.221.  
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Bray-Curtis beta diversity dissimilarity index was calculated at R= 0.0718, based on 

the ANOSIM measure (Figure 16a). In general, an ANOSIM closer to 1 represents is 

sufficient to conclude dissimilarity between the METH and Sham groups. However, an 

R number closer to 0 was observed, representing no significant dissimilarity between 

both groups. In addition, 2D PCoA principal components (PCs) showed two PCs – PC1 

(14.6%) and PC2 (17.6%), and 3D PCoA plot showed an additional – PC3 (13.7%). 

Besides the ANOSIM statistical measure, Permutational MANOVA (PERMANOVA) 

for beta diversity dissimilarity/distance computed as, F-value = 1.883, R2 = 0.078, and 

p-value = <0.301. Homogeneity of Group Dispersions (PERMDISP) analyses 

multivariate homogeneity of group dispersions, and therefore focuses on any 

differences found in the spread/dispersion of groups. For PERMDISP, F-value = 

1.1572, and a p-value = 0.300. Jensen-Shannon Divergence PCoA plots (Figure 16b) 

also found minimal dissimilarity between METH and Sham groups. For 

PERMONOVA statistics, F-value = 1.4536, R2 = 0.094, and p-value = <0.14. As two 

main clusters were observed (as in Bray-Curtis PCoA plot), a minority of Sham 

samples, specifically B1, B3, and B8 were the most dissimilar compared to all METH 

(A1-A8) samples and were slightly dissimilar to B6 and B7; and, more dissimilar to 

B2, B4 and B5. ANOSIM statistical significance scores were, R-value = 0.079, and p-

value = <0.187. PERMDISP scores were calculated as F-value = 1.0933, and p-value = 

0.313. Jaccard index of beta diversity between METH and Sham groups (Figure16c). 

PERMANOVA statistical significance scores were F-value = 1.1018, R2 = 0.073, p-

value = <0.311. Two clusters were observed along the 2D PCoA plot, and an additional 

Sham sample (B6) was clustered with B1, B3 and B8 (Figure 16b). ANOSIM and 

PERMDISP statistics methods also revealed non-significant dissimilarity between 

METH and Sham sample groups – R= 0.05; p-value = <0.284, F-value = 1.0694; p-

value=0.312, respectively. 
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Figure 16b. PCoA plot of Jensen-Shannon Divergence beta diversity index. 
PERMONOVA: Jensen-Shannon divergence measure did not find any statistical dissimilarity 
between METH and Sham samples. 2D PCoA (top): PC1 (y-axis): 17.6%; PC2 (x-axis): 19.3%. 
3D PCoA plot (bottom): PC3 (15.5%).  
 

 
 

 
 

Figure 16c. Jaccard Index of beta diversity PCoA plots. METH and Sham sample group 
showed no significant dissimilarity across two (2D plot) and three (3D plot) PCs. Four Sham 
samples (represented in the outer blue circle in the PCoA plot) were distanced from the majority 
METH samples (red circle
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3.7 Hierarchical clustering revealed clusters based on distance measure methods. 

Clustering, in the context of microbiota data, represent a group of tools utilised to 

aggregate or group abundance profiles based on similar bacterial compositions. Two 

parameters, namely distance measure and clustering algorithm are used to initiate 

clustering of samples in a hierarchical manner. METAGENassist and 

MicrobiomeAnalyst contain hierarchical clustering and heatmap visualisation tools, 

that can be viewed at the feature (OTU) level, as well as across all phylogenetic 

branches. Pearson and Spearman distance measures (METAGENassist) were 

calculated for METH and Sham samples, and clustering methods based on average, 

complete, single and Ward were incorporated to assess sample clustering represented 

as a dendrogram. Bray-Curtis, Jensen-Shannon and Jaccard indices were used for 

dendrograms constructed in MicrobiomeAnalyst. Pearson and Spearman distance 

measures were used in combination with average/complete/single/Ward clustering 

(Figures 17a, 17b). All hierarchical agglomerative clustering dendrograms were 

constructed from feature-level taxa (OTU). Comparisons were made between the 

different distance measures and clustering methods to find consistent clusters across 

METH and Sham samples. Average, single and complete-linkage distance measures all 

operate on dissimilarities. Single-linkage measures the least dissimilar pair of points 

between two groups; complete-linkage measures the most dissimilar pair of points; 

average-linkage uses the average dissimilarity across all data pairs. Along the process 

of agglomerative clustering, each individual cluster is paired with similar clusters into 

a new single cluster. This is done until all steps belong to a single cluster (N) [Kimes et 

al., 2017]. Each sample from METH and Sham was treated as a separate cluster.  

Dissimilarity is observed along the x-axis (MicrobiomeAnalyst), and y-axis 

(METAGENassist). Average-linkage function paired with Pearson dissimilarity 

function performed better than Spearman distance measure. Pearson/average, 
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Spearman/average, Bray-Curtis/average, Jensen-Shannon/average and Jaccard/average 

clustering dendrograms (Figure 17c, 17d), showed a consistent similarity classification 

of METH samples A4, A7, A2, A7, A8 A5 and A6. Two main cluster nodes were 

observed in both Pearson and Spearman distance measures. Bray-Curtis/average, 

Jensen-Shannon/average and Jaccard/average distance measures revealed a consistent 

clustering of majority METH samples. Only METH samples A5, A6 and A1 were found 

to be clustered amongst Sham samples. For complete-linkage function, Pearson and 

Spearman distance measures found greater similarity (denoted by node cluster) across 

METH and Sham samples, with greater dissimilarity found between the METH and 

Sham groups. From MicrobiomeAnalyst, Jensen-Shannon performed well with 

computing distances between METH and Sham samples, with B1, B2, B3, B6 and B8 

having greater similarity, and clustered to one node. In contrast, Jensen-

Shannon/complete-linkage distancing mapped a cluster of METH samples – A4, A8, 

A7, A6, A3 and A2 – with A5, A4, A8 and A7 having grater similarity, compared with 

A6, A3 and A2, which formed a separate cluster with sample B5. Bray-Curtis/complete 

and Jaccard-linkage distance measures calculated Sham sample B7 as a singleton, yet 

found similar clusters belonging to Sham samples B8, B6, B1, and B2, with METH 

sample singleton A5 belonging to this cluster yet showing greater dissimilarity between 

aforementioned Sham samples. Single-linkage clustering from Pearson and Spearman 

distancing measures revealed two main hierarchical clusters, with majority Sham and 

METH samples being clustered in their respective groups. Overall, greater similarity 

was observed within Sham and METH samples, however similarity, based on cluster 

distance, was observed between some METH and Sham samples. In addition, single-

linkage for bray-Curtis and Jaccard distance methods showed several outliers within 

their dendrograms – A5, A3, and B4 – which were largely dissimilar (based on height 

distance) from the main clusters. Ward-linkage clustering for Pearson and Spearman 

distance clustered Sham samples in a similar manner, with B1, B3, B5, B6 and B7 
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having less dissimilarity compared with METH samples. Bray-Curtis, Jensen-Shannon 

and Jaccard performed moderately well, and had very similar clustering dendrogram 

patterns. Across all three dissimilarity functions, B6, B8, B5 and B3 were clustered 

together. Moreover, METH samples A2, A3, A7, A8 and A4 were clustered similarly. 
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Figure 17a. Average-linkage distance 
measure dendrogram. Hierarchical clusters 
were based on two groups (METH/Sham) each 
containing 8 samples per group. Top left: 
Pearson distancing measure. Top right: 
Spearman distancing measure. Middle left: 
Bray-Curtis index measure. Middle right: 
Jensen-Shannon divergence measure. Bottom 
left: Jaccard index distance measure.  
Top row: METAGENassist dendrograms. 
Middle and bottom rows: MicrobiomeAnalyst 
dendrograms. 
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Figure 17b. Complete-linkage distance measure 
dendrogram. Top left: Pearson distancing measure. 
Top right: Spearman distancing measure. Middle left: 
Bray-Curtis index measure. Middle right: Jensen-
Shannon divergence measure. Bottom left: Jaccard 
index distance measure. Top row: METAGENassist 
dendrograms. Middle and bottom rows: 
MicrobiomeAnalyst dendrograms. 
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Figure 17c. Single-linkage distance measure 
dendrogram. Top left: Pearson distancing measure. 
Top right: Spearman distancing measure. Middle 
left: Bray-Curtis index measure. Middle right: 
Jensen-Shannon divergence measure. Bottom left: 
Jaccard index distance measure.  
Top row: METAGENassist dendrograms. Middle 
and bottom rows: MicrobiomeAnalyst dendrograms. 
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Figure 17d. Ward-linkage distance measure 
dendrogram. Top left: Pearson distancing measure. 
Top right: Spearman distancing measure. Middle 
left: Bray-Curtis index measure. Middle right: 
Jensen-Shannon divergence measure. Bottom left: 
Jaccard index distance measure. Top row: 
METAGENassist dendrograms. Middle and bottom 
rows: MicrobiomeAnalyst dendrograms. 
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3.8 Multivariate analysis revealed distinct clusters across METH and Sham 
samples. 
 

The high dimensionality of microbial diversity data requires dimension reduction and 

visualisation. PCA is an unsupervised method, which performs transformation of a 

complex collection of data points can be visualised on a 2D plane. Two main clusters 

were visualised from the PCA plot (genus level), along with incorporation of a loading 

plot, which mapped the most important features from the PCA plot. According to both 

the loading plot and biplot (Figure 18a), the most important features (taxon) 

contributing to the principal components (PCs) in the PCA plot, were Akkermansia, 

Allobaculum, Turicibacter, and Lactobacillus, Prevotella, Coprococcus, and 

Desulfovibrio. Moreover, loading plot values (denoted as Loading value 1 (LD1, and 

Loading value 2 (LD2) for important features were, Allobaculum (LD1: -0.28; LD2: 

0.71), Akkermansia (LD1: 0.78; LD2: -0.03), Turicibacter (LD1: -0.16; LD2: 0.19), 

Lactobacillus (LD1: -0.14; LD2: 0.22), Prevotella (LD1: -0.35; LD2: -0.31), 

Coprococcus (LD1: -0.14; LD2: -0.34), and Desulfovibrio (LD1: -0.11; LD2: -0.27).  
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Figure 18a. Unsupervised clustering of METH and sham samples. Two clusters were observed from the 2D PCA 
plot (top left), with PC1 (21.3%) and PC2 (52%) at the Genus level. Cluster one (red ellipse) contained majority 
METH (A1-A8) samples; second cluster (green ellipse) contained mainly Sham samples (B1-B8). 3D PCA plot (top 
right) with PC3 (8.9%). Loading plot (bottom left). 26 taxa were used for loading plot construction. In general, a 
loading plot shows how strongly each taxon influences a principal component. According to the biplot (bottom 
right), Akkermansia, Prevotella, Coprococcus and Allobaculum are further apart, from their respective angles. 
Similarly, the biplot also shows the separation and difference of Sham (green circle) and METH samples (red circle). 
OTUs differentiating the METH and Sham groups are displayed as vectors on the PCA plot and biplot. 
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Figure 18b. Scree plot of Principal 
Components. The first PC1 contributed 
to 52% of the variance, with PC2 
contributing to 21.3% of variance in the 
PCA plot. Top green line represents the 
accumulated variance of PCs; blue line 
represents individual PCs and their 
proportion to the variance. Majority of 
variance explained in the PCA plot could 
be attributed to the first two PCs. 

Figure 18c. Bar chart of loading scores. Loading scores were complementary to loadings plotted 
in Figure 18a.  
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K-means clustering was used, as a widely used non-hierarchical clustering method that 

seeks to minimise sum of squared error across all K clusters [Santos et al., 2018]. 

METAGENassist offers two popular clustering methods – k-means and self-organising 

maps (SOM). The operation of k-means creates k clusters where each sample is grouped 

to a cluster with the nearest mean value. SOM, a type of neural network, employs an 

iterative pipeline that maps non-linear statistical dependencies on a two-dimensional 

grid. Specifying two clusters, when selecting the ‘all ranks’ option for taxonomy 

analysis, two clusters were observed (Figure 19a). Cluster one contained 5 Sham 

samples only, whereas cluster two contained 11 samples: 8 METH, and 3 Sham 

samples. SOM clustering was also performed on samples. SOM is an unsupervised 

neural network algorithm, with the resulting plot indicating relative values of features 

in each cluster. Essentially, SOM converts complex, high-dimensional data features 

into a low-dimensional display. SOM plot of METH and Sham samples at the ‘All 

ranks’ level (with X dimension = 1, and Y dimension = 2) indicated two clusters (cluster 

1: n=5 and cluster 2: n=11) (Figure 19b). As both K-means and SOM clustering are 

unsupervised methods of grouping similar features, both algorithms were able to group 

majority Sham and METH samples together (Figure18a, 18b). For supervised learning 

algorithms, Random Forest was used from both METAGENassist and 

MicrobiomeAnalyst. Random Forest (RF) constructs a series of decision trees which is 

built upon a bootstrap training sample. Upon decision tress construction, around one-

third of the features (instances) are excluded and then used as test samples. This test 

data is used to calculate the classification error (also known as out-of-bag (OOB) error). 

Importantly, the OOB error rate can be used to assess how efficient the performance of 

the RF was. Each built tree in a RF is premised on a random sample within the set of 

observations [Janitza et al., 2018]. In addition, RF utilises a variance of importance 

feature which is evaluated by the measured increase in the OOB error upon its 

permutation. The RF approach is further strengthened for its ability to detect outliers in 



177 

the data set; which can detect those samples which are considered outliers, according 

to the RF proximity measure. Based on RF as carried out by METAGENassist, RF 

classification of METH and sham samples found an OOB error of 0.188, with METH 

classification containing 0.125 class error; and, Sham group classification containing a 

class error of 0.25 (Figure 20a). Error appeared to reduce at approximately 100 trees 

(Figure 20a), as the RF was built from the original METH and Sham samples. For 

MicrobiomeAnalyst RF calculations, error seemed to reduce at around 150 trees, 

however error was also seen at approximately 380-390 trees, which then stabilised 

(Figure 20a). In addition, OOB error was computed as 0.5, with class error of METH 

classification of 0.375, and class error of Sham, 0.625. Mean decrease accuracy (MDA) 

calculates all OOB validated predictions and lists the most important variables/features 

are visualised as dots at the top of an MDA plot. Variables/features are listed along the 

y-axis, with importance of each plotted on the x-axis. By evaluating the RF MDA plot 

by METAGENassist (Figure 20b), it can be observed that the 15 most important 

features were: Faecalibacterium, Lachnospiraceae;gnavus, Clostridium;colinum, 

Butyricicoccus;pullicaecorum, Anaerotruncus, Bacteria; F16, Bacteroides;acidifaciens, 

Bifobacterium;animalis, Salinicoccus, Rikenellaceae, Prevotella, 

Lachnospiraceae;saccharophila, Lachnospiraceae, Lactobacillus, and Ruminococcus. 

For RF MDA in MicrobiomeAnalyst, top features were: Bacteroidales, Rikenellaceae 

(Bacteroidales), Prevotella, Clostridiales (Firmicutes), Coprococcus, and Allobaculum.  
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Figure 19a. K-means line graphs representing group clusters. Top graph: ‘All ranks’ taxonomy k-means 
clustering showing two clusters, of n=5 and n=11. Bottom left graph: ‘Phylum level’ taxonomic k-means 
clustering with nearly evenly distributed samples across two clusters: n=9; n=7. Bottom right graph: ‘Genus 
level’ taxonomic k-means clustering. Cluster 1 contains n=4, clsuter 2 contains n=12. 
 

K-means clustering 

Taxa level Cluster 
No. 

Members Sample No. 

‘All ranks’ 1 5 B1, B3, B7, B6, B5 
2 11 A8, A3, A2, B2, B8, A1, 

A5, A4, B4, A6, A7 
 

‘Phylum’ 1 9 A8, A3, A2, B2, B8, A5, 
B4, A6, A7 

2 7 B1, B3, A1, B7, A4, B6, 
B5 

    
‘Genus’ 1 4 B1, A1, B7, B6 

2 12 A8, A3, A2, B2, B8, B3, 
A5, A4, B4, A6, A7, B5 
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Figure 19b. SOM clustering plots. Top: ‘All ranks’ taxonomy level showing two main clusters: 
n=5 and n=11. Bottom left: Phylum level taxonomy SOM plot, with two clusters: n= 2 and n=14. 
Bottom right: Genus level SOM plot. 

SOM clustering 
 
 

Taxa level Cluster No. Members Sample No. 
‘All ranks’ 1 

 
10 A8, A3, A2, B2, A1, A5, 

A4, B4, A6, A7 
2 6 B1, B8, B3, B7, B6, B5 

 
‘Phylum’ 1 

 
9 A8, A3, A2, B2, B8, A5, 

B4, A6, A7 
2 7 B1, B3, A1, B7, A4, B6, 

B5 
 

‘Genus’ 1 
 

10 A8, A3, A2, B2, B8, A5, 
A4, B4, A6, A7 

2 6 B1, B3, A1, B7, B6, B5 
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 METH Sham Class error 
METH 7 1 0.125 
Sham 2 6 0.25 
 

 METH Sham Class error 
METH 4 4 0.5 
Sham 6 2 0.75 
 

Figure 20a. Feature-level random forest classification plots. Top: METAGENassist RF plot showing a 
reduction in error rate at ~100 trees. Bottom: MicrobiomeAnalyst RF plot with error rate stabilising at 
around 150 trees. No. of trees was set to 500; No. of predictors was set to 10. MicrobiomeAnalyst RF plot 
was trained and tested on OTU feature level taxonomy level. METAGENassist RF plot was generated at the 
‘All ranks’ level, synonymous to OTU feature level.  
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Figure 20b. RF variance of importance 
and outlier plots. Top left: 
METAGENassist RF mean decrease 
accuracy (MDA) plot shows top 15 features 
along the y-axis. Top right: RF MDA plot 
from MicrobiomeAnalyst. OTU features are 
listed along the y-axis (in OTU format), 
with low/high bars for METH/Sham group. 
Bottom left: Outliers are generally referring 
to a small proximity of those samples 
(outliers) to other samples. Five outliers 
were identified by METAGENassist. Two 
outliers belonged to the METH group; three 
belonged to the Sham group. 
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3.9 Heatmap visualisation and pattern search reveals taxonomic differences 

between METH and Sham groups. 

As a complement to dendrogram analysis, heatmaps were constructed using both 

METAGENassist and MicrobiomeAnalyst. Heat maps of Phylum, Genus and feature-

level (OTU) were constucted and differences in abundances were visualised. From 

MicrobiomeAnalyst, the Bacteriodetes (Figure 21a) were more abundant in Sham 

samples B8, B3, B7, B6, B4 and B5. Similarly, METH samples A8, A3, A4 and A6 

also showed higher abundances of  Bacteriodetes. Only Sham sample B7 showed higher 

abundance of Cyanobacteria and Proteobacteria. All heat maps in MicrobiomeAnalyst 

were constructed by experimental factor (samples arranged in groups: METH vs. 

Sham). Heat maps constructed in METAGENassist used Pearson and Spearman 

distance measures, along with several clustering algorithms (Figure 21b, 21c). 

Comparisons were made between each distance and clustering method. In general, 

heatmaps tended to cluster the Sham samples (B1, B3, B5, B6 and B7) across all 

clustering algorithms (average, complete, single and Ward). For both Spearman and 

Pearson distance measures, a similar pattern was observed for Sham and METH 

samples; wherein predominantly two and clusters were generated across all four 

clustering algorithms. Sham sample B6, B7, B1, B5 and B3 were mainly clistered 

together, whereas METH samples A1 and A3; A5, A8 and A4 clustered together in the 

Spearman distance measure, across all four clustering algorithms. With Pearson 

distancing, METH samples A2 and A3 were clustered across the average, conplete, and 

single clustering methods. Assessing both heatmap and pie charts for abundance, and 

explanation for these clusters, both sample A1 and A3 contained very similar 

abundances of Akkermansia (54.2% and 53.6%, respecetively), which might owe to 

their clustering.  
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Figure 21a. Heatmaps representation of 
taxonomic level abundance and clusters. 
Phylum level (top) and Genus (bottom) heat 
maps indicate abundance variability across 
METH and Sham groups. Prevotella bacteria 
was markedly abundant in some Sham 
samples (B1, B3, B8 and B5); Allobaculum 
was more abundant in some METH samples 
(A3, A1 and A5). 
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Figure 21b. Spearman heat map visualisation of sample group clustering. Top row: 
Spearman distance measure using average (left), and complete (right) clustering methods. 
Bottom row: single (left) and Ward (right) clustering methods. 
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Figure 21c. Pearson heat map visualisation of sample group clustering. Top row: Pearson 
distance measure using average (left), and complete (right) clustering methods. Bottom row: 
single (left) and Ward (right) clustering methods. 
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 3.10 Functional metabolic phenotype analysis of METH and Sham diversity 

METAGENassist’s Taxonomic-to-phenotype mapping method matches the input 

taxonomic data (OTUs), with its inbuilt phenotype database. Mapping is carried out via 

the use of a unique microbial phenotype database covering over 11,000 species, with 

20 phenotype categories covered in each microbe. The advantage of this phenotype 

mapping is to examine bacteria across samples across variables such as preferred 

temperature range, and metabolism, in addition to comparing samples based on 

taxonomic distance. Moreover, this phenotype mapping tool is integrated into PCA and 

other clustering/classification plots, making data visualisation possible. Majority of 

metabolism phenotype bacteria (at Genus level) between METH and Sham groups were 

ammonia oxidizers, dehalogenation, nitrite reducers, sulfate reducers, and sulphide 

oxidizers (Figure 22). Univariate and multivariate statistical methods from 

METAGENassist software was used to calculate a number of tests in order to assess 

metabolic phenotype across both METH and Sham groups. Parametric (t-test), and non-

parametric (Mann-Whitney test) was calculated for the significance (p<0.05) of 

metabolic phenotypes (Figure 23a, 23b). T-test (parametric testing) found three 

significant features (metabolic processes): cellulose degrader (p=6.7x103), sulphide 

oxidizer (p=9.5x103), and nitrogen fixation (p=4.3x102). Normalised abundance box 

plots revealed a higher abundance of cellulose degrader microbes in Sham compared to 

METH groups. Further, Sham group also had a higher normalised abundance of 

sulphide oxidizers, and nitrogen fixation microbes compared to METH group (Figure 

23a). False discovery rates (FDRs), also commonly known as the error rate, is the 

proportion of the number of false (null) positives [Vidgen et al., 2016]. FDR values for 

p-value significant metabolic phenotype categories were cellulose degrader (FDR = 

0.066), sulphide oxidizer (FDR = 0.066), and nitrogen fixation (FDR = 0.182). For 

non-parametric methods, the Mann-Whitney – also known as the Wilcoxon rank-sum 

test – ignores group variance and can be referred to as the non-parametric equivalent of 
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the t-test. Metabolic phenotype categories for the Mann-Whitney non-parametric 

measure revealed the exact three categories as described by the student’s t-test (Figure 

23b). However, sulphide oxidizer was weighted with a higher significance (p=6.9x103) 

compared to cellulose degrader (p=1.5x102), and nitrogen fixation (p=3.8x102). 

Moreover, FDR scores for all three were slightly different than those derived from the 

parametric t-test, with sulphide oxidizer (FDR=0.09), and cellulose degrader 

(FDR=1.10), being higher, and nitrogen fixation (0.177) being lower than FDR 

calculated from the parametric t-test. Fold-change (FC) plots from METAGENassist 

highlighted the absolute value change between METH and Sham groups and calculates 

FC the ratio between both groups means using the data as it were prior to column-wise 

normalisation. Next, FC values are log transformed to induce symmetry of up- and 

down-regulated features (metabolic phenotype categories). Fold changes of metabolic 

phenotype found five significantly up- and down-regulated categories. Below 2-fold 

metabolic categories included – degrades aromatic hydrocarbons (log2(FC)=-3.24), 

cellulose degrader (log2(FC)=-2.94), and nitrogen fixation (log2(FC)=-2.65). Non-

significant FC categories were chitin degradation (log2(FC)=+1.76), and sulphide 

oxidizer (log2(FC)=-1.51). 

 

 

 

 

Figure 22. METH and Sham metabolic phenotype profile of abundant bacteria. Major metabolic 
phenotypes belonging to mapped taxa communities across METH and Sham samples included 
Ammonia oxidizers, Dehalogenation, Nitrite reducers, sulfate reducers, sulphide oxidizers, with a 
proportion of unknown. Sham samples showed a much higher proportion of cellulose degrader and 
Xylan degrader phenotype. 
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Figure 23a. Univariate statistical analysis of 
metabolic phenotype. Top: fold-change of 
metabolic function showed five processes with 
significant (>2) fold change. Middle: Student t-test 
revealed significant p-value (<0.05) for cellulose 
degrader, sulphide oxidizer and nitrogen fixation. 
Bottom: volcano plot, summarises fold-change and 
t-test (p-value) values on one plot  
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Figure 23b. Loading score boxplots for metabolic phenotype categories. Top box: Cellulose degrader, sulphide 
oxidizer, and nitrogen fixation boxplots, computed from parametric test (t-test). Bottom box: Wilcoxon rank-sum 
test plot (pink dots represent significant fold-change metabolic feature categories) and loading boxplots. p<0.05.  
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PCA and PLS-DA plots were analysed based on loading scores across several metabolic 

phenotypes. Loading plot and biplot analysis was carried out for visualisation of most 

influential features (metabolic phenotypes) that could explain variation along each 

principal component axis (Figure 24). PCA loadings scores were also included to map 

the influence of metabolic phenotype and their contribution to principal components on 

PCA plots. Results indicated that dehalogenation, ammonia oxidizers, sulfate reducers, 

nitrite reducers, cellulose degraders and sulphide oxidizers contributed and influenced 

the most to principal components shown in the PCA, PLS-DA and biplots (Figure 24). 

Biplot of metabolic phenotypes showed several clusters of METH and Sham samples 

grouped according to metabolic phenotype principal components. Directional arrows 

in biplots, as found in this biplot, are related to the degree of relatedness and 

unrelatedness. METH samples seemed to be clustered between sulfate reducers and 

dehalogenators; whereas Sham samples tended to be scattered about the biplot with 

relatedness to most of the major metabolic phenotype categories. Shams samples B8, 

for example, was highly correlated to the sulfate reducer group, and B5 closely related 

to nitrate reducers.  Overall, four main directional arrows representing dehalogenation, 

sulfate reducers, ammonia oxidizers, and nitrite reducers – with minor influences from 

sulphide oxidixers and cellulose degraders - confirmed loading plot results, and these 

metabolic phenotypes explained the majority variance observed across all METH and 

Sham microbial communities.
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Figure 24. Multivariate statistics summary 
of metabolic phenotype. Top left: PCA plot 
displaying PC1 (45.6%) and PC2 (35.7%). 
As observed, two clusters were plotted 
indicating that there may be some 
differences between METH and Sham 
groups. Top right: Loading plot shows 
influence of taxa on variation along each 
principal component (PC). Those furthest 
from centre – Dehalogenation, Ammonia 
oxidizer, sulfate reducer, nitrite reducer, 
cellulose degrader and sulphide oxidizer – 
would have the greatest influence on 
principle components – PC1 and PC2 – in 
the PCA plot. Bottom left: Biplot of 
metabolic phenotype processes. Directional 
arrows of metabolic phenotype processes are 
relative to their relatedness and non-
relatedness. Vectors of variables (arrows) 
were visualised, and projected observations 
of METH [A1-A8] and Sham [B1-B8] were 
made. Angles between vectors (metabolism) 
and axes, relate to the degree of similarity 
and dissimilarity of vectors. Bottom right: 
PLS-DA 2D plot based on an enhancement 
of PCA plot, by carrying out maximum 
separation of principal components from 
PCA.  
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In addition to PLS-DA, other features that test accuracy and importance, including cross 

validation, and variable importance in projection (VIP). For importance measures, two 

methods are incorporated by METAGENassist. The first is VIP score; the second is 

coefficient score, which is the weighted sum of absolute regression coefficients. VIP 

scores of this study, with focus on metabolic phenotype categories and their influence 

on METH and Sham groups, found VIP scores >2 with dehalogenation; and <2 VIP 

scores associated with cellulose degrader, sulphide oxidiser and nitrogen fixation 

(Table 8). Cross-validation PLS-DA plots were generated for selection based on 

accuracy, Q2, and R2 (Figure 25). R2, Q2 and accuracy for metabolic phenotype was 

calculated across five components (Table 7). R2 values relate to the predictive power of 

the model, and values between 0.67 and 0.19 indicate a strong-to-weak R2 values. R2 

(coefficient of determination) was calculated as 0.381 (C1), 0.449 (C2), 0.476 (C3), 

0.532 (C4), and 0.724 (C5). Traditionally, R2 values range between 0 and 1, with 1 

representing highly confident predictive accuracy [Hair et al., 2014]. Q2 values are used 

to evaluate the predictive relevance of the PLS-DA model, with Q2 values greater than 

0 (Q2>0) deemed as predictively relevant [Peng et al., 2012]. In this study, Q2 values 

varied from 0.017 (C1), to -0.139 (C5) (Table 7).  
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Table 7. Cross validation of metabolic phenotype (LOOCV). Leave-one-out 
(LOOCV); R2, Q2 and accuracy for metabolic phenotype was calculated across five 
components 
 

  
C1 

 
C2 

 
C3 

 
C4 

 
C5 
 

Accuracy  0.495 0.496 0.503 0.487 0.533 

R2 0.381 0.449 0.476 0.532 0.724 

Q2 0.017 0.013 -0.013 0.050 -0.139 

 

 

Table 8. VIP scores of PLS-DA across five components. VIP scores for metabolic 
phenotype categories as computed by METAGENassist. 
 

 
Metabolic phenotype 
category  
 

 
C1 

 
C2 

 
C3 

 
C4 

Dehalogenation  2.074 1.981 1.935 1.831 
Cellulose degrader  1.836 1.732 1.691 1.606 
Sulfide oxidizer  1.764 1.647 1.608 1.525 
Nitrogen fixation 0.839 0.777 0.755 0.7333 
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Figure 25. PLS-DA model measures of accuracy and importance. Top left: 
Cross validation plot of performance vs. no. of components. Five components 
(default) were selected. Cross validation method chosen was LOOC (leave one 
out). R2, Q2 and Accuracy scores were recorded across five components. 
 
Bottom left: VIP plot. Top components (metabolic phenotypes) are plotted as 
determined by cross validation. Bottom right: weighted sum of PLS-regression 
coefficients. In both VIP and coeff. Scores, blue dots represent most significant 
feature/measure (metabolic phenotypes across OTUs).  
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4.0 Discussion  

Metagenomics is a valuable tool that assists in describing and understanding the 

human gut microbiome [Wang et al., 2015]. Besides its function in producing 

enzymes to help break down food, the gut microbiome also helps in the 

development of the host immune system [Martin et al., 2018], along with 

serving functions in the gut epithelium and brain [Barko et al., 2018]. The most 

abundant, and therefore dominant phyla are the Firmicutes and Bacteroidetes 

species [Costea et al., 2018], which make up around 92% of the human 

microbiome [Shi et al., 2017]. The density of bacteria in the gastrointestinal 

tract (GI) is between 1013-1014 cells per gram faecal matter, and 70% of total 

microorganisms reside in the colon [Wang et al., 2015]. In the colon, dense, 

highly anaerobic microbes exist [Sundin et al., 2017]. Diet and age are two 

factors which can influence the gut microbiota, along with stress, geography 

and drug intake [Noble et al., 2017; Kostic et al., 2014]. Importantly, 

understanding the gut microbiota ecosystem, in an unperturbed and perturbed 

state can help us understand the role of factors that may be associated with 

changes in gut composition and how this might impact human health [Costea et 

al., 2018]. Thus, the importance of investigating changes in microbial 

populations in the colon in a chronic drug model are crucial to adding new 

knowledge on the growing gut microbiome research and this might be related 

to drugs of abuse. Moreover, since diet, and dietary patterns, is one key factor 

in the development of a healthy gut microbiome, substance abuse with drugs 

such as METH may help in identifying how possible changes in the gut can 

influence the brain [Galland, 2014]. In this regard, the gut-brain axis (GBA), 

how microorganisms affect brain functioning, has yet to be fully clarified 
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[Wang et al., 2016]. However, gut microbiota impacts the brain through not only 

the nervous system, but also via the endocrine, immune and metabolic systems 

[Wang et al., 2016]. Interestingly, changes in how the gut and brain interact are 

believed to play a role in several brain disorders that alter mood and can cause 

Parkinson’s disease [Martin et al., 2018], along with causing stress-related 

behaviours such as anxiety and depression [Bear et al., 2020; Logsdon et al., 

2018]. Of equal relevance, gut microbes can reprogram immune cells, promote 

cytokine secretion and may even shift across the blood brain barrier (BBB) 

[Logsdon et al., 2018].  

 

This work utilised a bioinformatics pipeline to classify bacterial community 

diversity, and microbial composition, in a chronic METH mouse model 

(Figure 3). Samples were taken across two conditions: mice exposed to a 

chronic METH dose, following a withdrawal period, and control mice (Sham). 

Sequencing and filtering of 16S data was performed on the Illumina platform, 

with cleaning steps to remove duplicate, and redundant reads. A series of 

pipelines were incorporated from METAGENassist, MicrobiomeAnalyst and 

MG-RAST (Figure 4, 5, 8) which allowed for metadata upload, sequence 

cleaning and normalisation and/or rarefaction (Figure 7, 9, 10) followed by 

graphical and statistical analyses. The choice of METAGENassist, 

MicrobiomeAnalyst and MG-RAST was chosen for both their user-friendly 

graphical interface, and also their ability to provide univariate and multivariate 

ordination analysis on metagenomic data. Many of the tools that are necessary 

for analysing abundance across OTU data are native to both METAGENassist, 

and MicrobiomeAnalyst, including composition, sequence quality, functional 
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analysis based on bacterial phenotype, and statistical inferences. Heat maps, 

principal coordinate analysis (PCoA), rarefaction and phylogenetic trees are 

features of both METAGENassist, MicrobiomeAnalyst and MG-RAST. MG-

RAST and Galaxy (Table 6; Figure 4, 5) provide a complementary cleaning 

and analysis pipeline that allows for visual sequence analysis in the form of 

summary statistics (Figure 11a, 11b, 11c). Accurate data is required for all 

downstream statistical analysis with metagenomic data. Raw reads obtained 

from NGS Illumina sequencing can be further analysed in pre-processing 

steps, to check for adaptor presence, low quality nucleotides and GC content 

[Zhang et al., 2014]. MG-RAST allows raw sequences to be uploaded, and 

assessments of sequence quality along with visual representations [Keegan et 

al., 2016]. In this work, MG-RAST was used to process raw fastq raw reads, 

with subsequent Galaxy web application (Figure 5). This was done to ensure 

and confirm reads quality, prior to further ordination analysis. It was found 

that, upon pre-processing in MG-RAST, Galaxy application showed a good 

quality of reads across the sequence reads, with total sequence calculated as 

215, 490. Galaxy allows for both exploratory and pipeline analysis of large 

datasets [Afgan et al., 2018]. Moreover, per sequence quality scores and 

adaptor content all passed quality checks as performed by the Galaxy web 

application (Figure 11a, 11b, 11c). 
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Distinct abundance differences exist between METH and Sham microbial 

communities 

 

Several microbial abundance fluctuations were observed in both the phylum and 

genus levels. In particular, the METH group was found to contain a lower 

abundance of Firmicutes (Figure 12a), and Verrucomicrobia (phylum level); 

and also, higher abundances of, Akkermansia, Turibacter and Allobaculum. 

Interestingly, Burkholderia (genus level) was not present in the Sham group 

(Figure 12b), but only in the METH group. The genera bacteria, Burkholderia 

is an intestinal microbe, and is considered a regulate innate immune responses 

against bacterial infections [Lankelma et al., 2017]. The most dominant phyla 

in the human gut are the Firmicutes, Actinobacteria, Proteobacteria, 

Bacteroidetes, Fusobacteria and Verrucomicrobia [Rinninella et al., 2019]. An 

in-silico study investigating microbial tryptophan metabolism found an 

enrichment of tryptophan metabolism pathways across Clostridium, 

Burkholderia, Streptomyces, Pseudomonas and Bacillus genera [Kaur et al., 

2019]. Within the Firmicutes, Verrucomicrobia, Actinobacteria, Bacteroidetes 

and Proteobacteria phylum exist several genus examples (Figure 12b). These 

genus level bacteria are also represented across all phylum groups in both 

METH and Sham groups and can explain the variation at both the phylum and 

genus levels. Furthermore, significant fold changes were associated to these 

major phylum and genus microbiota (Figure 13a) from METAGENassists 

unique fold-change and significance scoring metrics. In particular, Dorea and 

Allobaculum were significantly higher in METH compared to Sham (Figure 

13b). Dorea belongs to the family Lachnospiraceae. In addition, Dorea has been 
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associated with intestinal permeability (IP) in alcohol dependence (AD), in 

which gut dysbiosis is also associated [Leclercq et al., 2014]. High gut 

permeability was also associated with a dramatic decrease in bacteria belonging 

to the Ruminococcaceae family, in favour of increased abundance of Dorea 

[Leclercq et al., 2014]. Similarly, this work shows that Dorea was significantly 

abundant (>3-fold) (Figure 13b), and those bacteria belonging to the 

Ruminococcaceae family, which in this study was a significant decrease of 

abundance of Faecalibacterium (<4-fold). Gut dysbiosis from chronic METH 

withdrawal might explain the radical shift in abundances of these bacteria, 

observed in METH samples. Moreover, at the genus level, Ruminococcus was 

found to be significantly (p<0.05) less abundant in METH compared with Sham 

group (Figure 13c). 14 bacteria were significantly down-regulated, 3 were 

significantly up-regulated, and 6 bacteria were both significant at the fold-

change and p-value level (Figure 13a). Specifically, these constituted, 

Faecalibacterium, Dehalobacterium, Coprococcus, Anaerotruncus, 

Ruminococcus and Prevotella. All 6 bacteria groups were observably higher in 

the Sham group, and lower in the METH group. Interestingly, reductions of 

Faecalibacterium, which belong to the Firmicutes phylum and Ruminococcacea 

family, has been associated with intestinal disorders in humans [Lopez-Siles et 

al., 2017], and serve as a biomarker for intestinal health [Miquel et al., 2016]. 

F. prausnitzii, an obligate anaerobe, are the main butyrate-producing bacteria in 

the colon and play a role in gut homeostasis [Maier et al., 2017; Xu et al., 2020], 

and has anti-inflammatory properties [Savin et al., 2019; Martin et al., 2015]. 

An apparent significantly low abundance in the METH group of 

Faecalibacterium could be due to a dysregulation in anti-inflammatory function, 
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caused by METH. Moreover, a sudden shift in low abundant Faecalibacterium 

in the METH group, with conversely high abundance in the control group could 

be one indicator of the influence of METH, and subsequent METH withdrawal 

being potentially attributed to intestinal disorders specific to the colon. 

Furthermore, the presence of Faecalibacterium species has been shown to 

influence and enhance tight junction formation [Maier et al., 2017]. Control 

group abundance of Faecalibacterium might correlate with this tight junction 

regulation, which might also explain a healthy, unperturbed gut 

Faecalibacterium composition. Lastly, Faecalibacterium showed the strongest 

p-value and fold-change significance compared to other significantly down-

regulated bacteria, which might suggest its predominant importance and 

relevance in METHs impact on the gut and colon. Moreover, Butyricicoccus, 

found to be <3-fold abundance in the METH group (Figure 13b), is also a 

butyrate-producing bacterium [Eeckhaut et al., 2016]. Ning et al (2017) found 

that a high METH dose increased Ruminococcacea taxa, which plays a role in 

METH’s negative impacts on cognition [Ning et al., 2017]. Cook et al (2019), 

investigating the association of microbiome composition between METH and 

non-METH users, found a reduction in both Faecalibacterium and 

Butyricicoccus genera [Cook et al., 2019]. Importantly, their study included 

both HIV-positive and HIV-negative METH users, and alterations in microbial 

composition and abundance was found to be independent of HIV status [Cook 

et al., 2019]. These results, based on a significant reduction of Butyricicoccus 

genera, coincide with these earlier results, however, cannot be conclusively 

permitted due to differences attributed to the drug model (human vs. mouse) in 

question. Dehalobacterium are anaerobic, dichloromethane-utilising bacteria 
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[Chen et al., 2017; Michalovich et al., 2019], which were shown to be 

significantly low in abundance in the METH group. In previous work, lower 

abundance of Dehalobacteria in the colon was attributed to atherosclerosis 

[Chan et al., 2016]. Little is known regarding the association between 

Dehalobacteria and METH use. However, one postulation to this observation is 

that a lowering of Dehalobacterium abundance in chronic METH use might 

suggest a microbial component to atherosclerosis. Indeed, it has been shown 

that among a group of five colonic genera, Dehalobacteria played a role in 

protecting against atherosclerosis via a high-fat (HF) diet replacement with 

LGG or Telmisartan [Chan et al., 2016]. Moreover, the pathogenesis of 

atherosclerosis, induced by chronic METH, has recently been attributed to 

immune and inflammatory responses via pro-inflammatory cytokine production 

[Zhu et al., 2017]. In line with this, the current observation of a significant 

reduction of Dehalobacteria by METH could have an association with a 

lessening of protective capabilities to atherosclerosis pathogenesis, and/or be a 

pre-curser to a vulnerability caused by a chronic METH pattern in this mouse 

model. One other significant finding to support the hypothesis of colonic 

microbial associations to atherosclerosis is the co-occurring low abundance of 

Roseburia and Oscillospira, which were significantly down-regulated (<2-fold) 

in METH faecal microbiota, compared with Sham. This finding is in line with 

Chan et al (2016) who also found a similar pattern of low-abundant Roseburia 

and Oscillospira genra. [Chan et al., 2016].  

 

 



202 

Prevotella, Coprococcus, Anaerotruncus, Ruminococcus, and Odoribacter 

genera were notably, and significantly lower (p<0.05) in the METH group, 

compared to control group (Figures 13b and 13c). In addition, 

MicrobiomeAnalyst, using the MetagenomeSeq algorithm, found significant 

abundances - between METH and Sham groups – of Parabacteroides (Figure 

14), with a lower abundance observed in the METH group. Parabacteroides, 

which belong to the Tannerellaceae family, and are also grouped as one of many 

SCFA-producing bacteria [Du et al., 2020]. The anaerobic Coprococcus, like 

Faecalibacterium is also a butyrate-producing bacterium, as well as a 

propionate-producing bacterium that is Gram-positive, and produce short-chain 

fatty acids (SCFA) from the fermentation of dietary fibers [Caspani et al., 2019]. 

One explanation of the observed low abundance Coprococcus, as well as 

Faecalibacterium, is that METH may impact tight junctions indirectly through 

an inductive drop in butyrate metabolites via the loss of important genera such 

as Coprococcus and Faecalibacterium. Butyrate, as a SCFA, is important for 

proper maintenance of intestinal barrier integrity, and influences expression of 

tight junction proteins [Kelly et al., 2015]. Furthermore, butyrate also functions 

as a neuro-hormonal signalling molecule, and is also produced by Clostridium, 

Roseburia, Bacteroides and Prevotella [Kelly et al., 2015]; and the majority of 

butyrate is utilised as an energy source by the colonic epithelium [Liu et al., 

2018]. In this work, Bacteroides, Roseburia, and Prevotella were significantly 

reduced in the METH group. Along with butyrate production, Roseburia also 

produces propionate and serotonin [Caspani et al., 2019]. Gut-produced 

propionate has also been shown to protect the blood-brain barrier (BBB) against 

oxidative stress [Kaur et al., 2019]. Importantly, SCFAs can influence gut 
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serotonin levels and also influence mood disorders [Silva et al., 2020], which 

Jiang et al (2015) were able to confirm that Bacteriodetes, Actinobacteria and 

Proteobacteria were significantly more abundant in a major depressive disorder 

(MDD) patient group, with increased levels of Alistipes and Enterobacteriaceae, 

and reduced levels of Faecalibacterium [Jiang et al., 2015]. Moreover, Ning et 

al (2017) measured propionate and butyric acid in the faecal matter of METH 

and control groups and found a significant reduction in abundance of both 

[propionate and butyric] SCFAs [Ning et al., 2017]. The role of these gut-

derived SCFAs could have a key role in regulating stress and depressive-like 

symptoms, and this has been shown with SCFA supplementation, in which 

acetate, butyrate and propionate alleviated psychosocial stress-induction 

brought on by reward-seeking behaviour [van de Wouw et al., 2018]. Further 

work would need to assess the loss of SCFA-producing bacteria in a chronic 

METH dose group context, which might solidify the role METH might play in 

influencing (through significant reduction) SCFAs such as butyrate and 

propionate. Furthermore, the possible interactions and/or influence of high 

METH doses on SCFA-producing bacteria might also suggest a pathway 

leading to a reduction in the protective capacity of SCFAs to prevent oxidative 

stress in the BBB. Collectively, METH may be responsible for reducing these 

colon-residing bacteria, which could subsequently lead to a decrease in 

metabolites, such as butyrate, responsible for maintaining energy homeostasis, 

along with providing communication via the gut-brain axis. Furthermore, a 

reduction in colon/gut barrier integrity from a reduction in barrier-maintaining 

bacteria, via bacterial metabolic production, could be a feature of chronic 

METH use over time. Also, METH (at significantly high doses) could 
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contribute to what is known as the ‘leaky gut’ hypothesis and be a significant 

‘stressor’ or ‘stimulant’ that causes low-grade inflammation across many organs 

by not only perturbing healthy concentrations of colon bacteria – Prevotella, 

Faecalibacterium, Coprococcus - but by action of lessening the maintenance 

capabilities of microbial metabolites and their cross-communication along the 

gut-brain axis. Microbiota-to-brain bi-directional communication requires a 

clear pathway that can communicate any changes in SCFA, along with other 

important molecules, which would influence endocrine, neuronal, and immune 

cell signalling across multiple organs, including the brain [Parker et al., 2020]. 

METH does indeed disturb the body’s immunity [Papageorgiou et al., 2019], 

and specific changes to several microbial signalling processes from a marked 

shift and disruption in abundances might explain aspects of mental health 

disorders commonly seen in chronic METH abuse patients. In addition, the 

effects of exogenous chronic drug exposure, such as that of METH, to the 

colonic microbial communities may cause radical modulation on gut microbial 

composition, along with metabolic activity [Wilson et al., 2017]. When 

describing the gut microbial-depression connection, lower abundances in 

Firmicutes, Akkermansia, Ruminococcus, Prevotella and also Lactobacillus has 

been linked to depression-like behaviour [Li et al., 2020]. This study found a 

much less abundance in Prevotella and Rumicococcus bacteria in the METH 

group, which does indeed coincide with this observation. 
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Richness and evenness of bacteria composition in the colon may be 

influenced by METH  

 

Alpha and best diversity estimates showed an insignificant alpha diversity – 

measured by Chao1, ACE, Shannon and Simpson measure metrics – yet, a 

significant beta diversity (Figure 15a and 15b), between the METH and Sham 

samples. Traditionally, Chao1 and ACE alpha diversity methods measure 

bacteria species richness, and are both non-parametric methods. Richness refers 

to the number of taxa/genera that are observed in the sample’s community, 

which ignores frequency, whereas evenness is associated with the distribution 

of taxa/genera frequencies in a sample community [Wagner et al., 2018]. Non-

parametric methods rely on the assumption that a set of data observations are 

not normally distributed, and this assumption of unequal distribution has an 

implicit advantage that data rarely follow normal distributions [Vickers, 2005]. 

For this reason, OTU reads were normalised and scaled in both 

METAGENassist and MicrobiomeAnalyst (Figure 7 and 10). Moreover, 

Shannon and Simpson alpha diversity methods, both which investigate evenness 

in a given group of samples, were applied to both METH and Sham group 

samples. Chao1 estimator of alpha diversity found a greater diversity of 

microbial composition (Figure 15a) in METH samples. Further, ACE alpha 

diversity measure also revealed grater microbial diversity amongst the METH 

group compared to Sham samples (Figure 15a). Shannon and Simpson alpha 

diversity – which reflect taxa/genera/OTU evenness – revealed several 

differences in evenness across METH and Sham samples as visualised by 

constructed boxplots (Figure 15a and 15b). However, overall alpha diversity 
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was not significant to conclude statistically significant differences. Further, box-

plot representations as constructed by MicrobiomeAnalyst do not represent 

significance. To further support statistical significance, the Mann-Whitney 

statistical calculation showed no significance in diversity and evenness. From 

alpha diversity results, it could be suggested that chronic METH does not cause 

a greater shift in diversity of bacteria in the colon, however, results from this 

alpha diversity cannot rule out that several reductions and increases of certain 

bacteria in the METH and Sham groups are not present and unique to each 

group. By observing earlier fold-change and p-value significance scores (Figure 

13a, 13b, 13c), as carried out by METAGENassist, it can be seen that several 

fold-changes exist across microbial genera between METH and Sham groups. 

As alpha diversity indices provide significance (p-value) scoring to denote at 

least one group that follows a different distribution, in this case, METH vs. 

Sham, the alpha diversity measures applied here should not be equated to a lack 

of relevance at the OTU or genera level, and the association of this relevance to 

aspects of colon physiology such as alterations to tight junction proteins. Beta 

diversity was calculated using several beta diversity methods, including Bray-

Curtis, Jensen-Shannon divergence, and Jaccard index (Figure 16a, 16b, 16c). 

Beta diversity’s strength lies in its ability to indicate differences or alterations 

in microbial composition across samples that belong to a particular group 

[Schroeder et al., 2018]. Beta diversity measures the dissimilarity of microbial 

composition between samples and can be visualised via principal coordination 

analysis (PCoA) plots and is usually complemented with dendrograms and 

heatmaps. Bray-Curtis PCoA showed two distinct groups, based on this 

dissimilarity measure (Figure 16a). The Bray-Curtis is premised on proportion 
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of the number of species observed at one site (group), and not another site 

[Ferrier et al., 2007]. Moreover, ANOSIM R values for Bray-Curtis 

dissimilarity methods was calculated as 0.0718, indicating a lack of clear 

dissimilarity between METH and Sham groups. This was also confirmed by a 

non-significant p-value. Five Sham samples (Figure 16a: blue cluster) had the 

most dissimilarity to METH samples (Figure 16a: red cluster), however four 

Sham samples grouped into this METH cluster. This lack of complete 

dissimilarity of microbial composition in both groups might be explained by the 

similar abundances of major phyla between several of the Sham and METH 

samples and the influence of these samples to group clustering algorithms. 

Similar to Bray-Curtis beta diversity, Jensen-Shannon and Jaccard indices also 

clustered two distinct groups based on dissimilarity (Figure 16b, 16c), however 

no significance was observed between both clusters across all beta diversity 

methods. The goal of constructing PCoA plots is to transform high-dimensional 

data to a low-dimensional plot that can also preserve distances between points 

(samples) across the plot relating to sample dissimilarity. Across all beta 

diversity PCoA plots, a characteristic overlap could be observed of METH and 

Sham samples. Whilst a certain degree of dissimilarity of roughly half of the 

Sham (control) samples was shown, and majority METH samples formed one 

unique cluster, this overlap could possibly explain the distinct dissimilarity of 

both groups. To visualise these PCoA plots along a dendrogram (agglomerative 

hierarchical dendrogram), beta diversity methods – Bray-Curtis, Pearson, 

Spearman, Jensen-Shannon, and Jaccard methods - were incorporated with four 

well-known distance measures – average, complete, single and Ward – to map 

the relationship of METH and Sham samples (Figure 17a, 17b, 17c, 17d). 
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Overall, most METH samples formed a distinct cluster of similarity, while a 

consistent group of Sham samples also clustered across all dendrograms. In 

general, the agglomerative clustering approach starts with two objects (samples) 

and merges them based on the extent of their similarity [Forina et al., 2002]. 

This continues until distinct clusters can be visualised. Specifically, it was 

observed that although there was a separation of METH samples across the 

dendrograms, there was more similarity share between all of the METH 

samples; and, distinct clusters were built which pooled majority control samples 

to the Sham group. This was observed notably on the Pearson, Spearman, and 

Jensen-Shannon dendrograms (Figure 17a, 17b, 17c). Collectively, beta 

diversity indices, although not significantly distinct, were able to cluster many 

of the METH samples within the METH group, and two main dendrogram 

nodes were observed which could help explain the relative similarities and 

dissimilarities across the samples. Some of this failure to capture a statistically 

significant dissimilarity between both groups might be attributed to a lack of 

sampling depth within each group. Rarefaction is often used (Figure 7) to 

account and adjust for differences in library size which can help in building 

more robust alpha and beta diversity plots [Willis, 2019]. Microbiome data 

analysed in MicrobiomeAnalyst was first rarefied prior to alpha and beta 

diversity methods were applied. This permits a fair analysis of microbial data, 

that can contrast one ecosystem to another without discrepancies in sample 

sizes, as rarefaction adjusts for these sample size differences.  
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Multivariate analysis displayed distinct clusters in METH and Sham 

groups 

 

PCA is an unsupervised method which takes data from a high dimension and 

transforms this data into one of low dimensionality. In this work two distinct 

clusters were observed across the PCA plot (Figure 18a). In addition, over half 

(52%) of all principal components (PC) contributed to the variance observed in 

the PCA plot, with a second PC contributing just over 21% of variance. Loading 

plot and biplot confirmed the weight of influence given to several genera (Figure 

18a) on both METH and Sham samples. Loading plot values are usually 

interpretable when values are closer to +1 and/or -1. Moreover, biplots can 

feature both aspects of a loading plot and score plot. In this regard, it was found 

that Allobaculum, Akkermansia, Coprococcus, Prevotella, Desulfovibrio, and 

Lactobacillus, seemed to have the most influence on the clustering of both 

METH and Sham groups. Bi-plot results can clearly explain the influence of 

Prevotella, Coprococcus, Desulfovibrio varibales on Sham samples. Whereas 

Allobaculum, Akkermansia, Lactobacillus, and Turicibacter, seemed to have 

the most influence in separating METH samples along the PCA plot. Two 

principal components were displayed for construction of all plots, since it was 

found that PC1 and PC2 could explain 52% and 21.3% of variance across the 

complexity of both METH and Sham samples. After PC2, PC3 could capture 

and explain ~9% of the variance from the original samples. For this reason, PC1 

and PC2 captured the most microbial variance (Figure 18b). Loading scores bar 

chart (Figure 18c) confirmed loading plots (Figure 18a) with higher scores for 

Allobaculum and Akkermansia. K-means (unsupervised learning clustering) 
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[Qu et al., 2019] and self-organising maps (SOM) are two clustering methods 

that are a feature of METAGENassist. In this study, clustering across OTU 

(feature), Phylum and Genus levels was computed by METAGENassist, using 

two cluster numbers (Figure 19a). K-means computes clusters based on objects 

that are closer to the mean of a particular cluster [Ramette, 2007]. It was found 

that k-means clustered samples into two distinct groups (figure 19a), however 

there was variation in the number of samples per group across OTU, Phylum 

and Genus levels. Overall, k-means served as a reliable unsupervised method to 

group similar samples based on no a priori knowledge of groupings. SOM 

clustering, also an unsupervised neural network algorithm [Weber et al., 2010], 

also grouped similar Sham and METH samples into two distinct clusters (Figure 

19b). Strongest clustering was found at the OTU level, with SOM clustering 6 

out of 8 Sham samples, and all METH samples into their respective groups. In 

addition to k-means and SOM clustering, random forest (RF) classification 

constructs a series of trees based on random sampling of OTU reads, and this 

method also incorporates an out-of-bag (OOB) error which is calculated by the 

RF algorithm using a subset of observations to predict the error pf RF. This 

OOB (generalisation) error can then be used to assess the predictive 

power/performance of the RF [Janitza et al., 2018]. Class error rate was greater 

in MicrobiomeAnalyst than RF class error rate computed by METAGENassist 

(Figure 20a). Further, METAGENassist was able to classify a greater number 

of METH samples belonging to the true METH group, along with Sham samples 

into its actual group. RF as carried out by MicrobiomeAnalyst did not perform 

as well as METAGENassist’s RF algorithm (Figure 20a). Comparing both 

METAGENassist and MicrobiomeAnalyst, random forest (RF) classification 
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plots and variance of importance plots were constructed to visualise genera. It 

was found that the majority of OTU features were also consistent with those 

features with a significant representation in fold-change and significance 

testing. In addition, outliers across METH and Sham samples were also 

computed by the RF algorithm (Figure 20b). Sham samples B2 and B4 were 

calculated as outliers, and these two samples were also clustered together 

amongst the METH cluster according to both k-means and SOM clustering 

methods. This ‘outlier effect’ contributed by these samples might explain the 

apparent non-uniform clustering found in the agglomerative hierarchical 

clustering dendrograms. This consistency of clustering and classification from 

employing several algorithmic methods and applying them to METH and Sham 

samples provides some confidence that not only the clustering methods are 

reliable; but also, that there are indeed distinct differences in both groups. K-

means, SOM and RF (reference-free unsupervised) machine learning methods 

of clustering and classification, are able to recognise, classify, and predict 

patterns in data that are without pre-defined labels [Zhou et al., 2019]. This is 

an incredibly powerful approach to recognise [unbiased] patterns of clustering 

and classification otherwise apparent in supervised machine learning 

techniques. Heatmaps at the phylum level showed two main clusters, with 

similar patterns of Firmicutes and Bacteroidetes across Sham and METH groups 

(Figure 21a). At the genus level, some consistency of certain taxa was observed, 

including a lack of Ruminococcus, Desulfovibrio, Bacteroides and Coprococcus 

(Figure 21a). Conversely, control samples contained more Prevotella and 

Coprococcus compared to METH group. Several METAGENassist heatmaps 

were generated using four clustering methods – average, complete, single and 
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Ward – and, Spearman (Figure 21b), and Pearson (Figure 21c), distance 

methods. Coinciding with dendrogram results, heatmaps according to Spearman 

distancing found higher concentrations of Prevotella, Bifobacterium, 

Parabacteroides, Roseburia, Faecalibacterium, Anaerotruncus, 

Dehalobacterium, Corynebacterium, Ruminococcus, Odoribacter, Oscillospira, 

Desulfovibrio, Coprococcus, and Turibacter, across all four clustering 

algorithms using the Spearman distance metric (Figure 21b). Similar patterns 

across the Pearson heatmaps (Figure 21c) were also observed. These results 

confirmed the fold-change, significance scoring, and box-plot representations 

of microbial abundances in both METH and Sham groups. Clearly, form these 

results, the majority of Sham samples had a different abundance profile to the 

METH group samples.  

 

 

Metabolic phenotype of microbial diversity revealed differences in METH 

and Sham groups 

 

A strong feature of METAGENassist rests in its ability to apply a functional 

analysis to microbial abundance data. In addition, this provides further support 

to traditional clustering methods, and can also be linked with the construction 

of ordination plots, such as PCA, and parametric/non-parametric statistical 

measures. Overall, significant fold-changes (±2-fold) were seen with degrades 

aromatic hydrocarbons, cellulose degrader and nitrogen fixation (Figure 22). 

Further, chitin degradation and sulphide oxidizer metabolic processes held non-

significant fold-changes yet were significant according to the constructed 
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volcano plot (Figure 23a). Across all metabolic process categories, the METH 

group had lower abundances of cellulose degradation, aromatic hydrocarbon 

degradation, nitrogen fixation, chitin degradation, and sulphide oxidation 

metabolic categories, compared to control group (Figure 23a, 23b). Multivariate 

analysis, using PCA and PLS-DA score plots found that the majority of variance 

between microbial abundances were accounted for by a handful of metabolic 

phenotype categories (Figure 24). Biplot of metabolic phenotypes (Figure 24) 

revealed several clusters of METH and Sham samples that were grouped 

according to metabolic phenotype principal components. Directional arrows 

within the biplot is related to the degree of relatedness and unrelatedness. 

Therefore, METH samples seemed to be clustered between sulfate reducers and 

dehalogenators; whereas Sham samples tended to be scattered about the biplot 

with relatedness to the majority of the major metabolic phenotype categories. In 

the [human] colon, sulfate-reducing bacteria belong predominantly to the genus 

Desulfovibrio [Rey et al., 2013]. Moreover, Desulfovibrio bacteria are the most 

well-studied sulfate-reducing bacteria and is the most abundant in the human 

gut [Ran et al., 2019]. In this study, the METH group had a significantly lower 

abundance of Desulfovibrio 

 

Measures of accuracy and importance from PLS-DA plots (Figure 24) were 

calculated for metabolic phenotype categories. PLS-DA modelling is based on 

a relationship between microbial data (OTU reads), and some categorical 

variable (metabolic phenotype), and this model is constructed in a manner that 

metabolic categories can be predicted for OTU reads per sample. The Q2  

statistic is a PLS-DA default diagnostic statistic measure that validates the PLS-
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DA model [Szymanska et al., 2012]. Furthermore, R2 (coefficient of 

determination) and Q2 (cross-validation redundancy) values of the metabolic 

phenotype categories (class membership) and their relationship to the original 

variables were found to be strong (R2 = 0.724 (C5)), however, as a Q2 value 

greater than 0 (Q2>0) deemed as predictively relevant [Peng et al., 2012], Q2 – 

its application to the metabolic phenotype – was much lower than 0, with a 

reading of -0.139 (C5) (Table 7). This suggested that although the PLS-DA 

model (R2) could predict the metabolic phenotype functional categories with 

good accuracy, the corresponding Q2 at C5 did not perform well with this model. 

One measure, the VIP score, assesses the importance of a variable by 

summarising the contribution that a particular variable has on the overall model. 

For this PLS-DA VIP score plot, it was observed that the most important 

metabolic phenotype categories were dehalogentors, cellulose degraders, and 

sulphide oxidisers (Figure 8). Overall, PLS-DA is a supervised method that is 

usually applied to microbial data to uncover any apparent microbial variation 

between groups, and can also be applied to functional group categories, such as 

metabolic phenotype of bacteria. In addition to PCA and PLS-DA multivariate 

ordination plots (Figure 25), VIP plots and scores were calculated to assess the 

contribution of each metabolism phenotype category. It was found that 

dehalogenators (VIP>2), cellulose degraders, sulphide oxidizers and nitrogen 

fixators (VIP<2) held the most significance for contributing to the variance 

observed across METH and Sham groups. (Figure 25; Table 8). This confirmed 

previous loading and biplot data which also found that METH and Sham groups 

seemed to be clustered towards these metabolic phenotype processes. Besides 

clustering and classification methods offered by METAGENassist and 
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MicrobiomeAnalyst, METAGENassist can offer a functional analysis of 

microbial datasets, which provides an additional layer of knowledge to 

traditional taxonomic clustering. From these results, it may be supportive that 

METH causes not only changes in microbial abundances in the colon, however 

that METH might also dampen or minimise several metabolic processes. PCA 

biplot confirmed that there was indeed a shift in metabolism phenotype between 

METH and control groups. Directional arrows assisted in this interpretation by 

the unrelatedness of opposite-directed arrows and their corresponding angle(s). 

Another postulation to this occurrence is that the majority of these metabolic 

processes - cellulose degradation, aromatic hydrocarbon degradation, nitrogen 

fixation, chitin degradation, and sulphide oxidation – belong to bacteria that 

were found to be in much lower abundances (as measured via fold-change and 

significance scores), in which METH may have a direct or indirect action on. 

One important consideration is related to understanding how these metabolic 

processes are required for normal gut function, in contrast to how perturbations 

in these metabolic processes, and subsequent shifts in homeostatic metabolism, 

could lead to greater downstream pathophysiology across multiple organs. In 

this respect, the metabolic potential of the gut/colon microbial communities can 

be partially explained by bacteria richness and diversity which correlates with 

proper metabolic function [Martin et al., 2019]. Moreover, gut bacteria can be 

profoundly influenced by diet, and xenobiotics [Guthrie et al., 2019]. The use 

of chronic METH, when applied to both a mouse model and human addict, 

constitutes as regular, and perhaps consistent/inconsistent dietary intake that the 

organism becomes habituated to encountering. From this chronic exposure, this 

then might lead to changes (over time) in gut microbial composition and 
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richness, which could shift the host towards particular immune characteristic(s) 

[Riedl et al., 2018]. This study indeed found changes in microbial abundance 

and differences in metabolic profiles between METH and control groups. 

Observing that microbial composition from mouse (METH) faecal samples had 

significant differences compared to normal, non-METH induced mice, METH 

might play a role in disturbing host energetics from this 

compositional/diversity/metabolic shift. Keeping in line with this hypothesis, 

METH can be perceived as a dietary component that reaches the distal colon, 

but where the parent compound is absorbed by in the upper gastrointestinal tract 

[Yip et al., 2015]; however, more evidence, and longitudinal studies would help 

unravel this possible connection. One popular area of current research is the 

effects of drugs on the gut-brain axis (GBA). Depending on the route of METH 

administration, along with dose exposure, perturbation of gut microbiota could 

have lasting effects on microbial composition which in turn may disrupt gut-

brain communication. This disruption could be spear-headed by SCFA 

metabolite signals, immune system modulation and the enteric nervous system, 

which traverse and establish communications between the gut-brain. By 

considering the gut microbiota as an organ, that sits within the GI ecosystem, 

the role and influence of psychotropic drugs like METH on this component of 

a highly diverse ecosystem could assist in efforts to thoroughly unpack chronic, 

long-term METH addiction and its harmful effects on a range of systems and 

sub-systems that exist within the throughout gut microbes.  
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Conclusion  

Drugs of abuse, along with substance abuse disorders have been associated with 

a reduction in microbial diversity as well as modulation of metabolic processes. 

An increasing amount of interest in the effects of substances of abuse, such as 

METH, and gut health is beginning to unfold. Intertwined is the ongoing gut-

brain axis theory which postulates that changes to gut microbiota can 

significantly impact the brain, leading to mood disorders such as depression. In 

this work, several significant alterations were observed across major and minor 

colon-residing bacteria. By applying supervised, and un-supervised ordination 

analysis to microbial populations in a chronic METH withdrawal mouse faecal 

group, in comparison to a control group, statistically significant alterations were 

observed between both treatment and control groups. Moreover, a clear 

difference in diversity, along with changes in metabolic phenotype, was also 

observed that may be attributed to by a chronic METH dose over an escalating 

model of administration. A lowering of colon microbial diversity may have 

dramatic impacts on health, and this could lead to dramatic and detrimental 

neurological events with lasting impacts for chronic METH users and those 

experiencing withdrawal. This study aimed to answer the question as to whether 

chronic METH causes changes to colon microbial diversity and composition. 

Major changes to several phyla and genus-level taxa, such as Faecalibcterium, 

Dehalobacterium, Coprococcus, Anaerotruncus, Ruminococcus and Prevotella. 

In addition, metabolism phenotypes: cellulose degradation, aromatic 

hydrocarbon degradation, nitrogen fixation, chitin degradation, and sulphide 

oxidation metabolic categories, were observably lower in the METH group. 

These results were confirmed with in-depth ordination analysis. Collectively, 
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chronic METH causes changes in abundance to not only particular microbes, 

but also shifts in microbial metabolism. This work represents a growing body 

of research with the objective of understanding how chronic METH impacts the 

gut microbial homeostasis, and how this might be linked to an impairment in 

brain function, in terms of memory, psychosis and long-term depression-like 

symptoms.  
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Chapter 4 

In vitro investigation of the effects of METH on the human lung 

using a U937 cell line. 

 

Abstract 

Methamphetamine, METH, is a highly addictive psychoactive compound that 

is widespread in many parts of the world. METH is known to cause responses 

in microglia and astrocytes, along with causing neurotoxic effects. The aim of 

this study was to determine how a high METH dose (500µM) impacted an in 

vitro, differentiated (vitamin D) and undifferentiated U937 pro-monocytic cell 

line. RNA analysis of METH-stimulated U937 cells was carried out using 

Qiagen immune and adaptive immune response gene arrays. Results showed no 

significant changes in gene expression in differentiated U937 cells, upon 

addition of 500µM. However, undifferentiated U937 cells showed changes to 

IFNβ1, IL4, TLR1 and TLR3. Furthermore, toxicity studies, using MTT assay 

showed that a 500µM dose was toxic to U937 cells after 3 days incubation with 

MTT. Thus, these results confirm the effects of METH on a pro-monocytic cell 

line, in which METH does not significantly impact gene expression in 

differentiated U937 cells, however METH may impact on gene expression in an 

undifferentiated cell line. 
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1.0 Introduction  

Methamphetamine, METH, is a popular illegal psychostimulant drug which is 

abused worldwide [Badisa et al., 2019]. METHs mechanism involves the 

regulation of dopamine (DA) neurotransmission, by, competing with DA 

uptake, decreasing tyrosine hydroxylase (TH) activity, along with reducing DA 

and vesicular monoamine transporter levels [Lin et al., 2016]. Moreover, METH 

abuse and addiction impairs hippocampal function leading to changes to brain 

structure and function, remodelling the neurobiological circuitry related to the 

propensity of METH relapse [Takashima et al., 2018]. In addition, METH can 

also lead to neuronal damage which can have serious implications in causing 

apoptotic and necrotic cell death in long-time METH users [Gold et al., 2009]. 

METH is typically administered orally, intravenously or nasally, and its effects 

include those associated with feelings of euphoria, a reduction in appetite, 

arousal post-administration and hyperactivity [Harms et al., 2012]. The 

immune-modulating and immune-suppressing effects of METH are evident 

[Papageorgiou et al., 2018; Peerzada et al., 2013], with exposure producing 

several proinflammatory cytokines and chemokines [Fernandes et al., 2016]. 

Moreover, METH compromises the blood brain barrier (BBB) which can 

further lead to peripheral invasion of HIV and HCV into the brain [Loftis, 2015]. 

Indeed, in a chronic lymphocytic choriomeningitis virus (LCMV) infection 

model, METH was shown to have significant effects on CD4 and CD8 T cells 

[Sriram et al., 2015]. In a rodent model that investigated the self-administration 

of METH over a 14-day period, spleen samples were assessed for their CD4+ 

and CD8+ frequencies [Mata et al., 2015]. Self-administration of METH 

resulted in lower frequencies of CD4+ T cells, however the majority of these 
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cells produced IFN-γ. Furthermore, serum levels of IFN-γ, TNF-α and IL-6 

were unchanged [Mata et al., 2015]. METH also has effect on peripheral blood 

mononuclear cells (PBMCs) such as dendritic cells, macrophages, and 

monocytes [Liu et al., 2012]. Lastly, METH has the capacity to cause immune 

dysregulation in the CNS in large part due to the dependence of METH [Loftis 

et al., 2011].    

 

This study sought to investigate, assess and evaluate the effects of a high METH 

dose (500µM) on a pro-monocytic cell line (U937). To investigate changes to 

genes belonging to host cell immunity, a commercially available gene array kit 

was used that could pinpoint changes to specific genes in the adaptive and/or 

innate immune response. Results of this work can help understand the changes 

at the gene level METH has on a monocytic-like cell line. This can further 

unravel the possible impacts METH has on cells of the innate immune system. 
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2.0 Methods 

2.1 Cell culturing  

U937 cells (ATCC CRL-1593.2) were cultured according to culturing 

guidelines specified by ATCC CRL-1593.2. U937 cells were cultured using T75 

flasks in RPMI media (10% FCS, 1% antibiotics: Streptomycin-Penicillin, and 

0.1% L-Glutamine). Cells were incubated at 37°C. Cells were maintained 

between a density of 1x10^5 and 2x10^6 cells/mL and media changed to 

maintain healthy and proliferating cells every 3-4 days. For media change, cells 

were transferred into 15mL falcon tubes and centrifuged for 5 minutes at 

1000RPM. Media was then removed and supplemented with fresh RPMI 

complete media. Cells were then transferred into sterile T75 flasks at a final 

volume of 15mL and incubated at 37°C. To assess cell viability, approximately 

20uL cells was mixed with 20uL 0.4% Trypan blue and live/dead cells were 

assessed using a light microscope at a magnification of 40x. For differentiation, 

U937 cells were exposed to Vitamin D3 for 72 hours. For U937 cells 

(undifferentiated), these cells were maintained throughout until the addition of 

methamphetamine 500 µM (METH).  

 

2.2 Methamphetamine (METH) 

Based on MTT results, METH was added to U937 cells – differentiated and 

undifferentiated – at a final concentration of 500µM. This concentration was 

chosen as previously reported cell culturing has indicated that a METH 

concentration of 500µM does not cause cell toxicity. METH (500µM) 

concentration was determined based on calculations from METH stock of 

167.522mM. 
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2.3 MTT METH concentration calculations  

400µL of METH from a 25mg/mL stock (167.522mM) was aliquoted and transferred 

into 1.6ml of sterilised water. 5mg/mL stock METH solution was used for 

downstream experiments. METH concentrations were calculated (table 1) 

from 100-1000µM. 

 
Table 1. Summary of calculations of METH concentrations. A range of 
concentrations (100-1000µM) were used to conduct the MTT assay, in order to 
ascertain a high METH concentration that would impact U937 cell respiration. 

 

100µM 250µM 500µM 750µM 1000µM 
 
Convert 200µl to 
mL = 0.200 
Stock conc. = 
33.5 
Conc. Needed = 
100uM 
 

 
Convert 200ul to 
mL = 0.200 
Stock conc. = 
33.5 
Conc. Needed = 
250uM 
 

 
Convert 200ul to 
mL = 0.200 
Stock conc. = 
33.5 
Conc. Needed = 
500uM 
 

 
Convert 200ul to 
mL = 0.200 
Stock conc. = 
33.5 
Conc. Needed = 
750uM 
 

 
Convert 200ul 
to mL = 0.200 
Stock conc. = 
33.5 
Conc. Needed 
= 1000uM 
 

 
0.200	%	0.100'(

33.5  
 
0.00059 (x 1000) 
 
= 0.59uL 
= 1.18 
 
 

 
0.200	%	0.250'(

33.5  
 
0.00149 (x1000) 
 
= 1.49uL 
= 2.98 
 
 
 
 

 
0.200	%	0.500'(

33.5  
 
0.00298 (x 1000) 
 
= 2.98uL 
= 5.96 

 
0.200	%	0.750'(

33.5  
 
0.00447 (x 1000) 
 
= 4.47uL 
8.94 

 
0.200	%	1.0'(

33.5  
 
0.00597 (x 
1000) 
 
= 5.97uL 
= 11.94 
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2.4 MTT Assay 

Undifferentiated U937 cells were assessed for their viability using the MTT 

assay. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium 

bromide) assay involves the conversion of MTT into formazan crystals by living 

cells – determining the mitochondrial activity [Meerloo et al., 2011]. Moreover, 

the [MTT] assay is designed to measure viable cells without the inconvenience 

of cell counting. Principally, the MTT assay exploits a cells’ mitochondrial 

activity – viable cells hold constant mitochondrial activity – in which this 

mitochondrial activity is a function of the conversion of tetrazolium salt MTT 

into formazan crystals. Effectively, formazan concentration can be measured 

via its optical density at a wavelength adjusted to 540nm – 720nm: changes in 

absorbance reflect an increase or decrease in cell viability [Meerloo et al., 2011]. 

U937 cells in this experiment – with the addition of METH (100-500µM) - 

showed that cell viability lowered at 500µM over a 3-day period. Based on this 

absorbance, METH was concluded to effectively inhibit cell growth at 500µM 

and this dose was used for remaining cell culturing and gene array assays. 

Absorbance readings over the 3-day incubation period. 
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2.5 FACS staining 

U937 cells were harvested and cell suspension was adjusted to reach a final 

concentration of 2x10^5 cells/mL, using cold (4°C) PBS buffer. 100µl of U937 

cells was added to a total of 11 1.5mL eppendorf tubes. Primary antibody, at a 

1:100 dilution, was added to each reaction tube. Cells were pipetted up and 

down and incubated at room temperature for at least 30 minutes, avoiding direct 

sunlight. After incubation, cells were washed with 2mL of cold (4°C) PBS 

buffer, and cells were then centrifuged at 400xg for 5 minutes, at 4°C. 

Afterwards, the supernatant was discarded. Cells were then resuspended in in 

200µl of cold (4°C) PBS. Cells were transferred to FACS tubes and analysed 

for surface markers within 24 hours. Markers analysed were, CD14, CD16, 

CD86, CD40, CD80, CD83, CD206, CD209, MHC I, MHC II and CD11b. 

Appropriate controls, cells with no antibodies and only fluorescence markers 

were also prepared for FACS analysis.   
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2.6 RNA extraction  

Differentiated and undifferentiated U937 cells were harvested at a concentration 

of ~1x10^6 cells/mL. To ensure cell concentration was consistent, dilutions 

were made across cultured cells to achieve a final concentration of 10^6 

cells/mL. Cells were transferred to clean 15mL falcon tubes and centrifuged at 

1000RPM for 5 minutes. Supernatant was removed, and cells were placed on 

ice prior to RNA extraction experiment. RNA extraction was carried following 

the manufacturer’s specifications (Qiagen RNeasy Mini Kit). DNase was passed 

through all cell samples (differentiated cell sets and undifferentiated cell sets) 

to remove DNA contamination. RNA absorbance was measured using a 

benchtop spectrophotometer and all A260/280 ratios were within RNA quality 

limits. Furthermore, RNA concentrations were assessed using a bioanalyser 

instrument. RNA Integrity numbers (RINs) are shown in table 3.  

 

Table 2. RIN of extracted RNA from cultured U937 cells incubated with 
500µM. RNA integrity number (RIN) is a vital assessment algorithm which 
determines the quality of RNA in a sample. 
 

Differentiated U937 cells 
 

Undifferentiated U937 cells 

Treatment (METH) 
 

Control (No METH) Treatment (METH) Control (No METH) 

9.8/10 
 
9.7/10 
 
9.7/10 

9.9/10 
 
9.7/10 
 
9.7/10 

9.8/10 9.7/10 
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2.7 Gene array preparation and analysis  

2.7.1 cDNA synthesis 

First Strand RT2 reagents were thawed on ice, and briefly pulse centrifuged for 

10 seconds to bring contents to bottom of tubes. Next, genomic DNA 

elimination mix was prepared according to the following volumes indicated in 

table 3. 

 

Table 3. Volumes of reagents used for cDNA synthesis. A total volume of 
10µL was prepared for each sample. 
 

Component Amount 

RNA (samples) 25ng – 5ug 

GE buffer 2µl 

RNase-free water Variable 

 

Total volume 

 

10uL 

 

Genomic DNA elimination mix was incubated for 5 minutes at 42°C, and then 

tubes were placed on ice for 1 minute. Reverse transcription mix was prepared 

according to table 4. 
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Table 4. Reverse transcription reaction. Steps carried out according to 
manufacturer’s volume specifications. 
 

Component 

 

Reaction volumes (µL) 

5x buffer BC3 4 

Control P2 1 

RE3 Reverse Transcriptase 

mix 

2 

RNase-free water 3 

Total volume 10 

 

10uL reverse transcription mix was added to each tube (containing 10uL 

genomic DNA elimination mix). Contents were mixed by pipetting up/down. 

Then, tubes were incubated at 42°C for 15 minutes, followed by incubation at 

95°C for 5 minutes. 91uL of RNase-free water was then added to each reaction 

tube. Contents were mixed by pipetting up/down. Reaction tubes were then 

placed on ice (or stored in a -20°C freezer until real-time PCR step). 

 

2.6.2 Real-Time PCR for RT2 Profiler PCR Array. 

RT2 SYBR Green Mastermix was briefly centrifuged (at room temperature: 15-

25°C) to bring contents to bottom of tube. PCR components were prepared in a 

sterile 5mL tube, according to table 5. 
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Table 5. Mastermix addition to cDNA prior to real-time PCR. Aliquots of 
reagents were prepared per sample.  
 

Reagents 

 

96-well array (volumes: uL) 

2x RT2 SYBR Green 

Mastermix 

1350 

cDNA synthesis reaction 102 

RNase-free water 1248 

Total volume 2700 

 

Total volume (above) was dispensed into a sterile disposable well. The RT2 

Profiler PCR Array was removed from its storage bag, and gene array was 

placed in a well holder to reduce any unwanted movement during the dispensing 

of PCR mix to each 96-well. 25uL of PCR mix was then added to each well 

using a multi-channel pipette. The RT2 PCR Array was carefully sealed using 

optical thin-wall 8-cap strips. The RT2 Array was then centrifuged for 1 minute 

at 1000g at room temperature (15-25°C) to remove any bubbles present in any 

of the 96 wells. The removal of bubbles was also checked by inspecting the 

underside of the RT2 Array plate. Before PCR cycling, the array was placed 

upon ice. Real-time cycling for Roche LightCycler 480 was adjusted according 

to parameters in table 6. 
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Table 6. PCR cycles. Cycle number according to manufacturer’s 
recommendation. 
 

Cycles 
 

Duration Temperature 

1 10 minutes 95°C 
 
45 

15 seconds 
 
1 minute 

95°C 
 
60°C 

 

After the PCR programme was adjusted, the RT2 PCR Array was placed into 

the real-time cycler. The Array was allowed to run for its estimated time until 

cycling was complete. Upon full completion of cycles, data was exported as csv. 

Excel sheets and saved to an external drive for further analysis. Qiagen’s 

Sample to Insight software tool was employed for data analysis. Moreover, 

housekeeping genes, fold-change threshold and CT cut-off were predefined. 

Results from all RT2 PCR Innate & Adaptive Gene Arrays were exported in a 

single PDF document. 
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3.0 Results 

3.1 MTT analysis of undifferentiated U937 cells stimulated with METH 

MTT measures the metabolic activity of cells [Grela et al., 2018]. MTT analysis 

of undifferentiated U937 cells showed an overall increase in cell growth over a 

three-day period (Figure 1).  Previous work using MTT assay and METH has 

observed ER-stress and its role in apoptosis in astrocytes [Shah et al., 2016]. Other 

work has used a smaller METH dose of 1µM over a 24-72-hour period in human 

brain microvascular endothelial cells (HBMECs) [Ma et al., 2014]. This work 

used a range of METH doses, from 0-1000µM over a three-day period. METH, at 

a high concentration of between 500-1000µM seemed to decrease OD values 

compared to 0-250µM (Figure 1).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Time-course (3-day) MTT absorbance readings across a U937 cell line 
incubated with 500µM methamphetamine (METH). Formation of formazan 
crystals (precipitate) indicating mitochondrial activity of U937 cells across different 
METH concentrations. 
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3.2 RT2 PCR Innate & Adaptive Immunity Gene Array 

 

3.2.1 U937 Differentiated gene array results 

Genes relating to the innate and adaptive immune response in humans were 

analysed in U937 cells. Gene arrays were carried out in triplicates, and 

reproducibility and efficiency quality checks were performed on the data using 

Qiagen’s Data quality control (QC) software interface. Data was then 

normalised using the automated selection from HKG panel genes. Calculations 

comprised geometric mean and average geometric mean of both control and 

METH groups. Gene fold cut-off scores were set to 2, with a p-value cut-off 

score of 0.05. Fold change was calculated based on the normalised gene 

expression (2^(Delta CT) in the test sample (METH) divided by the 

normalised gene expression in the control sample (No Meth). No genes were 

significantly up or downregulated in this gene array. Scatter plot (Figure 2), 

and heat map (Figure 3) were chosen since a scatterplot compares normalised 

expression of all genes across the array between both groups. This can 

efficiently visualise expression changes, via two dotted lines which indicate a 

particular gene being under or over-expressed. Similarly, a heat map in this 

data set can help understand and visualise gene expression in the context of the 

array layout. 

 

By assessing the scatterplot, the majority of genes were expressed at 1-fold 

relative to unchanged expression (central line). The most upregulated of these 

(although below 2-fold) were, CD86 (+1.88), LY96 (+1.62), TLR1 (+1.46), 

TLR8 (+1.72) and TLR9 (-1.66).  In general, CD86, along with CD80 
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represent co-stimulatory receptors on innate immune cells [Nolan et al., 2009]. 

Lymphocyte antigen 96 (LY96) is known to bind bacterial lipopolysaccharide 

(LPS), and also collaborate with TLR2. Toll-like receptors (TLR) are that sit 

on a cell surface function to recognise bacterial products and by-products, 

whereas TLRs residing intracellularly play a role in viral and nucleic acid 

detection [Parker et al., 2007]. In this work, TLR1, 8 and 9 were expressed 

roughly >1.5 fold. TLR1, a cell surface bound TLR, interacts with TLR2 and 

therefore function as a complex to recognise antigens. TLR8 and TLR9, which 

are both localised in the endosome, respond to viral and bacterial RNA and 

DNA nucleic acid material, respectively [Kawasaki et al., 2014]. Apart from 

their expression in dendritic cells and macrophages, TLRs are also expressed 

in non-immune cells of the body, including fibroblasts and epithelial cells 

[Kawasaki et al., 2014].  

 

 

Figure 2. Scatterplot of treatment and control differentiated U937 cell groups. 
Qiagen software Log10 scatter plot expression of genes upon exposure of 500µM 
METH to differentiated U937 cells. Central line indicates unchanged gene 
expression. 
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Figure 3. Heat map of treatment and control differentiated U937 cell groups. 
Qiagen software analysis heat map of differentiated U937 cells upon ~8-hour 
exposure to 500µM METH. 

 

 
3.2.2 U937 Undifferentiated gene array results 

Gene array data from undifferentiated U937 cells showed significant gene 

expression (downregulation) of four genes: IFNb1 (-2.15), IL4 (-2.59), TLR1 

(-2.05), and TLR3 (-2.09). In this gene analysis, and by visualising the 

scatterplot, the majority of genes in undifferentiated U937 cells, based on this 

array, were downregulated (Figure 5). IFNb1, known as interferon beta 1, 

fibroblast, is expressed in a range of innate immune cells, including 

macrophages, as well as non-immune cells, such as epithelial cells [Bolivar et 

al., 2018]. Type I Interferons, such as IFNb1, function in response to bacterial 
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and viral infections, and also play a role in responding to immunomodulatory 

stimuli [Henig et al., 2013]. IL4, often produced by T-cells, mast cells, 

basophils and eosinophils, and is characterised by its ability to determine the 

Th2 appearance of lymphocytes [Luzina et al., 2012]. Moreover, IL4 

signalling can bind to either type I or type II signalling complexes to initiate a 

downstream cascade leading to sustained survival and mitogenesis, and 

binding of transcription factors to DNA in the nucleus [Gadani et al., 2012]. 

TLR3 (-2.09) is involved in double-stranded RNA recognition and can be 

expression both on the cell surface and intracellularly [Parker et al., 2007].  

 

 

Figure 4. Scatterplot of undifferentiated U937 cells and gene expression. 
Qiagen software Log10 scatter plot expression of genes upon exposure of 
500µM METH to undifferentiated U937 cells for ~8 hours. Central line 
represents unchanged gene expression levels. 
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Figure 5. Qiagen software heat map and gene table comparing treated and 
non-treated undifferentiated U937 cells upon exposure with 500µM 
METH for ~8 hours. Significantly expressed genes in the undifferentiated 
U937 cells were found to be, IL4, TLR1, TLR3 and IFNb1.  
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3.3 FACS data analysis 

3.3.1 Differentiated U937 stimulated with METH 

Differentiated U937 cells were analysed for their expression of surface 

markers upon an ~8-hour exposure of a high 500 µM METH dose. U937 cells 

were stained with a series of monocytic markers (Figure 7). FITC (fluorescein) 

fluorphore, PE, and BV421 channels were used to visualise cell events. 

 

 

 

 

 

 

 

Figure 8. FACS analysis of differentiated U937 cells. FACS surface marker 
analysis results of differentiated U937 cells stimulated by 500 µM METH. 
 

 

 

 

 

Figure 6A. FACS summary of differentiated U937 cells stimulated by 
METH for 24 hours. Green boxes are shown for those markers which showed 
significant events during forward light scattering. Markers CD14, CD86, 
CD206, MHCI and CD11b were shown as positive cell populations. 
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3.3.2 Differentiated U937 without METH addition  

Differentiated U937 cells were analysed for their surface marker expression, 

without the addition of a high 500 µM METH dose. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6B. FACS analysis of differentiated U937 cells unstimulated. FACS 
surface marker analysis results of undifferentiated U937 cells unstimulated. 
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3.3.3 Undifferentiated U937 +/- METH stimulation  

Undifferentiated U937 cells were analysed by FACS for their surface marker 

expression with the addition of a 500 µM METH concentration. No significant 

changes were observed of the forward light scattering, however MHCII revealed 

some higher expression (see panel below). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7A. FACS analysis of undifferentiated U937 cells stimulated 
with METH. FACS surface marker analysis results of undifferentiated 
U937 stimulated by 500 µM METH.  
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Figure 7B. FACS analysis of undifferentiated U937 cells unstimulated. 
FACS surface marker analysis results of undifferentiated U937 
unstimulated. 
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4.0 Discussion  

 

4.1 METH inhibits cell growth at high concentrations  

MTT data revealed inhibition of cell respiration of U937 cells across a three-

day period. On the first day of incubation, METH, at concentrations between 

250 and 1000µM, showed little changes in absorbance (measured at 570nm). 

However, by day 2 and 3, conversion of tetrazolium salt MTT into formazan 

crystals was much denser (Appendix 2). Moreover, METH, at much higher 

doses, was able to inhibit U937 respiration; however, at lower concentrations 

METH did not seem to inhibit, or effect, cell viability. This study chose 500 µM 

as an intermediate, high dose of METH, as it has been described in previous 

studies. 

 

4.2 FACS revealed insignificant differences across cell subsets. 

Overall, FACS data showed METH-treated U937 cells had little differences 

compared to non-METH treated cells. METH did not cause surface marker 

changes to U937 cells treated with vitamin D3. Likewise, METH caused no 

significant changes to U937 cell markers in cells not treated (differentiated) with 

vitamin D3. Only one marker (MHCII) showed a slightly different expression 

profile between control and treated cells. In U937 cells, MHCII is expressed at 

detectable levels [Barbaro et al., 2005]. Expression of MHCII in this FACS 

analysis might be attributed to basal expression of this marker, independent of 

METH. However, control (- METH) showed an apparent lower MHCII marker 

expression on differentiated U937 cells. Little data exists for the involvement 

of MHCII in METH studies. Talloczy et al (2008) showed that pharmacological 
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doses of METH had immunosuppressive effects on dendritic cells and 

macrophages. Moreover, their work also described the inhibition of MHC class 

II antigen processing via the endosomal-lysosomal pathway [Talloczy et al., 

2008]. More work is required to understand the role of MHCII in chronic and 

acute METH in vitro and animal studies.  

 

4.3 METH does not cause changes to genes in differentiated U937 

monocyte-like cells. 

The addition of a high - 500µM – METH dose did not cause any significant 

changes to genes associated with the Innate & Adaptive Immune Response. 

Furthermore, METH, compared to control samples, showed no significant gene 

expression changes in the following categories of immunity: Innate immunity, 

adaptive immunity, humoral immunity, inflammatory response, defence 

response to bacteria and defence response to viruses. Previous reports have 

shown that METH caused gene expression changes to primary, rat, cortical-

derived astrocytes in vitro [Bortell et al., 2017]. Moreover, these expression 

changes involved: MAP2K5, GPR65 and CXCL5, which showed strong 

overexpression [Bortell et al., 2017]. Overall, this study reported that METH at 

concentrations of 10 or 100µM increased 411 genes in in vitro, cortical-derived 

astrocytes compared to controls; additionally, 1µM METH caused an increased 

expression in 180 genes [Bortell et al., 2017]. In comparison to monocytes, 

astrocytes are readily activated in the brain of METH users and associated gene 

expression changes perturb the central nervous system. 
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Using a differentiated THP-1 monocyte cell line – to macrophages, Burns and 

Ciborowski, 2017, profiled cytokine and chemokine expression using the 

Human cytokines and chemokines RNA PCR array [Burns and Ciborowski, 

2017]. Across a times series (2, 6, or 24 hours), and using a METH dose of 

100µM, results indicated 58 differentially expressed genes. Specifically, METH 

caused a strong up-regulation of CXCL16 and CXCL2; a moderate (between 5 

and 10-fold) up-regulation gene expression of IL7, CCL20, CXCL1, CCL24 

and IL8; and, a strong down-regulation of CCL7 [Burns and Ciborowski, 2017]. 

Results of this study also suggested that across a 2- and 6-hour time point, the 

majority of immune mediators that were up-regulated were in fact pro-

inflammatory cytokines [Burns and Ciborowski, 2017].  

 

In the present study, METH – at a chronic dose – did not show significant 

changes to any of the 84 genes. Discrepancies between this data and that of 

previously reported data using a similar cell line (THP-1) could be associated 

with technical error and/or cell behaviour during culture period. Moreover, one 

limitation of this cell culturing model is the absence of time points. Since only 

a single timepoint to harvest cells upon METH exposure was used – 8 hours – 

during this time an irregular gene expression pattern may have occurred, 

resulting in a baseline gene expression during/or toward the end of the 24-hour 

incubation period.  
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4.4 METH caused gene expression changes to undifferentiated U937 cells 

 

U937 cells not treated with VitD3 – undifferentiated U937 cells – showed 

changes to several genes. Genes under-expressed in METH-treated U937 cells 

included, IL4, IFNB1, TLR3 and TLR1. IL4 has yet to be fully associated with 

METH. IL4 plays a role in promoting the proliferation and differentiation of 

antigen-presenting cells (APCs) [Dhanda et al., 2013], and is known as a T-

helper cytokine [Bhattacharjee et al., 2013]. Moreover, IL4 is an anti-

inflammatory molecule [Bhattacharjee et al., 2013]. In undifferentiated U937 

cells, METH may lower the expression of IL4, thus lowering its overall anti-

inflammatory response in monocytes. This possible action of METH on IL4 

could also be attributed to METHs ability to cause inflammation. TLR3 was 

shown to be significantly lowered in its expression in undifferentiated U937 

cells. Toll-like receptors (TLRs) recognise pattern associated molecular patterns 

(PAMPs) and serve a special purpose in the innate immunity by directing 

immune responses towards microbial pathogens [Allhorn et al., 2008]. In 

addition, TLR3 primes the appropriate immune response as it senses DNA and 

RNA viral infections in the host [Pan et al., 2011; Huik et al., 2013]. METH 

dependence has been previously ascribed as a major risk factor for HIV 

infection [Blackstone et al., 2013]. The apparent down-regulation of TLR3 in 

this study could be to the effects METH has on lowering TLR3 signalling, which 

in turn leads to the activation of interferon-regulatory factor-3 and NF-κB, 

following activation of pro-inflammatory cytokines [Huik et al., 2013]. 

Importantly, activation of TLR3 inhibits HIV [Dai et al., 2015]. TLR3, in this 

study, may contribute to better understanding the role of TLR3 in a high METH 
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dose context. The cytokine interferon beta 1 (IFNB1) was shown to be 

downregulated in undifferentiated U937 cells. IFNB1 is secreted in the innate 

immune system’s response to pathogens. Furthermore, type I interferons, such 

as IFNB1, are manufactured in most cells and respond to viral infections 

[Marckmann et al., 2004]. Interestingly, IFNb1 type 1 interferons protect cells 

from apoptosis and METH is known to cause cell death along with autophagy 

[Yu et al., 2015]. The apparent decrease in gene expression of IFNB1 could be 

a consequence of METHs role in cell injury. In this study, TLR1 was observed 

as having a significantly lower gene expression (-2.05-fold). TLR1 cooperates 

with TLR2 and both serve to mediate the innate immune response to bacterial 

pathogens. Since TLR3 was also shown to be downregulated in this study, the 

concurrent downregulation of TLR1 might also be due to a high METH dose 

having the ability to disarm the innate immune response and allow for pathogens 

and viruses to spread. 
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Conclusion(s) 

Together, cultured U937 cells exposed to a high METH dose did not display 

significant changes in gene expression across the innate and adaptive immune 

system. However, undifferentiated U937 cells showed some changes in gene 

expression to genes pertaining to TLR signalling and inflammatory responses. 

Further, significantly downregulated gene expression, namely IL4, TLR1, 

TLR3 and IFNβ1, was observed in undifferentiated U937 cells. These genes are 

mainly active and play roles in pathogen and virus sensing, where they in turn 

contribute to the innate immune response. Although more work is needed to 

fully determine the role of METH on this cell line, a high concentration of 

METH seems to downregulate TLR signalling, which may possibly interfere 

with normal functioning of TLR signalling and IL4, and IFNb1 response. 

METH may impact these genes, however further in vitro and animal studies are 

required to fully determine the role METH plays on TLRs and inflammatory 

cytokines.  
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Chapter 5 

General discussion 

 

Introduction  

The broad themes of this thesis encompass the overall effects of METH on 

cellular immunity, along with how METH causes changes to regions of the 

gastrointestinal tract (GI) (chapter 3). Moreover, the thesis expounds the 

relationship between chronic METH, and the implications (including 

withdrawal) which may be apparent in changes to gene expression in mouse 

models (chapter 2). Gene expression, in this context of METH (or exposure of 

biological and molecular systems and processes to METH), is represented as 

fold-changes across one or more genes involved in regulating or maintaining 

the homeostasis of a cell’s proper functioning (chapter 4). Proper cellular 

immunity, including the proper functioning of molecular patterns, is necessary 

for a system to resist and/or evade any incoming foreign insults which might 

potentially – significantly or non-significantly – impact a host’s ability to mount 

an adequate immune response upon infection. Furthermore, drugs of abuse, such 

as METH and cocaine, not only harm and present dangers to physiological 

aspects of an organism; they also pose long-term threats to psychological 

features that may lead to significant mal-behavioural adaptations. 
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Chapter 5 

General discussion 

 

Introduction  

The broad themes of this thesis encompass the overall effects of  a chronic 

METH dose, and how this impacts cellular immunity, along with causing 

changes to regions of the gastrointestinal tract (GI) (chapter 3). Specifically, 

chronic METH dose was investigated in a mouse model where several 

postulations were made regarding the relationship between METH dose 

(high/escalating), and internal systems (colon gene expression/microbiota 

composition/abundance), and how these aspects of chronic METH use might 

help explain the downstream impacts leading to changes in brain functioning. 

Internal systems, within this purview, translates to the microbiota homeostasis 

and abundance/composition profile that could be disturbed in the colon upon a 

chronic METH dose infiltration (chapter 3). This internal system of diverse 

microbiota communicates with the brain (gut-brain axis) and can influence 

several brain processes embedded within the human psyche – such as those 

associated with major depression, anxiety, stress, appetite and psychosis. 

Further, changes in colon physiology, across both the gene expression and 

microbiota composition/abundance perspectives, may have profound effects on 

both innate and adaptive immunity (chapter 3; chapter 4). Proper innate and 

adaptive immunity, including the proper functioning of molecular patterns, is 

necessary for any internal system to recognize, resist and/or evade any incoming 

foreign insults which might potentially impact a host’s ability to mount an 

adequate immune response upon infection or disturbance from an exogenous 
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stimulus. In METH studies, this aspect of immunity is often observed with 

METH users susceptible of HIV and staphylococcus aureus infection. An 

important feature of chronic and/or acute METH use is its ability to interfere 

with decision making and learning (chapter 1). Since METH can cause 

significant alterations to the brain’s neurochemistry, this can lead to severe 

cognitive decline which can manifest out later as stroke, cardiovascular 

pathologies and other forms of neurological diseases such as Alzheimer’s 

Disease and Parkinson’s Disease (chapter 1). Collectively, initial postulations 

made across all four chapters can be summarized as key findings: 

 

• Chronic METH [ab]use may follow similar inflammatory, immune-

metabolomic, and immune-modulatory patterns to those also associated 

to psychiatric disorders, including depression, and neurodegenerative 

disorders. 

• Chronic METH [ab]use in an animal model provides some evidence that 

a high METH dose could have significant impacts on several gene 

ontological categories: including cytokine signaling, tight junctions, 

placental and blood vessel development, neuropeptide signaling. 

Enrichment of significant differentially expressed genes (DEG) across 

these genes ontologies provides evidence that, compared to control 

group gene expression, chronic METH could impact many 

developmental and regulatory systems in the body. 

• Chronic METH and withdrawal (mouse model) could cause major shifts 

in common colon microbiota. In addition, these alterations of microbial 

composition and abundance may also have significant impacts on 
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several metabolic phenotype categories, which are important for correct 

colon homeostasis. 

• An in vitro Chronic METH model suggests several changes in genes 

related to the innate and adaptive immunity. These significant fold-

changes in several genes were observed in an undifferentiated U937 

[pre-monocytic] cell line, however insignificant gene expression was 

observed in the differentiated U937 cell line. 
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Discussion  

 

Neurodegeneration and microbial dysbiosis  

Drugs of abuse, such as METH, lead to brain dysfunction through the 

deterioration of synapses over time. METH is beginning to be increasingly 

associated with the slow degeneration of mental health – depression, 

Alzheimer’s Disease (AD) and Parkinson’s Disease (PD), to name a few 

neurodegenerative disorders. More evidence is mounting regarding the 

correlations between gut health and brain health, the so-called ‘gut-brain axis’ 

model of mental health. This theory posits the idea that gut health, symbolised 

by diet, age, and other variables, has a profound effect on brain development or 

degeneration over time. METH, as a psychostimulant invades an individual’s 

perceptions through hallucinatory and auditory modifications. METH may also 

alter other tissues, and their specific cellular contents. In the colon, epithelial 

cells maintain barrier integrity; a visible ascertainment between ‘inside’ and 

‘outside’ the colon is properly distinguished. This separation must function as 

to keep microbes residing inside the colon away from other molecules in the 

bloodstream. METHs effect on tight junctions (chapter 2) could be a reason why 

several microbial species were seen to shift (chapter 3) under the stimulation of 

METH (or, more specifically, shifts in microbial species in mouse faecal 

samples upon DNA extraction). What was not studied further or analysed in-

depth in this thesis was the connection of the gut and brain. Anxiety, depression 

and suicidal thoughts are brought on by chronic, long-term METH use. Over 

time, the bidirectional combination of the constant bombardment of METH 

upon the brain, with concurrent insults made to the gut might be a key in 
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uncovering why METH addicts suffer from mild to severe forms of mental 

dysregulation and health.  

 

Colon microbial dysbiosis and tight junction compromise 

 

The colon is home to millions of bacterial species, where the majority of 

bacteria reside in this segment of the gastrointestinal (GI) tract. The colon must 

maintain a proper barrier between the luminal environment and the internal part 

of the body. Failure to do so is usually based on the theory of the ‘leaky gut’ 

phenomena, where spaces between epithelial cells, held together, in close 

proximity by tight junction proteins, are damaged and cannot sustain cell-cell 

interactions/adhesion. Moreover, compromise of these tight junctions can lead 

to an influx of immune cells, leading to a cascade of proinflammatory 

molecules. Chapter 2 of this thesis investigated a vast array of differentially 

expressed gene expression data via the assessment of gene ontology groupings 

and categories. Several differentially expressed genes (DEGs) belonged to those 

associated to the tight junction complex. The apparent downregulation of 

several tight junction genes, along with closely related genes belonging to the 

leukocyte trans-endothelial migration (LTM) pathway (chapter 2) could suggest 

a relationship between chronic METH and epithelial cell disruption, through the 

interference of tight junction genes. Interestingly, tight junctions and adherens 

– claudin-15, claudin-1, ZO-1, and a-T-catenin – were found to be involved in 

significant up and down regulation in this chronic METH mouse model. Both 

tight junctions and adherens are described as two modes of cell-to-cell adhesion 

that are crucial for maintaining epithelial cell adhesion. Adherens serve several 
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functions, including regulating the actin cytoskeleton, intracellular signalling 

and regulating transcription. ZO-1, members of the membrane-associated 

guanylate kinase homologs (MAGUK) family, has been found to play a role in 

scaffolding between transmembrane and cytoplasmic proteins; and might form 

a link between the tight junctions and adherens. Ontological pathway analysis 

enrichment of these particular genes – claudins, occludins and adherens – in the 

leukocyte trans-endothelial migration (LTM) ontology. This could suggest that 

METH, either directly or indirectly, influences one or more of these genes and 

leads to physiological changes to the endothelial cells of the colon. Implications 

of this tight junction and adherens perturbation could also explain the 

inflammatory imbalance often seen in METH users – both acute and chronic. 

 

 

Colon Microbiota is altered in chronic METH  

 

Chapter 3 postulated and discussed the microbial diversity, abundance and 

alterations in faecal samples collected from a chronic METH withdrawal group 

of mice and compared to with a control group. The hypotheses made here were: 

(1) chronic METH causes changes in the microbial composition and diversity 

in the gut, and (2) changes to the gut microbiota from a disturbance caused by 

METH, has downstream impacts on microbial metabolism and subsequent 

signalling processes. Several bacteria were found to be significantly lower in 

the chronic METH group, compared to the control, such as, Faecalibcterium, 

Dehalobacterium, Coprococcus, Anaerotruncus, Ruminococcus and Prevotella 

(chapter 3). These bacteria were found to be significantly down-regulated in the 
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METH group, suggesting that perhaps METH has a crucial role – and capacity 

- in dampening or suppressing these bacteria during chronic use of the drug. 

Robust statistical analyses, aided by available metagenomic analysis programs 

and tools, further explored these observed differences, and found string 

statistical evidence that suggests there are indeed microbial changes between a 

normal gut, undisturbed by METH, and a gut influenced by METH. These 

results give some indication and provide preliminary evidence that chronic 

METH use is related to a dysbiosis of the gut flora, and also that these shifts in 

microbial communities could also influence bacterial metabolism. This 

metabolic aspect of bacteria was further assessed in a robust web-page program 

(METAGENassist) which besides providing stringent clustering and 

classification tools, also performs functional studies on a set of microbial data. 

Metabolic phenotype categories that were found to be significantly correlated 

with the METH group were, cellulose degradation, aromatic hydrocarbon 

degradation, nitrogen fixation, chitin degradation, and sulphide oxidation 

metabolic categories. In this case, it can be suggested that there may be a 

relationship between the initial microbial communities dampened by METH, 

and the further dampening effect on several metabolic processes assessed via 

functional analysis. This then can provide some utility for further investigating 

whether or not prolonged chronic METH use (addiction), creates an imbalance 

and disturbance in the production of signalling molecules (microbiota-derived 

metabolites), such as short-chain fatty acids (SCFAs) which might otherwise 

regulate aspects of human immunity and metabolism that originate from a 

healthy gut microbiota. Gut-brain axis communication might also be altered in 

chronic METH use, as part of METHs downstream impacts. As SCFA 
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metabolites, such as butyrate and propionate - are also known to be signalling 

molecules that traverse and establish communication between the gut and brain; 

if METH does indeed cause a reduction in microbial abundance in bacteria such 

as Faecalibacterium, Dehalobacterium, Coprococcus, Anaerotruncus, 

Ruminococcus and Prevotella, then perhaps a significant reduction in these 

SCFAs might account for dramatic changes in neurophysiology. It is to be 

acknowledged that Faecalibacterium and Ruminococcus are a major SCFA-

producing bacterium, and the observed reduction in this bacterium could also 

impact the production of these metabolites, however this is yet to be fully 

known. Further, SCFAs are important homeostatic regulators in the gut, and 

butyrate is also known to promote epithelial barrier function, as well as being a 

major energy source of colonocytes. Chronic METH use could serve as one 

dietary factor that disrupts not only the homeostatic signalling between the gut 

and brain, but also through disturbances to SCFA metabolites and anti-

inflammatory molecules that are necessary requirements for balancing intestinal 

homeostasis. 

Indeed, further research on the specific effects of chronic METH on SCFAs, 

based on the investigation of particular SCFA-producing bacteria (as those 

detailed in this thesis), would uncover much important new knowledge on the 

potentially observable importance of SCFAs and how these metabolites could 

offer some insight into their therapeutic use in chronic METH users 

experiencing short- or long-term neurological impacts such as depression, and 

psychosis. This larger picture of gut-brain therapy for chronic drug addiction 

should be commensurate with complementary evidence that supports the role of 

chronic METH use on the gut microbial populations. 
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Innate immunity perturbations  

The innate immune response must safeguard the host – human, mouse, rat, 

etc. – from foreign attack. The innate immunity takes on a first line of defense 

approach which must constantly be active and alert for it to appropriately buffer 

the various systems from infection. Drugs of abuse lower the body’s overall 

immunity. Furthermore, once immunity has been compromised infections can 

be greatly exacerbated leading to short and/or long-term illness, as in the case 

for HIV infection and METH abuse. Chapter 4 of this thesis describes the 

impacts of a high METH dose on cells of the innate immune system – notably 

monocytes (differentiated U937 cells) and pre-monocytes (undifferentiated 

U937 cells). Chapter 4, along with previously published studies, serves to 

describe how specific changes in innate and adaptive gene expression, if any, in 

monocytes is brought about by METH. Genes belonging to the toll-like receptor 

(TLR) signaling family were shown to be significantly impacted by METH in 

monocytes (chapter 4). These included changes to IL-4, TLR1, TLR3 and 

IFNb1. These results suggest that a high METH dose could lower the immune 

response through a perturbation in genes that offer protection against cell death 

(apoptosis) and through the mediation of the innate immunity.  

 TLR signaling is a crucial component of innate immune responses as 

activation of these pathways subsequently lead to activation of a range of 

transcription factors which further guide the outcome of the innate immune 

response. The success of TLR signaling in innate immunity is nested in the 

ability of the innate immune system to mobilize specific pattern-recognition 

receptors (PRRs). These recognition patterns activate downstream signalling, 
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subsequently leading to the production of inflammatory cytokines, along with 

other mediators of the innate immune response. METH may serve as a disruptor 

of these pattern-recognition receptors (PRRs) which can further inhibit 

successful innate immunity against infection. Moreover, more specifically, 

PRRs such as pathogen-associated molecular patterns (PAMPs) and damage-

associated molecular patterns (DAMPs) are responsible for responding to 

cellular stress and tissue injury and induce potent inflammatory responses which 

activate the innate immune system. METH, as a potential disruptor of regular 

PAMPs and DAMPs activity could explain the likelihood of increased infection 

amongst METH users. DAMPs are also beginning to be recognised as playing 

roles in human diseases, such as Alzheimer’s Disease (AD) and Parkinson’s 

Disease (PD). As more evidence is mounting regarding the connection(s) 

between illicit drug use and neurodegenerative diseases, such as AD and PD, 

METH could, over time, and under chronic use (abuse), cause severe 

disruptions to DAMPs through toll-like receptor signalling. This model of 

neurodegeneration is currently being investigated, and this thesis provides 

insight into the role(s) of monocyte [innate and adaptive] gene expression which 

should be further unravelled by considering the expression patterns of major 

DAMPs and PAMPs in a METH – in vitro and in vivo – context. 
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Conclusions  

METH, at high chronic doses, carries out a range of alterations within the human 

body over time. This study incorporated several gene ontology, and 

metagenomic software programs to describe impacts of METH on cellular, 

molecular, biological, and microbial processes. The utilization of gene 

ontologies is a powerful tool that can provide insights into differentially 

expressed genes (DEGs) and how enrichment in certain pathways and processes 

provides some evidence of changes in a diseased/perturbed state. Further, the 

growing capacity of openly available metagenomic platforms is aiding in the in-

depth analysis of microbial data taken from a range of environments, including 

the gut. Moreover, as bioinformational analysis of genetic and bacterial data 

becomes more widely available and communicated, genes and gene sets, and 

their corresponding metabolic pathways, will have a significantly greater role 

to play in understanding METH addiction. Importantly, pharmaco-epigenetics, 

defined as the interplay between epigenetic mechanisms and individual drug 

responses, has recently emerged as a crucial aspect of influencing drug 

absorption, distribution, metabolism and excretion (ADME) genes.  Epigenetic 

gene ontology analysis might one day help bridge chronic drug use to epigenetic 

alterations across genes, via shifts in the homeostatic balance of the gut-brain 

axis, along with neurobiological effects as a result. Without doubt, new 

knowledge about how METH abuse affects individuals will require a deeper 

insight into genetic and epigenetic factors, that span multiple systems associated 

with the gut-brain landscape that will more thoroughly and precisely guide 

decision-making on personalised medicine for those suffering from METH 

abuse, withdrawal and long-term mental health disorders. 
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Appendix 1. Genes associated with METH are enriched across 
several ontological terms in Gorilla.  
 

Table 1: Response to bacterium. 

 
GO: 0009617 

p-value: 4.56x10-4 

Gene Fold change 
Ang4 +12.4 
Thrsp +2.5 

Adipoq +5.3 
Cxcl9 +3.0 

Cyp2e1 +5.1 
Gpm6a +4.1 
Fabp4 +2.5 

Serpine1 +3.1 
Hist1h2be +2.3 

Retnlb +6.9 
Upk1b +5.8 
Gdap10 +2.8 

Cfd +3.3 
 

Table 2: Fatty acid metabolism. 

 

GO: 0006631 

p-value: 1.42x10-4 

Gene Fold 

change 

Hao2 +2.4 

Cyp2d12 +2.2 

Cyp2c69 +3.3 

Cyp4f14 +2.1 

Adipoq +5.3 

Abcd2 +2.1 

Cyp2e1 +5.1 

Lep +7.6 
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Pnpla3 +2.7 

Fabp4 +2.5 

Lpl +2.1 

Fabp2 +2.5 

Ces1f +2.6 

Ggt1 +5.9 

Cyp2c44 +2.4 

 

Table 3. Neuropeptide signalling pathway. 
 

 
GO: 0007218 

p-value: 6.47x10-4 
Gene Fold change 
Gal +2.6 
Ppy +3.0 

Galr2 +2.3 
Grp +3.6 

Sstr1 +2.4 
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Table 4. Monocarboxylic acid metabolic process. 
 

 
GO: 0032787 

p-value: 9.44x10-4 
Gene Fold change 
Hao2 +2.4 

Cyp2d12 +2.2 
Cyp2c69 +3.3 
Cyp4f14 +2.1 
Adipoq +5.3 
Abcd2 +2.1 

Cyp2d9 +2.6 
Cyp2e1 +5.1 

Lep +7.6 
Aldh1a2 +2.5 
Pnpla3 +2.7 

Cyp2c55 +2.1 
Fabp4 +2.5 

Lpl +2.1 
Fabp2 +2.5 
Rdh9 +2.2 
Ces1f +2.6 
Ggt1 +5.9 

Cyp2c44 +2.4 
Ccbl1 +2.0 

 
 
Table 5: Blood vessel development. 
 

 
 

GO: 0001568 
p-value: 9.72x10-5 

Gene Fold change 
Cdx2 10.2 
Wt1 6.2 
Lep 7.6 
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Table 6: Placenta development  
 

 
GO: 0001890 

p-value: 5.12x10-4 

Gene Fold change 
Cdx2 10.2 
Lep 7.6 

 

Table 7: Exogenous drug catabolic process 
 

 
GO: 0042738 

p-value: 9.58x10-4 

Gene Fold change 
Cyp2c55 +2.1 
Cyp2d12 +2.2 
Cyp2c69 +3.3 
Cyp2c44 +2.4 
Cyp2d9 +2.6 
Cyp2e1 +5.1 
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Appendix 2. Time-course absorbance readings (570nm) of 0-
1000µM METH. Formazan crystals were noticed after 3 days of 
incubation of METH-stimulate U937 cells. 
 

Time (day) Absorbance 
(570nm) 

Concentration(µM) Figure 

1 0.311 0 
 

0.221 100 
 

0.293 250 
 

0.165 500 
 

0.270 750 
 

0.322 1000 
 

2 0.629 0 
 

0.873 100 
 

0.739 250 
 

0.557 500 
 

0.518 750 
 

0.513 1000 
 

3 1.352 0 
 

1.263 100 
 

1.037 250 
 

0.518 500 
 

0.574 750 
 

0.637 1000 
 

 

 

 

 



280 

 

 

 

 

 

 

 

 

 

 

End of thesis 

 

 

 

 




