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ABSTRACT 

Colorectal cancer (CRC) is amongst the leading diagnosed cancers worldwide. Despite the 

increasing interest to understand, the roles that the nervous and immune systems play in 

influencing the tumour microenvironment to promote cancer development and progression, 

more studies are required to understand the mechanism. Cancer cells can influence their 

microenvironment and bi-directionally communicate with other systems such as the immune 

and nervous systems. The immune system plays a key role in the eradication of cancer cells. 

Studies have shown that multiple mechanisms are responsible for the suppression of the 

immune system in cancer, one of which being the expression of immune checkpoints inhibitors 

such as programmed death 1 (PD-1), PD-L1, programmed death ligand 1 and 2 (PD-L1, PD-

L2), sialic acid-binding lectins 9 (siglec-9) and IDO (indoleamine-2,3-dioxygenase). These 

molecules function by inhibiting anti-tumour effects of T cell-mediated immune responses. In 

addition to these molecules, studies have shown that several cancers can release 

acetylcholine (ACh) and express cholinergic receptors (muscarinic receptor 3 (M3R) and 

alpha 7 nicotinic receptor (7nAChR)), overexpress choline acetyltransferase (ChAT), a 

precursor enzyme required for ACh synthesis and VAChT, essential for transporting of ACh, 

and excitatory receptor. Currently, there are no data available in determining the interaction 

between the expression of immunosuppressive and cholinergic markers in cancer, thus, this 

thesis aims to determine the interaction between the expression of immunosuppressive and 

cholinergic markers in CRC 

The results of this study in ex vivo human specimens from patients diagnosed with stages I-

IV of CRC demonstrated high expression of immunosuppressive (PD-L1, PD-L2, siglec-9 and 

IDO) and cholinergic (M3R and ChAT) markers, which were correlated with, advanced stages 

of CRC. In addition, elevated levels of immunosuppressive markers were correlated with a 

high risk of CRC and poor patients’ survival outcomes, while low levels of cholinergic markers 

were associated with a high risk of CRC and poor patients’ survival outcomes. Furthermore, 

low levels of M3R and high levels of ChAT were associated with metastasis. On the other 

hand,7nAChR expression was not associated with any clinicopathological parameters.     
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The effect of blocking muscarinic receptors on the expression of immunosuppressive (PD-L1 

and PD-L2), cholinergic and angiogenic markers as well as tumour-infiltrating immune cells 

was evaluated. In vitro findings showed that 4-DAMP and atropine treatment significantly 

decreased PD-L1 and PD-L2 expression in human colon cancer cells and murine colon cancer 

cell line via the inhibition of EGFR/ERK/AKT/STAT3 pathway. Similarly, 4-DAMP and atropine 

treatment significantly attenuated M3R expression in human colon cancer cells and murine 

colon cancer cell line via EGFR/ERK/AKT/STAT3 signalling pathway. Atropine and 4-DAMP 

had no effect on human colon cancer cells ability to express ChAT; however, both atropine 

and 4-DAMP decreased ChAT expression in murine colon cancer cell line. In vivo findings 

demonstrated that 4-DAMP treatment significantly decreased the expression of PD-L1, M3R, 

ChAT and angiogenic markers through AKT/ERK signalling pathways, leading to an enhanced 

immune response against cancer noted with the increased CD4 and CD8 T cells. These 

findings suggested that cholinergic signalling might stimulates the expression of 

immunosuppressive markers and could explain the inconsistency in prognostic value.  

The effect of blocking siglec-9/siglec-E on the expression of IDO, cholinergic and angiogenic 

markers as well as tumour-infiltrating immune cells was evaluated. Blocking siglec-9 with 

human anti-siglec-9 antibody significantly reduced IDO expression in HT-29 and siglec-9 in 

LIM-2405 and HT-29. In addition, blocking siglec-9 decreased M3R expression in T4056 but 

not human colon cancer cells. Anti-siglec-9 antibody unveil its effects in a normal epithelial 

cell via suppressing EGFR/ERK/STAT3 signalling pathway, while in human colon cancer, LIM-

2405 it acts by inhibiting ERK/STAT3 signalling pathway. Similar to human colon cancer cells, 

mouse anti-siglec-E antibody significantly inhibited the expression of siglec-9 and cholinergic 

markers in CT-26 cells via inhibiting EGFR/AKT/ERK signalling pathway. Mouse anti-siglec-E 

antibody significantly reduced tumour weight, volume and size, and inhibited the expression 

of siglec-9, cholinergic and angiogenic markers in vivo via inhibition of ACh production by 

reducing the amount of ChAT, an enzyme crucial for ACh synthesis, VAChT, essential for 

transporting of ACh, and excitatory receptor, 7AChR through inhibition of EGFR/AKT/ERK 

signalling pathway. Moreover, the anti-siglec-E treatment augmented M3R expression, 

suggesting that anti-siglec-E might exerts its effects through ACh production and 7AChR but 

not M3R. 
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Taken together, results presented in this thesis suggested that blocking of M3R and siglec-

9/siglec-E have the potential to be used in conjunction with current immune checkpoint 

inhibitors or traditional cancer therapeutic. In conclusion, it is important to evaluate the 

expression status of some or all these immunosuppressive molecules and cholinergic markers 

in order to develop appropriate therapeutic strategies in cancer patients. The findings of this 

work have important clinical relevance and created a new therapeutic avenue, which could 

target both immunosuppressive and cholinergic markers that might be beneficial as a 

treatment regimen for CRC patients.  
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1.1. Introduction 

Cancer remains as one of the leading causes of death worldwide, and colorectal cancer 

(CRC) are among the leading diagnosed and cause of cancer-related death worldwide 

due to the aging population and unhealthy lifestyle [1, 2]. Although they are highly 

treatable when localised, metastatic or recurrent cancer has a poor prognosis. The 

development of cancer involves an intricate process, wherein many identified and 

unidentified factors play a role. Although most studies have focused on the genetic 

abnormalities, which initiate and promote cancer, there is overwhelming evidence that 

tumours interact within their environment by direct cell-to-cell contact and with signalling 

molecules, suggesting that cancer cells can influence their microenvironment and bi-

directionally communicate with other systems including the immune system. 

Studies have shown that tumour microenvironment is more likely to influence the 

behaviour of cancer cells [3-5]. The tumour microenvironment is composed of numerous 

stromal cell types, including endothelial cells, immune cells, fibroblasts, and nerve fibers 

[4, 6]. The tumour microenvironment constituents play a significant role in tumour 

progression and metastasis, and, as a result, is of concern in cancer treatment [5, 7-10]. 

In addition to the tumour microenvironment, tumour angiogenesis is one of the major 

prerequisites for tumour growth and metastatic spread as tumour cells rely on adequate 

oxygen and nutrient supply as well as the removal of waste products [11]. The impact of 

the tumour microenvironment in tumour cell invasion, angiogenesis and metastasis has 

attracted much interest in recent years [4, 7, 12, 13]. The role of the nervous system has 

surfaced as one of the major contributors to cancer progression and metastasis. The 

nervous system governs functional activities of many organs, and, as tumours are not 

independent organs within an organism, this system is integrally involved in tumour 

growth and progression [14, 15]. However, the contributing role of the nervous system in 

tumour progression and metastasis has been largely overlooked. As the interaction of 

these factors makes early detection of cancer important, it is necessary to identify the 

combination of biomarkers that may predict metastasis before it manifests in the patient. 

Although understanding of CRC development and progression has improved over the 
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years the way in which complex interactions between biological, immunological and 

neurological factors interact to influence the course of CRC is still unclear. 

 

1.2. Molecular pathways involved in CRC initiation 

Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide [16]. 

CRC presents vague or no symptoms in the early stages, hence, making early detection 

crucial as it is more often diagnosed at advanced stages. There several risk factors 

associated with CRC development, which include, but not limited to, the family history of 

inflammatory bowel disease or colon cancer, age, race, diet, smoking, alcohol intake, 

obesity and physical inactivity [17]. These risk factors cause alterations in colon epithelial 

cells that, together with inherited genetic traits, may result in the development of a tumour. 

About 70% of CRC occurs sporadically and arise due to the presence of an accumulation 

of gene mutations (tumour suppressor genes) that induce cancer [17], such as, p53, K-

ras and adenomatous polyposis coli [18, 19].  

Three distinct pathways of genomic instability are believed to play an essential role in 

CRC initiation. These include a mutation in mismatch repair genes, leading to 

microsatellite instability (MSI), mutations in APC and other genes that activate Wnt 

pathway, categorised by chromosomal instability (CIN), and global genome 

hypermethylation, resulting in tumour suppressor genes switch off, shown as CpG island 

methylator phenotype (CIMP) [20, 21]. Microsatellite instability (MSI) is a hypermutable 

phenotype caused by the loss of DNA mismatch repair activity. MSI constitutes 15 to 20% 

of early-stage and 3% of metastatic CRC [22]. MSI tumours exhibit innate hostile 

environment towards tumorigenic cells, but, yet are characterised by enhanced 

expression of several immune checkpoint markers including cytotoxic T lymphocyte-

associated antigen-4 (CTLA-4), lymphocyte activation genes-3 (LAG-3), programmed 

death-1 (PD-1), programmed death ligands (PD-L1) and indoleamine-2,3-dioxygenase 

(IDO) [23, 24]. This suggests that MSI CRC subsets are distinguished by expression of 

immune effector cells, but also possess an immune exhaustion phenotype within the 
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microenvironment. On the other hand, microsatellite stable (MSS) CRC is mainly negative 

for PD-1 expression [25]. 

Specific pathological features, mechanisms of carcinogenesis and process of tumour 

development might be influenced by each of these pathways. The molecular aspects of 

these pathways have been used clinically in the diagnosis, screening and management 

of patients with colorectal cancer. However, their influence on tumour microenvironment 

remains to be defined. 

 

1.3. Tumour Microenvironment 

1.3.1. Mechanisms of tumour cell escape from immune detection 

The “survival of the fittest” theory generally describes how tumour cells are able to adapt 

to host immune surveillance and invade the host. Tumorigenic cells can adapt host 

immunity via upregulating the expression of molecules such as programmed death-ligand 

1 (PD-L1), indoleamine-2,3-dioxygenase (IDO), siglec-9, and downregulating other 

molecules, including the major histocompatibility complex (MHC) class I (Figure 1.1). In 

addition to these immunosuppressive molecules, tumour cells can recruit and educate 

immune cells to promote immune evasion [26]. PD-L1, a transmembrane protein, plays a 

crucial role in suppressing the immune system. T cells express the receptor PD-1, and 

upon interaction with PD-L1, inhibitory signals are triggered, resulting in apoptosis of 

cytotoxic T lymphocytes (CTLs, CD8+ T cells) [27]. Interestingly, PD-L1 serves as an anti-

apoptotic factor on tumour cells, leading to their resistance to cytolysis by CTLs as well 

as drug-induced apoptosis [28]. Moreover, in a functional immune system, T cells are 

activated by interacting with MHC expressed on antigen-presenting cells [29, 30]. In 

addition to the interaction between co-inhibitory and co-stimulatory receptors, these 

interactions prevent the host against auto-immune reactivity. The balanced interaction 

between co-inhibitory and co-stimulatory receptors determines whether T cells are 

stimulated or whether they become anergic to a specific antigen displayed on the MHC. 

The balance of co-stimulation and co-inhibition appears to be skewed by cancer cells 
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towards co-inhibition due to dysregulation of several cell surface markers, such as MHC 

class I, B7 and CD28 [31].  Furthermore, tumour-associated immune (TAI) cells play an 

intriguing role in immune evasion. In fact, the presence of TAI cells within the tumour 

microenvironment correlates with poor prognosis as noted in several cancers [32, 33]. 

TAI cells are capable of expressing immunosuppressive factors, such as IL-10, tumour 

growth factor-beta (TGF-), and prostaglandin E2 (PGE2) to exhibit their effects on T cell 

inhibition [34-36]. These factors play a crucial role in supporting tumour immune evasion 

by regulating TAI cells or suppressing systemic immune cell function, particularly T cells, 

which are responsible for immunosurveillance. Herein, we focus on the role of 

immunosuppressive molecules PD-L1, IDO, siglec-9, downregulation of MHC class I, 

infiltration of TAI cell and their secreted factors that promote immune evasion, leading to 

metastasis and/or disease recurrence in patients with cancer.  

1.3.1.1. Upregulation of programmed death ligand 1  

The expression of PD-L1 by tumour cells plays an essential role in the establishment of 

an immunosuppressive force that facilitates tumour cells escape from immune. Indeed, 

the expression of PD-L1 in head and neck squamous cell carcinoma, carcinomas of the 

lung, ovary, breast, endometrium, and melanoma, contribute significantly to evading the 

immune system [30, 31, 37-61]. Higher PD-L1 expression is associated with tumour node 

metastasis, poor prognosis and shorter survival in patients with colorectal cancer [62, 63].  

The expression of PD-L1 by tumour cells is dependent on interferon-gamma (IFN-) 

production by tumour-infiltrating immune cells [64]. In addition, downstream signalling 

molecules such as, nuclear factor-kappaB (NF-B), mitogen-activated protein kinase 

(MAPK), phosphoinositide 3-kinase (PI3K), mammalian/mechanistic target of rapamycin 

(mTOR) and Janus kinase (JAK)/ signal transducer and activator of transcription (STAT) 

which act via toll-like receptors and IFN- receptor, regulate the nuclear translocation of 

transcription factors to the PD-L1 promoter leading to PD-L1 induction [65]. PD-L1 

upregulation enhances regulatory T cells (Tregs) via AKT and mTOR phosphorylation 

leading to immunosuppression [66]. Interestingly, the expression of PD-L1 by tumour-

associated macrophages (TAMs) also mediates immunosuppression and is important for 

tumour escape from the immune response. Furthermore, the expression of PD-1 on 
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tumour infiltrating lymphocytes (TILs) correlates with aggressive features of breast cancer 

cells, including lack of oestrogen receptor expression, higher TIL counts, high tumour 

grade, and, the triple-negative breast cancer subtype [50, 54, 61, 67]. In addition, PD-1 

on TILs is associated with poor survival of luminal B and basal-like carcinomas [55] and 

is highly noted in non-small cell lung cancer (TILs and Treg cells) [68]. Similarly, PD-L1 

expression in stromal or tumour cells inversely correlates with Foxp3+ cell density (Treg 

cells) in colorectal cancer, further reinforcing the fundamental role of Treg cells in the 

tumour microenvironment [69]. In contrast, there are studies suggesting that the 

expression of PD-L1 is associated with better prognosis in breast cancer patients [68]. 

PD-L1 expression correlated with elevated TIL infiltration and longer recurrence-free 

survival in breast cancer and in pulmonary adenocarcinoma patients [57, 70, 71]. The 

inconsistencies in findings warrant further research into the mechanisms of action of PD-

L1 on cancer cells. It is possible that the expression levels of PD-L1 on cancer cells and 

the co-infiltration of TILs, TAMs and Tregs within the tumour microenvironment vary 

according to the different stages of the disease, prognosis and ability of tumour cells to 

evade the host immune system.  

1.3.1.2. Downregulation of MHC class I  

The MHC class I also known as human leukocyte antigen (HLA)-A, -B, -C in humans is 

present on all nucleated cells and presents small processed antigenic peptides on its 

surface to CD8+ T cells to activate the adaptive immune response [72]. MHC class I 

downregulation on tumour cells is a well-documented mechanism used by tumours to 

escape host immune detection [73]. In laryngeal squamous cell carcinoma, 

downregulation of MHC class I correlates with decreased CD8+ T cell infiltration, which 

associates with poor survival [74]. Similarly, in breast cancer, MHC class I downregulation 

associates with lymphatic invasion, lymph node metastasis and venous invasion [75]. It 

has been shown that MAPK signalling adversely regulates the expression of MHC class 

I in MDA-MB-231 breast cancer cell lines providing mechanistic insights [76]. High 

intratumoral T cell infiltration and MHC class I expression associates with better survival 

via nuclear STAT1 stimulation in colorectal cancer patients; downregulation of these 

markers signified tumour escaping immunosurveillance [77]. Likewise, tumours 
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expressing high levels of MHC class I associate with good prognosis in non-small cell 

lung carcinoma patients; however, the effects of CD8+ T cells are abolished in tumours 

expressing non-classical HLA-E [78]. Consistent with these findings, expression of non-

classical HLA-E and HLA-G (key modulators of immune responses interfering with CD8+ 

T cells and natural killer (NK) cell action) correlates with poor prognosis in serous ovarian 

carcinoma patients, suggesting that therapies targeting HLA-E and HLA-G hold potential 

benefit [79]. In papillary thyroid cancer, MHC class I expression associates with lower 

levels of Foxp3+ Treg cells and CD16+, CD3+ and CD8+ tumour-associated immune 

effector cells [80]. Administration of IFN- or selumetinib MEK1/2 inhibitor increases HLA-

A, -B, -C expression in papillary thyroid cancer cell lines (BCPAP, TPC-1 and K-1) in vitro 

[80]. Likewise, we demonstrated that murine mammary adenocarcinoma cell line with low 

levels of MHC class I and ability to grow in mice without being rejected, was reversed by 

IFN- stimulation which upregulated MHC class I and resulted in tumour inhibition in mice 

[81]. Hence, tumour cells have evolved into ways to escape from the immune system by 

downregulating the expression of MHC class I molecules. Thus, it is important to check 

the expression of MHC class I on cancer tissues in order to develop appropriate treatment 

modalities for cancer patients. 

1.3.1.3. Overexpression of the enzyme indoleamine-2,3-dioxygenase  

Indoleamine-2,3-dioxygenase is an enzyme in which its overexpression leads to 

increased degradation of the essential amino acid L-tryptophan along the kynurenine 

pathway resulting in T cell inhibition, hence, promoting a mechanism of tumour escape 

from host immune detection [82]. IDO provokes L-tryptophan deficiency, which impairs T 

cell proliferation in the tumour microenvironment by inducing apoptosis [83]. In addition, 

L-tryptophan deficiency impairs CD8+ T cell function via downregulation of the T cell 

receptor ζ-chain [84]. IDO not only exhibits its effect on T cells but also on other immune 

cells including NK cells and supports the activity and generation of TAI cells such as Treg 

cells and myeloid-derived suppressor cells (MDSC) [85-87]. IDO can inhibit NK cells and 

CD4+ and CD8+ T cell proliferation, however, has no effect on B cells [88]. Overexpression 

of IDO by a number of cancer cells holds poor prognostic value as noted in colorectal 

cancer [89], breast cancer [82], glioma [90] and non-small cell lung carcinoma [91]. In 
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colorectal cancer patients, the expression of IDO by tumour cells is associated with liver 

metastases and inversely correlates with infiltrating T cells as well as a clinical outcome 

[89]. Similarly, to the expression of PD-L1, the expression of IDO is dependent on IFN-. 

Moreover, cancer-associated fibroblasts (CAFs) expressing IDO are linked to stage III 

and poor prognosis in breast cancer patients as well as enhanced invasiveness of breast 

cancer cells in vivo in mice [82]. IDO expression is associated with estrogen receptor but 

not progesterone receptor or epithelial receptor 2 status. For example, low IDO 

expression correlates with estrogen receptor negative breast cancers and higher 

neoangiogenesis [92]. IDO expression correlates with increased Foxp3 Treg cells and is 

associated with a lower five year survival rate in non-small cell lung carcinoma patients 

[91]. Likewise, higher IDO expression in glioma patients associates with poor prognosis 

and high grade; and in orthotopic GL261 bearing mice models, IDO expression increases 

the recruitment of Treg whilst simultaneously decreasing CD8+ T cells [90]. In contrary, 

high expression of IDO has an independent good prognostic value in basal-

like breast carcinomas [93]; high IDO expression associates with estrogen receptor 

positive breast cancers and better overall survival [92]. Whether these findings are based 

on tumour specificity warrants further studies into mechanisms and pathways contributing 

to immunosuppression. 

1.3.1.4. Sialic acid-binding lectin-9 and tumour growth 

Sialic acid-binding lectins, or siglecs, play an important role in modulating the immune 

response. Siglecs are expressed by some immune cells such as macrophages, 

monocytes, neutrophils, B cells, dendritic cells and NK cells [94].  In particular, siglec-9, 

which is expressed on the surface of immune cells such as, NK cells, B cells and 

monocytes, has been shown to interact with transmembrane epithelial mucins (MUC), 

MUC1 and MUC16 [95]. MUC1 (CD227) is overexpressed on adenocarcinomas, and 

haematological cancers [96] whilst MUC16 (CA125) is primarily overexpressed on 

ovarian cancer cells although studies show that it is expressed on a number of cancers 

[97, 98]. Siglec-9 enhances the chemotactic potential and mature phenotype of NK cells 

and cytokine secretion (tumour necrosis factor-alpha (TNF-), IFN- and macrophage 

inflammatory protein-1b (MIP-1b)) in neuraminidase-treated K562 cell line [99]. 
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Interestingly, enhanced expression of siglec-9 is noted in melanomas, chronic 

lymphocytic leukemias and acute myeloid leukemias; however, in the peripheral blood of 

these patients, siglec-9 positive NK cell population is decreased [99]. Expression of 

siglec-7 and siglec-9 protects tumour cells from NK cell lysis in vitro (K562, A375, 

LAU2106, and HCT116 cell lines) and in huNSG mouse model, suggesting an 

immunosuppressive mechanism by tumour cells [99]. The interaction of siglec-9 with 

MUC16 has been shown to inhibit immune cell (NK and T cells) priming as noted in 

OVCAR-3 cell line leading to tumour cell evasion [100]. In human breast and colon cancer 

tissues, siglec-9 positive cells associate with the MUC1 positive cells suggesting siglec-9 

to be a counterreceptor for MUC1 [101]. In addition, in vitro binding of siglec-9 to MUC1 

expressed on HCT116 human colon cancer cell line, results in β-catenin recruitment in 

tumour cells where it is transported to the nucleus, leading to cell growth [101]. Inhibition 

of TAMs via siglec-9 leads to M1 polarisation and reduced growth promoting inflammation 

within the tumour microenvironment [94]. In addition, blocking of siglec-9 enhances 

neutrophil activity against tumour cells; likewise, siglec-E, equivalent to siglec-9, deficient 

mice show increased immunosurveillance against tumour cells [94]. However, this 

outcome is dependent on the stage of tumour and the microenvironment. These findings 

suggest that the expression of siglec-9 on immune cells and its interaction with MUC1 or 

MUC16 on tumour cells may be involved in tumour growth, however, the nature of this 

interaction as well as the cellular framework in vivo remains to be defined.   
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Figure 1.1. Immunosuppressive factors involved in tumour escape mechanisms 

from host immunity 

There are several mechanisms that are involved in the tumour evasion; however, this 

schematic diagram demonstrates mechanisms discussed in this paper. Tumorigenic cells 

exhibit various immunosuppressive mechanisms to evade host immune responses, either 

to circumvent immune recognition or to immobilise effector T cells. These comprise 

modification of components of the antigen presentation machinery (such as 

downregulation of MHC class I) and secretion of immunosuppressive factors, including 

PD-L1, IDO, siglec-9, IL-10, PGE2 and TGF-. These mechanisms assist cancer to 

suppress the ability of the host immune system to restrain from tumour evasion. 

Understanding the regulation of these mechanisms might contribute to overcoming the 

tumour immunosuppressive microenvironment.  

Abbreviations: Bcl-xL, B-cell lymphoma-extra large; CAFs, cancer-associated fibroblasts; IDO, 

Indoleamine-2,3-dioxygenase; IFN-, interferon gamma; IFN-R, interferon gamma receptor; IL-

10, Interleukin; JAK, Janus kinase; MHC, major histocompatibility complex; mTOR, 

mammalian/mechanistic target of rapamycin; MUC, Mucin; NK, natural killer; NF-B, nuclear 

factor-kappa B; PI3K, phosphoinositide 3-kinase; PD-1, programmed death-1; PD-L1, 

programmed death-ligand1; PGE2, prostaglandins; Treg, regulatory T cell; AKT, serine/threonine 

kinase or protein kinase B; Siglec-9, Sialic acid-binding lectins 9; STAT, Signal transducer and 

activator of transcription; SHP, Src homology protein-tyrosine phosphatase; TCR, T cell receptor; 

TGF-, tumour growth factor-beta.                                                                                 
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1.3.2. Immunosuppressive factors secreted by tumour cells 

Cancer cells induce immunosuppression resulting in escape mechanism from the host 

immune system by secreting factors such as interleukin (IL)-10, prostaglandins, 

cyclooxygenase and TGF- (Figure 1.2). These factors are secreted within tumour 

microenvironment and are associated with poor prognosis and overall survival of cancer 

patients [102-105]. 

1.3.2.1. Interleukin-10  

The cytokine IL-10 (also known as cytokine synthesis inhibitory factor) is an anti-

inflammatory cytokine primarily secreted by monocytes, T helper (Th)-2 cells and Treg 

cells. IL-10 downregulates Th1 cytokines and blocks NF-kB activity. IL-10 plays a vital 

role in regulating host immune response to pathogens, thus averting damage to the host 

and maintaining normal tissue homeostasis. Dysregulation of IL-10 increased risk for 

development of many autoimmune diseases [106]. Interestingly, tumour cells utilise IL-10 

to suppress T cell function [107]. In fact, high expression of IL-10 at the tumour site 

associates with poor prognosis [102, 108, 109]. Cancer cells and TAI cells such as, TAMs, 

secrete IL-10 into the tumour microenvironment resulting in tumour growth [102, 105]. It 

is likely that IL-10 induces immunosuppression by downregulating MHC class I 

expression on cancer cells, resulting in tumour escape from the host [110]. In addition, 

elevated levels of IL-10 in the serum of cancer patients is associated with increased 

peripheral monocytes correlating with poor prognosis in lymphoma patients [111]. 

Enhanced expression of IL-10 receptor on tumour cells and its interaction with PD-1, 

regulates CD8+ T cells of advanced melanoma patients [102]. Consistent with this finding, 

high expression of IL-10 positively correlates with B7-H3 (CD276) resulting in lymph node 

metastasis, advanced disease stage II-IV and large tumours [112]. Furthermore, IL-10 

mediates immunosuppressive effects via suppressing T cell expansion through inhibition 

of IL-2 and IFN- secretion [106]. Upregulation of IL-10 is associated with HER-2/neu 

positive breast cancers; however, there is no correlation with age, estrogen receptor or 

progesterone receptor status in ductal and lobular breast cancer tissues [112].  It is clear 
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that IL-10 aids in tumour escape from the host immune system leading to metastasis or 

recurrence. 

1.3.2.2. Prostaglandin E2 and Cyclooxygenase-2  

Cyclooxygenase 2 (COX-2) is an enzyme responsible for the production of prostanoids, 

including prostaglandins (PGE2). COX-2 is expressed by several malignancies including 

breast cancer which associates with an aggressive tumour phenotype, contributing to the 

high metastatic capacity of cancer cells [103]. COX-2 suppresses NK cells, dendritic cells 

(DCs) and T cells leading to tumour escape from host immune detection. In fact, 

enhanced expression of PGE2 and COX-2 inhibits T cells and DC function in breast 

cancer patients [113]. PGE2 mediates cancer growth via stimulation of a family of G-

protein coupled receptors. Tumour-bearing mammary adenocarcinoma cells escape 

immune detection as PGE2 inhibits the function of NK cells to migrate, secrete IFN- and 

exert cytotoxic effects [114]. In fact, inhibition of PGE2 reduces breast cancer metastasis 

in mice [114]. Furthermore, it was noted that prostaglandins in 4T1 breast cancer tumour-

bearing mice, results in tumour escape mechanism via inducing myeloid-derived 

suppressor cells (MDSCs) which leads to CD4+ T cells suppression and to some extent, 

CD8+ T cells [115]. These findings concur with studies using prostaglandin E2 receptor 2 

(EP2) knockout mice, which show a decrease in MDSC accumulation and impede tumour 

growth, suggesting immunosuppression [115]. In addition, PGE2 mediates 

immunosuppression by enhancing IDO expression by CAFs via STAT3 and EP4/signal 

transducer signalling pathways as noted in MCF-7 and MDA-MB-231 tumour-bearing 

mouse model [82]. 

1.3.2.3. Tumour growth factor-beta 

Tumour growth factor-beta is produced by a number of immune cells including 

macrophages. Its increased expression often correlates with malignancy of cancer cells. 

TGF-β is an immunosuppressive cytokine leading to tumour growth and progression 

[116]. It is known that TGF-β supports CD4+ T cell polarisation to Th2 rather than Th1 

cells reducing anti-tumour immune responses [117]. In addition, TGF-β regulates the 

differentiation and expansion of NK cells, macrophages (M2 pro-tumour phenotype 
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instead of M1 anti-tumour phenotype), DCs and CD4+ T cells. Several studies have 

determined the mechanisms of how TGF-β impedes with anti-tumour immunity. For 

example, enhanced levels of TGF- correlates with an aggressive tumour phenotype and 

is a good indicator of poor prognosis in several cancers [104, 118, 119]. Furthermore, 

TGF-β suppresses NK cell cytolytic activity via NKG2D receptor activation, further 

enhancing poor anti-tumour response [120]. In addition, inhibiting several cytolytic gene 

expression molecules including FAS ligand, IFN-, and, granzyme A and B, TGF-β is able 

to suppress tumour cell lysis by CD8+ T cells [121]. The presence of TGF- at the tumour 

site signifies immunosuppression via stimulation of signalling pathways including IL-

6/STAT3, PI-3/AKT pathways. In fact, in C57BL/6 mice, TGF- requires Foxp3 to inhibit 

CD8+ T cell responses via stimulating the translocation of downstream molecules Smad 

2 and Smad 3 [122]. Overexpression of TGF- is also associated with enhanced Treg 

cells and tumour associated neutrophils (TAN) in mice [104]. Interestingly, tumour cells 

stimulate DCs to release TGF-β which promotes the expansion of Treg cells and indirectly 

inhibits T cell effectors [123]. Similarly, in mice-bearing melanoma or breast cancer cells, 

reduced expression of type III TGF-β receptor (TGFBR3) enhanced TGF-β signalling 

which correlate with elevated Foxp3 Treg cells and reduced CD8+ T cells within the 

tumour microenvironment [124]. In addition, TGF-β regulates IDO expression [124] and 

blocking of TGF-β in vitro using DNTβRII plasmid, improves the anti-tumour effects of NK 

cells to MDA-MB-231 and T47D breast cancer cell lines [125]. It is clear that, TGF-β 

mediates immunosuppression via regulating Treg cells, TAN and reduces CD8+ T cells, 

resulting in a pro-tumour phenotype for enhanced metastasis and/or recurrent disease. 

Hence, anti-TGF- therapy may be a viable treatment strategy for cancer patients. 

1.3.3. Immunosuppressive effects of tumour-associated immune cells 

Tumour-associated immune cells such as TAMs, CAFs, TILs (particular Tregs), MDSCs 

and TANs, are key immunosuppressive cells that promote tumour progression via their 

ability to suppress host anti-tumour responses and stimulate tumour angiogenesis [126-

128].  
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1.3.3.1. Tumour-associated macrophages  

Tumour-associated macrophages particularly of the M2 phenotype are associated with 

poor prognosis in several cancers including breast cancer [129]. However, what triggers 

TAMs to differentiate into M2 pro-tumour phenotype and not M1 anti-tumour phenotype? 

TAMs exposed to tumour microenvironment stimuli such as, TGF-, IL-10, monocyte 

colony stimulating factor (M-CSF) and other immunosuppressive factors, induce M2 

differentiation [34, 130, 131]. Furthermore, the presence of TAMs in hypoxic (avascular) 

environment modifies their gene expression promoting M2 pro-tumour phenotype [132]. 

In addition, TAMs inhibit CD8+ T cell proliferation as well as TAM-derived IL-10 

suppresses IL-12 secretion by intratumoral DCs as noted in an animal model of breast 

cancer [133]. Likewise, overexpression of IL-10 by TAMs correlates with advanced stages 

of disease and poor prognosis in non-small cell lung carcinoma patients [134]. TAMs 

isolated from renal cell carcinoma cells induce Foxp3 Treg cells and IL-10 derived from T 

cells leading to immune evasion via 15-lipoxygenase-2 pathway activation [135]. 

Upregulation of TAMs expressing B7-H1 mediates immunosuppression of glioma cells 

via autocrine/paracrine IL-10 signalling modulation [136]. These studies clearly 

demonstrate the fundamental role TAMs play in the tumour microenvironment leading to 

tumour escape mechanisms.  

1.3.3.2. Cancer-associated fibroblasts  

Cancer-associated fibroblasts are the main stromal components, which play an essential 

role within the tumour microenvironment resulting in modulation of tumour growth. CAFs 

mediate immunosuppression via promoting several other factors including immune 

infiltrating cells, factors secreted by tumour cells (cytokines/chemokines) and 

immunosuppressive molecules including IDO [82, 137-140]. CAFs are overexpressed in 

esophageal carcinomas and correlate with poor prognosis [138]. High expression of CAFs 

and M2 correlate with clinical outcome of colorectal cancer patients [141]. CAFs inhibit 

NK cells function creating nourished environment for tumour growth, however, these 

effects are reduced following administration of IDO and PGE2 inhibitors in a murine model 

of hepatocellular carcinoma, suggesting that CAFs possess immunosuppressive abilities 
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[35]. CAFs suppress T cell proliferation by promoting the expression of PD-L1 and PD-L2 

by cancer cells [140].  

1.3.3.3. Tumour-associated neutrophils  

Tumour-associated neutrophils play an essential role in tumour evasion and are often 

present within the tumour microenvironment; however, their role in immunosuppression 

has recently surfaced [142, 143]. Neutrophils orchestrate innate and adaptive immunity 

during inflammation. In fact, TANs at the tumour site signify tumour evasion and in most 

malignant tumours including colorectal cancer, enhanced expressions of TANs are 

associated with poor prognosis [144-147]. TGF-β regulates the expression of N2 pro-

tumour phenotype and reduces CD8+ T cell stimulation [148], whilst other studies 

demonstrate that N1 anti-tumour phenotype is regulated by IFN-β [149]. Elevated levels 

of intratumoral neutrophils correlate with advanced stage, lymph node metastasis and 

poor patient survival in esophageal squamous cell carcinoma [144]. In 4T1 tumour-

bearing mice, neutrophils (N2 pro-tumour phenotype) are noted to enhance tumour 

progression and metastasis [150]. However, contrastingly, high TAN density is associated 

with better prognosis in advanced colorectal cancer patients [151]. Similarly, findings in 

early stages of lung cancer patients demonstrate that infiltration of TANs enhances CD4+ 

and CD8+ T cell proliferation rather than inducing immunosuppression [152]. TANs at 

early stage of disease secrete high levels of nitric oxide, TNF- and H2O2 and exhibit 

cytotoxicity towards tumour cells, as noted in Lewis lung carcinoma and mesothelioma 

models [153]. Thus, what triggers TANs to become pro-tumorigenic in advanced stages 

of lung cancer but not in colorectal cancer? This could be due to cancer specific signalling 

pathways activated or combination of other immunosuppressive molecules secreted 

within the tumour microenvironment. These inconsistencies in findings warrant further 

studies to better understand the role of TAN in tumour growth, metastasis and recurrent 

disease.  

1.3.3.4. Regulatory T cells  

Regulatory T cells are distinct CD4+ Th cell subset defined by the CD25+CD4+ phenotype, 

which suppress effector T cells, believed to be dependent on IL-10 and/or TGF-β [154]. 
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Tregs are regulated by Foxp3 and hold prognostic value in several cancers [154-158]. 

Tregs inhibit anti-tumour responses mediating tumour escape mechanisms through the 

expression of well-known immunosuppressive factors, PD-1, cytotoxic T lymphocyte-

associated antigen-4 (CTLA-4), lymphocyte activation genes-3 (LAG-3), IL-10 and TGF-

β [36]. In fact, enhanced Foxp3+ Treg infiltrates with elevated PD-L1 expression correlate 

with high grade, basal-like subtype, and negative estrogen receptor and progesterone 

receptor status [159]. This suggests that Foxp3+ Tregs work synergistically with PD-L1 to 

endorse immune evasion in breast cancer. In peripheral blood of non-small cell lung 

carcinoma patients, enhanced expression of CD4+CD25+Foxp3+ Tregs was co-expressed 

with immunosuppressive molecules CTLA-4, PD-1 and LAG-3 [36]. Similarly, in colorectal 

cancer, enhanced expression of intratumoral CD4+Foxp3+ Tregs associates with 

suppressive markers, CTLA-4 and ectonucleotidase CD39; whilst CD4+Foxp3- Tregs 

associate with regulatory markers including LAG-3, latency-associated peptide (LAP) and 

CD25 [158]. Enhanced intratumoral expression of Foxp3+ Tregs expressing LAP and 

CD39 is noted in head and neck carcinomas [160]. Enhanced expression of 

CD4+CD25highFoxp3+ T cells expressing elevated IL-10 and decreased TGF-β and IFN- 

is reported in gastric cancer patients, challenging the theory that CD4+CD25high T cells 

are the main makers of TGF-β [161]. These findings suggest that CD39 and CTLA-4 are 

commonly co-expressed on several CD4+Foxp3+ Tregs, suggesting that these markers 

may play an essential role in regulatory functions of Tregs in situ. 

1.3.3.5. Myeloid-derived suppressor cells  

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid 

progenitor cells that contribute to the development of tumour and chronic inflammation 

[162]. The presence of MDSCs within the tumour microenvironment induces 

immunosuppression as noted in several cancers including breast, colon, pancreatic and 

non-small cell lung cancer [32, 163-166]. MDSCs utilise several mechanisms to influence 

innate and adaptive immune responses, such as, inducing PD-L1 expression on tumours 

leading to CD8+ T cell inhibition. MDSCs crosstalk with other immunosuppressive factors 

such as IDO and Treg cells. For instance, IDO inhibition or Treg exhaustion results in 

decreased MDSCs, thus reversing immunosuppression in B16 melanoma cell bearing 
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mice [167]. In breast cancer patients, MDSCs mediates immunosuppression via 

upregulating IDO expression dependent on STAT3 phosphorylation [32]. Hence, MDSCs 

play a significant immunosuppressive role within the tumour microenvironment leading to 

tumour escape from host immunity. 

  



19 
 

 

 

 

 

 

 

Figure 1.2. The role of tumour associated immune cells inducing 

immunosuppression 

This schematic diagram illustrates tumour-associated immune cells that enhance tumour 

evasion discussed in this paper. Tumorigenic cells can utilise host immune cells to 

promote tumour progression via the expression of immunosuppressive factors.  

Abbreviations: CAFs, cancer-associated fibroblasts; CTLA-4, cytoxic T lymphocyte-associated 

antigen-4; EGFR, epidermal growth factor receptor;  IDO, indoleamine-2,3-dioxygenase; IL-10, 

interleukin; LAG-3, lymphocytes activation genes-3; MAPK, mitogen-activated protein kinase; 

MDSCs, myeloid-derived suppressor cells; NK, natural killer; PD-1, programmed death-1; PD-L1, 

programmed death-ligand1; PD-L2, programmed death-ligand 2; PGE2, prostaglandins; Treg, 

regulatory T cell; STAT3, signal transducer and activator of transcription 3; TAI, tumour-

associated immune cells; TANs, tumour-associated neutrophils; TAMs, tumour-associated 

macrophages; TGF-, tumour growth factor-beta.  

 

  



20 
 

 

 

 

 

 

 

  



21 
 

1.4. Role of the Nervous System in Tumour Angiogenesis 

New growth in the vascular network (angiogenesis) is a normal physiological 

phenomenon that tumours utilise to aid in their growth, proliferation and metastatic 

spread. Angiogenesis involves migration and division of endothelial cells, generation of 

new basement membrane, arrangement into tubular structures and coverage by 

pericytes. Angiogenesis is regulated by a plethora of pro- and anti-angiogenic molecules 

such as, interleukin (IL)-8, tumour necrosis factor (TNF)-, vascular endothelial growth 

factor (VEGF), transforming growth factor (TGF)-α, TGF-β, angiogenin, platelet-derived 

growth factor (PDGF) and fibroblast growth factor (FGF) [168, 169]. The level of 

angiogenic factors in tissues reflects the aggressiveness of tumour cells which play a 

significant role in prognostic outcomes [170, 171]. In cancer, the balance between pro- 

and anti-angiogenic factors is lost, resulting in uncontrolled angiogenesis with irregular 

blood vessels lacking a clear hierarchal arrangement [168, 172]. Consequently, anti-

angiogenic therapies (in particular anti-VEGF) have been approved for cancer treatment 

[171, 173-175]. The interaction between VEGF with its receptor, VEGFR2, is responsible 

for the majority of the angiogenic stimulatory signals in vivo, however, their therapeutic 

value for long-term patient survival is relatively modest [170]. 

In addition to these factors, the impact of the tumour microenvironment in tumour 

angiogenesis has attracted much interest in recent years as another regulator of 

angiogenesis [4, 176-178]. Furthermore, the role of the nervous system has also surfaced 

as one of the major contributors to cancer progression through the regulation of tumour 

angiogenesis via release of neurotransmitters. The nervous system governs functional 

activities of many organs, and, as tumours are not independent organs within an 

organism, this system is integrally involved in tumour growth and progression [179, 180]. 

Here we present an overview of the nervous system role in tumour angiogenesis.  

1.4.1. Neurotransmitters influencing tumour angiogenesis  

Neurotransmitters are group of neurological chemical messengers synthesised by 

neurons and secreted at nerve terminals where they transmit signals to target cells 
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through binding to their receptors. Studies have demonstrated that various cancers 

express receptors for different neurotransmitters, which have been identified to play 

essential role in the control of tumour angiogenesis (Table 1.1, Figure 1.3). 

1.4.1.1. Catecholamines  

Catecholamines are a group of neurotransmitters that are synthesised from amino acid 

tyrosine. These neurotransmitters are intricately involved in the normal physiological 

response of fight or flight response during stress [181, 182]. Epinephrine and 

norepinephrine released during chronic stress play an important role in tumorigenesis via 

regulation of angiogenesis through β-adrenergic signalling. The β-adrenergic signalling 

pathway is involved in regulation of cancer initiating factors such as apoptosis, DNA 

damage repair, inflammation, cellular immune response, angiogenesis and epithelial-

mesenchymal transition. Numerous in vitro and animal studies have demonstrated that 

epinephrine and norepinephrine acting on their receptors expressed on tumour cells, 

stimulate angiogenesis via increased VEGF synthesis [181-185] through the cAMP-PKA 

signalling pathway [183]. In fact, activation of the β-adrenergic signalling pathway in 

primary mammary tumours has been shown to elevate tumour-associated macrophages 

(TAMs) expressing vegf gene which enhances angiogenesis [186]. Moreover, in some 

breast cancer cell lines, direct activation of β-adrenergic signalling can amplify expression 

of VEGF and cytokines, IL-6, and IL-8 that stimulate tumour angiogenesis [187]. Jagged 

1 is essential factor mediating Notch signalling which regulates tumour angiogenesis 

through β2-AR-PKA-mTOR pathway. Upregulation of Jagged 1 in breast cancer patients 

correlates with poor prognosis [188, 189]. Knockdown of Jagged 1 by siRNA in MDA-231 

breast cancer cells inhibits Notch signalling in endothelial cells and impairs tumour 

angiogenesis induced by norepinephrine [190]. 

In contrary, dopamine inhibits angiogenesis by downregulation of VEGFR-2-mediated 

signalling pathway in both tumour endothelial and endothelial progenitor cells through 

D2 dopamine receptors (DR2) [181, 182, 191, 192]. Furthermore, in mouse models of 

breast cancer induced by MCF-7 cell line and colon cancer induced by HT29 cell line, 

dopamine administration in combination with anti-cancer drugs (e.g. doxorubicin and 5-

fluorouracil) impairs tumour growth and improves survival outcome [193]. However, 
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dopamine effect was found to have no direct impact on tumour growth and survival but  

by inhibiting tumour endothelial cell proliferation and migration via the suppression of 

VEGFR-2 and mitogen-activated protein kinase as demonstrated in vitro [193]. In tissues 

from gastric cancer patients and in rats with chemically-induced as well as mice with 

Hs746T cell-induced gastric cancer, administration of dopamine decelerates tumour 

growth by suppressing angiogenesis via inhibition of VEGFR-2 phosphorylation in 

endothelial cells [194]. This concurs with results obtained in ovarian cancer mouse 

models induced by systemic injection of SKOV3ip1 and HeyA8 cells in which exogenous 

administration of dopamine inhibits angiogenesis by a stimulation of DR2, however 

stimulation of DR1 stabilises tumour blood vessels via cAMP-PKA signalling pathway 

[195].  

1.4.1.2. Acetylcholine and nicotine  

Nicotinic acetylcholine receptors (nAChRs) can have either stimulatory or inhibitory effect 

on the production and release of angiogenic factors [196]. Indeed, the expression of 

VEGF, TGF-β, FGF and PDGF in endothelial cells is increased by nicotine [197-200]. 

Nicotine-mediated angiogenesis via activation of 7 and 9-nAChRs is cell-type specific, 

e.g. in lung cancer cells angiogenesis is promoted via activation of 7-nAChRs [200, 201], 

whereas in breast tumours overexpression of 9-nAChRs [202] stimulates release of pro-

angiogenic factors [203]. In colon tumour tissues from HT-29 cell-bearing BALB/c mice, 

VEGF expression is elevated by nicotine which correlates with enhanced microvessel 

density [204]. The molecular pathways of nicotine-induced angiogenesis have been 

extensively reviewed [205]. The role of muscarinic acetylcholine receptors (mAChRs) in 

tumour angiogenesis is not well understood, however administration of  autoantibodies 

against mAChRs in mouse models of breast cancer (Table 1.1) mediates tumour 

angiogenesis via activation of mAChRs through release of VEGF-A [206]. In addition, in 

BALB/c mice bearing LMM3 mammary adenocarcinoma cells, administration of 

muscarinic agonist, carbachol, in the presence or absence of various muscarinic 

antagonists shows an increase in VEGF expression [207, 208]. Furthermore, tumour 

macrophages stimulate angiogenesis via activation of M1 and M2 mAChRs which trigger  

arginine metabolic pathway [207].   
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1.4.1.3. Gamma-Aminobutyric acid, neuropeptide Y, nitric oxide and serotonin  

Gamma-Aminobutyric acid (GABA), neuropeptide Y (NPY), nitric oxide (NO) and 

serotonin have varying effects on angiogenesis and tumour progression. In a mouse 

model of cholangiocarcinoma, GABA inhibits VEGF-A/C, decreases cell proliferation and 

tumour mass [209]. NPY enhances the expression of VEGF and its secretion, promoting 

angiogenesis and breast cancer progression [210]. The suggested mechanism by which 

NPY induces angiogenesis is by its influence on endothelial cells dependent on 

endothelial nitric oxide synthase (eNOS) activation and partly on VEGF signalling 

pathway The release of NO results in endothelial activation inducing tumour cells lysis 

[211], although NO can also promote tumour growth and metastasis by enhancing 

angiogenesis [211-218]. For instance, NO increases VEGF-C and nitrite/nitrate 

production in MDA-MB-231 breast cancer cells and high levels of nitrotyrosine correlate 

with increased VEGF-C, lymph node metastasis, reduced disease-free and overall 

survival in invasive breast carcinoma [219]. The expression of iNOS and VEGF in 

colorectal cancer correlates with enhanced intratumour micro-vessel density suggesting 

that NO can promote tumour angiogenesis [212]. In gastric cancer, overexpression of 

NOS III via abnormal activation of sequence-specific DNA-binding protein (Sp1) 

correlates with enhanced micro-vessel density and poor survival [220]. Serotonin has also 

been implicated in tumour angiogenesis. In C57BL/6 mice bearing MC-38-induced 

tumours, serotonin regulates angiogenesis by plummeting matrix metalloproteinase 12 

(MMP-12) expression (e.g. [221]) in macrophages infiltrating the tumour, as well as 

reducing angiostatin (an endogenous inhibitor of angiogenesis) levels [222].  

1.4.1.4. Glutamate  

Glutamate is an excitatory neurotransmitter that regulates synaptic and cellular activity 

via binding to its receptors including metabotropic glutamate receptors (mGluRs). The 

expression of mGluRs has been implicated in tumour angiogenesis as noted in mouse 

models of melanoma and breast cancer [223-225]. As such, decreased activity of mGluR1 

inhibits angiogenesis in an orthotopic breast cancer (4T1) model suggesting that mGluR1 

acts is a pro-angiogenic and pro-tumorigenic factor [223]. Likewise, in an experimental 
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non-small cell lung cancer in A549-bearing nude mice, inhibition of mGlu1 receptor with 

BAY36-7620 led to suppression of angiogenesis via inhibiting AKT/HIF-1/VEGF 

signalling pathway [226]. Similarly, high expression of glutamate receptor GRM1 in 

several human melanoma cell lines (Table 1.1) leads to increased expression of IL-8 and 

VEGF via activation of the AKT/mTOR/HIF1 signalling pathway [225].  

Hence, these studies clearly demonstrate involvement of neurotransmitters in tumour 

angiogenesis; however, most of the studies have been performed mainly in animal 

models and cell lines. Understanding their relevance to human pathology may aid in the 

development of better anti-angiogenic therapies. 
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Table 1.1. Neurotransmitters influencing tumour angiogenesis 

Neurotran

smitters 

Receptor Type of 

cancer 

Model  Mechanism/pathway Ref. 

NE  

    

 

 

 

 

 

 

 

 

 

 

 

β2-AR 

 

Breast 

cancer 

MCF-7, MDA-

453, and MDA-

231 cell lines, 

subcutaneous 

injection of 4T1 

cells in BALB/c 

mice 

β2-AR expression is 

elevated in MDA-453, 

decreased in MCF-7 and 

intermediate in MDA-231 

cells. 

 

Administration of β-AR 

agonist, isoproterenol 

upregulates Jagged 1 

expression and enhances 

tumour microvessel density 

via NE-induced β2-

AR/PKA/mTOR pathway in 

vivo. 

[190] 

Colorectal 

cancer 

 

HT-29 and CT26 

cells in vitro and 

subcutaneous 

injection of HT-29 

cells in nude mice 

and CT26 cells in 

BALB/c mice 

 

 

 

Activation of β2-AR by NE 

enhances expression of 

VEGF, IL-8 and IL-6 in vitro 

and in vivo → stimulation 

of tumour angiogenesis via 

β-AR -cAMP-PKA 

signalling pathway. 

 

[184] 

Melanoma  B16-F1 cells in 

vitro and 

subcutaneous 

injection in the 

flanks of C57BL/6 

mice 

[227] 

Lung 

adenocarcin

oma 

A549 cells in vitro  
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DA  

 

 

 

 

 

 

 

 

 

DR1 & 

DR2 

Ovarian 

cancer 

SKOV3p 1, 

HeyA8 cells in 

vitro and 

intraperitoneal 

injection of these 

cells in a chronic 

stress C57BL/6 

mouse model 

 

Activation of DR2 mediates 

inhibitory effect of DA on 

tumour angiogenesis 

cAMP-PKA signalling 

pathway.  

 

[195, 

228] 

Gastric 

cancer 

Human gastric 

cancer tissues, 

subcutaneous 

injection of 

Hs746T cells in 

nude mice, 

MNNG-induced 

gastric cancer in 

rats  

 

DA suppresses gastric 

cancer growth by inhibition 

of VEGF-stimulated 

angiogenesis. 

 

In both human gastric 

cancer and MNNG-induced 

animal model, DA is 

depleted. 

 

Suppression of VEGFR-2 

phosphorylation in 

endothelial cell → inhibition 

of angiogenesis. 

[194] 

Lung 

cancer 

Orthotopic 

injection of LLC1 

cells in C57BL/6 

mice and A549 

cells in SCID 

mice 

 

Administration of DR2 

agonists inhibits in vivo 

lung tumour progression 

via suppressing 

angiogenesis and reducing 

myeloid-derived 

suppressor cells infiltration. 

[229] 

GABA  

GABA 

Cholangioc

arcinoma 

H-69, Mz-ChA-1, 

HuH28, and TFK-

1 cells, 

subcutaneous 

GABAA, GABAB, and 

GABAC receptors were 

expressed by cells in vitro, 

which inhibit cell growth 

[209] 
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injection of Mz-

ChA-1 cells in 

BALB/c mice 

and proliferation via 

IP3 /cAMP, PKA 

phosphorylation, and 

ERK1/2 dephosphorylation. 

 

GABA ↓ tumour size and 

VEGF-A/C expression in 

vivo.  

GABAA 

 

Ovarian 

cancer 

OVCAR-3 cells 

in vitro 

↑ Level of GABARBP 

inhibited VEGF expression 

and ↓ HIF-1 protein via 

PI3K-mTOR-4E-BP1 

signalling pathway in vitro. 

[230] 

5-HT 5-HT 

receptor 

 

Colon 

cancer  

 

Subcutaneous 

injection of MC-

38 cells in Tph1-/- 

mice 

 

5-HT regulates 

angiogenesis by reducing 

MMP-12 expression in 

TAMs, thus affecting the 

production of circulating 

angiostatin.  

[222] 

 

Glu   mGluR1 

on 

endotheli

al cells 

Breast 

cancer 

 

4T1 cells injected 

into the mammary 

fat pads of 

BALB/c mice 

↓mGluR1 expression 

results in ↓ angiogenesis in 

vivo. 

[223] 

 

 

 

 

GRM1 

Melanoma  UACC903-G2, 

UACC903-G4, 

C8161-G21, C81-

61-G6, and C81-

61-G7 cells, 

subcutaneous 

injection of these 

cells into each 

flank of nude 

mice  

In vitro ↑ expression of 

GRM1 → ↑ expression of 

IL-8 and VEGF via the 

AKT-mTOR-HIF1 signalling 

pathway activation.  

 

In vivo ↑ expression of 

GRM1 → larger melanoma 

tumours. 

 

[225] 
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ACh 7-

nAChRs 

Lung 

cancer  

Human NSCLC 

A549 and H157 

cell lines  

Nicotine increases HIF-1 & 

VEGF expression. Nicotine 

mediates tumour 

angiogenesis through 

PI3K/Akt and ERK1/2 

signalling pathway. 

[231] 

Colon 

cancer 

Subcutaneous 

injection of HT-29 

cells in BALB/c 

mice 

Administration of nicotine ↑ 

VEGF expression → ↑ 

microvessel densities and 

angiogenesis via 

stimulation of β2-AR. 

[204] 

mAChR 

 

Breast 

cancer 

Intradermal 

injection of MCF-

7 and MCF-10A 

cells in nude 

mice, intradermal 

injection of LMM3 

cells in BALB/c 

mice 

mAChR activation 

promotes VEGF-A 

production and 

neovascularisation in 

breast cancer models. 

[206] 

 

Mammary 

adenocarcin

oma 

Subcutaneous 

injection of LMM3 

cells in BALB/c 

mice 

↑ Expression of VEGF by 

activation of M1 and M2 

mAChRs via arginine 

metabolic pathway. 

[207] 

NPY Y5R Breast 

cancer 

4T1 cell line Activation of NPY ↑ the 

expression and secretion 

of VEGF → angiogenesis. 

[210, 

232] 

 

 

Y2R 

Melanoma  Subcutaneous 

injection of 

B16F10 cells into 

C57BL/6 mice  

Blockade of the Y2R 

inhibited tumour growth by 

↓ tumour angiogenesis. 

[233] 
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Neuroblasto

mas 

Human tissue Y2R expression is 

observed in both tumour 

and endothelial cells. 

[234] 

NO   Breast 

cancer 

MDAMB-231cell 

and  

human invasive 

breast cancer 

tissues 

NO induces the expression 

of VEGF-C in both breast 

cancer cell line and human 

tissues. 

 

[219] 

Ovarian 

cancer 

Cystic fluid 

samples and 

human tissues 

The expression of iNOS 

correlates with the degree 

of tumour differentiation; 

level of intracystic NO 

metabolite correlates with 

tumour stage. 

[217] 

Gastric 

cancer 

Human tissues 

(all stages) 

NOS III protein is ↑ in both 

primary gastric tumours 

and lymph node 

metastases. 

[220] 

Abbreviations: 7nAChR, 7 nicotinic acetylcholine receptor; ACh, acetylcholine; β2-AR, β2-

adrenergic receptor; cAMP, cyclic adenosine monophosphate; DA, dopamine; DR1 & DR2, 

dopamine receptor 1 & 2; ERK1/2, extracellular signal-regulated kinase; GABA, gamma-

aminobutyric acid; Glu, glutamate; GABARBP, GABAA receptor-binding protein; mGluR1, 

metabotropic glutamate receptor 1; GABAA,B&C,  gamma-aminobutyric acid receptor A,B&C; 

GRM1, glutamate receptor metabotropic 1; HIF-1, hypoxia inducible factor-1alpha; 5-HT, 5-

hydroxytryptamine (serotonin); iNOS, inducible nitric oxide synthase; IL-6, interleukin 6; IL-8, 

interleukin 8; mTOR, mammalian/mechanistic target of rapamycin; MMP12, matrix 

metallopeptidase 12; mAChRs, muscarinic acetylcholine receptors; M1 & M2, muscarinic 1 & 2 

receptors; NPY, neuropeptide Y; Y2R & Y5R, neuropeptide Y receptor 2 & 5; MNNG, N-methyl 

N'-nitro-N-nitrosoguanidine; NO, nitric oxide; NOS, nitric oxide synthase; NSCLC, non-small cell 

lung carcinoma; NE, norepinephrine; PI3K, phosphoinositide 3-kinase; 4E-BP1, phosphorylated 

4E binding protein 1; PKA, protein kinase A; AKT, serine/threonine kinase or protein kinase B; 

TAMs, tumour-infiltrating macrophages; VEGF, vascular endothelial growth factor; VEGFR, 

vascular endothelial growth factor receptor.  
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Figure 1.3. Neurotransmitter signalling pathways in cancer angiogenesis 

Neuro-cancer communication is through the release of neurotransmitters activating 

different signalling kinases which promote cancer progression via angiogenesis. 

Abbreviations: Ach, acetylcholine; β2-AR, β2-adrenergic receptor; cAMP, cyclic adenosine 

monophosphate; DA, dopamine; DR, dopamine receptor; ERK1/2, extracellular signal-regulated 

kinase; GABA, gamma-aminobutyric acid; GABAA&B,  gamma-aminobutyric acid receptor A&B; 

Glu, glutamate; GRM1, glutamate receptor metabotropic 1; HIF-1, hypoxia inducible factor 1; 5-

HT, 5-hydroxytryptamine (serotonin); 5-HTR, 5-hydroxytryptamine receptor (serotonin); mTOR, 

mammalian/mechanistic target of rapamycin; MMP12, matrix metallopeptidase 12; NPY, 

neuropeptide Y; Y5R, neuropeptide receptor; nAChR, nicotinic acetylcholine receptor; NE, 

norepinephrine; PI3, phosphoinositide 3; PI3K, phosphoinositide 3-kinase; 4E-BP1, 

phosphorylated 4E binding protein 1; PKA, protein kinase A; p70S6K, serine/threonine 

kinase;  AKT, serine/threonine kinase or protein kinase B; VEGF, vascular endothelial growth 

factor. 
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1.4.2. Other factors influencing tumour angiogenesis  

Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), angiogenin (ANG), 

FGF, TNF-, TGF-β, hepatocyte growth factor (HGF) and epidermal growth factor 

receptor (EGF) are important signalling molecules promoting angiogenesis (Table 1.2, 

Figure 1.4). NGF is a neurotrophic factor that is upregulated in tumour microenvironment 

of various cancers including breast cancer [235]. NGF, secreted by MDA-MB-231 breast 

cancer cells, stimulates angiogenesis in vivo after injection of these cells subcutaneously 

to immunodeficient mice and enhances endothelial cell proliferation, invasion, migration 

and tubule formation in vitro [235]. Furthermore, NGF enhances secretion of VEGF by 

breast cancer cells; in vivo administration of anti-VEGF antibody inhibits its angiogenic 

capacity [235]. In human glioma microvascular endothelial cells, NGF mediates tumour 

angiogenesis by interaction with 9β1 integrin [236-239]. Another neurotrophic factor, 

BDNF has been shown to play a role in tumour angiogenesis. For instance, in 

chondrosarcoma patients, BDNF and VEGF protein expression is significantly higher 

which is correlated with tumour stage [240]. Furthermore, BDNF knockdown decreases 

the expression of VEGF and abolishes angiogenesis  in  in vitro studies and  animal 

models of chondrosarcoma [240].  

In addition to neurotrophic factors, angiogenic factor ANG is upregulated in number of 

cancers [241-243] and is associated with worse clinical prognosis in urothelial carcinoma 

patients [244]. ANG regulates tumour angiogenesis via activation of endothelial and 

smooth muscle cells triggering various molecular pathways involved in the initiation of 

angiogenesis (Fig. 2) [245-248]. Elevated expression of ANG associates with high grade 

and muscle-invasive human bladder tumours involving increase p-ERK1/2 and MMP2 

expression [247]. Similarly, downregulation of ANG inhibits tumour angiogenesis via 

AKT/GSK3β/ mTOR pathways [248]. FGF is involved in  angiogenesis by suppressing 

VEGF-C expression and stimulating expression of pro-lymphangiogenic factors including 

integrin 9, VEGFR-3, prox1 and netrin-1 [249]. In fact, blocking of FGF2 with anti-FGF2 

monoclonal antibody results in impaired angiogenesis of B16-F10 cell induced melanoma 

in mice [250]. In addition, TNF- binding to TNFR1/p55 and TNFR2/p57 receptors has 

been implicated in the secretion of cytokines and pro-angiogenic factors [251].  For 
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example, blocking p75 by short-hairpin RNA in cultured Lewis lung carcinoma cells results 

in decreased TNF-mediated expression of VEGF, placental growth factor and HGF, 

suggesting that  p75 is essential factor for tumour angiogenesis [251].  Similarly, blocking 

TNF- inhibits angiogenesis in metastatic oral squamous cell carcinoma cells (sh-IFIT2 

meta cell) in NOD/SCID mice [252]. TGF-β negatively regulates VEGF-A expression via 

a PKA- and Smad2-independent and Smad3-dependent pathways as demonstrated in 

FETα/DNRII  colon cancer cell lines [253]. HGF is an angiogenic factor secreted 

predominantly by fibroblasts; it stimulates invasiveness of cancer cells via c-Met receptor 

tyrosine kinase activation [254-256]. In fact, high HGF serum levels is correlated with 

VEGF and IL-8 expression, advanced tumour stage and poor survival of esophageal 

squamous cell carcinoma (ESCC) patients [257]. High expression of another pro-

angiogenic factor, EGFR correlates with increased microvessel density resulting in 

enhanced tumour angiogenesis via the HIF-1α and Notch1 pathways in tissues from head 

and neck squamous cell carcinoma patients [258]. Neuropilin is a transmembrane 

glycoprotein, which serves as a receptors or co-receptor for multiple ligands including 

VEGF, HGF, EGF and FGF, which are involved in tumour angiogenesis [259, 260]. In 

gastric cancer, high expression of neuropilin correlates with advanced clinical stages (III 

and IV) [261]. Depletion of neuropilin-1 inhibits the activation of EGF/EGFR, 

VEGF/VEGFR2 and HGF/c-Met angiogenic pathways activated by recombinant human 

VEGF-165, HGF and EGF proteins [255, 261]. Thus, the role of neurotrophic factors such 

as NGF, BDNF and their molecular pathways should be considered in the development 

of anti-angiogenic therapies. 
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Table 1.2. Other factors influencing tumour angiogenesis 

Factors Type of 

cancer 

Model  Mechanism/pathway Ref. 

   

ANG 

Breast 

cancer 

Human tissues  The level of ANG correlates 

with clinical progression. 

ANG derived from tumours 

activates angiogenesis via 

suppression of miR-543-2p.  

[246] 

Bladder 

cancer 

Human tissues, T24, 

UROtsa and HeLa cells 

subcutaneously injected 

in athymic BALB/c (nu/nu) 

mice  

↑ ANG expression 

correlates with high grade, 

and muscle-invasive 

tumours via ERK 1/2 and 

MMP2. 

Downregulation of ANG 

inhibits tumour 

angiogenesis via 

AKT/GSK3β/ mTOR 

pathways.                                                                                                                           

[247, 

248] 

TNF- Lung 

cancer 

LLC1 cells 

subcutaneously injected 

in wild type, p75 knockout 

(KO) and double 

p55KO/p75KO mouse 

xenograft models 

Tumour growth ↓ in both 

LLC and B16 p75KO mice. 

 

Decreased tumour growth 

correlates with ↓ VEGF 

expression and capillary 

density via TNFR2/p75.  

[251] 

Melanoma  B16 cell subcutaneously 

injected in C57BL/6 mice. 

Wild type, p75 knockout 

(KO) and double 

p55KO/p75KO mouse 

tumour xenograft models 
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TGF- 

 

Colon 

cancer 
Human tissues, 

FETα/DNRII cell 

 

TGF- signalling is 

inversely correlates with the 

expression of VEGF-A in 

tissues. 

TGF- ↓ VEGF-A 

expression via 

ubiquitination and 

deterioration in a PKA- and 

Smad3-dependent and 

Smad2-independent 

pathways in vitro.  

[253] 

BDNF Chondros

arcoma   

JJ012 cell line, 

JJ012 cells 

subcutaneously injected 

in CB17-SCID mice 

The expression of BDNF 

and VEGF correlates with 

tumour grade.  

  

BDNF knockdown ↓ 

angiogenesis and tumour 

growth in mouse model. 

 

BDNF ↑ expression of 

VEGF and stimulates 

angiogenesis via the TrkB 

receptor, PKC, PLC and    

HIF-1 signalling pathways. 

[240] 

FGF Mammary 

cancer 

Mouse 66c14 mammary 

carcinoma and inguinal 

mammary fat pad 

injection in BALB/c mice 

In tumour cells suppression 

of FGFR signalling inhibits 

expression of VEGF-C and 

induces VEGFR-3, netrin-1, 

prox1 and integrin 9 

expression.  

[249] 

Glioma  Rat C6 glioma cancer 

cells injected 

subcutaneously into rats  
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EGFR HNSCC Human tissues, CAL27 

cells subcutaneously 

injected in nude mice 

In human tissues, ↑ EGFR 

correlates with ↑ HIF-1 

and microvessel density. 

 

EGFR inhibitors ↓ the 

regulation of HIF-1 & 

Notch1 → ↓ angiogenesis 

and tumour size.  

[258] 

NGF Breast 

cancer  

MDA-MB-231 cells 

subcutaneously injected 

into SCID mice  

NGF ↑ the release of VEGF 

in breast cancer cells and 

mediates angiogenic effect 

via the activation of PI3K-

Akt, ERK, MMP2 and NO 

synthase pathways. 

[235] 

HGF ESCC Serum samples, human 

tissues, HKESC-1, 

HKESC-2 and SLMT cells 

In tissues, ↑ level of HGF 

correlates with tumour 

metastasis and poorer 

survival.  

In serum samples, ↑ HGF 

level correlated with 

expression of VEGF and IL-

8. 

HGF stimulates cells to 

express VEGF and IL-8 in 

vitro via extracellular signal-

regulated kinase signalling 

pathways.  

 [257] 

Prostate 

cancer 

Castration-resistant 

prostate cancer blood 

samples and PC3 cell line 

HGF levels ↑ in both blood 

samples and cell line. 

[254] 

Abbreviations: ANG, angiogenin; BDNF, brain-derived neurotrophic factor; EGFR, epidermal 

growth factor receptor; ESCC, esophageal squamous cell carcinoma; ERK1/2, extracellular signal-

regulated kinase; FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; GSK3β, 
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glycogen synthase kinase 3β; HNSCC, head and neck squamous cell carcinoma; HGF, 

hepatocyte growth factor; HIF-1, hypoxia inducible factor 1; IL-8, interleukin-8; mTOR, 

mammalian/mechanistic target of rapamycin; MMP2, matrix metalloprotease 2; NGF, nerve 

growth factor; NO, nitric oxide; PI3K, phosphoinositide 3-kinase; PLC, phospholipase C; PKA, 

protein kinase A; PKC, protein kinase C alpha; AKT, serine/threonine kinase or protein kinase 

B; TNF-, tumour necrosis factor alpha; TNFR2/p75, tumour necrosis factor receptor 

2/neurotrophin receptor; TGF-β, transforming growth factor beta; TrkB, tropomyosin related 

kinase B; VEGF, vascular endothelial growth factor. 
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Figure 1.4. Growth factors intracellular signalling pathways in cancer angiogenesis 

The binding of growth factors to their respective receptors (eg, EGF to EGFR) activates 

multiple kinase pathways which are involved in cancer angiogenesis.  

Abbreviations: ANG, angiogenin; Tie2, angiopoietin receptor 2; BDNF, brain-derived 

neurotrophic factor; CEBPB, CCAAT/enhancer-binding protein beta; EGF, epidermal growth 

factor; EGFR, epidermal growth factor receptor; ERK1/2, extracellular signal-regulated kinase; 

FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; GSK3β, glycogen synthase 

kinase 3 beta; HGF, hepatocyte growth factor; c-Met, hepatocyte growth factor receptor; HIF-1 , 

hypoxia inducible factor 1 alpha; ICAM-1, intercellular adhesion molecule-1; mTOR, 

mammalian/mechanistic target of rapamycin; MMP2, matrix metallopeptidase 2; MEK1/2, 

MAPK/ERK kinase; MAPK, mitogen activated protein kinase; RAS, mitogen activated protein 

kinase;  RAF, mitogen activated protein kinase; NGF, nerve growth factor; NOS, nitric oxide 

synthase; NF-kB, nuclear factor-kappa B; PLC-γ, phospholipase C-gamma; PI3K, 

phosphoinositide 3-kinase; POU2F1, POU domain class 2 transcription factor 1; PKC-, protein 

kinase C alpha; AKT, serine/threonine kinase or protein kinase B; TrkA, tropomyosin related 

kinase A; TrkB, tropomyosin related kinase B; VEGF, vascular endothelial growth factor.  
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1.5. Role of the Nervous System in Cancer Metastasis 

1.5.1. The role of the nervous system in metastatic cascade 

Studies have demonstrated that the nervous system facilitates development of tumour 

metastasis by modulating metastatic cascades through the release of neural-related 

factors from nerve endings such as neurotrophins, neurotransmitters and neuropeptides 

[262-264]. The process of metastasis formation involves tumour cells breaking away from 

the primary tumour and overcoming the obstacles of primary tissue inhibition (initiation 

and clonal expansion), anoikis inhibition (evasion from apoptosis), breakdown of base 

membranes [epithelial-mesenchymal transition (EMT) and invasion], extravasation and 

colonisation, angiogenesis, evasion of immune response and establishment of tumour 

microenvironment.  

1.5.1.1 Initiation and clonal expansion  

Tumour metastasis initiation and clonal expansion is a complex process where 

contributing factors are not well understood. It is believed that metastasis process is 

initiated when genetically unstable tumour cells adjust to a secondary site 

microenvironment [177]. This process involves selecting traits that are beneficial to 

tumour cells and affiliated recruitment of traits in the tumour stroma that accommodate 

invasion by metastatic cells. Metastasis-initiating cells possess these traits and can hijack 

some of the normal stem cell pathways to increase cellular plasticity and stemness [265]. 

Proteolytic enzymes such as matrix metalloproteinases (MMPs) facilitate this process by 

degrading the surrounding normal tissues. MMPs are regulated by neural-related factors 

and neurotransmitters and are overexpressed in tumours [266-270]. Hence, nervous 

system stimulates the initiation and clonal expansion via the expression of MMPs and the 

stimulation of metastasis-initiating cells. 

1.5.1.2 Evasion from apoptosis  

Anoikis is a programmed cell death induced upon cell detachment from extracellular 

matrix, acting as a critical mechanism in preventing adherent-independent cell growth and 
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attachment to unsuitable matrix, thus avoiding colonising of distant organs [271, 272]. For 

tumour metastasis to progress, tumour cells must be resistant to anoikis. Tumour cell 

resistance to anoikis is attributed to alteration in integrins' repertoire, overexpression of 

growth factor receptor, activation of oncogene, activation of pro-survival signals, or 

upregulation/mutation of key enzymes involved in integrin or growth factor receptor 

signalling [272]. Neurotransmitters and neurotrophins play a role in tumour evasion from 

anoikis. Increased expression of brain-derived neurotrophic factor (BDNF) and its 

receptor tropomyosin-related kinase B (TrkB) induces anoikis inhibition in rat intestinal 

epithelial cells [262]. Similarly, TrkB overexpression induces anoikis inhibition protecting 

colorectal cancer cells [273]. Application of recombinant human BDNF to gastric cancer 

cells inhibited anoikis and stimulated cellular proliferation, invasion and migration [274]. 

Nicotine exposure promotes anchorage-independent growth of A549, MDA-MB-468 and 

MCF-7 cell lines by downregulation of anoikis [275]. Furthermore, tumour 

microenvironment contributes to anoikis resistance of cancer cells by producing pro-

survival soluble factors, triggering EMT, enhancing oxidative stress, regulating matrix 

stiffness, as well as leading to metabolic deregulations of cancer cells [272]. These events 

assist tumour cells to prevent the apoptosis mechanism and sustain pro-survival signals 

after detachment, counteracting anoikis.  

1.5.1.3 EMT and invasion  

EMT is a fundamental process for tumour progression by increasing invasiveness and 

resistance to anoikis and significantly elevating the production of extracellular matrix 

constituents leading to metastasis [276-278]. EMT development results in the 

degradation of basement membrane and formation of mesenchymal-like cells [277]. 

Studies have demonstrated that nervous system regulates EMT development via the 

release of neurotransmitters and neurotrophins [275, 279]. The overexpression of TrkB 

or activation by BDNF in human endometrial cancer cell lines results in altered expression 

of EMT molecular mediators [279]. Nicotine treatment induces changes in gene 

expression associated with EMT in lung and breast cancer cells [275]. 
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1.5.1.4 Extravasation and colonisation  

Nervous system stimulates the function of vascular system, which is essential for tumour 

cell extravasation and colonisation. It has been found that neuropeptides such as 

substance P (SP) and bradykinin enhance vascular permeability promoting tumour cell 

extravasation and colonisation [263, 264]. In a mouse model bearing sarcoma 180 cells, 

bradykinin enhances tumour-associated vascular permeability [263]. SP regulates 

physiological functions of vascular system including smooth muscle contractility, and 

vascular permeability [264]. Cell extravasation and colonisation are prerequisites for 

angiogenesis, which is a crucial step in the development of cancer metastasis.  

1.5.1.5 Angiogenesis  

Development of tumour angiogenesis is essential for tumour growth and progression. 

Vascular endothelial growth factor (VEGF) plays significant role in tumour angiogenesis, 

leading to metastasis [280-282]. Studies have demonstrated the important role of 

neurotransmitters and neuropeptides in regulating angiogenesis. In the xenograft models 

of ovarian cancer, chronic stress mediates the vascularisation of intraperitoneal 

metastasis and enhances tumour angiogenesis via increasing VEGF expression [183, 

283]. In breast cancer cell lines, direct activation of β-adrenergic signalling can amplify 

expression of VEGF and cytokines, interleukin (IL)-6, and IL-8 that stimulate tumour 

angiogenesis [187]. In colon tumour tissues from HT-29 cell-bearing BALB/c mice, VEGF 

expression is elevated by nicotine which correlates with enhanced microvessel density 

[204]. Neuropeptide Y (NPY) enhances the expression of VEGF and its secretion 

promoting angiogenesis and breast cancer progression [210]. 

1.5.1.6 Evasion of immune response 

The nervous system plays a fundamental role in regulating immune responses [284]. 

Inflammatory mediators can activate sensory nerves that send signals regarding 

inflammation to the central nervous system, which in turn leads to the release of 

neuromediators modulating local inflammation and influencing immune cells [285]. Since 

inflammatory signals are important for tumour progression in both the early and late  
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stages, the anti-inflammatory role of the vagus nerve may play an important role in cancer 

metastasis [286]. β-adrenergic receptor agonist suppressed natural killer (NK) cell activity 

resulting in increased lung metastasis in murine metastatic mammary adenocarcinoma 

[287]. In addition, pharmacological or stress-associated β-adrenergic stimulation results 

in increased macrophage infiltration and cancer metastasis in breast cancer model [186]. 

1.5.1.7 Tumour microenvironment  

Tumour microenvironment (mainly contain stromal cells and signal molecules) plays 

essential role in the formation of cancer metastasis.  Stromal cells produce neural-related 

factors and express -adrenergic receptor that facilitated tumour cell proliferation and 

survival in the primary site and secondary organ [176, 288]. Tumour-associated 

macrophages play a role in β-adrenergic signalling pathways, by accelerating 

angiogenesis, chemokine secretion to attract tumour cells, secretion of pro-inflammatory 

cytokines (IL-1, IL-6, IL-8, and tumour necrosis factor (TNF)-) and escape of anti-tumour 

responses [289-291]. Hence, tumour microenvironment creates a feedback loop with the 

nervous system enabling the growth of primary and secondary tumours. Overall, these 

studies have demonstrated that the nervous system stimulates each step of cancer 

metastasis through the release of neural-related factors. 

1.5.2. Role of perineural invasion in cancer metastasis 

Perineural invasion (PNI) also known as neurotropic carcinomatous spread is a process 

mainly categorised by neoplastic invasion of the nerves. PNI is defined as the presence 

of cancer cells in the perineurium; it is believed to be a common route for cancer 

metastasis can cause cancer-related pain [292-299]. The presence of PNI is mostly 

associated with poor prognosis and high recurrence in colorectal [300], gastric [295], oral 

tongue squamous cell carcinoma (OTSCC) [293], and pancreatic [292] cancers. In stage 

II and III colorectal cancer patients, the presence of PNI is associated with tumour grade, 

metastasis to lymph nodes and poor patient survival [294]. However, in invasive breast 

carcinoma the presence of PNI has been demonstrated to have no prognostic value [298, 

301]. 
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PNI is influenced by the interaction between the nerve microenvironment and 

neurotrophic molecules expressed by cancer cells such as nerve growth factor (NGF), 

BDNF, glial cell line-derived neurotrophic factor (GDNF) and their receptors [292, 299, 

302]. A number of studies demonstrated correlation between the presence of PNI with 

high expression of NGF and its receptor tropomyosin related kinase A (TrkA) [292, 303, 

304]. It is speculated that neurotrophins released by neural tissue act as chemotactic 

factors, and in cancer cells where TrkA are overexpressed, they provide mechanism to 

invade the perineural space. High expression of NGF or TrkA and P75NTR receptors is 

associated with lymph node metastasis in a mouse model of breast cancer [305]. In 

OTSCC patients [306], the presence of PNI and NGF is associated with larger tumour 

size and lymph node metastasis, suggesting that its presence can be a valuable marker 

to predict the disease progression and prognosis [296]. Overexpression of TrkA 

associates with enhanced growth, invasion and migration of breast cancer cells in vitro 

as well as enhanced metastasis in xenografted immunodeficient mice via the PI3K-AKT 

and ERK/P38 MAP kinases [307]. Conversely, immuno-histochemical evaluation of 

tissues from patients with extrahepatic cholangiocarcinoma shows that intra-tumoral NGF 

expression does not correlate with PNI, absence of disease recurrence and overall patient 

survival [308]. GDNF has been demonstrated to induce cancer cells migration. In human 

pancreatic adenocarcinoma tissues and MiaPaCa-2 cell lines, binding of GDNF to its 

receptor GFRα1 stimulates PNI via GDNF-(Ret proto-oncogene) RET signalling pathway 

[302]. Activation of GDNF-GFRα1-RET signalling triggers the MAPK signalling pathway 

leading to pancreatic cancer cell migration toward nerves in both in vitro and animal 

models of PNI [309]. Cancer-nerve interaction studied in in vitro co-cultures of DRG and 

MiaPaCa-2 pancreatic cancer cells demonstrated that GFRα1 facilitates migration of 

cancer cells along neurites toward the centre of the DRG [302]. Furthermore, decreased 

release of soluble GFRα1 from DRG inhibits migration of cancer cells towards nerves in 

vivo providing further evidence that GFRα1 expression is important in facilitating PNI 

[302]. In a metastatic breast cancer model, in vivo inhibition of Ret suppresses tumour 

outgrowth and metastatic potential [310]. 
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BDNF facilitates cancer metastasis via binding to its receptors, TrkB/ TrkC and/or 

p75NTR as demonstrated in breast [311], colorectal [312, 313], clear cell renal cell 

carcinoma [314] and non-small cell lung cancer (NSCLC) [315]. The expression of TrkB 

associates with nodal metastasis and peritoneal metastasis; whereas, TrkC expression 

associates with liver metastasis in colorectal cancer patients [313]. BDNF-TrkB signalling 

pathway mediates metastatic effect through modulation of cancer-associated fibroblasts 

(CAFs) as demonstrated in mouse model co-injected with OSC19-Luc transfected cell 

line and CAFs [316]. In melanoma, neurotrophin (NT)-3, NT-4, and NGF induce cell 

migration, with a stronger effect on metastatic cell lines via binding to p75NTR coreceptor 

sortilin [317]. In breast cancer, NT-3 enhances breast cancer metastasis in the brain via 

promoting the mesenchymal–epithelial transition of breast cancer cells to a more 

epithelial-like phenotype and via increasing the ability of these cells to proliferate in the 

brain [318]. 

Collectively, these studies demonstrate that neurotrophins and their receptors play crucial 

role in PNI. These studies also suggest that the presence of PNI could be an effective 

predictor of metastatic potential and patient survival.  

1.5.3. Tumour innervation influencing cancer metastasis 

1.5.3.1 Tumour innervation  

Cancer-related neurogenesis (tumour innervation) is attributed to the ability of cancer 

cells to attract normal nerve fibers via the secretion of signalling molecules and 

neurotrophic factor. However, recent study has demonstrated that cancer stem cells are 

capable of directly initiating tumour neurogenesis [319]. Cancer stem cells derived from 

human gastric and colorectal cancer patients generate neurons including sympathetic 

and parasympathetic neurons which promote tumour progression [319]. Knocking down 

their neural cell generating abilities inhibit tumour growth in human xenograft mouse 

model. Neurogenesis and its putative regulatory mechanisms have been reported in 

prostate [320], gastric [321], colorectal [322] and breast [323] cancers.  There is a 

correlation between the expression of a pan-neuronal marker protein gene product 9.5 

with clinicopathological characteristics of breast cancer [323]. In fact, neurogenesis is 

associated with aggressive features including tumour grade, poor survival as well as 
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angiogenesis, especially in estrogen receptor-negative and node-negative breast cancer 

subtypes [323, 324]. In prostate cancer, infiltration of the tumour microenvironment by 

nerve fibers associates with poor clinical outcomes [325] and is driven by the expression 

of granulocyte colony-stimulating factor (G-CSF) [326] and proNGF [327]. Similarly, in 

orthotopic PC3-luc xenografts model of prostate cancer, neurogenesis and axonogenesis 

correlate with aggressive features including metastatic spread, which is attributed to the 

neo-cholinergic parasympathetic nerve fiber [326]. These findings indicate that 

neurogenesis, like angiogenesis, is also a trait of cancer invasion and can alter tumour 

behaviour. 

1.5.3.2 Tumour denervation  

On the other hand, disruption of tissue innervation might cause accelerated tumour 

growth and metastasis [287, 328-333]. For instance, in humans, decreased vagal nerve 

activity correlates with advanced stages of cancer [328-330]. Similarly, modulation of 

vagal nerve activity enhances metastasis of breast cancer in mice [331, 332]. In addition, 

capsaicin-induced inactivation of sensory neurons enhances metastasis of breast cancer 

cells [287, 333]. On contrary, pharmacological or surgical denervation supresses the 

tumour progression as noted in three independent mice models of gastric cancer [321]. 

Thus, these findings suggest that there might be differences in the effects of local tumour 

innervation and extrinsic innervation on cancer progression.  

1.5.4. Neurotransmitters influencing cancer metastasis 

Tumour innervation influences  metastasis as the ingrown nerve endings release 

neurotransmitters (such as norepinephrine, dopamine and substance P), which enhance 

metastatic spread [334]. To date, several neurotransmitters and neuropeptides involved 

in tumour metastasis have been identified (Table 1.3 and Figure 1.5). In fact, several 

cancer cells express receptors for a number of neuropeptides and neurotransmitters, like 

norepinephrine, epinephrine, dopamine, GABA, acetylcholine, SP and NPY which have 

stimulatory effects on migration of cancer cells [306, 335-343]. 
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1.5.4.1. Catecholamines  

The increased expression of β-adrenergic receptor for catecholamines is associated with 

poor prognosis in breast cancer [344]. Stress stimulation leads to macrophage infiltration 

to the tumour site which activates β-adrenergic signalling pathways leading to increased 

metastasis in an orthotopic breast cancer model in BALB/c mice [186]. In this model, 

administration of β-adrenergic antagonist, propranolol, decreases breast cancer 

metastasis [186]. Similarly, the use of β-blockers in breast cancer patients inhibits 

metastasis and disease recurrence as well as improving survival of patients [344, 345]. 

In ovarian cancer patients, the grade and stage of tumours correlate with higher tumour 

norepinephrine levels associated with stress [346]. In an orthotopic mouse model of 

ovarian cancer, chronic stress elevates tumour noradrenaline levels and increases the 

aggressiveness of tumour growth [183]. In prostate cancer C42 xenografts in nude mice 

and Hi-Myc mice with prostate cancer, plasma adrenaline promotes carcinogenesis via 

2 adrenergic receptor/protein kinase A/BCL2-associated death protein anti-apoptotic 

signalling pathway [347]. Hence, stimulation of catecholamines plays a major role in 

activation of signals for breast cancer metastasis. Therefore, inhibition of the sympathetic 

nervous system signalling pathways with β-blockers holds great promise in preventing 

metastasis of various tumours including breast cancer. On the other hand, involvement 

of -adrenergic receptors in cancer metastasis is not well understood. In the murine 

model of metastatic mammary adenocarcinoma induced by 4T1 cells in BALB/c mice, 

activation of 2-adrenergic receptors increases tumour growth rate and the number of 

metastasis [348]. In contrast, blockade of -adrenergic receptors in the absence of stress 

increases distant metastasis in the orthotopic model of mammary adenocarcinoma 

induced by MDA-MB-231HM cell line in nude mice [349].  

The role of dopamine in cancer metastasis is not clear. Low levels of dopamine have 

been reported in stressed mice with ovarian carcinoma [228]. In contrary, in 

hepatocellular carcinoma (HCC) patients, dopamine levels are elevated in the blood 

samples compared to healthy individuals [350]. Moreover, enzymes such as monoamine 

oxidase A (MAOA) degrading catecholamines and serotonin [351] may also play an 

important role in influencing cancer metastasis [352-354]. Studies have demonstrated 
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that MAOA expression is decreased in HCC patients; it suppresses HCC cell metastasis 

by inhibiting adrenergic and epidermal growth factor receptor (EGFR) signalling pathways 

[355]. Inhibition of MAOA stimulates malignant  behaviour  in MDA-MB-231 breast cancer 

cells [356]. On the other hand, high expression of MAOA in human tissues correlates with 

poor prognostic in prostate cancer patients and increased tumour metastasis in xenograft 

mouse model of prostate cancer via HIF1-α/VEGF-A/FOXO1/TWIST1 signalling pathway 

[354]. These limited studies on the role of MAOA in cancer metastasis are controversial. 

1.5.4.2. γ-Aminobutyric acid  

γ-Aminobutyric acid (GABA) plays a role in cancer metastasis via activation of ionotropic 

(GABAA) and metabotropic (GABAB) receptors [357]. It has been demonstrated that 

GABA mediates its inhibitory effect through GABAA receptor. For example, HCC cell lines 

and human adjacent non-tumour liver tissues, express GABAA receptor. GABA inhibits 

HCC cell migration through the activation of GABAA receptor [358]. However, there are 

studies demonstrating that GABAA receptor enhances metastasis. The activation of 

GABAA receptors upregulates brain metastasis of breast cancer patients [359]. 

Expression of the GABAA receptor subunit, Gabra3, which is normally not present in 

breast epithelial cells, is increased in human metastatic breast cancer which correlated 

with poorer patients survival [339]. Gabra3 overexpression promotes migration and 

metastasis of breast cancer cells via activating serine/threonine kinase or protein kinase 

B (AKT) signalling pathway demonstrated in a mouse orthotopic model induced by  MCF7 

and MDA-MB-436 breast cancer cell lines [339]. Mechanistically, the activation of AKT 

signalling pathway enhances metastasis via downstream molecules such as focal 

adhesion kinase and MMPs [360, 361]. Therefore, it could be speculated that the effect 

of GABAA receptor depends on the activated downstream molecules and signalling 

pathways. Murine (4T1) and human (MCF7) breast cancer cell lines and human breast 

cancer tissues express GABAB receptor [338]. In mice, GABAB receptor mediates 4T1 

cell invasion and pulmonary metastasis via ERK1/2 signalling [338]. GABAB activation 

inhibits migration of PLC/PRF/5 and Huh 7 malignant hepatocyte cell lines in vitro [362].  
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1.5.4.3. Acetylcholine   

Acetylcholine (ACh) plays a functional role in cellular proliferation, differentiation and 

apoptosis. In HCC, the release of ACh acting on androgen receptor promotes SNU-449 

cell invasion and migration via activation of AKT and signal transducer and activator of 

transcription 3 (STAT3) signalling pathways [363]. Nicotine stimulation of nicotinic 

acetylcholine receptor (nAChRs) enhances SW620 and LOVO colorectal cancer cell  

invasion and metastasis in vitro via the activation of p38 mitogen-activated protein 

kinases (MAPK) signalling pathway [343]. Similarly, nicotine pre-treatment stimulates the 

activation of 9-nAChR which mediates MCF-7 and MDA-MB-231 breast cancer cell  

migration via the expression of epithelial mesenchymal transition markers [364]. 

Furthermore, implantation of CD18/HPAF pancreatic cancer cells into immuno-deficient 

mice, demonstrates that nicotine treatment activates 7-nAChR and mediates tumour 

metastasis via Janus kinase 2 (JAK2)/STAT3 signalling in synergy with mitogen activated 

protein kinase (Ras/Raf/MEK/ERK1/2) signalling pathway [365]. ACh promoted cancer 

metastasis and associate with poor clinical outcomes in prostate adenocarcinoma via 

M1R; and pharmacological blockade or genetic disruption of the M1R inhibit tumour 

invasion and metastasis leading to improved survival of the mice-bearing PC-3 prostate 

tumour xenografts [325]. In addition, ACh acting on M3 muscarinic receptor (M3R) 

associates with metastasis and low survival rate of NSCLC patients [366]. M3R activation 

increased invasion and migration of NSCLC cells and increased release of interleukin 

(IL)-8 via the activation of EGFR/PI3K/AKT pathway [367]. In human SNU-C4 and H508 

colon cancer cell lines, administration of muscarinic receptor inhibitor, atropine, abolished 

SNU-C4 cell migration; however, H508 cell migration requires the activation of MMP7 

[368, 369].  

Conversely, studies have shown that administration of Ach or inhibition of 

acetylcholinesterase (AChE) with physostigmine and pyridostigmine attenuated cancer 

cell invasion and viability in vitro and in vivo through the inhibition of ERK phosphorylation 

in pancreatic cancer [370]. In LSL-Kras +/G12D;Pdx1-Cre (KC) mice, subdiaphragmatic 

vagotomy augmented pancreatic cancer development, while administration of muscarinic 

agonist bethanechol reinstated the normal KC phenotype [371]. Similarly, in syngeneic 
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and orthotopic mouse models of pancreatic cancer, subdiaphragmatic vagotomy 

promoted tumour growth and poor overall survival through enhance expression mediated 

through TNF- and TAMs [372]. In addition, in mice-bearing 4THM breast carcinoma cells 

who underwent surgical or chemical vagotomy showed enhanced metastasis [373]. In 

pancreatic cancer patients, high tumour grade and advanced stages correlate with 

decreased expression of choline acetyltransferase (ChAT) and AChE [370]. Patients who 

underwent vagotomy for gastric ulcer disease in the past showed a higher incidence of 

pancreatic cancer [374]. Furthermore, a higher vagal nerve activity correlated with a lower 

risk of death in metastatic pancreatic cancer patients [330].  

The mechanisms behind these inconsistencies in findings is unclear, thus warrant further 

studies. 

1.5.4.4. Neuropeptides  

Expression of SP is shown to exert  functional effects  on small cell lung cancer [375], 

pancreatic [376], colon [377], prostate [378, 379] and breast cancer [380] cells. SP acting 

on neurokinin-1 (NK-1) receptors enhances pancreatic cancer cell migration and 

perineural invasion to the dorsal root ganglia (DRG) mediated by MMP-2 demonstrating 

its essential role in metastasis [381]. Enhanced expression of SP correlated with lymph 

node metastasis and poor prognosis in colorectal cancer patients [377]. NPY stimulates 

cell proliferation, differentiation and survival via acting on its G protein-coupled receptors 

designated Y1R–Y5R leading to the development of metastasis [232, 382]. High levels of 

systemic NPY associates with metastatic tumours as noted in Ewing sarcoma patients 

[383]. Similarly, in the SK-ES1 xenograft model, elevated levels of NPY associates with 

bone invasion and metastases [384]. NPY mediates 4T1 cell proliferation and migration 

via the activation of NPY Y5 receptor [232]. Neurotensin mediates metastasis by binding 

to neurotensin receptors 1 (NTSR1). In breast cancer, the expression of NTSR1 

correlates with lymph node metastasis [385]. These studies demonstrate the important 

role of neuropeptide signalling in cancer metastasis.  
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Table 1.3. Neurotransmitters influencing tumour metastasis 

Neurotrans

mitters 

Receptor Type of 

cancer 

Model  Mechanism/pathway Ref. 

NE β2-AR Pancreatic 

cancer  

 

CFPAC1, 

MiaPaCa2 

Panc1, and 

IMIM-PC2 

cells 
 

NE treatment reduces 

migratory activity of 

pancreatic cancer cells. NE 

mediates inhibitory effect 

via imbalanced activation of 

PKC/PLC signalling 

pathway → to activation of 

anti-migratory cAMP/PKA 

signalling.  

[386] 

Prostate 

cancer  

Subcutaneou

s injection of 

PC-3 cells in 

BALB/c nude 

mice 

↑ NE leads to lumbar lymph 

node metastasis in an 

animal model. 

[387, 

388] 

DA  DR1 & 

DR5 

HCC Tumour and 

non-tumour 

adjacent 

tissues from 

patients; 

LM3, Huh7 

and SNU449 

cells; 

subcutaneou

s injection of 

LM3 cells in 

BALB/c nude 

mice 

DR5 is upregulated in 

tumour tissue and DR1 is 

upregulated in non-tumour 

human tissues.  

Dopamine ↑ cell 

proliferation in SNU449 

cells. 

Administration of DR 

antagonist (thioridazine) 

inhibits cell proliferation in 

vitro and in and cell 

migration through EMT → ↓ 

tumour metastasis 

[350] 

GABA GABAA 

 

 

 

 

Human 

primary and 

adjacent 

GABAA receptor subunit ε1 

expression is lower in 

[358] 
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HCC non-tumour 

tissues, and 

Orthotopic 

inoculation of 

SMMC-7721 

cells into the 

liver of 

BALB/c nude 

mice 

human HCC tissues than in 

non-tumour liver tissues.  

GABA inhibits invasion and 

migration of human liver 

cancer cells in vitro. 

In mice, inoculation of 

SMMC-7721 cells pre-

treated with GABA ↓ tumour 

metastasis. 

GABAB PLC/PRF/5 

and Huh 

cells 

Administration of GABAB 

agonist (baclofen) ↓ cell 

migration associated with ↓ 

in intracellular cAMP levels. 

[362] 

Breast 

cancer 

Human 

tissues, 4T1 

and MCF-7 

cells 

Administration of GABAB 

agonist (baclofen) promotes 

invasion and migration of 

breast cancer cells in vitro 

and metastasis in vivo via 

ERK1/2 and MMP-2signaling 

pathway. 

[338] 

Prostate 

cancer 

Human 

prostate and 

lymph node 

tissues, C4-2 

cells 

 

↑ Expression of GABA → 

cell invasion in vitro and 

lymph node metastasis in 

patients mediated by 

activation of MMPs 

signalling. 

[389] 

HCC Human 

primary and 

adjacent 

non-tumour 

tissues 

The mRNA levels of 

GABAB R1.2 and 

GABAB R1.4 are higher in 

HCC tissues than in non-

tumour liver tissues 

[358] 

ACh AR HCC SNU-449 

cells 

ACh activates AR receptors 

→ ↑ invasion and migration 

[363] 
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of SNU-449 cells via 

activation of AKT and 

STAT3 signalling pathways. 

7-nAChR 

Pancreatic 

cancer 

CD18/HPAF, 

Capan1, 

FG/Colo357 

cells in vitro 

and 

orthotopically 

implanted 

CD18/HPAF 

cells in 

immunodefici

ent mice 

Nicotine treatment 

stimulates the expression of 

7-nAChR and MUC4 in 

vitro. In the in vivo model, 

exposure to low and high 

cigarette smoking increases 

the tumour metastasis and 

MUC4 expression 

compared to sham controls. 

Nicotine induces tumour 

metastasis by upregulating 

MUC4 via 7-nAChR-

mediated JAK2/STAT3 

signalling in collaboration 

with Ras/Raf/MEK/ERK1/2 

signalling pathway. 

 

[365] 

Lung 

cancer 

Line 1 cells 

in vitro, and 

subcutaneou

s injection of 

Line 1 cells 

in BALB/c 

mice 

Intraperitoneal injection of 

nicotine ↑ tumour growth 

and metastasis through 

change in gene expression 

via nAChR signalling 

pathway. 

[201] 

nAChR β2  

Lung 

cancer 

B16 cells 

intravenous 

injection in 

C57BL/6 

mice 

↑ Nicotine exposure → 

activation of nAChR β2 on 

NK cells mediates 

metastasis 

[390] 
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9-nAChR 

Breast 

cancer 

MDA-MB-

231 and 

MCF-7 cells 

 

Nicotine treatment 

enhances the migratory 

abilities of both cells by 

activating 9-nAChR 

through elevated 

expression of EMT markers 

[364] 

mAChR 

Colon 

cancer 

Hh508 and 

SNU-C4 

cells 

Administration of muscarinic 

inhibitor (atropine) → ↓ cell 

invasion and migration.  

ACh binding to M3R 

mediates cell migration via 

the activation of post-

ERBB1, ERK and PI3K-

dependent RhoA pathway. 

[368, 

369] 

NSCLC Human 

tissues, 

micA549, 

PC9, SPC-

A1, GLC82, 

L78 and HLF 

cells 

M3R expression correlates 

with clinical stage and poor 

survival in patients. 

M3R stimulation by ACh 

enhances in vitro cell 

invasion and migration via 

PI3K/AKt pathway. 

[366, 

367] 

Prostate 

cancer  

Human 

tissues, 

Hi-Myc 

transgenic 

mice-bearing 

PC-3 

Presences of cholinergic 

nerve fibers associate with 

poor clinical outcome in 

human patients. 

Pharmacological blockade 

or genetic disruption of the 

M1R inhibit metastasis 

leading to improved survival 

of the mice 

[325] 

SP NK-1R Pancreatic 

cancer 

MiaPaCa-2, 

BxPC-3, 

CFPAC-1, 

Binding of SP to NK-1R 

promotes cell invasion and 

migratory potential, which is 

[381, 

391] 
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HAPC, Panc-

1, and 

SW1990 

cells 
 

mediated by expression of 

MMP-2.  SP also increases 

cell migration and neurite 

outgrowth toward DRG 

demonstrating important 

role in metastasis and PNI. 

NPY  Ewing 

sarcoma  

 

Human 

serum, 

SCID/beige 

mice bearing 

SK-ES1 

cells  

Enhanced level of systemic 

NPY associate with 

metastatic tumours.  

In the xenograft model, 

NPY expression associate 

with bone metastases. 

[383, 

384] 

NPY Y5 Breast 

cancer  

4T1 cell line NPY mediates metastatic 

effect via the activation of 

NPY Y 5.  

[232] 

Neurotensi

n 

NTSR1 Breast 

cancer 

Human 

tissues 

The expression of NTSR1 

associates with lymph node 

metastasis. 

[385] 

 

Abbreviations: Ach, acetylcholine; AR, androgen receptor; β2-AR, β2-adrenergic receptor; 

cAMP, cyclic adenosine monophosphate; DA, dopamine; DR, dopamine receptor; DRG, dorsal 

root ganglia; ERBB1, epidermal growth factor receptor 1; EMT, epithelial–mesenchymal 

transition; ERK1/2, extracellular signal-regulated kinase; GABA, gamma-aminobutyric acid; 

GABAA&B, gamma-aminobutyric acid receptor A&B; HCC, hepatocellular carcinoma; JAK2, 

janus kinase 2; MEK, MAPK/ERK kinase; MMP, matrix metallopeptidase; RAF, mitogen activated 

protein kinase; RAS, mitogen activated protein kinase; MUC4, mucin 4; mAChRs, muscarinic 

acetylcholine receptors; M3R; muscarinic receptors 3; NK, natural killer cells; NK-1R, neurokinin-

1 receptor; nAChR, nicotinic acetylcholine receptor; NSCLC, non-small cell lung cancer; NE, 

norepinephrine; PNI, perineural invasion; PLC, phospholipase C; PI3K, phosphoinositide 3-

kinase; PKA, protein kinase A;PKC, protein kinase C; RhoA, Ras homolog gene family member 

A; AKT, serine/threonine kinase or protein kinase B; STAT3, signal transducer and activator of 

transcription 3; SP, substance P. 
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Figure 1.5. Neurotransmitters signalling pathways in cancer 

Cancer neuro-immune communication is through the release of neurotransmitters using 

different signalling kinases which promote cancer progression via metastasis. Perineural 

invasion mediates cancer metastasis through the release of the NGF and GDNF via the 

activation of different signaling pathway.   

Abbreviations: Ach, acetylcholine; β2-AR, β2-adrenergic receptor;cAMP, cyclic adenosine 

monophosphate; DA, dopamine; DR, dopamine receptor; EGFR, epidermal growth factor 

receptor; EMT,epithelial–mesenchymal transition; ERK1/2, extracellular signal-regulated kinase; 

FAK, focal adhesion kinase; GABA, gamma-aminobutyric acid; GABAB, gamma-aminobutyric 

acid receptorB; GDNF, glial cell line-derived neurotrophic factor; GFR, glial cell line-derived 

neurotrophic factor receptor 1; ICAM-1, intercellular adhesion molecule-1; JAK2, janus kinase 2; 

MEK, MAPK/ERK kinase; mTOR, mammalian/mechanistic target of rapamycin; MMP, matrix 

metallopeptidase; MAPK,mitogen-activated protein kinases; RAF, mitogen activated protein 

kinase; RAS, mitogen activated protein kinase; mAChRs, muscarinic acetylcholine receptors; NK-

1R, neurokinin-1 receptor; NGF, nerve growth factor; nAChR, nicotinic acetylcholine receptor; 

NE, norepinephrine; NF-kB, nuclear factor-kappa B; PLC, phospholipase C; PI3K, 

phosphoinositide 3-kinase;PKA, protein kinase A; PKC, protein kinase C;RET, proto-oncogene; 

AKT, serine/threonine kinase or protein kinase B; STAT3,signal transducer and activator of 

transcription 3; SP, substance P; TrkA, tropomyosin related kinase A.  
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1.6. Crosstalk between Cancer and the Neuro-Immune System 

Cancer is the major health related cause of death worldwide due to unhealthy lifestyle 

and other factors [2]. Although the mechanisms of cancer progression have been 

extensively studied in the last decades, these have been predominantly focused on 

cellular pathways of proto-oncogene, tumour suppressor gene mutations and 

mechanisms by which immune cells can eliminate cancer cells [4, 5, 392, 393]. More 

recently, the impact of the tumour microenvironment in tumour cell invasion has attracted 

much interest [4, 176]. Multiple cellular and extracellular components within the tumour 

microenvironment, such as, immune cells, endothelial cells, mesenchymal stromal cells 

(fibroblasts and myofibroblasts), and their secretory products, exert active functions to 

stimulate gene expression patterns of tumour cells which have an impact on their 

biological behaviour [394-396]. Invariable crosstalk among these components within the 

tumour microenvironment triggers pro-survival, invasion and metastatic spread of tumour 

cells [397-400]. In addition, tumour cells interact with other cells to form organ-like 

structures that drive and promote cancer growth [4, 393]. The interaction between the 

tumour microenvironment and the complex immune system plays a major role in tumour 

progression and as a result, is of concern in cancer treatment [393]. However, it is only in 

recent years that the role of the neuro-immune network has surfaced as a major 

contributor to cancer progression. The mechanisms by which neuro-immune signalling in 

cancer influences its progression are not clear.  

The nervous system plays a fundamental role in regulating immune responses to a range 

of disease states [401]. Its dysfunction influences the progression of disease outcomes 

including cancer cell growth. The role of the nervous system in tumour progression is of 

relevance to the immune system since they can bi-directionally communicate via 

neurotransmitters and neuropeptides, common receptors and cytokines [378, 402]. 

However, the crosstalk between these cells is highly complex in nature, and numerous 

variations are possible according to the type of cancer involved [331]. The interaction of 

the nervous system in modulating immune responses, innervation of lymphoid organs, 

affects various neurotransmitters influencing cancer. This review presents an overview of 
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the neuro-immune interaction in cancer progression: lymphoid organs innervation; 

neurotransmitters and immune cells in cancer, tumour associated immune cells and the 

nervous system.  

1.6.1. Innervation of lymphoid organs 

The link between the nervous and immune systems is via direct innervation of lymphoid 

organs. In particular, sympathetic noradrenergic fibers innervate primary (thymus and 

bone marrow) and secondary (lymph nodes and spleen) lymphoid organs [403]. In 

lymphoid organs, the immune responses against pathogens or tissue damage are altered 

by the release of neuropeptides and neurotransmitters such as, neuropeptide Y, 

substance P (SP), norepinephrine and dopamine from nerve endings [403, 404]. 

Dysregulation of this interaction promotes pathogenesis and progression of many 

diseases including cancer [403]. The spleen plays an important role in response to 

pathogens or tissue damage; however, its response to cancer has been less empathized. 

In systemic inflammation, the vagal afferents activate the central nervous system (CNS) 

which triggers the efferent via the celiac ganglion and, as a result, activates immune cells 

in the spleen (as reviewed by Matteoli et al, 2013 [405]). Consequently, the activation of 

adrenergic fibers innervating the spleen results in the release of norepinephrine leading 

to the activation of T cells secreting acetylcholine. 

The spleen accumulates monocytic and granulocytic precursors that directly replenish 

tumour-associated macrophages (TAMs) and neutrophils, as noted in lung 

adenocarcinoma [406, 407]. Moreover, the cords of the splenic subcapsule red pulp 

contain a reservoir of monocyte subsets (e.g. Ly-6Chigh and Ly-6Clow) that are promptly 

released in the bloodstream following acute injury [408]. Therefore, it can be speculated 

that the spleen would detect cancer as a pathogen and respond to it in a similar manner. 

However, cancer invades tissues without the spleen influencing it, in the same way as 

viruses invade target tissues by inactivating immune responses. In fact, stress or central 

inflammatory stimulation of the sympathetic nervous system (SNS) inhibits splenic 

macrophage function, thus, beta-adrenergic mechanisms influence splenic macrophages 

[409]. This supports the speculation that the spleen’s response to pathogens is via 
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catecholamine release which acts on beta-adrenergic receptors to inhibit splenic 

macrophage activity. However, specific mechanisms of this action in cancer are not clear. 

Detailed neuro-anatomical description of lymph node (LN) innervation is scarce [403], 

however, sympathetic fibers in LNs have been reported [409]. In LNs, immune responses 

to antigens are initiated [409, 410]. During antigen detection, immune cells (dendritic cells 

(DCs), T cells, etc.) are recruited into regional LNs, which activate immune responses 

against the antigen. The decision process within LNs to either induce an active immune 

response or be tolerant is not clear, although in most instances an active immune 

response is initiated [411-413]. Just like other foreign antigens, cancer cells can escape 

LN surveillance. It is suggested that the lack of LNs innervation may be a contributing 

factor to cancer escaping immune surveillance. Thus, information of LN innervation could 

aid in the understanding of the decision process within LNs to induce protective 

responses and its lack of response in cancer initiation. Furthermore, understanding the 

interaction between LN and cancer may aid therapeutic modalities at the early stages of 

disease. 

The SNS regulates bone marrow function [409]. Innervation within the bone marrow is 

also scarce and likely due to the fact that there is close contact with surrounding 

mineralized bone which receives sympathetic and sensory innervation [414].  However, 

sensory fibers containing SP and calcitonin gene-related peptide together with 

noradrenergic sympathetic fibers and veins are distributed throughout the bone marrow 

and surrounding bone. Distinguishing between innervated bone and bone marrow is not 

clear [403], even though, in rodents bone marrow innervation occurs late in fetal life, just 

prior to hemopoietic activity. Understanding innervation of the bone marrow will enhance 

our knowledge of bone marrow cancers including but not limited to, lymphoma, 

leukaemia, and myeloma.  

1.6.2. Neurotransmitters and immune cells in cancer 

Neurotransmitters play an essential role in the modulation of immunity. A number of 

immune cells such as, T cells, DCs, natural killer (NK) cells, microglia and myeloid-derived 

suppressor cells (MDSCs) express cell surface neurotransmitter receptors including 
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substance P (SP), glutamate gamma-aminobutyric acid (GABA), serotonin, dopamine, 

epinephrine, norepinephrine and acetylcholine (Table 1.4 and Figure 1.6) [415-419]. 

Furthermore, studies have shown that various cancers express receptors for different 

neurotransmitters, which play an essential role in the control of tumour progression [416, 

417, 420-422]. 

1.6.2.1. Substance P  

Substance P (SP) is expressed in both the central and peripheral nervous systems (PNS) 

and plays an essential role in the neuroimmune system crosstalk. Of the sensory 

neuropeptides, SP is distributed widely and regulates immune functions, including that of 

B and T cells [391] and cytokine secretion by monocytes [331] and macrophages. Binding 

of SP to its receptor NK1 triggers activation of intracellular pathways including cAMP, 

MEK, ERK1/2, mTOR and NF-kB resulting in proinflammatory cytokine production [423]. 

In addition, SP enhances lymphocyte proliferation and lymphokine-activated killer cell 

cytotoxicity, NK cell cytotoxicity, augments tumour necrosis factor alpha (TNF-alpha), 

interleukin (IL)-10 and IL-12 secretion by macrophages, and, decreases the number of 

tumour-infiltrating MDSCs [331]. The effects of chronic administration of low dose SP to 

the brain in a murine model of metastatic breast cancer co-treated with radiation 

treatment, increased the antigenicity of cancer cells [424]. Hence, SP through neuro-

immune modulation can avert an immunosuppressive tumour microenvironment and 

consequently inhibiting metastatic growth. 

 

1.6.2.2. Glutamatergic, GABAergic and serotonergic signalling  

Glutamate is the principal excitatory neurotransmitter that regulates synaptic and cellular 

activity in the CNS via binding to its receptors including metabotropic glutamate receptors 

(mGluRs) or ionotropic glutamate receptors (iGluRs). In addition, glutamate also plays a 

fundamental role in the neuroimmune system crosstalk and it stimulates immune cell 

functions via the expression of its functional receptors on immune cells [425]. 

Furthermore, immune cells such as T cells, DC, monocytes and macrophages release 

glutamate where they act in both an autocrine and paracrine fashion [426]. Although the 
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role of glutamate and its receptors is well-established in neurological disorders 

and neuroprotection, it has become evident that glutamate plays a functional role in 

cancer via regulating immune cells as noted in head and neck, glioma, melanoma, gastric, 

prostate, squamous cell carcinoma, colorectal and breast cancers [417, 421, 422]. For 

instance, in head and neck cancer patients, elevated levels of glutamate increase 

spontaneous migration of peripheral T cells [417].  

GABA is the main inhibitory neurotransmitter in the CNS. Nevertheless, GABA exerts 

physiologic effects in non-neuronal peripheral tissues and organs via the activation of 

ionotropic (GABAA or GABAC) and metabotropic (GABAB) receptors [427]. GABA plays a 

functional role in the proliferation, migration and differentiation of cells including 

tumorigenic cells [428]. It has been noted that GABA mediates its inhibitory effect through 

GABAA receptor. For instance, GABA inhibits hepatocellular carcinoma cell migration 

through the activation of GABAA receptor [358]. In addition, administration of GABA 

agonist Nembutal suppresses tumour metastasis in colon cancer [429]. However, there 

are studies demonstrating that GABAA receptor enhances metastasis. The activation of 

GABAA receptors upregulates brain metastasis of breast cancer patients [359]. It is 

speculated that since GABA mediates it functional effect on T lymphocytes and DC 

through the activation of GABAA [430]. Further studies are warranted to explain the 

inconsistency in findings.  

5-hydroxytryptamine (5-HT), also known as serotonin, is a monoamine neurotransmitter 

synthesized in the serotonergic neurons in the brain and it plays an essential role in the 

modulation of immune response. Ninety percent of the body's 5-HT is secreted by 

enterochromaffin cells of the gut mucosa. 5-HT regulates a wide range of behavioural, 

cognitive and physiological functions in pathological disease including cancer [431]. In 

mouse models of melanoma, administration of selective serotonin reuptake inhibitors 

decreases tumour growth via enhancing mitogen-induced T cell proliferation, IL-1 beta 

production, and by inhibiting IFN-gamma and IL-10 production [432]. Furthermore, in a 

mouse model of colon cancer allografts, serotonin regulates macrophages-mediated 

tumour angiogenesis [222]. These findings demonstrate the essential role of glutamate, 
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GABA and serotonin in regulating tumour growth; however, further studies mechanistic 

studies are required. 

1.6.2.3. Dopaminergic signalling  

Dopamine is an important monoamine neurotransmitter in the CNS; however, it also plays 

a role in immune modulation. Elevated levels of dopamine increase spontaneous 

migration of peripheral T cells in head and neck cancer patients [417]. Dopamine inhibits 

cytotoxicity and proliferation of T cells via the activation of dopamine receptor 1 (DR1) 

mediated by intracellular cAMP in lung cancer [433]. Dopamine treatment induces M2 

(pro-tumour phenotype) shift to M1 (anti-tumour phenotype) of RAW264.7 cells and 

mouse peritoneal macrophage in rat C6 glioma [434]. Similarly, in human blood samples 

from lung cancer patients (stage I-IV) and mouse models using Lewis lung carcinoma 

and B16 melanoma cell lines, application of dopamine inhibits the effects of MDSC on T 

cell proliferation via the activation of DR1 [418], suggesting a possible mechanism of 

inhibition by dopamine. Moreover, inhibition of DR3 signalling in DCs enhances antigen 

cross-presentation to CD8+ T cells favouring anti-tumour immunity [435]. Dopamine 

acting on DR4 causes impairment in the endolysosomal system, a block in autophagic 

flux, and eventual cell death in glioblastoma [420].  It has been shown that CD8+ T cells 

express functional dopamine receptors DR1-DR5 in both humans and mice, and 

dopamine plays a significant role in migration and homing of naive CD8+ T cells via DR3 

[436, 437]. Moreover, dopamine activates resting effector T cells (Teffs) and suppresses 

regulatory T cells (Tregs) [437]. Hence, it can be speculated that dopamine inhibits 

tumour growth via regulating DC antigen presentation to CD8+ T cells. Furthermore, 

screening cancer patients that present with elevated levels of dopamine for DCs and 

CD8+ T cells could aid in delivering an effective targeted therapy. 

1.6.2.4. β-Adrenergic signalling  

SNS activation regulates an array of cancer-related molecular pathways by beta-

adrenergic signalling and via beta-adrenergic receptors expressed by tumour cells, 

immune and vascular cells [288, 438]. beta-adrenergic receptors mediate a range of 

catecholamine effects on target cells and immune cells, as well as cancer cells, i.e. breast 



65 
 

cancer cells [202, 439, 440];. Several cellular and molecular processes (such as 

inflammation, angiogenesis, epithelial mesenchymal transition and apoptosis) mediate 

beta-adrenergic influences on tumour progression [288] and recruitment of macrophages 

into primary tumours [186, 441]. Moreover, beta-adrenergic signalling influences the 

secretion of pro-inflammatory cytokines (IL-1, IL-6 and IL-8) by immune cells [441-444], 

upregulation of vascular endothelial growth factor (VEGF) resulting in increased 

angiogenesis [445], matrix metalloproteinase (MMP) related increase of tissue invasion 

[445, 446], tumour cell assembly and motility [447, 448]. Furthermore, beta-adrenergic 

signalling suppresses CD8 T cell and NK cell responses [449] and inhibits the expression 

of type I interferons [186, 450]. In fact, in murine metastatic mammary adenocarcinoma, 

beta-adrenergic receptor agonist suppressed NK cell activity resulting in increased lung 

metastasis [287]. In addition, either stress or pharmacological beta-adrenergic stimulation 

results in increased macrophage infiltration and cancer metastasis which can be 

prevented by injection of a beta-adrenergic antagonist, propranolol [186]. Furthermore, 

the use of beta2-adrenergic agonist in experimental animals’ reverse muscle wasting 

(cachexia) associated with cancer [451]. Catecholamines can induce apoptosis of 

lymphocytes, alter the distribution of NK cells and suppress NK cell activity, which are all 

required for anti-tumour immunity [452], leading to tumour cell escape mechanisms. Thus, 

persistent release of neurotransmitters from nerve terminals may promote tumour growth 

and metastasis via modulation of the immune system.  

1.6.2.5. Cholinergic signalling  

Modulation of the immune system by the sympathetic nervous system (SNS) has been 

extensively studied [405, 453, 454]. However, the role of the parasympathetic nervous 

system has gained attention only recently [455]. Inflammatory mediators can activate 

sensory nerves that send signals regarding inflammation to the CNS, which in turn leads 

to the release of neuromediators modulating local inflammation and influencing immune 

cells [285]. Consequently, the nervous system can regulate immune responses in 

peripheral tissues and restore local immune homeostasis [456]. Since inflammatory 

signals are important for tumour progression in both the early  and late  stages, the anti-

inflammatory role of the vagus nerve may play an important role in tumorigenesis [286]. 
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It has been established that acetylcholine (ACh) acting on α7 nicotinic receptors 

(nAChRs) stimulates splenic macrophages and inhibits TNF-alpha  production in the 

spleen [457, 458]. In addition, vagus nerve activation stimulates ACh synthesis by splenic 

T lymphocytes leading to inhibition of cytokine production [458]. In lipopolysaccharide-

induced inflammation in C56BL/6J mice, activation of 7 and 9 nAChRs expressed by 

bone marrow cells stimulates secretion of anti-inflammatory cytokines (IL-10 and 

transforming growth factor beta (TGF)-beta) and inhibits production of pro-inflammatory 

cytokines (TNF-alpha, IL-1beta and IL-12) [415]. Similarly, secretion of TNF-alpha, IL-

1beta, IL-6 and IL-18 induced by endotoxin was significantly inhibited by ACh and nicotine 

in human macrophage cultures [459]. ACh receptors including both muscarinic (mAChRs) 

and nAChRs are functionally expressed by cancer cells [460-462]. Moreover, cancer cells 

synthesize and secrete ACh [462]. In a mouse bearing B16 melanoma cells, 

administration of nicotine inhibits the release of cytokines and cell killing by NK cells via 

nAChR 2 [416]. Overexpression of 7nAChRs by cancer cells (i.e. human colon cancer 

cell line HT-29) promotes cancer angiogenesis [463, 464], cell proliferation and 

metastasis [201, 465-468]. 9nAChRs are reported to play a crucial role in breast cancer 

development; the correlation between expression levels of 9nAChR mRNA and disease 

outcome was found in breast cancer patients [202]. Similarly, it has been demonstrated 

that mAChRs antagonists inhibit small cell lung carcinoma growth both in vitro and in vivo 

via inhibiting MAPK pathway [462]. In BALB/c mice bearing LMM3 mammary 

adenocarcinoma cells, tumour macrophages express M1 and M2 mAChRs which trigger 

arginine metabolic pathway leading to tumour angiogenesis [469]. Understanding the 

principal mechanisms of cholinergic signalling in regulating the immune system may 

highlight the significance of ACh inhibitors in cancer therapy. 
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Table 1.4. Modulation of immune cells by neurotransmitters 

Neurotrans

mitter 

Cancer 

type 

Model Function on immune 

cells 

Ref. 

ACh Melanoma  B16 melanoma 

cells in vitro and 

intravenous 

injection of B16 

cells in C57BL/6 

mice   

Nicotine inhibits NK cells 

capability to release 

cytokines and kill target 

cells via nAChR 2 

[416] 

Dopamine  Lung 

cancer 

Human patients, 

in vitro dopamine 

concentration 

Plasma levels of 

dopamine is elevated in 

lung carcinoma patients  

 

Dopamine inhibits the 

cytotoxicity and 

proliferation of T cells via 

the activation of dopamine 

receptor 1 mediated by 

intracellular cAMP 

[433] 

Human blood 

from lung cancer 

patients (stage I-

IV); Lewis lung 

carcinoma and 

B16 melanoma 

cells in vitro and 

their 

subcutaneous 

injection in 

C57BL/6 mice   

Dopamine administration 

inhibits the suppressive 

function of Gr-1+ CD115+ 

MDSC on T cell 

proliferation via the 

activation of DR1 both in 

human blood in vitro and 

in vivo 

[418] 
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HNC Human patients Dopamine increases 

spontaneous migration of 

peripheral T cells in HNC 

patients 

[417] 

Epinephrine  Leukemia  CRNK-16 

leukemia cells in 

vitro and 

intravenous 

injection of 

CRNK-16 cells in 

F344 rats  

 

Administration of 

epinephrine reduces NK 

activity.  

[449] 

Glutamate  HNC Human patients Glutamate increases 

spontaneous migration of 

peripheral T cells in HNC 

patients  

[417] 

NE  Breast 

cancer 

66c14 mammary 

adenocarcinoma 

cell injected into 

mammary fat pad 

of BALB/c mice 

 

NE acts on β2-AR 

enhancing CD11b+F4/80+ 

macrophage and CD11b+ 

GrloLy6Chi myeloid-

derived suppressor cell 

infiltration 

[186] 

SP Breast 

cancer 

4TBM cells in 

vitro and 

orthotopic 

injection of 4TBM 

cells in BALB/c 

mice  

SP increases CD4+CD25 

cells in draining LNs 

Prevents tumour-induced 

degeneration of sensory 

nerve endings 

Alters CAFs releasing of 

angiogenic factors 

Enhances lymphokine-

activated killer cell 

[331] 
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cytotoxicity, NK cell 

cytotoxicity, TNF-alpha, 

IL-10 and IL-12 secretion 

by macrophages 

Decreases tumour-

infiltrating myeloid-derived 

suppressor T cells  

 

Abbreviations: ACh, acetylcholine; DR1, dopamine receptor 1; NE, norepinephrine; SP, 

substance P; cAMP, cyclic adenosine monophosphate; nAChR, nicotinic acetylcholine receptor; 

IL-10, interleukin 10; IL-12, interleukin 12; CAFs, cancer associated fibroblasts; TNF-alpha, 

tumour necrosis factor-; NK, natural killer cells; LN, lymph node; beta2-AR, beta2-adrenergic 

receptor; HNC, head and neck cancer. 
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1.6.3. Tumour-associated immune cells and the nervous system 

The role of nervous system in modulating tumor-associated immune (TAI) cells is not well 

understood. However, various TAI cells within tumor microenvironment play essential role 

in promoting tumor growth. It could be speculated that nervous system stimulates TAI 

cells in its original form as normal immune cells. 

1.6.3.1. Tumour-associated macrophages  

Tumour-associated macrophages (TAMs) play a role in β-adrenergic signalling pathways, 

by accelerating angiogenesis, chemokine secretion to attract immune and tumour cells, 

secretion of pro-inflammatory cytokines (IL-1, IL-6, IL-8, and TNF-) and escape of anti-

tumour responses [289-291]. Hence, TAMs are sensitive to sympathetic signalling and 

raise the likelihood that stress-response pathways influence macrophage infiltration 

within the tumour microenvironment and, as a result, enhance metastasis. In the early or 

regression stages of tumours, TAMs, in particular, M1 macrophages (pro-inflammatory; 

releasing IL-1β, IL-6, IL-12, TNF-, monocyte chemoattractant protein-1 (MCP-1)) inhibit 

angiogenesis and activate an anti-tumour immune response. In contrast, TAMs shift to a 

M2 phenotype (anti-inflammatory, releasing IL-1 receptor antagonist, TGF-β, IL-4, IL-10, 

IL-13) which enhance tumour angiogenesis in advanced tumours [470-474], tumour 

growth [472], invasion, migration [475], metastatic spread [476] and possess immuno-

suppressive activities which are regulated by neuromediators [477]. In breast cancer, 

infiltrating TAMs correlate with higher tumour and vascular grade [440] and increased 

necrosis [478] leading to poor prognosis [289, 440, 479]. In fact, eliminating macrophages 

from the tumour site, either genetically or therapeutically, results in reduced tumour 

progression in breast cancer [440]. However, the detailed understanding of neuro-

immune interaction influencing TAMs in human breast cancer needs further elucidation.  

 

1.6.3.2. Cancer-associated fibroblasts  

The role of nervous system in modulating cancer-associated fibroblasts (CAFs) remains 

scare. To understand how nervous system might stimulate CAFs, studies need to 

understand the origin of CAFs. It is believe that CAFs originated from bone marrow-
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derived mesenchymal stem cells, fibroblasts or cancer cells that undergo endothelial - or 

epithelial -mesenchymal transition [480]. Therefore, it is possible that nervous system 

may regulate CAFs via modulating bone marrow-derived mesenchymal stem cells or 

fibroblasts. CAFs are the key constituent cells within the tumour microenvironment which 

interact with cancer cells promoting tumour growth and metastasis [481]. For example, in 

the tumour microenvironment of 4T1 metastatic breast cancer model, in vivo abolition of 

CAFs causes Th2 shift to Th1 polarization which is characterized by increased expression 

of IL-2 and IL-17, suppressed TAMs, T regulatory cells, MDSCs and decreased 

angiogenesis [482]. In addition, CAFs enhanced the aggressive phenotype of T47D, 

MCF-7 and MDA-MB-231 breast cancer cells via epithelial mesenchymal transition 

induced through paracrine TGF-β signalling [483]. Similarly, in human sample of 

squamous cell carcinoma, CAFs mediate angiogenesis and inflammation via employing 

macrophages and stimulating angiogenesis, consequently enhancing tumour growth 

[484]. These findings demonstrate significant importance of CAFs in mediating tumour 

progression. Understanding the origin of CAFs could lead to better understanding of how 

nervous system stimulates it, resulting in better therapies design.   

1.6.3.3. Tumour-infiltrating lymphocytes  

Nervous system plays essential in modulation of T cell. T cell expressed adrenergic and 

cholinergic receptor it communicates with nervous system. Tumour-infiltrating 

lymphocytes (TILs) particularly CD8+ T cells are associated with positive prognostic 

relevance in various tumours. For example, in  a prospective-retrospective study of a 

primary triple-negative breast cancer demonstrate elevated levels of TILs present at 

diagnosis were considerably associated with reduced distant recurrence rates [485, 486]. 

Similar findings are reported in patients with oro- and hypopharyngeal carcinoma showing 

increased expression of intraepithelial CD8+ TIL in metastatic tumours to be associated 

with favourable outcome [487]. In prostate cancer, infiltration of CD4+ T cells enhances 

LNCaP, CWR22RV1 and C4-2 cell invasion and metastasis via fibroblast growth factor 

11→miRNA-541→androgen receptor→ matrix metalloproteinase 9 signalling [488]. In 

addition to the presence of T lymphocytes at the tumour site, B lymphocyte infiltration 

also plays a role within the tumour microenvironment. Infiltration of B cell subset called 
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tumour evoked Bregs (B regulatory)  plays a crucial role in lung metastasis by converting 

CD4+ T cell to Foxp3+ Treg cells through induction of TGF-β-dependent which promote 

immune escape in the 4T1 tumour-bearing mouse model of breast cancer [489]. Similarly, 

B cell infiltration facilitates the switch of M1 macrophages to a pro-tumoral M2 phenotype 

via IL-10 secretion [490]. On the contrary, elevated expression of peritumoural B-cells in 

lymph node metastases in patients with oro- and hypopharyngeal carcinoma is 

associated with favourable outcome [487]. Correspondingly, tumour-infiltrating B-cells 

correlate with improved survival outcome in the immunoreactive ovarian cancer subtype 

and HER2-enriched and basal-like breast cancer subtypes [491]. Although B cells 

normally do play active roles in anti-tumour immunity, these studies have demonstrated 

the capacity of the tumour microenvironment to modify immune function to promote 

tumour progression. 

1.6.3.4. Eosinophils 

Eosinophils release an array of cytokines, including IL-1β, TNF-, and interferon-gamma 

(IFN-) and eosinophil derived neurotoxin (EDN) that are potentially toxic to nerve cells. 

Eosinophils localize to nerves (eosinophil-nerve interaction) and are associated with 

enhanced nerve activity [492]. In addition, eosinophils infiltrate cancer cells leading to 

either favourable or unfavourable prognosis [493]. For instance, in Hodgkin’s lymphoma, 

eosinophils infiltration correlate with an unfavourable prognosis [494] whereas in colon 

cancer the presence of eosinophils leads to a favourable prognosis [495, 496]. However, 

the role of eosinophils and nerve interactions in cancer aetiology is not clear. The 

presence of eosinophils in necrotic regions of the tumour suggests that they may have 

anti-tumour effects associated with a favourable prognosis [497, 498]. Conversely, it has 

been noted that eosinophils may contribute to tumour invasion via activation of gelatinase 

[496, 497, 499, 500]. Furthermore, eosinophils at the tumour site can influence 

angiogenesis via VEGF secretion [501]. Moreover, TNF--stimulated eosinophils release 

pro-angiogenic factors such as, basic fibroblast growth factor, IL-6, IL-8, platelet-derived 

growth factor and MMP-9 [499]. However, pro-angiogenic factors such as IL-15 and TNF-

-stimulated eosinophils have only been noted, and theirs role in tumours is not clear 

[400]. Secretion of eosinophilic granular proteins has been noted in breast cancer [502] 
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and is associated with increased survival. However, some studies report lack of 

eosinophils [503] which warrants further investigation into eosinophil infiltration in breast 

cancer.  

 

1.6.3.5. Mucosa-associated invariant T cells  

The role of nervous system in regulating mucosa-associated invariant T (MAIT) cells is 

not clear. However, since MAIT cells are subset of T cell, it could be in the same manner 

T cells get innervated is how MAIT cells get innervate. MAIT cells have anti-microbial 

specificity [504-506] and are present in a number of cancers [507]. Their presence 

correlates with the level of pro-inflammatory cytokines within the tumour 

microenvironment [507], suggesting they have anti-cancer functions. However, enhanced 

expression of tumour-associated MAIT cells associates with poor prognosis in colorectal 

cancer contradicting norm that MAIT cell may have anti-tumour effect [508].  In fact, 

tumour-associated MALT cells are increased while circulating CD8+ MAIT cells 

decreased in advanced colorectal cancer patients [161]. Co-culture of HCT116 cells with 

MAIT cells stimulated with phorbol 12-myristate 13-acetate results in enhanced TNF-, 

IFN-γ and IL-17 expression and reduced HCT116 cells feasibility, suggesting MAIT 

cells may contribute to colorectal cancer immunosurveillance [161]. Whether this effect 

of MAIT cells is cancer type specific, warrant further research. Thus, considering the 

important role of MAIT cells in response to infections, understanding their potential in 

cancer would aid in a better understanding of the cancer environment. Furthermore, 

further studies are warranted to establish the interaction between nervous system and 

MAIT cells. 
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Figure 1.6. Schematic diagram highlighting the critical function of the nervous 

system in modulating immune responses to cancer 

ACh released from vagus nerve in macrophages binds to 7 nicotinic receptors on tissue 

macrophages and inhibits the release of pro-inflammatory cytokines. In the functional 

immune response to pathogen invasion or tissue damage, these are recognized by 

macrophages within the spleen, which triggers secretion of pro-inflammatory cytokines. 

Stress initiates a cascade of responsive neural pathways in the central nervous system, 

leading to the activation of sympathetic nervous systems and HPA axis. The stress 

response results in release of catecholamines (principally norepinephrine and 

epinephrine) and glucocorticoids from sympathetic nerve fibers located within organs and 

the adrenal medulla. Prolonged exposure to catecholamines under chronic stress 

importantly affects the process of tumour development. Glucocorticoids are associated 

with a decreased immune response, which further enhances tumour progression. Most 

immune cells and cancer cells express adrenergic and cholinergic receptors. Through 

these receptors, the nervous system is able to communicate with cancer cells via the 

release of neurotransmitters, cytokines and chemokines from both ends, which eventually 

influences tumour growth.  

Abbreviations: Ach, acetylcholine; HPA, hypothalamic-pituitary-adrenal; IL, interleukin; NK, 

natural killer cells; NE, norepinephrine; PNF, peripheral nerve fibers; SNF, sympathetic nerve 

fibers; TNF-alpha, tumour necrosis factor-alpha; Ang1, angiopoietin 1; bFGF, basic fibroblast 

growth factor.  
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1.7. Contribution to Knowledge and Significance 

Despite the increasing interest to understand, the roles that the nervous and immune 

systems play in influencing the tumour microenvironment to promote cancer development 

and progression, more studies are required to understand the mechanism. Studies have 

demonstrated that modulation of the immune system by relentless release of 

neurotransmitters from the nerve terminals can promote tumour growth and metastasis. 

Revealing the interaction between the immune and nervous systems in cancer may open 

new avenues for understanding mechanisms of tumour development and progression. 

Thus, it is necessary to identify a combination of markers that may predict colorectal 

cancer (CRC) metastasis before it manifests in patients.  

There is no existing comprehensive study available that correlates a range of 

immunosuppressive and cholinergic markers at different stages of CRC with clinical 

outcome. It is reasonable to hypothesise that different stages of CRC may be controlled 

by the changes in cholinergic signalling influencing the immunosuppressive markers, 

immune response, tumour microenvironment and vice versa. This thesis aims to evaluate 

the interaction between immunosuppressive and cholinergic markers in CRC. The 

findings of this work have important clinical relevance and might create a new therapeutic 

avenue, which could target both immunosuppressive and cholinergic markers that might 

be beneficial for CRC treatments. 
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1.8. Hypothesis and Aims 

It was hypothesised that: 

I) Different stages of CRC are controlled by the changes cholinergic signalling influencing 

the immune response, immunosuppressive and tumour microenvironment and vice 

versa. 

II) At different stages of CRC, an interaction between immunosuppressive and cholinergic 

markers correlates with patients’ clinical outcomes.  

III) Cholinergic signalling can influence the expression of immunosuppressive markers in 

vitro and in vivo. 

IV) Immunosuppressive molecule siglec-9/siglec-E can influence the expression of 

cholinergic markers in vitro and in vivo. 

The overall aim of this thesis is to conduct a comprehensive evaluation of the complex 

interaction between immunosuppressive markers and cholinergic signalling in ex vivo 

human specimens from patients diagnosed with stages I-IV of CRC, in vitro and in vivo 

models of CRC. 

Specific Aims: 

Aim 1. To determine the expression of immunosuppressive molecules in ex vivo of human 

specimens from patients diagnosed with stages I-IV of CRC, in vitro and in vivo.  

Aim 2. To determine cholinergic markers ex vivo of human specimens from patients 

diagnosed with stages I-IV of CRC, in vitro and in vivo.  

Aim 3. To correlate the interaction between immunosuppressive molecules and 

cholinergic markers with stage of disease and clinical outcomes. 

Aim 4. To determine angiogenic markers in tumour tissues collected from orthotopic 

model of colon cancer. 
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CHAPTER TWO 

 

Expression of Immunosuppressive and 

Cholinergic Markers in Patients Diagnosed with 

Stages I-IV of CRC 
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2.0. Abstract 

Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide. 

Tumour cells have evolved to express immunosuppressive molecules enabling their 

evasion from the host’s immunity. These molecules include programmed death ligands 

PD-L1 and PD-L2. Cancer cells can also produce a neurotransmitter, acetylcholine, which 

have been shown to play a role in tumour progression. Moreover, tumours can stimulate 

vascularisation by producing angiogenic and neural factors, leading to tumour growth and 

metastasis. We correlated the expression of immunosuppressive (PD-L1 and PD-L2) and 

cholinergic muscarinic receptor 3 (M3R), alpha 7 nicotinic receptor (7nAChR) and ChAT 

markers with CRC stages (I-IV), gender, age, metastasis and survival outcomes. 

Immunofluorescence was used to determine the expression of these molecules in 

paraffin-embedded tissues from patients with CRC. There was significantly high 

expression of PD-L1 at stages III and IV compared to stages I and II of CRC. In addition, 

PD-L2 was highly expressed at stages II, III and IV compared to stage I. Similarly, M3R 

and ChAT were elevated at stages III and IV compared to early stages. However, there 

was no significant difference in the expression of 7nAChR at all stages of CRC. 

Increased expression of PD-L1, PD-L2, M3R and ChAT were associated with a high risk 

of CRC and poor survival outcome. However, there was no significant correlation between 

the expression of these markers with patients’ gender and age. In conclusion, the 

expression of immunosuppressive and cholinergic markers may increase the risk of 

recurrence or second cancer in patients. Therefore, these markers might be used in 

determining prognosis and treatment regimens for CRC patients.  
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2.1. Introduction 

Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide as 

a result of a predominantly unhealthy lifestyle and genetic factors [2]. CRC presents 

vague or no symptoms at the early stages; hence, it is more often diagnosed at the 

advanced stages of a disease. About 70% of CRC occurs sporadically due to the 

accumulation of mutations in the tumour suppressor genes that induce cancer [17], such 

as, p53, K-ras and adenomatous polyposis coli [18, 19]. However, studies have 

demonstrated that immunosuppression and cholinergic signalling play an important role 

in the development and progression of CRC [509-514].  

The immune system plays a pivotal role in the development of tumour, not only it can 

suppress the growth, but it can also advance tumour growth by creating the 

immunosuppressive environment. The ability of cancer cells to evade T cell responses 

and avoid immune recognition by disabling effector T cells is dependent on the multiple 

immunosuppressive mechanisms controlled by immune checkpoints of inhibitory 

pathways, including, but not limited to, PD-L1 and PD-L2. These immune checkpoints are 

initiated by ligand-receptor interactions to enhance anti-tumour immunity [515]. Cancer 

cells overexpress immunosuppressive factors, such as PD-L1 and  PD-L2, leading to 

suppressed T cell activation and apoptosis [514]. PD-L1 is a transmembrane protein that 

plays a major role in suppressing the immune system. Several tumour cells and antigen-

presenting cells express PD-L1 [516]. T cells express the receptor PD-1 and, upon 

interaction with PD-L1, inhibitory signals are triggered, resulting in reduced activation or 

exhaustion of CD8+ T cells [27]. PD-L2 has a similar function to PD-L1, whereby it 

interacts with PD-1 on activated CD8+ T cells; however, its role in maintaining tumour cell 

immunity is not clear [517]. These findings have suggested the importance of the 

interaction between tumour and host’s immune system that allows cancer cells to evade 

the immune responses leading to tumour growth.   

Furthermore, the nervous system also plays a functional role in cancer growth and 

progression. Studies have demonstrated that the nervous system promotes the 

development of tumour by facilitating angiogenesis and metastasis through the release 
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of neural-related factors from nerve endings such as neurotrophins, neuropeptides and 

neurotransmitters [510, 511].  One of the major neurotransmitters in the central and 

peripheral nervous system is acetylcholine (ACh), which can cause diverse effects 

depending on the type of receptor it interacts with. Recently, studies have shown that 

several cancers can release ACh and express cholinergic receptors, suggesting that ACh 

could play a major role in cancer cell growth, vascularization, invasion and metastasis 

[518, 519]. In fact, ACh has been shown to promote proliferation and migration of cancer 

cells, tumour angiogenesis and metastasis through the activation of muscarinic receptor 

3 (M3R) and alpha 7 nicotinic receptor (7nAChR) [520-523]. In addition, cancer cells 

can also overexpress choline acetyltransferase (ChAT), a precursor enzyme required for 

ACh synthesis [521]. 

Currently, there are no studies correlating the expression of immunosuppressive and 

cholinergic markers with CRC stages and clinical parameters. Therefore, in this study, 

the expression of immunosuppressive (PD-L1 and PD-L2) and cholinergic (M3R, 

7nAChR and ChAT) markers was correlated with CRC stages (I-IV), patients’ age, 

gender, survival status and survival outcomes. The expression of these molecules may 

be important for the early detection of cancer; hence, it is necessary to identify the 

combination of factors expressed by cancer cells that may predict cancer progression in 

patients. 
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2.2. Materials and Methods 

2.2.1. Human tumour samples  

Tumour samples were collected at the Ministry of Internal Affairs and Administration 

Hospital in Olsztyn, Poland from 2010 to 2013. The collection of human samples used in 

this study was approved by the Bioethics Committee of the University of Warmia and 

Mazury in Olsztyn, Poland. The study comprised of 139 patients with CRC (out of 139, 

91 patients had clinical follow up). All patients signed a written informed consent for the 

use of their tissues for research purposes. Patients had no evidence of bowel obstruction 

or other colonic diseases. None of the CRC patients had a second neoplastic disease or 

had previously undergone chemo- or radiotherapy. Patients’ demographical, clinical and 

overall survival data were collected. Type of cancer and grading were described by a 

pathologist according to the World Health Organization criteria and staging according to 

the 7th edition of Cancer Staging Manual of the American Joint Committee on Cancer 

(AJCC). However, due to a small patient number with grade III (n=7) compared to grade 

II (n=84) CRC, the grade was excluded from the multivariate analysis and Chi-Square 

test. Similarly, metastasis status was excluded due to small sample size; nine patients 

had metastatic cancer compared with 82 patients without. Samples from the neoplasm 

lesion were collected into 10% neutral buffered formalin, dehydrated in ethanol/xylene 

and embedded in the paraffin wax. Paraffin-embedded blocks of tissue were cut into 4μm 

thickness sections and mounted onto the microscope slides. 

2.2.2. Immunohistochemical analysis of the paraffin-embedded samples 

Samples were deparaffinised and hydrated through the series of washes with xylene and 

a graded alcohol. Antigen retrieval was performed using citrate buffer pH 6.0, 10x (Sigma-

Aldrich, Melbourne, Australia). Citrate buffer was heated until bubbles start to form. 

Samples were emerged into the buffer and placed on a hot plate pre-set at 100°C for 15 

minutes (mins) and left to cool at room temperature for another 20 mins. Using a liquid 

blocker super pap pen, samples were outlined to reduce the volume of antibody used. 

Endogenous activity was blocked using 10% donkey serum for 1 hour (hr) at room 
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temperature. Samples were then incubated overnight at room temperature with primary 

antibodies (Table 2.1). After washing the tissues in phosphate buffered (PBS) saline plus 

Triton X-100 (PBST), samples were incubated at room temperature for 2hr with 

secondary antibodies (Table 2.1) diluted in PBS containing 2% donkey serum and 0.01% 

Triton X-100. Samples were incubated for 1 min with 4′,6-diamidine-2′-phenylindole 

dihydrochloride (DAPI) (D1306, Life Technologies, Australia) and mounted with DAKO 

mounting medium (Agilent Technologies, Australia). Then coverslips were placed on and 

left to dry overnight before imaging. 

2.2.3. Data analysis 

Images were captured on a Nikon Eclipse Ti multichannel confocal laser scanning system 

(Nikon, Japan). Z-series images were acquired at a nominal thickness of 1µm (1024 x 

1024 pixels).  Image J software (National Institute of Health, Bethesda, MD, USA) was 

employed to convert images from RGB to 8-bit binary; particles were then analysed to 

obtain the percentage area of immunoreactivity [524]. For localisation data analysis, the 

number of cells within the tumour specimen expressing markers were counted within eight 

randomly captured images at x40 magnification.  

All slides were coded, and immunohistochemistry images were quantified blindly. 

Statistical analysis was performed by one-way ANOVA followed by Turkey’s pos-hoc test. 

For correlation of markers expression with the clinicopathological parameters, Cox 

regression test for survival analysis, Chi-Square test and multivariate for correlation 

analyses was used. Low and high expression of the markers was defined by determining 

the median. A cumulative risk refers to the likelihood that patients expressing low or high 

markers at different stages of CRC would die from CRC. Pearson Correlation was 

performed to analyse the relationship between the overall expression of 

immunosuppressive with cholinergic markers. Microsoft Excel, SPSS and Prism (Graph 

Pad Software, La Jolla, CA, USA) were utilised to aid in the statistical analysis and p<0.05 

was considered significant.  
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Table 2.1. Primary and secondary antibodies used in this study 

Primary antibodies 

Markers Host Species & 

Clonality 

Dilution Source Catalogue 

no. 

PD-L1 Mouse, 

monoclonal  

1:500 Abcam, 

Australia 

ab210931 

PD-L2 Rabbit, 

polyclonal 

1:500 Abcam, 

Australia 

ab200377 

M3R Rabbit, 

polyclonal 

1:500 Abcam, 

Australia 

ab126168 

 

7nAChR Mouse, 

monoclonal 

1:500 Novus, 

Australia 

7F10G1 

ChAT Goat, polyclonal 1:500 Abcam, 

Australia 

ab134021 

Secondary antibodies 

Alexa 

Fluor 488 

Anti-mouse 

Anti-goat 

1:250 Jackson ImmunoResearch 

Laboratories, United 

States 

Alexa 

Fluor 594 

Anti-rabbit 1:250 Jackson ImmunoResearch 

Laboratories, United 

States 

Alexa 

Fluor 647 

Anti-mouse 1:250 Jackson ImmunoResearch 

Laboratories, United 

States 

 

  



85 
 

2.3. Results 

We examined the expression levels of immunosuppressive markers, PD-L1 and PD-L2, 

and cholinergic markers, M3R, 7nAChR and ChAT, in colon samples resected from 139 

patients with colorectal carcinoma. All patients had surgery before commencing chemo- 

or radiotherapy. To evaluate the expression of these markers, we used tissues obtained 

from patients diagnosed with stages I-IV of CRC. In this study, immunofluorescence was 

used to determine the expression of these molecules in paraffin-embedded tumour 

tissues.  

2.3.1. Expression of immunosuppressive markers in CRC tissues 

2.3.1.1. Expression of PD-L1 and PD-L2 in patients diagnosed with stages I-IV of 

CRC  

Tumour tissues were immunolabelled with immunosuppressive marker antibodies as 

described in the Materials and Methods. PD-L1 expression was predominantly localised 

in the cell membrane and is abundantly expressed at stages III and IV compared to 

stages I and II. Representative images of PD-L1 expression from each clinical stage are 

depicted in Figure 2.1A’-D’. Quantitative analysis of PD-L1 expression demonstrated a 

linear relationship between cancer progression and PD-L1 expression (Figure 2.1E, 

p<0.0001). PD-L2 expression was enhanced at stages II, III and IV, compared to stage I. 

Moreover, PD-L2 expression was overexpressed at stage IV compared to stages I, II and 

III (Figure 2.1A’’-D’’ and Figure 2.1F, p<0.0001). Overall, PD-L1 and PD-L2 expression 

was overexpressed at stage IV.   

2.3.1.2. Number of cells within tumour specimen expressing PD-L1 and PD-L2 

We evaluated the number of cells within tumour specimens expressing PD-L1 and PD-

L2. The results demonstrated that immunosuppressive markers, PD-L1 and PD-L2 are 

predominantly localised in close proximity to each other. Elevated number of cells within 

tumour specimens overexpressing PD-L1 and PD-L2 was observed at stages II, III and 

IV compared to stage I (Figure 2.2A-F). Moreover, the number of cells overexpressing 
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PD-L1 and PD-L2 was higher at stage IV compared to stages I, II and III. Furthermore, 

there was a high number of cells expressing PD-L1 in mucosa and muscularis mucosa at 

advanced stages III and IV compared to early stages I and II (Figure 2.2A-D). Cells 

expressing PD-L2 were confined to the mucosal layer at stages I, II and III, while at stage 

IV, cells expressing PD-L2 were observed in both mucosa and muscularis mucosa. 

Overall, PD-L1 is expressed in mucosa and muscularis mucosa layers, whereas PD-L2 

is predominantly expressed in mucosa with exception to stage IV where it was expressed 

in both layers. 
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Figure 2.1. Intensity of immunosuppressive markers expression 

PD-L1 and PD-L2 in human specimens from CRC patients diagnosed with stage I (A-

A’’’), stage II (B-B’’’), stage III (C-C’’’) and stage IV (D-D’’’). Tumours were labelled with 

the nuclei marker DAPI (blue; A-D), PD-L1 (green; A’-D’), PD-L2 (red; A’’-D’’) and all 

markers merged (A’’’-D’’’). Scale bar represents 50µm. Bar graphs displaying the mean 

fluorescence of PD-L1 (E) and PD-L2 (F) in tumours from patients with stages I-IV CRC. 

Data presented as mean ± standard error of the mean (SEM), stage I n=14, stage II n=59, 

stage III n=57 and stage IV n=9. One-way ANOVA, **p<0.01, ***p<0.001, ****p<0.0001. 
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Figure 2.2. Number of cells expressing PD-L1 and PD-L2 within tumour specimens 

from patients at stages I-IV CRC 

PD-L1 and PD-L2 expression within colonic mucosa from CRC patients diagnosed with 

stage I (A), stage II (B), stage III (C) and stage IV (D). All cells were labelled with the 

nuclei marker DAPI (blue), PD-L1 (green) and PD-L2 (red). Scale bar represents 50µm. 

Bar graphs displaying the mean number of cells within tumour specimen expressing PD-

L1 (E) and PD-L2 (F) in tumours from patients with stage I-IV CRC. Data presented as 

mean ± SEM, stage I n=14, stage II n=59, stage III n=57 and stage IV n=9. One-way 

ANOVA, *p<0.05, ***p<0.0001, ****p<0.0001. 
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2.3.1.3. Clinicopathological and demographic parameters of CRC patients and 

their relevance to immunosuppressive markers expression  

The average patients’ age was 65 years ranging from 33 to 91 and there were 51 male 

patients and 40 female patients in the cohort. Among these patients, 14 patients were 

diagnosed with clinical stage I, 35 with stage II, 33 with stage III and 9 with stage IV of 

CRC. The clinicopathological and demographic parameters of 91 patients with clinical 

follow up are presented in Table 2.2.  

To determine the correlation between the expression of immunosuppressive markers and 

clinicopathological parameters, the Chi-Square test was used. PD-L1 expression was 

correlated with gender, age, stage, and survival status (Table 2.3). Out of 91 patients, 38 

(41.8%) expressed low levels of PD-L1 and 53 (58.2%) expressed high levels. There was 

a significant difference observed between the expression of PD-L1 and stages of CRC. 

Lower stages were noted to mainly expressed low levels of PD-L1, 13 (14.3%) at stage I 

and 26 (28.6%) at stage II compared to 11 (12.1%) at stage III and 0 (0%) at stage IV. 

High level of PD-L1 expression was associated with stages III and IV. 

There was no statistical difference observed in PD-L1 expression and patients’ gender as 

21 (23.1%) males and 17 (18.7%) females expressed low levels of PD-L1, whereas 30 

(32.9%) males and 23 (25.3%) females expressed high levels. In addition, patients were 

divided into two age groups, under 65 (<65) and over 65 (>65) years old. Seventeen 

(18.7%) <65 and 21 (23.1%) >65 patients expressed low levels of PD-L1, and 24 (26.4%) 

<65 and 29 (31.9%) >65 patients expressed high levels. Nevertheless, there was no 

significant correlation between the level of PD-L1 expression and patients’ age. 

Furthermore, there was correlation between PD-L1 expression and patients’ survival 

status.  

On the other hand, 75.8% of patients expressed low levels of PD-L2, and 24.2% 

expressed high levels. In regards to patients’ age, gender and survival status, there were 

no significant differences observed between the level of PD-L2 expression and these 

parameters (Table 2.4). However, there was a weak association between PD-L2 

expression and stages of CRC. Stages, I and II predominantly expressed low levels of 
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PD-L2 while advanced stages, 24 patients out 33 at stage III and 7 patients out 9 at stage 

IV expressed high levels of PD-L2. This suggests that PD-L2 expression might hold 

predictive value for advanced stages of CRC. 

Moreover, PD-L1 and PD-L2 expression was correlated with the risk of CRC and patients’ 

survival outcomes. The correlation between PD-L1 and PD-L2 with survival outcome was 

analysed by hazard ratio (HR) and corresponding 95% confidence interval (CI) using Cox 

regression survival analysis. The results of this analysis demonstrated a significant 

correlation between high expression of PD-L1 and an increased risk of CRC and poor 

survival outcomes (Figure 2.3A & B, HR=2.942, 95% CI=1.841-4.699). Furthermore, 

high levels of PD-L2 expression was also associated with a higher risk of CRC and poor 

patients’ survival outcomes (Figure 2.3C & D, HR=2.691, 95% CI=1.725-4.20).  
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Table 2.2. Clinicopathological and demographic parameters of CRC patients 

Parameters  No. of cases  Percentage (%) 

Total  91 100 

Gender  

  Male  

  Female 

 

51 

40 

 

56 

44 

Age  

 <65 

 >65 

 

41 

50 

 

45.1 

54.9 

Stage 

  I 

  II 

  III 

  IV 

 

14 

35 

33 

9 

 

15.4 

38.5 

36.3 

9.9 

Survival status  

 Event 

 Censor 

 

52 

39 

 

57.1 

42.9 
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Table 2.3. Correlation of clinicopathological and demographic parameters of CRC 

patients with PD-L1 expression 

Parameters  No. of 

cases  

Percentages 

(%) 

PD-L1 expression 

Low                    High 

P values 

Total  91 100 38 (41.8%) 53 (58.2%)  

Gender  

  Male  

  Female 

 

51 

40 

 

56 

44 

 

21 (23.1%) 

17 (18.7%) 

 

30 (32.9%) 

23 (25.3%) 

 

0.534 

Age  

 <65 

 >65 

 

41 

50 

 

45.1 

54.9 

 

17 (18.7%) 

21 (23.1%) 

 

24 (26.4%) 

29 (31.9%) 

 

0.565 

Stage 

  I 

  II 

  III 

  IV 

 

14 

35 

33 

9 

 

15.4 

38.5 

36.3 

9.9 

 

13 (14.3%) 

26 (28.6%) 

11 (12.1%) 

0 (0%) 

 

0 (0%) 

9 (9.9%) 

23 (25.3%) 

9 (9.9%) 

 

 

0.0001 

Survival status 

 Event 

 Censor 

 

39 

52 

 

42.9 

57.1 

 

7 (7.7%) 

18 (19.8%)  

 

32 (35.2%) 

34 (37.4%)  

 

0.018 

P values are based on the frequency of PD-L1 expression within each parameter.   
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Table 2.4. Correlation of clinicopathological and demographic parameters of CRC 

patients with PD-L2 expression 

Parameters  No. of 

cases  

Percentages 

(%) 

PD-L2 expression 

Low                    High 

P values 

Total  91 100 69 (75.8%) 22 (24.2%)  

Gender  

  Male  

  Female 

 

51 

40 

 

56 

44 

 

39 (42.9%) 

30 (33.0%) 

 

12 (13.2%) 

10 (11.0%) 

 

0.531 

Age  

 <65 

 >65 

 

41 

50 

 

45.1 

54.9 

 

31 (34.1%) 

38 (41.8%) 

 

10 (11%) 

12 (13.2%) 

 

0.579 

Stage 

  I 

  II 

  III 

  IV 

 

14 

35 

33 

9 

 

15.4 

38.5 

36.3 

9.9 

 

10 (11%) 

27 (29.1%) 

9 (9.9%) 

2 (2.2%) 

 

3 (3.3%) 

8 (8.8%) 

24 (26.4%) 

7 (7.7%) 

 

 

0.012 

Survival status 

 Event 

 Censor  

 

39 

52 

 

42.9 

57.1 

 

12 (13.2%) 

18 (19.8%) 

 

27 (29.7%) 

34 (37.4%) 

 

0.699 

P values are based on the frequency of PD-L2 expression within each parameter.  The 

median defined low and high expression of the markers. 
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Figure 2.3. Correlation of PD-L1 and PD-L2 expression with the risk of CRC and 

patient’s survival outcomes 

Correlation of PD-L1 expression with the risk of CRC (A). PD-L1 expression association 

with survival outcomes (B). PD-L1 expression (HR=2.942, 95% CI=1.841-4.699, 

p<0.0001 for both). Correlation of PD-L2 expression with the risk of CRC (C). PD-L2 

expression association with survival outcomes (D). PD-L2 expression (HR=2.691, 95% 

CI=1.725-4.20, p<0.0001 for both). Stage I n=14, stage II n=35, stage III n=33 and stage 

IV n=9. Low and high expression of the markers was defined by the median. 
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2.3.2. Expression of cholinergic markers in patients diagnosed with stages I-IV of 

CRC  

2.3.2.1. Intensity of expression of cholinergic markers in CRC tissues  

The expression of cholinergic markers was evaluated in specimens obtained from 

patients diagnosed with stages I-IV CRC. Representative images of 7nAChR expression 

from each clinical stage are demonstrated in Figure 2.4A’-D’. Although there was a 

tendency to increase 7nAChR expression at stages, III and IV, the difference was not 

significant (Figure 2.4E, p-0.0675). Conversely, M3R expression showed a linear 

increase with significantly high levels at stages, III and IV (Figure 2.4A’’-D’’ and F, 

p<0001). Similarly, results also showed overexpression of ChAT at advanced stages, III 

and IV, compared to the lower stages, I and II (Figure 2.4 A’’’-D’’’ and G, p<0001).  

2.3.2.2. Correlation between cholinergic markers and clinicopathological and 

demographic parameters of CRC patients  

To determine the association between the expression of cholinergic markers and 

demographic and clinicopathological parameters of the patients diagnosed with CRC, the 

Chi-Square test was utilised. The expression of 7nAChR was associated with patients’ 

age, gender, stage of CRC and survival status. The results show that 49 (53.8%) patients 

expressed low levels of 7nAChR, while 42 (46.2%) expressed high levels. However, 

there was no association noted between 7nAChR and patients’ age, gender, stage and 

survival status (Table 2.5).  

Similarly, M3R expression was not associated with patients’ age and gender; however, 

was correlated with survival status (Table 2.6). Stages, I and II mostly expressed low 

levels, while advanced stages, 23 patients out 33 at stage III and 8 patients out 9 at  stage 

IV patients expressed high levels of M3R, suggesting that high levels of M3R expression 

might hold a prognostic value for advanced stages of CRC.  

Furthermore, out of 91 patients, 32 (35.2%) expressed low levels of ChAT and 59 (64.8%) 

expressed high levels. High level of ChAT expression was not associated with patients’ 

age, gender and survival status but was associated with CRC stage (Table 2.7). Early 
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stages, I and II, expressed low levels, whereas advanced stages, III and IV expressed 

high levels of ChAT.  

Moreover, the correlation of 7nAChR, M3R and ChAT expression with the risk of CRC 

and patients’ survival outcomes were analysed. There was no correlation between the 

expression of 7nAChR, risk of CRC and patients’ survival outcomes (Figure 2.5 A & B, 

HR=0.066, 95% CI=0.508-1.790). There was a significant correlation observed between 

the high expression of M3R and a high risk of CRC and poor survival outcomes (Figure 

2.5 C & D, HR=2.647, 95% CI=1.690-4.147). Furthermore, high level of ChAT expression 

was also associated with a higher risk of CRC and poor patients’ survival outcomes 

(Figure 2.5 E & F, HR=2.692, 95% CI=1.721-4.264).  
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Figure 2.4. Intensity of expression of cholinergic markers 7nAChR, M3R and ChAT 

in tumour tissues from CRC patients 

Tissues from patients diagnosed with stage I (A-A’’’’), stage II (B-B’’’’), stage III (C-C’’’’) 

and stage IV (D-D’’’’) of CRC. Tissues were labelled with the nuclei marker DAPI (blue; 

A-D), 7nAChR (magenta; A’-D’), M3R (red; A’’-D’’), ChAT (green; A’’’-D’’’) and all 

markers merged (A’’’’-D’’’’). Scale bar represents 50µm. Bar graphs displaying the mean 

fluorescence (arb. units) expression of 7nAChR (E), M3R (F) and ChAT (G) in patients 

with stages I-IV CRC. Data presented as mean ± SEM, stage I n=14, stage II n=59, stage 

III n=57 and stage IV n=9. One-way ANOVA, ***p<0.001, ****p<0.0001. 

  



101 
 

 

 

 

 

  



102 
 

Table 2.5. Correlation of clinicopathological and demographic parameters of CRC 

patients with 7nAChR expression 

Parameters  No. of 

cases  

Percentages 

(%) 

7nAChR expression 

Low                    High 

P values 

Total  91 100 49 (53.8%) 42 (46.2%)  

Gender  

  Male  

  Female 

 

51 

40 

 

56 

44 

 

30 (32.9%) 

19 (20.9%) 

 

21 (23.1%) 

21 (23.1%) 

 

0.194 

Age  

 <65 

 >65 

 

41 

50 

 

45.1 

54.9 

 

24 (26.4%) 

25 (27.5%) 

 

17 (18.7%) 

25 (27.5%) 

 

0.274 

Stage 

  I 

  II 

  III 

  IV 

 

14 

35 

33 

9 

 

15.4 

38.5 

36.3 

9.9 

 

9 (9.9%) 

24 (26.4%) 

12 (13.2%) 

4 (4.4%) 

 

4 (4.4%) 

12 (13.2%) 

21 (23.1%) 

5 (5.5%) 

 

 

0.130 

Survival status 

 Event 

 Censor 

 

39 

52 

 

42.9 

57.1 

 

14 (15.4%) 

22 (24.2%) 

 

25 (27.5%) 

30 (33%) 

 

0.531 

P values are based on the frequency of 7nAChR expression within each parameter. The 

median defined low and high expression of the markers. 
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Table 2.6. Correlation of clinicopathological and demographic parameters of CRC 

patients with M3R expression 

Parameters  No. of 

cases  

Percentages 

(%) 

M3R expression 

Low                    High 

P 

values 

Total  91 100 58 (63.7%) 33 (36.3%)  

Gender  

  Male  

  Female 

 

51 

40 

 

56 

44 

 

31 (34.1%) 

27 (29.7%) 

 

20 (22%) 

13 (14.3%) 

 

0.508 

Age  

 <65 

 >65 

 

41 

50 

 

45.1 

54.9 

 

22 (24.2%) 

36 (39.6%) 

 

19 (20.9%) 

14 (15.4%) 

 

0.070 

Stage 

  I 

  II 

  III 

  IV 

 

14 

35 

33 

9 

 

15.4 

38.5 

36.3 

9.9 

 

9 (9.9%) 

30 (33.0%) 

10 (11%) 

1 (1.1%) 

 

5 (5.5%) 

5 (5.5%) 

23 (25.3%) 

8 (8.8%) 

 

 

0.005 

Survival status 

 Event 

 Censor 

 

39 

52 

 

42.9 

57.1 

 

4 (4.4%) 

18 (19.8%) 

 

35 (38.5%) 

34 (37.4%) 

 

0.007 

P values are based on the frequency of M3R expression within each parameter.  The 

median defined low and high expression of the markers. 
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Table 2.7. Correlation of clinicopathological and demographic parameters of CRC 

patients with ChAT expression 

Parameters  No. of 

cases  

Percentages 

(%) 

ChAT expression 

Low                    High 

P values 

Total  91 100 32 (35.2%) 59 (64.8%)  

Gender  

  Male  

  Female 

 

51 

40 

 

56 

44 

 

30 (32.9%) 

19 (20.9%) 

 

21 (23.1%) 

21 (23.1%) 

 

0.194 

Age  

 <65 

 >65 

 

41 

50 

 

45.1 

54.9 

 

24 (26.4%) 

25 (27.7 %) 

 

17 (18.7 

%) 

25 (27.5 

%) 

 

0.274 

Stage 

  I 

  II 

  III 

  IV 

 

14 

35 

33 

9 

 

15.4 

38.5 

36.3 

9.9 

 

9 (9.9%) 

19 (20.9%) 

5 (5.5%) 

0 (0%) 

 

5 (5.5%) 

16 (17.6%) 

29 (31.9%) 

9 (9.9%) 

 

 

0.0001 

Survival status 

 Event 

 Censor 

 

39 

52 

 

42.9 

57.1 

 

6 (6.6%) 

9 (9.9%) 

 

33 36.3%) 

43 (47.3%) 

 

0.807 

P values are based on the frequency of ChAT expression within each parameter.  The 

median defined low and high expression of the markers. 
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Figure 2.5. Correlation of cholinergic markers with survival outcomes 

Correlation of 7nAChR expression with the risk of CRC (A) and survival outcomes (B). 

Correlation of M3R expression with the risk of CRC (C) and survival outcomes (D). 

Association of ChAT expression with the risk of CRC (E) and survival outcomes (F). Stage 

I n=14, stage II n=35, stage III n=33 and stage IV n=9. Low and high expression of the 

markers was defined by the median. 
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2.3.3. Correlation between immunosuppressive and cholinergic markers 

We further evaluated the overall correlation between the expression of 

immunosuppressive markers with cholinergic markers (Table 2.8). Overall, the 

expression of PD-L1 was strongly correlated with M3R expression, moderately 

associated with PD-L2 and ChAT, while lowly correlated with 7nChR expression. 

Whereas, PD-L2 overall expression was strongly associated with 7nChR, moderately 

correlated with PD-L1 and ChAT, but not with M3R expression. Moreover, 7nChR 

expression was strongly associated with PD-L2 and ChAT, while lowly correlated with 

PD-L1 and M3R. Furthermore, M3R was strongly correlated with PD-L1 and ChAT, 

whereas lowly associated with 7nChR. Overall, the expression of ChAT was strongly 

correlated with cholinergic receptors and moderately associated with immunosuppressive 

markers.  These findings suggest that there might be crosstalk between 

immunosuppressive markers with cholinergic markers. 
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Table 2.8. Correlation of immunosuppressive with cholinergic markers in CRC 

patients 

 PD-L1 PD-L2 M3R 7nChR ChAT 

PD-L1 Pearson Correlation 1 0.351** 0.562** 0.235* 0.323** 

Sig. (2-tailed)  0.001 0.000 0.025 0.002 

N 91 91 91 91 91 

PD-L2 Pearson Correlation 0.351** 1 0.153 0.561** 0.370** 

Sig. (2-tailed) 0.001  0.147 0.000 0.000 

N 91 91 91 91 91 

M3R Pearson Correlation 0.562** 0.153 1 0.298** 0.571** 

Sig. (2-tailed) 0.000 0.147  0.004 0.000 

N 91 91 91 91 91 

7nChR Pearson Correlation 0.235* 0.561** 0.298** 1 0.679** 

Sig. (2-tailed) 0.025 0.000 0.004  0.000 

N 91 91 91 91 91 

ChAT Pearson Correlation 0.323** 0.370** 0.571** 0.679** 1 

Sig. (2-tailed) 0.002 0.000 0.000 0.000  

N 91 91 91 91 91 

* Correlation is significant at the 0.05 level (2-tailed). 

** Correlation is significant at the 0.01 level (2-tailed). 

Strong correlation, ± 0.50 and ± 1; Moderate correlation, ± 0.30 and ± 0.49; Low correlation, 

± 0.29. 
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2.4. Discussion 

The results of this study show that level of PD-L1 was significantly elevated at stages, III 

and IV compared to stages, I and II of CRC, while PD-L2 expression was enhanced at 

stages, II, III and IV compared to stage I. In addition, there were more cells within tumour 

overexpressing PD-L1 and PD-L2 at stages, II, III and IV compared to stage I. PD-L1 was 

expressed in mucosa and muscularis mucosa layers, whereas PD-L2 was predominantly 

expressed in mucosa with exception to stage IV where it was expressed in both layers. 

M3R and ChAT were also elevated at stages, III and IV compared to stages, I and II. No 

significant difference was observed in the expression of 7nAChR at all stages of CRC. 

High levels of immune checkpoint inhibitors (PD-L1 and PD-L2) and cholinergic marker 

(M3R and ChAT) expression were associated with a high risk of CRC and poor patient 

survival outcome. However, there was no significant correlation between the expression 

of these markers and patients’ gender, age and survival status, with exception to PD-L1 

and M3R expression, which correlate with survival status  In addition, 7nAChR 

expression was not associated with patients’ age, gender, survival status and survival 

outcome.  

Tumours use multiple mechanisms to avoid being recognised and to downregulate the 

hosts’ immune system by expressing PD-L1 and PD-L2, which interact with PD-1 receptor 

on tumour-infiltrating lymphocytes [525]. The presence of PD-L1 and PD-L2 on the 

surface of tumours functions as an immune resistance mechanism allowing tumours to 

go undetected, leading to cancer cell proliferation and progression of tumour growth.  

In contrast, some studies have demonstrated that the expression of PD-L1 on immune 

cells has a favourable prognostic factor in some cancers [526]. Increased expression of 

PD-L1 on tumour cells has been used in clinical trials to identify patients that will benefit 

from immunotherapy. As CRC progresses from stage I to stage IV, the expression of 

immunosuppressive factors such as PD-L1 and PD-L2 would be expected to be 

significantly upregulated. Generally, it is conceivable to believe that patients with stage 

IV CRC have an overall increase in the expression of immunosuppressive factors in order 

to facilitate tumour evasion of the host’s immune system. In this study, PD-L1 expression 
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was significantly enhanced at advanced stages, III and IV compared to early stages of 

CRC. These findings are in line with studies demonstrating PD-L1 association with cancer 

stages. For instance, high PD-L1 expression was associated with tumour node 

metastasis, poor prognosis and shorter survival in CRC patients [62, 527].  Although, our 

results found no correlation of PD-L1 expression with tumour metastasis, however, there 

was a strong association with poor prognosis and shorter survival in CRC patients, 

concurring with previous studies. Furthermore, the expression of PD-L1 was associated 

with cholinergic markers, suggesting there is crosstalk between PD-L1 and cholinergic 

markers. Elevated expression of PD-L1 on tumour cells might be influenced by the 

immune microenvironment, thus allowing immune evasion. The number of cells within 

tumour overexpressing PD-L1 were enhanced at stages, II, III and IV compared to stage 

I, and these cells were localised in mucosa and muscularis mucosa layers. On the 

contrary, some studies demonstrated that PD-L1 expression was associated with early 

stages, lower tumour grade, absence of vascular invasion and lymph node metastasis, 

significantly leading to improved patient survival in mismatch repair-proficient 

microsatellite stable CRCs via enhancing CD8+ T cell infiltration [528]. These studies 

suggest that the prognostic value of PD-L1 expression could be dependent on the subset 

of CRCs as well as the presence of infiltrating immune cells. Furthermore, these 

contradictions in findings could be attributed to the expression of cholinergic markers as 

we found the link between the expression of immunosuppressive and cholinergic markers 

in this study.  

Studies identifying the role of PD-L2 in cancer progression are scarce. PD-L2 is induced 

by the IFN- as observed in human colon cancer cell lines LOVO and RKO [529]. Studies 

demonstrated that PD-L2 exerts its function in immune tolerance by modulating and 

dampening T helper types 2 (Th2) response; however, Th1 response is crucial for anti-

tumour immunity [530, 531]. PD-L2 expression in esophageal squamous cell carcinoma 

is negatively associated with PD-1 positive tumour-infiltrating lymphocytes, suggesting a 

role in tumour escape mechanism from the host’s immunity [532]. In the present study, 

PD-L2 expression was significantly elevated at stages, II, III and IV compared to stage I. 

The number of cells within tumour overexpressing PD-L2 were enhanced at stages, II, III 
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and IV compared to stage I and these cells were predominantly expressed in mucosa 

with exception to stage IV where these cells were expressed in both mucosa and 

muscularis mucosa layers. Furthermore, PD-L2 expression was correlated with a high 

risk of CRC and poor patients’ survival outcome. PD-L2 was strongly associated with 

7nAChR expression and moderately correlated with PD-L1 and ChAT but not with M3R. 

This suggests that PD-L2 might be influenced by ACh binding to 7nAChR but not M3R 

activation. Similarly, PD-L2 expression associated with worse survival in patients with 

oesophageal cancer [533]. In renal cell carcinoma, PD-L2 expression associates with 

shorter progression-free survival [534]. More recently, it was noted that PD-L2 expression 

was independently associated with poor survival of CRC patients [529]. Contradictory to 

other findings, several studies found no correlation between PD-L2 expression and 

survival outcomes as noted in hepatocellular carcinoma, pancreatic and ovarian cancer 

patients [535-537]. In oesophageal adenocarcinomas, PD-L2 expression associates with 

smaller tumour size, early-stage and well-differentiated grade; however, PD-L2 is not 

associates with lymph node infiltration or metastasis or patient survival [538]. This could 

be due to a small number of patients in these studies reporting PD-L2 expression. 

Furthermore, studies have shown that depending on the molecules present in the 

microenvironment, the expression of PD-L2 can be increased on immune as well as non-

immune cells [539]. The inconsistency in these results warrants further studies to validate 

the mechanisms involved. 

Studies have demonstrated that ACh binding to 7nAChR plays a functional role in the 

oncogenic processes [540-543]. However, current findings mostly focused on the 

differences in expression between non-smokers and smokers, as there is evidence that 

smoking increases the expression of nicotinic receptors [544, 545]. In colon cancer, 

limited number of studies that specifically focus on the expression of 7nAChR in cancer 

without the influence of smoking have been studied. In lung cancer, there are several 

lines of evidence implicating the role of 7nAChR in cancer growth and metastasis [201, 

546]; however, in colon cancer, less is known. Human HT-29 colon cancer cells 

overexpress 7nAChR, which facilitates cell proliferation, tumour angiogenesis [463, 547] 

and metastasis [201, 522, 548-550]. The results of the present study demonstrated no 
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significant difference in the expression of 7nAChR at all stages of CRC. Similarly, no 

association between 7nAChR expression and patients’ risk of CRC and survival 

outcome was observed. However, 7nChR expression was strongly associated with PD-

L2 and ChAT, while lowly correlated with PD-L1 and M3R. Further studies to elucidate 

the mechanisms underlying the role of 7nAChR in cancer cell proliferation, tumour 

angiogenesis and metastasis are required. 

M3R signalling is reported in non-neuronal tissues including, but not limited to, colon, 

lung, skin and pancreas; and ACh is shown to act as a growth factor in lung and gastric 

cancers [518, 520, 521, 551-553]. Muscarinic receptor 3 is reported in many tissue types 

and plays an important role in the progression of many cancers, including breast, 

prostate, lung and CRC [554-556]. Most of the studies in regards to the role of M3R in 

CRC were performed mainly in the cell lines or animal models. Only few studies have 

reported that M3R is overexpressed in human colon cancer tissues compared to normal 

samples. There are limited studies associating the expression of M3R with different 

stages of CRC and clinical parameters. For instance, studies have shown that M3R is 

expressed in 60% of colon cancer cell lines [551, 553]. In addition, studies have reported 

8-fold increased expression of M3R in 62% of colon cancers compared to normal adjacent 

and normal colon epithelium [552]. In non-small cell lung cancer, M3R expression 

associated with tumour metastasis and poor patients’ prognosis [523]. The present study 

has illustrated that M3R is expressed at all stages but predominantly elevated at 

advanced stages, III and IV, compared to early stages, I and II. High levels of M3R 

expression was correlated with a high risk of CRC, survival status and poor patients’ 

survival outcome. In addition, M3R expression was strongly associated with PD-L1 and 

ChAT, whereas lowly correlated with 7nChR but not with PD-L2, suggesting that M3R 

has no role in PD-L2 regulation. These findings are supported by a study demonstrating 

no association between M3R expression and metastasis [520]. Studies have suggested 

that the intracellular distribution of M3R can have detrimental effects on cancer 

progression [520, 557]. M3R in a normal colon epithelium is disseminated in the 

basolateral membrane, which forms a protective barrier between the cells and the blood 

and/or other cells. However, in cancer, M3R can translocate to a more dynamic 
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environment that enhances cancer growth, such as cytoplasmic [520]. We speculate that 

at early stages of CRC, M3R might be expressed on the surface membrane and then 

translocates into the cytoplasm at the advance stages of CRC. The activities and 

localisation of M3R within tumour cells at various stages of CRC should be further 

investigated. 

Although studies examining the role of M3R and 7nAChR in cancer have been relatively 

studied, there are limited studies identifying the role of ChAT in colon cancer progression. 

High ChAT is noted in cytoplasmic localisation of H508 and Caco-5 colon cancer cells 

[521]. Furthermore, ChAT was found to be overexpressed in colon cancer specimens 

compared to normal colon samples [521]. Similarly, ChAT was significantly upregulated 

in squamous cell lung carcinoma compared to adjacent healthy specimen [557]. In the 

present study, the expression of ChAT was correlated with advanced stages of CRC, III 

and IV, compared to the early stages, I and II. In addition, low levels of ChAT were 

associated with a high risk of CRC and poor patients’ survival outcome; however, high 

levels of ChAT were associated with metastasis. Overall, the levels of ChAT expression 

strongly correlated with expression of cholinergic receptors and moderately associated 

with expression of immunosuppressive markers. Increased levels of ChAT leads to higher 

ACh production; however, it might not be binding to the receptors to stimulate tumour 

growth at the early stages of CRC.  

These findings suggest that there is crosstalk between immunosuppressive and 

cholinergic markers. In fact, our findings are supported by a recent study by Kamiya et al 

(2019) in breast cancer patients demonstrating that decreased parasympathetic nerve 

density, determined by VAChT expression, was associated with poor clinical outcomes 

and elevated levels of immune checkpoint molecules [558]. Similarly, in chemically-

induced and xenograft models of breast cancer, sympathetic nerve denervation, and 

parasympathetic neurostimulation suppressed immune checkpoints molecules, such as 

PD-1 and PD-L1, leading to attenuated tumour growth [558].  
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2.5. Conclusion 

Nervous and immune systems play an essential role in influencing the tumour 

microenvironment to promote cancer development and progression. Studies have 

demonstrated that modulation of the immune system by the relentless release of 

neurotransmitters from the nerve terminals and cancer cells can promote tumour growth 

and metastasis; however, underlying mechanisms are not understood. Therefore, 

revealing the interaction between the immunosuppressive and cholinergic factors in 

cancer is imperative for the understanding mechanisms of CRC tumour development and 

progression. Hence, the expression of these markers may increase the risk of recurrence 

or second cancer in patients. Immunohistochemical staining for immunosuppressive and 

cholinergic markers might, therefore, be used in determining prognosis and treatment 

regimens for CRC patients. 
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CHAPTER THREE 

 

Effect of Blocking Cholinergic Signalling on the 

Expression of PD-L1 and PD-L2 in Human Colon 

Cancer Cells 
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3.0. Abstract 

Colorectal cancer (CRC) remains one of the most commonly diagnosed cancers and a 

leading cause of cancer-related deaths worldwide. Cancer cells have evolved a number 

of mechanisms to suppress the immune system by increasing cell surface markers, 

including programmed death ligands 1 and 2 (PD-L1 and PD-L2). In addition, cancer cells 

can synthesise and secrete acetylcholine (ACh) acting as an autocrine or paracrine 

hormone to promote their proliferation, differentiation and migration. In the present study, 

the effects of a general muscarinic receptor blocker, atropine, and a selective muscarinic 

receptor 3 (M3R) blocker, 1,1-dimethyl-4 diphenylacetoxypiperidinium iodide (4-DAMP), 

on the expression of immunosuppressive (PD-L1 and PD-L2) and cholinergic (M3R and 

choline acetyltransferase ChAT) markers were evaluated in human colon cancer cell 

lines,LIM-2405 and HT-29, and normal epithelial cell line, T4056. The results 

demonstrated that atropine and 4-DAMP suppressed proliferation and migration of human 

colon cancer cells and normal epithelial cells as well as induced apoptosis of human colon 

cancer cells. Furthermore, atropine and 4-DAMP decreased the expression of PD-L1 and 

PD-L2 in human colon cancer cell lines, however, in normal epithelial cell line atropine 

had no effect but 4-DAMP significantly attenuated these markers. Similarly, both atropine 

and 4-DAMP attenuated M3R expression in LIM-2405 and HT-29 cells, but only atropine 

showed similar effects in T4056 cells. One of the mechanisms attributed to the observed 

effects involves the modulation of epidermal growth factor receptor (EGFR), phospho 

extracellular signal-regulated kinase (pERK) and phospho signal transducer and activator 

of transcription 3 (pSTAT3). Thus, blocking muscarinic receptors inhibits proliferation, 

migration and induces apoptosis of human colon cancer cells via decreasing the 

expression of PD-L1, PD-L2 and M3R through the activation of EGFR and 

phosphorylation of ERK and STAT3 signalling pathways. These effects allow the immune 

system to recognize and eliminate cancer cells. 
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3.1. Introduction 

 

Colorectal cancer (CRC) remains one of the most commonly diagnosed cancers and a 

leading cause of cancer-related death worldwide [2]. CRC is often diagnosed at late 

stages as it presents indistinct or no symptoms at the early stages. Cancer cells exploit a 

number of mechanisms, including the expression of immunosuppressive markers, 

programmed death-ligand 1 and 2 (PD-L1 and PD-L2) [392]. For instance, high 

expression of PD-L1 is associated with tumour node metastasis, poor prognosis and 

shorter survival in CRC patients [62, 527]. PD-L1 expression in stromal or tumour cells 

inversely correlates with FOXP3+ regulatory T (Treg) cell density in CRC patients [69]. It 

is known that tumour cells can stimulate PD-L1 expression via multiple oncogenic 

signalling pathways mediated by interferon (IFN)- produced by infiltrating immune cells 

[37, 559-563].  

 

Acetylcholine (ACh) synthesis and secretion by non-neuronal tissues, acting as an 

autocrine or paracrine hormone, is well established and plays an essential role in cellular 

proliferation, differentiation and apoptosis [363, 368, 521, 564]. Nonetheless, a direct 

association between ACh and immunosuppressive markers has not been 

demonstrated. ACh plays an essential role in several cancers, including CRC [363-366, 

368, 518]. Choline acetyltransferase (ChAT) is the enzyme responsible for ACh 

synthesis. ChAT catalyses the transfer of an acetyl group from the coenzyme acetyl-

CoA to choline, resulting in ACh synthesis. Human colon cancer cells (H508, WiDr, Caco-

2) and colon cancer specimens overexpress ChAT [521]. In CRC, ACh mediates it effect 

by binding to alpha7 nicotinic receptor (7nAChR) and muscarinic receptor 3 (M3R) [565]. 

Stimulation of M3R enhances colon cancer cell proliferation [521]. In addition, 

administration of muscarinic receptor inhibitor, atropine, abolishes SNU-C4 colon cancer 

cell migration; however, H508 cell migration requires the activation of matrix 

metalloproteinase 7 (MMP7) [368, 369]. M3R activation increases non-small cell lung 

carcinoma cell invasion and migration via the activation of epidermal growth factor 

receptor (EGFR)/ Phosphoinositide 3-kinases (PI3K)/ serine/threonine kinase or protein 

kinase B (AKT) pathway [367]. Nicotine stimulation of nAChRs enhances invasion and 



118 
 

metastasis of SW620 and LOVO colon cancer cells via the activation of p38 mitogen-

activated protein kinase (MAPK) signalling pathway [343].  

 

It was hypothesized that ACh could influence the ability of human colon cancer cells to 

express immunosuppressive and cholinergic markers. To the best of our knowledge, 

there are no data available, which determine the effect of ACh receptor blockers on the 

expression of immunosuppressive markers in human colon cancer cells. Hence, in the 

present study the effects of a general muscarinic receptor blocker, atropine, and a 

selective M3R blocker, 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP), 

were evaluated on the expression of immunosuppressive and cholinergic markers in vitro 

in human colon cancer cell lines, LIM-2405 and HT-29, and normal epithelial cell line, 

T4056.  The influence of cholinergic signalling on the expression of immune checkpoint 

molecules may play an essential role in cancer development; therefore, it is necessary to 

understand molecular pathways involved in vitro.  
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3.2. Materials and methods 

3.2.1. Cell culture 

Primary human colon epithelial cell line, T4056 was cultured in Dulbecco's Modified Eagle 

Medium (DMEM) (Sigma-Aldrich, Castle Hill, Australia) and human colon cancer cell 

lines, LIM-2405 and HT-29, were cultured in Roswell Park Memorial Institute (RPMI) 1640 

(Sigma-Aldrich, Castle Hill, Australia). Culture media were supplemented with 10% fetal 

bovine serum, 1% penicillin-streptomycin and 1% glutamine. Cells were cultured at 37°C, 

5% CO2 and 95% air atmosphere. When cells grew into confluent or semiconfluent 

monolayers in 75 cm2 medium flasks, they were either passaged or used. The passage 

of cells was conducted with 0.25% trypsin every 3-4 days. 

3.2.2. Cell proliferation  

The water-soluble tetrazolium-1 (WST-1) assay kit (Roche Diagnostics GmbH, Germany) 

was used to determine the viability of T4056, LIM-2405 and HT-29 cells. WST-1 is cleaved 

to form formazan dye via a complex cellular interaction at the cell surface. This interaction 

is contingent on the glycolytic nicotinamide adenine dinucleotide phosphate (NADPH) 

production of the viable cells. Hence, the amount of formed formazan dye correlates to 

the number of viable cells in the culture. T4056, LIM-2405 and HT-29 cells were seeded 

and cultured at 1×104 cells per well in 96 well plates for 24hrs. Cells were then treated 

with various concentrations of the general muscarinic receptor blocker, atropine (Sigma-

Aldrich, Australia) for 1-48hrs, selective M3R blocker, 1,1-dimethyl-4-

diphenylacetoxypiperidinium iodide (4-DAMP) (Abcam, Australia), cholinergic agonist, 

carbachol (Abcam, Australia) and acetylcholinesterase inhibitor, donepezil (Abcam, 

Australia) for 8hrs. All treatments were performed in triplicates, and three independent 

experiments were conducted. WST-1 reagent (10µL) was added to each well and 

incubated at 37°C for 1hr. Cellular proliferation at the absorbance of 450nm was 

measured using a microplate reader (Varioskan Flash, Thermo Scientific, Australia). 

3.2.3. Migration assay  
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T4056, LIM-2405 and HT-29 cell lines were used in migration analysis using Boyden 

chambers with 8µm pore size membrane filter inserts (Corning Costar Corp., Kennebunk, 

ME, USA) in 24 well tissue culture plates. The cells were trypsinised and resuspended in 

serum-free RPMI-1640 and DMEM media at the density of 2×105 cell per mL. A total of 

200µL of cells suspension was seeded in the upper chamber of the Transwells, and 

600µL of media into the lower chamber. Cells were then treated with 0µm and 100µm 

atropine (Sigma-Aldrich, Melbourne Australia) for 8hrs, 24hrs and 48hrs. The chambers 

were incubated at 37°C, in 5% CO2 incubator. After 8-48hrs, the non-migrating cells on 

the upper surface of the insert were removed, and cells that migrated to the underside of 

the membrane were counted using a light microscope. In all experiments, two 

independent experiments were conducted in duplicates.  

3.2.4. Annexin V apoptosis assay 

LIM-2405 and HT-29 cell lines were cultured overnight in six wells at the density of 5x105 

cells per well. Cells were treated with 100µM atropine and 4-DAMP for 8hrs. Following 

treatments, flow cytometry was utilised to determine the apoptotic and necrotic cells. Cells 

were collected and resuspended in fluorescence-activated cell sorting (FACS) buffer and 

labelled with 100µL per well with Annexin V at 1:1,000 dilution and 0.5µg/mL of propidium 

iodide (PI). In all experiments, two independent experiments were conducted in 

duplicates.  

3.2.5. Choline/acetylcholine assay  

The choline/acetylcholine assay kit (Abcam, Australia) was used to measure the 

concentration of choline in CT-26 cell lysates. The assay was carried out in accordance 

with the instructions provided by the manufacturer. Briefly, CT-26 (1x106) cells were 

cultured overnight after which cells were treated with 100µM of cholinergic antagonists, 

atropine and 4-DAMP and 300µM of cholinergic agonist, carbachol and 

acetylcholinesterase inhibitor, donepezil. Cells were lysed in 500µL choline assay buffer 

before commencing choline measurements using a microplate reader (Varioskan Flash, 

Thermo Scientific, Australia) at an absorbance of 570nm. All treatments were performed 

in duplicates and in two independent experiments were conducted.  
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3.2.6. Immunocytochemistry staining 

LIM-2405 and HT-29 cell lines were grown on chamber slides (Ibidi, Australia) overnight 

at 37°C, in 5% CO2 incubator. Cells at a density of 1×105 cells per well were treated with 

atropine (0µM and 100µM) for 8hr and fixed in 4% paraformaldehyde for 10 minutes 

(mins). Cells were permeabilised for 15 mins in 0.1% phosphate buffered saline (PBS). 

The endogenous activity was blocked using 10% donkey serum for 1hr. Cells were 

incubated overnight at 4°C with primary antibodies (Table 3.1). After washing the cells in 

PBS, cells were incubated at room temperature for 2hr with secondary antibodies (Table 

3.2). All antibodies were diluted in PBS containing 2% donkey serum and 0.01% Triton 

X-100. Cells were incubated for 1 min with 4′,6-diamidine-2′-phenylindole dihydrochloride 

(DAPI) (D1306, Life Technologies, Australia) and DAKO mounted with mounting medium 

(Agilent Technologies, Australia). Then coverslips were placed on and left to dry overnight 

before imaging. 

3.2.7. Western blot  

Expression of immunosuppressive and cholinergic markers (Table 3.1), as well as cell 

signalling pathways, pSTAT3, pERK½ and EGFR (Table 3.2) in T4056, LIM-2405 and HT-

29 cells, were examined by western blot. Cells were incubated with 100µM atropine and 

4-DAMP for 8hrs. After treatments, cells were collected and lysed in 

radioimmunoprecipitation assay (RIPA) buffer (pH 7.4, 150mM NaCl, 0.1% sodium 

dodecyl sulphate (SDS), 0.5% sodium deoxycholate, 1% NP-40 in PBS, Sigma) 

containing a protease and phosphatase inhibitors cocktail (Roche Applied 

Science).Cellular proteins (20µg) from each sample were separated by 8% to 12% 

SDS/polyacrylamide gel electrophoresis. The separated fragments were transferred to 

0.22µm polyvinylidene fluoride membranes, which were blocked with 5% skim milk in 

PBS containing 0.1% Tween 20 overnight at 4oC at 40 revolutions per minute (RPM) 

speed shaker. The membranes were incubated with primary antibodies overnight at 4oC 

followed by the incubation with HRP-conjugated secondary antibodies for 2hrs at room 

temperature. The membranes were washed three times in PBS plus 0.1% Tween 20, and 

protein detection was performed using enhancing chemiluminescence reagents. 

Glyceraldehydes-3-phosphate dehydrogenase (GADPH) was used as a loading control.   
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Table 3. 1. Primary antibodies used in this study 

Primary antibodies 

Markers Host Species & 
Clonality 

Dilution Source 

PD-L1 Mouse, 
monoclonal  

1:500 Abcam, 
Australia 

ab210931 

PD-L2 Rabbit, 
polyclonal 

1:500 Abcam, 
Australia 

ab200377 

M3R Rabbit, 
polyclonal 

1:500 Abcam, 
Australia 

ab126168 

ChAT Goat, polyclonal 1:500 Abcam, 
Australia 

ab134021 

EGFR Rabbit, 
monoclonal 

1:1,000 Cell 
signalling, 
Australia 

#4267 

pSTAT3 Mouse, 
monoclonal 

1:1,000 Cell 
signalling, 
Australia 

#9145 

pERK1/2 Rabbit, 
monoclonal 

1:1,000 Cell 
signalling, 
Australia 

#3192 
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Table 3. 2. Secondary antibodies used in this study 

Secondary antibodies 

Alexa Fluor 

488 

Anti-goat 1:250 Jackson ImmunoResearch 

Laboratories, United States 

Alexa Fluor 

594 

Anti-rabbit 1:250 Jackson ImmunoResearch 

Laboratories, United States 

Alexa Fluor 

647 

Anti-mouse 1:250 Jackson ImmunoResearch 

Laboratories, United States 

Anti-

mouse 

IgG HL HRP 1:10,000 Abcam, Australia 

Anti-rabbit IgG HL HRP 1:10,000 Abcam, Australia 

Anti-goat IgG HL HRP 1:10,000 Abcam, Australia 
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3.2.8. Data analysis 

Images were captured on a Nikon Eclipse Ti multichannel confocal laser scanning system 

(Nikon, Japan). Z-series images were acquired at a nominal thickness of 1µm (1024 x 

1024 pixels).  Image J software (National Institute of Health, Bethesda, MD, USA) was 

employed to convert images from RGB to 8-bit binary; particles were then analysed to 

obtain the percentage area of immunoreactivity For western, chemiluminescent signal 

was captured using the FluorChem FC2 System (Alpha Innotech, USA). The expression 

level of each protein was quantified using ImageJ software (National Institute of Health, 

Bethesda, MD, USA). For apoptosis assay, BD FACs Canto II and FACS Diva software 

(BD Biosciences, Australia) were used to aid in analysis. Two-way ANOVA was used for 

multiple group comparison. Excel and Prism (Graph Pad Software, La Jolla, CA, USA) 

was used to aid in the statistical analysis, and p<0.05 was considered significant. 
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3.3. Results 

3.3.1. Effects of blocking muscarinic receptors on the proliferation of normal 

epithelial cells and human colon cancer cells 

3.3.1.1. Effect of atropine on the proliferation of colon cancer cell lines  

Cellular proliferation is an essential step in the development and progression of cancer. 

Non-neuronal ACh is reported to play a crucial role in colon cancer cells proliferation 

[363]. To determine the effect of blocking muscarinic receptors, cells were treated with 

various concentrations of atropine and at different time points. The effect of atropine on 

cellular proliferation of two human colon cancer cell lines (LIM-2405 and HT-29) and 

normal epithelial cell line (T4056) was assessed using WST-1 assay. Three independent 

experiments were performed in triplicate wells. Atropine significantly decreased cell 

proliferation of all cells at 1-4hrs compared to 8-48hrs (Figure 3.1A-C). However, high 

doses of atropine (400-1,000µm) significantly inhibited cell proliferation of T4056 at 1-

2hrs and LIM-2405 and HT-29 at 1-4hrs. Though there was a trend of lower proliferation 

at 8-48hrs, atropine decreased proliferation in a dose dependent manner. In all 

subsequent experiments, cells were treated with 100µm of atropine for 8hrs as changes 

were noticeable at this concentration and time point with high cell viability, hence reducing 

the auto-fluorescence staining from dead cells. 

3.3.1.2. Effect of cholinergic antagonists and agonists on cell proliferation  

T4056, LIM-2405 and HT-29 cells were incubated with various concentrations of atropine 

and 4-DAMP for 8hrs. In addition, cells were also incubated with various concentrations 

of carbachol, which acts as ACh receptor agonist and donepezil that inhibits ACh 

breakdown. Figure 3.2A-D shows proliferation of normal epithelial cells and human colon 

cancer cells treated with atropine, 4-DAMP, carbachol and donepezil. Atropine inhibited 

proliferation of all cells; however, LIM-2405 cells were more sensitive to atropine 

compared to HT-29 and T4056 cells (Figure 3.2A). Atropine decreased cell proliferation 

in a dose dependent manner. Similarly, 4-DAMP suppressed proliferation of all cells, but 

LIM-2405 and HT-29 cells were more sensitive to 4-DAMP effect compared to T4056 cells 
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(Figure 3.2B). To determine if the effect of atropine and 4-DAMP can be reversed by ACh 

agonists, cells were incubated with carbachol and donepezil. The results show that both 

carbachol and donepezil increased cell proliferation in a dose dependent fashion (Figure 

3.2C-D). 
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Figure 3.1. Effect of atropine on cell proliferation of normal epithelial cell and 

human colon cancer cells 

Cell proliferation dose-response curve for T4056 (A), LIM-2405 (B) and HT-29 (C) cells 

treated with atropine for 1-48hrs. Representative figures of three independent 

experiments in triplicate wells.  
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Figure 3.2. Effect of cholinergic antagonists and agonists on cell proliferation 

Proliferation of T4056, LIM-2405 and HT-29 cell lines treated with atropine (A), 1,1-

dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP) (B), carbachol (C) and 

donepezil (D) for 8hrs. Values in A, B, C and D are mean ± standard error of the mean 

(SEM) from at least 3 independent experiments. 
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3.3.2. Effect of atropine and 4-DAMP on cell migration 

Cell migration is an essential step in cancer progression as it is the main hallmark of 

cancer metastasis. In the present study, Boyden chamber was used to determine the 

effects of atropine and 4-DAMP on T4056, LIM-2405 and HT-29 cell migration. Cells were 

incubated with 100µm of atropine and 4-DAMP for 8hrs, 24hrs and 48hrs (Figure 3.3A-

C). At 8hrs, both atropine and 4-DAMP decreased migration of T4056, LIM-2405 and HT-

29 cells compared to controls. At 24hrs and 48hrs, lower migration rate was noted 

compared to 8hrs. At 48hrs, there was no significant differences noted between control 

and atropine-treated T4056 cells (Figure 3.3A), but significant differences were observed 

in both cancer cell lines treated with 4-DAMP when compared to controls. 

3.3.3. Effect of atropine and 4-DAMP on cell apoptosis 

Acetylcholine receptors, especially muscarinic receptors, play a significant role in the 

regulation of cell apoptosis [363]. To determine whether atropine and 4-DAMP induces 

apoptosis or necrosis in LIM-2405 and HT-29 cancer cell lines, cells were incubated with 

Annexin V and PI. Non-apoptotic cells are both Annexin V and PI negative, while apoptotic 

cells are Annexin V positive and PI negative. Necrotic or dead cells are PI positive and 

Annexin V negative. It is clear that blockade of all muscarinic receptors with atropine and 

the selective block of muscarinic receptor 3 with 4-DAMP induced apoptosis in both 

cancer cell lines (Figure 3.4). 
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Figure 3.3. Effect of atropine and 4-DAMP on cell migration in vitro 

Boyden chamber was used to determine the effect of atropine and 4-DAMP on the 

migration of T4056 (A), LIM-2405 (B) and HT-29 (C) cells. Cells were incubated with 

100µm of atropine and 4-DAMP for 8hrs, 24hrs and 48hrs (A-C). Values in A, B, and C 

presented as mean ± SEM from at least two independent experiments in duplicates. Two-

way ANOVA followed by Tukey’s multiple comparisons test was used, and the 

significance value is marked with asterisks, ***p<0.001, ****p<0.0001. 
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Figure 3.4. Effect of atropine and 4-DAMP on apoptosis in vitro 

Annexin V-FITC/ PI staining of human colon cancer cells incubated with atropine (A-A’’) 

and 4-DAMP (B-B’’). (A) LIM-2405 controls, (A’) LIM-2405 treated with atropine, (A’’) 

LIM-2405 treated with 4-DAMP, (B) HT-29 controls, (B’) HT-29 treated with atropine, (B’’) 

HT-29 treated with 4-DAMP. Three independent experiments were performed in triplicate 

wells.Two-way ANOVA followed by Tukey’s multiple comparisons test was used, and 

significance value is marked with asterisks, ***p<0.001, ****p<0.0001. 
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3.3.4. Effect of cholinergic antagonists and agonists on cells ability to produce 

choline  

Cancer cells synthesise their own ACh. To determine whether LIM-2405 and HT-29 cells 

could synthesize ACh, the amount of choline, a precursor for ACh synthesis was 

measured in cell lysate (1x106 cells). Choline/acetylcholine assay kit, which is rapid, 

sensitive and accurate, was used to measure choline in the cell lysate. There were no 

significant differences between cells treated with atropine compared to controls (Figure 

3.5A-C). Similarly, there was no significant difference in T4056 epithelial cells treated with 

4-DAMP when compared to control (Figure 3.5A). However, 4-DAMP significantly 

increased choline production in LIM-2405 cells (Figure 3.5B), whilst HT-29 cells showed 

decreased choline when compared to control (Figure 3.5C). In addition, cells were 

treated with acetylcholinesterase inhibitor, donepezil, to determine its effects on T4056, 

LIM-2405 and HT-29 cells which showed that donepezil significantly augmented choline 

production in all cell lines. 
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Figure 3.5. Effect of cholinergic antagonists and donepezil on choline production 

The amount of choline was measured in T4056 (A), LIM-2056 (B), HT-29 (C) cells. Values 

in A, B and C are mean ± SEM, from at least 2 independent experiments. Two-way 

ANOVA followed by Tukey’s multiple comparisons test was used, and the significance 

value is marked with asterisks, *p<0.05 ***p<0.001. 
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3.3.5. Effect of atropine and 4-DAMP immunosuppressive and cholinergic markers  

3.3.5.1. Effect of atropine and 4-DAMP on PD-L1 and PD-L2 expression 

The muscarinic receptors antagonist, atropine has been reported to inhibit cancer cell 

growth both in vitro and in vivo [566]. However, no studies have shown the effects of 

muscarinic acetylcholine receptor (mAChR) blocking on the expression of 

immunosuppressive markers, PD-L1 and PD-L2. T4056, LIM-2405 and HT-29 were used 

to determine the effect of atropine on the expression of these markers. The level of PD-

L1 and PD-L2 expression was evaluated by immunofluorescence and western blot 

analyses. Cells were pre-treated with 0µM and 100µM atropine and 4-DAMP for 8hr 

followed by incubation with the antibody’s diluent with or without primary antibodies, 

followed by incubation with secondary antibodies. No labelling of cells was observed 

without primary antibodies (Figure 3.6A-C) indicating that the positive labelling is specific 

for the primary antibodies of interested. Atropine had no effect on the expression of PD-

L1 in T4056 cells (Figure 3.6A’’, D-F); however, in LIM-2405 (Figure 3.6B’’, D-F) and 

HT-29 (Figure 3.6C’’, D-F) cells, significantly decreased expression of PD-L1. 4-DAMP 

decreased PD-L1 in T4056 (Figure 3.6A’’’, D-F), LIM-2405 (Figure 3.6B’’’, D-F) and HT-

29 (Figure 3.6C’’’, D-F) cells. T4056 cells expressed low levels of PD-L1, whilst human 

colon cancer cell lines expressed high levels of PD-L1. Likewise, the effect of atropine 

and 4-DAMP on the expression of PD-L2 was evaluated (Figure 3.7A-C). Atropine 

significantly decreased the expression of PD-L2 in all cell lines when compared to control 

(Figure 3.7A’’-C’’, D-F). Similarly, 4-DAMP had no effect on the expression of PD-L2 on 

T4056 cells (Figure 3.7A’’’, D-F) but decreased PD-L2 in LIM-2405 (Figure 3.7B’’’, D-F) 

and HT-29 (Figure 3.7C’’’, D-F) cells.   

3.3.5.2. Effect of atropine and 4-DAMP on M3R and ChAT expression  

Muscarinic receptors, in particularly M3R, play a significant role in the progression of 

CRC. The effect of atropine and 4-DAMP on M3R and ChAT expression was evaluated 

in human colon epithelial cell line T4056 and human colon cancer cell lines, HT-29 and 

LIM-2405 by immunofluorescence and western blot analyses (Figure 3.8A-C). Atropine 

treatment significantly reduced M3R expression in all cell lines (Figure 3.8A’’-C’’). 
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However, specific blocking of M3R with 4-DAMP had no effect on the expression of M3R 

in T4056 (Figure 3.8A’’’, D-F), but significantly decreased M3R in LIM-2405 (Figure 

3.8B’’’, D-F) and HT-29 (Figure 3.8C’’’, D-F) cells when compared to the control.  

Blocking all muscarinic receptors with atropine had no effect on the expression of ChAT 

in colon epithelial cell line (Figure 3.9A’’, D-F) when compared to control (Figure 3.9A’, 

D-F). Similarly, there were no significant differences between human colon cancer cell 

lines treated with atropine and control (Figure 3.9B’’, C’’, D-F). Moreover, specific 

blocking of M3R with 4-DAMP significantly augmented ChAT expression on colon 

epithelial cell line (Figure 3.9A’’’, D-F), but had no effect on the expression of ChAT in 

colon cancer cell lines (Figure 9B’’’, C’’’, D-F). Overall, M3R and ChAT are expressed in 

human colon epithelial cells and overexpressed in colon cancer cell lines. 

 

Overall, these findings correlate with the results presented in Chapter 2, where PD-L1 

expression correlates with M3R, reinforcing that M3R may play a role in the induction of 

PD-L1 by tumour cells.  
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Figure 3.6. Effect of atropine and 4-DAMP on the expression of PD-L1 in vitro 

Negative control labelling of T4056 cells is shown in (A), control (A’) and atropine and 4-

DAMP in (A” & A’’’), respectively. Negative control labelling of LIM-2405 cells is 

presented in (B), control (B’), atropine (B’’) and 4-DAMP (B’’’). HT-29 negative control is 

displayed in (C), control (C’), atropine (C’’) and 4-DAMP (C’’’).  Scale bar represents 

50µm. Western blot bands for T4056, LIM-2405 and HT-29 are shown in (D). Bar graphs 

displaying the mean fluorescence of PD-L1 (E) and western blot expression intensity (F). 

Data presented as mean ± SEM. Two-way ANOVA, *p<0.05, **p<0.01, ****p<0.0001.  
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Figure 3.7. Effect of atropine and 4-DAMP on the expression of PD-L2 in vitro 

Negative control labelling of T4056 cells is shown in (A), control (A’) and atropine and 4-

DAMP in (A” & A’’’), respectively. Negative control labelling of LIM-2405 cells is 

presented in (B), control (B’), atropine (B’’) and 4-DAMP (B’’’). HT-29 negative control is 

displayed in (C), control (C’), atropine (C’’) and 4-DAMP (C’’’).  Scale bar represents 

50µm. Western blot bands for T4056, LIM-2405 and HT-29 cells are shown in (D). Bar 

graphs displaying the mean fluorescence of PD-L2 (E) and western blot expression 

intensity (F). Data presented as mean ± SEM. Two-way ANOVA, *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001.   
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Figure 3. 8. Effect of atropine and 4-DAMP on the expression of M3R in vitro 

Negative control labelling of T4056 cells is shown in (A), control (A’) and atropine and 4-

DAMP in (A” & A’’’), respectively. Negative control labelling of LIM-2405 cells is 

presented in (B), control (B’), atropine (B’’) and 4-DAMP (B’’’). HT-29 negative control is 

displayed in (C), control (C’), atropine (C’’) and 4-DAMP (C’’’).  Scale bar represents 

50µm. Western blot bands for T4056, LIM-2405 and HT-29 cells are shown in (D). Bar 

graphs displaying the mean fluorescence of M3R (E) and western blot expression 

intensity (F). Data presented as mean ± SEM. Two-way ANOVA, *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001. 
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Figure 3.9. Effect of atropine and 4-DAMP on the expression of ChAT in vitro 

Negative control labelling of T4056 cells is shown in (A), control (A’) and atropine and 4-

DAMP in (A” & A’’’), respectively. Negative control labelling of LIM-2405 cells is 

presented in (B), control (B’), atropine (B’’) and 4-DAMP (B’’’). HT-29 negative control is 

displayed in (C), control (C’), atropine (C’’) and 4-DAMP (C’’’). Scale bar represents 

50µm. Western blot bands for T4056, LIM-2405 and HT-29 cells are shown in (D). Bar 

graphs displaying the mean fluorescence of ChAT (E) and western blot expression 

intensity (F). Data presented as mean ± SEM. Two-way ANOVA, *p<0.05, **p<0.01. 
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3.3.6. Effect of atropine and 4-DAMP on EGFR and phosphorylation of STAT3 and 
ERK kinases  

It is known that muscarinic receptors suppress cell apoptosis through the activation of 

phosphatidylinositol-3-OH (PI3) kinase and its downstream targets, protein kinase B 

(PKB)/AKT and MAPK/ERK [343, 367]. Furthermore, the activation of signalling pathways 

is essential in the development of CRC.  

To gain insights into the mechanism of actions of atropine and 4-DAMP, immunoblotting 

of pSTAT3, pERK and EGFR were performed. It is clear that atropine treatment 

significantly reduced EGFR expression in T4056, LIM-2405 and HT-29 cell lines (Figure 

3.10A and Figure 3.10B). 4-DAMP treatment significantly augmented EGFR expression 

in T4056 cells and showed a trend towards increased EGFR expression in LIM-2405 

cells, albeit not significant. However, in the HT-29 cell line, 4-DAMP significantly 

attenuated EGFR expression compared to control. In addition, both atropine and 4-DAMP 

significantly decreased pERK expression in all cell lines (Figure 3.10A and Figure 

3.10C). Interestingly, both atropine and 4-DAMP showed no effect on the phosphorylation 

of STAT3 in human colon cancer cell lines; however, both treatments significantly 

reduced pSTAT3 in normal epithelial cells (Figure 3.10A and Figure 3.10D).  

Overall, the data suggest that atropine exhibits its effect through inhibition of EGFR, pERK 

and pSTAT3 in colon epithelial cell line, whilst in human colon cancer cell lines through 

EGFR and pERK. Similarly, blocking of M3R with 4-DAMP exerts its effects via increasing 

EGFR in T4056 cells and decreasing in HT-29 cells as well as inhibiting phosphorylation 

of ERK in all cells and STAT3 in T4056 cells. Hence, these findings suggest that atropine 

and 4-DAMP suppress the expression of immunosuppressive and cholinergic markers, 

cellular proliferation, migration and induce apoptosis via EGFR/ ERK/ STAT3 signalling 

pathways.  

.  
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Figure 3.10. Signalling pathways involved in the in vitro effect of atropine and 4-

DAMP  

Western blot bands for T4056, LIM-2405 and HT-29 cells are shown in (A). The mean 

relative expression of EGRF (B), pERK (C) and pSTAT3 (D). Bar graphs are presented 

as mean ± SEM. Two-way ANOVA, *p<0.05, ***p<0.001, ****p<0.001. 
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3.4. Discussion 

  
To the best of our knowledge, this study is the first to determine the interaction between 

immunosuppressive markers expressed by cancer cells and the release of acetylcholine 

acting on muscarinic receptors in CRC. The results of this study show that 

immunosuppressive molecules, PD-L1 and PD-L2, were significantly elevated in human 

colon cancer cells compared to colon epithelial cells. Treatment with muscarinic blockers, 

4-DAMP and atropine, decreased cellular proliferation and migration similarly in both 

normal epithelial cell line and human colon cancer cells; as well as induced apoptosis. 

However, the expression levels of the markers evaluated in this study vary between 

normal epithelial cells and human colon cancer cells. These effects involve suppression 

of PD-L1 and PD-L2 expression on cancer cells via inhibition of EGFR activation and 

phosphorylation of ERK and STAT3 protein kinases.  

Overexpression of PD-L1 has been observed in a number of cancers, including CRC 

[567]. The increase in the expression of PD-L1 on tumour cells could be influenced by the 

immune microenvironment, thus allowing immune evasion. In contrary, other studies 

demonstrated that PD-L1 expression is associated with early-stage, lower tumour grade, 

absence of vascular invasion and lymph node metastasis, significantly leading to 

improved patient survival from CRCs via enhancing CD8+ T cell infiltration [528]. These 

studies suggest that the prognostic value of PD-L1 expression could be dependent on the 

subset of CRCs as well as the presence of infiltrating immune cells.  

The expression of PD-L2 in cancer is not well understood, as there are scarce studies 

identifying the role of PD-L2 in cancer progression. However, studies have reported that 

about 40% of cancer tissues from patients with CRC overexpressed PD-L2 [568]. Similar 

to PD-L1, PD-L2 is induced by the IFN- as noted in LOVO and RKO human colon cancer 

cell lines [529]. Furthermore, studies have shown that treating HCT116 human colon 

cancer cells with PD-L2 Fc fusion protein increased their invasion ability [569]. In 

esophageal adenocarcinomas, PD-L2 expression associates with smaller tumour size, 

early-stage and well-differentiated grade; however, PD-L2 is not associated with lymph 

node infiltration or metastasis or patient survival [538]. In contrary, PD-L2 expression is 
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associated with worse survival in patients with esophageal cancer [533]. In renal cell 

carcinoma, PD-L2 expression associated with shorter progression-free survival via c-

MET and vascular endothelial growth factor [534]. More recently, it was noted that PD-L2 

expression was independently associated with poor overall survival in CRC [529]. 

Furthermore, studies have shown that depending on the molecules present in the 

microenvironment, this can increase the expression of PD-L2 on immune as well as non-

immune cells [539]. The role of ACh interaction with the immune system in cancer 

development and progression has attracted attention due to its influence on tumour 

microenvironment; however, the mechanisms underlying this interaction are not well 

understood.  

The role of ACh in cancer immunomodulation is not clear; however, treatment of spleen 

cultures with ACh enhances T cell proliferation, suggesting the possible role of ACh in the 

activation of anti-cancer immune response [570, 571]. Many studies have reported that 

ACh and other constituents of cholinergic signalling, including ChAT and cholinergic 

receptors, are present in a variety of non-neuronal tissues and many cancers [368, 554, 

564, 566]. ACh plays an important role in cellular proliferation, migration and apoptosis, 

which are essential for cancer development and progression. For instance, ChAT is 

upregulated in non-small cell lung carcinoma (NSCLC) while cholinesterase enzymes are 

downregulated, leading to increased ACh in cancer tissues [572, 573]. In the present 

study, LIM-2405 and HT-29 human colon cancer cells expressed enhanced levels of 

ChAT, the main enzyme precursor required for ACh synthesis. This concurs with previous 

studies demonstrating the role of ACh in cellular proliferation and migration. The data 

herein shows that blocking muscarinic receptors resulted in decreased cellular 

proliferation and migration. Likewise, administration of a non-selective muscarinic 

receptors inhibitor, atropine, suppressed SNU-C4 colon cancer cell migration; however, 

H508 colon cancer cell migration requires the activation of MMP7 [368, 369]. M3R 

activation increases invasion and migration of NSCLC cells and enhances the release of 

interleukin (IL)-8 [367]. Furthermore, muscarinic receptors mediate proliferation of HT-29 

cell line [574], supporting our findings. The release of ACh acting on androgen receptors 

promotes SNU-449 liver cancer cell invasion and migration [363]. The activation of 

nicotinic receptors  (nAChRs) by nicotine enhances LOVO and SW620 colon cancer cell 
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invasion and metastasis [343]. Similarly, nicotine pre-treatment stimulates the activation 

of 9-nAChR, which mediates MCF-7 and MDA-MB-231 breast cancer cell migration via 

the expression of epithelial-mesenchymal transition markers [364]. The present study 

suggests that ACh might play a role in the induction of immunosuppressive molecules. 

The results of this study suggest that ACh not only stimulates the expression of PD-L1 

and PD-L2 but could explain the inconsistency in prognostic value. The findings 

presented in this chapter demonstrated that atropine and 4-DAMP significantly decreased 

the expression of PD-L1 and PD-L2 in colon cancer cells when compared to control.  

 

PD-L1 can be induced by the presence of signalling molecules such as nuclear factor-

kappa B, mitogen-activated protein kinase, phosphoinositide 3-kinase, mammalian target 

of rapamycin and Janus kinase/signal transducer and activator of transcription, providing 

a pathway for tumour evasion [575]. The present study demonstrates that atropine 

exhibits its effect through suppression of pSTAT3 and pERK in LIM-2405, whereas in 

T4056 and HT-29 through pSTAT3, pERK and EGFR. Similarly, blocking of M3R with 4-

DAMP induced apoptosis, reduced cellular proliferation, migration and the expression of 

immunosuppressive and cholinergic markers via inhibiting phosphorylation of STAT3 and 

ERK as well as suppressing activation of EGFR. Most of the immunosuppressive markers 

of interest are partially induced by INF- and oncogenic signalling pathways including 

EGFR, ERK and STAT3. Furthermore, activation of these signalling pathways is essential 

in the development of CRC. STAT3 and ERK play a key role in cancer cell proliferation 

and migration. Therefore, it is crucial to determine the effects of atropine and 4-DAMP on 

their expression. In order to determine the mechanisms by which atropine and 4-DAMP 

decrease the expression of immunosuppressive markers, immunoblotting of pERK and 

pSTAT3 were undertaken. These results indicate that atropine and 4-DAMP inhibit the 

activation of STAT3 and ERK in LIM-2405 and HT-29 cells. Hence, atropine and 4-DAMP 

decreased the expression of immunosuppressive markers via inhibiting the activation of 

EGFR and phosphorylation of pERK and pSTAT3 proteins. 
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3.5. Conclusion 

Cancer cells have evolved to suppress the immune system by increasing cell surface 

markers. Their ability to synthesise and secrete ACh promotes their proliferation, 

differentiation and migration via acting as an autocrine or paracrine hormone. Findings 

presented in this chapter demonstrate that normal epithelial cell line and human colon 

cancer cells express PD-L1 and PD-L2. Atropine and 4-DAMP attenuate the expression 

of PD-L1, PD-L2 and M3R, cellular proliferation, migration and induced apoptosis via 

inhibiting the activation of EGFR and phosphorylation of ERK and STAT3 signalling 

pathways. Thus, allowing the immune system to recognise and eliminate cancer cells. 
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CHAPTER FOUR 

 

Effect of Blocking Muscarinic Receptor 3 on the 

Expression of Immunosuppressive and 

Cholinergic Markers in Orthotopic Mouse Model 

of Colorectal Cancer  
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4.0. Abstract 

Colorectal cancer is the third leading cause of cancer-related death worldwide. Tumour 

cells have evolved to express immunosuppressive molecules allowing their evasion from 

the host’s immune system. These molecules include programmed death-ligands 1 and 2 

(PD-L1 and PD-L2). Cancer cells can also produce acetylcholine (ACh), which plays a 

role in tumour development. Moreover, tumour innervation can stimulate vascularisation 

leading to tumour growth and metastasis. The effects of atropine and muscarinic receptor 

3 (M3R) blocker, 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP), on 

cancer growth and spread were evaluated in vitro using murine colon cancer cell line, CT-

26, and in vivo in an orthotopic mouse model of colorectal cancer. Molecular mechanisms 

and signalling pathways involved in these effects were studied. In the in vitro model, 

atropine and 4-DAMP significantly inhibited CT-26 cells proliferation in a dose dependent 

manner and induced apoptosis. Atropine attenuated the expression of 

immunosuppressive and cholinergic markers via inhibition of EGFR/AKT/ERK signalling 

pathways. However, 4-DAMP showed no effect on the expression of immunosuppressive 

markers (PD-L1 and PD-L2) on CT-26 cells but attenuated cholinergic markers by 

suppressing phosphorylation of AKT and ERK. Blocking of M3R in vivo decreased tumour 

growth, expression of immunosuppressive, cholinergic and angiogenic markers through 

inhibition of AKT and ERK phosphorylation, leading to an improved immune response 

against cancer. These findings suggest that there is crosstalk between the cholinergic 

system and the immune system during cancer development and the evasion of cancer 

from the host’s immunity is influenced by the cholinergic system. Taken together, these 

findings suggest that tumour microenvironment constituents might influence the effects 

of M3R blocker on the expression of immunosuppressive markers. Thus, targeting both 

immunosuppressive and cholinergic markers may be beneficial to colorectal cancer 

treatment. 
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4.1. Introduction 

Colorectal cancer (CRC) is ranked third amongst the most commonly diagnosed cancers 

and is responsible for 862 000 deaths worldwide [2, 576, 577]. Due to the complex nature 

of CRC and the lack of early clinical symptoms, it is often detected in the advanced 

stages. Despite the incessant advancement in treatment technology, the 5-year survival 

rate of patients with metastatic disease remains at less than 10% [578, 579], which could 

be partly due to the lack of specific markers for early diagnosis, cancer progression and 

patients’ prognosis. Thus, it is indispensable to develop effective diagnostic and 

therapeutic approaches. 

Resistance against cancer cells and their annihilation is reliant on the induction of 

cytotoxic CD8+ T cells and their differentiation into cytolytic and T helper-1 (Th1) cells. 

Cancer cells can avoid host’s immune scrutiny by using a number of defensive 

mechanisms, including upregulation of immunosuppressive factors, such as programmed 

death-ligand 1 and/or 2 (PD-L1 and PD-L2), downregulation of major histocompatibility 

complex (MHC)-I and co-stimulatory molecules, secretion of angiogenic factors, such as 

vascular endothelial growth factor (VEGF) and platelet-derived growth factor receptor  

(PDGFR), the AXL receptor tyrosine kinase (AXL), anti-inflammatory cytokines, i.e. 

interleukin (IL)-10 and transforming growth factor-β (TGF-β), thus preventing activation of 

T cells, resulting in cancer invasion [509, 510, 512, 514, 580]. Cancer cells overexpress 

PD-L1 and/or PD-L2 on their surface, which upon binding to programmed death protein 

1 (PD-1) expressed by activated CD8+ T cells leads to their  inhibition and/or apoptosis 

[581]. Interestingly, PD-L1 serves as an anti-apoptotic factor on cancer cells, leading to 

resistance of lysis by CD8+ T cells as well as apoptosis [28].  

The role of PD-L1 overexpression remains contradictory, with some papers reporting that 

overexpression associate with poor prognostic outcomes while other papers report better 

survival outcomes. For instance, high PD-L1 expression associates with tumour 

metastasis, poor prognosis and shorter survival in CRC patients [62, 527]. Similarly, PD-

L1 expression in stromal or tumour cells is inversely correlated with FOXP3+ cell density 

in CRC patients, further reinforcing the fundamental role in modulating regulatory T cells 
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(Treg) in the tumour microenvironment [69]. More recently, in cohort studies of 181 CRC  

patients, PD-L1 expression was associated with high CD8+ tumour-infiltrating 

lymphocytes (TILs), BRAF mutation, microsatellite instability (MSI), lower frequency of K-

ras and poor prognosis [582]. In contrast, other studies have suggested that the 

expression of PD-L1 is associated with good patients’ survival outcomes. For example, 

PD-L1 expression correlates with elevated TIL infiltration and longer recurrence-free 

survival in breast cancer and pulmonary adenocarcinoma patients [57, 583, 584].  

The role of PD-L2 in human cancers is not as well studied as PD-L1. PD-L2 is expressed 

by a number of immune and non-immune cells such as T cells, dendritic cells and 

macrophages, depending on the microenvironmental stimuli [517]. In breast cancer 

patients, expression of PD-L2 correlates with overexpression of human epidermal growth 

factor receptor 2 (HER-2) and estrogen receptor (ER)-negative tumours, recurrence at 

distant sites and younger patients’ age [584]. In CRC, PD-L2 expression is independently 

associated with worse overall survival [529].  

In addition to forming immunosuppressive microenvironment, there is compelling data 

suggesting that there is bi-directional signalling between the nervous system and the 

tumour microenvironment via the release of neurotransmitters, neuropeptides and other 

factors, implicating their influence on tumour development [585]. Neurotransmitters play 

an essential role in the activation of signalling pathways such as phosphoinositide 3-

kinase (PI3K), mitogen-activated protein kinase (MAPK) and protein kinase B (AKT) 

which are related to cell proliferation and survival [586]. For example, neurotransmitter 

acetylcholine (ACh) can stimulate CRC cell proliferation, invasion, vascularisation and 

migration by binding to muscarinic receptor 3 (M3R) through activation of the epidermal 

growth factor receptor (EGFR), PI3K, extracellular signal-regulated kinase (ERK)1/2 and 

AKT pathways as well as alpha 7 nicotinic receptor (7nAChR) through activation of 

Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (STAT3) 

pathway [520-523, 587-589]. In addition, cancer cells can also overexpress choline 

acetyltransferase (ChAT), a precursor enzyme required for ACh synthesis, and vesicular 

acetylcholine transporter (VAChT), essential for transfer of ACh from the cytoplasm into 

synaptic vesicles [521, 590].  
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Furthermore, the cholinergic nervous system plays an important role in tumour 

angiogenesis and metastasis [510, 580]. Nicotine stimulation enhances VEGF expression 

and micro-vessel density in human colon cancer xenografts in nu/nu (nude) mice [204]. 

Administration of  autoantibodies against muscarinic ACh receptors (mAChRs) in mouse 

models of breast cancer mediated tumour angiogenesis via activation of mAChRs through 

the release of VEGF-A [206]. In addition, administration of muscarinic agonist, carbachol, 

in the presence or absence of various muscarinic antagonists shows an increase in VEGF 

expression as noted in LMM3 murine mammary adenocarcinoma-bearing BALB/c mice 

[207].  

Overall, the synergism of these neuro-immune markers has yet to be explored as 

potential targets in CRC development. In this study, using an orthotopic mouse model of 

CRC, we determined (i) the effect of blocking M3R on tumour growth, (ii) expression of 

immunosuppressive, cholinergic and angiogenic markers and (iii) presence of tumour-

infiltrating immune cells. The influence of cholinergic signalling on the expression of 

immune checkpoint molecules may play an essential role in cancer development; 

therefore, it is necessary to understand the synergism of these neuro-immune markers in 

vivo. 
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4.2. Materials and Methods 

4.2.1. Mice 

Male BALB/c mice aged 5-8 weeks (n=16) were purchased from the Animal Resources 

Centre and housed in groups of 4 per cage. All animals were kept in a temperature-

controlled environment with 12-hour (hr) light/dark cycle at approximately 22°C with 

access to food and water. The mice were allowed to acclimatise for at least one week 

before undergoing surgery. All animal experiments in this study complied with the 

guidelines of the National Health and Medical Research Council (NHMRC) Australian 

Code of Practice for the Care and Use of Animals for Scientific Purposes under the 

approval of the Victoria University Animal Experimentation Ethics Committee (ethics 

number AEETH 15-011). All efforts were made to lessen animal suffering. 

4.2.2. Cell culture 

As previously described in Chapter 3, murine colorectal cancer cell line (CT-26) was 

cultured in Roswell park memorial institute (RPMI) 1640 culture media supplemented 

with 10% fetal bovine serum, 1% penicillin-streptomycin and 1% Glutamine, at 37°C, in 

5% CO2 and 95% air atmosphere. Passage of cells was conducted with 0.25% trypsin 

and 0.02% ethylenediamine tetraacetic acid (EDTA) every 3-4 days.  When cells grew 

into confluent or semiconfluent monolayers in the 75cm2 medium flasks, they were either 

passaged or used.    

4.2.3. Cell viability  

The water-soluble tetrazolium-1 (WST-1) assay kit (Roche Diagnostics GmbH, Germany) 

was used to determine the viability of CT-26 cells. WST-1 is cleaved to form formazan 

dye via a complex cellular interaction at the cell surface. This interaction is contingent on 

the glycolytic nicotinamide adenine dinucleotide phosphate (NADPH) production of the 

viable cells. Hence, the amount of formed formazan dye correlates to the number of viable 

cells in the culture. CT-26 cells were seeded and cultured at 1×104 cells per well in 96 

well plates for 24hrs. Cells were then treated with various concentrations of the  general 

muscarinic receptor blocker, atropine (Sigma-Aldrich, Australia), selective M3R blocker, 
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1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP) (Abcam, Australia), 

cholinergic agonist, carbachol (Abcam, Australia) and acetylcholinesterase inhibitor, 

donepezil (Abcam, Australia) for 8hrs. All treatments were performed in triplicates, and 

three independent experiments were conducted. WST-1 reagent (10µL) was added to 

each well and incubated at 37oC for 1hr. Cellular proliferation at the absorbance of 450nm 

was measured using a microplate reader (Varioskan Flash, Thermo Scientific, Australia). 

4.2.4. Annexin V apoptosis assay 

CT-26 cells were cultured overnight in six well plates at 5x105 cells per well. Cells were 

treated with 100µM of atropine and 4-DAMP for 8hr. Cells were collected and 

resuspended in fluorescence-activated cell sorting (FACS) buffer and labelled with 100µL 

per well with Annexin V at 1:1,000 dilution and 0.5µg/mL of propidium iodide (PI). Flow 

cytometry was utilised to determine the percentage (%) of apoptotic and necrotic cells. 

All treatments were performed in duplicates, and two independent experiments were 

conducted. 

4.2.5. Choline/acetylcholine assay   

The choline/acetylcholine assay kit (Abcam, Australia) was used to measure the 

concentration of choline in CT-26 cell lysates. The assay was carried out in accordance 

with the instructions provided by the manufacturer. Briefly, CT-26 (1x106) cells were 

cultured overnight, after which cells were treated with 100µM of cholinergic antagonists, 

atropine and 4-DAMP, and 500µM of acetylcholinesterase inhibitor, donepezil. Cells were 

lysed in 500µL choline assay buffer before commencing choline measurements using a 

microplate reader (Varioskan Flash, Thermo Scientific, Australia) at an absorbance of 

570nm. All treatments were performed in duplicates, and two independent experiments 

were conducted. 

4.2.6. Orthotopic implantation of CT-26 tumour cells 

Mice were anaesthetised using xylazine (10mg/kg), and ketamine (80mg/kg) injected 

intraperitoneally. The level of anaesthesia during the surgery was monitored using the 

paw pinch reflex test. The eyes of the animals were treated with ViscoTears to protect 
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them from drying out during the surgery. Mice were placed on an operating table on a 

heat mat (30-36°C), and all procedures were performed under aseptic conditions. All 

instruments were autoclaved and only opened when ready to operate. The abdomen was 

shaved and swabbed with 70% ethanol and covered with sterile film. A small midline 

abdominal incision was made, and the caecum was exteriorised on sterile gauze. Matrigel 

(25μL) containing CT-26 cell suspension (1 x 106 cells) was injected into the caecum wall 

of BALB/c mice using an insulin needle. After injection, the abdominal muscle wall was 

sutured using polygalactone and skin using surgical silk or dissolvable skin sutures. The 

incision area was sterilised by saline followed with iodine. Mice were given an analgesic 

Temgesic/Buprenorphine (0.05mg/kg) subcutaneously. Mice were then monitored 

visually during recovery time (about 1-1.5hrs) and, when fully conscious, they were 

returned to an animal holding room in the animal facility.  

4.2.7. Intraperitoneal injections and tissue collection     

After five days post-surgery, vehicle BALB/c mice received intraperitoneal injection of 

0.1% dimethyl sulfoxide (DMSO) treatment and study group received 10mg/kg of 1,1-

dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP) per a day [587]. The volume of 

the administered solution was calculated per body weight with the maximum volume of 

200μL per injection. Mice were culled at 28 days post-surgery via lethal injection of 

phenobarbital and tumours were removed, weighed and used for western blot, flow 

cytometry, proteome profiler array and immunohistochemistry. Tumour tissues were used 

to assess angiogenesis, tumour-infiltrating immune cells, and expression of 

immunosuppressive and cholinergic markers. Tumour tissues used for flow cytometry 

analysis were collected into RPMI media, for western and proteome profiler arrays were 

snap-frozen in liquid nitrogen and samples used for immunohistochemistry were placed 

in Zamboni’s fixative (2% formaldehyde 0.2% picric acid). 

4.2.8. Immunohistochemistry in cross-sections 

Tumour tissues collected from vehicle-treated and 4-DAMP-treated groups were fixed 

with Zamboni’s fixative overnight at 4°C. Next day, fixative was cleared off by washing 

samples for 10 mins three times with DMSO (Sigma-Aldrich, Australia) followed by three 
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times 10 mins washes with phosphate buffered saline (PBS). Tissues were then 

embedded in optimum cutting temperature medium (OCT) and frozen using 2-methyl 

butane (isopentane) and liquid nitrogen. Samples were stored in -80°C freezer until cryo-

sectioned. Tissues were cut at 10μm section thickness using a Leica CM1950 cryostat 

(Leica Biosystems, Germany), adhered to slides and allowed to dry at room temperature 

for 1hr before commencing staining process. OCT was washed off with PBS containing 

0.01% Triton X-100 (PBST) for 5 mins. Using a liquid Blocker Super Pap Pen, samples 

were outlined to reduce the volume of antibody used. The endogenous activity was 

blocked using 10% normal donkey serum for 1h at room temperature, followed by PBST 

washes. Samples were then incubated with primary antibodies (Table 4.1) against 

immunosuppressive, cholinergic and angiogenic markers overnight at 4°C. Sections were 

then washed in PBST before incubation with secondary antibodies labelled against 

primary antibodies (Table 4.2) for 2hrs at room temperature in the dark, followed by PBST 

washes. The sections were incubated with 4′,6-diamidine-2′-phenylindole dihydrochloride 

(DAPI) (D1306, Life Technologies, Australia) for 1min.  Sections were given final washes 

in PBST and then mounted with DAKO mounting media (Agilent Technologies, Australia). 

Coverslips were placed over each section and left to dry overnight before imaging. 

Sections were viewed under a Nikon Eclipse Ti laser scanning confocal microscope 

(Nikon, Japan), whereby eight randomly chosen images from each sample were captured 

with a 40× objective and analysed using image analysis software (Nikon, Japan).  

4.2.9. Immunoperoxidase staining  

Tumour samples were collected and placed in Zamboni’s fixative overnight and 

processed as described in Section 4.2.8. Using a liquid blocker super pap pen, samples 

were outlined to reduce the volume of antibody used. Endogenous activity was blocked 

using 3% hydrogen peroxide for 30 mins. Samples were then incubated overnight at room 

temperature with primary antibody against CD31 (1:100). After PBST washes, samples 

were incubated at room temperature for 2hr with secondary antibodies at 1:250 dilution. 

CD31 antibody was diluted in 0.5% bovine serum albumin (BSA)-RPMI. Samples were 

incubated with developer reagent 3,3′-diaminobenzidine tetrahydrochloride (DAB) liquid 

substrate in peroxidase buffer for 30 mins. Samples were counterstained with Mayers 
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Haematoxylin in a beaker, rinsed in tap water, Scott’s tap water, 100% ethanol and 

xylene. Samples were then mounted in an aqueous mounting medium and imaged using 

slide scanning imaging systems. 

4.2.10. Western blot  

Proteins extracted from CT-26-induced tumour tissues and CT-26 cells were evaluated 

for the expression of immunosuppressive, cholinergic and angiogenic markers as well as 

cell signalling pathways, phospho signal transducer and activator of transcription 3 

(pSTAT3), phospho extracellular signal-regulated kinase (pERK½), phospho 

serine/threonine kinase or protein kinase B (pAKT) and epidermal growth factor receptor 

(EGFR) by western blot. CT-26 cells were incubated with 100µM atropine and 4-DAMP 

for 8hr. After treatments, cells were collected and lysed in radioimmunoprecipitation assay 

(RIPA) buffer (pH 7.4, 150mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% NP-40 

in PBS, Sigma) containing protease and phosphatase inhibitors cocktail (Roche Applied 

Science, Switzerland). For tumour samples, 100mg of tumour tissues per mouse were 

weighed, and tumour samples from 3 mice per band for the first two bands and tumour 

samples from 2 mice for the third band were pooled together. Samples were then 

homogenised in 500µL of RIPA buffer containing protease and phosphatase inhibitors 

cocktail. Cellular proteins (20µg) from CT-26 cell line and 25µg protein from tumour 

samples were separated by 8% to 12% sodium dodecyl sulphate (SDS)/polyacrylamide 

gel electrophoresis. The separated fragments were transferred to 0.22µm polyvinylidene 

fluoride membranes, which were blocked with 5% skim milk in PBS containing 

0.1%Tween 20 and incubated overnight at 4oC in platform shaker at 40rpm speed. The 

membranes were incubated with primary antibodies (Table 4.1) overnight at 4oC. The 

membranes were then incubated with HRP-conjugated secondary antibodies (Table 4.2) 

for 2hrs at room temperature followed by three times PBS-0.1% Tween 20 washes. 

Glyceraldehydes-3-phosphate dehydrogenase (GADPH) was used as a loading control. 

Protein detection was performed using enhanced chemiluminescence reagents. 

Chemiluminescent signal was captured using the FluorChem FC2 system. The 

expression level of each protein was quantified using ImageJ software. 
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4.2.11. Proteome profiler mouse phospho-RTK array kit  

The Proteome Profiler Mouse Phospho-RTK Array Kit is a membrane-based 

immunoassay, which captures antibodies spotted in duplicate on nitrocellulose 

membranes binding to specific target proteins present in the sample. The assay was 

carried out in accordance with the instructions provided by the manufacturer. Briefly, 

tumour samples from each group were pooled and lysed in Lysis Buffer 17 prepared with 

protease inhibitors. Samples were mixed by pipetting up and down to resuspend, and 

lysates were gently rocked at 4°C for 30 mins on a rocking platform shaker. Tumour 

lysates were centrifuged at 1500rpm for 5 mins at 4°C and supernatants were transferred 

into the clean test tubes. Array membranes were placed onto 4-well multi-dish and 

incubated with Array Buffer 1 for 1hr at room temperature on a rocking platform shaker. 

After 1hr incubation, Array Buffer 1 was aspirated out, and membranes were incubated 

with tumour lysates overnight at 4°C on a rocking platform shaker. Membranes were then 

washed with 1x Wash Buffer for 3x10 mins. Membranes were incubated with the anti-

phospho-tyrosine-HRP antibody at room temperature for 2hr on a rocking platform 

shaker. Membranes were then washed with 1x Wash Buffer for 3x10 mins. Membranes 

were then incubated with chemiluminescence reagent mix, and chemiluminescent signal 

was captured using the FluorChem FC2 system. 

4.2.12. Flow cytometric cell staining 

On the day of culls, tumours were collected into RPMI media, and tumour tissues were 

processed into single-cell suspensions for FACS analysis. Single-cell suspensions were 

performed by mechanically dissecting tumours into small pieces and incubating with 2mL 

of collagenase (0.1%w/v in 1mL of α-MEM) at 37°C for 2hr with 30 mins intervals of 

mechanical dissociation. Tumour suspensions were filtered with 40µm cell strainers 

Falcon® into 50mL Falcon® tubes and were then centrifuged at 1500rpm for 5 mins at 

4°C. Cell pellets were incubated with 1x red blood cell lysing buffer for 3mins at 37°C. 

Cell pellets were then resuspended in 1mL of FACS buffer to create a single cell 

suspension and accounted using a hemocytometer. 
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Viable cell pellets were incubated with two different antibody cocktails (Table 4.3). 

Cocktail 1 contained leukocyte infiltration markers (CD45, CD11b, CD4, CD8a, 

CD193(CCR3), Siglec-F and Fc Block), while cocktail 2 was comprised of (CD45, CD11b, 

CD19, CD206, CD115, F480, Ly-6C, Ly-6G and Fc Block). Tumour cells (10x106) cells 

(400µL) were aliquoted in BD Falcon® FACS tubes. Cells were centrifuged at 1300rpm 

for 3mins at 4°C. Cells were then incubated with 200µL of antibody cocktails for 1hr at 

4°C. After incubation, cells were centrifuged at 1300rpm for 3 mins at 4°C and 

supernatants aspirated. Cells were then resuspended in 200µL FACS buffer and filtered 

through 35µm filters in a 5mL BD Falcon® tube. Prior to FACS analysis, cells were 

incubated with viability solution, 7-amino-actinomycin D (7-AAD, 1:20) to gate on the 

viable cell populations. 
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Table 4.1. Primary antibodies used in this study 

Primary antibodies 

Markers Host Species & 

Clonality 

Dilution Source Catalogue 

no. 

PD-L1 Mouse, monoclonal  1:500 Abcam, Australia ab210931 

PD-L2 Rabbit, polyclonal 1:500 Abcam, Australia ab200377 

M3R Rabbit, polyclonal 1:500 Abcam, Australia ab126168 

7nAChR Mouse, monoclonal 1:500 Novus, Australia 7F10G1 

ChAT Goat, polyclonal 1:500 Abcam, Australia ab134021 

VAChT Sheep, polyclonal 1:500 Abcam, Australia ab31544 

FOXP3 Mouse, monoclonal 1:500 Abcam, Australia ab20034 

VEGF Rabbit, polyclonal 1:500 Abcam, Australia ab46154 

CD31 Rat, monoclonal 1:500 Abcam, Australia ab7388 

TGF- Rabbit, polyclonal 1:500 Abcam, Australia ab155264 

EGFR Rabbit, monoclonal 1:1,000 Cell signalling, 

Australia 

#4267 

pAKT Rabbit, monoclonal 1:1,000 Cell signalling, 

Australia 

#4060 

pERK Rabbit, monoclonal 1:1,000 Cell signalling, 

Australia 

#3192 
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Table 4.2. Secondary antibodies used in this study 

Secondary antibodies 

Alexa Fluor 

488 

Anti-goat 

Anti-sheep 

Anti-rat 

1:250 Jackson ImmunoResearch 

Laboratories, United States 

Alexa Fluor 

594 

Anti-rabbit 1:250 Jackson ImmunoResearch 

Laboratories, United States 

Alexa Fluor 

647 

Anti-mouse 1:250 Jackson ImmunoResearch 

Laboratories, United States 

Anti-

mouse 

IgG HL HRP 1:10,000 Abcam, Australia 

Anti-rabbit IgG HL HRP 1:10,000 Abcam, Australia 

Anti-rat IgG HL HRP 1:10,000 Abcam, Australia 

Anti-goat IgG HL HRP 1:10,000 Abcam, Australia 
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Table 4.3. Antibodies used for flow cytometry experiments in this study 

Cocktail 1 

Cells Primary antibody Conjugate Host species Dilution 

Pan-leukocyte 
marker 

CD45 FITC Mouse 1:400 

Granulocytes CD11b PE-Cy7 Mouse 1:400 

Cytotoxic T cells CD8a APC-Cy7 Mouse 1:200 

Helper T cells CD4 BV480 Mouse 1:400 

Gamma delta (γδ) 
T cells 

γδ-TCR 
 

PE Mouse 1:400 

Eosinophils Siglec-F, CD193  BV421, 
AF647 

Mouse 1:50 

Cocktail 2 

Pan-leukocyte 
marker 

CD45 FITC Mouse 1:400 

Granulocytes CD11b PE-Cy7 Mouse 1:400 

Macrophages F4/80, CD206 PE, AF647 Mouse 1:100, 
1:50 

Monocytes CD11b, Ly6C, 
Ly6G, CD115 

BV480 Mouse 1:400 

B cells CD19 APC-Cy7 Mouse 1:800 

Neutrophils Ly6C, Ly6G PE-CF594 
BV421 

Mouse 1:50 
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4.2.13. Data analysis 

Images were captured on a Nikon Eclipse Ti multichannel confocal laser scanning system 

(Nikon, Japan). Z-series images were acquired at a nominal thickness of 1µm (1024 x 

1024 pixels).  Image J software (National Institute of Health, Bethesda, MD, USA) was 

employed to convert images from RGB to greyscale 8 bit binary; particles were then 

analysed to obtain the percentage area of immunoreactivity [591]. All 

immunohistochemistry images and western blot bands were quantified and statistical 

analysis was performed by Student’s t-test.  

For flow cytometry analysis, the characterisation of tumour-infiltrating immune cells was 

performed and quantified by flow cytometry (BD FACS Aria I, BD Bioscience, CA, USA) 

with the aid of BD FACs DIVA software (BD Bioscience, CA, USA.). Two hundred 

thousand (200,000) events were collected per samples and analysed by BD FACS DIVA 

Software. As each antibody conjugate produces a distinctive emission spectrum, each 

experiment employed single colour compensation controls to optimise photo-multiplier 

tube (PMT) voltages and calculate spectral overlap (where applicable). Excel, SPSS and 

Prism (GraphPad software, La Jolla, CA, USA) were utilised to aid in the statistical 

analysis and p<0.05 was considered significant. 

  



172 
 

4.3. Results 

4.3.1. Effect of blocking muscarinic receptors on CT-26 cells proliferation  

The effect of blocking all muscarinic receptors on the proliferation of CT-26 cells was 

assessed using WST-1 assay following treatment with various concentrations of atropine 

at different time points. Three independent experiments were performed in triplicates. 

Atropine significantly decreased CT-26 cell proliferation at 1-8hrs compared to 24-48hrs 

(Figure 4.1A) with 300-1,000µM being most significant. It appears that atropine 

decreases proliferation in a dose-dependent rather than a time-dependent manner. A 

trend of lower proliferation in a dose-dependent manner was noted at 24-48hrs. In order 

to compare the effects of atropine and a selective M3R blocker, 4-DAMP, cells were 

incubated with 4-DAMP and atropine for 8hrs and no significant differences were noted 

between atropine and 4-DAMP with the exception at 600µM and 700µM doses (Figure 

4.1B). However, there was a trend of 4-DAMP being less effective compared to atropine. 

In addition, cells were incubated with carbachol, which activates cholinergic receptors and 

donepezil, which prevents the breakdown of ACh, for 8hrs with various concentrations 

and dose curve was generated (Figure 4.1C). Incubation with a cholinergic agonist, 

carbachol, and acetylcholinesterase inhibitor, donepezil, reversed the effect of 4-DAMP 

and atropine. There was no significant difference between carbachol and donepezil at 50-

500µM; however, at high doses (600-1,000µM), differences were noted. These findings 

further enforced the vital role of ACh in cellular proliferation.  

In all subsequent experiments, cells were treated with 100µM of atropine and 4-DAMP 

for 8hrs as this concentration and time point induced prominent inhibition of cell 

proliferation and viability. Since no difference between the effects of carbachol and 

donepezil was observed, only donepezil at 500µM dose was applied for 8hhrs in all 

subsequent experiments.  
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4.3.2. CT-26 cells can produce choline required for ACh synthesis  

Colon cancer cells are capable of synthesising and releasing ACh [587, 592-594]. To 

determine whether mouse colon cancer CT-26 cells were able to synthesise ACh, the 

amount of choline, a precursor for ACh, was measured in cell lysates (1x106 cells). 

Choline/acetylcholine assay kit was used to measure the amount of choline in cells 

lysates as described in the Materials and Methods section. It was noted that CT-26 cells 

can produce a higher amount of choline when treated with donepezil compared to control, 

4-DAMP and atropine treatments (Figure 4.2). There were no significant differences 

observed between choline released in the cells treated with atropine and 4-DAMP when 

compared to the control. Overall, atropine and 4-DAMP had no effect on the CT-26 cells’ 

ability to produce choline; however, donepezil increased choline production.  

4.3.3. Effect of atropine and 4-DAMP on apoptosis in CT-26 cells 

Apoptosis is a natural cellular process that safeguards all the body systems. As reviewed 

in Chapter 1, tumour cells must be resistant to anoikis (evasion from apoptosis) which is 

one of the essential steps in cancer metastasis [580]. Studies have demonstrated that 

several neurotransmitters, including ACh play a significant role in the regulation of cell 

apoptosis [510]. To determine whether atropine and 4-DAMP induce apoptosis or 

necrosis in CT-26 cells, Annexin V and PI were used and analysed by flow cytometry. 

Blocking all muscarinic receptors with atropine and muscarinic receptors 3 with 4-DAMP 

induced apoptosis in CT-26 cells compared to control (Figure 4.3A-C). In fact, 93.6% of 

atropine-treated and 76.6% of 4-DAMP-treated cells underwent apoptosis compared to 

1.9% of control cells. 
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Figure 4.1. Effect of atropine on CT-26 cell proliferation 

CT-26 cells treated with different concentrations of atropine with at different time points 

(A). Number of viable cells after 8hrs incubation with various concentrations of atropine 

and 4-DAMP (B). CT-26 cells treated with various concentrations of carbachol and 

donepezil for 8hrs (C). Values in A, B and C are mean ± standard error of the mean 

(SEM) from at least three independent experiments performed in triplicate wells 

 

 



175 
 

  



176 
 

 

 

 

 

 

 

 

Figure 4.2. Effect of cholinergic antagonists and donepezil on choline production 

in CT-26 cells 

The amount of choline was measured in CT-26 cells treated with atropine, 4-DAMP and 

donepezil. Values presented as mean ± SEM from at least two independent 

experiments. Two-way ANOVA, followed by Tukey’s multiple comparison test, was 

used and considered significant when *p<0.05. 
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Figure 4.3. Effect of atropine and 4-DAMP on apoptosis of CT-26 cells  

Annexin V-FITC/PI staining of CT-26 murine colon cancer cell line treated with control 

(A), atropine (B) and 4-DAMP (C). Two independent experiments were performed in 

triplicates.  
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4.3.3. Effect of atropine and 4-DAMP on the expression of immunosuppressive 

and cholinergic markers in an in vitro model 

4.3.3.1. Effect of atropine and 4-DAMP on PD-L1 and PD-L2 expression in CT-26 

cells 

In Chapter 3, it was noted that human colon cancer cells overexpressed PD-L1 and PD-

L2 when compared to normal epithelial cells, and this was dampened by atropine and 4-

DAMP treatment. In this chapter, the effects of atropine and 4-DAMP were determined in 

murine colon cancer cell line, CT-26. To determine whether atropine and 4-DAMP can 

influence the expression of PD-L1 and PD-L2, CT-26 cells were pre-treated with 100µM 

atropine and 4-DAMP for 8hr prior to protein expression via western blot staining. Atropine 

significantly decreased the expression of PD-L1 (Figure 4.4A and B). Similarly, atropine 

attenuated PD-L2 expression compared to control (Figure 4.4A and C). However, 

specific blocking of M3R with 4-DAMP had no effect on CT-26 expression of PD-L1 and 

PD-L2 (Figure 4.4A-C).  

4.3.3.2. Effect of atropine and 4-DAMP on M3R and ChAT expression in CT-26 

cells 

Muscarinic receptors expressed by colon cancer cells play in tumour growth and 

progression. CT-26 cells produce choline, but the expression of ChAT, an enzyme 

required for ACh synthesis, and M3R were not determined. Here, we assessed the 

expression of ChAT and M3R in CT-26 cells and the effects of muscarinic receptor 

blockade on their expression. Western blot was employed to evaluate the effects of 

atropine and 4-DAMP on CT-26 ability to express M3R and ChAT. The results show that 

CT-26 cells have prominent expression of M3R and ChAT. Atropine and 4-DAMP 

treatments significantly reduced M3R expression (Figure 4.5A and B). Similarly, atropine 

and 4-DAMP treatment significantly attenuated ChAT expression (Figure 4.5A and C). 
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4.3.4. Effect of atropine and 4-DAMP on the phosphorylation of kinases and EGFR 

activation in CT-26 cells 

There is a close link between M3R expression and phosphorylation of AKT and ERK as 

well as activation of EGFR [587]. Thus, in the present study, the effect of atropine and 4-

DAMP on the phosphorylation of AKT and ERK and the activation of EGFR was evaluated 

in CT-26 cells in vitro. The results showed that atropine inhibits the activation of EGFR 

and suppresses phosphorylation of AKT and ERK in CT-26 cells (Figure 4.6A-D). 

Similarly, 4-DAMP suppresses phosphorylation of AKT and ERK (Figure 4.6A, C and D), 

whereas, no significant effect on EGFR was observed (Figure 4.6A and B). These 

findings suggest that atropine exhibits its effect through inhibition of EGFR/AKT/ERK 

pathway, while 4-DAMP exerts its effect via suppression of AKT/ERK signalling pathway. 
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Figure 4.4. Effect of atropine and 4-DAMP on the expression of immunosuppressive 

markers in CT-26 cells 

Western blot bands for PD-L1 and PD-L2 expression in CT-26 cells treated with atropine 

and 4-DAMP (A). Bar graphs displaying the mean intensity of PD-L1 (B) and PD-L2 (C) 

expression in CT-26 cells treated with 4-DAMP and atropine. Data presented as mean ± 

SEM. Two-way ANOVA, *p<0.05.  
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Figure 4.5. Effect of atropine and 4-DAMP on the expression of cholinergic markers 

in CT-26 cells 

Western blot bands for M3R and ChAT expression in CT-26 cells treated with atropine 

and 4-DAMP (A). Bar graphs displaying the mean intensity of M3R (B) and ChAT (C) 

expression in CT-26 cells treated with 4-DAMP and atropine. Data presented as mean ± 

SEM. Two-way ANOVA, *p<0.05, **p<0.01.  
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Figure 4.6. Effect of atropine and 4-DAMP on the expression of protein kinases in 

CT-26 cells 

Western blot bands for EGFR, pAKT and pSTAT3 expression in CT-26 cells treated with 

atropine and 4-DAMP (A). Bar graphs displaying the mean intensity of EGFR (B), pAKT 

(C) and pERK (D) expression in CT-26 cells treated with 4-DAMP and atropine. Data 

presented as mean ± SEM. Two-way ANOVA, *p<0.05, **p<0.01.  
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4.3.5. Effect of 4-DAMP on tumour growth in vivo in an orthotopic mouse model 

CRC  

Mouse CT-26 colon cancer cells can form fast-growing and extremely vascularised 

tumours, which make it useful for assessing the effects of therapeutic agents and their 

mechanisms of action [595]. To assess whether blocking M3R influences CRC tumour 

growth, CT-26 cells were implanted into the mouse caecum wall. Five days post-surgery, 

tumour-bearing mice were injected with either DMSO (vehicle solution), or 4-DAMP 

intraperitoneally daily for 28 days. Mice were culled, tumours removed, and tumour 

weight, size and volume were measured. In addition, tumours around the caecum were 

counted and collected. 4-DAMP significantly attenuated tumour size compared to DMSO 

treatment (Figure 4.7A and B). There was a significant reduction of tumour weight in the 

4-DAMP-treated compared to DMSO-treated mice (Figure 4.7C). In addition, treatment 

with 4-DAMP significantly decreased tumour volume compared to DMSO (Figure 4.7D). 

Furthermore, tumour-bearing mice treated with DMSO had more polyps and invasive 

tumours around the caecum compared with 4-DAMP-treated mice (Figure 4.8A-C, 

difference between values (∆): -22.00±4.40, p<0.001). 
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Figure 4.7. Effect of 4-DAMP on tumour growth in vivo 

Images of tumour size from DMSO-treated group (A) and 4-DAMP-treated group (B). Bar 

graphs displaying the mean weight (C) and volume (D) of tumours collected from DMSO 

and 4-DAMP-treated groups. Data presented as mean ± SEM, n=8 mice per group. 

Student’s t-test, ****p<0.0001.  
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Figure 4.8. Effect of 4-DAMP on tumour polyps’ formation 

The caecum samples removed from tumour-bearing mice treated with DMSO (A) and 4-

DAMP (B). Bar graph displaying the mean number of tumour polyps from DMSO and 4-

DAMP-treated groups (C). Data presented as mean ± SEM, n=8 mice per group. 

Student’s t-test, ***p<0.001.  
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4.3.6. Expression of immunosuppressive and cholinergic markers in tumours 

from an in vivo model of CRC 

4.3.6.1. Expression of immunosuppressive markers in vivo  
 

Studies identifying the role of PD-L1 expression in CRC have been controversial. Some 

studies associate PD-L1 expression with poor prognosis, whereas others with good 

prognosis [48, 392, 516]. Infiltration of immune cells within the tumour microenvironment 

has been highly implicated in the disease progression and prognosis. In addition, the 

expression of PD-L1 inversely correlates with FOXP3 in tumour samples from CRC 

patients [596]. Hence, PD-L1 and FOXP3, a marker used to label the regulatory T cells, 

were both evaluated in tumour samples from mice with CT-26 cell-induced CRC. The 

results demonstrated that in vivo treatment of tumour-bearing mice with M3R blocker, 4-

DAMP, significantly reduced the expression of PD-L1 compared to DMSO-treated 

controls (Figure 4.9A’, B’ C and E, ∆: -22.88±0.80, p<0.0001). These results concur with 

findings that FOXP3 inversely correlated with PD-L1 expression (Figure 4.9A’’, B’’ D and 

E, ∆: 15.00±1.16, p<0.0001).  

In addition, the expression of PD-L2 was also evaluated. Although PD-L2 has a similar 

function to that of PD-L1, there was no significant difference noted between the 

expression of PD-L2 in tumours from 4-DAMP-treated and DMSO-treated mice (Figure 

4.10, ∆: 0.38.88±0.82, p=0.6553). These findings were further confirmed by western blot. 

The results obtained from in vitro model demonstrated that 4-DAMP attenuated PD-L2; 

however, this was not confirmed in vivo. These findings reinforced the influence of tumour 

microenvironment on the expression of immunosuppressive markers. 

4.3.6.2. Correlation of PD-L1 expression with cholinergic markers 

It was hypothesised that the neurotransmitters, in particularly ACh, might play a significant 

role in the induction of immunosuppressive markers such as PD-L1. In vitro results of 

studies in human colon cancer cells described in Chapter 3 and in murine CT-26 cell lines, 

described in this Chapter, confirmed this hypothesis. To further evaluate this hypothesis 

in vivo, tumour-bearing mice implanted with CT-26 cells were treated with either DMSO 
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or 4-DAMP administered intraperitoneally daily for 28 days. PD-L1 was co-labelled with 

ChAT, a cholinergic enzyme crucial for ACh synthesis, and VAChT, a vesicular ACh 

transporter essential for packaging of ACh into vesicles. Results demonstrated that 4-

DAMP treatment significantly reduced the expression of PD-L1 (Figure 4.11A’, B’ and C, 

∆: -24.56±3.15, p<0.0001) as well as the expression of ChAT compared to DMSO 

treatment (Figure 4.11A’’, B’’ and D, ∆: -10.23±2.27, p<0.001). In addition, VAChT 

expression was attenuated in tumours from 4-DAMP-treated mice compared to DMSO-

treated mice (Figure 4.11A’’’, B’’’ and E, ∆: -5.82±0.91, p<0.05). Furthermore, PD-L1 

was co-localised with ChAT and VAChT in tumours from DMSO-treated mice; however, 

after 4-DAMP treatment, this co-localisation was abolished. This reinforces the interaction 

between PD-L1 and cholinergic markers in CRC.  

4.3.6.3. Expression of cholinergic markers in vivo  

Although both ChAT and VAChT have been implicated in CRC, several studies have 

reported the important role of ACh receptors, especially M3R, in CRC progression. ACh 

binds to muscarinic M3R and nicotinic 7nAChR stimulating CRC cell proliferation, 

angiogenesis, tumour growth and metastasis [463, 587, 593, 594]. In this study, ACh 

receptors were co-labelled with ChAT in tumours from DMSO and 4-DAMP-treated mice. 

4-DAMP treatment induced a significant increase in 7nAChR expression (Figure 

4.12A’, B’, C and F, ∆: 6.38±0.34, p<0.0001), however, the underlining mechanisms for 

this augmentation are unclear. On the other hand, 4-DAMP treatment induced a 

significant reduction in M3R expression (Figure 4.12A’’, B’’ and D, ∆: -7.38±0.31, 

p<0.0001) as well as ChAT expression compared to DMSO treatment (Figure 4.12A’’’, 

B’’’ and E, ∆: -12.50±0.62, p<0.0001). These findings were further confirmed by western 

blot (Figure 4.12F).  



195 
 

 

 

 

 

 

 

 

Figure 4.9. Effect of 4-DAMP on the expression of PD-L1 and FOXP3 in vivo 

Intensity of PD-L1 and FOXP3 in tumour samples from mice bearing-CT-26 cell-induced 

CRC treated with DMSO (A-A’’’) and 4-DAMP (B-B’’’). Tumours were labelled with the 

nuclei marker DAPI (blue; A-B), PD-L1 (green; A’-B’), FOXP3 (red; A’’-B’’) and all 

markers merged (yellow; A’’’-B’’’). Scale bar represents 50µm. Bar graphs displaying the 

mean fluorescence of PD-L1 (C), FOXP3 (D) and images of western blot bands (E) in 

tumour samples from DMSO-treated and 4-DAMP-treated mice. Data presented as mean 

± SEM, n=8 mice per group. Student’s t-test, ****p<0.0001. 
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Figure 4.10. Effect of 4-DAMP on the expression of PD-L2 in mice bearing CT-26 

cell-induced tumours 

PD-L2 expression in tumour samples from mice bearing-CT-26 cell-induced CRC treated 

with DMSO (A-A’’) and 4-DAMP (B-B’’). Tumours were labelled with the nuclei marker 

DAPI (blue; A-B), PD-L2 (green; A’-B’) and all markers merged (A’’-B’’). Scale bar 

represents 50µm. Western blot bands for PD-L2 expression (C) in tumour samples from 

DMSO-treated and 4-DAMP-treated mice. Bar graphs displaying the PD-L2 mean 

fluorescence intensity (D) and western blot expression level (E) in tumour samples from 

DMSO-treated and 4-DAMP-treated groups. Data presented as mean ± SEM, n=8 mice 

per group. Student’s t-test. 
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Figure 4.11. Correlation of PD-L1 expression with cholinergic markers in tumour 

samples from mice bearing CT-26 cell-induced tumours 

Expression of PD-L1 and cholinergic markers (ChAT and VAChT) in tumour samples from 

mice bearing CT-26 cell-induced CRC treated with DMSO (A-A’’’’) and 4-DAMP (B-B’’’’). 

Tumours were labelled with the nuclei marker DAPI (blue; A-B), PD-L1 (magenta; A’-B’), 

ChAT (red; A’’-B’’), VAChT (green; A’’’-B’’’) and all markers merged (A’’’’-B’’’’). Scale 

bar represents 50µm. Bar graphs displaying the mean fluorescence of PD-L1 (C), ChAT 

(D) and VAChT (E) in tumour samples from DMSO-treated and 4-DAMP-treated mice. 

Data presented as mean ± SEM, n=8 mice per group. Student’s t-test, *p<0.05, 

***p<0.001, ****p<0.0001.  
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Figure 4.12. Expression of cholinergic markers in tumour samples from mice 

bearing CT-26 cell-induced tumours 

Expression of cholinergic markers in tumour samples from mice bearing CT-26 cell-

induced CRC treated with DMSO (A-A’’’’) and 4-DAMP (B-B’’’’). Tumours were labelled 

with the nuclei marker DAPI (blue; A-B), 7nAChR (red; A’-B’), M3R (magenta; A’’-B’’), 

ChAT (green; A’’’-B’’’) and all markers merged (A’’’’-B’’’’). Scale bar represents 50µm. 

Bar graphs displaying the mean fluorescence of 7nAChR (C), M3R (D), ChAT (E) and 

western blot bands (F) in tumour samples from DMSO-treated and 4-DAMP-treated mice. 

Data presented as mean ± SEM, n=8 mice per group. Student’s t-test, ****p<0.0001.  
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4.3.7. Effect of 4-DAMP on tumour-infiltrating immune cells 

The prognostic value of PD-L1 or other immune checkpoint inhibitors is influenced by the 

profile of infiltrating immune cells within the tumour microenvironment. Therefore, to 

determine the profile of tumour-infiltrating immune cells, fresh tumours from mice with 

CRC were collected into RPMI media. Tumours were then mechanically dissected into 

small pieces and incubated at 37˚C for 1hr with collagenase before commencing labelling 

with antibodies of interest as depicted in the Material and Methods. To characterise 

leukocyte populations in tumour samples from DMSO and 4-DAMP treated mice, flow 

cytometry was used. From scatter plots, only viable cells were analysed, and 

compensation was performed (when applicable) to prevent false‐positive/false‐negative 

results (Figure 4.13A-B). The gating strategy for CD45+ cells was defined from single-

cell doublets (Figure 4.13C-D). Lymphocyte populations were gated from CD45+ cells 

(Figure 4.13E-F; G-H). No significant differences were observed in CD45+ cells in 

tumours from both DMSO and 4-DAMP-treated mice (Figure 4.14A, ∆: 2.17±6.47, 

p=0.7428). However, the results showed that 4-DAMP treatment significantly increased 

CD4+ T cell infiltration compared to DMSO treatment (Figure 4.14B, ∆: 4.58±0.88, 

p<0.001). Similarly, CD8+ T cell infiltration was significantly increased in tumours from 4-

DAMP-treated compared to DMSO-treated mice (Figure 4.14C, ∆: 8.55±2.13, p<0.01). 

Moreover, there was no significant differences noted in CD4+/CD8+ T cells ratio in 

tumours from 4-DAMP-treated compared to DMSO-treated mice (Figure 4.14D, ∆: 

0.79±2.16, p=0.2315). Conversely, 4-DAMP treatment significantly attenuated infiltration 

of   T cells compared to DMSO (Figure 4.14E, ∆: -17.02±1.067, p<0.0001). 

Furthermore, infiltration of B cells and eosinophils was gated from CD45+ cells. Results 

showed that the proportions of infiltrating B cells and eosinophils were significantly 

reduced in 4-DAMP-treated compared to DMSO-treated mice (Figure 4.15A-B). The 

proportions of all macrophages (defined as M0) and M2 phenotype macrophages were 

statistically increased in 4-DAMP-treated compared to DMSO-treated mice; however, M2 

macrophages presented only a small fraction of all infiltrating M0 macrophages (Figure 

4.15 C). This suggests that most of the M0 macrophages could be exhibiting M1 

phenotypes, which have an anti-tumour effect. In regards to neutrophil infiltration, as there 
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are no specific markers to distinguish between N1 and N2, overall neutrophil infiltration 

was evaluated. Neutrophil infiltration was enhanced in tumours from 4-DAMP-treated 

compared to DMSO-treated mice (Figure 4.15D). We speculate that these infiltrated 

neutrophils are N1 phenotype as they exert an anti-tumour effect.  
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Figure 4.13. Gating strategy for tumour-infiltrating leukocytes from DMSO and 4-

DAMP treated mice 

Gating strategy for debris exclusion (A), viable cells (B), single cell doublets 

discrimination (C), single cells (D), CD45-positive cells from DMSO-treated group (E) and 

T lymphocytes from DMSO-treated group (F), CD45-positive cells from 4-DAMP-treated 

group (G) and T lymphocytes from 4-DAMP-treated group (H).    
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Figure 4.14. Flow cytometric analysis of CD45+ cells and T lymphocytes 

Proportion of the CD45+ cells (A), CD4+ T cells (B), CD8+ T cells (C), CD4+/CD8+ T cells 

ratio (D) and  T cells (E). Data presented as mean ± SEM, DMSO-treated (n=4), 4-

DAMP-treated (n=7) mice per group. Student’s t-test, **p<0.01, ***p<0.001, ****p<0.0001. 
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Figure 4.15. Flow cytometric analysis of tumour-associated immune cells 

Proportion of B cells (A), eosinophils (B), macrophages (C) and neutrophils (D) in tumours 

from DMSO-treated and 4-DAMP-treated groups. Data presented as mean ± SEM, 

DMSO-treated (n=4), 4-DAMP-treated (n=7) mice per group. Student’s t-test, ***p<0.001, 

****p<0.0001. 
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4.3.8. Effect of blocking M3R on tumour angiogenesis  

Tumour angiogenesis is one of the critical steps in cancer growth and metastasis [398, 

510, 580, 597]. To evaluate the effect of blocking M3R on tumour angiogenesis, the 

expression of angiogenic markers, VEGF and CD31 was evaluated. The results 

demonstrated that administration of 4-DAMP suppressed the expression of VEGF 

(Figure 4.16A’ B’, C and E; ∆: -16.75±1.60, p<0.0001). CD31 is a transmembrane 

glycoprotein expressed by endothelial cells and is used as a specific endothelial marker 

in paraffin sections. Thus, tumour neovascularisation was evaluated in mice bearing-CT-

26 tumours by immunohistochemical labelling tumours with anti-CD31 antibody in both 

freshly-fixed tumours. Treatment with 4-DAMP attenuated the expression of CD31 

(Figure 4.16A’’ B’’, D; ∆: -13.85±1.10, p<0.0001). There was more intense CD31 staining 

observed in freshly-fixed tumours from DMSO compared with 4-DAMP-treated mice, 

supporting the immunofluorescence results in freshly-fixed samples (Figure 4.17). 

In addition, tyrosine kinases in tumour tissue lysates were evaluated using mouse 

Phospho-RTK Array. Tumour samples from each group were pooled, and the expression 

level of kinases was measured as described in the Materials and Methods. The results 

showed that DMSO group overexpressed platelet-derived growth factor receptor  

(PDGFR) and Axl tyrosine kinases (Figure 4.18A), both of which are involved in cancer 

cell proliferation, invasion, angiogenesis and migration. Treatment with 4-DAMP 

significantly reduced expression levels of PDGFR and abolished Axl (Figure 4.18B). 

Although TGF- is not a marker for tumour angiogenesis per se, studies have 

demonstrated a strong association between tumour expression of TGF- and tumour 

angiogenesis [598, 599]. Administration of 4-DAMP significantly reduced TGF- 

expression compared to DMSO treatment (Figure 4.19, ∆: -13.85±1.03, p<0.0001). 

Taken together, these findings reinforced the important role of ACh in tumour 

angiogenesis, and M3 receptors could be a potential therapeutic target for inhibition of 

angiogenesis. 
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4.3.9. Effect of 4-DAMP treatment on phosphorylation of AKT and ERK in vivo  

ACh acting on M3R has been shown to trigger the activation of EGFR signalling to 

persuade the phosphorylation of AKT and ERK1/2 [587]. In vitro study of normal epithelial 

and human colon cancer cells presented in Chapter 3, 4-DAMP exerts it effects through 

suppression of EGFR, pAKT, pSTAT3 and pERK signalling pathways. To determine the 

effect of blocking muscarinic receptor 3 with 4-DAMP on the phosphorylation of EGFR, 

STAT3, AKT and ERK in vivo, western blot was used. The results demonstrated that 4-

DAMP treatment inhibited the phosphorylation of ERK compared to DMSO (Figure 4.20A 

and C; ∆: -0.25±0.07, p<0.05). Similarly, 4-DAMP treatment induced a significant 

reduction in phosphorylation of AKT when compared to DMSO (Figure 4.20B and C; ∆: 

-0.26±0.09, p<0.05). However, both EGFR and pSTAT3 were not detected in tumour 

tissues; this could be due to fast degradability of these proteins. 
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Figure 4.16. Effect of 4-DAMP treatment on the expression of VEGF and CD31 in 

vivo 

VEGF and CD31 expression in tumour samples from mice bearing CT-26 cell-induced 

CRC treated with DMSO (A-A’’’) and 4-DAMP (B-B’’’). Tumours were labelled with the 

nuclei marker DAPI (blue; A-B), VEGF (red; A’-B’), CD31 (green; A’’-B’’) and all markers 

merged (yellow; A’’’-B’’’). Scale bar represents 50µm. Bar graphs displaying the mean 

fluorescence level of VEGF (C), CD31 (D) and image of VEGF western blot bands (E) in 

tumour samples from DMSO-treated and 4-DAMP-treated mice. Data presented as mean 

± SEM, n=8 per group. Student’s t-test, ****p<0.0001.   
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Figure 4.17. Effect of 4-DAMP treatment on the expression of CD31 in vivo 

Image showing blood vessels and intensity of CD31 in tumour samples from mice bearing 

CT-26 cell-induced tumours treated with DMSO (A-A’) and 4-DAMP (B-B’). Scale bar 

represents 100µm, n=8 mice per group. 
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Figure 4.18. Effect of 4-DAMP treatment on the expression of phospho kinases in 

vivo 

Mouse Phospho-RTK Array measuring phospho-RTK activity in tumours from mice with 

CT-26-induced CRC treated with DMSO (A) and 4-DAMP (B); n=8 mice per group.  

 

  



218 
 

 

 

 

 

 

 

 

 

 

 

 

  



219 
 

 

 

 

 

 

 

 

Figure 4.19. Effect of 4-DAMP treatment on the expression of TGF- in vivo 

TGF- in tumour samples from mice bearing CT-26 cell-induced tumours treated with 

DMSO (A-A’’) and 4-DAMP (B-B’’). Tumours were labelled with the nuclei marker DAPI 

(blue; A-B), TGF- (green; A’-B’) and all markers merged (A’’-B’’). Scale bar represents 

50 µm. Bar graphs displaying the mean fluorescence level of TGF- (C) in tumour 

samples from DMSO-treated and 4-DAMP-treated mice. Data presented as mean ± SEM, 

n=8 per group. Student’s t-test, ****p<0.0001.   
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Figure 4.20. Effect of 4-DAMP treatment on the expression of protein kinases in 

vivo 

Western blot bands for pERK and pAKT expression in tumour samples from mice bearing 

CT-26 cell-induced CRC treated with DMSO and 4-DAMP (A). Bar graphs displaying the 

mean intensity of pERK (B) and pAKT (C) expression in tumour samples from mice 

treated with DMSO and 4-DAMP. Data presented as mean ± SEM, Student’s t-test, 

*p<0.05.  
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4.4. Discussion 

The immune system plays a key role in the eradication of cancer cells. However, multiple 

mechanisms are responsible for the suppression of the immune system in cancer, one of 

which being the expression of immune checkpoint inhibitors, including PD-1, PD-L1 and 

PD-L2 [509, 514].  

These molecules function by inhibiting the anti-tumour effects of T cell-mediated immune 

response. Although there are current therapies targeting these molecules, they have 

shortcomings such as causing adverse events. Therefore, it is crucial to understand the 

possible mechanisms influencing the expression of these molecules. It was hypothesised 

that the cholinergic system might play a significant role in the induction of 

immunosuppressive markers such as PD-L1 and PD-L2. Indeed, the results presented in 

this Chapter demonstrated that CT-26 cells expressed PD-L1 and PD-L2 in vitro, which 

was attenuated by cholinergic blockers, atropine and 4-DAMP. To further evaluate 

whether the effects of 4-DAMP in the in vitro model could be achieved in the in vivo model 

of CRC, mice bearing CT-26 cell-induced tumours were injected daily with a vehicle, 

DMSO, or 4-DAMP for 3 weeks. It was clear that treatment with 4-DAMP decreased 

tumour weight, volume and size when compared to the vehicle-treated group. 

Furthermore, 4-DAMP treatment significantly decreased PD-L1 but not PD-L2 expression 

in CRC mouse model. Furthermore, 4-DAMP administration significantly decreased 

cholinergic and angiogenic markers when compared to DMSO treatment. In addition, 4-

DAMP treatment augmented anti-tumour immune response through increased infiltration 

of CD4+ and CD8+ T cells. 

Acetylcholine is one of the main neurotransmitters found abundantly in the body. For a 

long time, it was believed that only neurons can synthesise and secrete ACh; however, 

studies have proved that many other cells, including tumour cells, can also produce ACh. 

In CRC, the expression of M3R plays an important role in the cellular processes such as 

proliferation, differentiation, angiogenesis, invasion, metastasis and the establishment of 

cell-cell contact [510, 580] via the activation of various signalling pathways such as AKT, 

ERK and EGFR [600]. In the present study, we evaluated whether blocking of all 
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muscarinic receptors with atropine and a selective M3R blocker, 4-DAMP, had a 

detrimental effect on murine CT-26 colon cancer cells. Thus, blocking of all muscarinic 

receptor and M3R significantly suppressed CT-26 cell proliferation in a dose-dependent 

manner and induced apoptosis through the phosphorylation of AKT and ERK signalling 

pathways. These findings concur with current literature implicating that ACh acting on 

muscarinic receptors promotes cancer cell proliferation, invasion and metastasis. For 

example, in human colon cancer cell lines SNU-C4, HT-29 and H508, administration of 

atropine, muscarinic receptors inhibitor, eradicated SNU-C4 cell migration and HT-29 

invasion; however, H508 cell migration entails the activation of MMP7 via EGFR and ERK 

signalling pathways [592, 593]. Although blocking of M3R had no effect on the activation 

of EGFR as shown in this in vitro study, other studies have demonstrated that there is a 

link between EGFR and M3R [587, 601]. 

In addition, activation of nicotinic acetylcholine receptors (nAChRs) with nicotine, 

facilitates cellular invasion and metastasis of human colon cancer cells, LOVO and 

SW620, via the activation of p38 mitogen-activated protein kinase (MAPK) signalling 

pathway [343]. Likewise, nicotine stimulates the activation of α9-nAChR, which facilitates 

cellular migration of MDA-MB-231 and MCF-7 breast cancer cells via the expression of 

epithelial-mesenchymal transition markers [364]. Furthermore, in hepatocellular 

carcinoma, ACh acting on androgen receptor endorses SNU-449 cell invasion and 

migration via activation of signal transducer and activator of transcription 3 (STAT3) and 

AKT signalling pathways [363].  

The in vivo data presented in this Chapter showed that blocking M3R with 4-DAMP in an 

orthotopic mouse model of CRC significantly reduced tumour weight, volume and size 

compared to DMSO-treated controls. These findings are supported by previous studies 

demonstrating that administration of M3R antagonists, darifenacin and 4-DAMP, 

significantly decreased tumour growth in a mouse model of gastric cancer [587]. 

Furthermore, 4-DAMP treatment significantly decreased PD-L1 expression in CRC 

mouse model; however, there was no significant difference observed in the expression of 

PD-L2 between DMSO and 4-DAMP treated groups. In addition, administration of 4-

DAMP significantly attenuated the expression of M3R and ChAT; nevertheless, there was 
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an increase in a7nAChR expression. We suggest that the possible mechanism involved 

in attenuation of tumour growth by the 4-DAMP treatment could be through the inhibition 

of immunosuppressive (PD-L1) and cholinergic (M3R and ChAT) markers. Findings by 

Kamiya et al (2019) in chemically-induced and xenograft models of breast cancer, 

demonstrated that presynaptic cholinergic neurostimulation resulted in decreased 

immune checkpoints molecules (PD-1 and PD-L1) expression and attenuated tumour 

growth [558]. Our findings provide evidence that blocking cholinergic receptors on a 

postsynaptic membrane reduced immunosuppressive markers and decreased tumour 

growth. Thus, in both cases, inhibition of immunosuppressive molecules had pronounced 

anti-tumour effects. 

The tumour microenvironment is complex as it involves many factors including resident 

and infiltrating immune cells, various stromal cells and blood and lymphatic vessels all of 

which are concealed in an extracellular matrix [602, 603]. In fact, the nervous system and 

tumour microenvironment communicated through a feedback loop mechanism that 

facilitates tumour growth and progression [580, 604]. There is also a complex interaction 

between immunosuppressive markers and the tumour microenvironment [509]. In the 

present study, the profile of tumour-associated immune cells was evaluated using flow 

cytometry cell sorting. Blocking of M3R significantly improved immune response against 

cancer as noted by the increased expression of CD4+ and CD8+ T cells leading to 

reduced tumour size, weight and volume. Furthermore, other infiltrating immune cells 

such as  T cell, B cell and eosinophils, which have a deleterious effect on immune 

response, were abundantly decreased.  

Tumour angiogenesis essential for oxygen and nutrients supply is one of the tumour traits 

promoting its growth. Studies have reported that tumours not only can form their own 

blood vessels, but they also produce neurotransmitters and immunosuppressive 

molecules such as PD-L1 and PD-L2 to promote tumour angiogenesis [510]. The present 

study showed that 4-DAMP treatment significantly decreased tumour angiogenesis as 

demonstrated by the decreased expression of VEGF, CD31 and TGF-β. VEGF promotes 

proliferation and expansion of endothelial cells via interaction with its receptors [605]. 

Studies have demonstrated elevated levels of VEGF and its receptors in human colon 
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carcinomas and tumour-infiltrating endothelial cells [605-607]. Aside from its role in 

facilitating tumour angiogenesis, VEGF also exerts deleterious effects on the immune 

system by dampening a number of immune cells [608]. Studies have suggested that 

cholinergic signalling and the expression of immunosuppressive markers such as PD-L1 

and PD-L2 play a functional role in tumour angiogenesis. For instance, expression of PD-

L1 correlates with VEGF as noted in primary human glioma samples [609]. Similarly, the 

expression of PD-L1 and PD-L2 was positively associated with VEGF expression in renal 

carcinoma [534]. In CRC, high expression of VEGF and CD31 was correlated with poor 

patients’ survival [610]. Expression of immune checkpoint molecule, B7-H3, correlates 

with CD31 expression in tissue samples from patients with CRC and induced VEGFA 

through the activation of NF-κB pathway as observed in vitro and in vivo [611]. 

TGF- acts as an anti-tumourigenic factor at the early stages and as a pro-tumourigenic 

factor at late stages of tumour progression [612]. High levels of TGF-β in the tumour 

microenvironment have been associated with angiogenesis, contributing to tumour 

development and metastasis [598, 599].  In human gastric cancer cell lines, MKN45 and 

KATOIII, TGF-β1 induced VEGF-C expression leading to lymphangiogenesis through the 

activation of Smad2/3 and Smad pathway [613]. In addition, 4-DAMP significantly 

attenuated PDGFR and abolished Axl, both of which play an essential role in tumour 

angiogenesis. In tumour specimens from CRC patients, PDGFR/ expression correlates 

with lymphatic dissemination and metastasis [614, 615]. Similarly, in invasive ductal 

carcinoma, overexpression of PDGFR correlates with metastasis [616]. Axl promotes 

survival of endothelial cells and remodelling of endothelial barriers in wound healing and 

vessel impairment [617]. Axl is essential for angiogenesis mediated by VEGF-A activation 

of VEGFR-2 via PI3K/AKT pathway [618]. In in vitro and in vivo models of breast and 

prostate cancers, inhibition of Axl suppressed pro-angiogenic factors and impaired 

functional properties of endothelial cells [619]. 
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4.5. Conclusion 

The results of this study demonstrated that enhanced expression of PD-L1, PD-L2, M3R 

and ChAT and angiogenic markers was attenuated by treatments with cholinergic 

receptor blockers in vitro. In vivo results demonstrated that blocking M3R has pronounced 

anti-tumour effects via several mechanisms including inhibition of immunosuppressive 

molecules, enhancement of anti-tumour immune response and suppression of tumour 

angiogenesis via suppression of AKT/ERK signalling pathway. Although 

immunotherapies have shown great efficacy in many solid tumours, there is still a need 

to develop improved therapies with less side-effects. The results presented in this 

Chapter suggest that blocking M3R has the potential to be used in conjunction with 

immune checkpoint inhibitors. Further studies are required to evaluate the anti-tumour 

efficacy and side-effects of combination therapies with M3R blockers and immune 

checkpoint inhibitors.  

 

  



228 
 

CHAPTER FIVE 

 

Expression of IDO and Siglec-9 in Patients 

Diagnosed with Stages I-IV of CRC and Effect of 

Blocking Siglec-9 in Human Colon Cancer Cell 

Lines 
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5.0. Abstract 

Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide. 

Tumour cells have evolved to express immunosuppressive molecules enabling their 

evasion from the host’s immune response. These molecules include indoleamine-2,3-

dioxygenase (IDO) and sialic acid-binding lectin 9 (siglec-9). Furthermore, cancer cells 

can also secrete a neurotransmitter, acetylcholine, which has been shown to play a role 

in tumour progression by stimulating tumour vascularisation leading to tumour growth and 

metastasis. The expression of immunosuppressive markers, IDO and siglec-9, was 

correlated with CRC stages (I-IV), patients’ gender, age, metastasis and survival 

outcomes. Immunofluorescence was used to determine the expression of these 

molecules in paraffin-embedded tumour tissues from patients with CRC. Furthermore, the 

expression of these markers in human colon cancer cell lines (LIM-2405 and HT-29) and 

normal human primary colon epithelial cell line (T4056) treated with human anti-siglec-9 

antibody was also evaluated. There was significantly higher expression of IDO and siglec-

9 at stages, III and IV compared to early stages, I and II of CRC. IDO and siglec-9 

expression were associated with a high risk of CRC and poor patients’ survival outcomes. 

However, there was no significant correlation between the expression of these markers 

and patient’s gender, age and metastasis. In vitro results showed that LIM-2405, HT-29 

and T4056 all expressed immunosuppressive markers, IDO and siglec-9, at varying 

degrees; however, colon cancer cells overexpressed these molecules compared to 

normal epithelial cells. Blocking siglec-9 with human anti-siglec-9 antibody significantly 

attenuated cell proliferation and choline production in all cells. Blocking siglec-9 

significantly decreased IDO expression in HT-29 cell but had no effects on T4056 and 

LIM-2405, while it significantly reduced siglec-9 expression in human colon cancer cells 

(LIM-2405 and HT-29) but not T4056 cell. Interestingly, blocking siglec-9 decreased M3R 

expression in T4056 but not human colon cancer cells and had no effects on ChAT 

expression in all cells. Furthermore, blocking siglec-9 significantly inhibited 

phosphorylation of ERK and STAT3 in T4056 and LIM-2405 but not HT-29. Similarly, 

blocking siglec-9 significantly suppressed the activation of EGFR in T4056 but not LIM-

2405 and HT-29 cells. These findings suggest that in T4056, human anti-siglec-9 antibody 
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displayed it effects via suppressing EGFR/ERK/STAT3 signalling pathway, while in LIM-

2405, it acts by inhibiting ERK/STAT3 signalling pathway, however, no pathway was 

observed in HT-29.  

  



231 
 

5.1. Introduction 

Tumour progression involves complex interactions between a number of different factors, 

one of which being the evasion of the host’s immunity via the establishment of the 

immunosuppressive environment [514]. The immune system plays an essential role in 

tumour development, not only it can impede the growth, but it can also progress its growth 

by providing immunosuppressive milieu. Tumourigenic cells utilise a number of 

mechanisms including the expression of immunosuppressive markers including 

programmed death-ligand 1 & 2 (PD-L1) and (PD-L2) as demonstrated in previous 

chapters, but it also overexpresses indoleamine-2,3-dioxygenase (IDO) and siglec-9. IDO 

is an enzyme that degrades the amino acid tryptophan within the kynurenine pathway, 

and its overexpression by cancer cells results in immunosuppression [620]. IDO 

exacerbates L-tryptophan deficit which impairs T cell proliferation within the tumour 

microenvironment via inducing T cells apoptosis providing an immune escape mechanism 

[514]. IDO exhibits its effect not only on T cells but also on other immune cells including 

natural killer (NK) cells and supports the recruitment of tumour-associated immune cells 

such as myeloid-derived suppressor cells and regulatory T cells [85].  

 

Studies have demonstrated that tumours can alter glycosylation as a consequence of 

downregulation of innate immune response through immunoregulatory siglecs. Siglecs or 

sialic acid immune-globulin like binding lectins are transmembrane surface proteins that 

play a role in hindering T cell activation/signalling promoting tumour progression [100]. 

Although T cells rarely express siglecs, studies have reported that CD8+ T cells can 

express siglec-9 leading to inhibition of cytotoxic CD8+ T cells via phosphorylation of 

inhibitory protein tyrosine phosphatase (SHP)-1, as noted in melanoma [621]. In addition, 

siglec-9 is expressed on the surface of immune cells such as NK cells, B cells and 

monocytes, and it interacts with transmembrane mucins (MUC)1 and MUC16 [100]. The 

interaction of siglec-9 with MUC1 and/or MUC16 provides escape of tumour cells from 

the immune response via the inhibition of NK cells and T cells [101].  
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In addition to these immunosuppressive molecules, tumour cells can also express 

neurotransmitters such as acetylcholine (ACh) to encourage immune circumvention. ACh 

plays an essential role in the establishment of cell-cell communication and other cellular 

processes such as proliferation, differentiation, angiogenesis, invasion, and migration, the 

main hallmarks of cancer [622]. The present study evaluated the expression of 

immunosuppressive markers, IDO and siglec-9, and their correlation with CRC stages (I-

IV), patients’ age, gender, metastatic status and survival outcomes. Furthermore, the 

effect of human anti-siglec-9 antibody on cellular proliferation, choline production, and 

expression of immunosuppressive and cholinergic markers as well as protein kinases 

was evaluated in vitro. The interaction between siglec-9, IDO and cholinergic signalling 

may be necessary for the early detection, prognosis of cancer; hence, it is crucial to 

identify this interaction that may predict cancer progression in patients and in vitro. 
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5.2. Materials and Methods 

5.2.1. Human tumour samples 

As previously stated in Chapter 2, tumour samples were collected at the Ministry of 

Internal Affairs and Administration Hospital in Olsztyn, Poland, from 2010 to 2013. The 

collection of human samples used in this study was approved by the Bioethics Committee 

of the University of Warmia and Mazury in Olsztyn, Poland. The study comprised of 139 

patients with CRC (out of 139, 91 patients had clinical follow up). All patients signed a 

written informed consent for the use of their tissues for research purposes. Patients had 

no evidence of bowel obstruction or other colonic diseases. None of the CRC patients 

had a second neoplastic disease or had previously undergone chemo- or radiotherapy. 

Patients’ demographical, clinical and overall survival data were collected. Type of cancer 

and grading were described by a pathologist according to the World Health Organization 

criteria and staging according to the 7th edition of Cancer Staging Manual of the American 

Joint Committee on Cancer (AJCC). However, due to a small patient number with grade 

III (n=7) compared to grade II (n=84) of CRC, the grade was excluded from the 

multivariate analysis and Chi-Square test.  Similarly, metastasis status was excluded due 

to small sample size; nine patients had metastatic cancer compared with 82 patients 

without. Samples from the neoplasm lesion were collected into 10% neutral buffered 

formalin, dehydrated in ethanol/xylene and embedded in the paraffin wax. Paraffin-

embedded blocks of tissue were cut into 4μm thickness sections and mounted onto the 

microscope slides. 

5.2.2. Immunohistochemical analysis of the paraffin-embedded samples 

Samples were deparaffinised and hydrated through the series of washes with xylene and 

graded alcohol. Antigen retrieval was performed using citrate buffer pH 6.0, 10x (Sigma-

Aldrich, Melbourne Australia). Citrate buffer was heated until bubbles start to form. 

Samples were emerged into the buffer and placed on a hot plate pre-set at 100°C for 15 

minutes (mins) and left to cool at room temperature for another 20 mins. Using a liquid 

blocker super pap pen, samples were outlined to reduce the volume of antibody used. 



234 
 

Endogenous activity was blocked using 10% donkey serum for 1 hour (hr) at room 

temperature. Samples were then incubated overnight at room temperature with primary 

antibodies (Table 5.1). After washing, the tissues were incubated in phosphate buffered 

saline (PBS) plus Triton X-100 (PBST) solution at room temperature for 2hrs with 

secondary antibodies (Table 5.2) diluted in PBS containing 2% donkey serum and 0.01% 

Triton X-100. Samples were incubated for 1 min with 4′,6-diamidine-2′-phenylindole 

dihydrochloride (DAPI) (D1306, Life Technologies, Australia) and mounted with DAKO 

mounting medium (Agilent Technologies, Australia). Then coverslips were placed on and 

left to dry overnight before imaging. 

5.2.3. Cell culture 

As previously described in Chapter 3, human colon cancer cell lines (LIM-2405 and HT-

29) were cultured in Roswell Park Memorial Institute (RPMI)-1640 (Sigma-Aldrich, Castle 

Hill, Australia) and normal human primary colon epithelial cells (T4056) was Dulbecco's 

Modified Eagle Medium (DMEM) culture media (Sigma-Aldrich, Castle Hill, Australia). 

Culture media were supplemented with 10% fetal bovine serum, 1% penicillin-

streptomycin and 1% glutamine. Cells were cultured at 37°C, in 5% CO2 and 95% air 

atmosphere. When cells grew into confluent or semiconfluent monolayers in 75cm2 

medium flasks, they were either passaged or used. The passage of cells was conducted 

with 0.25% trypsin every 3-4 days. 

5.2.4. Cell proliferation  

A water-soluble tetrazolium-1 (WST-1) assay kit (Roche Diagnostics GmbH, Germany) 

was used to determine the viability of cancer cells. WST-1 is cleaved to form formazan 

dye via a complex cellular interaction at the cell surface. This interaction is contingent on 

the glycolytic nicotinamide adenine dinucleotide phosphate (NADPH) production of the 

viable cells. Hence, the amount of formazan dye formed correlates to the number of viable 

cells in the culture. T4056, LIM-2405 and HT-29 cells were seeded and cultured at 1×104 

cells per well in 96 well plates for 24hrs and then treated with varies concentration of 

human anti-siglec-9 antibody (MAB1139; R&D Systems, Australia) for 8hrs. All treatments 



235 
 

were performed in triplicates. WST-1 reagent (10µL) was added to each well for 1hr 

incubation period at 37oC. Cell proliferation was measured using a microplate reader 

(Varioskan Flash, Thermo Scientific) at the absorbance of 450nm. 

5.2.5. Choline/acetylcholine assay  

A Choline/Acetylcholine Assay Kit (Abcam, Australia) was used to measure the 

concentration of choline in cell lysates. The assay was carried out in accordance with the 

instructions provided by the manufacturer, as previously described in Chapter 3. Briefly, 

T4056, LIM-2405 and HT-29 (1x106 cells) were cultured overnight, then treated with 50ng 

of human anti-siglec-9 antibody for 8hrs. Cells were then lysed in choline assay buffer 

before commencing choline measurement. The level of total choline was measured in 

each cell line. All experiments were conducted in duplicates.  

5.2.6. Western blot  

Expression of immunosuppressive and cholinergic markers (Table 5.1) as well as cell 

signalling pathway, phospho signal transducer and activator of transcription 3 (pSTAT3), 

phospho extracellular signal-regulated kinase (pERK½), phospho serine/threonine kinase 

or protein kinase B (pAKT) and epidermal growth factor receptor (EGFR) (Table 5.2) in 

T4056, LIM-2405 and HT-29 cells was examined by western blot. Cells were incubated 

with 50ng of human anti-siglec-9 antibody forhrs. After treatments, cells were collected 

and lysed in radioimmunoprecipitation assay (RIPA) buffer (pH 7.4, 150mM NaCl, 0.1% 

sodium dodecyl sulphate (SDS), 0.5% sodium deoxycholate, 1% NP-40 in PBS, Sigma) 

containing a protease and phosphatase inhibitors cocktail (Roche Applied Science). 

Cellular proteins (20µg) from each sample were separated by 8% to 12% 

SDS/polyacrylamide gel electrophoresis. The separated fragments were transferred to 

0.22µm polyvinylidene fluoride membranes, which were blocked with 5% skim milk in 

PBS containing 0.1% Tween 20 overnight at 4oC in a platform shaker at 40RPM speed. 

The membranes were incubated with primary antibodies overnight at 4oC. The 

membranes were then incubated with horseradish peroxidase (HRP)-conjugated 

secondary antibodies for 2hrs at room temperature. The membranes were washed three 
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times in PBS plus 0.1% Tween 20 and protein detection was performed using enhancing 

chemiluminescence reagents. Glyceraldehydes-3-phosphate dehydrogenase (GADPH) 

was used as a loading control.   
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Table 5.1. Primary antibodies used in this study 

Primary antibodies 

Markers Host Species 

& Clonality 

Dilution Source Catalogue 

no.  

IDO Mouse, 

monoclonal  

1:200 Abcam, 

Australia 

ab55305 

Siglec-9 Rabbit, 

polyclonal 

1:200 Abcam, 

Australia 

ab197981 

M3R Rabbit, 

polyclonal 

1:500 Abcam, 

Australia 

ab126168 

ChAT Goat, 

polyclonal 

1:500 Abcam, 

Australia 

ab134021 

EGFR Rabbit, 

polyclonal 

1:1,000 Cell signalling, 

Australia 

#4267 

pERK1/2 Rabbit, 

polyclonal 

1:1,000 Cell signalling, 

Australia 

#3192 

pAKT Rabbit, 

monoclonal 

1:1,000 Cell signalling, 

Australia 

#4060 

pSTAT3 Mouse, 

monoclonal 

1:1,000 Cell signalling, 

Australia 

#9145 
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Table 5.2. Secondary antibodies used in this study 

Secondary antibodies 

Alexa Fluor 

488 

Anti-mouse 1:250 Jackson ImmunoResearch 

Laboratories, United States 

Alexa Fluor 

594 

Anti-rabbit 1:250 Jackson ImmunoResearch 

Laboratories, United States 

IgG HL 

HRP 

Anti-goat 1:10,000 Abcam, Australia 

IgG HL 

HRP 

Anti-rabbit 1:10,000 Abcam, Australia 

IgG HL 

HRP 

Anti-mouse 1:10,000 Abcam, Australia 
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5.2.7. Data analysis 

Images were captured on a Nikon Eclipse Ti multichannel confocal laser scanning system 

(Nikon, Japan). Z-series images were acquired at a nominal thickness of 1µm (1024 x 

1024 pixels).  Image J software (National Institute of Health, Bethesda, MD, USA) was 

employed to convert images from RGB to 8-bit binary; particles were then analysed to 

obtain the percentage area of immunoreactivity [591]. For localization data analysis, the 

number of cells within the tumour specimen expressing markers were counted within eight 

randomly captured images at x40 magnification.  

All slides were coded, and immunohistochemistry images were quantified blindly. 

Statistical analysis was performed by one-way ANOVA followed by Turkey’s pos-hoc test. 

For correlation analysis of marker expression with clinicopathological parameters, Cox 

regression test for survival analysis, Chi-Square test and multivariate test were used. 

Pearson correlation was performed to analyse the relationship between the overall 

expression of immunosuppressive markers and cholinergic markers.  

For in vitro data analysis, chemiluminescent signal was captured using the FluorChem 

FC2 System (Alpha Innotech, USA). The expression level of each protein was quantified 

using Alpha View and ImageJ software with GADPH used as a loading control. Two-way 

ANOVA followed with Dunnett’s pos-hoc test was used.  Microsoft Excel, SPSS and Prism 

(Graph Pad Software, La Jolla, CA, USA) were utilised to aid in the statistical analysis 

and p<0.05 was considered significant. 
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5.3. Results 

5.3.1. Expression of IDO and siglec-9 in patients diagnosed with stages I-IV of CRC 

To determine the expression of IDO and siglec-9, tissues obtained from patients 

diagnosed with stage I-IV of CRC (n=139) were used. In this study, immunofluorescence 

was used to determine the expression of these molecules in formalin paraffin-embedded 

tumour tissues. IDO was overexpressed at stage IV when compared to stages, I, II and 

III (Figure 5.1A’-D’, p<0.0001). Moreover, there was a statistical difference observed at 

stage III when compared to stage I. However, no statistical difference was noted between 

stages, I and II as well as stages, II and III. Quantitative analysis of IDO expression is 

shown in Figure 5.1E. Similarly, siglec-9 expression was associated with the advanced 

stages, III-IV, compared to stages, I-II (Figure 5.1A’’-D’’, p<0.0001). There was a 

significant difference observed at stage III when compared to stages, I and II. No 

statistical difference was noted between stage II, and I. Quantitative analysis of siglec-9 

expression is shown in Figure 5.1F. Overall, overexpression of both IDO and siglec-9 

was associated with advanced stages, III and IV, when compared to early stages of CRC.  

We evaluated the number of cells within tumour expressing IDO and siglec-9. The results 

demonstrated that the number of cells expressing IDO was augmented at stage IV 

compared to stages, I, II and III (Figure 5.2A-E, p<0.0001). Moreover, there was an 

increased number of cells expressing IDO at stage III compared to stages, I and II. No 

statistical difference was observed in the number of cells expressing IDO at stages, I and 

II. A number of cells overexpressing siglec-9 were elevated at stage IV compared to 

stages, I-III (Figure 5.2A-F, p<0.0001). In addition, there were more cells expressing 

siglec-9 at stage III compared to stage I. No statistical difference was observed in the 

number of cells within tumour expressing siglec-9 at stage III compared to II, as well as 

stage II compared to stage I.  

In addition, the results demonstrated that IDO and siglec-9 are co-localised, suggesting 

some interaction. The number of cells co-expressing IDO and siglec-9 within the tumour 

were augmented at stage III compared to stages, I, II and IV (Figure 5.2A-E, p<0.0001). 
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Interestingly, the number of cells co-expressing IDO and siglec-9 within the tumour was 

attenuated at stage IV compared to stage III. 
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Figure 5.1. Expression of immunosuppressive markers in tumour tissues from CRC 

patients 

IDO and siglec-9 expression in tumour specimens from patients diagnosed with stage I 

(A-A’’’), stage II (B-B’’’), stage III (C-C’’’) and stage IV (D-D’’’) of CRC. Tumours were 

labelled with the nuclei marker DAPI (blue; A-D), IDO (green; A’-D’), siglec-9 (red; A’’-

D’’) and all markers merged (yellow; A’’’-D’’’). Scale bar represents 50µm. Bar graphs 

displaying the mean fluorescence of IDO (E) and siglec-9 (F) in tumours from patients 

with stages I-IV of CRC. Data presented as mean ± standard error of the mean (SEM), 

stage I n=14, stage II n=59, stage III n=57 and stage IV n=9. One-way ANOVA, *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001. 
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Figure 5.2. Number of cells expressing IDO and siglec-9 within tumour specimens 

from patients at stages I-IV of CRC 

IDO and siglec-9 expression within tumour tissues from patients diagnosed with stage I 

(A), stage II (B), stage III (C) and stage IV (D) of CRC. Tumours were labelled with the 

nuclei marker DAPI (blue), IDO (green), siglec-9 (red) and all markers merged (yellow). 

Scale bar represents 50 µm. Bar graphs displaying the mean number of cells expressing 

IDO (E), siglec-9 (F) and co-expressing IDO and siglec-9 (G) in tumours from patients 

with stages I-IV of CRC. Data presented as mean ± SEM, stage I n=14, stage II n=59, 

stage III n=57 and stage IV n=9. One-way ANOVA, *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. 
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5.3.2. Clinicopathological and demographic parameters of CRC patients and 

their relevance to IDO and siglec-9 expression  

As previously mentioned in Chapter 2, the average patients’ age was 65 years ranging 

from 33 to 91. In the present cohort, 56% (51) of the patients were males, and 44% (40) 

were females. Among these patients, 15.4% (14) of patients were diagnosed with clinical 

stage I, 38.5% (35) with stage II, 36.3% (33) with stage III and 9.9% (9) with stage IV of 

CRC. To determine the correlation between the expression of immunosuppressive 

markers and clinicopathological parameters, specimens were labelled with IDO and 

siglec-9. The Chi-Square test was used to determine whether there is a significant 

difference between the expression of IDO and siglec-9 and the clinicopathological 

parameters listed in Table 5.3.  

Among 91 patients with clinical follow-up, 59.3% (54) expressed low levels of IDO and 

40.7% (37) expressed high levels (Table 5.4). A significant difference was observed 

between IDO expression and stages of CRC. Lower stages were noted to mainly express 

low levels of IDO (stage I, 12.1% (11) and stage II, 33% (30)), while elevated levels of 

IDO expression was associated with advanced stages, III and IV (stage III, 14.3% (13) 

and stage IV, 0% (0)). Moreover, IDO expression was associated with survival status but 

not with patients’ gender and age.  

Similarly, we evaluated the correlation between siglec-9 expression and patients’ gender, 

age, stage and survival status. Out of 91 patients with clinical follow-up, 71.4% (65) 

expressed low levels of siglec-9, and 28.6% (26) expressed high levels of siglec-9 (Table 

5.5). There was a significant difference observed between siglec-9 expression and stages 

of CRC. Stages, I, II and III predominantly expressed low levels of siglec-9 while 8 patients 

out 9 at stage IV expressed high levels of siglec-9. This suggests that siglec-9 expression 

might hold predictive value for stage IV.  

There was no significant correlation between siglec-9 expression and gender as 36.3% 

(33) males, and 35.2% (32) females expressed low levels of siglec-9 while 19.8% (18) 

males and 8.8% (8) females expressed high levels. In addition, the correlation between 

siglec-9 expression and age was evaluated. Among 41 patients under age 65, 30.8% (28) 
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expressed low and 14.3% (13) expressed high levels. Low levels of siglec-9 expression 

was found in 40.7% (37) patients over age 65, whereas 14.3% (13) of patients in this age 

group expressed high levels of siglec-9, however, there was no significant correlation 

between siglec-9 expression and patients’ age. There was a significant correlation found 

between siglec-9 expression and survival status.  

Moreover, IDO and siglec-9 expression were correlated with the risk of CRC and patients’ 

survival outcomes. The correlation between IDO and siglec-9 with survival outcome was 

determined by the analysis of hazard ratio (HR) and corresponding 95% confidence 

interval (CI) using Cox regression survival analysis. The results of this study 

demonstrated a significant correlation between high expression of IDO and a high risk of 

CRC and poor survival outcomes (Figure 5.3A & B, HR=2.741, 95% CI=1.749-4.295). 

Similarly, siglec-9 expression was also associated with a higher risk of CRC and poor 

patients’ survival outcomes (Figure 5.3C & D, HR=2.792, 95% CI=1.752-4.450).   

5.3.3. Correlation between immunosuppressive and cholinergic markers 

Furthermore, we evaluated the overall correlation between the expressions of 

immunosuppressive with cholinergic markers (Table 5.6). Expression of IDO correlated 

with siglec-9, but no association was observed between the overall expression of IDO 

and cholinergic markers. Overall expression of siglec-9 was strongly correlated with M3R 

expression, suggesting that siglec-9 might crosstalk with M3R. There was no correlation 

between siglec-9 and expression of 7nChR and ChAT. 

 

  



248 
 

Table 5.3. Clinicopathological and demographic parameters of CRC patients 

Parameters  No. of cases  Percentage (%) 

Total  91 100 

Gender  

  Male  

  Female 

 

51 

40 

 

56 

44 

Age  

 <65 

 >65 

 

41 

50 

 

45.1 

54.9 

Stage 

  I 

  II 

  III 

  IV 

 

14 

35 

33 

9 

 

15.4 

38.5 

36.3 

9.9 

Survival status  

 Event 

 Censor 

 

52 

39 

 

57.1 

42.9 
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Table 5.4. Correlation of clinicopathological and demographic parameters of CRC 

patients with IDO expression 

Parameters  No. of 

cases  

Percentages 

(%) 

IDO expression 

Low                    High 

P values 

Total  91 100 54 (59.3%) 37 (40.7%)  

Gender  

  Male  

  Female 

 

51 

40 

 

56 

44 

 

28 (30.8%) 

26 (28.6%) 

 

23 (25.3%) 

14 (15.4%) 

 

0.330 

Age  

 <65 

 >65 

 

41 

50 

 

45.1 

54.9 

 

22 (24.2%) 

32 (35.2%) 

 

19 (20.9%) 

18 (19.8%) 

 

0.318 

Stage 

  I 

  II 

  III 

  IV 

 

14 

35 

33 

9 

 

15.4 

38.5 

36.3 

9.9 

 

11 (12.1%) 

30 (33%) 

13 (14.3%) 

0 (0%) 

 

2 (2.2%) 

5 (5.5%) 

21 (23.1%) 

9 (9.9%) 

 

 

0.0001 

Survival status  

 Event 

 Censor 

 

52 

39 

 

57.1 

42.9 

 

5 (5.5%) 

21 (23.1%) 

 

34 (37.4%) 

31 (34.1%) 

 

0.004 

P values are based on the frequency of IDO expression within each parameter.  The 

median defined low and high expression of the markers. 
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Table 5.5. Correlation of clinicopathological and demographic parameters of CRC 

patients with siglec-9 expression 

Parameters  No. of 

cases  

Percentages 

(%) 

Siglec-9 expression 

Low                    High 

P values 

Total  91 100 65 (71.4%) 26 (28.6%)  

Gender  

  Male  

  Female 

 

51 

40 

 

56 

44 

 

33 (36.3%) 

32 (35.2%) 

 

18 (19.8%) 

8 (8.8%) 

 

0.109 

Age  

 <65 

 >65 

 

41 

50 

 

45.1 

54.9 

 

28 (30.8%) 

37 (40.7%) 

 

13 (14.3%) 

13 (14.3%) 

 

0.549 

Stage 

  I 

  II 

  III 

  IV 

 

14 

35 

33 

9 

 

15.4 

38.5 

36.3 

9.9 

 

13 (14.3%) 

32 (35.2%) 

19 (20.9%) 

1 (1.1%) 

 

0 (0%) 

3 (3.3%) 

15 (16.5%) 

8 (8.8%) 

 

 

0.0001 

Survival status  

 Event 

 Censor 

 

52 

39 

 

57.1 

42.9 

 

12 (13.2%) 

34 (37.4%) 

 

27 (29.7%) 

18 (19.8%) 

 

0.001 

P values are based on the frequency of siglec-9 expression within each parameter.  The 

median defined low and high expression of the markers. 
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Figure 5.3. Correlation of IDO and siglec-9 expression with the risk of CRC and 

patients’ survival outcomes 

Correlation of IDO expression with the risk of CRC (A). IDO expression association with 

survival outcomes (B). Correlation of siglec-9 expression with the risk of CRC (C). Siglec-

9 expression association with survival outcomes (D). Low and high expression of the 

markers was defined by the median. Stage I n=14, stage II n=35, stage III n=33 and stage 

IV n=9.  
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Table 5.6. Correlation of immunosuppressive with cholinergic markers in CRC 

patients 

 Siglec-9 IDO M3R 

Siglec-9 Pearson 

Correlation 

1 0.401** 0.522** 

Sig. (2-tailed)  0<.0001 <0.0001 

N 91 91 91 

IDO Pearson 

Correlation 

0.401** 1 

Sig. (2-tailed) <0.0001  

N 91 91 

** Correlation is significant at the 0.01 level (2-tailed). 
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5.3.4. Effect of blocking siglec-9 ligand on cellular proliferation  

In Chapter 3, we evaluated the effect of blocking cholinergic muscarinic receptors on the 

proliferation of human colon cancer cells and normal epithelial cells. In this chapter, we 

aimed to assess the effect of blocking siglec-9 ligand with human anti-siglec-9 antibody 

on the proliferation of human cancer cell lines (LIM-2405 and HT-29) and normal colon 

epithelial cells (T4056) using WST-1 assay. Three independent experiments were 

performed in triplicates. The result demonstrated that human anti-siglec-9 antibody 

significantly attenuated the proliferation of human colon cancer cells at 50-400ng 

compared to normal epithelial cells (Figure 5.4A). Interestingly, at 500ng, there was a 

significant difference between T4056 and LIM-2405, but not HT-29 cells. However, at high 

doses (700-800ng), there was a weak inhibition of human colon cancer cell proliferation 

when compared to T4056 cells. Overall, human anti-siglec-9 antibody attenuated cell 

proliferation in a dose dependent manner. Similarly, blocking siglec-9 with human anti-

siglec-9 antibody decreased normal epithelial and human colon cancer cells viability in a 

dose dependent manner (Figure 5.4B). Interestingly, human anti-siglec-9 antibody at 

50ng concentration significantly reduced human colon cancer cells viability by 50% and 

normal epithelial by 10%. Hence, in the subsequent experiments, cells were treated with 

50ng of human anti-siglec-9 antibody for 8hrs, as changes were noticeable at this low 

concentration.  

5.3.5. Effect of blocking siglec-9 on the cells ability to produce choline 

To determine the effect of human anti-siglec-9 antibody on the cells’ ability to produce 

choline, a precursor for ACh synthesis, cells were treated with 50ng of human anti-siglec-

9 antibody. The results demonstrated that human anti-siglec-9 antibody significantly 

reduced the amount of choline released by a normal epithelial cell, T4056 (Figure 5.5A). 

Similarly, human anti-siglec-9 antibody significantly reduced the amount of choline 

produced by human colon cancer cells, LIM-2405 (Figure 5.5B) and HT-29 (Figure 

5.5C).  
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Figure 5.4. Effect of blocking siglec-9 on the cell proliferation of normal epithelial 

and human colon cancer cells 

Dose-response curve for cell proliferation for normal epithelial cell (T4056) and human 

colon cancer cells (LIM-2405 and HT-29) treated with a human anti-siglec-9 antibody for 

8 hrs (A). Percentage of viable cells (T4056, LIM-2405 and HT-29) after treatment (B). 

Three independent experiments were performed in triplicate wells. Two-way ANOVA, 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Anti-S9 Ab, anti-siglec-E antibody. 
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Figure 5.5. Effect of blocking siglec-9 on the amount of choline produced by normal 

epithelial and human colon cancer cells 

The amount of choline was measured in normal epithelial (A) and human colon cancer 

cells LIM-2056 (B) and HT-29 (C) before (control) and after treatment with anti-siglec-9 

(anti-S9) antibody. Values in A, B and C are mean ± SEM from at least two independent 

experiments. Two-way ANOVA, **p<0.01, ***p<0.001. 
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5.3.6. Effect of blocking siglec-9 on the expression of immunosuppressive 

markers in vitro 

The effects of blocking siglec-9 ligand with human anti-siglec-9 antibody on the 

expression of immunosuppressive markers, IDO and siglec-9, in a normal human 

epithelial cell line and human colon cancer cells were evaluated. The results 

demonstrated that human anti-siglec-9 antibody has no effect on the expression of IDO 

in T4056 and LIM-2405; however, it decreased IDO expression in HT-29 (Figure 5.6A 

and Figure 5.6B). No significant difference in expression of siglec-9 was observed in 

T4056 cells (Figure 5.6A and Figure 5.6C). However, human anti-siglec-9 antibody 

significantly decreased siglec-9 expression in LIM-2405 and HT-29 cells when compared 

to untreated cells. These findings suggest that there is no crosstalk between IDO 

expression and siglec-9 in T4056 and LIM-2405 cells, but there might be an interaction 

between IDO and siglec-9 in HT-29 cells. Furthermore, normal epithelial cells expressed 

lower levels of siglec-9 compared to human colon cancer cells. Moreover, there seem to 

be molecular differences in siglec-9 expressed by normal epithelial cell and human colon 

cancer cells. In a normal epithelial cell, two siglec-9 protein bands were noted after 

treatment with the anti-siglec-9 antibody, while in human colon cancer cells three bands 

were observed in the controls and these bands were reduced to two bands after treatment 

with human anti-siglec-9 antibody (Figure 5.6A). The addition of a band in cancer cells 

might imply the functional role of siglec-9 expression in cancer cells that might promote 

their functional growth, proliferation and migration. 

5.3.7. Effect of blocking siglec-9 on the expression of cholinergic markers in vitro 

The effects of human anti-siglec-9 antibody on the expression of M3R and ChAT was 

determined. The results demonstrated that human anti-siglec-9 antibody significantly 

attenuated M3R expression in T4056 cells compared to control untreated cells (Figure 

5.7A and Figure 5.7B). However, human anti-siglec-9 antibody had no effect on the 

expression of M3R in human colon cancer cells, LIM-2405 and HT-29. Similarly, human 

anti-siglec-9 antibody had no effect on the expression of ChAT in all cells (Figure 5.7A 

and Figure 5.7C). Furthermore, there was a molecular difference observed in the 
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expression of ChAT in normal epithelial cells, T4056, presented with two bands and 

human colon cancer cells with a single band (Figure 5.7A). Overall, human anti-siglec-9 

antibody had no effect on ChAT expression, although the amount of choline was reduced. 

It might be that human anti-siglec-9 antibody reduced choline before it is converted to 

ACh or has no functional role on the cholinergic enzymes. 

5.3.8. Effect of blocking siglec-9 on the expression of signalling pathways in vitro  

To determine the mechanism involved in the effects of the human anti-siglec-9 antibody 

on T4056, LIM-2405 and HT-29 cells, the expression of EGFR, pERK and pSTAT3 in 

vitro was evaluated. The results showed that human anti-siglec-9 antibody attenuated 

EGFR expression in normal epithelial cells but not in human colon cancer cells (Figure 

5.8A and Figure 5.8B). These findings correspond to results demonstrating lack of 

blocking effect on the expression of M3R in human colon cancer cells, reinforcing the 

interaction between M3R expression and EGFR. Phosphorylation of ERK was 

significantly inhibited in T4056 and LIM-2405, but not in HT-29 cells (Figure 5.8A and 

Figure 5.8C). Similar results were noted for pSTAT3, human anti-siglec-9 antibody 

suppressed phosphorylation of STAT3 in T4056 and LIM-2405 cells, but not in HT-29 

cells (Figure 5.8A and Figure 5.8D). These findings suggest that in normal epithelial 

cells, human anti-siglec-9 antibody exhibited its effects via suppressing the activation of 

EGFR and inhibiting phosphorylation of ERK and STAT3. In LIM-2405, human anti-siglec-

9 antibody acts by suppressing phosphorylation of ERK and STAT3; however, activation 

of these pathways was not observed in HT-29 cells. Further studies are warranted to 

evaluate the possible mechanisms involved in siglec-9 effects on HT-29 cells. 
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Figure 5.6. Effect of blocking siglec-9 on the expression of immunosuppressive 

markers in vitro 

Western blot bands for T4056, LIM-2405 and HT-29 cells are shown in (A). Bar graphs 

displaying the mean intensity of expression of IDO (B) and siglec-9 (C) in normal epithelial 

and human colon cancer cell lines treated with human anti-siglec-9 antibody. Data 

presented as mean ± SEM. Two-way ANOVA, **p<0.01, ***p<0.001, ****p<0.0001.  
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Figure 5.7. Effect of blocking siglec-9 on the expression of cholinergic markers in 

vitro 

Western blot bands for T4056, LIM-2405 and HT-29 cells (A). Bar graphs displaying the 

mean intensity of expression of M3R (B) and ChAT (C) in normal epithelial and human 

colon cancer cell lines treated with human anti-siglec-9 antibody. Data presented as mean 

± SEM.  Two-way ANOVA, ****p<0.0001. Anti-S9 Ab, anti-siglec-E antibody. 
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Figure 5.8. Effect of blocking siglec-9 on the expression of signalling pathways in 

vitro 

Western blot bands for T4056, LIM-2405 and HT-29 cells are shown in (A). Bar graphs 

displaying the mean intensity of EGFR (B), pERK (C) and pSTAT3 (D) expression in 

normal epithelial and human colon cancer cell lines treated with human anti-siglec-9 

antibody. Data presented as mean ± SEM. Two-way ANOVA, **p<0.01, ****p<0.0001. 

Anti-S9 Ab, anti-siglec-E antibody. 
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5.4. Discussion  

Several lines of evidence have implicated that interaction between the nervous and 

immune systems plays essential roles in cancer progression. Dysfunction of the nervous 

system may influence cancer progression by inhibiting functions of the immune system 

and vice versa. The sympathetic and cholinergic nerves are involved in the control of 

inflammation, which is believed to be a driving force for cancer metastasis [622]. It has 

been reported that catecholamines can inhibit the generation of anti-tumour CD8+ T cells, 

induce apoptosis of lymphocytes, alter the distribution of NK cells and suppress NK cell 

activity, which is important in the defence against cancer [622, 623]. Thus, the persistent 

release of neurotransmitters from the nerve terminals may promote tumour growth and 

metastasis via modulation of the immune system. In fact, we have demonstrated in the 

previous chapters that dysfunction in cholinergic signalling influenced the expression of 

immunosuppressive molecules, PD-L1 and PD-L2. Here we evaluated expression of IDO 

and siglec-9 in human specimens and the effects of blocking siglec-9 on the expression 

of IDO, siglec-9, cholinergic markers as well as studied signalling pathways involved in 

these effects.  This study is one of the first to report the expression of siglec-9 on normal 

epithelial cell and human colon cancer cells.   

 

Immune escape mechanisms have emerged to play an essential role in the development 

and metastasis of tumours. Multiple immunosuppressive mechanisms in the tumour 

microenvironment can impair the functions of CD8+ T cells. One of these 

immunosuppressive mechanisms is mediated by the IDO. In the present study, IDO was 

significantly elevated at the advanced stage of CRC, stage IV, compared to early stages, 

I, II and III. Furthermore, there was a statistical difference observed at stage III when 

compared to I. Similarly, the number of cells expressing IDO were augmented at stage IV 

compared to I, II and III. Moreover, there was a high number of cells expressing IDO at 

stage III compared to stages I and II. IDO expression is associated with T cell inhibition 

and/or apoptosis via depleting tryptophan in the tumour microenvironment. It has been 

noted that the expression of IDO is associated with advanced stages of the disease 

leading to poor prognosis [624]. Similar to these findings, our results demonstrated 
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correlation between IDO expression and a high risk of CRC and poor survival outcome. 

However, no association was observed between IDO expression and patients’ age, 

gender and metastatic status. In CRC patients, the expression of IDO is associated with 

liver metastases and inversely correlates with infiltrating T cells as well as clinical 

outcome [625]. However, other studies suggest that the prognostic value of IDO 

expression may depend on the tissue type as IDO is associated with good outcomes in 

breast cancer [626].  

 

Siglec-9 expression was associated with the advanced stages of CRC, III-IV, compared 

to stages I-II. Similarly, there was a significant difference observed at stage III when 

compared to stages I and II. In addition, number of cells overexpressing siglec-9 were 

elevated at stage IV compared to stages I-III. Moreover, there were more cells expressing 

siglec-9 at stage III compared to stage I. These findings may be due to the upregulation 

of the tumour-associated antigen, mucin 1 (MUC1) on CRC cells [96, 627], as siglec-9 

binds to MUC1 [101, 628]. The increase in the expression of siglec-9 provides a protective 

mechanism for tumour cells via inhibiting NK cell and T cell lysis [101, 629]. In addition, 

the interaction between siglec-9 and MUC1 expressed on HCT116 human colon cancer 

cells results in β-catenin recruitment in tumour cells where it is transported to the nucleus, 

leading to cell growth [101]. In human breast and colon tumour tissues, siglec-9-positive 

cells associate with the MUC1-positive cells suggesting that siglec-9 might be a counter 

receptor for MUC1 [101]. In addition, in vitro binding of siglec-9 to MUC1 expressed on 

HCT116 human colon cancer cell line, resulted in β-catenin recruitment in tumour 

cells where it is transported to the nucleus, leading to cell growth [101]. These findings 

suggest that the interaction of siglec-9 expressed on immune cells with MUC1 expressed 

on tumour cells may perhaps be involved in tumour growth, however, the nature of this 

interaction as well as the cellular framework in vivo remains to be defined. Although 

studies have reported siglec-9 expression in tumours, this study is one of the first to 

correlate siglec-9 expression with different stages of CRC and clinical parameters. Here 

we report that high expression of siglec-9 associates with high risk of CRC and poor 

patients’ survival. 
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Cholinergic signalling has been showed to promote cancer cells proliferation, invasion 

and migration by activating M3R [363, 521]. For instance, ACh acting on M3R associated 

with metastasis and low survival rate of non-small cell lung cancer (NSCLC) patients 

[366]. In addition, administration of muscarinic receptor inhibitor, atropine, abolished 

SNU-C4 human colorectal cancer cell migration, however, H508 human colorectal cancer 

cell migration requires the activation of matrix metalloproteinase-7. In the present study, 

blocking of siglec-9 significantly reduced normal epithelial cell and human colon cancer 

cells’ ability to produce choline, a precursor for ACh synthesis leading to decreased cell 

proliferation. Interestingly, blocking siglec-9 exerted no difference in M3R expression on 

human colon cancer cells, however, M3R expression on normal epithelial cells was 

significantly attenuated by blocking siglec-9. Furthermore, there was no significant 

differences observed between controls and treated cells and their expression of ChAT. 

These findings suggest that siglec-9 might not be exhibiting its affect through M3R or 

ChAT, but possibly through inhibition of ACh synthesis via reduction of choline production. 

Therefore, further studies are warranted to elucidate these mechanisms.  
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5.5. Conclusion  

Cancer cells are able to evade the hosts’ immune system by upregulating 

immunosuppressive (IDO, siglec-9) and cholinergic markers (M3R, ChAT) which aid in 

their invasion, metastasis and/or recurrent disease. The data presented in this chapter 

associated high levels of siglec-9 and IDO with advanced stages, higher risk of CRC and 

poor patients’ survival outcomes. Overall expression of siglec-9 was associated with 

M3R, suggesting there might be bi-directional communication. In vitro findings 

demonstrated that human anti-siglec-9 antibody significantly attenuated cell proliferation 

and choline production in all cells. Blocking siglec-9 had no effects on T4056 and LIM-

2405 but significantly decreased IDO expression in HT-29. Similarly, human anti-siglec-9 

antibody had no effects on T4056 but significantly reduced siglec-9 expression in human 

colon cancer cells. Interestingly, blocking siglec-9 decreased M3R expression in T4056 

but not human colon cancer cells and had no effects on ChAT expression. This suggests 

that siglec-9 effects on cholinergic markers might be influenced by the tumour 

microenvironment. Moreover, blocking siglec-9 significantly inhibited ERK and STAT3 

phosphorylation in T4056 and LIM-2405 but not HT-29 cells. Similarly, blocking siglec-9 

significantly suppressed the activation of EGFR in T4056 and but not human colon cancer 

cells. Taken together, human siglec-9 antibody unveiled its effects in a normal epithelial 

cell via suppressing EGFR/ERK/STAT3 signalling pathway, while in LIM-2405 human 

colon cancer cells it acts by inhibiting ERK/STAT3 signalling pathway. Therefore, it is 

imperative to determine the expression status of some or all of these immunosuppressive 

molecules in order to develop appropriate therapeutic strategies in cancer patients.  
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CHAPTER SIX 

 

Effect of Inhibiting Siglec-E on the Expression of 

Immunosuppressive and Cholinergic Markers in 

an Orthotopic Mouse Model of CRC 
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6.0. Abstract 

Cancer cells have evolved to create favourable microenvironment by expressing 

immunosuppressive, such as indoleamine-2,3-dioxygenase (IDO) and sialic acid-binding 

lectins 9 (siglec-9) and cholinergic markers, enabling them to avoid the host’s immune 

detection. Molecular mechanisms and signalling pathways involved in the effects of 

blocking siglec-E, a murine orthologous protein of human siglec-9, were examined in 

mouse colon tumour and CT-26, cell line in vitro. The effects of in vivo treatment with 

mouse anti-siglec-E antibody on cancer growth, expression of immunosuppressive, 

cholinergic and angiogenic markers, and tumour spread were evaluated in a mouse 

orthotopic model of colorectal cancer (CRC) induced by CT-26 cells. In vitro, mouse anti-

siglec-E antibody significantly inhibited CT-26 cells proliferation in a dose dependent 

manner. Mouse anti-siglec-E antibody significantly suppressed the expression of siglec-

9, cholinergic and angiogenic markers via inhibition of EGFR/AKT/ERK signalling 

pathway. Interestingly, IDO was not detected in both control and mouse anti-siglec-E 

antibody treated CT-26 cells, suggesting that tumour microenvironment might influence 

the expression of IDO. In vivo administration of mouse anti-siglec-E antibody reduced 

tumour growth, expression of immunosuppressive, cholinergic and angiogenic markers 

via improved hosts’ immune response against cancer as demonstrated by increased 

infiltration of CD4+ and CD8+ T cells through inhibition of ERK phosphorylation. These 

findings suggest that siglec-9 might influence the expression of IDO, cholinergic and 

angiogenic markers as well as tumour-associated immune cells. Taken together, these 

findings suggest that the development of therapies targeting IDO, siglec-9 and cholinergic 

markers might be beneficial for CRC treatment. 
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6.1. Introduction 

The expression of siglecs in tumours have been reported; however, only recently the role 

of siglec-9 in cancer has been investigated. Siglecs, sialic acid immunoglobulin-like 

binding lectins, are involved in discrimination between body cells (‘self’) and foreign 

materials (‘non-self’) [630, 631]. Siglec-9 and its counterpart siglec-E, expressed on 

murine immune cells, are members of the CD33-related siglecs. Expression of siglec-9 a 

mouse orthologous protein, siglec-E, have been shown to play a key role in the inhibition 

of the T cell receptors (TCR)-mediated signalling [631]. Most siglecs contain 

immunoreceptor tyrosine-based inhibitory motifs (ITIMs), and the consensus is that these 

ITIMs allow the inhibition of certain immune cells that carry activating receptors with 

tyrosine-based activation motifs (ITAMs) [632, 633]. ITAMs are found on most immune 

cells and are associated with the activation of B/T cell and natural killer (NK) cell receptors 

[634]. Some immune cells such as macrophages, B cells, dendritic cells and NK cells can 

express siglecs [94]. Overexpression of siglec-9 on tumour-infiltrating immune cells 

creates immunosuppressive microenvironment favourable for tumours to grow [514]. The 

expression of siglec-9 downregulates innate and acquired immunity [635]. Siglec-9 

inhibits the secretion of TNF- and enhances Il-10 production in macrophages as 

demonstrated in lipopolysaccharide (LPS) model [636], both cytokines play an important 

role in the progression of cancer.  

In addition, siglec-9 is shown to interact with transmembrane mucins, including mucin 

(MUC)1 and MUC16 [95]. In human breast and colon tumour tissues, siglec-9-positive 

cells were associated with the MUC1-positive cells, suggesting that siglec-9 might be a 

counterreceptor for MUC1 [101]. Furthermore, binding of siglec-9 to MUC1 expressed on 

HCT116 human colon cancer cell line resulted in β-catenin recruitment in tumour cells 

where it is transported to the nucleus, leading to cell growth [101]. Inhibition of tumour-

associated macrophages via siglec-9 leads to M1 polarization and reduced tumour 

growth-promoting factors within the tumour microenvironment [94]. Similarly, expression 

of siglec-9 alters polarisation of macrophages from M1 phenotype (anti-tumour) to M2 

(pro-tumour) [637]. In addition, in vitro blocking of siglec-9 enhances neutrophil activity 
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against tumour cells, while siglec-E deficient mice show improved in vivo 

immunosurveillance against tumour cells [94]. However, this outcome is dependent on 

the stage of tumour development and the microenvironment. These findings suggest that 

siglec-9 or siglec-E expressed on immune cells can interact with MUC1 expressed on 

tumour cells, which might be involved in tumour growth, however, the nature of this 

interaction as well as the cellular framework in vivo remains to be defined.   

In addition to siglec-9 expression, tumours can express indoleamine-2,3-dioxygenase 

(IDO); overexpression of this enzyme leads to increased degradation of the essential 

amino acid L-tryptophan along the kynurenine pathway. A decrease in L-tryptophan leads 

to T cell inhibition, promoting a favourable environment and a mechanism for tumours to 

avoid the host’s immune detection [514, 620]. Expression of IDO is dependent on the 

presence of cytokines such as interferon-gamma (INF-) [624, 638]. IDO is mainly 

expressed by dendritic cells in tumour stroma and tumour draining lymph nodes; however, 

other tumour microenvironment constituents such as macrophages and fibroblasts are 

capable of expressing IDO [100, 639, 640]. In CRC patients, IDO expression associates 

with liver metastases and inversely correlates with infiltrating T cells and patients’ clinical 

outcome [624]. In basal-like breast carcinoma, high expression of IDO has an 

independent good prognostic value [93]. These findings indicated the important role of 

IDO in cancer progression; however, the mechanisms of action need further elucidation.  

Moreover, cholinergic signalling has been reported to play an essential role in cancer 

progression, as reviewed in Chapter 1 [371, 641]. For example, studies have 

demonstrated that acetylcholine (ACh) acts as a paracrine growth factor in lung and 

gastric cancers [518, 521]. Cholinergic signalling plays an important role in the regulation 

of immunosuppressive markers, as demonstrated in Chapters 3-5. In this chapter, the 

effects of blocking siglec-E with a mouse anti-siglec-E antibody were evaluated (i) on 

murine CT-26 cell line, (ii) tumour growth in mice bearing CT-26 cell-induced CRC (iii) 

expression of immunosuppressive, cholinergic and angiogenic markers in both CT-26 

cells and tumour tissues and (iv) presence of tumour-infiltrating immune cells in tumours. 

The expression of siglec-9, IDO and cholinergic signalling play a significant role in cancer 
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development. Understanding crosstalk between siglec-E and cholinergic signalling in vivo 

is crucial as it this interaction plays a vital role in cancer progression.  
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6.2. Materials and Methods 

6.2.1 Mice 

As previously stated in Chapter 4, male BALB/c mice aged 5-8 weeks (n=16) were 

purchased from the Animal Resources Centre and housed in groups of 4 per cage. All 

animals were kept in a temperature-controlled environment with 12-hour (hr) light/dark 

cycle at approximately 22°C with access to food and water. The mice were allowed to 

acclimatise for at least one week before undergoing surgery. All animal experiments in 

this study complied with the guidelines of the National Health and Medical Research 

Council (NHMRC) Australian Code of Practice for the Care and Use of Animals for 

Scientific Purposes under approval of the Victoria University Animal Experimentation 

Ethics Committee (ethics number AEETH 15-011). All efforts were made to lessen animal 

suffering. 

6.2.2. Cell culture 

As previously described in Chapter 4, murine colorectal cancer cell line (CT-26) was 

cultured in Roswell park memorial institute (RPMI) 1640 culture media supplemented 

with 10% fetal bovine serum, 1% penicillin-streptomycin and 1% Glutamine, at 37°C, 5% 

CO2 and 95% air atmosphere. Passage of cells was conducted with 0.25% trypsin and 

0.02% ethylenediamine tetraacetic acid (EDTA) every 3-4 days.  When cells grew into 

confluent or semiconfluent monolayers in the 75cm2 medium flasks, they were either 

passaged or used.    

6.2.3. Cell viability  

The water-soluble tetrazolium-1 (WST-1) assay kit (Roche Diagnostics GmbH, Germany) 

was used to determine the viability of CT-26 cells. WST-1 is cleaved to form formazan 

dye via a complex cellular interaction at the cell surface. This interaction is contingent on 

the glycolytic nicotinamide adenine dinucleotide phosphate (NADPH) production of the 

viable cells. Hence, the amount of formed formazan dye correlates to the number of viable 

cells in the culture. CT-26 cells were seeded and cultured at 1×104 cells per well in 96 

well plates for 24hrs. Cells were then treated with various concentration of a mouse anti-
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siglec-E antibody (AF5806; R&D Systems, Australia) for 8hrs. All treatments were 

performed in triplicates, and three independent experiments were conducted. WST-1 

reagent (10µL) was added to each well and incubated at 37oC for 1hr. Cellular 

proliferation at the absorbance of 450nm was measured using a microplate reader 

(Varioskan Flash, Thermo Scientific). 

6.2.4. Choline/acetylcholine assay  

The choline/acetylcholine assay kit (Abcam, Australia) was used to measure the 

concentration of choline in CT-26 cell lysates. The assay was carried out in accordance 

with the instructions provided by the manufacturer. Briefly, CT-26 (1x106 cells) were 

cultured overnight, after which cells were treated with 50ng of a mouse anti-siglec-E 

antibody for 8hrs. Cells were lysed in 500µL choline assay buffer before commencing 

choline measurements using a microplate reader (Varioskan Flash, Thermo Scientific) at 

absorbance of 570nm. All treatments were performed in duplicates, and two independent 

experiments were conducted 

6.2.5. Orthotopic implantation of CT-26 tumour cells 

Mice were anaesthetised using xylazine (10mg/kg), and ketamine (80mg/kg) injected 

intraperitoneally. The level of anaesthesia during the surgery was monitored using the 

paw pinch reflex test. The eyes of the animals were treated with ViscoTears to protect 

them from drying out during the surgery. Mice were placed on an operating table on a 

heat mat (30-36°C), and all procedures were performed under aseptic conditions. All 

instruments were autoclaved and only opened when ready to operate. The abdomen was 

shaved and swabbed with 70% ethanol and covered with sterile film. A small midline 

abdominal incision was made, and the caecum was exteriorised on sterile gauze. Matrigel 

(25μL) containing CT-26 cell suspension (1 x 106 cells) was injected into the caecum wall 

of BALB/c using an insulin needle. After injection, the abdominal muscle wall was sutured 

using polygalactone and skin using surgical silk or dissolvable skin sutures. The incision 

area was sterilised by saline followed with iodine. Mice were given an analgesic 

Temgesic/Buprenorphine (0.05mg/kg) subcutaneously. Mice were then monitored 
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visually during recovery time (about 1-1.5hrs) and, when fully conscious, they were 

returned to an animal holding room in the animal facility.  

6.2.6. Intraperitoneal injections and tissue collection  

Five days post-surgery, mice were randomly divided into two groups: sham/vehicle-

treated and anti-siglec-E antibody-treated. Vehicle-treated BALB/c mice received 

intraperitoneal injections of sterile water, and the study group received 50ng/g of a mouse 

anti-siglec-E antibody dissolved in sterile water every third day [642] The volume of the 

administered solution was calculated per body weight with the maximum volume of 200μL 

per injection. Mice were culled at 28 days post-surgery via lethal injection and tumours 

were removed, weighed and used for western blot, flow cytometry, proteome profiler array 

and immunohistochemistry. Tumour tissues were used to assess angiogenesis, tumour-

infiltrating immune cells, and expression of immunosuppressive and cholinergic markers. 

Tumour tissues used for flow cytometry analysis were collected into RPMI media, for 

western and proteome profiler arrays were snap-frozen in liquid nitrogen and samples 

used for immunohistochemistry were placed in Zamboni’s fixative (2% formaldehyde 

0.2% picric acid).  

6.2.7. Histopathology 

For histological examination, liver samples from mice treated with vehicle and a mouse 

anti-siglec-E antibody were collected into Zamboni’s fixative overnight at 4˚C. The next 

day, tissues were washed in DMSO (3 times x 10 min) and in PBS (3 times x 10 min) and 

placed into a solution consisting of 100mL of PBS + 30g of sucrose + 0.1g of sodium 

azide overnight. Samples were then embedded into OCT, and 5μm transverse sections 

were cut and placed onto 1% gelatin-coated glass slides. The sections were allowed to 

dry at room temperature for at least one hour then processed for standard haematoxylin 

and eosin staining.  Following staining, they were dehydrated through graded ethanols, 

transferred into histolene and mounted using fluorescent mounting medium. Images were 

taken on a slide scanner microscope (Zeiss, Germany). 
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6.2.8. Immunohistochemistry in cross sections 

Tumour tissues collected from vehicle-treated and a mouse anti-siglec-E antibody-treated 

group were fixed with Zamboni’s fixative overnight at 4°C. Next day, fixative was cleared 

off by washing samples for 10 mins three times with DMSO (Sigma-Aldrich, Australia) 

followed by three times 10 mins washes with phosphate buffered saline (PBS). Tissues 

were then embedded in optimum cutting temperature medium (OCT) and frozen using 2-

methyl butane (isopentane) and liquid nitrogen. Samples were stored in -80°C freezer 

until cryo-sectioned. Tissues were cut at 10μm section thickness using a Leica CM1950 

cryostat (Leica Biosystems, Germany), adhered to slides and allowed to dry at room 

temperature for 1hr before commencing staining process. OCT was washed off with PBS 

containing 0.01 % Triton X-100 (PBST) for 5 mins. Using a liquid Blocker Super Pap Pen, 

samples were outlined to reduce the volume of antibody used. The endogenous activity 

was blocked using 10% normal donkey serum for 1h at room temperature, followed by 

PBST washes. Samples were then incubated with primary antibodies (Table 6.1) against 

immunosuppressive, cholinergic and angiogenic markers overnight at 4°C. Sections were 

then washed in PBST before incubation with secondary antibodies labelled against 

primary antibodies (Table 6.2) for 2hrs at room temperature in the dark, followed by PBST 

washes. The sections were incubated with 4′,6-diamidine-2′-phenylindole dihydrochloride 

(DAPI) (D1306, Life Technologies, Australia) for 1 min.  Sections were given final washes 

in PBST and then mounted with DAKO mounting media (Agilent Technologies, Australia). 

Coverslips were placed over each section and left to dry overnight before imaging. 

Sections were viewed under a Nikon Eclipse Ti laser scanning confocal microscope 

(Nikon, Japan), whereby eight randomly chosen images from each sample were captured 

with a 40× objective and analysed using image analysis software (Nikon, Japan).  

6.2.9. Western blot  

Proteins extracted from CT-26-induced tumour tissues and CT-26 cells were evaluated 

for the expression of immunosuppressive, cholinergic and angiogenic markers as well as 

cell signalling pathways, phospho signal transducer and activator of transcription 3 

(pSTAT3), phospho extracellular signal-regulated kinase (pERK½), phospho 

serine/threonine kinase or protein kinase B (pAKT) and epidermal growth factor receptor 
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(EGFR) by western blot. CT-26 cells were incubated with 50ng of mouse anti-siglec-E 

antibody for 8hrs. After treatments, cells were collected and lysed in 

radioimmunoprecipitation assay (RIPA) buffer (pH 7.4, 150mM NaCl, 0.1% SDS, 0.5% 

sodium deoxycholate, 1% NP-40 in PBS, Sigma) containing protease and phosphatase 

inhibitors cocktail (Roche Applied Science, Switzerland). For tumour samples, 100mg of 

tumour tissues per mouse were weighed, and tumour samples from 3 mice per band for 

the first two bands and tumour samples from 2 mice for the third band were pooled 

together. Samples were then homogenised in 500µL of RIPA buffer containing protease 

and phosphatase inhibitors cocktail. Cellular proteins (20µg) from CT-26 cell line and 

25µg protein from tumour samples were separated by 8% to 12% sodium dodecyl 

sulphate (SDS)/polyacrylamide gel electrophoresis. The separated fragments were 

transferred to 0.22µm polyvinylidene fluoride membranes, which were blocked with 5% 

skim milk in PBS containing 0.1% Tween 20 and incubated overnight at 4oC in platform 

shaker at 40rpm speed. The membranes were incubated with primary antibodies (Table 

6.1) overnight at 4oC. The membranes were then incubated with horseradish peroxidase 

(HRP)-conjugated secondary antibodies (Table 6.2) for 2hr at room temperature followed 

by three times PBS-0.1% Tween 20 washes. Glyceraldehydes-3-phosphate 

dehydrogenase (GADPH) was used as a loading control. Protein detection was 

performed using enhanced chemiluminescence reagents. Chemiluminescent signal was 

captured using the FluorChem FC2 system. The expression level of each protein was 

quantified using ImageJ software.  

6.2.10. Proteome profiler mouse phospho-RTK array kit  

As previously described in Chapter 4, the assay was carried out in accordance with the 

instructions provided by the manufacturer. Briefly, tumour samples from each group were 

pooled and lysed in Lysis Buffer 17 prepared with protease inhibitors. Samples were 

mixed by pipetting up and down to resuspend, and lysates were gently rocked at 4°C for 

30 mins on a rocking platform shaker. Tumour lysates were centrifuged at 1500rpm for 5 

mins at 4°C and supernatants were transferred into clean test tubes. Array membranes 

were placed onto 4-well multi-dish and incubated with Array Buffer 1 for 1hr at room 

temperature on a rocking platform shaker. After 1hr incubation, Array Buffer 1 was 
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aspirated out, and membranes were incubated with tumour lysates overnight at 4°C on a 

rocking platform shaker. Membranes were then washed with 1x Wash Buffer for 3x10 

mins. Membranes were incubated with anti-phospho-tyrosine-HRP antibody at room 

temperature for 2hr on a rocking platform shaker. Membranes were then washed with 1x 

Wash Buffer for 3x10 mins. Membranes were then incubated with chemiluminescence 

reagent mix, and chemiluminescent signal was captured using the FluorChem FC2 

system. 

6.2.11. Flow cytometric cell staining 

On the day of culls, tumours were collected into RPMI media and tumour tissues were 

processed into single-cell suspensions for fluorescence-activated cell sorting (FACS) 

analysis. Single-cell suspensions were performed by mechanically dissecting tumours 

into small pieces and incubating with 2mL of collagenase (0.1%w/v in 1mL of α-MEM) at 

37°C for 2hrs with 30 mins intervals of mechanical dissociation. Tumour suspensions 

were filtered with 40µm cell strainers Falcon® into 50mL Falcon® tubes and were then 

centrifuged at 1500rpm for 5 mins at 4°C. Cell pellets were incubated with 1x red blood 

cell lysing buffer for 3 mins at 37°C. Cell pellets were then resuspended in 1mL of FACS 

buffer to create a single cell suspension and accounted using a hemocytometer. 

Viable cell pellets were incubated with two different antibody cocktails (Table 6.3). 

Cocktail 1 contained leukocyte infiltration markers (CD45, CD11b, CD4, CD8a, CD193 

(CCR3), Siglec-F and Fc Block), while cocktail two was comprised of (CD45, CD11b, 

CD19, CD206, CD115, F480, Ly-6C, Ly-6G and Fc Block). Tumour cells (10x106) cells 

(400µL) were aliquoted in BD Falcon® FACS tubes. Cells were centrifuged at 1300rpm 

for 3 mins at 4°C. Cells were then incubated with 200µL of antibody cocktails for 1hr at 

4°C. After incubation, cells were centrifuged at 1300rpm for 3 mins at 4°C and 

supernatants aspirated. Cells were then resuspended in 200µL FACS buffer and filtered 

through 35µm filters in a 5mL BD Falcon® tube. Prior to FACS analysis, cells were 

incubated with viability solution, 7-amino-actinomycin D (7-AAD, 1:20) to gate on the 

viable cell populations. 
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Table 6. 1. Details of primary antibodies used in this study 

Primary antibodies 

Markers Host Species & 

Clonality 

Dilution Source Catalogue 

no. 

Sigec-9 Rabbit, polyclonal  1:500 Abcam, Australia ab197981 

IDO Mouse, monoclonal 1:200 Abcam, Australia ab55305 

M3R Rabbit, polyclonal 1:500 Abcam, Australia ab126168 

7nAChR Mouse, monoclonal 1:500 Novus, Australia 7F10G1 

ChAT Goat, polyclonal 1:500 Abcam, Australia ab134021 

VAChT Sheep, polyclonal 1:500 Abcam, Australia ab31544 

FOXP3 Mouse, monoclonal 1:500 Abcam, Australia ab20034 

VEGF Rabbit, polyclonal 1:500 Abcam, Australia ab46154 

CD31 Rat, monoclonal 1:500 Abcam, Australia ab7388 

TGF- Rabbit, polyclonal 1:500 Abcam, Australia ab155264 

EGFR Rabbit, monoclonal 1:1,000 Cell signalling, #4267 

pAKT Rabbit, monoclonal 1:1,000 Cell signalling, #4060 

pERK Rabbit, monoclonal 1:1,000 Cell signalling, #3192 
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Table 6. 2. Details of secondary antibodies used in this study 

Secondary antibodies 

Alexa Fluor 

488 

Anti-goat 

Anti-sheep 

Anti-rat 

1:250 Jackson ImmunoResearch 

Laboratories, United States 

Alexa Fluor 

594 

Anti-rabbit 1:250 Jackson ImmunoResearch 

Laboratories, United States 

Alexa Fluor 

647 

Anti-mouse 1:250 Jackson ImmunoResearch 

Laboratories, United States 

Anti-

mouse 

IgG HL HRP 1:10,000 Abcam, Australia 

Anti-rabbit IgG HL HRP 1:10,000 Abcam, Australia 

Anti-rat IgG HL HRP 1:10,000 Abcam, Australia 

Anti-goat IgG HL HRP 1:10,000 Abcam, Australia 
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6.2.12. Data analysis 

Images were captured on a Nikon Eclipse Ti multichannel confocal laser scanning system 

(Nikon, Japan). Z-series images were acquired at a nominal thickness of 1µm (1024 x 

1024 pixels).  Image J software (National Institute of Health, Bethesda, MD, USA) was 

employed to convert images from RGB to greyscale 8-bit binary; particles were then 

analysed to obtain the percentage area of immunoreactivity [591]. All 

immunohistochemistry images and western blot bands were quantified, and statistical 

analysis was performed by Student’s t-test.  

The characterisation of tumour-infiltrating immune cells was performed and quantified by 

flow cytometry (BD FACs Aria I, BD Bioscience, CD, USA) with the aid of BD FACS DIVA 

software (BD Bioscience, CA, USA.). Two hundred thousand (200,000) events were 

collected per sample and analysed by BD FACS DIVA software. As each antibody 

conjugate produces a distinctive emission spectrum, each experiment employed 

single colour compensation controls to optimise photo-multiplier tube (PMT) voltages and 

calculate spectral overlap (where applicable). Excel, SPSS and Prism (GraphPad 

software, La Jolla, CA, USA) were utilised to aid in the statistical analysis and p<0.05 was 

considered significant. 
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6.3. Results 

6.3.2. Effect of blocking siglec-E on CT-26 ability to produce choline in vitro 

In Chapter 4, it was demonstrated that CT-26 mouse colon cancer cells can synthesise 

ACh. Here, the effect of a mouse anti-siglec-E antibody on the ability of CT-26 cells to 

synthesise ACh was evaluated. The amount of choline was measured in CT-26 cell 

lysates (1x106 cells). The results showed that a mouse anti-siglec-E antibody significantly 

reduced choline production when compared to control (Figure 6.2).  
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Figure 6.1. Effect of a mouse anti-siglec-E antibody on CT-26 cells proliferation in 

vitro 

CT-26 cells treated with different concentrations of a mouse anti-siglec-E antibody (A). 

Number of viable cells after 8hrs incubation with various concentrations of a mouse anti-

siglec-E antibody (B). Values in A and B are mean ± standard error of the mean (SEM) 

from at least three independent experiments performed in triplicates. 
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Figure 6.2. Effect of a mouse anti-siglec-E antibody on choline production in vitro 

The amount of choline was measured in CT-26 cells treated with a mouse anti-siglec-E 

antibody.  Values presented as mean ± SEM from at least two independent 

experiments. Student’s t-test, ***p<0.001. Anti-SE Ab, anti-siglec-E antibody. 

  



289 
 

 

 

 

 

 

 

 

 

  



290 
 

6.3.3. Expression of immunosuppressive and cholinergic markers in vitro  

6.3.3.1. Effect of blocking siglec-E on the expression of siglec-E and IDO in CT-26 

cells 

In Chapter 5, it was shown that human colon cancer cells overexpressed siglec-9 and 

IDO when compared to the normal epithelial cell, and this was dampened by recombinant 

human anti-siglec-9 antibody treatment. In this chapter, the effect of a mouse anti-siglec-

E antibody on CT-26 cells ability to express immunosuppressive and cholinergic markers 

was determined. CT-26 cells were pre-treated with 100ng of a mouse anti-siglec-E 

antibody for 8hrs prior protein analyses via western blot staining. Treatment with anti-

siglec-E antibody significantly decreased the expression of siglec-E (Figure 6.3A and B); 

however, IDO was not detected in both control and treated cells.  

6.3.3.2. Effect of blocking siglec-E on the expression of M3R and ChAT in CT-26 

cells 

Cholinergic receptors expressed by colon cancer cells involved in tumour growth and 

progression. In vitro data demonstrated that CT-26 cells can produce choline, but, 

whether CT-26 cells can express ChAT, an enzyme required for ACh synthesis, and M3R 

was evaluated by western blot. Mouse anti-siglec-E antibody treatment significantly 

reduced M3R expression compared to control (Figure 6.4A and B). Similarly, application 

of a mouse anti-siglec-E antibody significantly attenuated ChAT expression compared to 

control (Figure 6.4A and C).  

6.3.4. Effect of blocking siglec-E on the phosphorylation of kinases and EGFR 

activation in CT-26 cells 

The effects of blocking siglec-E on the phosphorylation of AKT, ERK and the activation 

of EGFR was assessed. The results showed that a mouse anti-siglec-E antibody inhibits 

the activation of EGFR (Figure 6.5A and B, difference between values (∆): -0.70±0.11, 

p<0.01) and suppresses phosphorylation of AKT (Figure 6.5A and C, ∆: -0.52±0.04, 

p<0.001) and ERK (Figure 6.5A and D, ∆: -1.22±0.07, p<0.0001) in CT-26 cells. These 
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findings suggest that anti-siglec-E antibody exhibits its effects in vitro via inhibition of 

EGFR/AKT/ERK signalling pathway.    
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Figure 6.3. Effect of a mouse anti-siglec-E antibody on the expression siglec-E in 

CT-26 cells  

Western blot bands for siglec-E expression in CT-26 cells treated with a mouse anti-

siglec-E antibody (A). Bar graphs displaying the mean intensity of siglec-E expression in 

CT-26 cells treated with a mouse anti-siglec-E antibody (B). Data presented as mean ± 

SEM, Student’s t-test, ***p<0.001. Anti-SE Ab, anti-siglec-E antibody. 
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Figure 6.4. Effect of a mouse anti-siglec-E antibody on the expression of 

cholinergic markers in CT-26 cells 

Western blot bands for M3R and ChAT expression in CT-26 cells treated with a mouse 

anti-siglec-E antibody (A). Bar graphs displaying the mean intensity of M3R (B) and ChAT 

(C) expression in CT-26 cells treated with a mouse anti-siglec-E antibody. Data presented 

as mean ± SEM, Student’s t-test, **p<0.01, ***p<0.001. Anti-SE Ab, anti-siglec-E 

antibody.  
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Figure 6.5. Effect of blocking siglec-E on the expression of protein kinases in CT-

26 cells 

Western blot bands for EGFR, pAKT and pERK expression in CT-26 cells treated with a 

mouse anti-siglec-E antibody (A). Bar graphs displaying the mean intensity of EGFR (B), 

pAKT (C) and pERK (D) expression in CT-26 cells treated with a mouse anti-siglec-E 

antibody. Data presented as mean ± SEM, Student’s t-test, **p<0.01, ***p<0.001, 

****p<0.0001. Anti-SE Ab, anti-siglec-E antibody. 
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6.3.5. Effect of blocking siglec-E on tumour growth in vivo 

The orthotopic mouse models of CRC has been shown to replicate features (such as 

regional or distant metastasis) shown in the human CRC condition with high fidelity, which 

feature cancer cells growing in their natural location [643]. To investigate whether 

blocking siglec-E influences tumour growth, an orthotopic model of colorectal cancer was 

established by implanting CT-26 murine colon cancer cells into the mouse caecum wall. 

Five days post-surgery, tumour-bearing mice were intraperitoneally injected with either 

vehicle solution (sterile water) or a mouse anti-siglec-E antibody every third day for 28 

days. Mice were culled, tumours removed, and the weight, size and volume were 

measured. In addition, tumours around the caecum were counted and collected. The 

results showed a significant reduction of tumour size in mice treated with anti-siglec-E 

antibody compared to vehicle-treated group (Figure 6.6A and B). Blocking siglec-E 

significantly decreased tumour weight (Figure 6.6C) and tumour volume compared to 

sterile water treatment (Figure 6.6D). Furthermore, tumour-bearing mice treated with 

sterile water had more polyps and invasive tumours around the caecum compared to anti-

siglec-E antibody-treated group (Figure 6.7, ∆: -30.00±5.120, p<0.0001). 

6.3.6. Effect of blocking siglec-E on tumour metastasis in vivo 

Cancer metastasis is one of the leading causes of cancer-related death in CRC. The liver 

is the main location of haematogenous metastases in about 10-30% of patients at the 

time of diagnosis. To study the effect of blocking siglec-E on liver metastases in mice with 

orthotopic CRC, histological assessment of livers taken from vehicle-treated and anti-

siglec-E antibody-treated groups was performed. Tissues were processed for 

histopathology staining, and results demonstrated that livers from mice treated with sterile 

water had visible tumours and showed some structural abnormalities of the liver (Figure 

6.8A-A’). However, livers from tumour-bearing mice treated with a mouse anti-siglec-E 

antibody demonstrated normal liver structure (Figure 6.8B-B’).  

  



299 
 

 

 

 

 

 

 

 

 

Figure 6.6. Effect of blocking siglec-E on tumour growth in vivo 

Images of tumour size from sterile water-treated group (A) and anti-siglec-E antibody-

treated group (B). Bar graphs displaying the mean weight (C) and volume (D) of tumours 

collected from sterile water and anti-siglec-E antibody-treated groups. Data presented as 

mean ± SEM, n=8 mice per group. Student’s t-test, ****p<0.0001. Anti-SE Ab, anti-siglec-

E antibody. 
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Figure 6.7. Effect of a mouse anti-siglec-E antibody on the number of polyps 

around the caecum 

The caecum samples removed from tumour-bearing mice treated with sterile water (A) 

and anti-siglec-E antibody (B). Bar graph displaying the mean number of tumour polyps 

from sterile water and anti-siglec-E antibody-treated groups (C). Data presented as mean 

± SEM, n=8 mice per group. Student’s t-test, ****p<0.0001. Anti-SE Ab, anti-siglec-E 

antibody. 
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Figure 6.8. Effect of a mouse anti-siglec-E antibody on tumour metastasis 

Livers from tumour-bearing mice treated with sterile water (A) and with anti-siglec-E 

antibody (B). Haematoxylin and eosin staining of the liver sections from sterile water-

treated (A’) and anti-siglec-E antibody-treated (B’) mice. Images were taken at 20x 

magnification. Scale bar represents 100µm, n=8 mice per group. Anti-SE Ab, anti-siglec-

E antibody. 

  



304 
 

 

 

 

 

 

 

  



305 
 

6.3.7. Expression of immunosuppressive and cholinergic markers in tumours 

from an in vivo model of CRC 

6.3.7.1. Expression of immunosuppressive markers in the in vivo model 
 

Studies identifying the role of siglec-9 or its mouse counterpart, siglec-E, in CRC are 

scarce. Siglec-9 has been shown to be expressed by a number of immune cells within 

human colorectal tumour microenvironment, as demonstrated in Chapter 1. In this 

chapter, the effects of in vivo treatment of CRC tumour-bearing mice with a recombinant 

anti-siglec-E antibody on the expression of siglec-E and IDO were studied. Siglec-E was 

co-labelled with FOXP3, a marker labelling the regulatory T cells. Blocking of siglec-E 

with a mouse anti-siglec-E antibody significantly reduced the expression of siglec-E 

compared to sterile water treatment (Figure 6. 9A’, B’ C and E; ∆: -9.33±1.52, p<0.0001). 

However, there was no significant difference observed in the expression of FOXP3 

between anti-siglec-E antibody-treated and sterile water-treated groups (Figure 6.9A’’, 

B’’ D and E; ∆: -1.82±1.21, p=0.1580).  

Furthermore, the effect of a mouse anti-siglec-E antibody on the expression of IDO was 

evaluated. In this study, IDO was not detected in CT-26 cells in vitro (Section 6.3.3.1) but 

was detected in vivo, suggesting that tumour microenvironment might influence the 

expression of IDO. Although there was a trend toward a decrease, no significant 

difference in the expression of IDO was observed between anti-siglec-E antibody-treated 

and sterile water-treated groups (Figure 6.10A-D, ∆: -0.17±0.40, p=0.6785). These 

findings were further confirmed by western blot.  

6.3.1. Effect of blocking siglec-E on CT-26 cells proliferation in vitro 

To determine the effect of blocking siglec-E on CT-26, cells were treated with various 

concentrations of a mouse anti-siglec-E antibody for 8hrs. The effect of a mouse anti-

siglec-E antibody on CT-26 cell proliferation was assessed using WST-1 assay. Three 

independent experiments were performed in triplicates. Blocking siglec-E significantly 

attenuated CT-26 cells proliferation in a concentration dependent manner (Figure 6.1A-

B). Though there was a trend for lower cell proliferation at 50-600ng, there was no 
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significant difference observed when compared to control (0ng). However, high doses 

(700-1000ng) of a mouse anti-siglec-E antibody significantly inhibited CT-26 cells 

proliferation (Figure 6.1A-B).   

6.3.7.2. Correlation of siglec-E expression with cholinergic markers 

It was hypothesised that siglec-9/siglec-E expression might crosstalk with cholinergic 

signalling and, in fact, in vitro study on human colon cancer cells as demonstrated in 

Chapter 5 and murine CT-26 cells confirmed this hypothesis. To further evaluate this in 

vivo, tumour-bearing mice implanted with CT-26 cells were injected with sterile water or 

mouse anti-siglec-E antibody. Siglec-E was co-labelled with a cholinergic enzyme crucial 

for ACh synthesis, ChAT, and a vesicular ACh transporter, VAChT, essential for 

packaging of ACh into vesicles. Results demonstrated that mouse anti-siglec-E antibody 

treatment significantly decreased siglec-E expression compared to sterile water treatment 

(Figure 6.11A’ B’ and C; ∆: -12.92±2.68, p<0.001). Cholinergic markers, ChAT (Figure 

6.11A’’ B’’ and D; ∆: -7.96±1.39, p<0.0001) and VAChT (Figure 6.11A’’’ B’’’ and E; ∆: -

8.20±2.08, p<0.01) were significantly attenuated in anti-siglec-E antibody-treated animals 

compared to sterile water-treated group. Interestingly, in sterile water-treated group, 

siglec-E was mostly co-localised with ChAT and VAChT, however, in anti-siglec-E 

antibody-treated group, this co-localisation was abolished, reinforcing that there is an 

interaction between siglec-E and cholinergic markers.  

To determine the overall expression of cholinergic signalling, ACh receptors were co-

labelled with ChAT. Anti-siglec-E treatment induced a significant reduction in 7nAChR 

expression compared to sterile water-treated group (Figure 6.12A’, B’, C and F, ∆: -

5.72±1.36, p<0.01). On the other hand, anti-siglec-E treatment induced a significant 

increase in M3R expression compared to sterile water treatment (Figure 6.12A’’, B’’, D 

and F, ∆: 8.94±1.72, p<0.001), the underlining mechanisms for this augmentation is not 

clear. ChAT expression was significantly decreased in anti-siglec-E antibody-treated 

group compared to sterile water-treated group (Figure 6.12A’’’, B’’’, E and F, ∆: -

9.25±4.04, p<0.05).  
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Figure 6.9. Effect of a mouse anti-siglec-E antibody treatment on the expression 

siglec-E and FOXP3 in vivo 

Intensity of siglec-E and FOXP3 in tumour samples from mice bearing-CT-26 cell-induced 

CRC treated with sterile water (A-A’’’) and mouse anti-siglec-E antibody (B-B’’’). 

Tumours were labelled with the nuclei marker DAPI (blue; A-B), siglec-E (green; A’-B’), 

FOXP3 (red; A’’-B’’) and all markers merged (yellow; A’’’-B’’’). Scale bar represents 

50µm. Bar graphs displaying the mean fluorescence siglec-E (C), FOXP3 (D) and images 

of western blot bands (E) in tumour samples from sterile water-treated and anti-siglec-E 

antibody-treated mice. Data presented as mean ± SEM, n=8 mice per group. Student’s t-

test, ****p<0.0001. Anti-SE Ab, anti-siglec-E antibody. 
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Figure 6.10. Effect of a mouse anti-siglec-E antibody on the expression IDO in 

vivo 

IDO expression in tumour samples from mice bearing-CT-26 cell-induced CRC treated 

with sterile water (A-A’’) and mouse anti-siglec-E antibody (B-B’’). Tumours were labelled 

with the nuclei marker DAPI (blue; A-B), IDO (green; A’-B’) and all markers merged (A’’-

B’’). Scale bar represents 50µm. Western blot bands for IDO expression (C) in tumour 

samples from sterile water-treated and anti-siglec-E antibody-treated mice. Bar graphs 

displaying the IDO mean fluorescence intensity (D) and western blot expression level (E) 

in tumour samples from sterile water-treated and anti-siglec-E antibody-treated groups. 

Data presented as mean ± SEM, n=8 mice per group. Student’s t-test. Anti-SE Ab, anti-

siglec-E antibody. 
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Figure 6.11. Correlation of siglec-E expression with cholinergic markers in 

tumour samples from mice bearing CT-26 cell-induced CRC  

Expression of siglec-E and cholinergic markers (ChAT and VAChT) in tumour samples 

from mice bearing CT-26 cell-induced CRC treated with sterile water (A-A’’) and mouse 

anti-siglec-E antibody (B-B’’). Tumours were labelled with the nuclei marker DAPI (blue; 

A-B), siglec-E (magenta; A’-B’), ChAT (red; A’’-B’’), VAChT (green; A’’’-B’’’) and all 

markers merged (A’’’’-B’’’’). Scale bar represents 50µm. Bar graphs displaying the mean 

fluorescence siglec-E (C), ChAT (D) and VAChT (E) in tumour samples from sterile water-

treated and anti-siglec-E antibody-treated mice. Data presented as mean ± SEM, n=8 

mice per group. Student’s t-test, **p<0.01, ***p<0.001, ****p<0.0001. Anti-SE Ab, anti-

siglec-E antibody. 
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Figure 6.12. Expression of cholinergic markers in tumour samples from mice 

bearing CT-26 cell-induced CRC  

Expression of cholinergic markers in tumour samples from mice bearing CT-26 cell-

induced CRC treated with sterile water (A-A’’) and a mouse anti-siglec-E antibody (B-

B’’). Tumours were labelled with the nuclei marker DAPI (blue; A-B), 7nAChR (red; A’-

B’), M3R (magenta; A’’-B’’), ChAT (green; A’’’-B’’’) and all markers merged (A’’’’-B’’’’). 

Scale bar represents 50µm. Bar graphs displaying the mean fluorescence 7nAChR (C), 

M3R (D), ChAT (E) and western blot bands (F) in tumour samples from sterile water-

treated and anti-siglec-E antibody-treated mice. Data presented as mean ± SEM, n=8 

mice per group. Student’s t-test, *p<0.05, **p<0.01, ***p<0.001. Anti-SE Ab, anti-siglec-E 

antibody. 
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6.3.8. Effect of blocking siglec-E on tumour-infiltrating immune cells  

To evaluate the effect of mouse anti-siglec-E antibody on the tumour-infiltrating immune 

cells within the tumour microenvironment, fresh tumours were collected into RPMI media. 

Tumours were mechanically dissected into small pieces and incubated at 37˚C for 1hr 

with collagenase before commencing labelling with antibodies of interested as described 

in the Materials and Methods. To characterise leukocyte populations in tumour samples 

from sterile water-treated and anti-siglec-E antibody-treated mice, flow cytometry was 

used. From the scatter plot, only viable cells were analysed, and compensation was 

performed (when applicable) to prevent false‐positive/false‐negative results (Figure 

6.13A-B). The gating strategy for CD45+ cells was defined from single cell doublets 

(Figure 6.13C-D). CD4+, CD8+ T lymphocyte populations were gated from CD45+ cells 

(Figure 6.13E-F; G-H). No significant differences were observed in CD45+ cells in 

tumours from both sterile water-treated and anti-siglec-E antibody-treated groups (Figure 

6.14A, ∆: 0.44±4.04, p=0.9158). However, administration of a mouse anti-siglec-E 

antibody significantly increased proportion of CD4+ (Figure 6.14B, ∆: 11.48±3.91, 

p<0.01) and CD8+ (Figure 6.14C, ∆: 7.06±2.55, p<0.01) T cells compared to sterile 

water-treated group. On the other hand, no significant differences were noted in the ratio 

of CD4+/CD8+ T cells (Figure 6.14D, ∆: 2.49±1.52, p=0.1392) and  T cells infiltration 

(Figure 6.14E, ∆: -0.10±0.06, p=0.1368) between anti-siglec-E antibody-treated and 

sterile water-treated groups. 

In addition, there was no significant difference observed in the infiltration of B cells 

between mice treated with sterile water and anti-siglec-E antibody (Figure 6.15A). 

However, eosinophil infiltration was significantly reduced in tumours from anti-siglec-E 

antibody-treated mice compared to tumours from sterile water-treated group (Figure 

6.15B). No statistical differences observed in the infiltration of all macrophages 

(presented as M0) between sterile water-treated and anti-siglec-E antibody-treated 

groups, but M2 phenotype macrophages were slightly increased in anti-siglec-E antibody-

treated group. However, infiltrating M2 macrophages presented only a small fraction of 

all M0 macrophages in both groups (Figure 6.15C). This suggests that most of the M0 

macrophages are in fact M1 phenotype, which have an anti-tumour effect. As there are 
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no specific markers to distinguish between N1 and N2 neutrophils, overall neutrophil 

infiltration was evaluated. Neutrophil infiltration was augmented in tumours from anti-

siglec-E antibody-treated mice compared to sterile water-treated group (Figure 6.15D), 

suggesting that infiltrated neutrophils might be of N1 phenotype as they exert an anti-

tumour effect.  
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Figure 6.13. Gating strategy for leukocytes in tumour samples from tumour-

bearing mice 

Gating strategy for debris exclusion (A), viable cells (B), single cell doublets 

discrimination (C), single cells (D), CD45-positive cells from sterile water-treated group 

(E) and T lymphocytes from sterile water-treated group (F), CD45-positive cells from anti-

siglec-E antibody-treated group (G) and T lymphocytes from anti-siglec-E antibody-

treated group (H).  Anti-SE Ab, anti-siglec-E antibody. 
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Figure 6.14. Flow cytometry analysis of CD45+ cells and T lymphocytes in 

tumours  

Proportion of the CD45+ cells (A), CD4+ T cells (B), CD8+ T cells (C), CD4+/CD8+ T 

cells ratio (D) and  T cells (E). Data presented as mean ± SEM, sterile water-treated, 

anti-siglec-E antibody-treated group Student’s t-test, n=7 mice per group, **p<0.01. Anti-

SE Ab, anti-siglec-E antibody. 
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Figure 6.15. Flow cytometry analysis of tumour-associated immune cells 

Proportion of B cells (A), eosinophils (B), macrophages (C) and neutrophils (D) in tumours 

from sterile water-treated and mouse anti-siglec-E antibody-treated groups. Data 

presented as mean ± SEM, Student’s t-test, n=7 mice per group, *p<0.05, ***p<0.001, 

****p<0.0001. Anti-SE Ab, anti-siglec-E antibody. 
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6.3.9. Effect of blocking siglec-E on tumour angiogenesis 

To evaluate the effect of blocking siglec-E on the tumour angiogenesis, tumour sections 

were labelled with angiogenic markers, CD31 and VEGF. The results demonstrated that 

administration of a mouse anti-siglec-E antibody attenuated expression of both VEGF 

(Figure 6.16A’ B’, C and E, ∆: -12.62±1.88, p<0.0001) and CD31 (Figure 6.16A’’, B’’, 

D, ∆: -8.28±1.11, p<0.0001) compared to sterile water-treated group. In addition, 

expression levels of tyrosine kinases in tissue lysates were evaluated using mouse 

Phospho-RTK Array in pooled samples from each group. The results show that tumours 

from the sterile water-treated group overexpressed platelet-derived growth factor receptor 

 (PDGFR) and VEGF receptor 3 (VEGFR3) (Figure 6.17A), both markers are involved 

in tumour angiogenesis. Mouse anti-siglec-E antibody treatment had no significant effects 

on the expression of PDGFR but abolished VEGFR3 expression (Figure 6.17B). Taken 

together, these findings suggest that siglec-E or human counterpart, siglec-9, might play 

an important role in tumour angiogenesis and targeting it could be a potential therapeutic 

for angiogenesis.  

6.3.10. Effect of blocking siglec-E on phosphorylation of AKT and ERK in in vivo 

model 

In Chapter 5, it was demonstrated that blocking siglec-E exhibits its effects via 

suppressing ERK/STAT3 signalling pathways. In this chapter, in vitro data showed that 

inhibitory effects of anti-siglec-E antibody occur through suppression of EGFR/AKT/ERK 

signalling pathways. To determine the effect of in vivo anti-siglec-E treatment on the 

phosphorylation of EGFR, STAT3, AKT and ERK in tumour samples, western blot was 

used. The results demonstrated that mouse anti-siglec-E antibody treatment significantly 

inhibited the phosphorylation of ERK compared to sterile water treatment (Figure 6.18A, 

B, ∆: -0.24±0.06, p<0.05). No significant difference was observed in pAKT expression 

between sterile water-treated and anti-siglec-E antibody-treated groups (Figure 6.18A, 

C, ∆: 0.32 ± 0.29, p=0.6315). However, EGFR and pSTAT3 were not detected; this could 

be due to fast degradability of these proteins. 
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Figure 6.16.  Effect of a mouse anti-siglec-E antibody treatment on the expression 

of VEGF and CD31 in vivo 

VEGF and CD31 expression in tumour samples from mice bearing CT-26 cell-induced 

CRC treated with sterile water (A-A’’’) and a mouse anti-siglec-E antibody (B-B’’’). 

Tumours were labelled with the nuclei marker DAPI (blue; A-B), VEGF (green; A’-B’), 

CD31 (red; A’’-B’’) and all markers merged (yellow; A’’’-B’’’). Scale bar represents 50µm. 

Bar graphs displaying the mean fluorescence level of VEGF (C), CD31 (D) and image of 

VEGF western blot bands (E) in tumour samples from sterile water-treated and anti-

siglec-E antibody-treated mice. Data presented as mean ± SEM, n=8 mice per group. 

Student’s t-test, ****p<0.0001.  Anti-SE Ab, anti-siglec-E antibody. 
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Figure 6.17. Effect of a mouse anti-siglec-E antibody on the expression of 

phospho kinases in vivo 

Mouse Phospho-RTK Array measuring phospho-RTK activity in tumours from mice with 

CT-26-induced CRC treated with sterile water (A) and a mouse anti-siglec-E antibody (B). 

n=8 mice per group. Anti-SE Ab, anti-siglec-E antibody. 
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Figure 6.18. Effect of a mouse anti-siglec-E antibody on the expression of protein 

kinases in vivo 

Western blot bands for pERK and pAKT expression in tumour samples from mice bearing 

CT-26 cell-induced CRC treated with sterile water and a mouse anti-siglec-E antibody 

(A). Bar graphs displaying the mean intensity of pERK (B) and pAKT (C) expression in 

tumour samples from mice treated with sterile water and anti-siglec-E antibody. Data 

presented as mean ± SEM, Student’s t-test, *p<0.05. Anti-SE Ab, anti-siglec-E antibody. 

  



329 
 

 
 
 
 
 
 
 

  



330 
 

6.4. Discussion 

The immune system consists of a complex array of cells which work together to protect 

the body against invading pathogens, eliminates mutated cells and keeps an immune 

balance to prevent an autoimmune attack. Cancer cells have evolved to evade the host's 

immune system by upregulating immunosuppressive markers (siglec-9 or siglec-E, IDO, 

PD-L1 and PD-L2). In addition, cholinergic signalling has been shown to enhanced 

tumour growth in many cancers. Although there are current therapies targeting some of 

these immunosuppressive molecules, they have shortcomings such as causing adverse 

events. Hence, it is crucial to understand the role of these immunosuppressive molecules 

and cholinergic signalling during tumorigenesis in order to develop appropriate 

therapeutic strategies in cancer patients. Currently, there are no studies investigating the 

interaction between the expression of siglec-9, IDO and cholinergic markers in cancer. In 

Chapter 5, we have evaluated the expression of siglec-9 and IDO in human samples and 

the effect of blocking siglec-9 on the expression of immunosuppressive and cholinergic 

markers in normal epithelial and human colon cancer cell lines.  

In the present study, the effect of recombinant mouse siglec-E on the expression of 

immunosuppressive, cholinergic and angiogenic markers in vitro and in vivo was 

determined. It was hypothesised that the blocking of siglec-E might influence cholinergic 

signalling. Indeed, in vitro results demonstrated that CT-26 cells expressed siglec-E and 

cholinergic markers (M3R and ChAT), which were attenuated by recombinant mouse 

siglec-E treatment through EGFR/AKT/ERK pathway. To further evaluate whether the in 

vitro effect of a mouse anti-siglec-E antibody can be confirmed in vivo, mice bearing CT-

26 cell-induced CRC were injected daily with sterile water or a mouse anti-siglec-E 

antibody for 3 weeks. The results demonstrated that treatment with a mouse anti-siglec-

E antibody reduced tumour weight, volume and size when compared to vehicle group 

treated with sterile water. Furthermore, anti-siglec-E antibody treatment significantly 

attenuated siglec-E expression; however, there was no significant difference observed in 

the expression of IDO in tumours from sterile water-treated and anti-siglec-E antibody-

treated groups. In addition, administration of a mouse anti-siglec-E antibody significantly 
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decreased cholinergic and angiogenic markers when compared to sterile water-treated 

group. Moreover, mouse anti-siglec-E antibody treatment significantly augmented anti-

tumour immune response through increased infiltration of CD4+ and CD8+ T 

lymphocytes. 

Overexpression of siglec-9 creates a protective mechanism for the tumour cells from NK 

cells and in turn, leads to the growth of the tumour cells [101, 629]. Siglec-9 and its murine 

orthologous protein siglec-E have been implicated in myeloid cell-mediated cancer 

progression [94, 644]. It has been demonstrated that T cells expressing siglec-9 can be 

co-expressed with some of the inhibitory receptors such as PD-1 [645]. In fact, siglec-9 

binding to MUC1 on macrophages was found to induce infiltration of tumours with tumour-

associated macrophages (TAM) phenotype and increased the expression of IDO and PD-

L1 through the induction of a calcium flux leading to activation of the MEK-ERK pathway 

[646]. Furthermore, siglec-E-deficient mice showed an improved immunosurveillance 

against tumour cells via lacking siglec-E expressed on neutrophils [94]. This concurs with 

our findings demonstrating that blocking of siglec-E resulted in an improved immune 

response against cancer and increased expression of neutrophils. Although studies have 

insinuated that siglec-9/siglec-E plays a role in tumour angiogenesis and metastasis. The 

data presented in this Chapter demonstrated that siglec-9/siglec-E might play a significant 

role in tumour angiogenesis and metastasis as blocking of siglec-E resulted in decreased 

angiogenic markers and metastasis. In an experimental metastasis assay, expression of 

siglec-9/siglec-E binding to tumour-associated ligands inhibits neutrophils and enhances 

lung colonisation [94]. Taken together, these findings suggest that siglec-9/siglec-E plays 

a functional role in tumour angiogenesis and metastasis, which might be dependent on 

tumour microenvironment constituents. 

In Chapter 5, it was demonstrated that siglec-9 and IDO are co-localised and previous 

studies have shown that expression of siglec-9 influences IDO and PD-L1 expression 

[646]. Expression of IDO in the tumour microenvironment plays a key role in tumour 

progression. Studies on the expression of IDO have been shown to be linked with stage 

III of CRC and associated with poor prognosis [624]. However, other studies suggest that 

the prognostic value of IDO expression depends on the type of tissue affected [93]. This 
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implies that tumour microenvironment constituents can influence the prognostic value of 

IDO. In fact, several cells within tumour microenvironment such as regulatory T cells 

(Tregs), dendritic cells, macrophages and cancer-associated fibroblasts can express IDO 

[640]. In this study, IDO expression was not detected in CT-26 cells in vitro but in tumour 

tissues in vivo, reinforcing that IDO expression can be influenced by tumour 

microenvironment constituents such as the presence of IFN-, TNF- and tumour-

associated immune cells.  

Although the role of IDO in tumour escape mechanisms has been previously 

demonstrated [514, 647], emerging evidence suggests that IDO expression may play a 

functional role in tumour angiogenesis. In fact, in breast cancer, increased expression of 

IDO was correlated with high microvessel density as determined by the expression of 

CD31 and CD105 [648]. The data presented in this Chapter demonstrated that blocking 

siglec-E with a mouse anti-siglec-E antibody significantly decreased CD31 expression. 

Similarly, overexpression of IDO in ovarian cancer was shown to promote new blood 

vessel formation through inhibition of NK cells [649]. Furthermore, in vitro study of 2LL 

Lewis lung cancer cells, IDO expression was shown to promote migration, attachment, 

invasion and angiogenesis via the JAK2/STAT3 pathway [650]. In this study, 

administration of a recombinant mouse anti-siglec-E antibody significantly attenuated 

angiogenic markers, suggesting that siglec-9/siglec-E blockers might hold potential as 

anti-angiogenic therapy. 

The findings presented in this chapter suggest that the expression of immunosuppressive 

markers and ACh receptors play a significant role in tumour progression. To the best of 

our knowledge, there are no data currently available examining the effect of siglec-

9/siglec-E on the expression of cholinergic markers and cancer cell growth. In fact, in vitro 

study on human colon cancer cells presented in Chapter 5 and murine CT-26 cells in this 

Chapter demonstrated that siglec-9/siglec-E expression can crosstalk with cholinergic 

signalling. To further evaluate this crosstalk in vivo, mice bearing CT-26 cell-induced CRC 

were treated with sterile water or a recombinant mouse anti-siglec-E antibody for 3 weeks.  

Blocking siglec-E inhibited cholinergic signalling via inhibition of ACh production by 

reducing the amount of ChAT, an enzyme crucial for ACh synthesis, VAChT, essential 
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for transporting of ACh, and excitatory receptor, 7AChR. Moreover, the anti-siglec-E 

treatment augmented M3R expression, suggesting that anti-siglec-E might exerts its 

effects through ACh production and 7AChR but not M3R. 
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6.5. Conclusion 

Cancer cells have evolved to create an environment, which favours their growth by 

expressing immunosuppressive and cholinergic markers, enabling them to avoid the 

host’s immune response. In this Chapter, findings suggest that siglec-E might influence 

tumour progression and metastasis by modulating the expression of IDO, cholinergic 

signalling and angiogenesis as well as tumour-associated immune cells. Cancer cells 

have evolved to create an environment, which favours their growth by expressing 

immunosuppressive and cholinergic markers, enabling them to avoid the host’s immune 

response. In this Chapter, findings suggest that siglec-E might influence tumour 

progression and metastasis by modulating the expression of IDO, cholinergic signalling 

and angiogenesis as well as tumour-associated immune cells. Inhibition of siglec-E has 

significant anti-cancer effects evidenced in both in vitro and in vitro models. The results 

of our studies demonstrated that these effects are exerted via several mechanisms 

including enhancement of anti-tumour immune response, suppression of angiogenesis 

via inhibition of cholinergic signalling through reducing ACh production, transport and 

cholinergic receptor, 7nAChR via inhibition of EGFR/AKT/ERK signalling pathway. 

These are important findings that provide basis for understanding the interaction between 

the immunosuppressive molecules and cholinergic signalling and hold great potential in 

revolutionising the current therapies targeting colorectal cancer and many other solid 

tumours. 
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CHAPTER SEVEN  

 

General Discussion and Conclusions 
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7.1. General comments 

Cancer cells can influence their microenvironment and bi-directionally communicate with 

other systems such as the immune and nervous systems. The immune system plays a 

key role in the eradication of cancer cells. Studies have shown that multiple mechanisms 

are responsible for the suppression of the immune system in cancer, one of which being 

the expression of immune checkpoint inhibitors such as programmed death 1 (PD-1), PD-

L1, programmed death-ligand 1 and 2 (PD-L1, PD-L2), sialic acid-binding lectins 9 (siglec-

9) and indoleamine-2,3-dioxygenase (DO) [509, 514]. These molecules function by 

inhibiting the anti-tumour effects of T cell-mediated immune responses. Although current 

therapies are targeting some of these molecules, they have shortcomings such as 

causing adverse events. Therefore, it is crucial to understand the possible underlying 

mechanisms involved in the complex interaction between these molecules with 

cholinergic signalling within the tumour microenvironment 

Several lines of evidence have implicated the nervous and immune systems to play 

essential roles in cancer progression. Dysfunction of the nervous system may influence 

cancer progression by inhibiting functions of the immune system and vice versa. The 

sympathetic and parasympathetic (cholinergic) nerves are involved in the control of 

inflammation, which is believed to be a driving force for cancer progression [622].  

Deciphering mechanisms by which immune and nervous systems stimulate tumour 

development may open new avenues for understanding cancer progression, identification 

of new biomarkers for cancer diagnosis and prognosis, and, defining novel targets for 

therapeutic interventions.  

Currently, there are no data available in determining the interaction between the 

expression of immunosuppressive and cholinergic markers in colorectal cancer (CRC). 

The studies presented in this thesis provide novel insight into the interaction between the 

expression of immunosuppressive and cholinergic markers and mechanisms involved in 

this interaction. The findings of this work have important clinical relevance by revealing 

new therapeutic targets for the treatment of CRC.   
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7.2. Effects of cholinergic signalling on tumour microenvironment 

The nervous system bi-directionally communicates with the immune system via 

neurotransmitters and neuropeptides, common receptors, tumour-associated immune 

cells and cytokines as discussed in Chapter 1. The release of neurotransmitters by 

sympathetic and parasympathetic nerve fibers has been shown to influence tumour 

microenvironment to promote tumour growth and progression via the expression of 

cytokines and tumour-associated immune cells. However, crosstalk between the nervous 

and immune systems is highly multifaceted, and numerous variations are possible 

according to the type of cancer involved.  

Tumour cells use multiple mechanisms to escape recognition by immune cells and to 

downregulate the hosts’ immune system by expressing immunosuppressive molecules, 

mPD-L1 and PD-L2, which interact with PD-1 receptor on tumour-infiltrating lymphocytes 

[525]. The presence of PD-L1 and PD-L2 on the surface of tumours functions as an 

immune resistance mechanism allowing tumours to go undetected, leading to cancer cell 

proliferation and progression of tumour growth. However, the nervous system has 

emerged to play a significant role in promoting cancer development and progression. The 

results of studies presented in this thesis have provided new data that the expression of 

immunosuppressive and cholinergic markers may play an important role in influencing 

each other, leading to tumour cells avoiding immune system detection and cancer 

progression.  

Although several studies have evaluated the expression of PD-L1 and PD-L2 in CRC 

[528, 569, 651, 652], to the best of our knowledge, the data presented in this thesis are 

the first to determine the correlation between immunosuppressive and cholinergic 

markers at different stages of CRC. The results presented in Chapter 2 (Figure 2.1-2, 

Table 2.3) showed that high expression of PD-L1 mainly in the mucosa and muscularis 

mucosa layers correlated with advanced stages of CRC. High PD-L1 expression was 

associated with tumour node metastasis, poor prognosis and shorter survival in CRC 

patients [62, 527]. In addition, upregulation of PD-L1 by cancer cells results in cancer 
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invasion and correlates with poor prognostic outcomes in breast, gastric, meningioma, 

non-small cell lung carcinoma (NSCLC) and soft tissue sarcoma patients [54, 653-656].  

Although, our findings did not correlate PD-L1 expression with tumour metastasis, 

however, there was a strong association with a higher risk of CRC and shorter survival in 

CRC patients, concurring with these studies. The findings suggest that the prognostic 

value of PD-L1 expression could be dependent on the subset of CRCs as well as the 

presence of infiltrating immune cells.  

Similarly, PD-L2 was highly expressed at stages II, III and IV compared to stage I and 

was predominantly expressed in mucosa with exception to stage IV where it was 

expressed in the mucosa and muscularis mucosa layers (Chapter 2, Figure 2.1-2, Table 

2.4). High levels of PD-L2 expression was associated with a higher risk of CRC and poor 

patients’ survival outcomes. Studies have reported that PD-L2 correlates with tumour 

stages, lymph node metastasis and poor survival in CRC patients [569, 657]. It has been 

proposed that depending on the molecules present in the tumour microenvironment, the 

expression of PD-L2 can be augmented on immune as well as non-immune cells [539].  

Cholinergic signalling in CRC has emerged as one of the important hallmarks of tumour 

progression. Studies that precisely focus on the expression of alpha 7 nicotinic receptor 

(7nAChR) in CRC are limited. Human colon cancer cells, HT-29, overexpress 

7nAChR, which facilitates cell proliferation, tumour angiogenesis [463, 547] and 

metastasis [201, 522, 548-550]. Data presented in Chapter 2, no significant difference in 

the expression of 7nAChR in tumours from patients at all stages of CRC demonstrate 

(Chapter 2, Figure 2.4, Table 2.5). Similarly, no association between 7nAChR 

expression and patients’ risk of CRC and survival outcome was observed. 

There are limited studies associating the expression of muscarinic receptor 3 (M3R) and 

choline acetyltransferase (ChAT) with different stages of CRC and clinical parameters. 

Studies regarding the role of M3R and ChAT in CRC are mainly performed in the cell lines 

or animal models. Only few studies have reported that M3R and ChAT are overexpressed 

in human colon cancer tissues compared to normal samples. M3R was found to be 

expressed in 60% of colon cancer cell lines [551, 553] and 8-fold increased expression 
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of M3R in 62% of colon cancers when compared to normal adjacent and normal colon 

epithelium [552]. Similarly, ChAT was found to be upregulated in NSCLC while 

cholinesterase enzymes are downregulated, leading to an increased ACh in tumour 

tissues [572, 573]. Data presented in Chapter 2 show elevated levels of M3R and ChAT 

expression at stages III and IV compared to early stages (Chapter 2, Figure 2.4). High 

levels of M3R and ChAT were associated with a high risk of CRC and poor patients’ 

survival outcomes. 

Overall, the contradiction in findings regarding PD-L1 and PD-L2 expression in CRC 

might be in part due to the expression of cholinergic or other immunosuppressive markers 

as we found the link between the expression of immunosuppressive and cholinergic 

markers. Taken together, these findings suggest that there is a crosstalk between 

immunosuppressive and cholinergic markers. In fact, our findings are supported by a 

recent study by Kamiya et al (2019) in breast cancer patients demonstrating decreased 

parasympathetic nerve density, determined by vesicular acetylcholine transporter 

(VAChT) expression, was associated with poor clinical outcomes and elevated levels of 

immune checkpoint molecules [558]. 

To explore this further, the effect of blocking muscarinic receptors with atropine and 

selective M3R blocker 1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP) on the 

expression of immunosuppressive and cholinergic markers was evaluated in normal 

epithelial (T4056) and human colon cancer cell lines (LIM-2405 and HT-29). Results 

presented in Chapter 3 are amongst the first studies to determine the interaction between 

immunosuppressive markers and ACh acting on muscarinic receptors. The results 

showed that PD-L1, PD-L2 and M3R were significantly elevated in human colon cancer 

cells compared to normal epithelial cells and this effect was abolished by 4-DAMP and 

atropine treatment via the modulation of EGFR/ERK/STAT3 pathway. In vitro results 

demonstrated that CT-26 murine colon cancer cells expressed PD-L1 and PD-L2, M3R 

and ChAT, which were attenuated by atropine and 4-DAMP treatment via 

EGFR/AKT/ERK signalling pathway (Chapter 4). To evaluate whether the effect of 4-

DAMP in vitro can be confirmed in vivo, mice bearing CT-26 cell-induced CRC were 

injected daily with (0.1% dimethyl sulfoxide) DMSO or 4-DAMP for 3 weeks. Treatment 
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with 4-DAMP significantly decreased tumour weight, volume and size when compared to 

vehicle group treated with DMSO. Enhanced expression of PD-L1, M3R, ChAT and 

angiogenic markers were attenuated by 4-DAMP treatments in vivo through inhibition of 

AKT and ERK phosphorylation, leading to an enhanced immune response against 

cancer. The results presented in Chapters, 2-4, suggest that cholinergic signalling not 

only stimulates the expression of immunosuppressive markers but could explain the 

inconsistency in prognostic value.  

7.3. Effects of immunosuppressive markers on tumour microenvironment 

Data presented in Chapters, 2-4 demonstrated that dysfunction in cholinergic signalling 

influences the expression of immunosuppressive markers, PD-L1 and PD-L2. In Chapter 

5 and 6, the expression of siglec-9 and IDO expression was evaluated in human 

specimens, and the effects of blocking siglec-9/siglec-E on the expression of cholinergic 

markers as well as signalling pathways involved in these effects were investigated in vitro 

and in vivo. Currently, there are no studies investigating the interaction between the 

expression of siglec-9 and cholinergic markers in cancer. It was hypothesised that the 

blocking of siglec-9 might influence cholinergic markers.  

Data presented in Chapter 5 demonstrated high expression of siglec-9 and IDO at stages 

III and IV compared to early stages, I and II, of CRC (Chapter 5, Figure 5.1). Siglec-9 

and IDO expression were associated with a higher risk of CRC and poor patients’ survival 

outcomes (Chapter 5, Figure 5.2). However, there was no significant correlation between 

the expression of these markers and patient’s gender, age and metastasis. Interestingly, 

overall expression of siglec-9 was correlated with M3R expression, suggesting crosstalk 

between siglec-9 and M3R. Studies have demonstrated that T cells expressing siglec-9 

can be co-localised with other immunosuppressive markers such as PD-1, PD-L1 and 

IDO [645, 646]. In fact, findings of this study showed that siglec-9 was co-expressed with 

IDO in tumour tissues from CRC patients at different stages (Chapter 5, Figure 5.2). It 

can be speculated that siglec-9 can also be co-expressed with cholinergic markers and 

treatment with human anti-siglec-9 antibody can influence the expression of cholinergic 

markers. In vitro data presented in Chapter 5 showed that blocking siglec-9 with human 
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anti-siglec-9 antibody significantly inhibited cell proliferation and choline production. It 

also significantly decreased IDO expression in HT-29 but had no effects on T4056 and 

LIM-2405 cells. Human anti-siglec-9 antibody had no effects on T4056 but significantly 

reduced siglec-9 expression in human colon cancer cells, LIM-2405 and HT-29. 

Interestingly, blocking siglec-9 decreased M3R expression in T4056 but not human colon 

cancer cells and had no effects on ChAT expression, proposing that siglec-9 effects on 

cholinergic markers might be influenced by the tumour microenvironment. Taken 

together, human siglec-9 antibody was found to unveil its effects in a normal epithelial 

cell via suppressing EGFR/ERK/STAT3 signalling pathway, while in LIM-2405 human 

colon cancer cells, it acts by inhibiting ERK/STAT3 signalling pathway.  

To further investigate the effects of blocking siglec-9 and the influence of tumour 

microenvironment, mice bearing CT-26 cell-induced were injected with mouse anti-siglec-

E antibody, a human siglec-9 counterpart. Similar to human colon cancer cells, mouse 

anti-siglec-E antibody significantly inhibited the expression of siglec-9 and cholinergic 

markers in CT-26 cells via inhibiting EGFR/AKT/ERK signalling pathway (Chapter 6, 

Figure 6.3-5). Similarly, mouse anti-siglec-E antibody significantly reduced tumour 

weight, volume and size, and inhibited the expression of siglec-9, cholinergic and 

angiogenic markers in vivo through inhibition of EGFR/AKT/ERK signalling pathway. In 

vivo findings confirmed our hypothesis that siglec-9 might influence cholinergic signalling 

as siglec-E was co-expressed with cholinergic markers which was reduced by anti-siglec-

E antibody treatment (Chapter 6, Figure 6.11). Moreover, mouse anti-siglec-E antibody 

treatment significantly augmented anti-tumour response through increased infiltration of 

CD4+ and CD8+ T cells. These findings are in line with studies demonstrating that siglec-

E deficient mice showed an improved immunosurveillance against tumour cells via 

blocking siglec-9 expressed on neutrophils [94]. Our findings demonstrated blocking of 

siglec-E resulted in an improved immune response against cancer and increased 

expression of neutrophils (Chapter 6, Figure 6.15D).  

Though the overall survival of patients with metastatic CRC has increased over the past 

decade as a result of improvements and implementation of new therapies, the 5-year 

survival of patients remains poor, and cancer metastasis remains as one of the leading 
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causes of cancer-related death [578, 658, 659]. In experimental metastasis assay, 

expression of siglec-9/siglec-E binding to tumour-associated ligands inhibits neutrophils 

and enhances lung colonisation [94]. This insinuates that siglec-9 or siglec-E may play a 

role in tumour metastasis. The data presented in Chapter 6 confirmed that siglec-

9/siglec-E plays an important role in tumour angiogenesis and metastasis as treatment 

with anti-siglec-E antibody significantly inhibited metastasis and reduced angiogenic 

markers (Chapter 6, Figure 6.8 and Figure 6.15).  

Taken together, these findings suggest that siglec-9/siglec-E might influence the 

expression of IDO, cholinergic and angiogenic markers as well as tumour-associated 

immune cells.  
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Figure 7.1. Schematic diagram illustrating the effects of blocking muscarinic 

receptors and siglec-9/siglec-E on tumour microenvironment  

T cell activation entails antigen recognition in complex with MHC class I (CD8+ T cells) 

or MHC class II (CD4+ T cells), followed by further support from the co-stimulatory signal 

that determines whether the T cell will be switched on or off in response to the antigenic 

peptide. Tumour cells have evolved to display mechanisms that generate an 

immunosuppressive environment enabling them to avoid this safeguard mechanism. 

These mechanisms encompass the alteration of antigen presentation components (such 

as downregulation of MHC class I) and upregulation of immunosuppressive (PD-L1, PD-

L2, IDO, and siglec-9) and angiogenic (VEGF, CD31 and TGF-) markers. In addition, 

tumour cells utilise cholinergic signalling through their receptors, leading to growth, 

proliferation and migration of tumours. Understanding the regulation of these mechanisms 

might contribute to disabling the tumour immunosuppressive microenvironment. 

Blockade of muscarinic receptors with atropine and M3R with 4-DAMP, significantly 

reduced immunosuppressive, cholinergic and angiogenic marker as well as tumour-

associated immune cells. Similarly, blockade of siglec-9/siglec-E with anti-S9/anti-SE Ab 

significantly attenuated immunosuppressive molecules, cholinergic and angiogenic 

marker as well as tumour-associated immune cells.  

Abbreviations: 4-DAMP, 1-dimethyl-4-diphenylacetoxypiperidinium iodide; 7nAChR, alpha 7 

nicotinic receptor; AKT, serine/threonine kinase or protein kinase B; Anti-S9 Ab, anti-siglec-9 

antibody; Anti-SE Ab, anti-siglec-E antibody; Bcl-xL, B-cell lymphoma-extra large; EGFR, 

epidermal growth factor receptor; IDO, indoleamine-2,3-dioxygenase; JAK, Janus kinase; MHC, 

major histocompatibility complex; mTOR, mammalian/mechanistic target of rapamycin; NF-kB, 

nuclear factor kappa B; MUC, mucin; NK, natural killer; PI3K, phosphoinositide 3-kinase; PD-1, 

programmed death 1; PD-L1, programmed death ligand 1; PD-L2, programmed death ligand 2;  

PI3K, phosphoinositide 3-kinase; SHP1/SHP2, Src-homology domain-containing protein tyrosine 

phosphatases; TCR, T cell receptor; Treg, regulatory T cell; Siglec-9, sialic acid-binding lectins 9; 

Siglec-E, murine sialic acid-binding lectins; STAT3, signal transducer and activator of transcription 

3; TGF-, tumour growth factor-beta. 
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7.4. Limitations and Further Directions  

PD-1/PD-L1 expression has been shown to play protective role in autoimmune, 

neurological diseases and stroke but exacerbate cancer [513]. This may be due to the 

nervous system releasing neuromodulators that desensitize PD-1/PD-L1 to inhibit the 

activation of PD-1/PD-L1 signalling. In cancer, their expression generally results in 

disease acceleration, supporting the notion that cancer cells secrete factors that 

desensitize the nervous system leading to alteration of the immune system response to 

attack the cancer cells. Although this work is amongst the few studies that provide 

evidence of the interaction between the expression of immunosuppressive and 

cholinergic markers in CRC supporting this notion, there are some limitations that need 

to be address in the future studies. Firstly, in Chapters 2, 4-6, the expression of 

immunosuppressive and cholinergic markers was evaluated in small pieces of tumours 

from human specimens and tumours from mice bearing-CT-26 cell. Evaluating whole 

tumours would have given more information on the overall expression of these markers. 

Secondly, it not clear whether the expression of these markers was from tumour cells or 

tumour microenvironment constituents as they are able to express these markers. Thirdly, 

the location of the expression was not clear; this can be addressed by taking images at 

higher magnifications. Finally, some of the immunosuppressive markers that rely on IFN-

 for expression such as PD-L1, PD-L2 and IDO [660, 661] could have their expression 

increased in a similar way with ACh. This link could have therapeutic implications with 

targeting the production of ACh and essentially alleviating effects on several 

immunosuppressive markers. 

7.5. General conclusion 

Although immunotherapies have shown great efficacy in many solid tumours, there is still 

a need to develop better therapies with less side-effects. The results presented in this 

thesis suggest that blocking of M3R and siglec-9/siglec-E have the potential to be used 

in conjunction with current immune checkpoint inhibitors or traditional cancer therapeutics 

to increase the efficacy of anti-cancer treatment. In conclusion, it is important to evaluate 

the expression status of some or all these immunosuppressive molecules and cholinergic 

markers for cancer prognosis and the development of appropriate therapeutic strategies 
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in cancer patients. The findings of this work have important clinical relevance and might 

create a new therapeutic avenue, which could target both immunosuppressive and 

cholinergic markers that might be beneficial for the treatment of CRC patients. 
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A B S T R A C T 

The immune system plays an essential role in the tumor progression; not only can it inhibit tumor growth but it 

can also promote tumor growth by establishing a favorable environment. Tumor cells utilize several strategies to 

evade the host's immune system, including expression of immunosuppressive molecules such as PD-L1, IDO and 

siglec-9. In addition, tumor cells not only regulate the recruitment and development of immunosuppressive  

forces to influence the tumor microenvironment but also shift the phenotype and function of normal  immune  

cells from a possibly anti-tumor state to a pro-tumor state. As a result, tumor cells evade the host's immune 

system, leading to metastasis and/or recurrent disease. 

1. Introduction

The “survival of the fittest” theory generally describes how tumor 

cells are able to adapt to host immune surveillance and invade the host. 

Tumorigenic cells can adapt host immunity via upregulating the 

expression of molecules such as programmed death ligand 1 (PD-L1), 

indoleamine-2,3-dioxygenase (IDO), siglec-9, and downregulating 

other molecules, including the major histocompatibility complex 

(MHC) class I. In addition to these immunosuppressive molecules, 

tumor cells can recruit and educate immune cells to promote immune 

evasion [1]. PD-L1, a transmembrane protein plays a crucial role in 

suppressing the immune system. T cells express the receptor PD-1 and 

upon interaction with PD-L1, inhibitory signals are triggered resulting 

in  apoptosis  of  cytotoxic  T  lymphocytes  (CTLs,  CD8+  T  cells)  [2]. 

Interestingly, PD-L1 serves as an anti-apoptotic factor on tumor cells, 

leading to their resistance to cytolysis by CTLs as well as drug-induced 

apoptosis [3]. Moreover, in a functional immune system, T cells are 

activated by interacting with MHC expressed on antigen-presenting 

cells [4,5]. In addition to the interaction between co-inhibitory and co- 

stimulatory receptors, these interactions prevent the host against auto- 

immune reactivity. The balanced interaction between co-inhibitory and 

co-stimulatory receptors determines whether T cells are stimulated or 

whether they become anergic to a specific antigen displayed on the 

MHC. The balance of co-stimulation and co-inhibition appears to be 

skewed by cancer cells toward co-inhibition due to dysregulation of 

several cell surface markers, such as MHC class I, B7 and CD28 [6]. 

Furthermore, tumor-associated immune (TAI) cells play an intriguing 

role in immune evasion. In fact, the presence of TAI cells within the 

tumor microenvironment correlates with poor prognosis as noted in 

several cancers [7,8]. TAI cells are capable of expressing immunosup- 

pressive factors, such as IL-10, tumor growth factor beta (TGF-β), and 

prostaglandin E2 (PGE2) to exhibit their effects on T cell inhibition [9–

11]. These factors play a crucial role in supporting tumor immune 

evasion by regulating TAI cells or suppressing systemic immune cell 

function, particularly T cells, which are responsible for immunosurvei- 

lance. Herein, we focus on the role of immunosuppressive molecules 

PD-L1, IDO, siglec-9, downregulation of MHC class I, infiltration of TAI 

cell and their secreted factors that promote immune evasion, leading to 

metastasis and/or disease recurrence in patients with cancer. 

2. Methodology

We used PubMed searches with the following key terms: cancer 

AND programmed death ligand 1, cancer AND PD-L1, cancer AND MHC 

class I, cancer AND indoleamine-2,3-dioxygenase, cancer AND IDO, 

cancer AND sialic acid-binding lectins, cancer AND siglec-9, cancer 

AND immunosuppression, cancer AND IL-10, cancer AND PGE2, cancer 

AND COX-2, cancer AND fibroblasts, cancer AND neutrophils, cancer 

AND macrophage, cancer AND TAMs, cancer and MDSC, cancer AND 

myeloid derived dendritic cells, cancer AND regulatory T cells, cancer 

AND Tregs. In particular, publications in the last 10 years, 2007–2017 

are mostly cited. 

3. Mechanisms of tumor cell escape from immune detection

3.1. UPREGULATION of PROGRAMMED DEATH LIGAND 1 

The expression of PD-L1 by tumor cells plays an essential role in the 
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Fig. 1. Immunosuppressive factors involved in tumor escape mechanisms from host immunity. There are several mechanisms that are involved in the tumor evasion, however this 

schematic diagram demonstrates mechanisms discussed in this paper. Tumorigenic cells exhibit various immunosuppressive mechanisms to evade host immune responses, either to 

circumvent immune recognition or to immobilize effector T cells. These comprise modification of components of the antigen presentation machinery (such as downregulation of MHC 

class I) and secretion of immunosuppressive factors, including PD-L1, IDO, siglec-9, IL-10, PGE2 and TGF-β. These mechanisms assist cancer to suppress the ability of the host immune 

system to restrain from tumor evasion. Understanding the regulation of these mechanisms might contribute to overcoming the tumor immunosuppressive microenvironment. Bcl-xL, B- 

cell lymphoma-extra large; CAFs, cancer-associated fibroblasts; IDO, indoleamine-2,3-dioxygenase; IFN-γ, interferon gamma; IFN-γR, interferon gamma receptor; IL-10, Interleukin; JAK, 

Janus kinase; MHC, major histocompatibility complex; mTOR, mammalian/mechanistic target of rapamycin; MUC, mucins; NK, natural killer; NF-κB, nuclear factor-kappaB; PI3K, 

phosphoinositide 3-kinase; PD-1, programmed death-1; PD-L1, programmed death-ligand1; PGE2, prostaglandins; Treg, regulatory T cell; AKT, serine/threonine kinase or protein kinase 

B; Siglec-9, sialic acid-binding lectins 9; STAT, signal transducer and activator of transcription; SHP, Src homology protein-tyrosine phosphatase; TCR, T cell receptor; TGF-β, tumor 

growth factor-beta. 

establishment of an immunosuppressive force that facilitates tumor 

cells escape from immune. Indeed, the expression of PD-L1 in head and 

neck squamous cell carcinoma, carcinomas of the lung, ovary, breast, 

endometrium, and melanoma, contribute significantly to evading the 

immune system [5,6,12–36]. Higher PD-L1 expression is associated 

with tumor node metastasis, poor prognosis and shorter survival in 

patients with colorectal cancer [37,38]. The expression of PD-L1 by 

tumor cells is dependent on interferon gamma (IFN-γ) production by 

tumor-infiltrating immune cells [39]. In addition, downstream signal- 

ing molecules such as, nuclear factor-kappaB (NF-κB), mitogen-acti- 

vated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), mam- 

malian/mechanistic target of rapamycin (mTOR) and Janus kinase 

(JAK)/signal transducer and activator of transcription (STAT) which act 

via toll-like receptors and IFN-γ receptor, regulate the nuclear translo- 

cation of transcription factors to the PD-L1 promoter leading to PD-L1 

induction [12]. PD-L1 upregulation enhances regulatory T cells (Tregs) 

via AKT and mTOR phosphorylation leading to immunosuppression 

[40]. Interestingly, the expression of PD-L1 by tumor-associated 

macrophages (TAMs) also mediates immunosuppression and is impor- 

tant for tumor escape from immune response. Furthermore, the 

expression of PD-1 on tumor infiltrating lymphocytes (TILs) correlates 

with aggressive features of breast cancer cells, including lack of 

estrogen receptor expression, higher TIL counts, high tumor grade, 

and, the triple-negative breast cancer subtype [25,29,36,41]. In addi- 

tion, PD-1 on TILs is associated with poor survival of luminal B and 

basal-like carcinomas [30] and is highly noted in non-small cell lung 

cancer (TILs and Treg cells) [42]. Similarly, PD-L1 expression in stromal 

or tumor cells inversely correlates with Foxp3+ cell density (Treg cells) 

in colorectal cancer, further reinforcing the fundamental role of Treg 

cells in the tumor microenvironment [43]. In contrast, there are studies 

suggesting that the expression of PD-L1 is associated with better 

prognosis in breast cancer patients [42]. PD-L1 expression correlated 

with elevated TIL infiltration and longer recurrence-free survival in 

breast cancer and in pulmonary adenocarcinoma patients [32,44,45]. 

The inconsistencies in findings warrant further research into the 

mechanisms of action of PD-L1 on cancer cells. It is possible that the 

expression levels of PD-L1 on cancer cells and the co-infiltration of TILs, 

TAMs and Tregs within the tumor microenvironment vary according to 

the different stages of disease, to prognosis and ability of tumor cells to 

evade the host immune system. 

3.2. DOWNREGULATION of MHC CLASS I 

The MHC class I also known as human leukocyte antigen (HLA)-A, 

-B, -C in humans is present on all nucleated cells and presents small

processed antigenic peptides on its surface to CD8+ T cells to activate

the adaptive immune response [46]. MHC class I downregulation on 

tumor cells is a well documented mechanism used by tumors to escape

host immune detection [47]. In laryngeal squamous cell carcinoma, 

downregulation of MHC class I correlates with decreased CD8+ T cell 
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infiltration which associates with poor survival [48]. Similarly, in 

breast cancer, MHC class I downregulation associates with lymphatic 

invasion, lymph node metastasis and venous invasion [49]. It has been 

shown that MAPK signaling adversely regulates the expression of MHC 

class I in MDA-MB-231 breast cancer cell lines providing mechanistic 

insights [50]. High intratumoral T cell infiltration and MHC class I 

expression associates with better survival via nuclear STAT1 stimula- 

tion in colorectal cancer patients; downregulation of these markers 

signified tumor escaping immunosurveilance [51]. Likewise, tumors 

expressing high levels of MHC class I associate with good prognosis in 

non-small cell lung carcinoma patients; however, the effects of CD8+ T 

cells are abolished in tumors expressing non-classical HLA-E [52]. 

Consistent with these findings, expression of non-classical HLA-E and 

HLA-G (key modulators of immune responses interfering with CD8+ T 

cells and natural killer (NK) cell action) correlates with poor prognosis 

in serous ovarian carcinoma patients, suggesting that therapies target- 

ing HLA-E and HLA-G hold potential benefit [53]. In papillary thyroid 

cancer, MHC class I expression associates with lower levels of Foxp3+ 

Treg  cells  and  CD16+,  CD3+  and  CD8+  tumor-associated  immune 

effector  cells  [54].  Administration  of  IFN-γ  or  selumetinib MEK1/2 
inhibitor increases HLA-A, -B, -C expression in papillary thyroid cancer 

cell lines (BCPAP, TPC-1 and K-1) in vitro [54]. Likewise, we demon- 

strated that murine mammary adenocarcinoma cell line with low levels 

of MHC class I and ability to grow in mice without being rejected, was 

reversed by IFN-γ stimulation which upregulated MHC class I and 

resulted in tumor inhibition in mice [55]. Hence, tumor cells have 

evolved into ways to escape from the immune system by downregulat- 

ing the expression of MHC class I molecules. Thus, it is important to 

check the expression of MHC class I on cancer tissues in order to 

develop appropriate treatment modalities for cancer patients (Figs. 1 

and 2). 

3.3. Overexpression of the enzyme INDOLEAMINE-2,3-DIOXYGENASE 

Indoleamine-2,3-dioxygenase is an enzyme in which its overexpres- 

sion leads to increased degradation of the essential amino acid L- 

tryptophan along the kynurenine pathway resulting in T cell inhibition, 

hence, promoting a mechanism of tumor escape from host immune 

detection [56]. IDO provokes L-tryptophan deficiency which impairs T 

cell proliferation in the tumor microenvironment by inducing apoptosis 

[57]. In addition, L-tryptophan deficiency impairs CD8+ T cell function 

via downregulation of the T cell receptor ζ-chain [58]. IDO not only 

exhibits its effect on T cells but also on other immune cells including NK 

cells and supports the activity and generation of TAI cells such as, Treg 

cells and myeloid-derived suppressor cells (MDSC) [59–61]. IDO can 

inhibit NK cells and CD4+ and CD8+ T cell proliferation, however, has 

no effect on B cells [62]. Overexpression of IDO by a number of cancer 

cells holds poor prognostic value as noted in colorectal cancer [63], 

breast cancer [56], glioma [64] and non-small cell  lung  carcinoma  

[65]. In colorectal cancer patients, the expression of IDO by tumor cells 

is associated with liver metastases and inversely correlates with 

infiltrating  T  cells  as  well  as  clinical  outcome  [63].  Similarly  to the 

expression of PD-L1, the expression of IDO is dependent on IFN-γ. 

Moreover,  cancer-associated  fibroblasts  (CAFs)  expressing   IDO  are 

linked to stage III and poor prognosis in breast cancer patients as well 

as enhanced invasiveness of breast cancer cells in vivo in mice [56]. 

IDO expression is associated with estrogen receptor but not progester- 

one receptor or epithelial receptor 2 status. For example, low IDO 

expression correlates with estrogen receptor negative breast cancers 

and higher neoangiogenesis [66]. IDO expression correlates with 

increased Foxp3 Treg cells and is associated with lower five year 

survival rate in non-small cell lung carcinoma patients [65]. Likewise, 

higher IDO expression in glioma patients associates with poor prognosis 

and high grade; and in orthotopic GL261 bearing mice models, IDO 

expression  increases  the  recruitment  of  Treg  whilst simultaneously 

Fig. 2. The role of tumor associated immune cells inducing immunosuppression. This schematic diagram illustrates tumor-associated immune cells that enhance tumor evasion discussed 

in this paper. Tumorigenic cells can utilize host immune cells to promote tumor progression via the expression of immunosuppressive factors. CAFs, cancer-associated fibroblasts; CTLA-4, 

cytoxic T lymphocyte-associated antigen-4; EGFR, epidermal growth factor receptor; IDO, indoleamine-2,3-dioxygenase; IL-10, interleukin; LAG-3, lymphocytes activation genes-3; 

MAPK, mitogen-activated protein kinase; MDSCs, myeloid-derived suppressor cells; NK, natural killer; PD-1, programmed death-1; PD-L1, programmed death-ligand1; PD-L2, 

programmed death-ligand 2; PGE2, prostaglandins; Treg, regulatory T cell; STAT3, signal transducer and activator of transcription 3; TAI, tumor-associated immune cells; TANs, tumor- 

associated neutrophils; TAMs, tumor-associated macrophages; TGF-β, tumor growth factor-beta. 
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decreasing CD8+ T cells [64]. In contrary, high expression of IDO has 

an independent good prognostic value in basal-like breast carcinomas 

[67]; high IDO expression associates with estrogen receptor positive 

breast cancers and better overall survival [66]. Whether these findings 

are based on tumor specificity warrants further studies into mechanisms 

and pathways contributing to immunosuppression. 

3.4. SIALIC ACID-BINDING lectin-9 AND tumor growth 

Sialic acid-binding lectins, or siglecs, play an important role in 

modulating the immune response. Siglecs are expressed by some 

immune cells such as macrophages, monocytes, neutrophils, B cells, 

dendritic cells and NK cells [68]. In particular, siglec-9, which is 

expressed on the surface of immune cells such as, NK cells, B cells and 

monocytes, has been shown to interact with transmembrane epithelial 

mucins (MUC), MUC1 and MUC16 [69]. MUC1 (CD227) is over- 

expressed on adenocarcinomas and hematological cancers [70] whilst 

MUC16 (CA125) is primarily overexpressed on ovarian cancer cells 

although studies show that it is expressed on a number of cancers 

[71,72].   Siglec-9   enhances   the   chemotactic   potential   and   mature 

phenotype of NK cells and cytokine secretion (tumor necrosis factor 
alpha (TNF-α), IFN-γ and macrophage inflammatory protein-1β (MIP- 

1β)) in neuraminidase-treated K562 cell line [73]. Interestingly, 

enhanced  expression  of  siglec-9  is  noted  in  melanomas,  chronic 

lymphocytic leukemias and acute myeloid leukemias; however, in the 

peripheral blood of these patients, siglec-9 positive NK cell population 

is decreased [73]. Expression of siglec-7 and siglec-9 protects tumor 

cells from NK cell lysis in vitro (K562, A375, LAU2106, and HCT116 

cell lines) and in huNSG mouse model, suggesting an immunosuppres- 

sive mechanism by tumor cells [73]. The interaction of siglec-9 with 

MUC16 has been shown to inhibit immune cell (NK and T cells) priming 

as noted in OVCAR-3 cell line leading to tumor cell evasion [74]. In 

human breast and colon cancer tissues, siglec-9 positive cells associate 

with the MUC1 positive cells suggesting siglec-9 to be a counterreceptor 

for MUC1 [75]. In addition, in vitro binding of siglec-9 to MUC1 

expressed on HCT116 human colon cancer cell line, results in β-catenin 

recruitment in tumor cells where it is transported to the nucleus, 

leading to cell growth [75]. Inhibition of TAMs via siglec-9 leads to M1 

polarization and reduced growth promoting inflammation within the 
tumor  microenvironment  [68].  In  addition,  blocking  of  siglec-9  en- 
hances neutrophil activity against tumor cells; likewise, siglec-E, 

equivalent to siglec-9, deficient mice show increased immunosurvei- 

lance against tumor cells [68]. However, this outcome is dependent on 

the stage of tumor and the microenvironment. These findings suggest 

that the expression of siglec-9 on immune cells and its interaction with 

MUC1 or MUC16 on tumor cells may be involved in tumor growth, 

however, the nature of this interaction as well as the cellular framework 

in vivo remains to be defined. 

4. Immunosuppressive factors secreted by tumor cells 

Cancer cells induce immunosuppression resulting in escape mechan- 
ism from the host immune system by secreting factors such as 

interleukin (IL)-10, prostaglandins, cyclooxygenase and TGF-β. These 

factors are secreted within tumor microenvironment and are associated 
with poor prognosis and overall survival of cancer patients [76–79]. 

4.1. Interleukin-10 

The cytokine IL-10 (also known as cytokine synthesis inhibitory 

factor) is an anti-inflammatory cytokine primarily secreted by mono- 

cytes, T helper (Th)-2 cells and Treg cells. IL-10 downregulates Th1 

cytokines and blocks NF-κB activity. Interestingly, tumor cells utilize IL- 

10 to suppress T cell function [80]. In fact, high expression of IL-10 at 

the tumor site associates with poor prognosis [76,81,82]. Cancer cells 

and TAI cells such as, TAMs, secrete IL-10 into the tumor microenvir- 

onment resulting in tumor growth [76,79]. It is likely that IL-10 induces 

immunosuppression by downregulating MHC class I expression on 

cancer cells, resulting in tumor escape from the host [83]. In addition, 

elevated levels of IL-10 in the serum of cancer patients is associated 

with increased peripheral monocytes correlating with poor prognosis in 

lymphoma patients [84]. Enhanced expression of IL-10 receptor on 

tumor  cells  and  its  interaction  with  PD-1,  regulates  CD8+  T  cells  of 

advanced melanoma patients [76]. Consistent with this finding, high 

expression of IL-10 positively correlates with B7-H3 (CD276) resulting 

in lymph node metastasis, advanced disease stage II-IV and large 

tumors [85]. Furthermore, IL-10 mediates immunosuppressive effects 

via suppressing T cell expansion through inhibition of IL-2 and IFN-γ 
secretion [86]. Upregulation of IL-10 is associated with HER-2/neu 

positive breast cancers, however, there is no correlation with age, 

estrogen receptor or progesterone receptor status in ductal and lobular 

breast cancer tissues [85]. It is clear that IL-10 aids in tumor escape 

from the host immune system leading to metastasis or recurrence. 

4.2. PROSTAGLANDIN E2 AND CYCLOOXYGENASE-2 

Cyclooxygenase 2 (COX-2) is an enzyme responsible for the 

production of prostanoids, including prostaglandins (PGE2). COX-2 is 

expressed by several malignancies including breast cancer which 

associates with an aggressive tumor phenotype, contributing to the 

high metastatic capacity of cancer cells [77]. COX-2 suppresses NK 

cells, dendritic cells (DCs) and T cells leading to tumor escape from host 

immune detection. In fact, enhanced expression of PGE2 and COX-2 

inhibits T cells and DC function in breast cancer patients [87]. PGE2 

mediates cancer growth via stimulation of a family of G-protein coupled 

receptors. Tumor-bearing mammary adenocarcinoma cells escape im- 

mune detection as PGE2 inhibits the function of NK cells to migrate, 

secrete IFN-γ and exert cytotoxic effects [88]. In fact, inhibition of PGE2 

reduces breast cancer metastasis in mice [88]. Furthermore, it was 

noted that prostaglandins in 4T1 breast cancer tumor-bearing mice, 

results  in  tumor  escape  mechanism  via  inducing  myeloid-derived 
suppressor  cells  (MDSCs)  which  leads  to  CD4+  T  cells  suppression 
and  to  some  extent  CD8+  T  cells  [89].  These  findings  concur  with 

studies using prostaglandin E2 receptor 2 (EP2) knockout mice which 

show a decrease in MDSC accumulation and impede tumor growth, 

suggesting immunosuppression [89]. In addition, PGE2 mediates im- 

munosuppression by enhancing IDO expression by CAFs via STAT3 and 

EP4/signal transducer signaling pathways as noted in MCF-7 and MDA- 

MB-231 tumor-bearing mouse model [56]. 

4.3. Tumor growth FACTOR-BETA 

Tumor growth factor-beta is produced by a number of immune cells 
including macrophages. Its increased expression often correlates with 

malignancy  of cancer cells.  TGF-β is an immunosuppressive cytokine 

leading to tumor growth and progression [90]. It is known that TGF-β 
supports CD4+ T cell polarization to Th2 rather than Th1 cells reducing 

anti-tumor immune responses [91]. In addition, TGF-β regulates the 

differentiation and expansion of NK cells, macrophages (M2 pro-tumor 
phenotype instead of M1 anti-tumor phenotype), DCs and CD4+ T cells. 

Several studies have determined the mechanisms of how TGF-β 

impedes with anti-tumor immunity. For example, enhanced levels of 

TGF-β correlates with an aggressive tumor phenotype and is a good 

indicator of poor prognosis in several cancers [78,92,93]. Furthermore, 

TGF-β suppresses NK cell cytolytic activity via NKG2D receptor 

activation, further enhancing poor anti-tumor response [94]. In addi- 
tion, inhibiting several cytolytic gene expression molecules including 

FAS ligand, IFN-γ, and, granzyme A and B, TGF-β is able to suppress 

tumor  cell  lysis  by  CD8+  T  cells  [95].  The  presence  of  TGF-β at  the 
tumor site signifies immunosuppression via stimulation of signaling 

pathways including IL-6/STAT3, PI-3/AKT pathways. In fact, in C57BL/ 

6  mice,  TGF-β  requires  Foxp3  to  inhibit  CD8+  T  cell  responses  via 



MAturitAs105(2017)8–15 N.  Kuol  et  AL.

403 

stimulating the translocation og downstream molecules Smad 2 and 

Smad 3 [96]. Overexpression of TGF-β is also associated with enhanced 

Treg cells and tumor associated neutrophils (TAN) in mice [78]. 

Interestingly, tumor cells stimulate DCs to release TGF-β which 

promotes the expansion of Treg cells and indirectly inhibits T cell 
effectors [97]. Similarly, in mice-bearing melanoma or breast cancer 

cells, reduced expression of type III TGF-β receptor (TGFBR3) enhanced 

TGF-β signaling which correlate with elevated Foxp3 Treg cells and 
reduced  CD8+  T  cells  within  the  tumor  microenvironment  [98].  In 

addition, TGF-β regulates IDO expression [98] and blocking of TGF-β in 

vitro using DNTβRII plasmid, improves the anti-tumor effects of NK 

cells to MDA-MB-231 and T47D breast cancer cell lines [99]. It is clear 

that, TGF-β mediates immunosuppression via regulating Treg cells, 

TAN and reduces CD8+ T cells, resulting in a pro-tumor phenotype for 

enhanced metastasis and/or recurrent disease. Hence, anti-TGF-β 

therapy may be a viable treatment strategy for cancer patients. 

5. Immunosuppressive effects of tumor-associated immune cells 

Tumor-associated immune cells such as TAMs, CAFs, TILs (parti- 

cular Tregs), MDSCs and TANs, are key immunosuppressive cells that 

promote tumor progression via their ability to suppress host anti-tumor 

responses and stimulate tumor angiogenesis [100–102]. 

5.1. TUMOR-ASSOCIATED MACROPHAGES 

Tumor-associated macrophages particularly of the M2 phenotype 

are associated with poor prognosis in several cancers including breast 

cancer [103]. However, what triggers TAMs to differentiate into M2 

pro-tumor phenotype and not M1 anti-tumor phenotype? TAMs ex- 

posed to tumor microenvironment stimuli such as, TGF-β, IL-10, 

monocyte colony stimulating factor (M-CSF) and other immunosup- 

pressive factors, induce M2 differentiation [9,104,105]. Furthermore, 

the presence of TAMs in hypoxic (avascular) environment modifies 

their gene expression promoting M2 pro-tumor phenotype [106]. In 

addition,  TAMs  inhibit  CD8+  T  cell  proliferation  as  well  as  TAM- 

derived IL-10 suppresses IL-12 secretion by intratumoral DCs as noted 

in an animal model of breast cancer [107]. Likewise, overexpression of 

IL-10 by TAMs correlates with advanced stages of disease and poor 

prognosis in non-small cell lung carcinoma patients [108]. TAMs 

isolated from renal cell carcinoma cells induce Foxp3 Treg cells and IL-

10 derived from T cells leading to immune evasion via 15-lipox- 

ygenase-2 pathway activation [109]. Upregulation of TAMs expressing 

B7-H1 mediates immunosuppression of glioma cells via autocrine/ 

paracrine IL-10 signaling modulation [110]. These studies clearly 

demonstrate the fundamental role TAMs play in the tumor microenvir- 

onment leading to tumor escape mechanisms. 

5.2. CANCER-ASSOCIATED fiBROBLASTS 

Cancer-associated fibroblasts are the main stromal components 

which play an essential role within the tumor microenvironment 

resulting in modulation of tumor growth. CAFs mediate immunosup- 

pression via promoting several other factors including immune infil- 

trating cells, factors secreted by tumor cells (cytokines/chemokines) 

and immunosuppressive molecules including IDO [56,111–114]. CAFs 

are overexpressed in esophageal carcinomas and correlate with poor 

prognosis [112]. High expression of CAFs and M2 correlate with clinical 

outcome of colorectal cancer patients [115]. CAFs inhibit NK cells 

function creating nourished environment for tumor growth, however, 

these effects are reduced following administration of IDO and PGE2 

inhibitors in a murine model of hepatocellular carcinoma, suggesting 

that CAFs posses immunosuppressive abilities [10]. CAFs suppress T 

cell proliferation by promoting the expression of PD-L1 and PD-L2 by 

cancer cells [114]. 

5.3. TUMOR-ASSOCIATED neutrophils 

Tumor-associated neutrophils play an essential role in tumor 

evasion and are often present within the tumor microenvironment; 

however their role in immunosuppression has recently surfaced 

[116,117]. Neutrophils orchestrate innate and adaptive immunity 

during inflammation. In fact, TANs at the tumor site signify tumor 

evasion and in most malignant tumors including colorectal cancer, 

enhanced  expressions  of  TANs  are  associated  with  poor prognosis 

[118–121]. TGF-β regulates the expression of N2 pro-tumor phenotype 

and   reduces   CD8+   T   cell   stimulation   [122],   whilst   other   studies 

demonstrate  that  N1  anti-tumor  phenotype  is  regulated  by  IFN-β 

[123]. Elevated levels of intratumoral neutrophils correlate with 

advanced stage, lymph node metastasis and poor patient survival in 

esophageal squamous cell carcinoma [118]. In 4T1 tumor-bearing mice, 

neutrophils (N2 pro-tumor phenotype) are noted to enhance tumor 

progression and metastasis [124]. However, contrastingly, high TAN 

density is associated with better prognosis in advanced colorectal 

cancer patients [125]. Similarly, findings in early stages of lung cancer 

patients  demonstrate  that  infiltration  of  TANs  enhances  CD4+  and 

CD8+  T  cell  proliferation  rather  than  inducing  immunosuppression 

[126]. TANs at early stage of disease secrete high levels of nitric oxide, 

TNF-α and H2O2 and exhibit cytotoxicity toward tumor cells, as noted 

in Lewis lung carcinoma and mesothelioma models [127]. Thus, what 

triggers TANs to become pro-tumorigenic in advanced stages of lung 

cancer but not in colorectal cancer? This could be due to cancer specific 

signaling pathways activated or combination of other immunosuppres- 

sive  molecules  secreted  within  the  tumor  microenvironment. These 

inconsistencies in findings warrant further studies to better understand 
the role of TAN in tumor growth, metastasis and recurrent disease. 

5.4. REGULATORY T cells 

Regulatory T cells are distinct CD4+ Th cell subset defined by the 

CD25+CD4+ phenotype which suppress effector T cells, believed to be 

dependent on IL-10 and/or TGF-β [128]. Tregs are regulated by Foxp3 

and hold prognostic value in several cancers [128–132]. Tregs inhibit 

anti-tumor responses mediating tumor escape mechanisms through the 

secretion of well-known immunosuppressive factors, PD-1, cytoxic T 

lymphocyte-associated antigen-4 (CTLA-4), lymphocyte activation 

genes-3 (LAG-3), IL-10 and TGF-β [11]. In fact, enhanced Foxp3+ Treg 

infiltrates with elevated PD-L1 expression correlate with high grade, 

basal-like subtype, and negative estrogen receptor and progesterone 

receptor status [133]. This suggests that Foxp3+ Tregs work synergis- 

tically with PD-L1 to endorse immune evasion in breast cancer. In 

peripheral blood of non-small cell lung carcinoma patients, enhanced 

expression  of  CD4+CD25+Foxp3+  Tregs  was  co-expressed  with  im- 

munosuppressive molecules CTLA-4, PD-1 and LAG-3 [11]. Similarly, in 

colorectal  cancer,  enhanced  expression  of  intratumoral  CD4+Foxp3+ 

Tregs associates with suppressive markers, CTLA-4 and ectonucleoti- 

dase   CD39;   whilst   CD4+Foxp3−   Tregs   associate   with   regulatory 

markers including LAG-3, latency-associated peptide (LAP) and CD25 

[132]. Enhanced intratumoral expression of Foxp3+ Tregs expressing 

LAP and CD39 is noted in head and neck carcinomas [134]. Enhanced 

expression  of  CD4+CD25highFoxp3+  T  cells  expressing  elevated  IL-10 

and decreased TGF-β and IFN-γ is reported in gastric cancer patients, 

challenging the theory that CD4+CD25high T cells are the main makers 

of TGF-β [135]. These findings suggest that CD39 and CTLA-4 are 

commonly co-expressed on several CD4+Foxp3+ Tregs, suggesting that 
these markers may play an essential role in regulatory functions of 
Tregs in situ. 

5.5. Myeloid-derived suppressor cells 

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous 

population of myeloid progenitor cells that contribute to the develop- 
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ment of tumor and chronic inflammation [136]. The presence of MDSCs 

within the tumor microenvironment induces immunosuppression as 

noted in several cancers including breast, colon, pancreatic and non- 

small cell lung cancer [7,137–140]. MDSCs utilize several mechanisms 

to influence innate and adaptive immune responses, such as, inducing 

PD-L1 expression on tumors leading to CD8+ T cell inhibition. MDSCs 

crosstalk with other immunosuppressive factors such as IDO and Treg 

cells. For instance, IDO inhibition or Treg exhaustion results in 

decreased MDSCs, thus reversing immunosuppression in B16 melanoma 

cell bearing mice [141]. In breast cancer patients, MDSCs mediates 

immunosuppression via upregulating IDO expression dependent on 

STAT3 phosphorylation [7]. Hence, MDSCs play a significant immuno- 

suppressive role within the tumor microenvironment leading to tumor 

escape from host immunity. 

6. Conclusion and future prospects

The immune system plays a crucial role in eliminating invading 

pathogens, eliminating mutated cells before becoming invasive carci- 

nomas, and, in rejecting transplanted organs. Cancer cells however, 

have evolved enabling them to evade the host's immune system. Cancer 

cells have been shown to upregulate immunosuppressive markers (IDO, 

siglec-9, PD-L1) and downregulate MHC class I which aids in their 

invasion, metastasis and/or recurrent disease. In addition, immune cells 

(neutrophils, fibroblasts, macrophages, Tregs, MDSCs) infiltrate the 

tumor microenvironment further contributing to an immunosuppres- 

sive milieu, promoting tumor growth. Furthermore, immunosuppres- 

sive molecules and cytokines such as, IL-10, TGF-β, PGE2 and COX-2 

play a role in promoting an immunosuppressive environment. It is 

important to understand the role of these immunosuppressive mole- 

cules during tumorigenesis in order to develop appropriate therapeutic 

strategies in cancer patients. Hence, a comprehensive analysis of 

immunosuppressive markers during cancer diagnosis will aid in better 
treatment options and strategies to prevent metastasis and/or recurrent 
disease. 
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Abstract 

The development of cancer involves an intricate process, wherein many identified and unidentified factors play a role. Tumor 

angiogenesis, growth of new blood vessels, is one of the major prerequisites for tumor growth as tumor cells rely on adequate 

oxygen and nutrient supply as well as the removal of waste products. Growth factors including VEGF orchestrate the develop- 

ment of angiogenesis. In addition, nervous system via the release of neurotransmitters contributes to tumor angiogenesis. The 

nervous system governs functional activities of many organs, and, as tumors are not independent organs within an organism, this 

system is integrally involved in tumor growth and progression via regulating tumor angiogenesis. Various neurotransmitters have 

been reported to play an important role in tumor angiogenesis. 

Keywords Nervous system . Neurotransmitters . Neuropeptides . Neuro-cancer interaction . Angiogenesis . Cancer

Introduction 

New growth in the vascular network (angiogenesis) is a normal 

physiological phenomenon that tumors utilize to aid in their 

growth, proliferation and metastatic spread. Angiogenesis in- 

volves migration and division of endothelial cells, generation of 

new basement membrane, arrangement into tubular structures 

and coverage by pericytes. Angiogenesis is regulated by a pleth- 

ora of pro- and anti-angiogenic molecules such as, interleukin 

(IL)-8, tumor necrosis factor (TNF)-α, vascular endothelial 

growth factor (VEGF), transforming growth factor (TGF)-α, 

TGF-β, angiogenin, platelet-derived growth factor (PDGF) and 

fibroblast growth factor (FGF) [1, 2]. The level of angiogenic 

factors in tissues reflects the aggressiveness of tumor cells which 

play a significant role in prognostic outcomes [3, 4]. In cancer, 

the balance between pro- and anti-angiogenic factors is lost, 

resulting in uncontrolled angiogenesis with irregular blood ves- 

sels lacking a clear hierarchal arrangement [1, 5]. As a 
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consequence, anti-angiogenic therapies (in particular anti- 

VEGF) have been approved for cancer treatment [4, 6–8]. The 

interaction between VEGF with its receptor, VEGFR2, is respon- 

sible for the majority of the angiogenic stimulatory signals 

in vivo, however, their therapeutic value for long-term patient 

survival is relatively modest [3]. 

In addition to these factors, the impact of the tumor micro- 

environment in tumor angiogenesis has attracted much inter- 

est in recent years as another regulator of angiogenesis [9–12]. 

Furthermore, the role of the nervous system has also surfaced 

as one of the major contributors to cancer progression through 

the regulation of tumor angiogenesis via release of neurotrans- 

mitters. The nervous system governs functional activities of 

many organs, and, as tumors are not independent organs with- 

in an organism, this system is integrally involved in tumor 

growth and progression [13, 14]. Here we present an overview 

of the nervous system role in tumor angiogenesis. 

Neurotransmitters Influencing Tumor 
Angiogenesis 

Neurotransmitters are group of neurological chemical messen- 

gers synthesized by neurons and secreted at nerve terminals 

where they transmit signals to target cells through binding to 

their receptors. Studies have demonstrated that various can- 

cers express receptors for different neurotransmitters which 

have been identified to play essential role in the control of 

tumor angiogenesis (Table 1, Fig. 1). 
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Fig. 1 Neurotransmitter signalling pathways in cancer angiogenesis. 

Neuro-cancer communication is through the release of neurotransmitters 

activating different signalling kinases which promote cancer progression 

via angiogenesis. ACh, acetylcholine; β2-AR, β2-adrenergic receptor; 

cAMP, cyclic adenosine monophosphate; AKT, serine/threonine kinase 

or protein kinase B; DA, dopamine; DR, dopamine receptor; ERK1/2, ex- 

tracellular signal-regulated kinase; GABA, gamma-aminobutyric acid; 

GABAA&B, gamma-aminobutyric acid receptorA&B; Glu, glutamate; 

GRM1, glutamate receptor metabotropic 1; HIF-1, hypoxia inducible 

factor 1; 5-HT, 5-hydroxytryptamine (serotonin); 5-HTR, 5- 

hydroxytryptamine receptor (serotonin); MMP12, matrix metallopeptidase 

12; mTOR, mammalian/mechanistic target of rapamycin; nAChR, nicotin- 

ic acetylcholine receptor; NE, norepinephrine; NPY, neuropeptide Y; PI3, 

phosphoinositide 3; PI3K, phosphoinositide 3-kinase; 4E–BP1, phosphor- 

ylated 4E binding protein 1; PKA, protein kinase A; p70S6K, serine/ 

threonine kinase; VEGF, vascular endothelial growth factor; Y5R, neuro- 

peptide receptor 

Catecholamines are a group of neurotransmitters that are 

synthesized from amino acid tyrosine. These neurotrans- 

mitters are intricately involved in the normal physiological 

response of fight or flight response during stress [38, 39]. 

Epinephrine and norepinephrine released during chronic 

stress play an important role in tumorigenesis via regulation 

of angiogenesis through β-adrenergic signaling. The β- 

adrenergic signaling pathway is involved in regulation of 

cancer initiating factors such as apoptosis, DNA damage 

repair, inflammation, cellular immune response, angiogen- 

esis and epithelial-mesenchymal transition. Numerous in vitro 

and animal studies have demonstrated that epinephrine and 

norepinephrine acting on their receptors expressed on tumor 

cells, stimulate angiogenesis via increased VEGF synthesis 

[16, 38–41] through the cAMP-PKA signaling pathway 

[40]. In fact, activation of the β-adrenergic signaling pathway 

in primary mammary tumors has been shown to elevate 

tumor-associated macrophages (TAMs) expressing vegf gene 

which enhances angiogenesis [42]. Moreover, in some breast 

cancer cell lines, direct activation of β-adrenergic signaling 

can amplify expression of VEGF and cytokines, IL-6, and IL- 

8 that stimulate tumor angiogenesis [43]. Jagged 1 is essential 

factor mediating Notch signaling which regulates tumor an- 

giogenesis through β2-AR-PKA-mTOR pathway. 
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Upregulation of Jagged 1 in breast cancer patients correlates 

with poor prognosis [44, 45]. Knockdown of Jagged 1 by 

siRNA in MDA-231 breast cancer cells inhibits Notch signal- 

ing in endothelial cells and impairs tumor angiogenesis in- 

duced by norepinephrine [15]. 

In contrary, dopamine inhibits angiogenesis by down- 

regulation of VEGFR-2-mediated signaling pathway in 

both tumor endothelial and endothelial progenitor cells 

through D2 dopamine receptors (DR2) [38, 39, 46, 47]. 

Furthermore, in mouse models of breast cancer induced 

by MCF-7 cell line and colon cancer induced by HT29 cell 

line, dopamine administration in combination with anti- 

cancer drugs (eg. doxorubicin and 5-fluorouracil) impairs 

tumor growth and improves survival outcome [48]. 

However, dopamine effect was found to have no direct im- 

pact on tumor growth and survival but by inhibiting tumor 

endothelial cell proliferation and migration via the suppres- 

sion of VEGFR-2 and mitogen-activated protein kinase as 

demonstrated in vitro [48]. In tissues from gastric cancer 

patients and in rats with chemically-induced as well as mice 

with Hs746T cell-induced gastric cancer, administration of 

dopamine decelerates tumor growth by suppressing angio- 

genesis via inhibition of VEGFR-2 phosphorylation in en- 

dothelial cells [20]. This concurs with results obtained in 

ovarian cancer mouse models induced by systemic injec- 

tion of SKOV3ip1 and HeyA8 cells in which exogenous 

administration of dopamine inhibits angiogenesis by a stim- 

ulation of DR2, however stimulation of DR1 stabilizes tu- 

mor blood vessels via cAMP-PKA signaling pathway [18]. 

Acetylcholine and Nicotine Nicotinic acetylcholine receptors 

(nAChRs) can have either stimulatory or inhibitory effect on 

the production and release of angiogenic factors [49]. Indeed, 

the expression of VEGF, TGF-β, FGF and PDGF in endothe- 

lial cells is increased by nicotine [50–53]. Nicotine-mediated 

angiogenesis via activation of α7 and α9-nAChRs is cell-type 

specific, e.g. in lung cancer cells angiogenesis is promoted via 

activation of α7-nAChRs [53, 54], whereas in breast tumors 

overexpression of α9-nAChRs [55] stimulates release of pro- 

angiogenic factors [56]. In colon tumor tissues from HT-29 

cell-bearing BALB/c mice, VEGF expression is elevated by 

nicotine which correlates with enhanced microvessel density 

[28]. The molecular pathways of nicotine-induced angiogen- 

esis have been extensively reviewed [57]. The role of mus- 

carinic acetylcholine receptors (mAChRs) in tumor angio- 

genesis is not well understood, however administration of 

autoantibodies against mAChRs in mouse models of breast 

cancer (Table 1) mediates tumor angiogenesis via activation 

of mAChRs through release of VEGF-A [29]. In addition, 

in BALB/c mice bearing LMM3 mammary adenocarcino- 

ma cells, administration of muscarinic agonist, carbachol, 

in the presence or absence of various muscarinic antago- 

nists shows an  increase in  VEGF expression [30,  58]. 

Furthermore, tumor macrophages stimulate angiogenesis 

via activation of M1 and M2 mAChRs which trigger argi- 

nine metabolic pathway [30]. 

Y-Aminobutyric Acid (GABA), Neuropeptide Y (NPY), Nitric

Oxide (NO) and Serotonin have varying effects on angiogen- 

esis and tumor progression. In a mouse model of cholan- 

giocarcinoma, GABA inhibits VEGF-A/C, decreases cell

proliferation and tumor mass [22]. NPY enhances the ex- 

pression of VEGF and its secretion promoting angiogenesis

and breast cancer progression [31]. The suggested mecha- 

nism by which NPY induces angiogenesis is by its influ- 

ence on endothelial cells dependent on endothelial nitric

oxide synthase (eNOS) activation and partly on VEGF sig- 

naling pathway The release of NO results in endothelial

activation inducing tumor cells lysis [59], although NO

can also promote tumor growth and metastasis by enhanc- 

ing angiogenesis [36, 59–65]. For instance, NO increases

VEGF-C and nitrite/nitrate production in MDA-MB-231

breast cancer cells and high levels of nitrotyrosine correlate

with increased VEGF-C, lymph node metastasis, reduced

disease-free and overall survival in invasive breast carcino- 

ma [35]. The expression of iNOS and VEGF in colorectal

cancer correlates with enhanced intratumor micro-vessel

density suggesting that NO can promote tumor angiogene- 

sis [60]. In gastric cancer, overexpression of NOS III via

abnormal activation of sequence-specific DNA-binding

protein (Sp1) correlates with enhanced micro-vessel densi- 

ty and poor survival [37]. Serotonin has also been implicat- 

ed in tumor angiogenesis. In C57BL/6 mice bearing MC-

38-induced tumors, serotonin regulates angiogenesis by

plummeting matrix metalloproteinase 12 (MMP12) expres- 

sion (eg. [66]) in macrophages infiltrating the tumor, as

well as reducing angiostatin (an endogenous inhibitor of

angiogenesis) levels [24].

Glutamate is an excitatory neurotransmitter that regulates 

synaptic and cellular activity via binding to its receptors 

including metabotropic glutamate receptors (mGluRs). 

The expression of mGluRs has been implicated in tumor 

angiogenesis as noted in mouse models of melanoma and 

breast cancer [25, 26, 67]. As such, decreased activity of 

mGluR1 inhibits angiogenesis in an orthotopic breast can- 

cer (4 T1) model suggesting that mGluR1 acts is a pro- 

angiogenic and pro-tumorigenic factor [25]. Likewise, in 

an experimental non-small cell lung cancer in A549- 

bearing nude mice, inhibition of mGlu1 receptor with 

BAY36–7620 led to suppression of angiogenesis via 

inhibiting AKT/HIF-1α/VEGF signaling pathway [68]. 

Similarly, high expression of glutamate receptor GRM1 in 

several human melanoma cell lines (Table 1) leads to in- 

creased expression of IL-8 and VEGF via activation of the 

AKT/mTOR/HIF1 signaling pathway [26]. 
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Table 2 Other factors influencing tumor angiogenesis 

Type of cancer Model Mechanism/pathway Ref. 

Factors 

ANG Breast cancer Human tissues The level of ANG correlates with clinical progression. 

ANG derived from tumors activates angiogenesis via 

suppression of miR-543-2p. 

[69] 

Bladder cancer Human tissues, T24, UROtsa and HeLa cells 

subcutaneously injected in athymic BALB/c 

(nu/nu) mice 

TNF-α  Lung cancer LLC1 cells subcutaneously injected in wild type, 

p75 knockout (KO) and double 

p55KO/p75KO mouse xenograft models 

Melanoma B16 cell subcutaneously injected in C57BL/6 

mice. 

Wild type, p75 knockout (KO) and double 

p55KO/p75KO mouse tumor xenograft 

models 

↑ ANG expression correlates with high grade, and 

muscle-invasive tumors via ERK 1/2 and MMP2. 

Downregulation of ANG inhibits tumor angiogenesis via 

AKT/GSK3β/ mTOR pathways. 

Tumor growth ↓ in both LLC and B16 p75KO mice. 

Decreased tumor growth correlates with ↓ VEGF 

expression and capillary density via TNFR2/p75. 

[70, 71] 

[72] 

TGF-β  Colon cancer Human tissues, FETα/DNRII cell TGF-β signaling is inversely correlates with the 

expression of VEGF-A in tissues. 

TGF-β ↓ VEGF-A expression via ubiquitination and de- 

terioration in a PKA- and Smad3-dependent and 

Smad2-independent pathways in vitro. 

[73] 

BDNF  Chondrosarcoma JJ012 cell line, 

JJ012 cells subcutaneously injected in 

CB17-SCID mice 

FGF Mammary cancer Mouse 66c14 mammary carcinoma and inguinal 

mammary fat pad injection in BALB/c mice 

Glioma Rat C6 glioma cancer cells injected 

subcutaneously into rats 

EGFR   HNSCC Human tissues, CAL27 cells subcutaneously 

injected in nude mice 

NGF Breast cancer MDA-MB-231 cells subcutaneously injected into 

SCID mice 

HGF ESCC Serum samples, human tissues, HKESC-1, 

HKESC-2 and SLMT cells 

The expression of BDNF and VEGF correlates with tumor 

grade. 

BDNF knockdown ↓ angiogenesis and tumor growth in 

mouse model. 

BDNF ↑ expression of VEGF and stimulates angiogenesis 

via the TrkB receptor, PKCα, PLCγ and HIF-1α sig- 

naling pathways. 

In tumor cells suppression of FGFR signaling inhibits 

expression of VEGF-C and induces VEGFR-3, netrin-1, 

prox1 and integrin α9 expression. 

In human tissues, ↑ EGFR correlates with ↑ HIF-1α and 

microvessel density. 

EGFR inhibitors ↓ the regulation of HIF-1α & 

Notch1 →↓ angiogenesis and tumor size. 

NGF ↑ the release of VEGF in breast cancer cells and 

mediates angiogenic effect via the activation of 

PI3K-Akt, ERK, MMP2 and NO synthase pathways. 

In tissues, ↑ level of HGF correlates with tumor metastasis 

and poorer survival. 

In serum samples, ↑ HGF level correlated with expression 

of VEGF and IL-8. 

HGF stimulates cells to express VEGF and IL-8 in vitro 

via extracellular signal-regulated kinase signaling path- 

ways. 

[74] 

[75] 

[76] 

[77] 

[78] 

Prostate cancer Castration-resistant prostate cancer blood 

samples and PC3 cell line 

HGF levels ↑ in both blood samples and cell line. [79] 

AKT, serine/threonine kinase or protein kinase B; ANG, angiogenin; BDNF, brain-derived neurotrophic factor; EGFR, epidermal growth factor receptor; 

ESCC, esophageal squamous cell carcinoma; ERK1/2, extracellular signal-regulated kinase; FGF, fibroblast growth factor; FGFR, fibroblast growth 

factor receptor; GSK3β, glycogen synthase kinase 3β; HNSCC, head and neck squamous cell carcinoma; HGF, hepatocyte growth factor; HIF-1α, 

hypoxia inducible factor 1α; IL-8, interleukin-8; MMP2, matrix metalloprotease 2; mTOR, mammalian/mechanistic target of rapamycin; NGF, nerve 

growth factor; NO, nitric oxide; PI3K, phosphoinositide 3-kinase; PKA, protein kinase A; PKCα, protein kinase C alpha; PLCγ, phospholipase Cγ; 

TGF-β, transforming growth factor beta; TNF-α, tumor necrosis factor alpha; TNFR2/p75, tumor necrosis factor receptor 2/neurotrophin receptor; 

TrkB, tropomyosin related kinase B; VEGF, vascular endothelial growth factor 

Hence, these studies clearly demonstrate involvement of 

neurotransmitters in tumor angiogenesis; however, most of 

the studies have been performed mainly in animal models 

and cell lines. Understanding their relevance to human pathol- 

ogy may aid in the development of better anti-angiogenic 

therapies. 
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Other Factors Influencing Tumor 
Angiogenesis 

Nerve growth factor (NGF), brain-derived neurotrophic factor 

(BDNF), angiogenin (ANG), FGF, TNF-α, TGF-β, hepato- 

cyte growth factor (HGF) and epidermal growth factor recep- 

tor (EGF) are important signaling molecules promoting angio- 

genesis (Table 2, Fig. 2). NGF is a neurotrophic factor that is 

upregulated in tumor microenvironment of various cancers 

including breast cancer [77]. NGF, secreted by MDA-MB- 

231 breast cancer cells, stimulates angiogenesis in vivo after 

injection of these cells subcutaneously to immunodeficient 

mice and enhances endothelial cell proliferation, invasion, mi- 

gration and tubule formation in vitro [77]. Furthermore, NGF 

enhances secretion of VEGF by breast cancer cells; in vivo 

administration of anti-VEGF antibody inhibits its angiogenic 

capacity [77]. In human glioma microvascular endothelial 

cells, NGF mediates tumor angiogenesis by interaction with 

α9β1 integrin [80–83]. Another neurotrophic factor, BDNF 

has been shown to play a role in tumor angiogenesis. For 

instance, in chondrosarcoma patients, BDNF and VEGF pro- 

tein expression is significantly higher which is correlated with 

Fig. 2 Growth factors intracellular signalling pathways in cancer 

angiogenesis. The binding of growth factors to their respective 

receptors (eg, EGF to EGFR) activates multiple kinase pathways which 

are involved in cancer angiogenesis. AKT, serine/threonine kinase or 

protein kinase B; ANG, angiogenin; BDNF, brain-derived neurotrophic 

factor; CEBPB, CCAAT/enhancer-binding protein beta; EGF, epidermal 

growth factor; EGFR, epidermal growth factor receptor; ERK1/2, extra- 

cellular signal-regulated kinase; FGF, fibroblast growth factor; FGFR, 

fibroblast growth factor receptor; GSK3β, glycogen synthase kinase 3 

beta; HGF, hepatocyte growth factor; c-Met, hepatocyte growth factor 

receptor; HIF-1α, hypoxia inducible factor 1 alpha; ICAM-1, intercellular 

adhesion molecule-1; MAPK, mitogen activated protein kinase; MEK1/2, 

MAPK/ERK kinase; MMP2, matrix metallopeptidase 2; mTOR, 

mammalian/mechanistic target of rapamycin; NGF, nerve growth factor; 

NF-kB, nuclear factor-kappa B; NOS, nitric oxide synthase; PI3K, 

phosphoinositide 3-kinase; PKC-α, protein kinase C alpha; PLC-γ, phos- 

pholipase C-gamma; POU2F1, POU domain class 2 transcription factor 

1; RAF, mitogen activated protein kinase; RAS, mitogen activated protein 

kinase; Tie2, angiopoietin receptor 2; TrkA, tropomyosin related kinase 

A; TrkB, tropomyosin related kinase B; VEGF, vascular endothelial 

growth factor 
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tumor stage [74]. Furthermore, BDNF knockdown decreases 

the expression of VEGF and abolishes angiogenesis in in vitro 

Concluding Remarks 

Kuol N. et al. 

studies and animal models of chondrosarcoma [74]. 

In addition to neurotrophic factors, angiogenic factor ANG 

is upregulated in number of cancers [84–86] and is associated 

with worse clinical prognosis in urothelial carcinoma patients 

[87]. ANG regulates tumor angiogenesis via activation of en- 

dothelial and smooth muscle cells triggering various molecu- 

lar pathways involved in the initiation of angiogenesis (Fig. 2) 

[69–71, 88]. Elevated expression of ANG associates with high 

grade and muscle-invasive human bladder tumors involving 

increase p-ERK1/2 and MMP2 expression [70]. Similarly, 

downregulation of ANG inhibits tumor angiogenesis via 

AKT/GSK3β/ mTOR pathways [71]. FGF is involved in an- 

giogenesis by suppressing VEGF-C expression and stimulat- 

ing expression of pro-lymphangiogenic factors including 

integrin α9, VEGFR-3, prox1 and netrin-1 [75]. In fact, 

blocking of FGF2 with anti-FGF2 monoclonal antibody re- 

sults in impaired angiogenesis of B16-F10 cell induced mela- 

noma in mice [89]. In addition, TNF-α binding to TNFR1/p55 

and TNFR2/p57 receptors has been implicated in the secretion 

of cytokines and pro-angiogenic factors [72]. For example, 

blocking p75 by short-hairpin RNA in cultured Lewis lung 

carcinoma cells results in decreased TNF-mediated expression 

of VEGF, placental growth factor and HGF, suggesting that 

p75 is essential factor for tumor angiogenesis [72]. Similarly, 

blocking TNF-α inhibits angiogenesis in metastatic oral squa- 

mous cell carcinoma cells (sh-IFIT2 meta cell) in NOD/SCID 

mice [90]. TGF-β negatively regulates VEGF-A expression 

via a PKA- and Smad2-independent and Smad3-dependent 

pathways as demonstrated in FETα/DNRII colon cancer cell 

lines [73]. HGF is an angiogenic factor secreted predominant- 

ly by fibroblasts; it stimulates invasiveness of cancer cells via 

c-Met receptor tyrosine kinase activation [79, 91, 92]. In fact,

high HGF serum levels is correlated with VEGF and IL-8

expression, advanced tumor stage and poor survival of esoph- 

ageal squamous cell carcinoma (ESCC) patients [78]. High

expression of another pro-angiogenic factor, EGFR correlates

with increased microvessel density resulting in enhanced tu- 

mor angiogenesis via the HIF-1α and Notch1 pathways in

tissues from head and neck squamous cell carcinoma patients

[76]. Neuropilin is a transmembrane glycoprotein which

serves as a receptors or co-receptor for multiple ligands in- 

cluding VEGF, HGF, EGF and FGF which are involved in

tumor angiogenesis [93, 94]. In gastric cancer, high expres- 

sion of neuropilin correlates with advanced clinical stages (III

and IV) [95]. Depletion of neuropilin-1 inhibits the activation

of EGF/EGFR, VEGF/VEGFR2 and HGF/c-Met angiogenic

pathways activated by recombinant human VEGF-165, HGF

and EGF proteins [91, 95]. Thus, the role of neurotrophic

factors such as NGF, BDNF and their molecular pathways

should be considered in the development of anti-angiogenic

therapies.

Despite the increasing interest to the role of the nervous sys- 

tem in cancer development and progression, the knowledge in 

this area is scarce. Most neurotransmitters released by nerve 

fibers promote tumor angiogenesis, however, some neuro- 

transmitters induce anti-cancer effects. Whether these effects 

are cancer type or receptor dependent need further elucidation. 

To date, most studies investigating the role of the nervous 

system in modulation of tumor angiogenesis have been per- 

formed in cell lines and animal models. Limited studies are 

available from cancer patients and at different stages of dis- 

ease. Understanding molecular mechanisms by which nervous 

system modulates tumor angiogenesis may open new avenues 

for understanding mechanisms of tumor angiogenesis, identi- 

fication of new biomarkers for cancer diagnosis and progno- 

sis, and, defining novel targets for therapeutic interventions. 
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Abstract 

Cancer remains as one of the leading cause of death worldwide. The development of cancer involves an intricate 

process, wherein many identified and unidentified factors play a role. Although most studies have focused on the 

genetic abnormalities which initiate and promote cancer, there is overwhelming evidence that tumors interact 

within their environment by direct cell-to-cell contact and with signaling molecules, suggesting that cancer cells 

can influence their microenvironment and bidirectionally communicate with other systems. However, only in recent 

years the role of the nervous system has been recognized as a major contributor to cancer development and 

metastasis. The nervous system governs functional activities of many organs, and, as tumors are not independent 

organs within an organism, this system is integrally involved in tumor growth and progression. 
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Role of the nervous system in cancer 
metastasis 
Nyanbol Kuol1, Lily Stojanovska1, Vasso Apostolopoulos1† and Kulmira Nurgali1,2*† 

Background 
Cancer is the leading cause of death worldwide due to the 

aging population and unhealthy lifestyle [1]. Although it is 

highly treatable when localized, metastatic or recurrent 

cancer has a poor prognosis. Metastasis involves a complex 

series of steps including proliferation, angiogenesis, 

embolization, dissemination, evasion of immune system 

surveillance and surviving in ectopic organs  [2–5]. 

However, despite significant advances in understanding me- 

tastasis and its mechanisms, the prognosis remains poor. In 

the past decades, research has focused on identifying and 

characterising genes and gene products that manipulate the 

metastatic processes [6–9]. More recently, the  impact  of  

the tumor microenvironment on tumor cell invasion and 

metastasis has attracted extensive attention (see ref. [10] for 

detailed review) [2, 10–13]. Multiple cellular and extracellu- 

lar components within the tumor  microenvironment,  such 

as immune cells, endothelial cells, mesenchymal stromal 

cells (fibroblasts and myofibroblasts), and their secretory 

products, exert active functions to modulate gene expres- 

sion patterns of tumor cells and to alter biological behavior 
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of tumor cells [14–16]. Invariable crosstalk amongst these 

components within the tumor microenvironment triggers 

pro-survival, invasion, and metastatic pathways of tumor 

cells [17–20]. Several studies, both clinical and in vitro, 

reinforce the concept of the nervous system involvement in 

cancer metastasis [5, 21–26]. Nerve fibers present in and 

around the tumor could release neurotransmitters and 

neuropeptides directly acting on receptors  expressed 

by cancer cells. The findings, primarily in cancer cell 

lines and animal models, indicate that there is a bi-- 

directional correlation between the neural factors re- 

leased and cancer progression and metastasis. 

Understanding the complex neurotransmitter-cancer 

interaction is important for the development of new 

avenues for targeted therapeutic intervention. This re- 

view presents an overview of the role of the nervous 

system in cancer metastasis. 

 

The role of the nervous system in metastatic 
cascade 
Studies have demonstrated that the nervous system facil- 

itates development of tumor metastasis by modulating 

metastatic cascades through the release of neural-related 

factors from nerve endings such as neurotrophins, neu- 

rotransmitters and neuropeptides [27–29]. The process 

of metastasis formation involves tumor cells breaking 

away from the primary tumor and overcoming the 
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obstacles of primary tissue inhibition (initiation and 

clonal expansion), anoikis inhibition (evasion from apop- 

tosis), breakdown of base membranes (epithelial-mesen- 

chymal transition (EMT) and invasion), extravasation  

and colonization, angiogenesis, evasion of immune re- 

sponse and establishment of tumor microenvironment. 

Initiation and clonal expansion 

Tumor metastasis initiation and clonal expansion is a 

complex process where contributing factors are not well 

understood. It is believed that metastasis process is initi- 

ated when genetically unstable tumor cells adjust to a 

secondary site microenvironment [11]. This process in- 

volves selecting traits that are beneficial to tumor cells  

and affiliated recruitment of traits in the tumor stroma  

that accommodate invasion by metastatic cells. 

Metastasis-initiating cells possess these traits and can hi- 

jack some of the normal stem cell pathways to increase 

cellular plasticity and stemness [30]. Proteolytic enzymes 

such as matrix metalloproteinases (MMPs) facilitate this 

process by degrading the surrounding normal tissues. 

MMPs are regulated by neural-related factors and neu- 

rotransmitters and are overexpressed in tumors [31–35]. 

Hence, nervous system modulates the initiation and 

clonal expansion via the expression of MMPs and the 

stimulation of metastasis-initiating cells. 

Evasion from apoptosis 

Anoikis is a programmed cell death induced upon cell 

detachment from extracellular matrix, acting as a critical 

mechanism in preventing adherent-independent cell 

growth and attachment to unsuitable matrix, thus avoid- 

ing colonizing of distant organs [36, 37]. For tumor me- 

tastasis to progress, tumor cells must be resistant to 

anoikis. Tumor cell resistance to anoikis is attributed to 

alteration in integrins’ repertoire, overexpression of 

growth factor receptor, activation of oncogene, activation 

of pro-survival signals, or upregulation/mutation of key 

enzymes involved in integrin or growth factor receptor 

signaling [37]. Neurotransmitters and neurotrophins play 

a role in tumor evasion from anoikis. Increased expres- 

sion of brain-derived neurotrophic factor (BDNF) and 

its receptor tropomyosin-related kinase B (TrkB) induces 

anoikis inhibition in rat intestinal epithelial cells [27]. 

Similarly, TrkB overexpression induces anoikis inhibition 

protecting colorectal cancer cells [38]. Application of re- 

combinant human BDNF to gastric cancer cells inhibited 

anoikis and stimulated cellular proliferation, invasion and 

migration [39]. Nicotine exposure promotes anchorage- 

independent growth of A549, MDA-MB-468 and MCF-7 

cell lines by downregulation of anoikis [40]. Furthermore, 

tumor microenvironment contributes to anoikis resistance 

of cancer cells by producing pro-survival soluble factors, 

triggering EMT, enhancing oxidative stress, regulating 

matrix stiffness, as well as leading to metabolic deregula- 

tions of cancer cells [37]. These events assist tumor cells 

to prevent the apoptosis mechanism and sustain pro- 

survival signals after detachment, counteracting anoikis. 

EMT and invasion 

EMT is a fundamental process for tumor progression by 

increasing invasiveness and resistance to anoikis and sig- 

nificantly elevating the production of extracellular  matrix 

constituents leading to metastasis [41–43]. EMT 

development results in the degradation of basement 

membrane and formation of  mesenchymal-like  cells 

[42]. Studies have demonstrated that nervous system 

regulates EMT development via the release of neuro- 

transmitters and neurotrophins [40, 44]. The overexpres- 

sion of TrkB or activation by BDNF in human 

endometrial cancer cell lines results in altered  expres- 

sion of EMT molecular mediators [44]. Nicotine treat- 

ment induces changes in gene expression  associated  

with EMT in lung and breast cancer cells [40]. 

Extravasation and colonization 

Nervous system modulates the function of vascular sys- 

tem which is essential for tumor cell extravasation and 

colonization. It has been found that neuropeptides  such 

as substance P (SP) and bradykinin enhance vascular 

permeability promoting tumor cell extravasation and 

colonization [28, 29]. In a mouse model bearing sarcoma 

180 cells, bradykinin enhances tumor-associated vascular 

permeability [28]. SP regulates physiological functions of 

vascular system including smooth muscle contractility, 

and vascular permeability [29]. Cell extravasation and 

colonization are prerequisite for angiogenesis which is a 

crucial step in the development of cancer metastasis. 

Angiogenesis 

Development of tumor angiogenesis is essential for 

tumor growth and progression. Vascular endothelial 

growth factor (VEGF) plays significant role in tumor 

angiogenesis, leading to metastasis [45–47]. Studies have 

demonstrated the important role of neurotransmitters 

and neuropeptides in regulating angiogenesis. In the 

xenograft models of ovarian cancer, chronic stress medi- 

ates the vascularization of intraperitoneal metastasis and 

enhances tumor angiogenesis via increasing VEGF ex- 

pression [48, 49]. In breast cancer cell lines, direct acti- 

vation of β-adrenergic signaling can amplify expression 

of VEGF and cytokines, interleukin (IL)-6, and IL-8 that 

stimulate tumor angiogenesis [50]. In colon tumor 

tissues from HT-29 cell-bearing BALB/c mice, VEGF 

expression is elevated by nicotine which correlates with 

enhanced microvessel density [51]. Neuropeptide Y 

(NPY) enhances the expression of VEGF and its 
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secretion promoting angiogenesis and breast cancer pro- 

gression [52]. 

Evasion of immune response 

The nervous system plays a fundamental role in regu- 

lating immune responses  [53].  Inflammatory  media- 

tors can activate sensory nerves that send signals 

regarding inflammation to the central nervous system, 

which in turn leads to the release of neuromediators 

modulating local inflammation and influencing im-  

mune cells [54]. Since inflammatory signals are im- 

portant for tumor progression  in  both  the  early and 

late stages, the anti-inflammatory role of  the  vagus 

nerve may play an important role in cancer metastasis 

[55]. β-adrenergic receptor agonist suppressed natural 

killer (NK) cell activity resulting in increased lung 

metastasis in murine metastatic mammary adenocarcinoma 

[56]. In addition, pharmacological or stress-associated β-

adrenergic stimulation results in increased macro- phage 

infiltration and cancer metastasis in  breast  can- cer 

model [57]. 

Tumor microenvironment 

Tumor microenvironment (mainly contain  stromal  cells  

and signal molecules) plays essential role in the formation  

of cancer metastasis. Stromal cells produce neural-related 

factors and express β-adrenergic receptor that facilitated 

tumor cell proliferation and survival in the primary site and 

secondary organ [10, 24]. Tumor-associated macrophages 

play a role in β-adrenergic signaling pathways, by accelerat- 

ing angiogenesis, chemokine secretion  to  attract  tumor 

cells, secretion of pro-inflammatory cytokines (IL-1, IL-6, 

IL-8, and tumor necrosis factor (TNF)-α) and escape of anti-

tumor responses [58–60]. Hence, tumor microenviron- ment 

creates a feedback loop with the nervous system en- abling 

the growth of primary and  secondary  tumors. Overall, these 

studies have demonstrated that the nervous system 

modulates each step of cancer  metastasis  through the 

release of neural-related factors. 

Role of perineural invasion in cancer metastasis 

Perineural invasion (PNI) also known as neurotropic 

carcinomatous spread is a  process  mainly  categorized  

by neoplastic invasion  of  the  nerves.  PNI  is  defined 

as the presence  of  cancer  cells  in  the  perineurium;  it 

is believed to be a common route for cancer metasta-     

sis can cause cancer-related pain [61–68].  The  pres- 

ence of PNI is mostly associated  with  poor  prognosis 

and high recurrence in  colorectal  [69],  gastric  [64],  

oral tongue squamous cell carcinoma (OTSCC)  [62],  

and pancreatic [61] cancers. In stage  II  and  III 

colorectal cancer patients, the presence of PNI is 

associated with tumor grade,  metastasis  to  lymph  

nodes and poor patient survival [63]. However, in 

invasive breast carcinoma the presence of PNI has been 

demonstrated to have no prognostic value [67, 70]. 

PNI is influenced by the interaction between the nerve 

microenvironment and  neurotrophic  molecules 

expressed by cancer cells such as nerve growth factor 

(NGF), BDNF, glial cell line-derived neurotrophic factor 

(GDNF) and their receptors [61, 68, 71]. A number of 

studies demonstrated correlation between  the  presence  

of PNI with high expression of NGF and its receptor 

tropomyosin related kinase A (TrkA) [61, 72, 73]. It is 

speculated that neurotrophins released by neural  tissue 

act as chemotactic factors, and in cancer cells  where Trks 

are overexpressed, they provide mechanism to in- vade 

the perineural space. High expression of NGF or TrkA and 

P75NTR receptors is associated with  lymph node 

metastasis in a mouse model of breast cancer [74]. In 

OTSCC patients [73], the presence of PNI and NGF   is 

associated with larger tumor size and lymph node me- 

tastasis, suggesting that its presence can be a valuable 

marker to predict the disease progression and prognosis 

[65]. Overexpression of TrkA associates with enhanced 

growth, invasion and migration of breast cancer cells in 

vitro as well as enhanced metastasis in xenografted im- 

munodeficient mice via the PI3K-AKT and ERK/P38 

MAP kinases [75]. Conversely, immuno-histochemical 

evaluation of tissues from patients with extrahepatic 

cholangiocarcinoma shows that intra-tumoral NGF 

expression does not correlate with PNI, absence of dis- 

ease recurrence and overall patient survival [76]. GDNF 

has been demonstrated to induce cancer cells  migration. 

In human pancreatic adenocarcinoma tissues and 

MiaPaCa-2 cell lines, binding of GDNF to its receptor 

GFRα1 stimulates PNI via GDNF-(Ret proto-oncogene) 

RET signaling pathway [71]. Activation of GDNF- 

GFRα1-RET signaling triggers the MAPK signaling path- 

way leading to pancreatic cancer cell migration toward 

nerves in both in vitro and animal models of PNI [77]. 

Cancer-nerve interaction studied in  in  vitro  co-cultures 

of DRG and MiaPaCa-2 pancreatic cancer cells demon- 

strated that GFRα1 facilitates migration of cancer cells 

along neurites toward the center of the DRG [71]. 

Furthermore, decreased release of soluble GFRα1 from 

DRG inhibits migration of cancer cells towards nerves in 

vivo providing further evidence  that  GFRα1 expression 

is important in facilitating PNI [71]. In a  metastatic 

breast cancer model, in vivo inhibition of Ret suppresses 

tumour outgrowth and metastatic potential [78]. 

BDNF  facilitates  cancer  metastasis  via  binding  to its 

receptors, TrkB/ TrkC and/or p75NTR  as  demonstrated 

in breast [79], colorectal [80, 81], clear cell renal cell car- 

cinoma [82] and non-small cell lung cancer (NSCLC) 

[83]. The expression of TrkB associates with nodal me- 

tastasis and peritoneal metastasis; whereas, TrkC expres- 

sion associates with liver metastasis in colorectal cancer 
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patients [81]. BDNF-TrkB signaling pathway mediates 

metastatic effect through modulation of cancer- 

associated fibroblasts (CAFs) as demonstrated in mouse 

model co-injected with OSC19-Luc transfected cell line 

and CAFs [84]. In melanoma, neurotrophin (NT)-3, NT- 

4, and NGF induce cell migration, with a stronger effect 

on metastatic cell lines via binding to p75NTR corecep- 

tor sortilin [85]. In breast cancer, NT-3 enhances breast 

cancer metastasis in the brain via promoting the mesen- 

chymal–epithelial transition of breast cancer cells to a 

more epithelial-like phenotype and via increasing the 

ability of these cells to proliferate in the brain [86]. 

Collectively, these studies demonstrate that neurotro- 

phins and their receptors play crucial role in PNI. These 

studies also suggest that the presence of PNI could be   

an effective predictor of metastatic potential and patient 

survival. 

Tumor innervation influencing cancer metastasis 
Tumor innervation 

Cancer-related neurogenesis (tumor innervation) is 

attributed to the ability of cancer cells to  attract 

normal nerve fibers via the secretion of signalling 

molecules and neurotrophic factor. However, recent 

study has demonstrated that cancer stem cells are 

capable of directly  initiating  tumor  neurogenesis 

[87]. Cancer stem cells derived from  human  gastric 

and colorectal cancer patients generate neurons in- 

cluding sympathetic and parasympathetic neurons 

which promote tumor progression  [87].  Knocking 

down their neural cell  generating  abilities  inhibit 

tumor growth in human xenograft mouse model. 

Neurogenesis and its putative regulatory mechanisms 

have been reported in prostate [88], gastric [89], 

colorectal [90] and breast [91] cancers. There is a 

correlation between the expression of a pan-neuronal 

marker protein gene product 9.5 with clinicopatho- 

logical characteristics of breast cancer [91]. In fact, 

neurogenesis is associated with aggressive features 

including tumor grade, poor survival as well as 

angiogenesis, especially in estrogen receptor-negative 

and node-negative breast cancer subtypes [91, 92]. In 

prostate cancer, infiltration of the tumor microenvir- 

onment by nerve fibers associates with poor clinical 

outcomes [93] and is driven by the expression of 

granulocyte colony-stimulating factor (G-CSF) [94]  

and proNGF [95]. Similarly, in orthotopic PC3-luc 

xenografts  model  of prostate  cancer,  neurogenesis 

and axonogenesis correlate with aggressive features 

including metastatic  spread  which  is attributed  to  the 

neo-cholinergic parasympathetic nerve fiber [94]. These 

findings indicate that neurogenesis, like angio- genesis, 

is also a trait of  cancer  invasion  and  can alter tumor 

behaviour. 

Tumor denervation 

On the other hand, disruption of  tissue  innervation 

might cause accelerated tumor growth and  metastasis 

[56, 96–101]. For instance, in humans, decreased vagal 

nerve activity correlates with advanced stages of cancer 

[96–98]. Similarly, modulation of vagal nerve activity 

enhances metastasis of breast cancer in  mice  [99, 100]. 

In addition, capsaicin-induced inactivation of sensory 

neurons enhances metastasis of breast cancer cells [56, 

101]. On contrary, pharmacological or surgical denerv- 

ation supresses the tumor progression as noted in three 

independent mice models of gastric cancer [89]. Thus, 

these findings suggest that there might be differences in 

the effects of local tumor innervation and extrinsic in- 

nervation on cancer progression. 

 

Neurotransmitters influencing cancer metastasis 

Tumor innervation influences metastasis as the ingrown 

nerve endings release neurotransmitters (such as nor- 

epinephrine, dopamine and substance P), which enhance 

metastatic spread [102]. To date, several neurotransmit- 

ters and neuropeptides involved in tumor metastasis 

have been identified (Table 1 and Fig. 1). In fact, several 

cancer cells express receptors for a number of neuropep- 

tides and neurotransmitters, like norepinephrine, 

epinephrine, dopamine, GABA, acetylcholine, SP and 

NPY which have stimulatory effects on migration of can- 

cer cells [103–112]. 

 
Catecholamines 

The increased expression of β-adrenergic receptor for 

catecholamines is associated with poor prognosis in 

breast cancer [113]. Stress stimulation leads to macro- 

phage infiltration to the tumor site which activates β-

adrenergic signaling pathways leading to increased 

metastasis in an orthotopic breast cancer model in 

BALB/c mice [57]. In this model, administration of β-

adrenergic antagonist, propranolol, decreases breast 

cancer metastasis [57]. Similarly, the use of  β-blockers 

in breast cancer patients inhibits metastasis  and  dis- 

ease recurrence as well as improving survival of  pa-  

tients [113, 114]. In ovarian cancer patients, the grade 

and stage of tumors correlate with higher tumor 

norepinephrine levels associated with  stress  [115].  In 

an orthotopic mouse model of ovarian cancer, chronic 

stress elevates tumor noradrenaline levels and  in-  

creases the aggressiveness of tumor growth [49]. In 

prostate cancer C42 xenografts in nude mice  and  Hi-

Myc mice with prostate cancer, plasma adrenaline 

promotes carcinogenesis via β2 adrenergic receptor/ 

protein kinase A/BCL2-associated death protein anti- 

apoptotic signaling pathway [116].  Hence,  stimulation  

of catecholamines plays a major role in activation of 

signals for breast cancer metastasis. Therefore, 
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inhibition of the sympathetic nervous system signaling 

pathways with β-blockers holds great promise in pre- 

venting metastasis of various tumors including breast 

cancer. On the other hand,  involvement  of  α- 

adrenergic receptors in cancer metastasis is not well 

understood. In the murine model of metastatic mam- 

mary adenocarcinoma induced  by  4  T1  cells  in 

BALB/c mice, activation of α2-adrenergic receptors 

increases tumor growth rate and the number of me- 

tastasis [117]. In contrast, blockade of α-adrenergic 

receptors in the absence of stress increases distant 

metastasis in the orthotopic model of mammary 

adenocarcinoma induced by  MDA-MB-231HM  cell 

line in nude mice [118]. 

The role of dopamine in cancer metastasis  is  not  

clear. Low levels of dopamine have been reported in 

stressed mice with ovarian carcinoma [119]. In  con- 

trary, in hepatocellular carcinoma (HCC) patients 

dopamine levels are elevated in the blood samples 

compared to healthy individuals [120]. Moreover, 

enzymes such as monoamine oxidase A (MAOA) 

degrading catecholamines  and  serotonin  [121]  may 

also play an important role in influencing cancer me- 

tastasis [122–124]. Studies have demonstrated that 

Fig.  1  Neurotransmitters  signalling  pathways  in  cancer.  Cancer  neuro-immune  communication  is  through  the  release  of   neurotransmitters  

using  different  signalling  kinases  which  promote  cancer  progression  via  metastasis.  Perineural  invasion  mediate   cancer  metastasis  through  

the release of the NGF and GDNF via the activation of different signaling pathway. Ach, acetylcholine; β2-AR, β2-adrenergic receptor;cAMP, cyclic 

adenosine monophosphate; DA, dopamine; DR, dopamine receptor; EGFR, epidermal growth factor receptor;EMT,epithelial–mesenchymal transition; 

ERK1/2, extracellular signal-regulated kinase;FAK, focal adhesion kinase; GABA, gamma-aminobutyric acid; GABAB,gamma-aminobutyric acid 

receptorB;GDNF, glial cell line-derived neurotrophic factor; GFRα, glial cell line-derived neurotrophic factor receptor 1;ICAM-1, intercellular adhesion 

molecule-1; JAK2,janus kinase 2;MEK, MAPK/ERK kinase;mTOR, mammalian/mechanistic target of rapamycin;MMP, matrix metallopeptidase;MAPK,- 

mitogen-activated protein kinases;RAF, mitogen activated protein kinase;RAS, mitogen activated protein kinase;mAChRs, muscarinic acetylcholine 

receptors;NK-1R, neurokinin-1 receptor; NGF, nerve growth factor;nAChR, nicotinic acetylcholine receptor;NE, norepinephrine;NF-kB, nuclear factor- 

kappa B;PLC, phospholipase C; PI3K, phosphoinositide 3-kinase;PKA, protein kinase A;PKC, protein kinase C;RET, proto-oncogene;AKT, serine/threonine 

kinase or protein kinase B;STAT3,signal transducer and activator of transcription 3; SP,substance P;TrkA,tropomyosin related kinase A 



Kuol et al. Journal of Experimental & Clinical Cancer Research (2018) 37:5 Page 422 of 
12 

425 

MAOA expression is decreased in HCC patients; it 

suppresses HCC cell metastasis by inhibiting adrenergic 

and epidermal growth factor receptor (EGFR) signaling 

pathways [125]. Inhibition of MAOA stimulates malignant 

behavior in MDA-MB-231 breast cancer cells [126]. On 

the other hand, high expression of MAOA in human 

tissues correlates with poor prognostic in prostate cancer 

patients and increased tumor metastasis in xenograft 

mouse model of prostate cancer via HIF1-α/VEGF-A/ 

FOXO1/TWIST1 signaling pathway [124]. These limited 

studies on the role of MAOA in cancer metastasis are 

controversial. 

γ-Aminobutyric acid (GABA) 

Plays a role in cancer metastasis via activation of ionotropic 

(GABAA) and metabotropic (GABAB) receptors [127].  It 

has been demonstrated that GABA mediates its inhibitory 

effect through GABAA receptor. For example, HCC cell 

lines and human adjacent non-tumor liver tissues, express 

GABAA receptor. GABA inhibits HCC cell migration 

through the activation of GABAA receptor [128]. However, 

there are studies demonstrating that GABAA receptor en- 

hances metastasis. The activation of GABAA receptors 

upregulates brain metastasis of breast cancer patients [129]. 

Expression of the GABAA receptor subunit, Gabra3, which 

is normally not present in breast epithelial cells, is increased 

in human metastatic breast cancer which correlated with 

poorer patients survival [108]. Gabra3 overexpression pro- 

motes migration and metastasis of breast cancer cells via 

activating serine/threonine kinase or protein  kinase  B 

(AKT) signaling pathway demonstrated in a mouse ortho- 

topic model induced by MCF7 and MDA-MB-436 breast 

cancer cell lines [108]. Mechanistically, the activation of 

AKT signaling pathway enhances metastasis via down- 

stream molecules such as focal adhesion kinase and MMPs 

[130, 131]. Therefore, it could be speculated that the effect 

of GABAA receptor depends on the activated downstream 

molecules and signalling pathways. Murine (4 T1) and 

human (MCF7) breast cancer cell lines and human breast 

cancer tissues express GABAB receptor [107]. In mice, 

GABAB receptor mediates 4 T1 cell invasion and pulmon- 

ary metastasis via ERK1/2 signaling [107]. GABAB activation 

inhibits migration of PLC/PRF/5 and Huh 7 malignant hep- 

atocyte cell lines in vitro [132]. 

Acetylcholine (ACh) 

Plays a functional role in cellular proliferation, differenti- 

ation and apoptosis. In HCC, the release of ACh acting 

on androgen receptor promotes SNU-449 cell invasion 

and migration via activation of AKT and signal 

transducer and activator of transcription 3 (STAT3) 

signaling pathways [133]. Nicotine stimulation of nico- 

tinic acetylcholine receptor (nAChRs) enhances SW620 

and LOVO colorectal cancer cell invasion and metastasis 

in vitro via the activation of p38 mitogen-activated pro- 

tein kinases (MAPK) signaling pathway [112]. Similarly, 

nicotine pretreatment stimulates the activation of α9- 

nAChR which mediates MCF-7 and MDA-MB-231 

breast cancer cell migration via the expression of epithe- 

lial mesenchymal transition markers [134]. Furthermore, 

implantation of CD18/HPAF pancreatic cancer cells into 

immuno-deficient mice, demonstrates that nicotine 

treatment activates α7-nAChR and mediates tumor me- 

tastasis via Janus kinase 2 (JAK2)/STAT3 signaling in 

synergy with mitogen activated protein kinase (Ras/Raf/ 

MEK/ERK1/2) signalling pathway [135]. ACh promoted 

cancer metastasis and associate with poor clinical out- 

comes in prostate adenocarcinoma via M1R; and 

pharmacological blockade or genetic disruption of the 

M1R inhibit tumor invasion and metastasis leading to 

improved survival of the mice-bearing PC-3 prostate 

tumor xenografts [93]. In addition, ACh acting on M3 

muscarinic receptor (M3R) associates with metastasis  

and low survival rate of NSCLC patients [136]. M3R 

activation increases invasion and migration of NSCLC 

cells and increased release of interleukin (IL)-8 via the 

activation of EGFR/PI3K/AKT pathway [137]. In human 

SNU-C4 and H508 colon cancer cell lines, administra- 

tion of muscarinic receptor inhibitor, atropine, abolished 

SNU-C4 cell migration, however, H508 cell migration 

requires the activation of MMP7 [138, 139]. 

Neuropeptides 

Expression of SP is  shown  to  exert  functional  effects 

on small cell  lung  cancer  [140],  pancreatic  [141], 

colon [142], prostate [143, 144] and breast cancer 

[145] cells. SP acting on neurokinin-1  (NK-1)  recep-  

tors enhances pancreatic cancer cell migration and

perineural invasion to the dorsal root ganglia (DRG)

mediated by  MMP-2  demonstrating  its  essential  role

in metastasis [146]. Enhanced expression of SP corre- 

lated with lymph node  metastasis  and  poor  prognosis

in colorectal cancer  patients  [142].  NPY  modulates

cell proliferation, differentiation and survival  via act-  

ing on its G protein-coupled receptors designated Y1R–

Y5R leading to the development of  metastasis [147,

148]. High levels of  systemic  NPY  associates with

metastatic tumors as noted in Ewing sarcoma patients

[149]. Similarly, in the SK-ES1  xenograft model,

elevated levels of NPY associates with bone in- vasion

and metastases [150]. NPY mediates 4 T1 cell

proliferation and migration via the  activation  of  NPY

Y5 receptor  [148].  Neurotensin   mediates   metastasis

by binding to neurotensin receptors 1 (NTSR1).  In

breast cancer, the  expression  of  NTSR1  correlates

with lymph node metastasis [151]. These studies dem- 

onstrate  the  important role  of  neuropeptide  signaling

in cancer metastasis.
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Concluding  remarks  and   future   directions 

Metastasis continues to be the main cause of cancer- 

related death. Although genetic compartments that in- 

fluence metastasis have been identified, there are still 

needs to conduct comprehensive evaluation of the fac-  

tors that contribute to cancer metastasis. This review 

demonstrates that the nervous system influences cancer 

metastasis through the release of neurotransmitters and 

neuropeptides leading to metastasis. However, sensory 

nerve fibres have been given less attention. Sensory stim- 

uli activate pain transmission pathways which result in 

acute or chronic pain depending  on  the  intensity  and  

the nature of the stimulus [152,  153].  Cancer-related 

pain is linked to accelerating cancer progression and me- 

tastasis. Sensory nerves can innervate primary tumors  

and metastases, thus contributing to tumor-associated 

pain as demonstrated in pancreatic [61] and prostate 

cancer [154]. Therefore, a possible involvement of sen- 

sory fibers in tumor progression and metastasis, al- 

though not well demonstrated at this stage, cannot be 

excluded. 

In conclusion, cancer cells can transduce neurotransmitter- 

mediated intracellular signaling pathways which lead to their 

activation, growth and metastasis. The findings reported here 

are primarily done in cancer cell lines and animal models. 

Therefore,  better  understanding  the  interaction  between 

these signaling molecules and tumor cells in human cancers 

would enhance our knowledge on pathways promoting can- 

cer metastasis. 
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A B S T R A C T 

In the last decade, understanding of cancer initiation and progression has been given much attention with studies 

mainly focusing on genetic abnormalities. Importantly, cancer cells can influence their microenvironment and bi-

directionally communicate with other systems such as the immune system. The nervous system plays a 

fundamental role in regulating immune responses to a range of disease states including cancer. Its dysfunction 

influences the progression of cancer. The role of the immune system in tumor progression is of relevance to the 

nervous system since they can bi-directionally communicate via neurotransmitters and neuropeptides, common 

receptors, and, cytokines. However, cross-talk between these cells is highly complex in nature, and numerous 

variations are possible according to the type of cancer involved. The neuro-immune interaction is essential in 

influencing cancer development and progression. 

1. Introduction

Cancer is the major health related cause of death worldwide due to 

unhealthy lifestyle and other factors (Torre et al., 2015). Although the 

mechanisms of cancer progression have been extensively studied in the 

last decades, these have been predominantly focused on cellular path- 

ways of proto-oncogene, tumor suppressor gene mutations and me- 

chanisms by which immune cells can eliminate cancer cells (Kuol et al., 

2017; Mravec et al., 2008a; Mravec et al., 2008b; Place et al., 2011).  

More recently, the impact of the tumor microenvironment in tumor cell 

invasion has attracted much interest (Place et al., 2011; Quail and 

Joyce, 2013). Multiple cellular and extracellular components within the 

tumor microenvironment, such as, immune cells, endothelial cells, 

mesenchymal stromal cells (fibroblasts and myofibroblasts), and their 

secretory products, exert active functions to modulate gene expression 

patterns of tumor cells which have an impact on their biological be- 

havior (Markwell and Weed, 2015; Liguori et al., 2011; Sun, 2015). 

Invariable crosstalk among these components within the tumor micro- 

environment triggers pro-survival, invasion and metastatic spread of 

tumor cells (Hanahan and Coussens, 2012; Hanahan and Weinberg, 

2011; Joyce and Pollard, 2009; Schmid and Varner, 2010). In addition, 

tumor cells interact with other cells to form organ-like structures that 

drive and promote cancer growth (Mravec et al., 2008a; Place et al., 

2011). The interaction between the tumor microenvironment and the 

complex immune system plays a major role in tumor progression and as 

a result, is of concern in cancer treatment (Mravec et al., 2008a). 

However, it is only in recent years that the role of the neuro-immune 

network has surfaced as a major contributor to cancer progression. The 

mechanisms by which neuro-immune signaling in cancer influences its 

progression are not clear. 

The nervous system plays a fundamental role in regulating immune 

responses to a range of disease states (Mancino et al., 2011). Its dys- 

function influences the progression of disease outcomes including 

cancer cell growth. The role of the nervous system in tumor progression 

is of relevance to the immune system since they can bi-directionally 

communicate via neurotransmitters and neuropeptides, common re- 

ceptors and cytokines (Lang and Bastian, 2007; Grivennikov et al., 

2010). However, the crosstalk between these cells is highly complex in 

nature, and numerous variations are possible according to the type of 

cancer involved (Erin et al., 2015). The interaction of the nervous 

system in modulating immune responses, innervation of lymphoid or- 

gans, affects various neurotransmitters influencing cancer. This review 

presents an overview of the neuro-immune interaction in cancer pro- 

gression: lymphoid organs innervation; neurotransmitters and immune 

ABBREVIATIONS: Ach, acetylcholine; beta2-AR, beta2-adrenergic receptor; CAF, cancer associated fibroblasts; CNS, central nervous system; cAMP, cyclic adenosine monophosphate; DC, 
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nicotinic acetylcholine receptors; PNS, peripheral nervous system; SP, substance P; TAMs, tumor-associated macrophages; TIL, tumor infiltrating lymphocytes; TNF-alpha, tumor necrosis 

factor alpha; VEGF, vascular endothelial growth factor 
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cells in cancer, tumor associated immune cells and the nervous system. 

2. Innervation of lymphoid organs

The link between the nervous and immune systems is via direct 

innervation of lymphoid organs. In particular, sympathetic nora- 

drenergic fibers innervate primary (thymus and bone marrow) and 

secondary (lymph nodes and spleen) lymphoid organs (ThyagaRajan 

and Priyanka, 2012). In lymphoid organs, the immune responses 

against pathogens or tissue damage are altered by the release of neu- 

ropeptides and neurotransmitters such as, neuropeptide Y, substance P 

(SP), norepinephrine and dopamine from nerve endings (ThyagaRajan 

and Priyanka, 2012; Stojanovska et al., 2015). Dysregulation of this 

interaction promotes pathogenesis and progression of many diseases 

including cancer (ThyagaRajan and Priyanka, 2012). The spleen plays 

an important role in response to pathogens or tissue damage; however, 

its response to cancer has been less empathized. In systemic in- 

flammation, the vagal afferents activate the central nervous system 

(CNS) which triggers the efferent via the celiac ganglion and, as a re- 

sult, activates immune cells in the spleen (as reviewed by (Matteoli and 

Boeckxstaens, 2013)). As a consequence, the activation of adrenergic 

fibers innervating the spleen results in the release of norepinephrine 

leading to the activation of T cells secreting acetylcholine. 

The spleen accumulates monocytic and granulocytic precursors that 

directly replenish tumor-associated macrophages (TAMs) and neu- 

trophils, as noted in lung adenocarcinoma (Cortez-Retamozo et al., 

2012; Zhang et al., 2011). Moreover, the cords of the splenic subcapsule 

red pulp contain a reservoir of monocyte subsets (e.g. Ly-6Chigh and Ly- 

6Clow) that are promptly released in the bloodstream following acute 

injury (Swirski et al., 2009). Therefore, it can be speculated that the 

spleen would detect cancer as a pathogen and respond to it in a similar 

manner. However, cancer invades tissues without the spleen influen- 

cing it, in the same way as viruses invade target tissues by inactivating 

immune responses. In fact, stress or central inflammatory stimulation of 

the sympathetic nervous system (SNS) inhibits splenic macrophage 

function, thus, beta-adrenergic mechanisms influence splenic macro- 

phages (Nance and Sanders, 2007). This supports the speculation that 

the spleen's response to pathogens is via catecholamine release which 

acts on beta-adrenergic receptors to inhibit splenic macrophage ac- 

tivity. However, specific mechanisms of this action in cancer are not 

clear. 

Detailed neuro-anatomical description of lymph node (LN) in- 

nervation is scarce (ThyagaRajan and Priyanka, 2012), however, sym- 

pathetic fibers in LNs have been reported (Nance and Sanders, 2007). In 

LNs, immune responses to antigens are initiated (Nance and Sanders, 

2007; Ng and Chalasani, 2010). During antigen detection, immune cells 

(dendritic cells (DCs), T cells, etc.) are recruited into regional LNs 

which activate immune responses against the antigen. The decision 

process within LNs to either induce an active immune response or be 

tolerant is not clear, although in most instances an active immune re- 

sponse is initiated (Buettner and Bode, 2012; Koning and Mebius, 2012; 

Swerdlin et al., 2008). Just like other foreign antigens, cancer cells can 

escape LN surveillance. It is suggested that the lack of LNs innervation 

may be a contributing factor to cancer escaping immune surveillance. 

Thus, information of LN innervation could aid in the understanding of 

the decision process within LNs to induce protective responses and its 

lack of response in cancer initiation. Furthermore, understanding the 

interaction between LN and cancer may aid therapeutic modalities at 

the early stages of disease. 

The SNS regulates bone marrow function (Nance and Sanders, 

2007). Innervation within the bone marrow is also scarce and likely due 

to the fact that there is close contact with surrounding mineralized bone 

which receives sympathetic and sensory innervation (Elenkov et al., 

2000). However, sensory fibers containing SP and calcitonin gene-re- 

lated peptide together with noradrenergic sympathetic fibers and veins 

are distributed throughout the bone marrow and surrounding bone. T
a
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Fig. 1. Schematic diagram highlighting the critical function of the nervous system in modulating immune responses to cancer. ACh released from vagus nerve in macrophages binds to α7 

nicotinic receptors on tissue macrophages and inhibits the release of pro-inflammatory cytokines. In the functional immune response to pathogen invasion or tissue damage these are 

recognized by macrophages within the spleen which triggers secretion of pro-inflammatory cytokines. Stress initiates a cascade of responsive neural pathways in the central nervous 

system, leading to the activation of sympathetic nervous systems and HPA axis. The stress response results in release of catecholamines (principally norepinephrine and epinephrine) and 

glucocorticoids from sympathetic nerve fibers located within organs and the adrenal medulla. Prolonged exposure to catecholamines under chronic stress importantly affects the process 

of tumor development. Glucocorticoids are associated with a decreased immune response, which further enhances tumor progression. Most immune cells and cancer cells express 

adrenergic and cholinergic receptors. Through these receptors the nervous system is able to communicate with cancer cells via the release of neurotransmitters, cytokines and chemokines 

from both ends which eventually influences tumor growth. Ach, acetylcholine; HPA, hypothalamic-pituitary-adrenal; IL, interleukin; NK, natural killer cells; NE, norepinephrine; PNF, 

peripheral nerve fibers; SNF, sympathetic nerve fibers; TNF-alpha, tumor necrosis factor-alpha; Ang1, angiopoietin 1; bFGF, basic fibroblast growth factor. 

Distinguishing between innervated bone and bone marrow is not clear 

(ThyagaRajan and Priyanka, 2012), even though, in rodents bone 

marrow innervation occurs late in fetal life, just prior to hemopoietic 

activity. Understanding innervation of the bone marrow will enhance 

our knowledge of bone marrow cancers including but not limited to, 

lymphoma, leukemia, and myeloma. 

3. Neurotransmitters and immune cells in cancer

Neurotransmitters play an essential role in the modulation of im- 

munity. A number of immune cells such as, T cells, DCs, natural killer 

(NK) cells, microglia and myeloid-derived suppressor cells (MDSCs) 

express cell surface neurotransmitter receptors including substance P 
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(SP), glutamate, gamma-aminobutyric acid (GABA), serotonin, dopa- 

mine, epinephrine, norepinephrine and acetylcholine (Table 1, Fig.1) 

(St-Pierre et al., 2016; Hao et al., 2013; Saussez et al., 2014; Wu et al., 

2015; Liu et al., 2016). Furthermore, studies have shown that various 

cancers express receptors for different neurotransmitters which play an 

essential role in the control of tumor progression (Hao et al., 2013; 

Saussez et al., 2014; Dolma et al., 2016; Stepulak et al., 2009; Banda   

et al., 2014). 

3.1. SUBSTANCE P 

Substance P (SP) is expressed in both the central and peripheral 

nervous systems (PNS) and plays an essential role in the neuroimmune 

system crosstalk. Of the sensory neuropeptides, SP is distributed widely 

and regulates immune functions, including that of B and T cells 

(Esteban et al., 2006) and cytokine secretion by monocytes (Erin et al., 

2015) and macrophages. Binding of SP to its receptor NK1 triggers 

activation of intracellular pathways including cAMP, MEK, ERK1/2, 

mTOR and NF-kB resulting in proinflammatory cytokine production (Di 

Giovangiulio et al., 2015). In addition, SP enhances lymphocyte pro- 

liferation and lymphokine-activated killer cell cytotoxicity, NK cell 

cytotoxicity, augments tumor necrosis factor alpha (TNF-alpha), inter- 

leukin (IL)-10 and IL-12 secretion by macrophages, and, decreases the 

number of tumor-infiltrating MDSCs (Erin et al., 2015). The effects of 

chronic administration of low dose SP to the brain in a murine model of 

metastatic breast cancer co-treated with radiation treatment, increased 

the antigenicity of cancer cells (Erin et al., 2013). Hence, SP through 

neuro-immune modulation can avert an immunosuppressive tumor 

microenvironment and consequently inhibiting metastatic growth. 

3.2. GLUTAMATERGIC, GABAergic AND serotonergic SIGNALING 

Glutamate is the principal excitatory neurotransmitter that reg- 

ulates synaptic and cellular activity in the CNS via binding to its re- 

ceptors including metabotropic glutamate receptors (mGluRs) or iono- 

tropic glutamate receptors (iGluRs). In addition, glutamate also plays a 

fundamental role in the neuroimmune system crosstalk and it mod- 

ulates immune cell functions via the expression of its functional re- 

ceptors on immune cells (Poulopoulou et al., 2005). Furthermore, im- 

mune cells such as T cells, DC, monocytes and macrophages release 

glutamate where they act in both an autocrine and paracrine fashion 

(Ganor and Levite, 2014). Although the role of glutamate and its re- 

ceptors is well-established in neurological disorders and neuroprotec- 

tion, it has become evident that glutamate plays a functional role in 

cancer via regulating immune cells as noted in head and neck, glioma, 

melanoma, gastric, prostate, squamous cell carcinoma, colorectal and 

breast cancers (Saussez et al., 2014; Stepulak et al., 2009; Banda et al., 

2014). For instance, in head and neck cancer patients, elevated levels of 

glutamate increase spontaneous migration of peripheral T cells (Saussez 

et al., 2014). 

GABA is the main inhibitory neurotransmitter in the CNS that exerts 

its physiologic effects in non-neuronal peripheral tissues and organs via 

the activation of ionotropic (GABAA or GABAC) and metabotropic 

(GABAB) receptors (Young and Bordey, 2009). GABA plays a functional 

role in the proliferation, migration and differentiation of cells including 

tumorigenic cells (Jiang et al., 2012). It has been noted that GABA 

mediates its inhibitory effect through GABAA receptor. For instance, 

GABA inhibits hepatocellular carcinoma cell migration through the 

activation of GABAA receptor (Z-a et al., 2012). In addition, adminis- 

tration of GABA agonist Nembutal suppresses tumor metastasis in colon 

cancer (Thaker et al., 2005). However, there are studies demonstrating 

that GABAA receptor enhances metastasis. The activation of GABAA 

receptors upregulates brain metastasis of breast cancer patients (Neman 

et al., 2014). It is speculated that since GABA mediates it functional 

effect on T lymphocytes and DC through the activation of GABA-A (Jin 

et al., 2013), this may explain the inconsistency in findings. 

5-hydroxytryptamine (5-HT), also known as serotonin, is a mono- 

amine neurotransmitter synthesized in the serotonergic neurons in the 

brain and it plays an essential role in the modulation of immune re- 

sponse. 90% of the body's 5-HT is secreted by enterochromaffin cells of 

the gut mucosa. 5-HT regulates a wide range of behavioral, cognitive 

and physiological functions in pathological disease including cancer 

(Shajib and Khan, 2015). In mouse models of melanoma, administration 

of selective serotonin reuptake inhibitors decreases tumor growth via 

enhancing mitogen-induced T cell proliferation, IL-1beta production, 

and by inhibiting IFN-gamma and IL-10 production (Grygier et al., 

2013). Furthermore, in a mouse model of colon cancer allografts, ser- 

otonin regulates macrophages-mediated tumor angiogenesis (Nocito 

et al., 2008). These findings demonstrate the essential role of gluta- 

mate, GABA and serotonin in regulating tumor growth; however, fur- 

ther mechanistic studies are required. 

3.3. DOPAMINERGIC SIGNALING 

Dopamine is an important monoamine neurotransmitter in the CNS, 

however, it also plays a role in immune modulation. Elevated levels of 

dopamine increase spontaneous migration of peripheral T cells in head 

and neck cancer patients (Saussez et al., 2014). Dopamine inhibits cy- 

totoxicity and proliferation of T cells via the activation of dopamine 

receptor 1 (DR1) mediated by intracellular cAMP in lung cancer (Saha 

et al., 2001). Dopamine treatment induces M2 (pro-tumor phenotype) 

shift to M1 (anti-tumor phenotype) of RAW264.7 cells and mouse 

peritoneal macrophage in rat C6 glioma (Qin et al., 2015). Similarly, in 

human blood samples from lung cancer patients (stage I-IV) and mouse 

models using Lewis lung carcinoma and B16 melanoma cell lines, ap- 

plication of dopamine inhibits the effects of MDSC on T cell prolifera- 

tion via the activation of DR1 (Wu et al., 2015), suggesting a possible 

mechanism of inhibition by dopamine. Moreover, inhibition of DR3 

signaling in DCs enhances antigen cross-presentation to CD8 + T cells 

favoring anti-tumor immunity (Figueroa et al., 2017). Dopamine acting 

on DRD4 causes impairment in the endolysosomal system, a block in 

autophagic flux, and eventual cell death in glioblastoma (Dolma et al., 

2016). It has been shown that CD8 + T cells express functional dopa- 

mine receptors DR1-DR5 in both humans and mice, and dopamine plays 

a significant role in migration and homing of naive CD8 + T cells via 

DR3 (Levite, 2016; Watanabe et al., 2006). Moreover, dopamine acti- 

vates resting effector T cells (Teffs) and suppresses regulatory T cells 

(Tregs) (Watanabe et al., 2006). Hence, it can be speculated that do- 

pamine inhibits tumor growth via regulating DC antigen presentation to 

CD8 + T cells. Furthermore, screening cancer patients that present with 

elevated levels of dopamine for DCs and CD8 + T cells could aid in 

delivering an effective targeted therapy. 

3.4. BETA-ADRENERGIC SIGNALING 

SNS activation regulates an array of cancer-related molecular 

pathways via the stimulation of beta-adrenergic signaling and its re- 

ceptors expressed by tumor cells, immune and vascular cells (Cole, 

2013; Cole and Sood, 2012). beta-adrenergic receptors mediate a range 

of catecholamine effects on target cells and immune cells, as well as 

cancer cells, i.e. breast cancer cells (Lee et al., 2010; Chanmee et al., 

2014; Laoui et al., 2011). Several cellular and molecular processes  

(such as inflammation, angiogenesis, epithelial mesenchymal transition 

and apoptosis) mediate beta-adrenergic influences on tumor progres- 

sion (Cole and Sood, 2012) and recruitment of macrophages into pri- 

mary tumors (Entschladen et al., 2004; Sloan et al., 2010). Moreover, 

beta-adrenergic signaling influences the secretion of pro-inflammatory 

cytokines (IL-1, IL-6 and IL-8) by immune cells (Entschladen et al., 

2004; Nilsson et al., 2007; Cole et al., 2010; Shahzad et al., 2010), 

upregulation of vascular endothelial growth factor (VEGF) resulting in 

increased angiogenesis (Yang et al., 2006), matrix metalloproteinase 

(MMP) related increase of tissue invasion (Yang et al., 2006; Landen Jr. 
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et al., 2007), tumor cell assembly and motility (Palm et al., 2006; Lang  

et al., 2004). Furthermore, beta-adrenergic signaling suppresses CD8 T 

cell and NK cell responses (Inbar et al., 2011) and inhibits the expres- 

sion of type I interferons (Sloan et al., 2010; Collado-Hidalgo et al., 

2006). In fact, in murine metastatic mammary adenocarcinoma, beta- 

adrenergic receptor agonist suppressed NK cell activity resulting in 

increased lung metastasis (Erin et al., 2004). In addition, either stress or 

pharmacological beta-adrenergic stimulation results in increased mac- 

rophage infiltration and cancer metastasis which can be prevented by 

injection of a beta-adrenergic antagonist, propranolol (Sloan et al., 

2010). Furthermore, the use of beta2-adrenergic agonist in experi- 

mental animals reverse muscle wasting (cachexia) associated with 

cancer (Busquets et al., 2004). Catecholamines can induce apoptosis of 

lymphocytes, alter the distribution of NK cells and suppress NK cell 

activity, which are all required for anti-tumor immunity (Shi et al., 

2013), leading to tumor cell escape mechanisms. Thus, persistent re- 

lease of neurotransmitters from nerve terminals may promote tumor 

growth and metastasis via modulation of the immune system. 

3.5. Cholinergic SIGNALING 

Modulation of the immune system by the sympathetic nervous 

system (SNS) has been extensively studied (Matteoli and Boeckxstaens, 

2013; Bellinger et al., 2008; Forsgren et al., 2009). However, the role of 

the parasympathetic nervous system has gained attention only recently 

(Tracey, 2002). Inflammatory mediators can activate sensory nerves 

that send signals regarding inflammation to the CNS, which in turn 

leads to the release of neuromediators modulating local inflammation 

and influencing immune cells (Tracey, 2009). Consequently, the ner- 

vous system can regulate immune responses in peripheral tissues and 

restore local immune homeostasis (Huston et al., 2006). Since in- 

flammatory signals are important for tumor progression in both the 

early and late stages, the anti-inflammatory role of the vagus nerve may 

play an important role in tumorigenesis (Gidron et al., 2005). 

It has been established that acetylcholine (ACh) acting on α7 ni- 
cotinic receptors (nAChRs) modulates splenic macrophages and inhibits 

TNF-alpha production in the spleen (Wang et al., 2003; Rosas-Ballina 

et al., 2011). In addition, vagus nerve activation stimulates ACh 

synthesis by splenic T lymphocytes leading to inhibition of cytokine 

production (Rosas-Ballina et al., 2011). In lipopolysaccharide-induced 

inflammation in C56BL/6J mice, activation of α7 and α9 nAChRs ex- 

pressed by bone marrow cells stimulates secretion of anti-inflammatory 

cytokines (IL-10 and transforming growth factor beta (TGF)-beta) and 

inhibits production of pro-inflammatory cytokines (TNF-alpha, IL-1beta 

and IL-12) (St-Pierre et al., 2016). Similarly, secretion of TNF-alpha, IL- 

1beta, IL-6 and IL-18 induced by endotoxin was significantly inhibited 

by ACh and nicotine in human macrophage cultures (Borovikova et al., 

2000). ACh receptors including both muscarinic (mAChRs) and nAChRs 

are functionally expressed by cancer cells (Song and Spindel, 2008; 

Paleari et al., 2008; Song et al., 2007). Moreover, cancer cells synthe- 

size and secrete ACh (Song et al., 2007). In a mouse bearing B16 mel- 

anoma cells, administration of nicotine inhibits the release of cytokines 

and  cell  killing  by NK cells  via  nAChR  β2  (Hao  et al., 2013). Over- 

expression of α7 nAChRs by cancer cells (i.e. human colon cancer cell 
line HT-29) promotes cancer angiogenesis (Wong et al., 2007; 

Pettersson et al., 2009), cell proliferation and metastasis (Davis et al., 

2009; Chen et al., 2008; Wei et al., 2009; Chen et al., 2011; Lee et al., 

2011). α9 nAChRs are reported to play a crucial role in breast cancer 

development; the correlation between expression levels of α9 nAChR 
mRNA and disease outcome was found in breast cancer patients (Lee 
et al., 2010). On the other hand, it has been demonstrated that mAChRs 

antagonists inhibit small cell lung carcinoma growth both in vitro and 

in vivo via inhibiting MAPK pathway (Song et al., 2007). In BALB/c 

mice bearing LMM3 mammary adenocarcinoma cells, tumor macro- 

phages express M1 and M2 mAChRs which trigger arginine metabolic 

pathway  leading  to  tumor  angiogenesis  (de  la  Torre  et  al.,  2005). 

Understanding the principal mechanisms of cholinergic signaling in 

regulating the immune system may highlight the significance of ACh 

inhibitors in cancer therapy. 

4. Tumor associated immune cells and the nervous system

The role of nervous system in modulating tumor-associated immune 

(TAI) cells is not well understood. However, various TAI cells within 

tumor microenvironment play essential role in promoting tumor 

growth. It could be speculated that nervous system modulates TAI cells 

in its original form as normal immune cells. 

4.1. TUMOR-ASSOCIATED MACROPHAGES 

Tumor associated macrophages (TAMs) play a role in beta-adre- 

nergic signaling pathways, by accelerating angiogenesis, chemokine 

secretion to attract immune and tumor cells, secretion of pro-in- 

flammatory cytokines (IL-1, IL-6, IL-8, and TNF-alpha) and escape of 

anti-tumor responses (DeNardo et al., 2011; DeNardo and Coussens, 

2007; Mantovani et al., 2008). Hence, TAMs are sensitive to sympa- 

thetic signaling and raise the likelihood that stress-response pathways 

influence macrophage infiltration within the tumor microenvironment 

and, as a result, enhance metastasis. In the early or regression stages of 

tumors, TAMs, in particular, M1 macrophages (pro-inflammatory; re- 

leasing IL-1β, IL-6, IL-12, TNF-alpha, monocyte chemoattractant pro- 

tein-1 (MCP-1)) inhibit angiogenesis and activate an anti-tumor im- 

mune response. In contrast, TAMs shift to a M2 phenotype (anti- 

inflammatory, releasing IL-1 receptor antagonist, TGF-beta, IL-4, IL-10, 

IL-13) which enhance tumor angiogenesis in advanced tumors (Müller 
et al., 2001; Kim et al., 2012; Lewis and Pollard, 2006; Dirkx et al., 
2006; Roland et al., 2009), tumor growth (Lewis and Pollard, 2006), 

invasion, migration (Lin et al.,  2001),  metastatic  spread  (Oosterling 

et al., 2005) and possess immunosuppressive activities which are 

regulated by neuromediators (Ley et al., 2010). In breast cancer, in- 

filtrating TAMs correlate with higher tumor and vascular grade (Laoui 

et al., 2011) and increased necrosis (Campbell et al., 2011) leading to 

poor prognosis (Laoui et al., 2011; DeNardo et al., 2011; Mukhtar et al., 

2011). In fact, eliminating macrophages from the tumor site, either 

genetically or therapeutically, results in reduced tumor progression in 

breast cancer (Laoui et al., 2011). However, detailed understanding of 

the neuro-immune interaction influencing TAMs in human breast 

cancer needs further elucidation. 

4.2. CANCER-ASSOCIATED fiBROBLASTS 

The role of nervous system in modulating cancer associated fibro- 

blasts (CAFs) remains scare. To understand how nervous system might 

modulate CAFs, studies need to understand the origin of CAFs. It is 

believe that CAFs originated from bone marrow-derived mesenchymal 

stem cells, fibroblasts or cancer cells that undergo endothelial - or 

epithelial -mesenchymal transition (Buchsbaum and SY, 2016). There- 

fore, it is possible that nervous system may regulate CAFs via mod- 

ulating bone marrow-derived mesenchymal stem cells or fibroblasts. 

CAFs are the key constituent cells within the tumor microenvironment 

which interact with cancer cells promoting tumor growth and metas- 

tasis (Smith and Kang, 2013). For example, in the tumor micro- 

environment of 4T1 metastatic breast cancer model, in vivo abolition of 

CAFs causes Th2 shift to Th1 polarization which is characterized by 

increased expression of IL-2 and IL-17, suppressed TAMs, T regulatory 

cells, MDSCs and decreased angiogenesis (Liao et al., 2009). In addi- 

tion, CAFs enhanced the aggressive phenotype of T47D, MCF-7 and 

MDA-MB-231 breast cancer cells via epithelial mesenchymal transition 

induced through paracrine TGF-beta signaling (Yu et al., 2014). Simi- 

larly, in human sample of squamous cell carcinoma, CAFs mediate 

angiogenesis and inflammation via employing macrophages and sti- 

mulating angiogenesis, consequently enhancing tumor growth (Erez 
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et al., 2010). These findings demonstrate significant importance of  

CAFs in mediating tumor progression. Understanding the origin of CAFs 

could lead to better understanding of how nervous system modulates it, 

resulting in better therapies design. 

4.3. Tumor-infiLTRATING lymphocytes 

Nervous system plays essential role in the modulation of T cell. T 

cell expressed adrenergic and cholinergic receptors creating a com- 

munication loop with the nervous system. Tumor infiltrating lympho- 

cytes (TILs) particularly CD8 + T cells are associated with positive 

prognostic relevance in various tumors. For example, in a prospective- 

retrospective study of a primary triple-negative breast cancer demon- 

strate elevated levels of TILs present at diagnosis were considerably 

associated with reduced distant recurrence rates (Loi et al., 2014; Ali   

et al., 2014). Similar findings are reported in patients with oro- and 

hypopharyngeal carcinoma showing increased expression of in- 

traepithelial CD8 + TIL in metastatic tumors to be associated with fa- 

vorable outcome (Pretscher et al., 2009). In prostate cancer, infiltration 

of CD4 + T cells enhances LNCaP, CWR22RV1 and C4-2 cell invasion 

and metastasis via fibroblast growth factor 11 → miRNA-541 → an- 

drogen receptor → matrix metalloproteinase 9 signaling (Hu et al., 

2015). In addition to the presence of T lymphocytes at the tumor site, B 

lymphocyte infiltration also plays a role within the tumor micro- 

environment. Infiltration of B cell subset called tumor evoked Bregs (B 

regulatory) plays a crucial role in lung metastasis by converting CD4 + 

T cell to Foxp3 + Treg cells through induction of TGF-beta-dependent 

which promote immune escape in the 4T1 tumor-bearing mouse model 

of breast cancer (Olkhanud et al., 2011). Similarly, B cell infiltration 

facilitates the switch of M1 macrophages to a pro-tumoral M2 pheno- 

type via IL-10 secretion (Sica et al., 2010). On the contrary, elevated 

expression of peritumoral B-cells in lymph node metastases in patients 

with oro- and hypopharyngeal carcinoma is associated with favorable 

outcome (Pretscher et al., 2009). Correspondingly, tumor-infiltrating B 

cells correlate with improved survival outcome in the immunoreactive 

ovarian cancer subtype and HER2-enriched and basal-like breast cancer 

subtypes (Iglesia et al., 2014). Although B cells normally do play active 

roles in anti-tumor immunity; these studies have demonstrated the 

capacity of the tumor microenvironment to modify immune function to 

promote tumor progression. 

4.4. Eosinophils 

Eosinophils release an array of cytokines, including IL-1beta, TNF- 

alpha, and interferon gamma and eosinophil derived neurotoxin that 

are potentially toxic to nerve cells. Eosinophils localize to nerves (eo- 

sinophil-nerve interaction) and are associated with enhanced nerve 

activity (Morgan et al., 2004). In addition, eosinophils infiltrate cancer 

cells  leading to either favorable or unfavorable  prognosis (Ishibashi  

et al., 2006). For instance, in Hodgkin's lymphoma, eosinophils in- 

filtration correlate with an unfavorable  prognosis  (von  Wasielewski 

et al., 2000) whereas in colon cancer the presence of eosinophils leads 

to a favorable prognosis (Sakkal et al., 2016; Harbaum et al., 2015). 

However, the role of eosinophils and nerve interactions in cancer ae- 

tiology is not clear. The presence of eosinophils in necrotic regions of 

the tumor suggests that they may have anti-tumor effects associated 

with a favorable prognosis (Mattes et al., 2003; Minton, 2015). Con- 

versely, it has been noted that eosinophils may contribute to tumor 

invasion via activation of  gelatinase  (Harbaum  et  al.,  2015;  Mattes 

et al., 2003; Cormier et al., 2006; Davis and Rothenberg, 2014). Fur- 

thermore, eosinophils at the tumor site can influence angiogenesis via 

VEGF secretion (Stockmann et al., 2014). Moreover, TNF-alpha-stimu- 

lated eosinophils release pro-angiogenic factors such as, basic fibroblast 

growth factor, IL-6, IL-8, platelet-derived growth factor and MMP-9 

(Cormier et al., 2006). However, pro-angiogenic factors such as IL-15 

and TNF-alpha-stimulated eosinophils have only been noted, and theirs 

role in tumors is not clear (Schmid and Varner, 2010). Secretion of 

eosinophilic granular proteins has been noted in breast cancer 

(Szalayova et al., 2016) and is associated with increased survival. 

However, Amini and colleagues reported lack of eosinophils in breast 

cancer (Amini et al., 2007) which warrants further research into eosi- 

nophil infiltration in breast cancer. 

4.5. MUCOSAL-ASSOCIATED INVARIANT T cells 

The role of nervous system in regulating mucosal associated in- 

variant (MAIT) cells is not clear. However, since MAIT cells are subset 

of T cells, it may be in a similar manner of how T cells get modulated, 

that MAIT cells may be regulated. MAIT cells have anti-microbial spe- 

cificity (Howson et al., 2015; Serriari et al., 2014; Ussher et al., 2014)  

and are present in a number of cancers (Peterfalvi et al., 2008). Their 

presence correlates with the level of pro-inflammatory cytokines within 

the tumor microenvironment (Peterfalvi et al., 2008), suggesting they 

have anti-cancer functions. However, enhanced expression of tumor- 

associated MAIT cells associates with poor prognosis in colorectal 

cancer contradicting norm that MAIT cells may have anti-tumor effects 

(Zabijak et al., 2015). In fact, tumor-associated MALT cells are in- 

creased while circulating CD8 + MAIT cells decreased in advanced 

colorectal cancer patients (Ling et al., 2016). Co-culture of HCT116  

cells with MAIT cells stimulated with phorbol 12-myristate 13-acetate 

results in enhanced TNF-alpha, IFN-gamma and IL-17 expression and 

reduced HCT116 cells feasibility, suggesting MAIT cells may contribute 

to colorectal cancer immunosurveilance (Ling et al., 2016). Whether 

this effects of MAIT cells is cancer type specific, warrant further re- 

search. Thus, considering the key role of MAIT cells in response to in- 

fections, understanding their potential in cancer would aid in a better 

understanding of the cancer microenvironment. 

5. Conclusion

The release of neurotransmitters by sympathetic nerve fibers as a 

result of chronic stress assists the tumor microenvironment to promote 

tumor growth and progression via the expression of cytokines and 

tumor-associated immune cells. Moreover, nervous system regulation of 

metastasis emphasizes the significance of determining metastatic tumor 

features in a physiological context. To date, most studies in determining 

the role of the nervous system in the modulation of cancer cell devel- 

opment and metastasis either use cell lines or animal models. Despite 

the increasing interest in the role the nervous system plays in cancer 

development and progression, the knowledge in this area is scarce. 

Limited studies are available from cancer patients at different stages of 

disease. Understanding molecular mechanisms by which the nervous 

system modulates tumor growth and progression holds a great prospect. 

Revealing the interplay between the nervous and immune systems in 

cancer may open new avenues for understanding mechanisms of tumor 

development and progression, identification of new biomarkers for 

cancer diagnosis and prognosis, and defining novel targets for ther- 

apeutic interventions. 
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Aim: Expression of PD-1 on T/B cells regulates peripheral tolerance and autoimmunity. Binding of PD-1 to 

its ligand, PD-L1, leads to protection against self-reactivity. In contrary, tumor cells have evolved immune 

escape mechanisms whereby overexpression of PD-L1 induces anergy and/or apoptosis of PD-1 positive 

T cells by interfering with T cell receptor signal transduction. PD-L1 and PD-1 blockade using antibodies 

are in human clinical trials as an alternative cancer treatment modality. Areas covered: We describe the 

role of PD-1/PD-L1 in disease in the context of autoimmunity, neurological disorders, stroke and cancer. 

Conclusion: For immunotherapy/vaccines to be successful, the expression of PD-L1/PD-1 on immune cells 

should be considered, and the combination of checkpoint inhibitors and vaccines may pave the way for 

successful outcomes to disease. 
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The immune system is complex, yet so simple in its ability to induce nonspecific (innate) immunity and specific 

immune responses against pathogens, including, bacteria, viruses and parasites. However, for cancer prevention, 

the elimination or inactivation of mutated cells is debated on whether this is a prime function of the immune 

system. Hence, the concept of ‘immune surveillance’ was introduced 50 years ago by Thomas and Burnet [1–4]. 

Their theory concurred with studies by Doherty and Zinkernagel, where they demonstrated that the immune 

system plays an essential role in immune surveillance by recognizing small peptide epitopes in conjunction with 

the MHC-I presented on the surface of virus infected cells [5]. Consequently, it was shown by others that tumor 

cells also expressed MHC-I and presented short tumor-associated peptides to immune cells [6]. However, tumor 

cells can evade host’s immune surveillance using a number of protective mechanisms, including downregulation 

of MHC-I molecules, secretion of anti-inflammatory cytokines, in other words, TGF-β and IL-10, secretion 

of immunosuppressive factors, VEGF, upregulation of PD-L1 and downregulation of co-stimulatory molecules 

thereby preventing activation of T cells, resulting in cancer invasion. 

PD-L1 (also known as CD274 or B7-homolog 1 [B7-H1]) is a transmembrane protein involved in the immune 

system suppression. The expression of PD-L1 on cells, including lymphoid and non-lymphoid tissues, antigen- 

presenting cells (APC), dendritic cells (DCs), macrophages, activated monocytes, natural killer (NK) cells, T 

cells, B cells, epithelial cells, vascular endothelial cells, glial cells and tumor cells is upregulated by IFN-γ [7]. In 

addition, PD-L2 (also known as, CD273, PDCD1LG2, B7-DC), is predominantly expressed on DCs and some 

macrophages [8,9]. On the other hand, activated immune cells such as, natural killer T (NKT) cells, myeloid cells, 

B cells and T cells, express the ligand, programmed death 1 (PD-1; CD279), which plays a significant function  

in immune tolerance [10]. The binding of T cells expressing PD-1 and tumor cells expressing PD-L1 initiates an 

array of inhibitory signals resulting in reduced function and/or apoptosis of T cells [8,11] providing a mechanism 

for tumor cell evasion of host’s immune surveillance [12–14]. In fact, cancer cells, in particular renal and breast cells 

express high levels of PD-L1 leading to poor patient survival [15,16]. 

PD-1 and PD-L1 inhibitory signaling is an essential mechanism behind immune regulation of disease states, such 

as autoimmunity, cancer and neurodegenerative diseases (Figure 1). In fact, PD-1 deficiency results in spontaneous 

autoimmunity in murine models of Type 1 diabetes and systemic lupus erythematosus [14,17–25]. Furthermore, 

upregulation of PD-L1 by cancer cells results in cancer invasion and correlates with poor prognostic outcomes 

in breast, gastric, meningioma, non-small-cell lung carcinoma (NSCLC) and soft-tissue sarcoma patients [9,26–29]. 
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Figure 1. PD-1/PD-L1 interaction in disease. T cell activation requires antigen recognition, followed by extra support from the 
co-stimulatory signal that determines whether the T cell will be switched on or off in response to the antigenic peptide. Cancer cells can 
express high levels of PD-L1, which by binding to PD-1 expressed by T cells initiates an inhibitory signaling network that switches off 
activated T cells and results in T cell suppression (designated as red line in T cell). The interaction between T cells and dendritic cells also 

leads to T cell suppression. On the other hand, PD-1/PD-L1 interaction has protective effects in stroke and autoimmunity diseases such as 
multiple sclerosis and rheumatoid arthritis. DC: Dendritic cell; MHC: Major histocompatibility complex; MS: Multiple sclerosis; 
RA: Rheumatoid arthritis; TCR: T cell receptor. 

Hence, overexpression of PD-L1 by tumor cells suppresses the host immune response by interfering with T cell 

receptor signal transduction resulting in cytotoxic T cells inhibition [30]. As a result, several anticancer drugs have 

been developed to block PD-1 or its major ligand PD-L1. Here we present an overview of the effects of PD-1/PD-L1 

interaction in disease states. 

Association between PD-1/PD-L1 & disease 

Autoimmunity 

The role of PD-1/PD-L1 in autoimmunity was demonstrated in PD-1 knockout mice where breakdown of 

peripheral tolerance resulted in negative regulation of lymphocyte activation leading to autoimmune features, 

depending on the genetic background [31]. PD-1 knockout mice (C57BL/6 background) develop lupus-like 

IgG3 deposition glomerulonephritis and destructive arthritis [23]; mutation of H-2Ld of H-2d/b background 
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mice results in graft versus host like symptoms. Conversely, PD-1 knockout mice (BALB/c background) develop 

autoimmune IgG antibody-mediated cardiomyopathy and sudden death [24]. PD-1/PD-L1 signaling is important in 

the pathogenesis of autoimmune diseases and understanding their mechanism of action is crucial in the prevention 

and/or development of vaccines. It is possible that a combination of vaccines together with methods to increase 

the expression of PD-1 or PD-L1 could aid in improved therapeutics against autoimmune diseases. 

Autoimmune diabetes 

Treatment with anti-PD-1 or anti-PD-L1 antibody in nonobese diabetic (NOD) mice precipitated diabetes suggest 

that PD-1/PD-L1 plays a crucial role in regulating autoimmune diabetes [17]. Upregulation of PD-L1 on pancreatic 

beta cells in NOD mice significantly decreased insulitis and disease onset [32]. NOD/PD-1 knockout mice enhance 

CD4+ T-helper (Th)-1 cell infiltration within islet cells, increase chemokine receptor CXCR3 expression, enhance 

destructive insulitis and enhance the onset of diabetes [33,34]. Hence, altered PD-1/PD-L1 signaling associates with 

diabetes in NOD mice; PD-1 regulates autoimmunity by suppressing T cell proliferation and infiltration in the 

pancreas limiting diabetes. Recently, in a Japanese cohort of autoimmune diabetic patients (Type 1A), a significant 

decrease in PD-1 expression was noted on CD4+ T cells compared with Type 1 (fulminant Type 1), Type 2 diabetic 

or healthy control subjects [35]. Thus, decreased expression of PD-1 on CD4+ T cells contributes to Type 1A 

autoimmune diabetes via T cell activation. However, the mechanism of action is not clear. 

Multiple sclerosis 

The interaction between PD-1 on activated T cells and PD-L1 suppresses T cell responses in the central nervous 

system (CNS). Within the brain, PD-L1 is upregulated on endothelial cells and PD-1, PD-L1 and PD-L2 are 

expressed on autoimmune T cells [36]. In an animal model of multiple sclerosis (MS), known as, experimental 

autoimmune encephalomyelitis (EAE), increased PD-L1 and PD-1 expression (but not PD-L2) is evident within 

the CNS [25]. PD-1 inhibition results in enhanced level of autoimmune T cells and antibodies resulting in 

accelerated EAE symptoms [25]. Indeed, EAE symptoms in PD-1 and PD-L1 knockout mice are more severe 

with higher proinflammatory Th-1 cytokines (IL-6, IL-17, TNF-α and IFN-γ) compared with PD-L2 knockout 

or control mice [37]. Estrogen stimulates PD-1 expression on T cells and APCs [10]. In fact, estrogen suppresses 

EAE through enhanced PD-1 expression on regulatory T cells (Treg) and decreased secretion of IL-17 [38]. Hence, 

PD-1/PD-L1 signaling plays an essential part in EAE progression. PD-1 expression is enhanced on antimyelin 

basic protein CD4+ and CD8+ T cells in stable MS patients compared with T cells from acute remitting relapsing 

disease [39]. Interestingly, in MS lesions PD-L1 is elevated, however, PD-1 is not expressed by CD8+ T cells in such 

lesions, and is therefore insensitive to PD-L1 interaction. Strategies for enhancing the expression of PD-1 on CD8+ 
T cells is of interest, given that its ligand, PD-L1 is already increased on target organs. As the PD-1/PD-L1 signaling 

is important in MS pathogenesis, therapeutic strategies blocking PD-1/PD-L1 pathway show great potential to be 

developed against MS. 

Inflammatory bowel disease 

In mouse models of chronic colitis and in humans with inflammatory bowel disease, PD-1 is highly expressed on 

T cells and PD-L1 expression is elevated on macrophages, DCs, T cells, B cells and in inflamed colon tissues [40]. 

Injection of anti-PD-L1 antibody but not anti-PD-L2 antibody, reduces Th1 CD4+ T cells (IFN-γ and TNF-α) 

but not Th2 CD4+ (IL-4, IL-10 producing) T cells in inflamed tissues, suggesting that PD-1/PD-L1 may be 

involved in inflammatory bowel disease [40]. Inactivation of PD-1/PD-L1 signaling pathway by either transfer 

of PD-1 knockout T cells or anti-PD-L1 antibody induces a substantial increase of CD8+  T cells producing  

high Th1 cytokines [41]. Hence, inactivation of PD-1/PD-L1 interaction disrupts CD8+ T cell tolerance to self- 
intestinal antigen resulting in intestinal autoimmunity. In addition, PD-L1 knockout mice are highly susceptible to 

trinitrobenzenesulfonic acid or dextran sulfate sodium induced intestinal injury [42]. This results in high morbidity 

and mortality, which are associated with severe pathological features including overgrowth of commensal bacteria 

and loss of epithelial integrity. Expression of PD-L1 reduces intestinal inflammation, with low TNF-α and high 

IL-22 cytokines from CD11c+CD11b+ lamina propria cells [42]. In addition, injection of adenovirus expressing 
Fc-PD-L1 in dextran sulfate sodium-treated mice reduces colitis. Recently, it was noted that APCs from intestinal 

tissues of Crohn’s disease patients do not express PD-L1, although it is expressed on APCs from ulcerative colitis 

patients [43]. These findings suggest that in Crohn’s disease intestinal antigen uptake by APCs is presented without 

PD-L1, hence, affecting tolerogenic signaling which might contribute to disease initiation. 
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Rheumatoid arthritis 

It has been proposed that PD-1/PD-L1 pathway plays a function in the pathogenesis of rheumatoid arthritis 

(RA). In RA patients, overexpression of both synovial fluid and plasma soluble PD-1 is significantly correlated 

with joint counts and autoantibody production, suggesting a possible role in the pathogenesis [44]. Soluble PD-1 

is induced by IFN-γ, IL-17A and TNF-α [45]. Similarly, PD-1 expressed on synovial fluid-derived CD4+ T cells 

is elevated compared with CD4+ T cells from peripheral blood of RA patients [46]. Moreover, PD-L1 protein 

expression is elevated on synovial fluid myeloid DCs compared with peripheral blood myeloid DCs and correlates 

with T cell hyporesponsiveness. Furthermore, stimulation of IL-7 and PD-1 blockade significantly enhances T 

cell proliferation [46]. In addition, PD-1/PD-L1 signaling is overexpressed in macrophages and synovial T cells 

in RA patients as compared with controls [47]. Especially, level of soluble PD-1 expression significantly correlates 

with TNF-α level in RA patient’s synovial fluid. PD-1 (−/−) mice demonstrated enhanced occurrence and greater 

severity of collagen-induced arthritis which correlates with elevated T cell proliferation and enhanced secretion of 

cytokines (IFN-γ and IL-17) in response to type II collagen [48]. These findings provide evidence that PD-1/PD-L1 

pathway plays a role in the pathogenesis of RA warranting further studies elucidating possible mechanisms. 

Neurological disorders 

PD-1/PD-L1 pathway may play a role in immune regulation of neurological disorders, including ischemic stroke, 

MS and Alzheimer’s disease [49,50]. The immunity against CNS infection, neurodegeneration or injury involves 

infiltration of immune cells and glial cells [50]. A plethora of neurochemical mediators and cascades of signal 

transduction molecules, including inhibitory signaling via PD-1/PD-L1 pathway regulate immune cells in the 

CNS as the mechanism of avoiding inflammatory destruction to the compromised brain [50]. In Alzheimer’s disease 

patients and in patients with mild cognitive impairment, the expression of PD-1 on CD4+ T cells and expression 

of PD-L1 on CD14+ macrophages/monocytes are decreased [51]. Impairment in PD-1/PD-L1 signaling correlates 

with decreased IL-10 secretion [49]. IL-10, an anti-inflammatory cytokine, is known to ameliorate Alzheimer’s 

disease pathology in animal models [49,52]. However, more studies are essential to elaborate the molecular and 

cellular mechanisms of PD-1/PD-L1 interaction in Alzheimer’s disease and their influence on immune cell in the 

CNS which may aid in the design of improved immunotherapeutics against Alzheimer’s disease. 

Stroke 

The PD-1/PD-L pathway plays a role in poststroke inflammation via negative regulation of cell–cell interaction [53]. 

Interestingly, PD-L1 or PD-L2 expression on B cells prevents the activation of effector T cells, microglia or 

macrophages, thus, reducing ischemic brain inflammation [50]. In addition, administration of Tregs isolated from 

PD-L1 deficient mice or Tregs pretreated with anti-PD-L1 antibodies failed to inhibit MMP-9 secretion by 

neutrophils in an acute phase after stroke [53]. This clearly demonstrates that one possible mechanism by which 

PD-L1 serves as neuroprotective factor is through mediating the suppressive effect of Tregs on neutrophil-acquired 

MMP-9. Moreover, the experimental model of stroke shows significantly elevated expression of PD-L1 and PD-L2 

on B cells from CNS, blood and spleen, 4 days post-transient middle cerebral artery occlusion [54]. In contrast, 

PD-L1 or PD-L2 knockout mice play an adverse role in stroke outcomes and exacerbate poststroke inflammation. 

It has been suggested that PD-1 exhibits protective effects and inhibits inflammatory responses by other effector 

immune cells via the expression of PD-1 on B cells. However, the detrimental effects of PD-L1 may depend on 

the prevention of CD8+ CD122+ suppressor T cell migration from the spleen into the ischemic brain [18,39,55–61]. 
Thus, understanding the molecular mechanisms of PD-1/PD-L1 signaling in the ischemic brain could lead to 

better treatment options. 

Role of PD-1/PD-L1 in cancer 

Immunity against cancer cells and their eradication is dependent on the induction of CD8+ T cells and their 

differentiation into cytolytic cells which relies on two signals from the APCs. One signal is produced by the 

interaction of the antigenic peptide (from the tumor) presented on the MHC to T cells [62]. The other are the 

costimulatory signals, B7 (B7–1 [CD80] and B7–2 [CD86]) on APCs which bind to CD28 (CD152 or CTLA-4) 

on T cells [63,64]. Cancer cells, however, can escape host’s immune response which in many cases directly involves 

these two signals. Such evasion mechanisms include reduced (or no) expression of costimulatory molecules (CD80, 

CD86), adhesion molecules or Fas ligand on cancer cells, downregulation of MHC class I expression and antigen 

processing defects [65–67]. Furthermore, it has been demonstrated recently that not only can PD-L1 protect cancer 
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cells from a direct attack of cytotoxic T cells but also plays a significant role in overcoming type I mediated 

cytotoxicity [68]. In addition, cancer cells have additional escape mechanisms, one of which is by expressing PD-L1 

and/or PD-L2 on their surface, which upon binding to PD-1 expressed by activated CD8+ T cells leads to their 

anergy and/or apoptosis [69]. More recently, Aranza et al., 2017 have demonstrated comprehensive review on PD-1 

signal transduction pathways involved in T cell activation (see [30] for detailed information on T cell activation). 

Interestingly, PD-L1 serves as an antiapoptotic factor on cancer cells, leading to resistance of lysis by CD8+ T cells as 

well as apoptosis induced by drugs [70]. Though, PD-1 signaling provides a protective outcome for autoimmunity, 

tumorigenic cells have exploited it to escape immune-mediated toxicity [71]. Furthermore, PD-1 expression on 

tumor-infiltrating lymphocytes (TILs) correlates with aggressive features [71] and is correlated with poor patient 

outcome. 

There has been an upsurge in the number of studies demonstrating that tumor cells express PD-L1 which 

inhibits the immune microenvironment, as shown in but not limited to, head and neck squamous cell, lung, 

breast, melanoma and endometrium cancers. In many malignancies including melanoma, the expression of PD-L1 

is associated with the presence of TILs and IFN-γ expression. It is imperative to highlight that PD-L1 expression 

occurs along a spectrum of heterogeneous within tumors as demonstrated in melanoma [68,72,73]. Similarly, there  

is significant upregulation of PD-L1 in advanced NSCLC patients compared with healthy individuals [74]. In 

breast cancer for example, PD-L1 is highly expressed on primary cancer cells which associates with estrogen- 

and progesterone-negative expression status and histological grade III type, and with highly proliferative Ki-67- 

expressing tumor cells [71], large tumors and correlates with poor prognosis [9]. Triple-negative breast cancers 

highly express PD-L1 suggesting that such cancer types may benefit from immune checkpoint therapy [75]. In 

addition, PD-L1 is highly expressed on blood circulating metastatic cells which could be used as a marker in 

patients undergoing immune checkpoint blockade [76]. Further, transgenic expression of PD-L1 in mouse tumor 

cell lines such as mastocytoma, melanoma and myeloma/plasmocytomas aids in their escape from the host T cells 

and markedly enhances their invasiveness in vivo. These studies demonstrate that the expression of PD-L1 is an 

independent negative prognostic factor in cancer. 

Conversely, other studies indicate that the expression of PD-L1 associates with good disease outcome. PD-  

L1 expression in primary breast and lung cancer tissues is linked to increased TILs which associates with longer 

recurrence-free survival [77–79]. Likewise, NSCLC patients with overexpression of PD-L1 have longer overall survival 

that is independent of age, stage and histology. Moreover in melanoma, melanocytic lesions co-localize with PD-L1 

and TILs leading to better prognosis [80]. In fact PD-L1-positive metastatic melanoma has delayed progression 

compared with PD-L1 negative metastatic melanomas patients [80]. These findings imply that PD-1/PD-L1 

expression holds better prognosis value when co-expressed with TILs. 

In cancer, it is still not clear whether PD-L1 expression leads to better or worse prognosis. The role of PD-L2 in 

cancer has not been elucidated. However, it is known that tumor cells can stimulate PD-L1 expression via multiple 

oncogenic signaling pathways such NF-kB, MAPK, mTOR, MEK/ERK/STAT1, PI3K and JAK/STAT 

mediated by IFN-γ produced by infiltrating immune cells [80–85] (Figure 2). For instance, blockade of the 

MyD88/TRAF6 or MEK/ERK pathway inhibits PD-L1 expression induced by toll-like receptor ligands and 

IFN-γ in plasma cells from a myeloma patient [83]. In addition, PTEN/PI3K signaling is increased in MDA-MB-

468 breast cancer cell line; PI3K inhibition with mTOR inhibitor rapamycin and AKT inhibitor MK-2206 

resulted in decreased PD-L1 expression [86]. The oncogenic signalings activated and the tumor type may influence 

these mechanisms. 

These findings demonstrated the importance of PD-L1 expression in cancer; hence the detection methods 

of PD-L1 within or around the tumor need precision. PD-L1 expression undergoes modification in the tumor 

microenvironment, making immunohistochemical detection cautionary. For instance, VEGF has been reported 

to downregulate PD-L1 expression whereas TNF-α and IFN-γ upregulate PD-L1 expression in tumor [81,87,88]. 

There are no precise criteria to define PD-L1 positivity by immunohistochemical and misinterpretation may arise 

due to heterogeneous expression within or between tumor lesions. Noninvasive in vivo imaging with radiolabeled 

anti-PD-L1 antibodies can overcome some of the limitations associated with immunohistochemical analysis of 

PD-L1 expression in tumor biopsies. Radiolabeled anti-PD-L1 antibodies in vivo imaging allows accurate detection 

of PD-L1 expression of whole tumors and their metastases, thus avoiding sampling errors; hence, misinterpretation 

due to intratumoral and interlesional heterogeneity [89–93]. Radiolabeled anti-PD-L1 antibodies in vivo imaging 

may hold potential valuble as biomarker to select patients for PD-1/PDL1-targeted therapy. 
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Figure 2. PD-1/PD-L1 mechanism between tumor cells and T cells. T cell activation requires antigen recognition in 

complex with MHC class I (CD8+ T cells) or MHC class II (CD4+ T cells). This is followed by extra support from the 
co-stimulatory signal that determines whether the T cell will be switched on or off in response to the antigenic 
peptide. Tumor cells can express high levels of PD-L1 which by binding to PD-1 initiates an inhibitory signaling 

network via SHP1/SHP2 that switches off activated T cells and results in T cell suppression (designated as red line in T 

cell). Mechanistically, the expression of PD-L1 by tumor cells is upregulated following IFN-γ secreted by T cells binding 
to IFN-γ receptor on tumor cells activating JAK and STAT signaling pathway resulting in activation of PD-L1. In 
addition, tumor cells use other signaling pathways including NF-κB, mTOR and PI3K. These mechanisms may be 
influenced by the tumor type and other oncogenic signaling pathways that are activated in the tumor cell. 
Checkpoint inhibitors have been designed to block the effects of PD-L1, the effects of PD-1 on T cells and the effects 

of PD-L1/PD-1 interaction. 

Immune checkpoint inhibitors 

Immune checkpoint inhibitors which block PD-1 receptor, PD-L1 and anti-CTLA-4 are the current ground- 

breaking first-line treatment options  in  several  cancers  including  melanoma,  lung  cancer  and  gastric  can- 

cer [72,73,94,95]. Injection of anti-PD-L1 antibodies decreases CT26 colon carcinoma cell growth and B16 melanoma 

cell growth in mice and decreased pancreatic carcinoma cell line growth in mice [96]. Numerous clinical trials are 

currently in progress to determine the effects of PD-1 inhibitors (Table 1). PD-1 inhibitors (including nivolumab 

and pembrolizumab), were approved by the US FDA for treatment of advanced melanoma [97–99]. Pembrolizumab 

was also recently approved for treating patients with advanced NSCLC whose tumor expresses PD-L1 [95]. A 

recent interim report from patients with NSCLC or melanoma with brain metastasis indicates that brain metastasis 

response was achieved in 4/18 melanoma patients and in 6/18 NSCLC patients [100]. Although, high-grade adverse 

events are rare in these therapies, there has been some adverse events reported which can be controlled with stan- 

dard anti-inflammatory agents. It has been reported that pembrolizumab induces grade 3–4 adverse events such as 

colitis, pneumonitis, fatigue, hyperkalemia, acute kidney injury, transient cognitive dysfunction and seizures [100].  

In a rare case, the patient undergoing pembrolizumab treatment developed autoimmune diabetes, possibly as a 

result of PD-1 inhibition [101]. Furthermore, nivolumab, the first approved inhibitor for urological cancer, presents 
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Table 1. Checkpoint inhibitors in human clincial trials. 

Name Cancer type Effects Ref. 

Anti-PD-1 monoclonal antibodies 

Pembrolizumab Hodgkin’s lymphoma Stage IV After 6 months of treatment, the 

patient developed cutaneous 

sarcoidosis, acute iritis, dyspnea and 

adenopathy 

[111] 

Pembrolizumab + anti-CD40 − 

(Ipilimumab) 

Advanced melanoma Stable disease in 3/9 patients 

Median overall survival 8 months 

No grade 3/4 adverse events 

[112] 

Pembrolizumab SCC of thymus with multiple lung 

metastases 

Lung metastases dissapeared 

Complete remission 

No toxicity other than grade I rash 

[113] 

Pembrolizumab Metastatic uveal melanoma Side effects, blurred vision 

Uveitis, stopped treatment 

[114] 

Nivolumab Hodgkin’s lymphoma 53/80 objective response 

Fatigue, rash, neutropenia, pyrexia in 

some (4–20%) of patients) 

[115] 

Nivolumab Leiomyosarcoma with lung, bone, skin 

metastases 

Metastases regressed, skin lesions 

almost completely dissapeared 

Regression for 6 months 

No side effects 

[116] 

Nivolumab Metastatic Acute kidney transplant rejection 

Melanoma (kidney translpant recipient 

14 years prior) 

[117] 

Anti-PD-L1 monoclonal antibodies 

Avelumab Chemotherapy-refractory metastatic 

Merkel cell carcinoma 

Phase II trial, well tolerated, 28/88 

patients achieved an objective response, 

8/88 complete response 20/88 partial 

response, no grade 4 adverse effects 

[118] 

Avelumab Refractory metastatic urothelial 

carcinoma 

Phase IB study, Objective response in 

18.2% of patients, 5/44 complete 

responses, fatigue/asthenia, infusion 

related reaction, nausea, 3/44 grade, 

3–4 adverse events 

[119] 

Atezolizumab Platinum-treated locally advanced or 

metastatic urothelial carcinoma 

Single-arm study, patients who 

continued treatment beyond initial 

injection, showed prolonged clinical 

benefit 

[120] 

Atezolizumab Previously treated NSCLC Phase III trial, 13.8 vs 9.6 months 

improved survival in treated group 

Generally well tolerated 

[121] 

Atezolizumab Advanced NSCLC Phase II trial, n = 268. Significant 

objective responses, progression-free 

survival and overall survival 

Well tolerated 

NSCLC: Non-small-cell lung carcinoma; SCC: Squamous cell carcinoma. 

with immune-mediated side effects including nephritis, colitis, diarrhea, pneumonitis and hyperthyroidism [102]. 

However, overall side effects of these therapies are less frequent compared with chemo and radiotherapy. More 

recently, the first PD-L1 inhibitor (atezolizumab; TecentriqTM) has been approved to be used as a second-line 

therapy for urothelial cancers and submission for approval has been done for NSCLC [103]. Thus, an enhanced 

knowledge of the mechanisms and signaling pathways involved in PD-1/PD-L1 induction would aid in better 

therapeutic options. The combination of checkpoint inhibitors and vaccines may be a viable option for improved 

clinical outcomes in cancer patients. 

Conclusion 

The immune system consists of a complex array of cells which work together to protect the body against invading 

pathogens, eliminates mutated cells and keeps an immune balance to prevent autoimmune attack. PD-1 present 

on B cells and T cells maintains peripheral tolerance and prevents autoimmune disorders. The interaction between 

PD-1 with PD-L1 leads to protection against self-reactivity. As discussed herein, the breakdown of the balance 
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between PD-1 and PD-L1 leads to disease. PD-1 is downregulated in autoimmunity, however, on cancer cells, there 

is upregulation of PD-L1 and the interaction of PD-L1 on cancer cells with PD-1 on T cells results in anergy of T 

cells. It is important to understand the mechanisms by which the balance of PD-1/PD-L1 are altered and methods 

to overcome this breakdown in order for immunotherapy/vaccines to be successful. 

Expert commentary 

PD-1/PD-L1 expression plays protective role in autoimmune, neurological diseases and stroke; however, in cancer, 

its expression generally results in disease acceleration. Studies thus far have established implications of PD-1/PD- 

L1 interaction in tumor immunity; however, many issues still remain unexplored. For instance, the mechanisms 

by which PD-1/PD-L1 pathway act as protective in autoimmune diseases and stroke but cause exacerbation in 

cancer. Therefore, understanding the mechanisms engaged in the activation of PD-1/PD-L1 pathway and the role 

of the nervous system in its activation could lead to designing better PD-L1/PD-1 checkpoint inhibitor drugs. 

In addition, several preclinical and clinical studies have shown that combining vaccines and immunotherapeutic 

associate with improved T cell functionality, resulting in improved patient outcomes [104–106]. For instance, activation 

of PD-L1-specific T cells modulates immunogenicity of DC vaccines [107]. In addition, blocking of PD-1 or PD-

L1 restores antitumor efficacy of DNA vaccine immunization [106]. In subcutaneous and metastatic tumors 

induced by TL-1 and SiHa cells, antitumor activity was significantly enhanced with anti-PD-L1 monoclonal 

antibody + Lm-LLO-E6 vaccine compared with anti-PD-L1 monoclonal antibody or Lm-LLO-E6 alone [108]. 
Hence, immunotherapy/vaccines to be successful, the expression of PD-L1/PD-1 should be considered, and the 

combination of checkpoint inhibitors and vaccines may pave the way for successful outcomes of immunotherapeutic 

approaches to many diseases. 

Future perspective 

In autoimmune disorders methods to increase the expression of PD-1 on T and B cells is important to reverse the 

effects of autoimmunity. Hence, understanding the mechanisms by which immune cells downregulate the expression 

of PD-1 will lead to methods of upregulating the expression of PD-1 on immune cells for the effective treatment of 

autoimmune disorders. Cancer cells have evolved to suppress the immune system leading to evasion of the host. In 

addition to the upregulation of PD-L1 [109], cancer cells also upregulate other immunosuppressive markers including 

IDO and Siglec-9. Furthermore, cancer cells downregulate MHC class I which aids in their invasion, metastasis 

and/or recurrent disease. Moreover, myeloid-derived suppressor cells, regulatory T cells and tumor-associated 

neutrophils, fibroblasts, macrophages and immune and secretory molecules (e.g., IL-10, TGF-β and prostaglandins) 

results in an immunosuppressive tumor microenvironment [110]. Together, this allows cancer cells to evade the host 

immune system. Hence, it is important to determine the expression of a combination of immunosuppressive 

markers on cancer cells and within the tumor microenvironment before any tumor immunotherapeutics/vaccines 

can be effective. We are in a good position for research efforts to be put toward understanding the role of PD- 

1/PD-L1 in disease and the next 5 years will shed light into the mechanisms and will aid in newly improved 

immunotherapeutics against a range of diseases. 
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