VICTORIA UNIVERSITY

MELBOURNE AUSTRALIA

CyberPulse++: A machine learning based security
framework for detecting link flooding attacks in
software defined networks

This is the Accepted version of the following publication

Rasool, Raihan Ur, Ahmed, Khandakar, Anwar, Zahid, Wang, Hua, Ashraf,
Usman and Rafique, Wajid (2021) CyberPulse++: A machine learning based
security framework for detecting link flooding attacks in software defined
networks. International Journal of Intelligent Systems. ISSN 0884-8173

The publisher’s official version can be found at
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22442

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/42050/

CyberPulse++: A Machine Learning
Based Security Framework for Detecting
Link Flooding Attacks in Software
Defined Networks

RAIHAN UR RASOOL', KHANDAKAR AHMED', ZAHID ANWAR?3, HUA WANG', USMAN
ASHRAF* AND WAJID RAFIQUE®

Victoria University, Melbourne, Australia

*National University of Sciences and Technology, Islamabad, Pakistan

*North Dakota State University, USA

4School of Business, Torrens University, Sydney, Australia

*Montreal Blockchain Laboratory, Department of Computer Science and Operational Research,University of Montreal, Canada

Corresponding author: Raihan ur Rasool (e-mail: raihan.rasool @live.vu.edu.au)

ABSTRACT A new class of link flooding attacks (LFA) can cut off internet connections of target
links by employing legitimate flows to congest these without being detected. LFA is especially powerful
in disrupting traffic in software-defined networks if the control channel is targeted. Most of the existing
solutions work by conducting a deep packet-level inspection of the physical network links. Therefore these
techniques incur a significant performance overhead, are reactive, and result in damage to the network
before a delayed defense is mounted. Machine Learning of captured network statistics is emerging as a
promising, lightweight, and proactive solution to defend against LFA. In this paper, we propose a machine
learning-based security framework, CyberPulse++, that utilizes a pre-trained machine-learning repository
to test captured network statistics in real-time to detect abnormal path performance on network links.
It effectively tackles several challenges faced by network security solutions such as the practicality of
large-scale network-level monitoring and collection of network status information. The framework can
use a wide variety of algorithms for training the machine-learning repository and allows the analyst a
birds-eye view by generating interactive graphs to investigate an attack in its ramp-up stage. An extensive
evaluation demonstrates that the framework offers limited bandwidth and computational overhead in
proactively detecting and defending against LFA in real-time.

INDEX TERMS Control Channel Attacks, Link Flooding Attacks, Machine Learning, Network Security,

Traffic Classification, SDN.

I. INTRODUCTION

A fundamental characteristic of Software Defined Net-
working (SDN) is that it provides separation between the
control plane and data plane. This separation offers better
management and flexible programmability of the network
elements. OpenFlow (OF)- a popular network architecture
of SDN develops network services as applications where the
application plane interacts with the controller using a north-
bound API. While SDN allows a considerable advantage of
centralized network management over traditional networks,
this same feature can be exploited to cause various types of
attacks such as Denial of Service (DoS), flow table memory
exploitation attacks, open programmability related issues,
and data plane attacks. These lead to service disruptions

International Journal of Intelligent Systems -Wiley, 2021

thereby increasing management costs and incurring delays
for the stakeholders. Providing seamless network services
have become a critical challenge in the modern-day. Hence,
mitigating threats to network performance and operation has
become vital to meet network availability requirements [1].

A. LINK FLOODING ATTACKS

The motivation for this research comes from the analysis
of LFAs which have emerged as one of the most devas-
tating threats to the internet backbone in the modern era.
In contrast to traditional DoS attacks targeting individual
servers, LFAs target critical links that connect to cloud
servers [2]. LFAs are lethal in nature because they clog
core links by paralyzing and sometimes disconnecting the

1

R. Rasool et al.: CyberPulse++: A Machine Learning Based Security Framework for Detecting Link Flooding Attacks in Software Defined Networks

target network connected to the link. LFA is a growing
threat to the network infrastructure and has attracted a lot
of attention from the networking community[3], [4], [5],
[6]. Mitigating LFA is a challenging task because the attack
traffic remains indistinguishable from the legitimate flows
and is almost unobservable if the attacker employs a low bit
rate. Therefore, typical flow filtering techniques to screen-
out malicious traffic become inoperative. Multiple bots are
also used to send rate-limiting traffic to the decoy servers,
causing a persistent attack. Traditional intrusion detection
(IDS) and intrusion prevention (IPS) countermeasures may
not work in this situation because the attack traffic never
reaches the target server. Hence, legitimate traffic to the
target server is interrupted.

In Fig. 1, the phenomena of LFA is presented, where an
adversary is sending traffic to the bots which in turn send
traffic to the links surrounding the target server. Ultimately,
customers are unable to connect to it. At the start, the
probers of the adversary group utilize traceroute packets to
create a link map of the network. Then the adversary calcu-
lates the attack-cost strategy and ascertains the number of
bots that can occupy the links. Finally, the adversary sends
TCP like traffic to the decoy servers to occupy the links.
This sequence of operations results in the full utilization of
the link capacity thereby disrupting the legitimate traffic.

FIGURE 1: LFA Scenario in SDN.

There are several variations of LFAs differing in behavior
that are in existence today. Noteworthy among these are the
Crossfire attack [2], Coremelt [7], and Spamhaus attacks
[8] detailed in section 2. This makes it challenging for
traditional firewall and IDS/IPS solutions to detect and
mitigate LFAs effectively.

B. LFAS TARGETING SOFTWARE DEFINED NETWORKS
It is emphasized that SDN is a popular network paradigm
that has attracted attention from academia and industry and
is a building block for most datacenter networks today.
Hence, securing SDN will ensure the security of many
global network infrastructures. Despite its importance, most

2

of the existing solutions [6], [9], [3], [10] have been unable
to adequately resolve the problem of LFA on traditional
networks and SDN. Some works have used SDN testbeds
only for proof of their proposed techniques, and there is a
clear lack of sufficient work to address SDN specific issues
in the context of LFAs. We argue that providing defense
against LFA on the control channel is one of the prime
concerns to secure today’s Internet. There is a strong need
for a holistic approach to this problem. In our previous work
we proposed using a deep content inspection system such as
[11] as a basis of identifying LFA traffic. We then conducted
a preliminary study on the effectiveness of employing a deep
learning based classifier to classify traffic as either legitimate
or flooding [12] for the LFA problem in SDN. The said
approach dubbed as CyberPulse accurately detected LFA
with a low false positive rate when trained using a publicly
available dataset from the UCI machine learning repository.

C. CONTRIBUTIONS

In this paper a novel framework, CyberPulse++, is proposed
that extends the ideas from our previous work CyberPulse
[12] to cover the gaps in existing solutions to LFA in SDN.
CyberPulse++ draws on several components to secure SDN,
including, real-time network surveillance, ML-based traffic
analysis, and an efficient and accurate LFA defense with
low overhead. Where CyberPulse was based on deep learn-
ing alone, CyberPulse++ employs an algorithm-agnostic
approach which leverages multiple ML models for traffic
classification and LFA mitigation. Recent research [13], [14]
formulates the robustness of scale-free networks to cascad-
ing failures as a multi objective optimization problem. This
is based on the fact that networks which are robust against
one type of attack may not be robust against another type
of attacks. In practical situations, different types of attacks
may happen simultaneously. CyberPulse++ furthers these
research efforts in the SDN domain where an attacker may
attempt different variations of LFA on the victim network.
In this regards multiple algorithmic selection would increase
the attack coverage. Our results demonstrate that certain
models are more suited that others depending on the network
configuration at hand and CyberPulse++ allows for this
flexibility in the selection.

For the ML classifier component to work accurately,
we carefully select and train algorithms with flood attack
data sets. Ten different ML algorithms were selected and
observed during the training phase. Adaptive Boosting (Ad
boost) and Stochastic Gradient Descent (SGD) provided
improved accuracy. CyberPulse++ successfully detects LFA
and drops malicious flows, by acquiring the flow rules
installed in the switches. It also provides a dashboard of
multiple real-time network status graphs including through-
put, saturated bandwidth, end-to-end delay and flooding rate
thereby performing the surveillance in a very interactive
manner.

To the best of our knowledge, this is the first work that
proposes a practical defense for LFA that has high detection

International Journal of Intelligent Systems -Wiley, 2021

R. Rasool et al.: CyberPulse++: A Machine Learning Based Security Framework for Detecting Link Flooding Attacks in Software Defined Networks

accuracy and works at line speeds. The evaluation of the
CyberPulse++ framework quantifies this. This paper makes
the following contributions:

o We discuss the design and implementation of Cyber-
Pulse++, an interactive real-time security solution for
control channel LFAs in SDN which employs ML
techniques for training and real-time classification of
network traffic.

« We highlight the algorithm-independent capability of
CyberPulse++ in that it works independent from the
use of training algorithms and datasets and is flexible
enough to accept models trained in any programming
language to perform the classification of the network
traffic.

« We demonstrate using a fully functional prototype of
CyberPulse++, that it is indeed possible to dynamically
change the network configurations including topology,
traffic, and the underlying machine learning algorithms.

« Finally, we provide a comprehensive performance eval-
uation of CyberPulse++ encompassing ten different
ML algorithms across a spectrum of varying network
and traffic settings. CyberPulse++ provides substantial
mitigation against LFAs.

e Our evaluation results demonstrate the selection of
specific classification method, is problem based and
some are more suitable than others thereby providing
better results.

The rest of the paper is organized as follows. Section II
describes the current literature in the context of SDN and
LFA, and Section III outlines the overview and architecture
of CyberPulse++. Section IV discusses the ML component
of the framework, furthermore, Section V provides the
experimental setup. Section VI discusses the results and
Section VII concludes the paper and provides some future
directions.

Il. RELATED WORK
Being an emerging threat targeting the Internet infrastruc-
ture, LFA has gained a lot of attention in the literature during
the past several years [5], [6], [15], [16]. LFA was initially
proposed by Kang et al. [2], [17] in what the authors term
as the Crossfire attack which can disconnect target links
without being detected. The Crossfire LFA sends low-rate
traffic to the target link by employing several bots to congest
legitimate traffic to the target server. As the target server
does not receive any direct flood, it causes traditional flow
filtering and IPS/IDS techniques to fail in detecting this
attack.

We broadly categorize LFA defense techniques into three
categories, 1) links inspection-based, 2) traffic engineering-
based, and 3) SDN-based approaches.

A. LINKS INSPECTION-BASED

The key idea behind link inspection-based techniques [6],
[4], [18] is to continuously measure the network statistics on

International Journal of Intelligent Systems -Wiley, 2021

a link to detect any malicious activity. The link obfuscation
technique proposed by Wang et al. [10] presents fake links
to the adversaries which makes it harder to create a true
link map of the network to attack. Linkscope [6] inspects
network links on a hop-by-hop and end-to-end basis and
reports any malicious activity observed on the link. SPIFFY
[4] adapts to the increase in network bandwidth temporarily
and measures flow statistics before and after the expansion.
Legitimate flows tend to adapt to bandwidth expansion.
Alternatively, malicious flows will result in consuming all
their bandwidth and hence will be easily detected. SDN
HoneyNet [9] measures graph statistics and identifies the
lowest betweenness centrality links that can become a
bottleneck. It then deploys an SDN HoneyNet to fake the
adversary.

B. TRAFFIC ENGINEERING-BASED

Traffic engineering based techniques rely on multiple at-
tackers and defender interactions in the network to expose
LFA sources. Takayuki [9] employs an increase in traceroute
packets volume based measurement to detect LFA. Authors
in [3], [15] presented multiple attacker-defender interactions
to balance the network traffic and expose the attacker’s iden-
tity. A virtual network-based dynamic resource allocation
strategy has been proposed by [19], however, the limitation
with this technique is that it relies on the security of the
virtual layer, and becomes vulnerable in case the layer
is exposed. Xiaobao et al. [16] proposed a cost incentive
approach for the source and destination Autonomous System
(AS) domain to cooperate and alleviate LFA.

Although traffic engineering techniques provide a viable
solution for the defense against LFAs however, they incur
extra overhead while detecting and defending this attack.
These techniques rely on traffic manipulation, which in-
creases traffic on certain links in the network, which thereby
becomes a bottleneck during attack detection.

C. SDN-BASED APPROACHES
SDN-based techniques rely on controller-based measure-
ments to inspect the flows in the network, and then utilize
SDN principles to increase network connectivity or flow
rules installation on the switches to drop the malicious
flows. Peng et al. [20] proposed a flow table inspection
technique that examines the flow tables when the resource
utilization ratio of a flow is not normal and employs a bloom
filtering technique to detect adversaries. An SDN-based
traffic maneuvering technique was proposed by Abdullah
et al. [21] which obfuscates the links making it difficult for
the adversary to create a true link map, hence avoiding the
attack. LFADefender [5] uses SDN based measurement to
detect and defend against LFA. Woodpecker [22] uses incre-
mental SDN deployment to increase network connectivity in
the case of LFA. Both LFADefender and Woodpecker only
work in providing defense for traditional networks.
SDN-based approaches provide a centralized control on
detecting and mitigating LFAs. However, these techniques

3

R. Rasool et al.: CyberPulse++: A Machine Learning Based Security Framework for Detecting Link Flooding Attacks in Software Defined Networks

merely provide a testbed to mitigate LFAs in traditional
networks. To address this limitation, there is a need to
provide security against LFAs on the control channel of
SDN.

Recently, some research works focused on mitigating DoS
on the control channel have been proposed. FloodDefender
[23] leverages the controller’s capability to perform network
measurements and flow rule management characteristics to
defend against LFA. It also employs a table miss-oriented
technique and packet filtering mechanism to mitigate DoS
attacks. Similarly, FloodGuard [24] distributes load to the
neighboring switches to protect the link from being clogged.
However, flow filtering and table miss-based techniques
become invalid in the case of LFA which uses low-rate
legitimate traffic to flood the network. AvantGuard [25]
uses TCP handshake to provide defense against table miss
attacks however it only works for TCP traffic. SLICOTS
[26] provides defense against TCP flooding attacks. It
forwards the TCP handshake packets to the controller to
authenticate however, it increases the load on the controller
during the authentication process. FloodShield [27] and deep
learning-based defense [28] are recent techniques proposed
to cater to DoS attacks. BWManager [29] provides defense
against the controller and switch table overloading attacks
by isolating the TCP and UDP attack traffic. RADAR [30]
is a recent solution aimed at mitigating crossfire attacks
on the data plane using commercial-off-the-shelf switches.
RADAR uses the controller and data plane cooperation to
provide defense against crossfire attacks, however, RADAR
uses multiple controllers and data plane interactions which
can increase network.

These techniques provide security against DoS on SDN,
however, low-rate traffic makes these techniques ineffective
in detecting LFAs. Hence, the abovementioned approaches
suffer from a lack of detection accuracy while applied in
the LFA context.

ML-based solutions can learn from historical flooding
behaviors and detect the characteristics of flooding flows.
As ML-based techniques have strong learning ability and
defense efficiency, these techniques can be applied for
LFA detection and defense. Aapo et al. [31] presented an
ML-based technique that combines normal traffic learning,
blacklists integration, and elastic capacity invocation to
provide effective load control, filtering, and service elasticity
during an attack. The external blacklists are obtained from
existing IDS. Fairuz et al. [32] proposed an anomaly-based
approach to evaluate malware detection using ML classi-
fiers. In [33], the authors propose a DoS attack detection sys-
tem on the source side of the cloud. They consider multiple
attack scenarios for evaluation including SSH, brute-force
attacks, ICMP flooding attacks, DNS reflection, and TCP
SYN attacks. A model is trained using the training dataset
and an ML module is utilized to update the pre-training
module [34]. They used multiple classifiers for evaluation
including Logistic Regression, Support Vector Machines
(SVM) linear kernel, SVM, RBF Kernel, SVM Poly Kernel,

4

Decision Tree, Naive Bayes, Random Forest, K-means and
Gaussian EM. Flow-Based IDS for SDN was proposed in
[35], which periodically gathers statistical information about
flows from SDN OF switches, and performs the analysis
and detects the intruders by utilizing the collected traffic
features. In [28], the authors proposed a deep learning-based
approach for DoS defense.

The challenge with these ML-based defense techniques
is that they are restricted to the use of specific algorithms
and that they are reactive. These techniques also suffer
from low detection accuracy, adaptability problems, leakage
report, and pose more overhead to the network. On the
other hand, CyberPulse++ is not dependent on the use of a
specific algorithm but provides a generic framework which
can incorporate any algorithm for classification purpose.
Moreover, it provides real-time defense and proactive LFA
mitigation.

More recently researchers are focusing on the detection
and mitigation of LFA in the network of the Internet
of Things (IoT). Chen et. al [36] use a model based
on Convolutional Neural Networks to learn the changing
patterns in time and space of LFA attacks targeting sensor
devices in IoT networks. Long short-term memory (LSTM)
is used for storing samples allowing constant review of
LFA patterns and removal of obsolete patterns to improve
decision accuracy. The research is studied in a simulated
environment. The authors in [37] frame the LFA problem
in IoT networks as a Bayesian game-theoretic model. The
volume of attack traffic is the attacking behavior and rerout-
ing and scrubbing are defending actions. An SDN-based
global network manager is assumed and used to solve the
game using a divide and conquer method. The authors also
provide local optimal strategies for the attacker and defender
on a link-by-link basis. The practicality of the approach on
a real network has not been explored.

In summary, existing LFA mitigation techniques em-
ploy link inspection, traffic engineering, or SDN-based
approaches. There are very few available research works that
utilize ML to detect and mitigate LFAs, and most of them
only perform offline detection. Our recent study, CyberPulse
[12] investigated the effectiveness of LFA defense using
ML techniques and provides efficient results. However,
CyberPulse is limited in that it does not provide real-time
defense against LFAs. As network surveillance techniques
become more critical, there is also a strong need to devise a
solution that provides real-time network status information
to the network administrators. Therefore, we propose a
security framework, CyberPulse++, which employs an ML-
based LFA detection and mitigation mechanism in SDN,
that works at line speed and also provides network sta-
tus information to the administrators. The CyberPulse++
prototype solution uses ten separately trained classification
algorithm trained on Burst Header Packet (BHP) dataset [38]
to accurately detect LFA.

International Journal of Intelligent Systems -Wiley, 2021

R. Rasool et al.: CyberPulse++: A Machine Learning Based Security Framework for Detecting Link Flooding Attacks in Software Defined Networks

— CYBERPULSE FRAMEWORK PROTOTYPE ——

\) [Froop | [)
NET\VORK{ LINK ‘ RATE ‘BANDWIDTH
TRAFFIC ‘ ML ‘ ‘ DELAY HINPUT LoAD
FLOODLIGHT c PN J \ S AN N)
CONTROLLER ONFIGURATION TATUS MONITOR
A
\
REST API STATISTICS
MEASUREMENT
\ A A |
SOUTHBOUND API .
s 4 (1) (2
CLASSIFIER - = =
v (3)+(N)
v EUANC\S
= R TRAINED
= v Y MODELS
N
- S $ < FLOOD DEFENDER .
g & BENIGN "
TRAFFIC MALICIOUS
GENERATOR DROP TRAFFI(]

FIGURE 2: A high-level overview of CyberPulse modules.

Ill. OVERVIEW AND ARCHITECTURE

In this section, an overview of the CyberPulse++ framework
including its architecture, components, and dependencies
is provided and illustrated in Fig. 2. CyberPulse++ is
developed as an application deployed at the application layer
of the Floodlight open-source controller to defend against
control channel LFA. As seen in the figure, the controller
is connected with data plane devices using southbound
APIL. A malicious host is shown for purposes of illustration
which is generating flood traffic on the network. A statistics
measurement module is responsible for extracting network
statistics from the Floodlight controller using the REST APIL.
The classifier contains pre-trained classification algorithms
that acquire traffic features from the statistics measurement
module. It then classifies the network traffic based on a
defined confidence level and transfers the results to the flood
defender. Finally, the flood defender module drops malicious
flows by updating appropriate rules in the OF switches.
The network status monitor plots surveillance graphs by
acquiring information from the statistical measurement and
flood defender modules.

The architecture of CyberPulse++ consists of five main
modules illustrated in Fig. 3. All the modules with the
exception of the flood defender rely on sub-components to
accomplish their operation. For example, the ML module
consists of the dataset, ML training, and ML classification
components.

LFA detection and elimination in CyberPulse++ is based
on a periodic sampling of network traffic statistics, iden-
tification of malicious flows by utilizing ML techniques
and finally, mitigation. CyberPulse++ utilizes supervised
ML models for traffic classification which can be trained
using any classification algorithm and dataset. To test this
capability, we utilize 10 algorithms for classification in our
experiments. CyberPulse++ modules are discussed in detail
in the following sub-sections.

International Journal of Intelligent Systems -Wiley, 2021

r—[CYBERPULSE ARCHITECTURE J—

CONFIGURATION MODULE

) 3 N " N—
Controller Stat ML ka ‘ Traffic
Configuration|| Manager Conﬁguration/ L Specifier || Configuration

\

FLOOD DEFENDER MODULE

MACHINE LEARNING MODULE

- ‘
| Dataset) Training | [Classification

STATISTICS MEASUREMENT MODULE

., Y " N
L Packets Manager | [Switch Manager] [Flow Manager |

STATUS MONITOR MODULE

Delay 1 [Bandwidth (Throughput l [Attack ‘
Monitor Monitor Monitor | Monitor

FIGURE 3: CyberPulse++ architecture.

A. CONFIGURATION MODULE

This module provides the ability to configure network pa-
rameters for CyberPulse++ via a JSON configuration file (il-
lustrated in Fig. 6) by incorporating multiple sub-functions.
This file provides flexibility to control the following network
specifications:

1) Controller Configurations
2) Statistics

3) ML Specifications

4) Link Properties

5) Traffic Parameters

The controller configuration sub-module handles controller
parameters, its IP address, and the REST and OF port num-
bers. The statistics manager defines the program duration,
statistics collection interval, and flooding threshold of flows
in the network. ML configuration contains the name of the
algorithm to use, the confidence level for classification, and
action to be taken while classification is complete. Similarly,
the link specifier contains the link identifiers and the port
number on switches where they are connected. Finally, the
network topology and traffic parameters can be provided
using the traffic configuration sub-module. This module
manages the network parameters, such as the link capacity,
number of switches, hosts per switch, traffic duration and
traffic generation details.

B. STATISTICS MEASUREMENT MODULE

In SDN, when a flow arrives at any OF switch, its flow
entries are matched with the switch-flow table and the flow
is forwarded to the destination according to the flow entry
in the switch. If a specific flow entry is not found, the
flow is forwarded to the controller using a PACKET_IN
message which results in a flow table entry being created in
the switch for forwarding. A FLOW_REMOVED message
is sent to the controller to remove the flow from the flow
table. In addition to this, every second a thread running on
the controller requests the statistics information of every
flow from the switch. A FLOW_STATS reply message is
sent to the controller that contains the statistics information
of every flow entry in the table.

R. Rasool et al.: CyberPulse++: A Machine Learning Based Security Framework for Detecting Link Flooding Attacks in Software Defined Networks

TABLE 1: Extracted features and definitions.

Extracted Feature Definition

Extracted Feature | Definition

Node Node generating flow

Used Bandwidth This is what each node could reserve from the reserved bandwidth

Utilized Bandwidth

Bandwidth utilized by the node, normalized bandwidth used

Lost Bandwidth The amount of lost bandwidth by each node

Packet Drop Rate Packets dropped per unit time

Packet Size Size of packets on the network

Full Bandwidth Bandwidth of the network

Packets Received Received packets in a given time interval

Percentage of packet lost Rate | Percentage of packets lost

Packets Lost Packets lost in a given time interval

Percentage of lost byte rate Percentage of lost byte rate

Transmitted Byte Total bytes transmitted per unit time

Packets received rate Packets received per unit time

Flooding Status Percentage of flood per node based on Packet Drop Rate

Class Class to which the instance belong to

The Statistics collection module utilizes the above-
mentioned capability of SDN to query data plane switches.
The module defines all the required statistics to collect
during its operation. CyberPulse++ uses the REST API of
the Floodlight controller to collect 14 different statistics
as shown in Table 1. Statistics measurement then utilizes
switch, flow, and packet manager to collect these statistics.

The switch manager assigns a Data Path ID (DPID) to
every switch and enlists the connected switches and their
port numbers. It then identifies the critical switch and port
numbers in the network based on the flooding rate on all
the ports. The Flow manager handles all the flows in the
network and uses the ’/wm/core/switch/all/flow/JSON’ API
to manage these flows. It assigns a class label to the flows
based on the predefined threshold of ByteCount. The Packet
manager extracts the packet statistics in the network using
the ’/wm/core/switch/all/port/JSON’ API. Next, it deter-
mines the number of transmitted and received packets on all
the ports and calculates the packet loss rate. Subsequently, it
calculates all the statistics required for traffic classification
as described in Table 1. Once the statistics are collected, the
ML module is invoked to classify malicious traffic. Since the
statistics collection is an existing capability of the SDN ar-
chitecture, it will not pose any extra performance overhead.
Additionally, the statistics collection, ML classification and
the monitoring are designed to run in their own separate
threads without blocking the main controller functionality.
This allows CyberPulse++ to classify incoming traffic con-
tinuously. Therefore the controller main functions of flow
control and the classification and detection functions of
CyberPulse++ can proceed concurrently without degrading
the SDN controller’s performance.

C. STATUS MONITOR MODULE

This module extracts the current traffic data from the
statistics measurement module and plots the current status
of the traffic in the network. This module contributes to the
contemporary traditional defense mechanisms by offering
detailed monitoring of network activity in real-time. The
network status monitor draws the following plots:

1) Flooding rate: This is the bandwidth consumption
status of a link under normal circumstances as well as
when the network is under attack. This plot shows the
data rate on important links connected to the switches,
controller, servers, and other important devices. Typi-
cally switches themselves are not the terminal points

but lead to hosts and servers so, we consider switches
leading to important devices as critical switches as
compared to those switches that connect to end sta-
tions.

2) Packet drop: When the flooding rate increases, the
packet drop rate also escalates. This plot displays the
packets dropped rate on the network at a specific time.

3) Throughput: This plot displays the aggregate
throughput of the network as well as that of the
individual links connected to switches or servers.

4) Traffic delay: When the flooding starts, the legitimate
flows will face delay and packet drop. This graph plots
the delay incurred on transferring files among hosts
during LFA.

5) Bandwidth saturation: This plot shows the saturation
of the bandwidth of a link with an increase in the
number of attacks.

6) Attack detection time with respect to the num-
ber of attackers: This plot shows the efficiency of
CyberPulse++ in detecting an LFA and analyzes the
feasibility of deploying CyberPulse++ in the presence
of such an attack.

D. MACHINE LEARNING MODULE

This module trains an ML classifier using the BHP train-
ing dataset on 10 classification algorithms [38]. It should
be noted though that CyberPulse++ is not dependent on
these particular algorithms only. To prove the feasibility of
employing multiple algorithms, we perform the experiment
using these. We provide the classification algorithms in
the form of .pkl files. Since ML training and evaluation
constitutes an extensive part of our research, section IV is
dedicated to its explanation.

E. FLOOD DEFENDER MODULE

The Flood defender module eliminates malicious flows by
dropping them. This is implemented as a function in Cyber-
Pulse++ which takes statistics of an active flow (e.g. source
IP, destination IP, switch ID, flow ID) and compares the
confidence level of the current flow with the threshold value
set in the configuration file. If the flow has a confidence
interval greater than the defined value in the threshold, then
the flow is dropped with the help of a drop flow rule in the
data plane switches.

International Journal of Intelligent Systems -Wiley, 2021

R. Rasool et al.: CyberPulse++: A Machine Learning Based Security Framework for Detecting Link Flooding Attacks in Software Defined Networks

TABLE 2: Overview of training dataset.

Node | Utilized Bandwidth | Pack Drop Rate | Bandwidth | Packet Lost Rate % | Lost Byte Rate % | Packet Received Rate | Used Bandwidth
3 0.82 0.19 1000 19.03 19.03 0.81 822.04
9 0.27 0.73 100 72.89 7291 0.27 27.55
3 0.92 0.09 900 9.03 9.03 0.91 831.34
3 0.37 0.64 100 63.74 63.77 0.36 36.88

IV. ML MODEL TRAINING AND TESTING

The algorithms and the quality of training of an ML model
is the backbone of this research, hence this section presents
its extended detail. CyberPulse++ has been designed to
accommodate any set of algorithms and trained models,
thereby providing flexible operation and quality of traffic
classification. We have selected a set of ten algorithms for
network traffic classification because they provide better
classification results for SDN traffic analysis. Some recent
research [39] also categorizes these algorithms as suitable
for SDN traffic classification. CyberPulse++ is efficient
when configured in a multi-threaded application paradigm
in such a way that the classification of the network traffic
is performed concurrently in each thread using any of the
available algorithms. The main motivation for selecting the
ten algorithms is that it provides a holistic solution for
network traffic analysis where the user is not limited to using
the capabilities of a fixed algorithm for network defense. He
may simply export his trained model of choice as a .pkl file
and employ it for traffic classification.

The traffic classification component of our presented
solution benefits from ML models trained using the Jupyter
note- book [40]. Jupyter Notebook is an open-source web
application popular among data scientists for creating and
integrating live code and visualizations. We select Jupyter
because it supports a variety of programming languages
including Python, R, and MATLAB, is organized as a JSON
file which is easy to annotate and supports tasks required for
our research such as statistical modeling, machine learning
and deep learning. CyberPulse++ employs BHP flooding
attack dataset for training [38]. We used Python 3.6 for
CyberPulse++ development because it provides support for
the required classification frameworks. Table 2 provides an
overview of 8 features of one of the datasets used in this
research which contains, 1075 instances and 22 features.
The features that were important for detection were mostly
related to bandwidth and packet rate although others were
considered such delay and bytes transmitted and received.
Bandwidth related features include the utilized, reserved,
used and lost bandwidth. Packet rate features include the
packet drop, lost and received rate. The dataset is trained
using the following algorithms.

1) Adaptive Boosting

2) Bagging Classifier

3) Decision Tree

4) K-Nearest Neighbors
5) Logistic Regression

6) Multi-Layer Perception

International Journal of Intelligent Systems -Wiley, 2021

7) Naive Bayes

8) Random Forest

9) Stochastic Gradient Descent
10) Support Vector Classification

Extensive data pre-processing steps are performed before
the actual training using the above algorithms. These steps
are explained in the following subsections.

A. CLASS TRANSFORMATION

The actual class distribution in the BHP training dataset
corresponds to Block, NB-No Block, No Block, and NB-
Wait which relates to different flooding stages based on
flow statistics. However, our study aims to classify traffic
into flooding and legitimate flows. Therefore, we customize
the interpretation of these classes according to our research
problem. The dataset was transformed into flooding and
legitimate classes, where Block corresponds to flooding and
the rest of the classes are assigned to legitimate. The final
classes after transformation consist of 88% legitimate and
12% flooding instances.

B. DATA PRE-PROCESSING

The dataset was loaded in the Jupyter notebook and an ex-
pert analysis method was applied to summarize the features.
The method provides an overview of the dataset to under-
stand the statistics of different features. The Data description
in Table 3 shows the statistics of all the attributes including,
count, mean, standard deviation, minimum, maximum, and
25%, 50% and 75% percentiles.

The analysis shows that the packet loss rate feature
contains some missing values so, we replace them with
median values of the same feature to ensure justifiable
distribution of all the features.

1) Log Transformation of Skewed features

Data visualization demonstrated that bandwidth consumed,
bandwidth lost, packets received, received byte, and flood
status were not equally distributed and skewed from the
normal curve. More reliable predictions can be made if
the predictors are normally distributed. Several methods are
useful for handling skewed data such as log, square root
and box-cox transforms. We applied the log transform to
remove this skewness using the Numpy (Numerical Python
extensions) library. Numpy provides support for large, multi-
dimensional arrays and matrices, along with a large collec-
tion of high-level mathematical functions to operate on these
arrays.

R. Rasool et al.: CyberPulse++: A Machine Learning Based Security Framework for Detecting Link Flooding Attacks in Software Defined Networks

TABLE 3: Expert analysis of the training dataset.

Statistic | Utilized Bandwidth | Pack Drop Rate | Bandwidth | Packet Lost Rate % | Lost Byte Rate % | Packet Received Rate | Bandwidth Consumed

Mean 0.59 0.41 540.46 41.16 41.19 0.59 340.78

Std 0.19 0.18 289.14 18.35 18.37 0.18 232.14

Min 0.24 0.09 100 8.61 8.61 0.23 27.55

0.25 0.45 0.25 300 24.75 24.75 0.43 138.4

0.5 0.58 0.44 500 43.8 43.8 0.56 291.59

0.75 0.76 0.56 800 56.67 56.67 0.75 515.18

max 0.93 0.77 1000 76.79 76.79 0.91 867.03

2) Feature Normalization

In this step, scaling was used to standardize the ranges of
independent features. The features were rescaled in a way
that they acquired the characteristics of a standard normal
distribution having a mean value of zero and a standard
deviation of one. Feature scaling has a high impact on
the results because our training dataset contains features
consisting of diverse ranges, units, and magnitudes. In this
regard, Mini-Max scaling [41] was performed on the dataset
which transformed the values in the range of 0 and 1. Table
4 shows the dataset after normalization.

3) Feature Selection

A Recursive Feature Elimination (RFE) technique was used
for feature selection which considers the wrapper method
built on top of various other algorithms i.e. SVM or regres-
sion. This helped in model development based on different
data subsets. RFE repeatedly constructs a model and chooses
from the best performing features. The data was split into
training and test sets in the form of an array of features
where 80% data was used for training and 20% for testing.
Overall the dataset consists of 21 features, however the
following were not selected because they were either highly
redundant or not present in the testing data.

o Average Delay Time Per Sec
« Received Byte

e 10 Run AVG Drop Rate

e 10 Run AVG Bandwidth Use
¢ 10 Run Delay

« Node Status

o Packets Transmitted

4) Model Training and Hyper-Parameter Tuning

The results of cross-validation are then printed, the model is
fit to the training data using slicing with sample size. Input
parameters applied to the model are given in Table 5.

C. RESULTS OF TRAINING AND TESTING

In this sub-section, we discuss the results of the training
and testing of all the implemented ML algorithms. We use
accuracy and F_Beta as evaluation metrics for training given
in equation 1 and 2 respectively. In equation 1, TP, TN, FP,
and FN corresponds to true positive, true negative, false
positive, and false negative respectively.

TP+TN

A - |
CUraY = b T TN + FP + FN M

F_Beta denotes the weighted harmonic mean of precision
and recall. A F_Beta score of 1 is considered to be the
best performing value, and a score of O corresponds to
a worst case scenario. The accuracy score is the ratio
between correct predictions divided by the total number of
predictions.

F Beta= (14 62)- precision - recall

(82 - precision) + recall @

Similarly, the Receiver Operating Characteristic (ROC)
curve and the learning curve was plotted for the evaluation
of each algorithm. The ROC curve is the relationship
between true positive and false positive values, which rep-
resents the accuracy of class discrimination in a binary
classifier. The Area Under Curve (AUC) is important in the
ROC curve, where an AUC value of 1, represents a perfect
separation of the classes. The Learning curve shows the
cross-validation and training scores of a model on a varying
number of samples. It depicts the behavior of a model upon
adding more training instances. If the training and cross-
validation scores converge on a small training sample then
adding more data will not benefit the model.

An evaluation of the training of the classification algo-
rithms is conducted separately to provide a results com-
parison during training with the data set and subsequently
testing using malicious traffic. This is detailed in the next
sub-sections.

1) Adaptive Boost (AdaBoost)

AdaBoost utilizes an ensemble learning method to develop
a precise learning algorithm. Initially, it chooses a baseline
algorithm e.g. Naive Bayes and iteratively increases its
performance by taking into consideration the incorrectly
classified instances [42]. AdaBoost’s evaluation is illustrated
in Fig. 4a and Fig. 4b. Both evaluation metrics on AdaBoost
correspond to 1.0 which speaks to the excellent performance
of the trained model. The learning curve plot shows that the
cross-validation and training scores converge on a sufficient
number of training samples. The area under the ROC curve
is equal to 1, which shows a perfect separation of the
flooding and legitimate classes.

2) Bagging Classifier
The Bagging classifier is one of the bootstrap methods
which creates individual estimators towards ensemble by

International Journal of Intelligent Systems -Wiley, 2021

R. Rasool et al.: CyberPulse++: A Machine Learning Based Security Framework for Detecting Link Flooding Attacks in Software Defined Networks

TABLE 4: Dataset state after applying normalization.

Node | Utilized Bandwidth Rate

Pack Drop Rate

Bandwidth

Packet Lost Rate %

Lost Byte Rate %

Packet Received Rate

Used Bandwidth

3 0.85

0.15 1

0.15

0.15

0.85 0.98

0.058

0.94 0

0.94

0.94

0.06 0

0.99

0.0062 0.89

0.06

0.01

0.99 0.99

Wl WO

0.19

0.81 0

0.81

0.81

0.19 0.083

Receiver Operating Characteristic

12
10
¥ 08
K
2 06
5
y 04
g
0z s
00 - — AUC=1.00
0.0 02 04 06 08 10 12
False Positive Rate
(a) AdaBoost
= Receiver Operating Characteristic
10 —
» 08
&
2o
&
y 04 L
= L
02 i
0o - — AUC=1.00
o0 02 04 06 08 10 12
False Positive Rate
(e) Decision Tree
» Receiver Operating Characteristic
10
08
i
2 06
5 04
2
02
0o — AUC =080
0.0 02 0.4 06 08 10 12
False Positive Rate
(i) LR
s Receiver Operating Characteristic
10
u 08
&
£os
5
y 04
H
0z
oo — AUC=0.95
oo 02 04 06 08 10 12
False Positive Rate
(m) Naive Bayes
b Receiver Operating Characteristic
10 —
08 -
&
206
&
v 04
2
E
02
00 - — AuC=100
00 02 04 06 08 10 12

False Positive Rate

() SGD

Accuracy Score

Accuracy Score

Accuracy Score

Accuracy Score

Accuracy Score

Receiver Operating Characteristic

Learning Curve 12
100
10
0ss
¥ 08
096 b
2os
z
09z z
5 04
092 =
02
090 == Training score
— Cross-validation score 00 — auc-oss
0 w0 w0 w0 a0 w0 o 70
o St e 00 02z o4 05 o8 1o 12
False Positive Rate
(b) (c) Bagging
Receiver Operating Characteristic
Leaming Curve 12
100 o
y 08
098 ¥
£os
056 3
04
092 =
02
--- Training score
997 | — Cross-validation score 00 - 036
] d0 o0 &0
Training Set Size Lo 0z o4 06 03 10 12
False Positive Rate
Learning Curve = Receiver Operating Characteristic
=~ Training scare
oz — Crossvalidation score 10
100
= 08
098 2
s
2o
096 5
5 04
094 2
092 o2
0s0 00 — Auc=052
o 10 om0 a0 0 w0 w0
Training Set Size po ez e 0L o1
False Positive Rats
Receiver Operating Characteristic
Learning Curve 12
=~ Training score
100 —oa 10
098 4 08
]
036 £os
3
09a ; 04
H
052 02
030 00 . — AUC =1.00
) 00 w0 70
Troming Set e 00 02 o4 o5 o8 1o 12
False Postive Rate
() (0) RF
Learning Curve . Receiver Operating Characteristic
100 10
099
308
0398 <
Zos
097 B
4 04
096 2
0as 02
--- Training score
094 | — Cross-validation score 0 =062
o 00 0 w0 40 w0 @0 w0
Training Set Size b0 ez 04 06 0810 12

@

False Positive Rate

(s) SVC

FIGURE 4: Accuracy graphs of ML models.

International Journal of Intelligent Systems -Wiley, 2021

Accuracy Score

Accuracy Score

098

Accuracy Score

092

090

038

Accuracy Score

035

094

Accuracy Score

096

092

098

097

096

Learning Curve

--- Training score
— Cross-valigation score

00 30 400

Training Set Size

(d

500 60 700

Leamning Curve

~=- Training score.
— Cross-validation score

200 00

Training Set Size

()

Learning Curve

500 600 700

~-- Training scare
— Cross-validation score

500 &0 700

20 400
Training Set Size

®

Learning Curve

~=- Training score
— Cross-validation score

095

&

080

[} m ;0 500 60 700

Training Set Size

Learning Curve

==+ Training score
— Cross-validation score

0 w0 20 500 600 700

0 4o
Training Set Size

®

R. Rasool et al.: CyberPulse++: A Machine Learning Based Security Framework for Detecting Link Flooding Attacks in Software Defined Networks

TABLE 5: Inputs parameters applied to the model.

Input Detail

Learner | The learning algorithm to be trained
X_train | The features training set
y_train The training set

X_test Features testing set
y_test The testing set

TABLE 6: Evaluation results of ML classification.

Algorithms F_Beta Accuracy
Training | Testing | Training | Testing
Adaptive Boosting 1 1 1 1
Bagging Classifier 0.98 0.96 0.98 0.96
Decision Tree 1 1 1 1
K Nearest Neighbours 1 0.99 1 0.99
Logistic Regression 0.98 0.95 0.98 0.95
Multi-Layer Perception 0.99 0.98 0.99 0.98
Naive Bayes 0.97 0.98 0.88 0.93
Random Forest 1 1 1 1
Stochastic Gradient Descent 1 1 1 1
Support Vector Classification 0.94 091 0.82 0.89

training each of the classifiers and subsequently aggregat-
ing their results. It performs this operation by randomly
redistributing the instances of the training dataset [43]. The
results of the Bagging Classifier can be observed in Fig.
4c, Fig. 4d and Table 6 respectively. The learning curve
converges at lower training instances which shows that
adding more training data will not benefit the trained model.
The AUC value on the ROC curve corresponds to 0.83
which shows good separation of the predicted classes.

3) Decision Tree

The Decision tree is a non-parametric ML technique, used
for classification and regression problems. A decision tree
provides hierarchical and sequential decisions about the
class outcomes on the basis of the training data [44]. The
ROC curve in Fig. 4e shows excellent results where AUC
is 1, which is a perfect separation of the flooding and
legitimate classes. The evaluation values of F_Beta score
and accuracy correspond to 1 which demonstrate that the
model has very high performance. The learning curve in
Fig. 4f expresses the results of cross-validation and training
scores. Both curves converge at lower training instances
which shows that adding more training instances will not
benefit the trained model.

4) K-Nearest Neighbors (KNN)

This is one of the most widely used classification algorithms
which predicts the likelihood of a data point to be a member
of the group on the basis of the nearest data points [45].
Upon evaluation, KNN provided optimum results having
values of F_Beta and accuracy of 1. Fig. 4g and Fig.
4h represents the ROC and learning curve of the KNN
model respectively, the learning curve converges around 200
instances of the training set. The ROC curve shows excellent
results where the AUC is 0.96, which expresses a perfect
separation of the flooding and legitimate classes.

5) Logistic Regression (LR)

The LR classifier predicts the probability of an outcome
and generates a logistic curve limited by binary values [46].
Evaluation results of the LR classifier are given in Table 6,
Fig. 4i and Fig. 4j respectively. F_Beta and accuracy values
for the testing set are around 95%. The cross-validation
showed a sharp increase from 92% to 97% when the training
set size approached 200 and continued to do so thereafter.
The ROC curve shows good results where the AUC is
0.8 which provides a good separation of the flooding and
legitimate classes.

6) Multi-Layer Perceptron

A Multi-Layer Perceptron is a feed-forward neural network,
which generates a set of outputs characterized by multiple
layers of input that are connected as directed graphs between
input and output layers [47]. The evaluation metrics for
the testing set are greater than 97% which shows the
effectiveness of the training model. In Fig. 41 the cross-
validation score follows a zig-zag pattern which dropped
sharply at two points which represents momentary degrada-
tion in accuracy which otherwise increased with the training
set size from 91% to 95%. However, when the training set
size reached 400, the accuracy dropped instantaneously due
to the variations in the accuracy of the training set which
subsequently affected the cross-validation. The ROC curve
in Fig. 4k represents excellent results where AUC is 0.92,
which corresponds to a perfect separation of the flooding
and legitimate classes.

7) Naive Bayes

Naive Bayes employs the Bayes algorithm to classify objects
using the concept of naive or strong independence among
the attributes of data points [42]. The evaluation metrics
of the trained model can be observed in Table 6. The
accuracy score is 93% for the test set, which is lower than
the previously discussed algorithms. In Fig. 4n the learning
curve converges at around 500 training instances which
demonstrates that the increase in training instances will have
a positive effect on the performance of the classifier. The
ROC curve in Fig. 4m shows excellent results where AUC
is 0.92, showing a perfect separation of the flooding and
legitimate classes.

8) Random Forest (RF)

This algorithm develops random decision trees by analyzing
a set of variables and generating a class which corresponds
to the mean prediction of the individual decision trees [48].
Table 6 shows that the evaluation metrics for the training
and testing sets were 1.0 depicting an excellent efficiency
of the trained model in accurately classifying the dataset.
The ROC curve shows exceptional results where AUC is 1,
which is a perfect separation of the flooding and legitimate
classes. The accuracy of the cross-validation curve increases
continuously and converges with the training score at around
600 instances. The results are given in Fig. 40 and Fig. 4p.

International Journal of Intelligent Systems -Wiley, 2021

R. Rasool et al.: CyberPulse++: A Machine Learning Based Security Framework for Detecting Link Flooding Attacks in Software Defined Networks

9) Stochastic Gradient Descent (SGD)

The Stochastic Gradient Descent (SGD) is an iterative algo-
rithm to optimize an objective function which is a stochastic
approximation of gradient descent optimization [49]. For
the SGD classifier, the evaluation metrics corresponds to
1.0. The ROC curve also shows excellent results where the
AUC score is 1. The learning curve shows that initially,
the accuracy of the test set was lower which increased
sequentially with the increase of training data and touched
100% when the cross-validation converged at 400 training
instances. The evaluation results of training and testing are
given in Fig. 4q, Fig. 4r, and Table 6 respectively.

| CONFIGURATION MODULE
FLOOD DEFENDER MODULE
MACHINE LEARNING MODULE
STATISTICS MEASUREMENT MODULE
~| STATUS MONITOR MODULE

7\ ///
Application Layer [

_ :('_\ bchulsc;‘

AN

M
P

FIGURE 5: An example of a network applying Cyber-
Pulse++.

10) Support Vector Classification (SVC)

The Support Vector Classification (SVC) algorithm works
by sorting the data into one or two categories and constructs
a map of the sorted data by adding possible margins between
them. It then classifies an unknown data point based on
the distance from the sorted categories [50]. Table 6 shows
the evaluation metrics of SVC. The accuracy score is 0.89
which is the lowest among all the implemented models.
Overall the evaluation results of this classifier were poor.
The value of AUC is 0.62 given in Fig. 4s, demonstrating
a poor separation of flooding and legitimate classes. The
learning curve (Fig. 4t) converges at around 300 training
set instances.

D. SUMMARY OF CLASSIFICATION

A comparative summary of the training and testing results is
provided in Table 6 which clearly shows that the AdaBoost,
Decision Tree, RF, and SGD classifiers provided better
results as compared to the rest. KNN yielded good accuracy,
very close to 1. MLP performed a close second with an
accuracy of 0.98 and F_Beta of 0.99. There is a vast
difference among performance metrics of Naive Bayes, with
the accuracy being 0.9288 as compared to F_Beta which is
around 0.9803. These results demonstrate the selection of

International Journal of Intelligent Systems -Wiley, 2021

specific classification method, is problem based and suitable
ones are expected to provide better results.

V. CYBERPULSE++ EXPERIMENTAL SETUP
In Section III and IV, we discussed the architecture of
CyberPulse++ and its components. In this section, we eval-
uate the performance of CyberPulse++ in a link flooding
environment. We provide testbed configuration, deployment,
tools used, and the workflow of CyberPulse++.

A. EVALUATION ENVIRONMENT

We implemented a prototype of CyberPulse++ in Python
v3.6 and deployed it on the application plane of SDN, using
the REST API to communicate with the controller. Our
simulation environment consists of the Floodlight controller
v1.2 and Mininet running on the Ubuntu operating system.
The design of the network is illustrated in Fig. 5 which
imitates a linear topology of 5 servers and 5 OF switches
having delay and jitter values of 0. The link capacity of the
network was set to 10Mb. CyberPulse++ bootstraps the net-
work and allocates the defined link capacity and checks the
connectivity of every link using the ping command. During
the experiment, Mininet, Floodlight, and CyberPulse++ run
on the same Ubuntu machine. We use an in-band controller
paradigm where the controller is not connected with all
the switches of the network. The switch ID and the port
number settings in the configuration file allow us to select
respectively any link on which we want to perform the
surveillance and a port associated with the link that we want
to secure.

The attack is launched using an Iperf server in a host-
client setup, which sends low-rate traffic to the decoys. In
our setup hosts 1, 2, and 3 generate the low-rate traffic
towards two clients, host 4 and host 5. The LFA causes
packet miss in the OF switches which proceed to commu-
nicate with the controller for the new flow rule installation.
Subsequently, a continuous flow rule installation causes
flooding on the control channel which instigates a delay
in legitimate traffic flow. The program duration was set to
60 seconds, the statistics collection interval was 5 seconds
and the flooding threshold was altered for the evaluation.
We use MLP for the traffic classification with a confidence
threshold of 95%.

B. CYBERPULSE++ CONFIGURATION

A JSON file (see Fig. 6) provides the user with a flexible in-
terface to input the CyberPulse++ configuration parameters
organized into categories. There exists a category containing
information regarding controller management and allows
assignment of the controller IP, controller and REST API
port numbers. The next category is for specifying the
statistics collector information including program duration,
collection interval, and flooding threshold values. The ML
configuration category contains a model name and a con-
fidence level. The model name corresponds to the path for
the .pkl files generated during training and the confidence

11

R. Rasool et al.: CyberPulse++: A Machine Learning Based Security Framework for Detecting Link Flooding Attacks in Software Defined Networks

“programme_laap_config" H
{

"rerun":0,

"rerun delay sec":5
e
"controller":

{
"ccntrollerﬁip" - "1z7.0.0.1",
"controller openflow port": "€653",
"controller rest_port": "8080"

by

"stat collector config":

{
"programme duration min":1,
"collection interval sec”:5,
"flooding threshold byteCount":1000,
"generate graph":1

b

"machine learning config":

{
"model name":"ML/Pickle_files/MLP.pkl",
"action":"drop host",
"confidence level™:95

Iy

"important link":

{
" switch_id" :"00:00:00:00:00:00:00:01",
"port_number":1

e

"traffic config":

{
"link capacity_in Mbit":10,

"switch count":5,
"host per switch":1,
"iperf server":"10.0.0.1",
"traffic duration min":1,
"iperf client":[—
{ "hC-St_ip" :"10.0.0.3"},
{"host ip":"10.0.0.4"}

}

FIGURE 6: CyberPulse++ configuration file.

level is a threshold between 0-100 to classify the traffic
into legitimate and flooding flows. It may be noted that
increasing confidence level results in expanding the false
positive rate. The traffic configuration category allows the
link capacity, switch count, host per switch, iperf server, and
traffic duration to be specified.

C. CYBERPULSE++ IMPLEMENTATION

This subsection includes the implementation set-up and
operation of CyberPulse++. CyberPulse++ utilizes a Mininet
testbed allowing network researchers to simulate threats in
a secure environment and develop, simulate, and deploy
security solutions. The ML module provides an interface to
train ML classifiers using the training dataset and outputs
.pkl files. The .pkl is an output file generated by Jupyter
notebook which enables files to be serialized onto the disc
and de-serialized back using a byte stream representing
objects. The generation of .pkl files reduces network over-
head of transferring huge files. The Python dump () and
load () methods were used to create and load the .pkl files
respectively. The ML training module trains 10 algorithms
discussed in the previous section. The respective algorithm
can be loaded using the load () method in python. Fig. 7
provides the sequence of steps in CyberPulse++ to perform

12

network surveillance and defense.

Once the desired configuration has been provided, Cy-
berPulse++ can be executed and the link listener mod-
ule starts collecting traffic statistics by employing flow,
switch, and packet listeners. The Link listener forwards the
collected statistics to the classifier module containing the
.pKl file of the pre-trained algorithms. Only one algorithm
is selected for the classification of the network traffic at
any time. The ML module identifies malicious flows using
the selected classifier and confidence interval. The flood
defender module subsequently drops the malicious flows
and the network status monitor draws real-time network
status graphs. These graphs effectively depict the impact of
LFA on different network parameters including, bandwidth,
throughput, delay, and packet drop rate.

D. CYBERPULSE++ DEPLOYMENT
The source files of CyberPulse++ can be downloaded from
the link given in the appendix section. The Floodlight
controller is executed first and CyberPulse++ source files
are loaded on a separate terminal. CyberPulse++ is executed
using the /run.sh file which starts by creating the network
topology and assigning the link bandwidth, jitter, and delay.
Then it analyzes the connectivity of the components using
the ping command. Subsequently, the traffic is generated
by the Iperf server and flooding of the links is started. In
the mean time the statistics collector starts to measure the
statistics of the network and classification is activated. The
flood-drop module drops the flows identified by the classi-
fication module. Finally, the network status monitor draws
graphs for the visual analysis of traffic on the network.

For statistics collection using Flood light controller, some
parameters need to be configured in the Floodlight resource
files. These are given in Fig. 8. Steps to run CyberPulse++
are as follows:

o cd floodlight-1.2; make

e sudo rm -rf /var/lib/floodlight/

o cd floodlight-1.2

« sudo java -jar target/floodlight.jar

o unzip mlsdn.zip; cd mlsdn

¢ ./run.sh; tail -f statcollector.log

VI. RESULTS AND DISCUSSION

In this section, we present and discuss our experiments to
measure the performance of CyberPulse++ when defending
LFA on the SDN control channel. Due to the novelty of our
solution we were unable to find any related works whose
results could be directly compared with ours. The mostly
closely related works [33], [34] and [35] that utilize machine
learning techniques either employ a significantly different
implementation architecture or target specific attack types
making it hard to create a direct comparison. For example
[33] uses an OpenStack based cloud implementation, [34]
employ cooperative communications over wifi and [35] ex-
amines specific attacks like DoS, HTTP and SSH credential
brute force. Therefore, the performance of CyberPulse++

International Journal of Intelligent Systems -Wiley, 2021

R. Rasool et al.: CyberPulse++: A Machine Learning Based Security Framework for Detecting Link Flooding Attacks in Software Defined Networks

Link Listener [Stats Configuration |

(1) Network % \ED
Configuration ©)
Switch Packet
Flow Stats
Stats Stats

Classifier 6

Feature Selection

Malicious Flow

1 Drop

Pre-trained
Algorithms i)

Network Status
(o) Monitor

ML Algorithm

FIGURE 7: CyberPulse++ component interaction diagram.

file src/main/resources/floodlightdefault.properties sst
net.fleedlightecontroller.statistics.Statistic=Collecteor.enable=TRUE
net.fleedlightecontroller.statistics. StatisticeCollecter.collecticnIntervalPortStatsSeconds=5

FIGURE 8: Floodlight code configuration.

has been demonstrated by comparing the results in dif-
ferent experimental configurations. Multiple configuration
parameters as well as multiple sources were setup to send
LFA. We measure the performance under two threshold
frequencies i.e. S0Kbps and 30Kbps and the control channel
bandwidth is set to 10 Mbps. As mentioned in the ML
Training and Testing section, MLP has a reasonably good
degree of accuracy (greater than 97%) when the training
set is sufficiently large. This is further corroborated by our
previous work [12] where we evaluated the accuracy of
different algorithms and determined that the MLP provides
the best overall results in terms of precision, recall and F-
measure. In the MLP deep learning technique, there are
multiple layers including, the input sensory layer, output
layer, and one or more hidden layers that collaborate to
extract salient features of the problem space. MLP has the
ability to model and learn complex non-linear relationships
of the given domain. Therefore, it was best suited in our
case where some attributes of the network traffic were not
linearly dependent on each other such as maximum band-
width and packet drop rate results. Hence, we perform the
evaluation of CyberPulse++ using MLP with a confidence
interval of 95%. We run the experiments five times and plot
the cumulative standard error during the experiments. The
results of the evaluation are as follows.

A. RESULTS FOR END-TO-END DELAY

The graph in Fig. 9a shows the delay incurred during LFA,
with the x-axis representing time in seconds and the y-
axis corresponding to the delay (in ms) incurred . For
delay measurement, we send FTP traffic over TCP using a
traffic generation tool to transfer files over the network. We
consider all traffic to be part of the calculations including
background and foreground traffic. When LFA occurs, the
legitimate traffic faces delays which increases source to
destination delivery time of the packets. We use the ping
command to measure the RTT between the hosts in two
traffic intensities and measure the end-to-end network traffic
delay during the attack. In the low traffic intensity, the max-
imum delay incurred was around 173ms. Moreover, when
the attack was mitigated, the delay decreased significantly

International Journal of Intelligent Systems -Wiley, 2021

and remained around 71ms at around 90seconds time. The
maximum delay observed at the increased attack frequency
was around 400ms. Subsequent to the attack defense, the
delay became stable around 75ms. This shows that the delay
decreased significantly during both the experiments which
illustrates the efficiency of CyberPulse++ against LFA.

B. RESULTS FOR BANDWIDTH SATURATION

Bandwidth saturation measures the percentage of link capac-
ity consumption or degradation during the attack by flooding
flows. Fig. 9b demonstrates that the bandwidth saturation
increases with time. The adversaries initiate LFA traffic
towards the targets as soon as CyberPulse++ is executed on
the Ubuntu machine terminal. During LFA, bandwidth sat-
uration follows a proportional pattern with respect to time.
When the attack was mitigated, the saturation approached
a normal level. The figure shows that bandwidth saturation
dropped significantly when the attack was mitigated in both
the attack thresholds. It remained around 4.5Mbps after
the mitigation due to the legitimate traffic in the network
which does not pose a threat as it was still lower than the
link bandwidth. The impact of bandwidth saturation was
continuous which can exhaust the available bandwidth in
the absence of mitigation as can be observed in both graphs
(Fig. 9b).

C. RESULTS FOR ATTACK DETECTION TIME

When the flooding rate is low, flows in the network may
not consume a large amount of network resources thereby
allowing the attack to remain undetected and increases
the detection time. A large number of attackers consume
more network resources and can be easily detected hence,
attack detection time will be low. For this experiment, we
added more attackers, iteratively increasing the number of
attack hosts from 1 through 8. The attack detection time
with one host was around 147ms. The flooding intensity
increased with the increase in the number of attack hosts
due to the increase in the packet drop rate and bandwidth
saturation. The traffic intensities are increased which makes
the flooding flows prominent and can be detected in a shorter
period of time. The attack detection time with 8 attacking

13

R. Rasool et al.: CyberPulse++: A Machine Learning Based Security Framework for Detecting Link Flooding Attacks in Software Defined Networks

Delay (ms)

Input Load (Mbps)

400 |-

Low rate
—e— High rate| _|

Bandwidth Saturation (Mbps)

—=— Low rate
—e— High rate

I L |

Attack Detection Time (Sec)

I —=— Low rate e
—e— High rate

20 40 60 80 100 120 0 2 4 6 8
Time (Sec) Time (Sec) Number of Attackers
(a) (b) (©

—=— Low rate
—e— High rate

0 ! | | !

Throughput(Mbps)

—=— Low rate
—e— High rate

Flooding Rate (%)

100

80

60

40

20

—=— Low rate
—e— Hihgh rate
| | | | 1 | |

0 20 40 60 80 100 120 20 40 60 80 100 120 0 20 40 60 80 100 120
Time (Sec) Time (Sec) Time (Sec)
(@ ©) ®

FIGURE 9: CyberPulse++ evaluation graphs.

hosts was around 23ms. Fig. 9c shows that with the increase
in the number of attackers the detection time decreases.

D. RESULTS ON INPUT LOAD

Input load denotes the total traffic in the network including
flooding and benign. In our experiment, we can observe
that the input load increases with the increase in flooding
threshold. Fig. 9d shows the effect of flooding on the input
load which starts to increase when flood traffic is contin-
uously sent on the control channel link. This is because
the adversary was sending carefully crafted packets which
cause packet miss in the data plane switches. This instigates
new flow rule installation by requesting the controller. Thus
a frequent interaction with the controller causes the input
load on the control channel to increase significantly. Subse-
quently, the attack was mitigated which can be observed at
the maximum peak points in both of the graphs. Finally, we
can observe that there is still a certain amount of input load
on the links which is due to the benign traffic in the network.
Both graphs share a similar pattern during the experiment.

E. RESULTS FOR THROUGHPUT

Throughput can be defined as the data delivered per second
on a specific link. In this experiment, we measure network
throughput during LFA and illustrated in Fig. 9e. It can
be observed that the data has continuously been delivered

14

on the links which increased the throughput continuously.
However, CyberPulse++ was able to detect the attack and
mitigate causing the throughput to drop immediately. This
can be observed at the peak points in the graph.

F. RESULTS FOR FLOODING RATE

In this experiment, we observe the effect of LFA on the
SDN control channel. When flooding occurs, it increases the
number of flow rule installation requests to the controller.
With a sufficient number of such requests the control chan-
nel bandwidth is exhausted and this results in a performance
hit. We run the experiment with low and high attack traffic
and the results are presented in Fig. 9f. Both scenarios
demonstrate that the flooding rate instantaneously rises in
the start and approaches a peak value. The peak has been
observed because the flooding rate was increasing contin-
uously. CyberPulse++ incurs some delay in first capturing
and then classifying the flood traffic. Upon mitigation, a
decrease in the flooding threshold is observed.

The experimental results demonstrate that CyberPulse++
effectively defends LFA and provides seamless network
operation. Recent solutions against LFA like LinkScope
[6] and LFADefender [5] employ measurement agents for
network traffic measurements. CyberPulse++ does not rely
on agents thus avoiding measurement overhead on the
network. CyberPulse++ induces a smaller amount of time

International Journal of Intelligent Systems -Wiley, 2021

R. Rasool et al.: CyberPulse++: A Machine Learning Based Security Framework for Detecting Link Flooding Attacks in Software Defined Networks

in the flood traffic classification which may cause unwanted
resource consumption during the start of the attack.

VIl. CONCLUSION

Software Defined Networks have revolutionized traditional
networking by offering a flexible and centralized solution
to managing backbone networks. As ISPs and large or-
ganizations increasingly embrace the SDN revolution, new
challenges have come to the light. Among these, perhaps the
biggest one is that of securing networks against malicious
attacks that exploit the inherent vulnerabilities of the SDN
paradigm. Towards this end, this paper contributes to state-
of-the-art by presenting a novel framework and a complete
prototype: CyberPulse++, for the detection and mitigation
of LFA in SDN by utilizing ML-based classification tech-
niques. CyberPulse++ is a robust solution that mitigates
Link Flooding Attacks in real-time. Existing solutions in the
area mandate complex hardware for detection and defense,
but CyberPulse++ offers a unique advantage in that it oper-
ates on real-time traffic scenarios as well as utilizes multiple
ML classification algorithms for LFA traffic classification
without necessitating complex and expensive hardware.

Extensive experiments have been conducted to evaluate
the efficiency and effectiveness of CyberPulse++ on a
testbed. The ML component independently trains ten clas-
sification algorithms with high precision. The traffic gener-
ation and defense mechanism provide the implementation
flexibility to use any of the algorithms to classify the LFA
traffic and perform mitigation. CyberPulse++ provides real-
time network status graphs which enable efficient network
surveillance. CyberPulse++ is a novel yet practical solution
which can be easily integrated into existing deployments
for securing network environments against LFAs. Due to
the loosely coupled components, CyberPulse++ is highly
scalable and provides real-time network monitoring.

In the future, we plan to implement CyberPulse++ on
large testbeds and extend it by training on multiple datasets
for tackling a variety attacks, while simultaneously con-
ducting surveillance and analyzing the network behavior in
multiple attack conditions. Additionally, we aim to carry
out a comparative performance evaluation of CyberPulse++
against another solution with common attributes. To further
improve the performance we will consider pulling the flow
manager and classification modules from the controller and
performing them as part of a separate software module that
runs in parallel with the controller to reduce overhead. If
the controller and the additional software run on the same
machine, the communication time overhead between the two
components should be minimal. Once the efficiency and
effectiveness of the CyberPulse++ have been established,
we aim to contribute to the research community by releasing
the updated prototype binaries as well as the sources. We
believe that CyberPulse++ can be converted into an easily
deployable and robust multi-layer and multi-attack defense
mechanism.

International Journal of Intelligent Systems -Wiley, 2021

APPENDIX.
CyberPulse++ can be downloaded by the following link:
https://github.com/raihanrasool/Cyberpulse

REFERENCES

[1] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software defined networking
(sdn) and distributed denial of service (ddos) attacks in cloud computing
environments: A survey, some research issues, and challenges,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 1, pp. 602-622, 2016.

[2] M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire attack,” in In
proceedings of the IEEE Symposium on Security and Privacy, (SP), 2013,
pp. 127-141.

[3] D. Gkounis, V. Kotronis, C. Liaskos, and X. Dimitropoulos, “On the in-
terplay of link-flooding attacks and traffic engineering,” ACM SIGCOMM
Computer Communication Review, vol. 46, no. 2, pp. 5-11, 2016.

[4] M.S.Kang, V. D. Gligor, and V. Sekar, “Spiffy: Inducing cost-detectability

tradeoffs for persistent link-flooding attacks,” in Proc. of the Network and

Distributed System Security Symposium, (NDSS), 2016, San Diego, CA,

USA, pp. 1-16.

J. Wang, R. Wen, J. Li, F. Yan, B. Zhao, and F. Yu, “Detecting and

mitigating target link flooding attacks using sdn,” IEEE Transactions on

Dependable and Secure Computing, 2018, In press.

[6] L. Xue, X. Ma, X. Luo, E. W. Chan, T. T. Miu, and G. Gu, “Linkscope:

Toward detecting target link flooding attacks,” IEEE Transactions on

Information Forensics and Security, vol. 13, no. 10, pp. 2423-2438, 2018.

A. Studer and A. Perrig, “The coremelt attack,” in In proceedings of the

European Symposium on Research in Computer Security, 2009, pp. 37—

52.

[8] F. J. Ryba, M. Orlinski, M. Wihlisch, C. Rossow, and T. C. Schmidt,

“Amplification and drdos attack defense a survey and new perspectives,’

arXiv preprint arXiv:1505.07892, 2015.

T. Hirayama, K. Toyoda, and I. Sasase, “Fast target link flooding attack

detection scheme by analyzing traceroute packets flow,” in Proc. IEEE Int.

Workshop on Information Forensics and Security (WIFS), 2013, Rome,

Italy, pp. 1-6.

[10] Q. Wang, F. Xiao, M. Zhou, Z. Wang, and H. Ding, “Mitigating link-
flooding attacks with active link obfuscation,” Networking and Internet
Architecture, pp. 1-14, 2017, arxiv.

[11] R. ur Rasool, M. Najam, H. F. Ahmad, H. Wang, and Z. Anwar, “A novel
json based regular expression language for pattern matching in the internet
of things,” Journal of Ambient Intelligence and Humanized Computing,
vol. 10, pp. 1463-1481, 2018.

[12] R. U. Rasool, U. Ashraf, K. Ahmed, H. Wang, W. Rafique, and Z. Anwar,
“Cyberpulse: A machine learning based link flooding attack mitigation
system for software defined networks,” IEEE Access, vol. 7, pp. 34 885—
34899, 2019.

[13] M. Zhou and J. Liu, “A two-phase multiobjective evolutionary algorithm
for enhancing the robustness of scale-free networks against multiple
malicious attacks,” IEEE Transactions on Cybernetics, vol. 47, no. 2, pp.
539-552,2017.

[14] S. Wang and J. Liu, “Designing comprehensively robust networks against
intentional attacks and cascading failures,” Information Sciences, vol. 478,
pp. 125-140, 2019.

[15] D. Gkounis, “Cross-domain dos link-flooding attack detection and mitiga-
tion using sdn principles,” MSc Th.,Information Technology and Electrical
Engineering Department, ETH Zurich, Zurich, Switzerland, 2014.

[16] X. Ma, J. Li, Y. Tang, B. An, and X. Guan, “Protecting internet infras-
tructure against link flooding attacks: A techno-economic perspective,”
Information Sciences, vol. 479, pp. 486 — 502, 2019.

[17] M.S. Kang and V. D. Gligor, “Routing bottlenecks in the internet: Causes,
exploits, and countermeasures,” in Proc. ACM SIGSAC Conf. on Computer
and Communications Security, 2014, Scottsdale, Arizona, USA, pp. 321-
333.

[18] H. Luo, Z. Chen, J. Li, and A. V. Vasilakos, “Preventing distributed

denial-of-service flooding attacks with dynamic path identifiers,” /IEEE

Transactions on Information Forensics and Security, vol. 12, no. 8, pp.

1801-1815, 2017.

F. Gillani, E. Al-Shaer, S. Lo, Q. Duan, M. Ammar, and E. Zegura, “Agile

virtualized infrastructure to proactively defend against cyber attacks,”

in IProc. IEEE Conference on Computer Communications (INFOCOM),

2015,San Francisco, CA, USA, pp. 729-737.

&

[7

=

=
X2

15

R. Rasool et al.: CyberPulse++: A Machine Learning Based Security Framework for Detecting Link Flooding Attacks in Software Defined Networks

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

P. Xiao, Z. Li, H. Qi, W. Qu, and H. Yu, “An efficient ddos detection with
bloom filter in sdn,” in Proc. IEEE Conference on Trustcom BigDataSE, 1
SPA, 2016, Tianjin, China, pp. 1008-1015.

A. Aydeger, N. Saputro, K. Akkaya, and M. Rahman, “Mitigating crossfire
attacks using sdn-based moving target defense,” in Proc. 41st Conference
on Local Computer Networks, (LCN), 16, Dubai, United Arab Emirates,
pp. 627-630.

L. Wang, Q. Li, Y. Jiang, X. Jia, and J. Wu, “Woodpecker: Detecting and
mitigating link flooding attacks via sdn,” Computer Networks, vol. 147,
pp. 1-13,2018.

G. Shang, P. Zhe, X. Bin, H. Aiqun, and R. Kui, “Flooddefender: Pro-
tecting data and control plane resources under sdn-aimed dos attacks,”
in Proc. IEEE Conference on Computer Communications (INFOCOM),
2016, Atlanta, GA, USA, 2017, pp. 1-9.

H. Wang, L. Xu, and G. Gu, “Floodguard: A dos attack prevention
extension in software-defined networks,” in Proc. 45th Annual IEEE/IFIP
Int. Conf. on Dependable Systems and Networks, 2015, Rio de Jeneiro, pp.
239-250.

S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-guard: Scalable
and vigilant switch flow management in software-defined networks,” in
Proc. ACM SIGSAC conf. on Computer & communications security, 2013,
Berlin, Germany, pp. 413—424.

R. Mohammadi, R. Javidan, and M. Conti, “Slicots: An sdn-based
lightweight countermeasure for tcp syn flooding attacks,” IEEE Transac-
tions on Network and Service Management, vol. 14, no. 2, pp. 487-497,
2017.

M. Zhang, J. Bi, J. Bai, and G. Li, “Floodshield: Securing the sdn infras-
tructure against denial of service attacks,” in Proc. IEEE 17th Int. Conf.
On Trust, Security And Privacy In Computing and Communications/12th
IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), 2018, New York, NY, USA, pp. 687-698.

C. Li, Y. Wu, X. Yuan, Z. Sun, W. Wang, X. Li, and L. Gong, “Detection
and defense of ddos attack based on deep learning in openflow based sdn,”
International Journal of Communication Systems, vol. 31, no. 5, p. €3497,
2018.

T. Wang, Z. Guo, H. Chen, and W. Liu, “Bwmanager: Mitigating denial
of service attacks in software defined networks through bandwidth predic-
tion,” IEEE Transactions on Network and Service Management, vol. 15,
no. 4, p. 12351248, 2018.

J. Zheng, Q. Li, G. Gu, J. Cao, D. K. Yau, and J. Wu, “Realtime ddos
defense using cots sdn switches via adaptive correlation analysis,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 7, pp.
1838-1853, 2018.

A. Kalliola, K. Lee, H. Lee, and T. Aura, “Flooding ddos mitigation and
traffic management with software defined networking,” in Proc. IEEE Int.
Conf. on Cloud Networking (CloudNet), 2015,Niagara Falls, Canada, pp.
248-254.

F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, “Evaluation of ma-
chine learning classifiers for mobile malware detection,” Soft Computing,
vol. 20, no. 1, pp. 343-357, 2016.

Z. He, T. Zhang, and R. B. Lee, “Machine learning based ddos attack
detection from source side in cloud,” in Proc. IEEE 4th Int. Conf. on Cyber
Security and Cloud Computing (CSCloud), 2017, New York, USA, pp.
114-120.

X. N. Zeng, A. Ghrayeb, and M. Hasna, “Joint optimal threshold based
relaying and ml detection in network coded two way relay channels,” IEEE
Transactions on Communications, vol. 60, no. 9, pp. 2657-2667, 2012.
G. A. Ajaeiya, N. Adalian, I. H. Elhajj, A. Kayssi, and A. Chehab, “Flow-
based intrusion detection system for sdn,” in Proc. IEEE Symposium on
Computers and Communications (ISCC), 2017, Heraklion, Greece, 2017,
pp. 787-793.

Y.-H. Chen, Y.-C. Lai, P.-T. Jan, and T.-Y. Tsai, “A spatiotemporal-oriented
deep ensemble learning model to defend link flooding attacks in iot
network,” Sensors, vol. 21, no. 4, p. 1027, 2021.

X. Chen, W. Feng, N. Ge, and X. Wang, “Defending link flooding attacks
under incomplete information: A bayesian game approach,” in ICC 2020-
2020 IEEE International Conference on Communications (ICC). 1EEE,
2020, pp. 1-6.

A. Rajab, C.-T. Huang, and M. Al-Shargabi, “Decision tree rule learning
approach to counter burst header packet flooding attack in optical burst
switching network,” Optical Switching and Networking, vol. 29, pp. 15 —
26, 2018.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]
[49]

[50]

M. Latah and L. Toker, “Artificial intelligence enabled software-defined
networking: a comprehensive overview,” IET Networks, vol. 8, pp. 79-99,
2018.

T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay et al., “Jupyter
notebooks-a publishing format for reproducible computational work-
flows.” in ELPUB, 2016, pp. 87-90.

R. A. Cuninghame-Green, Minimax algebra.
ness Media, 2012, vol. 166.

D. D. Lewis, “Naive (bayes) at forty: The independence assumption in
information retrieval,” in Proc. Springer European Conf. on Machine
Learning (ECML), 1998,Chemnitz, Germany, pp. 4-15.

L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123-140, 1996.

S. R. Safavian and D. Landgrebe, “A survey of decision tree classi-
fier methodology,” IEEE transactions on systems, man, and cybernetics,
vol. 21, no. 3, pp. 660-674, 1991.

O. Kramer, Dimensionality reduction with unsupervised nearest neigh-
bors. Springer, 2013.

P. Peduzzi, J. Concato, E. Kemper, T. R. Holford, and A. R. Feinstein, “A
simulation study of the number of events per variable in logistic regression
analysis,” Journal of clinical epidemiology, vol. 49, no. 12, pp. 1373-1379,
1996.

M. W. Gardner and S. Dorling, “Artificial neural networks (the multilayer
perceptron)—a review of applications in the atmospheric sciences,” Atmo-
spheric environment, vol. 32, no. 14-15, pp. 2627-2636, 1998.

A. Liaw and M. Wiener, “Classification and regression by randomforest,”
R news, vol. 2, no. 3, pp. 18-22, 2002.

L. Bottou, Large-scale machine learning with stochastic gradient descent.
Physica-Verlag HD, 2010, Paris France, pp. 177-186.

C.-W. Hsu, C.-C. Chang, C.-J. Lin et al., “A practical guide to support
vector classification,” Taipei: Paper available at http://www. csie. ntu. edu.
w/ cjlin/papers/guide/guide. pdf, 2003.

Springer Science & Busi-

International Journal of Intelligent Systems -Wiley, 2021

