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ABSTRACT 

The use of wearable technology in team sports to quantify physical activity during 

training and competition is now ubiquitous. Coaches typically use information derived 

from player tracking technologies such as Global Positioning Systems (GPS) to prescribe 

and monitor training. If coaches prepare players relative to the average intensity of 

competition, they will be underprepared for the rigors of competiton. Despite the majority 

of team sport competition being spent at submaximal intensity, high-intensity activities 

are often aligned with key events that determine match outcome. Therefore, coaches 

should periodically expose players to the physical worst-case scenarios of competition, 

whilst concurrently training tactical and technical qualities so that players may  

thrive and not simply survive during these intense periods of match-play. Understanding 

the utility of player tracking technologies, measures and analysis techniques for 

identifying and quantifying peak periods of competition enables coaches to more 

accurately interpret and use the data to inform match-specific training practices. This 

series of studies sought to identify, quantify and characterise the most intense periods of 

professional rugby competitions and periods thereafter with the aim of helping coaches 

to prescribe and monitor training that is more representative of competition and aid 

match-day tactical decisions.   

Despite tri-axial accelerometers being embedded within GPS devices, their use for 

quantifying intense periods of team sport movement in research and practice is limited. 

Study one (Chapter 3) found that accelerometers outperformed GPS in quantifying 

positional and match-half peak intensity differences during rugby competition, identified 

using rolling epoch analysis. Accelerometers provided meaningful additional information 
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to GPS technology that may aid practitioners in physically preparing and monitoring 

rugby players. Study two (Chapter 4) assessed the sensitivity, reliability and convergent 

validity of GPS and accelerometer measures for quantifying peak intensities of rugby. 

The poor sensitivity and low reliability of GPS and accelerometer measures implied that 

rugby players need to be monitored across many matches to obtain adequate precision for 

assessing individuals. Study three (Chapter 5)  examined factors that may influence peak 

intensities of rugby competition, such as exercise duration, positional group, match-half, 

level of competition, within-season trends and time spent on field. Findings provide 

professional rugby coaches with duration- and position-specific intensities to aid 

prescription and monitoring of match-specific training, whilst improving broader 

understanding of factors that influence player movement intensity. Study four (Chapter 

6) sequentially tracked the time-course of exercise intensity declines post the most intense 

periods of rugby competition using novel analysis. Exercise intensity declined sharply 

post the most intense periods of competition, falling below the match average intensity 

and rarely returning shortly thereafter. Findings may inform tactical match decisions and 

match representative training prescription and monitoring. Finally, study five (Chapter 7) 

established that professional rugby peak intensities of competition can be accurately 

predicted from exercise duration using power law statistical modelling, irrespective of 

playing position, match-half, level of competition or measure of exercise intensity. Novel 

insights on model prediction error as well as the patterns of error as a function of time 

may assist coaches to accurately interpret and use power law to prescribe and monitor 

match-specific training. 
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EPOC    excess post-exercise oxygen consumption  

GAS   general adaptation syndrome 

SSG    small-sided games 

V̇O2max  maximal oxygen uptake 

Measurement 

au   arbitrary units 

cm    centimetre 

COM    centre of mass 

DOP   dilution of precision 

g    gravitational acceleration 

HDOP    horizontal dilution of precision 

hr    hour 

Hz    Hertz 

kcal.min-1  kilocalorie per minute 

kg    kilogram 
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min    minute 
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s    second 
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W∙kg-1   Watts per kilogram 

Measurement systems 

GPS   Global Positioning Systems 

LPS    local positioning system 

MEMS   micro-electrical-mechanical system 

TMA   time-motion analysis 

Sports leagues 

AFL    Australian Football League 

EPL   English Premier League 

NFL   National Football League 

NRC   National Rugby Championship 

NRL   National Rugby League 

S15   Super 15 Rugby 

Physical activity 

HS    high-speed 

PlayerLoadTM  tri-axial accelerometer-derived external load  

PlayerLoadTMSlow PlayerLoadTM at movement speeds below 2m.s-1 

RHIE    repeated high-intensity efforts 

 

Statistical 

CV    coefficient of variation 

CL    compatibility limit 

CI    compatibility interval 

ES   effect size 



 

iii 

 

ICC   intraclass correlation coefficient 

LoA   limits of agreement 

MBD   magnitude-based decisions 

p   probability value 

r   Pearson's correlation coefficient 

R2   Pearson’s r squared, coefficient of determination 

SD    standard deviation 

SEE    standard error of the estimate 

SWD    smallest worthwhile difference 

TE    typical error 

TEM    typical error of measurement 

Symbols 

%    percentage 

~    approximately 

<    less than 
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≥    greater than or equal to 

±    plus/minus 

↑    increase 
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1. CHAPTER 1: INTRODUCTION 

 

1.1 Background & Research Problem 

The physical preparation of team sport athletes is pivotal to performance. Enhanced 

physical and physiological qualities improve the likelihood of athletes effectively 

executing technical skills and tactical roles that may influence match outcome (Mooney 

et al., 2011). The first step in enhancing the training process is accurately quantifying 

what the athlete is physically doing (Borresen et al., 2009). Understanding the 

frequency, intensity, time and type of movements that team sport athletes complete 

during competition, (i.e. their activity profile) is critical for the design of training that 

replicates (i.e. is specific to) or exceeds that of matches to adequately prepare athletes 

for the rigors of competition (Reilly et al., 2009).   

Player tracking systems have evolved substantially over the past 30 years, from pen and 

paper based methods, to the use of video recordings, to more sophisticated wearable 

electronic tracking devices (Edgecomb et al., 2006), such as Global Positioning 

Systems (GPS) and inertial sensors. Not only have player tracking systems evolved, but 

so to have the methods for analysing the data collected by these systems. Global 

Positioning Systems capture hundreds of movement variables, often ten times per 

second (10 Hz). Player tracking data analysis has progressed from predominantly 

reporting absolute movement measures (e.g. total distance - meters) towards relative 

measures (e.g. relative distance – m.min-1) (Aughey, 2011). Relative measures give an 

indication of the intensity of movement performed, whilst absolute measures indicate 

the total volume of movement completed. Because relative measures signify the 

physical output of a player relative to the time they spent on the field, they allow for 
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fair comparison of the movement intensity between whole-match and substitution 

players, as well as comparison between football codes that have different match 

durations (Aughey, 2011). Relative measures represent an average movement intensity 

over a given period of a training session or match (e.g. drill, quarter, half, rotation etc.) 

and are often used by coaches to prescribe training intensity that replicates that of 

competition during game-based training such as small-sided games (Farrow et al., 

2008). However, if training is prescribed relative to the average intensity of a match, 

players will likely be under-prepared for the most intense or peak periods of 

competition (Delaney et al., 2016d). 

Team sports are characterised by low-intensity activity interspersed with frequent bouts 

of high-intensity activity (Aughey, 2010; Deutsch et al., 2007). Despite the majority of 

team sport competition being spent at submaximal intensity, high-intensity activities 

are often aligned with key events that determine match outcome (Faude et al., 2012; 

Gabbett et al., 2016), signifying the importance of physically conditioning athletes for 

these intense periods of match-play. The most intense periods of a match do not often 

fall completely within a pre-defined period of time (e.g. 0-5, 5-10, 10-15 minutes etc.) 

and therefore these analysis methods may underestimate the most intense periods of 

match-play and overestimate subsequent periods of activity (Varley et al., 2012a). To 

solve this problem, practitioners and researchers were recommended to use rolling 

epoch analysis (i.e. epochs from every sampled time point: 0.0 -5.0, 0.1 - 5.1, 0.2 - 5.2 

minutes etc.) when attempting to quantify duration-specific peak intensities of 

competition (Delaney et al., 2015; Varley et al., 2012a).  

Duration- and position-specific player movement differences have been observed 

during the most intense periods of match-play across various football codes including: 

rugby league (Delaney et al., 2015), rugby union (Delaney et al., 2016d), Australian 
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Rules Football (Delaney et al., 2017a) and soccer (Delaney et al., 2017b). These 

investigations provided valuable insights into the highly intermittent nature of team 

sport movement and highlighted that rolling time-motion analyses may assist 

practitioners in the design and prescription of training that is more representative and 

specific to competition. However, there are still many gaps in scientific knowledge 

when it comes to quantifying and characterising the peak intensities of team sport 

competition. For example, the sensitivity, reliability and convergent validity of 

wearable player tracking systems for quantifying peak intensities of team sport 

competition is not known, limiting a practitioner’s ability to interpret and use such data 

to inform practice. There is also a scarcity of research using inertial sensor (e.g. 

accelerometer) technology for quantifying peak periods of team sport competition, 

which is surprising given the reduced accuracy of GPS for quantifying high-velocity 

and acceleratory movements that frequently occur in team sports (Boyd et al., 2013; 

Jennings et al., 2010; Rawstorn et al., 2014). Other poorly understood phenomena that 

will be examined throughout this thesis include: quantifying activity profiles post peak 

periods of competition, quantifying peak player intensities over very short durations 

(<1 minute), quantifying peak movement intensity between match-halves and between 

levels of competition within the same football code (rugby). Characteristics of the peak 

intensity periods of rugby competition such as the time of the match they occur, within-

season trends and whether time on field influences player peak movement intensity will 

also harvest innovative findings. Lastly, this thesis will explore power law modelling 

of the decrement in peak movement intensity as exercise duration increases during 

professional rugby competition, providing coaches with a simple method for modelling 

the peak periods of competititon as a function of time. 
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The use of accelerometer technology to quantify peak movement periods of competition 

in this series of studies may reveal new insights that could improve training monitoring 

and prescription practices, alongside the more commonly reported GPS measures. 

Improved understanding of the reliability, sensitivity and convergent validity of 

wearable technology measures used to determine peak intensities of competition will 

assist practitioners interpreting the accuracy and reproducibility of peak movement 

data, thereby informing subsequent training monitoring and prescription decisions. 

Further, various statistical analyses will be conducted throughout the series of studies 

to yield novel insights into factors that may influence and characterise peak intensity 

periods, providing greater context and understanding of these competition worst-case 

scenarios. 

Identification and quantification of the peak intensity periods of competition and the 

inevitable decline in intensity during the periods following could inform coaching 

decisions on team and/or individual player substitutions or rotations during 

competition, if built into real-time software. Another practical application of such data 

could be to use the activity profile data collected during and post the peak intensity 

periods of competition to replicate the ‘work’ and ‘active rest’ period intensities and 

durations during small-sided games training. The time-motion analyses conducted 

within this thesis could also be used to evaluate the impact of rule changes (e.g. 

substitution/rotation number changes) on player peak intensities of competition. 

Altogether, accurate quantification and characterisation of the peak intensities of 

competition allows coaches to better prepare their athletes for the worst-case scenarios 

of competition. The intensity of training can be referenced against the peak periods of 

activity during competition to ensure the players are prepared for the rigours of match-

play in a position- and duration-specific manner (Delaney et al., 2016d). This practice 
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would theoretically increase the likelihood of players thriving and not just surviving 

during the peak periods of competition due to a reduced relative intensity for the 

adapted athlete. Coaches need to expose their athletes to very intense periods of training 

in a periodised manner using game-based methodologies such as small-sided games to 

elicit physiological adaptations, reduce injury likelihood and improve athlete readiness 

to perform when confronted with worst-case scenarios during competition. The aim of 

this thesis is to provide novel insights to help coaches and sport scientists understand, 

interpret, monitor and prescribe training that is specific to the peak intensities of 

competition. 
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1.2 Purpose of Studies  

 

Chapter 3 – Study 1 

Quantifying important differences in athlete movement during collision-based 

team sports: accelerometers outperform global positioning systems. 

 

Aim: To determine the effectiveness of GPS and accelerometer technologies for 

detecting differences in measures of maximum mean (peak) movement between 

positions and halves during professional rugby union match-play using a 600 s rolling 

average epoch.  

 

Chapter 4 – Study 2 

Sensitivity, reliability and convergent validity of GPS and accelerometer 

measures for quantifying rugby union match-play. 

 

Aim: To determine the utility (i.e. sensitivity, reliability and convergent validity) of 

wearable global positioning systems (GPS) with an integrated accelerometer for 

quantifying differences in maximum mean movement (5 s to 600 s) within and between: 

individuals; playing positions; match halves; and level of competition during rugby 

union match-play. 
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Chapter 5 – Study 3 

Factors influencing the peak periods of elite and sub-elite  

rugby union competition 

 

Aim: Quantify and characterise the most intense periods of rugby union competition 

within and between individuals, examining factors that may influence peak intensities:  

 Epoch durations (5 s to 600 s),  

 Playing positions (forwards, backs),  

 Match-halves (first, second),  

 Levels of competition (elite vs sub-elite),  

 Within-season trends,  

 Influence of time on field,  

 Time of the game peak periods occur. 

 

Chapter 6 – Study 4 

Rugby union activity profiles post peak periods of competition 

 

Aim:  Quantify and characterise rugby union athlete activity profiles immediately post 

the most intense periods of professional competition. 

 

Chapter 7 – Study 5 

Modelling professional rugby peak intensity-duration relationships  

using power law 

 

Aim: Model the peak intensities of professional rugby competition as a function of time 

using power law and establish prediction model accuracy. 
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2. CHAPTER 2: REVIEW OF LITERATURE 

2.1 The Training Process 

Physical exercise represents a stress to the human body, challenging the maintenance 

of a constant internal environment, known as homeostasis (Marieb et al., 2007). Several 

physiological negative feedback mechanisms attempt to negate the changes away from 

homeostasis that exercise stress provokes, with the human body’s response to stress 

first described by the General Adaptation Syndrome (GAS) (Selye, 1950).  

The GAS theoretical framework divides the human response to stress into three phases: 

alarm reaction, resistance and exhaustion (see Figure 2.1) (Carlson et al., 2010). The 

alarm reaction phase represents the body’s immediate state of shock to an alarming 

stress (e.g. exercise). The degree of shock to the body depends on the severity of the 

stress (e.g. exercise intensity) relative to the individual’s level of normal resistance (e.g. 

physiological capacity). Post the alarm reaction phase, the body enters a resistance 

phase where it attempts to restore homeostasis and increase the body’s previous level 

of stress resistance or tolerance (Selye, 1956). The body then adapts to the stress and 

increases physiological capacity above baseline via a process known as 

supercompensation (see Figure 2.2), primarily so that it is able to cope with that same 

stress if exposed to it again in the future. However, if a stress exceeds an individual’s 

adaptive capability or if additional stress is imposed before the individual has recovered 

from the initial stress, the third exhaustion stage may ensue (Selye, 1965). The 

exhaustion stage is characterised by a reduction in resistance to stress levels below 

baseline, increasing the likelihood of illness, injury and poor physical performance.   
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Physical exercise training can be defined in terms of its process and its outcome (Figure 

2.3) (Impellizzeri et al., 2005). The training process is characterised by the systematic 

repetition and manipulation of physical exercises (Viru et al., 2000). The aim of the 

training process is to enhance training outcomes such as physical work capability. As 

exemplified by the GAS and supercompensation models, a balance between training 

stress and recovery is required to drive supercompensation and positive training 

outcomes. In order for desired physiological adaptations to occur by a pre-determined 

time (i.e. day of competition), an individual’s training should be systematically 

sequenced, progressed and applied via discrete training periods, known as training 

periodisation (Issurin, 2010; Matveyev, 1964).  

Training load can be broadly split into two distinct categories: external and internal load 

(Impellizzeri et al., 2005; Wallace et al., 2014b). External load refers to how much 

physical work an athlete completed (e.g. distance covered) independent of the athletes 

internal characteristics (Wallace et al., 2009). Alternatively, internal load refers to the 

relative physiological and psychological stress imposed on the athlete (Impellizzeri et 

al., 2005; Viru et al., 2000) (Figure 2.3). For team sport athletes, all training sessions 

 
 

Figure 2.1 The three General Adaptation Syndrome stages. Reproduced from 

(Carlson et al., 2010). 
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including competitive matches contribute to training load. The first step in enhancing 

the training process is accurately quantifying what the athlete is physically doing 

(external load) (Borresen et al., 2009). Objective data on athlete movement during 

training and competition gives coaches feedback that may inform training design and 

prescription, to appropriately periodise the training stress to balance fitness and fatigue 

(Banister, 1991) to adequately prepare athletes for competition. The following sections 

will introduce the football codes, generalise activity profiles of these team sports, 

discuss factors that may influence movement and lastly, consider how movement may 

be measured, analysed and applied. 

 

  

 

Figure 2.2 The supercompensation cycle, showing the trend of work capability 

following a single load. Reproduced from (Issurin, 2010), original works from: 

(Yakovlev, 1955). 
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2.2 Team Sport – Football Codes 

Football codes including: soccer, rugby, rugby league, Australian Rules Football 

(AFL), Gaelic Football and American Football (NFL) have large participation rates, 

stadia crowd attendances, video and audio broadcasting viewers/listeners and revenue.  

An audience of 3.57 billion tuned in to watch at least one minute of the Russia 2018 

FIFA World Cup, according to research published by Publicis Media Sport & 

Entertainment (Clinch, 2018). Astoundingly, these 3.57 billion viewers represented 

approximately half of the World’s 7.7 billion population at the time. The final on July 

15, 2018 between France and Croatia drew a global audience of 1.12 billion according 

to the sport research company’s report. At the turn of the century, approximately 250 

million people played association football (i.e. soccer) around the globe, hence being 

 

Figure 2.3 Theoretical framework of the training process. Reproduced from: 

(Impellizzeri et al., 2019), adapted from original author model: (Impellizzeri et al., 

2005). 
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touted “The World Game” by many. Whilst not of the same scale, the 2019 Rugby 

World Cup held in Japan broke national television broadcast records for the most-

watched Japanese live event, with over 25 million tuning in to watch the host nations 

pool group 38-19 victory over Samoa (Menezes, 2019). 

Although the other football codes do not have anywhere near the global participation 

rates or revenue generating capacity that soccer does, they still have immense economic 

(Leeds et al., 2018), social (Coalter, 2007), political and cultural impact (Markovits et 

al., 2013). Due to society’s interest in sports and its impact on various aspects of life, it 

has become big business for professional leagues and teams. With so much at stake, 

winning is everything in professional sport and a lot of people care about their team’s 

performance and results for a variety of reasons. Sporting performance on match day 

can be attributed to a myriad of factors (Polman et al., 2004), with one factor being the 

physical output of players. It is for this reason that coaches, sport scientists, strength 

and conditioning coaches, physiotherapists, dietitians, doctors and other allied health 

professionals work very hard to ensure that football players are physically prepared to 

perform during the rigors of competition.  

The first step in enhancing the training process and physical preparation of athletes is 

to accurately quantify their movements (Borresen et al., 2009). Accurate quantification 

of movement facilitates improved understanding of player activity profiles that may 

guide training planning and prescription. For example, if the movement of athletes 

during competition is accurately measured, coaches may use this objective information 

to prescribe training that is more specific and representative of competition. Football 

movement may be measured using several time-motion analysis (TMA) methods, 

including optical systems, global positioning systems and local positioning systems, 

which will be the topic of latter sections. 
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Table 2.1: Football code characteristics 

 Rugby Rugby League 
Australian 

Rules Football 

National 

Football 

League 

Association 

Football 

(Soccer) 

Gaelic  

Football 

No. of Fielded Players 

(Total) 
30 26 36 22 22 30 

No. Fielded Players 

(Team) 
15 13 18 11 11 15 

No. Bench Players 8 4 4 35 5 to 7 15 

No. of Substitutions 8 8-12 90 rotations Unlimited 3 6 

Field Shape Rectangular Rectangular Oval Rectangular Rectangular Rectangular 

Field Playing Area 7,000 m2 7,000 m2 
15,000-18,000 

m2 
~ 6,400 m2 8,250 m2 10,000-13,000 m2 

Player Density 233 m2 233 m2 436-516 m2 291 m2 375 m2 333-435  m2 

Match Duration 80 mins 80 mins 100 mins 60 mins 90 mins 60 mins 

Match Period Durations 
Halves, 40 

mins 
Halves, 40 mins 

Quarters, 25 

mins 

Quarters, 15 

mins 

Halves, 45 

mins 
Halves, 30 mins 

Full-Contact Permitted Yes Yes Yes Yes No Yes 

Offside Rule  

(i.e. 10m/line scrimmage) 
Yes Yes No Yes No No 

Handling of ball allowed Yes Yes Yes Yes No Yes 

Forward Passes Allowed No No Yes Yes Yes Yes 
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2.3 Football Activity Profiles 

2.3.1 Physical demands or activity profile? 

Descriptive football movement research is typically described as measuring the 

physical ‘demands’ of competition. However, player tracking systems such as GPS 

measure the physical output of players, not the ‘demands’ of competition (Aughey, 

2011). There is no way to gauge if a player has actually met the ‘demands’ of 

competition, and if they happen to fatigue then the ‘demands’ of the sport evidently 

have not been met. It is for these reasons that the term activity profile is more technically 

correct and should be used to describe time-motion analyses (Aughey, 2011). 

2.3.2 Typical activity profile of footballers 

Football code activity profiles are characterised by brief bouts of high-intensity running 

interspersed with longer periods of low-intensity activity (Rampinini et al., 2007a) 

(Duthie et al., 2003). Figure 2.4 clearly illustrates the chaotic and stochastic nature of 

team sport movement with running velocity peaks and troughs.  Despite the majority of 

team sport movement being conducted at low velocities (i.e. walking or jogging 

speeds), the higher intensity activities are often aligned with key events that determine 

match outcome such as goal scoring (Aughey et al., 2013a; Faude et al., 2012; Gabbett 

et al., 2016). Straight sprinting was the most frequent action performed immediately 

prior to goal scoring in professional soccer, occurring in 45% of 360 goal scoring 

situations (Faude et al., 2012). Similarly in rugby league, approximately 56% of 2083 

repeated high-intensity efforts occurred within 5 minutes of either scoring or defending 

a try during 21 semi-professional matches across 11 teams (Gabbett et al., 2016). 

Therefore, conditioning football players for the most intense periods of competition is 

imperative to match outcome and is central to the purpose of this thesis. 
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During football competition, high-intensity efforts are often short lived and commence 

from a low velocity (Figure 2.4). During professional soccer competition, players 

performed maximal accelerations (> 2.78 m.s-2) eight fold more frequently than 

sprinting (> 6.94 m.s-1 to < 10 m.s-1) (Varley et al., 2013a). In addition, approximately 

85% of the maximal accelerations did not exceed the commonly used high-speed 

running threshold of 4.17 m.s-1 (Varley et al., 2013a). Similarly in AFL, unpublished 

observations using the same speed and acceleration thresholds as the previously 

mentioned study found that AFL players complete ~ 5 times greater maximal 

accelerations than sprints (Figure 2.5) (Aughey, 2011). In a study comparing the 

activity profiles of professional soccer, rugby league and AFL players, repeat sprint 

bouts were uncommon during competition across all football codes (Varley et al., 

2013b). These findings help to debunk the myth and commonly perceived notion that 

repeated sprint ability is crucial for team sport athletes. Furthermore, the high frequency 

Figure 2.4 Typical GPS velocity trace from a team sport athlete. Reproduced from 

(Aughey et al., 2013a). 
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of maximal accelerations during football competition highlights the importance of 

developing athlete’s acceleratory abilities, and demonstrate that low speed acceleratory 

movements are still high-intensity in nature given their known high metabolic cost 

(Osgnach et al., 2010).  Exclusion of acceleratory movements that occur at low speeds 

from analyses would consequently underestimate high-intensity activity of football 

athletes (Varley, 2013).  

 

 

The locomotor profile of football athletes is largely dependent on the frequency and 

severity of contacts, collisions and tackles. For example, running load decreases in 

small-sided games that permit contact compared to non-contact games (Gabbett et al., 

2012a). Further, an inverse relationship between the number of contact efforts 

completed and high-speed running distances has been observed during game-based 

rugby league activities (Johnston et al., 2015a). 

Figure 2.5 The average number of maximal accelerations and sprint efforts per 

match (mean ± SD) in elite Australian footballers. Acceleration data relate to 2.78 

to 10 m.s-2 and for sprints > 6.94 m.s-1. Reproduced from (Aughey, 2011). 
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The nature of two or more human bodies colliding at high velocities frequently exposes 

players to muscle damage and increased injury likelihood (Hendricks et al., 2010). 

Tackles were the most common contact event during professional rugby competition, 

with an average of 221 tackles per match (Fuller et al., 2007). It is of no surprise then 

that tackle-related injuries account for up to 61% of all player injuries during rugby 

competition (Hendricks et al., 2010). Physical collisions cause muscle damage that may 

contribute to reduced player movement thereafter, with correlations reported between 

rugby tackle count and both peak myoglobin and creatine kinase activity (Takarada, 

2003). Given this, practitioners must accurately quantify the frequency and magnitude 

of tackles and other collision-based events if they want to be able to adequately 

contextualise the activity profile of football players. Automatic rugby tackle detection 

algorithms applied to wearable accelerometer data have demonstrated criterion validity, 

being able to consistently identify collisions with negligible false positives and false 

negatives and recall and precisions ratings of 0.93 and 0.96 respectively (Kelly et al., 

2012).  

A rugby player’s ability to win tackle contests may influence match outcome (Gabbett 

et al., 2009). To evade or engage in tackling an opponent, players must change direction 

rapidly via deceleration and acceleration (Varley et al., 2013b). Completing frequent 

changes of direction to avoid opponents limits the ability of players to reach high 

running velocities, emphasising the importance of developing the acceleratory capacity 

of footballers. Altogether, collision-based events have a substantial impact on football 

activity profiles, injury risk and match outcome and should be quantified accordingly 

to aid subsequent recovery and training prescription practices. 

During the opening keynote of the inaugural World Congress of Science and Football 

(Liverpool, 1987), similarities were drawn between the football codes and common 
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research areas, one being the activity profile of players (Douge, 1988). The speaker 

stressed that specific components of each football code were interrelated and 

encouraged knowledge transfer between codes (Douge, 1988). Whilst there are indeed 

several similarities between the football codes (e.g. invasion sports that are played with 

a ball, intermittent in nature, on a natural/artificial grass field), a plethora of factors 

(Table 2.2) may influence football activity profile differences between the codes and is 

the topic of the following section. Chapter 5 will explore some factors that may 

influence peak movement intensities of rugby competition. 

2.4 Factors Influencing Football Activity Profiles 

The nature of football movement is very complex and relates to a host of factors. Factors 

that may influence football movement have been broadly classified into: situational 

factors, match-related factors and individual player characteristics (Kempton et al., 

2015a). Situational factors relate to things such as opposition strength (Gabbett, 2013) 

and between match recovery time (Murray et al., 2014). Match-related factors that may 

influence movement include but are not limited to; possession status (Gronow et al., 

2014) match scoreline (Sullivan et al., 2014), playing formation (Bradley et al., 2011), 

field position and phase of play (Gabbett et al., 2014) and team success (Hulin et al., 

2015b). Other frameworks have proposed that fatigue (physical and mental), pacing 

strategies, contextual and tactical factors are the most influential determinants of athlete 

movement during football competition (Paul et al., 2015). Physical fatigue, contextual 

and tactical factors have gained the most attention in the literature, whilst other factors 

such as environmental factors remain poorly understood (Paul et al., 2015). Too often 

time-motion analysis research uses a reductionist approach, examining football 

movement in isolation thereby failing to examine factors that influenced the resultant 

movement. For these reasons, Table 2.2 provides a simple framework for 
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conceptualising the numerous factors that may influence the intermittent and chaotic 

nature of football movement. Four clear factor categories emerged from the literature 

search: 1. Sport-, 2. Team- & Match-, 3. Individual- and 4. Environmental-related 

factors. The host of factors summarised in Table 2.2 are important to consider when 

assessing player movement and comparing activity profiles within and between the 

football codes. Any factors that may influence player activity profiles during 

competition should be considered when assessing physical “performance” and 

designing subsequent recovery, training monitoring and prescription practices. It is 

beyond the scope of this thesis to elaborate on every factor listed in Table 2 that may 

influence team sport movement, yet the most relevant will be discussed in the coming 

sections.  

2.4.1 Sport-Related Factors 

Sport factors relate to code and competition specific structural features, technical 

requirements, rules, and regulations that may influence athletic movement. For 

example, the rugby codes, AFL and NFL all are collision-based codes, meaning these 

sports allow upper body tackling, grappling and bumping within the confines of the 

rules (e.g. no head high contact). Soccer in comparison, is principally a non-collision 

sport and does not permit the handling of the ball with the exception of the goalkeeper. 

Rugby, rugby league and AFL all permit the movement of the ball by hands and feet, 

however in the rugby codes players cannot pass the ball forwards by hand, whereas 

AFL players can. A rugby player who receives a forward pass is said to be in an 

‘offside’ position. The player is subsequently penalised for being in an offside position, 

with a scrum awarded at the location of infringement. Offside rules prohibit players 

from gaining an unfair advantage by being in front of the ball, increasing their 

likelihood of scoring a try. Different offside rules and interpretations exist between the 
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football codes, with video assistant referees playing a key adjudicating role in offside 

decisions (Carlos et al., 2019). The video assistant referees assist the on-field and touch-

line referees to minimise officiating errors (Oudejans et al., 2000). Offside rules force 

receiving players to try and ‘time their runs’ perfectly by accelerating rapidly and/or 

attaining high running speed when the ball is being passed to them whilst still being in 

an ‘onside’ position to gain a competitive advantage. 

Player density is a sport-related factor that has a great impact on football movement 

dynamics (Wallace et al., 2014a). Player density refers to the total playing surface area 

divided by the total number of players on the field and is a measure of player congestion. 

The higher the player density, the less area there is for a player to move until they 

encounter another player. All football codes have rectangular field shapes with the 

exception of AFL, played on an oval shaped field. Although AFL has a greater number 

of players on the field at any one time (36), it has the lowest player density of 417-500 

m2. This allows for a more open style of game where players can express higher running 

speeds before they typically encounter opposition. In a study comparing the activity 

profiles or professional soccer (SOC), rugby league (RL) and AFL matches, AFL 

players covered greater distances relative to time on field (129 ± 17 m.min−1) compared 

to RL (97 ± 16 m.min−1) and SOC (104 ± 10 m.min−1) (effect size [ES]; 1.0-2.8) (Varley 

et al., 2013b). In contrast, rugby league and rugby have much smaller rectangular field 

playing areas of ~ 7000 m2 and have player densities of ~ 269 m2 (26 players) and ~ 233 

m2 (30 players) respectively (Table 2.1). Increased player density promotes player 

contact, change of direction, acceleration and deceleration events whilst limiting high-

speed movement (Gaudino et al., 2014; Halouani et al., 2014). Football teams alter 

playing formations and tactics during competition, congesting space with more players 

as a defensive strategy or leaving open field areas free of players to aid offensive 
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pursuits and thereby dynamically altering player density in given areas of the field 

(Wallace et al., 2014a). 

Small-sided games (SSG) are often incorporated into football code training, altering 

playing area and number of players (thus player density) alongside drill rules and coach 

feedback to purposefully modify the skill and activity profile focus of the drill (Farrow 

et al., 2008). Small-sided games provide coaches with an effective training 

methodology that develops player’s physiological, tactical and technical skills abilities 

concurrently in game-specific environments (Gamble, 2004; Hill-Haas et al., 2011; 

Rampinini et al., 2007b). The ability to manipulate several factors during SSG training 

drills (e.g. player density, playing rules etc.) as opposed to matches where coach control 

is limited, has allowed insights into the effects of these factors on player activity profiles 

and physiological responses. For example, increased player density during SSG’s 

resulted in an increase in the total number of agility manoeuvres for elite AFL athletes 

(Davies et al., 2013). During rugby league training, incorporating wrestling into SSG’s 

decreased player distances covered across all running velocities, whilst increasing the 

number of mild, moderate and maximal accelerations and repeated high-intensity effort 

bouts (Gabbett et al., 2012a). Increasing SSG pitch area and decreasing player numbers 

subsequently increases player heart rate (HR), ratings of perceived exertion (RPE) and 

blood lactate concentrations (Rampinini et al., 2007b; Sampaio et al., 2007). 

The duration of the exercise bout alters team sport player activity profiles and pacing 

strategies (Delaney et al., 2016c; Sampson et al., 2015; Waldron et al., 2014). As 

football match duration increases there is a decay in total distances covered across 

progressive segments of rugby (Lacome et al., 2013; Roberts et al., 2008), rugby league 

(Sykes et al., 2011; Waldron et al., 2013) and AFL matches (Aughey, 2010; Wisbey et 

al., 2010). Self-regulated progressive declines in movement intensity across a match is 
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indicative of athletes pacing their efforts in an attempt to distribute energy resources to 

optimise running performance, limiting eventual reductions in movement compared 

with baseline values, known as fatigue (Waldron et al., 2014). Whole-match football 

players generally adopt a ‘slow-positive’ pacing profile, characterised by gradual 

declines in total and high-intensity running, while part-match substitution players tend 

to adopt ‘all-out’ higher-intensity bouts reflective of their shorter duration on field 

(Waldron et al., 2014).   

Fundamental activity profile differences exist within football codes due to player 

positions (Duthie et al., 2005; Gabbett et al., 2012b; Reilly, 1976; Wisbey et al., 2008). 

Different playing positions across all the football codes have specific technical and 

tactical roles that aim to help the team achieve success. Specific positional roles often 

require players to have particular body shapes, sizes, compositions (Kraemer et al., 

2005), physiological capacities (Duthie et al., 2003; Mooney et al., 2011), 

psychological temperaments (Cox et al., 1995) and technical skills (Woods et al., 2018). 

In the football codes, players in positions that frequently engage in collision-based 

movements to win or protect possession of the ball (e.g. NFL defensive lineman, rugby 

forwards) are typically physically bigger, taller, stronger and have a greater body fat 

percentage than those who perform those movements less frequently (Duthie et al., 

2003). In contrast, player’s whose positional role is to evade collision-based events in 

an attempt to run past opposition to score try’s, touchdowns or goals are generally 

physically smaller, with lower body fat and higher muscle mass percentage, thereby 

improving power to weight ratio and acceleratory capabilities (Duthie et al., 2003) (i.e. 

Isaac Newton’s second law of motion: Force = Mass × Acceleration, or Acceleration = 

Force / Mass) (Newton, 1687). The physical, physiological, technical, tactical and 

psychological differences between positions illustrates the importance of training 
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football athletes in a position specific manner and assessing activity profiles relative to 

role.  

The amount of time the ball is in play has a substantial impact on football activity 

profiles (Delaney et al., 2016c; Gabbett, 2015; Wallace et al., 2014a). An investigation 

examining the evolution of soccer World Cup finals structure, speed and patterns from 

1966 to 2010 found that the duration the ball was in play decreased substantially, whilst 

stoppage duration increased, influencing work: rest ratios (Wallace et al., 2014a). The 

increased rest periods between ball in play bouts likely contributed to the 15% increase 

in ball (game) speed across the 44 year period, allowing greater player recovery and 

subsequently more intense play (Wallace et al., 2014a). During 22 semi-professional 

rugby league matches coded for activity and recovery cycles, the average match 

duration was 84.5 ± 3 minutes compared to 47.9 ± 4.1 minutes of time when the ball 

was in play (Gabbett, 2015). Put another way, the ball was in play on average 56.7% of 

the time during rugby league matches. Results illustrated greater movement, contact 

and repeated high-intensity effort (RHIE) intensity when movement data were 

expressed relative to ball-in-play time and that movement intensity declines during 

longer passages of play (Gabbett, 2015). Somewhat surprisingly, The Wall Street 

Journal in 2010 reported that there is only 11 minutes of ball-in-play time during NFL 

American Football matches (Biderman, 2010). During the English Premier League 

2017-2018 season the ball-in-play time averaged across the 20 teams in the competition 

was 56 minutes, representing 62% of the 90 minute matches (talkSPORT, 2017). 

Altogether, ball-in-play time across the football codes varies considerably and reflects 

exercise duration, which has profound effects on player exercise intensity, pacing 

strategies and fatigue.  
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2.4.2 Team and Match Factors 

A host of factors prior to and within competitive matches influence the way individuals 

and teams move. These factors range from team tactics, formations and patterns of play 

to the stage and position a match is in at any given time (Table 2.2). In fact, match 

difficulty indices have been created to manipulate training loads with the aim of 

prioritising athlete readiness for the matches of greatest perceived importance (Kelly et 

al., 2007; Robertson et al., 2014), inevitably influencing subsequent match activity 

profiles. One model used the quality of opposition, the number of days between games 

and match location to help coaches predict match difficulty and thereby help them to 

plan and monitor training loads during competitive phases of the season (Kelly et al., 

2007). Another match difficulty index designed specifically for Super Rugby was 

created based on the influence of five external factors on previous match outcome, 

including: match location, days break between matches, time-zone change and 

opposition ladder position (both current and previous year) (Robertson et al., 2014). 

The three cross-validated Super Rugby match difficulty indices that were constructed 

displayed match outcome classification performances of 63.7-66.2%, meaning they 

may be used to predict match difficulty and to inform training load periodization. 

Modifying training loads prior to competitive matches will inevitably alter player and 

team fitness and fatigue and thereby influence player activity profiles during 

competition.   

Stark match activity profile differences have been observed between more and less 

successful football teams across the football codes (Di Salvo et al., 2009; Hulin et al., 

2015b; Rampinini et al., 2009). During Italian Serie A professional soccer competition, 

players from less successful teams covered 11% more high-intensity running (> 14 

km.h-1) and 9% more very high-intensity running distance (> 19 km.h-1) than their more 
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successful team counterparts (Rampinini et al., 2009). Similarly, during English 

Premier League (EPL) competition, lower ranked soccer teams completed more high-

speed activity then their higher ranked counterparts (917 ± 128 m vs. 885 ± 113 m, p = 

0.003) (Di Salvo et al., 2009). It was proposed that this may have been a direct 

consequence of lower ranked teams attempts to regain the ball with an inability to retain 

possession of the ball. During elite rugby league match play, a greater number of 

collisions during competition was related to a greater rate of success (winning), 

however increased high-intensity and total distance running were not related to success 

during elite competition (Hulin et al., 2015b). For instance, compared with the hit-up 

forwards of the ‘high-success’ team, ‘low-success’ hit-up forwards covered greater total 

(ES = 0.7 to 1.7 ± 0.4 to 0.5) and high-intensity running distances (ES = 0.9 to 1.5 ± 

0.8 to 1.1) and were involved in fewer collisions (ES = 0.6 to 0.7 ± 0.3 to 0.5) during 

several 5-minute match periods. Similarly, during the peak and mean periods of match-

play, sub-elite rugby league forwards from successful teams covered less total (p = 0.02; 

p = 0.01) and high-intensity running distances (p = 0.01; p = 0.01), yet were involved 

in a greater number of collisions than those forwards from less successful teams (p = 

0.03; p = 0.01) (Hulin et al., 2015a). Results across the football codes indicate that 

greater total and high-speed distances covered do not necessarily relate to success 

(winning). 

Ball possession status influences footballer activity profiles and team success (Bradley 

et al., 2013a; Gronow et al., 2014; Rampinini et al., 2009). During professional AFL 

competition, teams that had a greater amount of ball possession and time spent running 

> 14 km.h-1 without possession were significantly more likely to win match quarters 

(Gronow et al., 2014), although time in possession was not significantly different in 

wins vs losses. Despite high-intensity running discrepancy between teams, those 
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players from more successful teams covered 18% greater total distance whilst in 

possession of the ball compared to less successful teams. When in possession of the ball 

the better teams completed 16% more high-intensity running (> 14 km.h-1) and 14% 

greater very high-intensity running (>19km.h-1) (Rampinini et al., 2009). Similar 

findings were apparent during EPL competition, with teams that hold greater ball 

possession (55 ± 4%) also completing 31% more high-speed running distance (m) when 

in possession and 22% less without ball possession than in teams with lower ball 

possession percentages  (46 ± 4%) (Bradley et al., 2013a). In contrast, during 

professional rugby league match-play, defensive play without possession of the ball 

increased physical output of players, with distance covered and frequency of both 

collisions and repeated high-intensity efforts compared to when in possession attacking 

(ES: 0.62-1.41) (Gabbett et al., 2014). It is clear that ball possession status influences 

the activity profiles of professional footballers and is associated with match outcome. 

The match score during competitive football influences player and team activity 

profiles (Murray et al., 2015; Redwood-Brown et al., 2012; Sullivan et al., 2014). 

During AFL competition small score margins were associated with increased physical 

activity and decreased skill efficiency (Sullivan et al., 2014). Intensity indicators of 

total and high-speed (>14.5 km.h-1) running distance per minute and bodyload per 

minute (GPS and accelerometer derived measures) all increased (p < 0.05) when the 

match score was close (Sullivan et al., 2014). Similarly, during international rugby 

sevens competition, close halftime score lines were associated with increased high-

speed running distances (Murray et al., 2015). However, professional soccer forwards 

spent a greater percentage of match time running at > 14.4 km-1 when leading their 

opposition, whilst defenders spent more time running above 14.4 km-1 when trailing 

their opposition (Redwood-Brown et al., 2012). Altogether, findings illustrate that 
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footballers alter their activity profile depending upon match score line, however more 

research is required to determine the magnitude of alteration using standardised TMA 

methods across the codes.  

A plethora of other team and match related factors may influence player and team 

activity profiles during football competition, yet discussing them all was outside the 

scope of this literature review so will be mentioned in brief. Dynamics of team-team 

and player-team movement synchrony (Duarte et al., 2013; Gonçalves et al., 2017), 

field position and phase of play (Gabbett et al., 2014), home vs. away matches (Aquino 

et al., 2017) and travel (Lo et al., 2019) are some other team and match related factors 

that may influence football player activity profiles.  

2.4.3 Individual Factors 

An individual’s physical, cognitive, tactical and technical prowess may influence how 

they move during football competition. Many of these factors are within the 

individual’s control to some degree (e.g. nutrition, hydration, sleep practices), whereas 

others are not, (e.g. coach instructions on playing role, time allocated on field or 

physical height). Whether controllable or not, numerous factors relating to each 

individual footballer influence the way they, their teammates and their opposition move 

(Table 2.2). Several factors that may influence the peak intensities of professional rugby 

competition are investigated in Chapter 5. 

The physical capacity and qualities of footballers influences their activity profile during 

competition (Duthie et al., 2017; Mooney et al., 2013; Mooney et al., 2011). Australian 

Rules Footballers who scored greater on the YoYo intermittent running level 2 test 

covered greater distances running above 15 km.h-1 and exhibited lower declines in 

running distances below 15 km.h-1 across the course of a match (Mooney et al., 2011). 

Rugby league players’ running intensity during competition is underpinned by their 
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individual physiological qualities, with players demonstrating greater maximal speeds 

during physical testing able to maintain higher running intensities over short durations 

whilst exhibiting sharper declines in running intensity as duration increased (Duthie et 

al., 2017). Professional rugby player sprint performance times over 10, 20 and 30 m 

had moderate to small negative correlations with line breaks (r = ~ 0.26), meters gained 

(~ 0.22), tackle breaks (~ 0.16) and tries scored (~ 0.15) during competition (Smart et 

al., 2014). Rugby front row forwards (i.e. props and hookers) are exposed to higher 

impact forces during scrums compared to other forwards, necessitating greater strength. 

Forces achieved during scrummaging for props (1420 ± 320 N) and locks (1450 ± 270 

N) is greater when compared with loose forwards (1270 ± 240 N) (L. Quarrie et al., 

2000). During soccer, player’s maximal oxygen uptake (V̇O2max) is correlated with 

distance covered, level of work intensity, sprint number and ball involvements 

(Helgerud et al., 2001). Results across the football codes signify the importance of 

developing player’s physical capacities, with the hope of translating increased physical 

capacity into increased physical output during competition.  

A player’s assigned position largely governs their activity profiles during training and 

competition (Quarrie et al., 2013). Position specific body composition and physical 

capacity adaptations then inevitably influence subsequent match activity profiles. 

Footballers are often recruited to play in certain playing positions due to their body 

anthropometrics, composition and physical capacity (Duthie et al., 2003). For example, 

physically tall footballers (e.g. 200 cm) are often recruited to positions that engage in 

aerial contests to either catch/mark or tap the ball to their teammates, such as rucks in 

AFL, locks in rugby or goalkeepers in soccer. In rugby, half backs (i.e. scrum- and fly-

halves) require good speed and acceleratory qualities as they need to frequently 

accelerate away from approaching defenders (Duthie et al., 2003). Altogether, 
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footballers are often assigned to play in specific positions due to their physical qualities 

and capacities, influencing subsequent activity profiles and adaptations. This perpetual 

“chicken or the egg” cycle repeats over time, yielding greater differences in player’s 

physical capacities between positional groups due to exercise specific adaptations.  

The duration of an exercise bout influences an individual’s selected exercise intensity 

during team sport (Gabbett et al., 2015; Waldron et al., 2014). Whether a footballer is 

a ‘starter’ (potential whole-match player) or ‘substitute’ (part-match player) alters the 

exercise bout duration and pacing profile of an individual. In an attempt to optimize 

running performance whilst not doing more than necessary, team sport whole-match 

players generally adopt a ‘slow-positive’ pacing profile that is characterised by gradual 

reductions in total and high-intensity running as exercise duration increases (Waldron 

et al., 2014). In contrast, their part-match (i.e. substitute) counterparts tend to select an 

‘all-out’ (i.e. very high intensity from the start of a bout) or ‘reserve’ (i.e. reserve energy 

via decreased running distances as the number of team interchanges diminishes) 

strategy depending on their playing role (Waldron et al., 2014). The number of players 

on the bench and substitutions/rotations allowed varies widely across football codes 

from 3 in soccer, 90 in AFL (2019) and unlimited in NFL (Table 2.1). Stark substitution 

rule differences between football codes heavily influences exercise bout duration, 

pacing strategies and therefore activity profiles of individual’s during competition. The 

duration of exercise bouts within and across separate periods (e.g. quarters or halves) 

of matches is a key consideration for practitioners to inform real time substitution 

decisions and subsequent recovery and training practices.  

2.4.4 Environmental Factors 

Several environmental factors such as heat, humidity, hypoxia (altitude), air pollution 

and playing surface influence team sport activity profiles (Table 2.2). Different 
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environmental conditions change the physiology of human beings during exercise, 

thereby influencing the way humans respond acutely and adapt chronically to exercise. 

It is beyond the scope of this review to discuss the physiological mechanisms, responses 

and adaptations to these environmental conditions, so please see literature on: heat 

(Hargreaves et al., 1998; Tyler et al., 2016), humidity (Maughan et al., 2012), hypoxia 

(Bailey et al., 1997; Böning, 1997; Inness, 2017), air pollution (Rundell, 2012) and 

playing surface conditions (Fleming, 2011; Heidt JR et al., 1996). The influence of heat 

and hypoxia on team sport activity profiles are the most commonly reported in the 

literature, so will be the topic of the following sections. 

During professional AFL competition played in hot conditions (mean ± SD: 27 ± 2° C) 

compared to cooler conditions (17 ± 4° C), player’s modulated their activity profile by 

reducing running distances covered at lower intensities to preserve their ability to 

perform high-intensity activities (Aughey et al., 2014). Reduced physical output of 

team sport athletes in hot conditions is likely due to alterations in energy metabolism, 

cardiovascular function, fluid balance and central nervous system function/motor drive 

to aid thermoregulation (Hargreaves et al., 1998). 

At altitude where the partial pressure of oxygen is reduced, the activity profile of soccer 

players is reduced even at moderate (1600 m) altitude when compared to sea level 

(Garvican et al., 2014). The peak 5 minutes of total distance and high-velocity running 

> 4.17 m.s-1 covered during soccer competition was reduced at 1600 m when compared 

to sea level. In addition, the decline in soccer players total distance, high-velocity 

running and maximal accelerations (> 2.78 m.s-2) post the peak 5 minute period of 

match-play was greater at altitude when compared to sea level (Garvican et al., 2014). 

Studies conducted at even higher altitudes (i.e. 3600 m) have similarly reported that 

running distances covered during competitive soccer matches are reduced for both sea 
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level and high-altitude youth natives, with acclimatization not able to protect against 

the deleterious effects of altitude (Aughey et al., 2013b).  

Coaches and sport scientists need to be aware of environmental conditions when 

preparing or acclimatizing team sport athletes to compete in certain environments. 

Practitioners also need to be cognisant of ways to counteract the deleterious effects of 

various environmental conditions to aid sporting performance via strategies such as: 

precooling, hydration, clothing/footwear considerations, pre-, in- and post-match 

nutrition. Improved understanding of the many environmental factors that may 

influence team sport activity aids interpretation of training and match movement data. 

Subsequent athlete recovery and training prescription should reflect both the 

environmental and exercise stress.   

Findings from this review of the literature across the football codes underpins the 

importance of considering several factors when analysing and interpreting the activity 

profiles of team sport athletes. Four clear factor categories emerged from our literature 

review: 1. Sport-, 2. Team- & Match-, 3. Individual- and 4. Environmental-related 

factors. It is hoped that the presented framework illustrated in Table 2.2 aids researchers 

in designing future projects with multivariate mixed-models that incorporate some of 

these factors into their analyses to help explain the complexity of team sport movement. 

The framework presented may also help practitioners to contextualise player and 

positional activity profiles, aiding interpretation and application of the data for training 

monitoring and prescription. 
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Sport Factors Team & Match Factors Individual Factors 

Environmental 

Factors 

    

 

Technical requirements Team tactics Physical characteristics/fitness Temperature 

Player density (playing area/no. players) Team player formations  Fatigue  Humidity 

Substitutions or Rotations  Team player selections Body size & composition Altitude 

Match duration Team organisation/behaviour Movement efficiency Air pollution  

Match period duration (halves, quarters) Team cohesion Playing position  Field surface  

Match period intermission duration Opposition movement Coach instruction on playing role Rain 

Stoppage time Level of opposition Time on field (e.g. starter vs sub) Wind 

Playing positional roles Time ball in/out of possession Pacing strategy Light 

Phase of the season Time ball in vs out of play Motivation  
Microcycle recovery length  Stage of match  Experience   

Travel requirements Match scoreline  Vision/scanning ability   

General movement rules  Field position of play Decision making   

Physical contact rules Phase of play  Movement preparation (warm up)   

Offside rules (e.g. 10m rule) Yellow/Red Cards Sleep   

Designated movement area rules Home vs away match Nutrition   

Forward passing rule Match travel requirements Hydration    

Disciplinary rules (e.g. cards, sin bin)  Injury   

Several sport specific rules   Illness   

    

 Table 2.2 Factors that may influence team sport activity profiles 
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2.5 Quantifying Football Activity Profiles 

2.5.1 Global Positioning Systems 

Nobel Prize winning discoveries in physics, numerous engineering feats, an aeroplane 

tragedy leading to political policy change and commercialisation of sport amongst other 

events have paved the way for satellite-based radionavigation systems we use today to 

measure human locomotion. The development of the GPS technology by the United 

States Department of Defence in 1973 and first satellite launch in 1978 (Lachow, 1995) 

was only possible due to the seminal work of 1944 Nobel laureate in physics, Isidor 

Rabi alongside many predecessors, namely Sir Isaac Newton and Albert Einstein. Rabi 

and his students invented the magnetic resonance method through their precise 

measures on the hydrogen atom (Rabi et al., 1938). Prior to their novel invention, the 

creation of the precise timepiece that is the foundation of satellite navigation; the atomic 

clock, was not possible. The atomic clock enabled the exact and stable calculation of 

the length of time it takes a radio signal to travel from a satellite in space to a receiver 

on earth, allowing distance to be derived by multiplying the transit time by the speed of 

light (i.e. 299,792,458m.s-1) (Aughey, 2011). The initial idea of using atomic transitions 

as very stable frequency references to measure time is attributed to Lord Kelvin via his 

1867 collaboration with Peter Guthrie Tait, ‘Treatise on natural philosophy’ (Kelvin et 

al., 1867). Further, without knowledge of Albert Einstein’s theories of general and 

special relativity (Einstein, 2003), we would be ignorant to the fact that both speed of 

motion and gravity alter time, yet the speed of light remains constant. The consequence 

of relativity being that small errors between the measurements of time on earth 

compared to space (i.e. 38 microseconds per day) leads to big errors in position, speed 

and distance estimates on earth. The satellites travel at an orbital speed around the earth 

of approximately 14,000 km.h-1 and due to their speed the space based atomic clocks 
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fall behind earth-based receiver time by 7 microseconds per day (special relativity). The 

theory of general relativity states that gravity alters time, with clocks in space with 

lower gravity running faster than those on earth. Hence satellite-based clocks orbiting 

earth approximately 20,000 km away run 45 microseconds per day faster than earth-

based clocks. Current radionavigation satellite atomic clock installations account for 

combined effects of both special and general relativity by factoring the 38 microseconds 

difference into calculations of distance to more accurately measure position and speed 

of earth-based receivers.  

The Global Positioning System (GPS) is a satellite-based navigation technology, 

initially developed by the United States Department of Defence for military practices 

(Lachow, 1995). Civilian use of GPS technology was only permitted after a civilian 

airplane carrying 269 people was shot down by Soviet jet interceptors when 

accidentally straying into Soviet prohibited airspace in 1983 (Enge et al., 1999). 

Following the tragedy, President Ronald Reagan declared the United States would 

make GPS freely available for civilian use through the Department of Transportation 

(Lachow, 1995), as access to a better navigational system may have prevented the tragic 

loss of life. However, in order to balance civil benefits and military risks, the 

Department of Defence introduced an intentional error code to the civilian satellite 

transmission named Selective Availability (Lachow, 1995). The signal degradation was 

engineered to limit hostile forces using the system with lethal precision. Differential 

GPS was developed to circumvent the errors associated with Selective Availability. 

Differential GPS utilises a stationary receiver in addition to a roving GPS receiver. The 

fixed and calculated location of the differential GPS receiver is then compared with that 

given by the satellite, establishing signal error. Signal corrections can subsequently be 



 

    

35 

 

sent and applied to the roving GPS receiver, substantially enhancing its positional 

accuracy (Townshend et al., 2008).  

The GPS constellation originally operated via 24 satellites that orbited the earth 

(Townshend et al., 2008), with 31 satellites functional in 2019. There are four Global 

Navigation Satellite Systems (i.e. GPS-USA, GLONASS-Russia, Galileo-Europe and 

BeiDou-China), with approximately 110-120 satellites currently orbiting earth (Li et 

al., 2015). If a minimum of four satellites are in communication with a earth-based 

receiver, an accurate position of the receiver can be triangulated via spherical 

trigonometry (Larsson, 2003). Obtaining this minimum number of satellites should not 

be an issue as 24 total satellites give 24 hour global coverage with 4 satellites travelling 

6 different orbiting paths (hence the extra  number of satellites in each constellation in 

case of occasional signal drop out). Utilising a complex algorithm, the navigation 

systems are also able to calculate the speed of displacement (speed) by measuring the 

rate of change in the satellites’ signal frequency (Doppler shift) produced through 

movement of the earth-based receiver relative to the satellite (Larsson, 2003; Schutz et 

al., 1997). Consequently, the earth-based receiver is able to calculate and record data 

on position, distance, time and velocity (Larsson, 2003), which is of interest to sports 

coaches and scientists if used to track human movement. 

The first application of GPS technology for athlete tracking purposes was in 1997. One 

subject was equipped with a commercially available GPS receiver (GPS 45, Garmin, 

Lenexa, KS 66125, USA) while walking, running and cycling at various velocities (76 

tests) to compare GPS receiver accuracy with chronometry (Schutz et al., 1997). There 

was a significant relationship (r = 0.99, p <0.0001) reported between the speed of 

displacement assessed by GPS compared to that measured by chronometry for walking 

and running (2-20 km.h-1) and cycling (20-40 km.h-1). While promising, the use of a 
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swiss chronometer and metronome to pace efforts was hardly a gold-standard 

verification of the validity of GPS for measuring velocity (Aughey, 2011). Although 

differential GPS greatly improved signal accuracy, the receivers needed to be made 

considerably lighter (initially weighing approximately 4 kg) to be a viable method of 

athlete tracking (Terrier et al., 2001). Similarly, receivers needed to be engineered to 

withstand heat, moisture, impact forces and have improved battery life to be feasibly 

applied in a range of athletic settings (Aughey, 2011). 

Selective Availability was turned off in May 2000, allowing civilians to receive a non-

degraded signal globally. The applicability of differential GPS was further reduced with 

the adoption of the Wide Area Augmentation System and European Geostationary 

Navigation Overlay Service (Witte et al., 2005). These air navigation systems were 

founded on the same premise as differential GPS correction, only the ‘differential’ 

receiver is integrated inside the GPS receiver itself. Non-differential GPS receiver 

accuracy, integrity and availability were subsequently improved. Coupled with reduced 

weight, size, cost and ease of use through commercialisation, non-differential GPS 

provided new opportunities for the measurement of human locomotion in sporting 

contexts (Townshend et al., 2008). 

2.5.2 Global Positioning Systems as a Player Tracking Tool 

The first commercially available GPS device specifically designed for quantifying 

athletic movement was the Sports Performance Indicator (SPI 10), developed by 

GPSports Systems (Edgecomb et al., 2006). Since then, there has been a rapid uptake 

of GPS technology, with the largest commercial retailer Catapult Sports currently used 

by 2,500 teams across 39 sports as of June 2nd, 2019 (https://www.catapultsports.com/). 

A Google Scholar search for “global positioning systems” yields 3.5 million article 

results, with ~ 3.1 million (90%) occurring in the last 30 years between 1990 and 2020. 

https://www.catapultsports.com/
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The prolific adoption of GPS in elite team sports is testament to its perceived worth and 

impact on player and team preparation and performance. Global Positioning Systems 

provide objective data that may inform decision-making processes, including but not 

limited to: training load management (Gallo et al., 2015), training prescription (Delaney 

et al., 2015), player readiness to play (Barrett et al., 2016), injury risk (Gabbett et al., 

2011a), and player interchange decisions (Aughey et al., 2010; Delaney et al., 2016c).  

Global Positioning System receivers designed for athletic populations are small, robust, 

waterproof and lightweight, enabling seamless portability that was not so 20 years ago. 

Today, GPS receivers are approximately the size of a small mobile phone. For example, 

Catapult Sports released the OptimEye S5 receiver in 2013 that has a height, width and 

depth of 96 mm × 52 mm × 14 mm, with its predecessor model weighing only 67 grams, 

compared to initial GPS models weighing ~ 4 kg. Further miniaturisation is likely into 

the future with flexible ‘second-skin’ wearable adhesives akin to postage stamps or 

temporary tattoos are already on the market that integrate seamlessly with the human 

body. 

When the GPS receiver is turned on, it collects information on player position via 

communication with satellite networks and subsequently calculate distance and 

velocity. The receivers are placed within a custom-made vest or pouch, situated 

between the player’s scapulae. Any impairment of the radiofrequency signal between 

the earth-based receiver and the satellites in space will degrade positional measurement 

accuracy. Stadia structures such as overhanging roofs and tall surrounding buildings 

may obstruct signals and are common practical issues in sporting contexts held in large 

stadiums. Whilst there are only four satellites needed to triangulate the position of a 

GPS receiver on earth, a moderate negative relationship exists between the number of 

available satellites and total distance measurement error (Gray et al., 2010). It is for this 
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reason that some manufacturers have developed receivers that have antennas for 

multiple satellite installations, that has both GPS and GLONASS satellite accessibility 

(i.e. access to 57 orbiting satellites), increasing positional accuracy and reducing the 

likelihood of signal drop out.  

The dilution of precision (DOP, i.e. the position and distribution of satellites in space 

relative to the earth-based receiver) also influences positional data accuracy (Witte et 

al., 2005). A more even distribution of satellites orbiting the earth across the horizon 

that have direct line of sight to the earth-based receiver will lower the DOP and thereby 

improve position measurement accuracy. For example, a DOP value of 1 indicates the 

ideal distribution of satellites in the sky, with 1 satellite positioned directly above the 

earth-based receiver and the remaining satellites evenly distributed across the horizon 

(Witte et al., 2005). Conversely, if the satellites are tightly clustered above the receiver 

the DOP value increases, with a maximum value of 50 (Witte et al., 2005). The 

positional measurement accuracy of GPS systems are reliant on unobstructed satellite 

communication and geometry with earth-based receivers, thereby also influencing the 

measurement accuracy of both distance and speed. 

Modern GPS devices are able to record, store and retrieve large quantities of data at 

high-speeds (1-10 Hz) via wireless transmission in real-time, with an approximate 4-6 

hour battery life. The movement data of each player within the team that is ‘wearing’ a 

GPS receiver can then be downloaded to a computer post training or match. The data is 

then processed and analysed via proprietary or custom-built software, with results 

reported to key stakeholders such as coaches and players in a timely manner. In fact, 

player activity profile data can be relayed to coaches in real-time via the use of a 

receiver connected to a laptop to enact changes to training drills or player feedback 

instantaneously. Player tracking using GPS is much more time efficient than many 
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previous time-motion analysis techniques such as notational analysis and manual video 

analysis, as an observer is not required to code events and all players can be tracked 

simultaneously. Generating timely objective feedback on player activity profiles for key 

stakeholders is critical, enabling informed decision-making on training planning and 

prescription as well as having ramifications during competition (e.g. 

substitution/rotation decisions). 

Global Positioning Systems are relatively expensive, although are often more cost 

effective than vision-based tracking systems, where several high-resolution cameras 

must be set up at specific locations within stadia. The fixed location of these vision-

based systems within stadia is an issue for teams that train on different grounds, 

meaning they either receive no training data or have to combine data from multiple 

player tracking solutions, with different measurement error. Further, the vision-based 

system used in a team’s home stadium may be different to opponent’s system and thus 

activity profile comparisons between home and away matches becomes problematic. 

However, nowadays most vision-based player tracking solutions are implemented via 

league wide deals. Many vision-based systems incur greater ongoing costs than GPS 

systems (e.g. service charges for analysis of match data), with the exception of GPS 

service fees that may be included in the warranty (Varley, 2013). Subsequently vision-

based systems are principally used by professional teams and not accessible to sub-elite 

or amateur teams (Varley, 2013).  

Adding to financial and time burden, semi-automated systems require an observer to 

identify players occluded from the camera view or during adverse environmental 

conditions (Carling et al., 2008). Video analysis of player movement may take hours to 

extract variables using some systems that can be reported in real-time comparatively 

using GPS (Petersen et al., 2009). In addition, some video analysis methods require 
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prior determination of mean speeds of each gait movement pattern to improve distance 

measurement accuracy, as players are not often perpendicular to the cameras, increasing 

parallax error (Deutsch et al., 1998; Dobson et al., 2007). In contrast, the only prior 

testing recommended for GPS use is to place the receivers in an open sky environment 

15 minutes prior to use, allowing the receivers to connect to satellites (Duffield et al., 

2010), improving ease of use and adoption of the technology. Perhaps it for these 

reasons that use of portable wearable GPS technology is becoming more common 

across the globe with team sport organisations. 

Global Positioning Systems provide many advantages to vision-based systems but also 

have many limitations that need acknowledgement. The first inherent limitation of 

satellite-based systems is that they require unobstructed signal line of sight to satellites 

(Larsson, 2003). Thus, measurement of player position in indoor environments or in 

stadiums that close their retractable roof due to wet weather is not possible. Positional 

accuracy of GPS are also influenced by the number of satellites “locked on” to the 

receiver, satellite or receiver clock error, DOP, atmospheric effects, obtrusive 

infrastructure, sampling frequency, chipset quality, radio frequency interference, 

antenna selection and orientation to help account for multipath error (Townsend et al., 

1994) as well as software and data filtering procedures.  

A practical limitation of wearable player tracking solutions is that some sporting 

governing bodies (e.g. National Football League) do not allow the use of electronic 

performance and tracking systems (EPTS) in matches due to player safety concerns. 

This was also the case in soccer until the rules of the game were changed by The 

International Football Association Board in 2015, permitting the use of EPTS 

technology during competitive matches ("Amendments to the laws of the game," 2015). 
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These rules have hindered direct comparisons between these football codes team 

training and match movement data and research into competitive activity profiles.    

The use of wearable GPS with integrated sensors to quantify activity profiles of team 

sport athletes in training and matches is now ubiquitous (Aughey, 2011; Cardinale et 

al., 2017; Cummins et al., 2013). Technological advancements have improved the 

efficiency of human movement data collection, processing, analysis and reporting, 

whilst also increasing data accuracy and reproducibility. All player tracking 

technologies should undergo rigorous quality assurances, as without valid and reliable 

tools and measures, any data collected is meaningless (Safrit et al., 1989). Unfortunately 

this is not always the case, as new player tracking technologies are often released with 

little if any evidence of the system’s validity and reliability provided by the 

manufacturer (Edgecomb et al., 2006). Consequently, researchers must independently 

assess the accuracy and reproducibility of newly released technologies in a range of 

sport-specific contexts. For industry to confidently interpret and use GPS data to inform 

practice (e.g. prescribe, monitor or alter training), its accuracy, reproducibility and 

practical utility needs examining (Scott et al., 2016). Chapter 4 will examine the 

sensitivity, reliability and convergent validity of wearable GPS with integrated intertial 

sensors for quantifying the peak intensities of rugby. The following sections will review 

relevant wearable technology validity and reliability literature.  

2.5.3 Validity  

Validity refers to the degree that an instrument accurately measures what it intends to 

measure (Atkinson et al., 1998). Thus, player tracking technologies ought to accurately 

quantify an athlete’s position, in addition to the resultant displacement, velocity and 

acceleration when compared to a criterion measure. Early player tracking technologies 

were rarely tested for their validity due to a lack of a criterion measure to compare them 
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to (Reilly, 1976). In fact, there has been much deliberation in the literature as to what 

the best criterion measure is to assess player tracking systems validity and this has 

evolved over time with technological advancements.  

Various criterion measures have been used to validate player tracking technologies, 

such as pre-defined courses (Coutts et al., 2010a), pre-defined courses with infra-red 

timing gates (Jennings et al., 2010), laser devices (Varley et al., 2012b) and three-

dimensional (3D) motion analysis systems (Richards, 1999). However, pre-defined 

courses measured by timing gates and laser devices are poor criterion measures with 

little ground truth for team sport contexts. The current “gold-standard” or accepted 

criterion measure for assessing human position, distance, speed and acceleration during 

both linear and non-linear trials are 3D motion analysis systems (Richards, 1999; 

Windolf et al., 2008). Briefly, these 3D systems comprise several high-resolution 

cameras that have a very high sampling frequency to capture a visual record of light-

reflective markers that are placed on specific anatomical landmarks of an individual. 

The position, displacement and velocity of the individual is then calculated by digitising 

multiple frames of the markers. The number and configuration of the high-resolution 

cameras, sampling rate, marker properties and calibration procedures all influence 

positional accuracy, however Vicon (i.e. a 3D motion analysis system) has reported an 

error range of within one millimetre dependent upon the aforementioned variables 

(Windolf et al., 2008). Vicon has been used as a criterion measure to validate numerous 

athlete tracking systems, including GPS (Duffield et al., 2010) and local positioning-

systems (LPS) in soccer (Stevens et al., 2014a) and netball (Sweeting, 2017), which are 

also radio-frequency based. 

The statistical methodology used to quantify the validity of player tracking technologies 

has also differed widely between studies, making comparisons between studies 



 

    

43 

 

difficult. The validity of an instrument may be statistically presented and interpreted 

using the standard error of the estimate (SEE), typical or standard error of measurement 

(TEM/SEM), the coefficient of variation (CV), percentage difference from the criterion 

measure (Scott et al., 2016), correlation coefficient (r), Bland-Altman plot (Atkinson et 

al., 1998) or  linear regression (Hopkins, 2004).  

Bland and Altman (Bland et al., 1986) realised that many researchers were misusing 

the correlation coefficient as a measure of validity, believing that it was the most 

important or only measure of the relationship between two measures (Hopkins, 2004). 

The issue is that two measures may be highly correlated as shown by a correlation 

coefficient (r > 0.80), yet the two measures may considerably differ across their range 

in values. Bland-Altman plots highlight such differences to explicitly illustrate 

differences between the two measures (plotted on the y axis) over their range (plotted 

on the x axis) (Hopkins, 2004). Subsequently, the direction and magnitude of the scatter 

around the zero line may be used to identify heteroscedasticity, random error and bias 

(Atkinson et al., 1998). However, Bland-Altman plots incorrectly indicate that there are 

systematic errors or bias in the relationship between a practical instrument and a 

criterion measure, when one has been calibrated against the other (Hopkins, 2004). 

Alternatively, regression analysis of the criterion vs the instrument revealed no bias. If 

bias did develop or if random error changes arose since the last calibration then 

regression analysis equations can correct the raw values to recalibrate the instrument. 

Regression analysis is recommended in favour of Bland-Altman plots when trying to 

estimate the true value of something that has been measured with a less than perfect 

practical instrument (Hopkins, 2004, 2010). Consequently, linear regression analysis 

should be used to understand the error of an athlete tracking technology (i.e. practical 
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instrument) when compared to a criterion or “gold-standard” measure (e.g. 3D motion 

analysis systems) (Sweeting, 2017).  

Player tracking technologies provide valuable objective data on player activity profiles 

and evaluating physical performance, both between and within individuals of various 

playing positions (Cummins et al., 2013). Large measurement error of player tracking 

technologies may result in activity profile data being misinterpreted, potentially leading 

to under- or over-training of athletes (Delaney, 2016). Consequently, player match 

performance may be adversely affected via a misbalance of fitness and fatigue (Banister 

et al., 1975). Thus, the validity of player tracking technologies is of utmost importance 

to help ensure appropriate interpretation and application of the data. In order for 

technology to be valid, it must also be reliable (Baumgartner, 1989). 

2.5.4 Reliability 

Reliability refers to the ability of a measurement tool to accurately reproduce 

measurements given identical circumstances (Baumgartner, 1989; Hopkins, 2000). 

Improved reliability infers greater precision of single measurements and better tracking 

of changes in measurements in both research and practical settings (Hopkins, 2000). A 

measurement tool may accurately reproduce measurements that are not valid (i.e. be 

reliably invalid). Thus, a measurement tool may be deemed reliable without being valid, 

though for the tool to be considered valid, it must be reliable (Baumgartner, 1989). 

Given practitioners and researchers use player tracking technologies to monitor and 

prescribe training based upon changes in physical output of an individual or compare 

activity profiles between players, positions, matches, levels of competition or sporting 

codes, it is critical that player tracking systems are reliable (Drust et al., 2007).  

Understanding the reliability of a given technology (e.g. GPS) enables practitioners to 

confidently monitor changes within and between individuals during training and 
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competition to guide practice. To do this, the inter (between) and intra (within) GPS 

receiver reliability need to be established. Intra-receiver reliability refers to the ability 

of a single GPS receiver to produce accurate information consistently, which is critical 

when making comparisons between training sessions or matches for the same player. 

Inter-receiver reliability assesses the accurate reproduction of measures between 

multiple GPS receivers, which is incredibly important for activity profile comparisons 

both between players and between sessions (Scott et al., 2016).  

Reliability is typically evaluated using the change in the mean, typical or standard error 

of measurement, often expressed as a percent of the mean score; coefficient of variation 

(CV) or via test-retest correlations (intra-class correlation coefficient; ICC) (Hopkins, 

2000). The following paragraphs will briefly explain some statistical approaches to 

quantifying and interpreting reliability. 

The change in the mean is the difference between test means. It is comprised of random 

change and systematic change. Random change is due to sampling error and is smaller 

in larger sample size studies, as the random errors from a greater number of 

measurements leads to the errors inevitably cancelling each other out above and below 

the mean to be closer to zero. Systematic changes on the other hand are non-random 

changes in the mean between two or more trials. Examples of systematic changes that 

are particularly important in human research trials are learning effects, motivation and 

fatigue (Hopkins, 2000). To be sure that an intervention (e.g. training or diet change) is 

having a true or real effect, it is critical to account for such systematic effects by 

implementing familiarisation trials, enough time between trials and strictly 

standardising procedures to ensure any systematic changes are negligible before 

administering the intervention (Hopkins, 2000). When assessing whether a change in 

the mean is a reproducible systematic effect, you can set and calculate the compatibility 
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limits for the mean (usually 95%), which represent the likely range of the ‘true’ or 

systematic population change (Hopkins, 2000).  

Typical error represents the typical variation in an individual’s value from one 

measurement to another, often termed the within-subject standard deviation. All 

statistical methodologies for calculating the typical error hinge on the assumption that 

the typical error is of the same magnitude for every individual. If this is not the case 

and the typical error varies from subject to subject, the data are said to display 

heteroscedasticity, or non-uniform error (Hopkins, 2000). Non-uniform error results in 

an average typical error that is too high for some individuals and too low for others. To 

account for heteroscedasticity, separate analyses may be performed for groups of 

subjects that have similar typical errors (e.g. positional groups) or transform the variable 

to make its error uniform. Log transformation is a popular methodology for making 

error uniform when larger values of a given measure have more error. Non-uniform 

error should be assessed whenever reliability statistics are calculated (Hopkins, 2000). 

Expressing the typical error as a percentage of the subject’s mean score is known as the 

coefficient of variation. For most athletic events the CV is between 1-5% and depend 

largely on the nature of the sporting event, athlete experience and the time elapsed 

between events (Hopkins, 2000). A scale for interpreting the reliability of a measure 

expressed as the CV is: good (< 5%), moderate (5-10%), or poor (> 10%) (Hopkins, 

2000).  

Pearson correlation coefficients are acceptable for use with test-retest reliability for two 

tests, but with small sample sizes they overestimate the true correlation (Hopkins, 

2000). Intraclass correlation coefficients (ICC) do not suffer from a similar bias with 

small sample sizes and may be calculated as a single correlation value when two or 

more trials are involved. Both forms of correlations are not affected by any changes in 
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the mean between trials. The ICC is comparable to the Pearson correlations between all 

pairs of trials when appropriately averaged (Hopkins, 2000). Magnitudes of ICCs are 

evaluated using the following thresholds: > 0.99, extremely high; ≤ 0.99 to ≥ 0.90, very 

high; <0.90 to ≥ 0.75, high; < 0.75 to ≥ 0.50, moderate; < 0.50 to ≥ 0.20, low; < 0.20, 

very low (Hopkins, 2015). Now that the constructs of validity and reliability have been 

explored, the following sections will discuss the validity and reliability of GPS for 

quantifying football code activity profiles. 

2.5.5 GPS Validity & Reliability 

There has been a plethora of research conducted examining the validity and reliability 

of GPS for quantifying the activity profile of a range of team sports (Coutts et al., 2010a; 

Jennings et al., 2010; Johnston et al., 2013; Johnston et al., 2012; Varley et al., 2012b; 

Vickery et al., 2013). Comparing the validity and reliability of GPS for measuring 

distance is difficult due to the differences in the equipment used (e.g. GPS model, 

criterion measure) and the movement task performed (i.e. distance, speed and linearity) 

(Varley, 2013). That being said, the available literature suggests that all GPS receivers 

are capable of tracking an athlete’s distance during team sport movements with 

adequate validity and intra receiver reliability regardless of sampling rate (1, 5, 10, 15 

Hz) (Scott et al., 2016). Originally, GPS devices operated with a sampling rate (i.e. 

speed the GPS device receives satellite signals) of 1 Hz (i.e. one sample per second). 

An increased GPS sampling rate should rationally improve the precision of the device 

to measure short, rapid movements such as accelerations that frequently occur over very 

short durations (Bangsbo et al., 1991). Practically speaking, valid distance estimates 

means that all GPS devices may be used to quantify player distances covered during 

training and competition, with accuracy of results viewed with confidence. However, 

earlier GPS models sampling at 1 or 5 Hz are limited when assessing distance during 
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high-intensity running, velocity measures and short linear running and results should 

be interpreted with caution (Scott et al., 2016). 

Increasing GPS receiver sampling rate from 1 Hz to 10 Hz generally delivers superior 

measurement accuracy, whilst a further increase to 15Hz yields no additional benefit 

(Scott et al., 2016). In fact, there is some evidence to suggest that 15 Hz may be 

detrimental to measures of distance and speed (Johnston et al., 2013; Scott et al., 2016). 

Most available research suggests that 10 Hz GPS devices can validly measure distances 

covered during both linear and team sport simulated circuits across various running 

speeds and distances (Scott et al., 2016). However, the validity and reliability of GPS 

devices to measure team sports activity seems inversely related speed of movement. 

For example, the validity of GPS for measuring distance covered during very high-

speed running has been reported as poor (CV = 11%) (Rampinini et al., 2015). In 

addition, distance measurements from a 10 Hz GPS receiver were significantly different 

from the VICON criterion measurement during a short running course that incorporated 

several tight changes of direction (Vickery et al., 2013). Similarly, peak speed measures 

were significantly higher than a criterion measure during a team sport simulated circuit 

(Johnston et al., 2013), suggesting that 10 Hz GPS devices may overestimate athlete 

peak speeds during team sport matches. Further, typical error of measurement (TEM) 

increased for both 10 and 15 Hz GPS devices as speed of movement increased during 

the team sport simulated circuit (0.8-20%) (Johnston et al., 2013). Lastly, 10 Hz GPS 

devices poorly estimate instantaneous velocity when very high accelerations  

(> 4 m.s-2) are occurring during team sports (Akenhead et al., 2014).  

The reproducibility of distance and speed estimates via GPS is often better from one 

measurement to the next within a device (intra receiver reliability), than between 

devices (inter receiver reliability) irrespective of sampling frequency (Scott et al., 
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2016). Ten hertz GPS devices display good intra receiver reliability (CV < 5%) for 

assessing measures of distance during 15 and 30 m sprints (Castellano et al., 2011). Due 

to the improved intra receiver reliability and relatively poorer inter receiver reliability, 

it is recommended that athletes are assigned the same receiver when tracking player 

movement across multiple sessions (Buchheit et al., 2014).  

Similar to GPS device validity estimates, the reliability of GPS devices for measuring 

distance is inversely related to the speed of movement and rate of acceleration. For 

instance, good inter receiver reliability was reported for total distance covered (TEM = 

1.3%, ICC = 0.51), low-speed (0-13.99 km.h-1) running distance (TEM = 1.7%, ICC = 

0.97), and high-speed (14-19.99 km.h-1) running distance (TEM = 4.8%, ICC = 0.88) 

measured by 10 Hz GPS devices. As running speed increased to very high-speed 

running (> 20 km.h-1), inter receiver reliability dramatically declined (TEM = 11.5%) 

(Johnston et al., 2013). Therefore caution should be applied when comparing and 

interpreting high-speed running between GPS devices (Scott et al., 2016).  

Inter receiver reliability improves across all GPS devices when measuring team sport 

simulations, allowing practitioners to be able to confidently compare player movement 

data between sessions. Though, inter receiver reliability degrades during both 

linear/curvilinear and team sport simulated circuits at high-speed running (Scott et al., 

2016). The weight of evidence suggests that 10 Hz GPS devices are the most reliable 

in comparison with 1 Hz or 5 Hz devices, possessing good to moderate intra receiver 

reliability. When measuring instantaneous velocity 10 Hz GPS devices have good to 

moderate inter receiver reliability during running involving accelerations (CV = 1.9-

4.3%), constant velocity running (CV = 2-5.3.0%), or running incorporating 

decelerations  

(CV = 6%) (Varley et al., 2012b). Moreover, regardless of the initial velocity of running 
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10 Hz GPS devices can reliably reproduce instantaneous velocity measurements.  

Indeed, inter receiver reliability improves as initial velocity of movement increases 

during both constant velocity running and running involving accelerations. In fact, 

whilst sprinting over ten meters 10 Hz GPS devices have good inter receiver reliability 

(CV = 0.1-9.1%) for measuring instantaneous velocity over a large range of 

acceleration magnitudes, although reliability declined with increased rates of 

acceleration (Akenhead et al., 2014). Finally, measurement of peak speed during a team 

sport simulated circuit using 10 Hz GPS devices has shown good inter receiver 

reliability (TEM = 1.6%, ICC = 0.97) (Johnston et al., 2013). 

2.5.6 Metabolic Power 

Metabolic power is a GPS-derived measure of power that considers the energetic cost 

of accelerated running on flat terrain to be energetically analogous to running on an 

equivalent uphill slope at a constant speed (Di Prampero et al., 2005). Instantaneous 

metabolic power output (W.kg-1) of an individual may subsequently be calculated if 

acceleration and velocity are known (Di Prampero et al., 2005; Osgnach et al., 2010). 

The metabolic power model (Di Prampero et al., 2005) with adaptations (Osgnach et 

al., 2010) provides a method for measuring the activity profile or external load of team 

sport competition, as it accounts for accelerations, decelerations and speed-based 

movements (Delaney et al., 2016a; Osgnach et al., 2010).  

The average metabolic power has been reported during AFL (9.2-10.9 W.kg-1) (Coutts 

et al., 2014) and rugby league (8.2-9.0 W.kg-1) (Kempton et al., 2015c) competition, 

alongside during soccer training (7.5-8.4 W.kg-1) (Gaudino et al., 2013). Findings 

across the football codes illustrate that metabolic power analysis complements 

‘traditional’ speed-based running metrics, as many movements that do not exceed high-

speed running thresholds (i.e. accelerations and decelerations) are very energetically 
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demanding and should be quantified (Coutts et al., 2014; Gaudino et al., 2013; Kempton 

et al., 2015c; Stevens et al., 2014b). 

 

Support for the application of metabolic power is evident when examining high-

intensity periods during training and competition (Gaudino et al., 2013). Given that 

metabolic power is approximately 20 W.kg-1 when running at a constant speed of  

14.4 km.hr-1 on grass (Osgnach et al., 2016), the extent that speed-based measures 

underestimate the ‘true’ energy cost of high-intensity activity may be studied via 

comparison of distance covered above 14.4 km.hr-1 (i.e. common high-speed threshold) 

to the distance covered above 20 W.kg-1. During soccer training, 13% of the total 

distance was covered above 14.4 km.hr-1 compared to 19% above a metabolic power of 

20 W.kg-1, indicating a ~ 6% underestimation of energy cost via traditional speed-based 

measures (Gaudino et al., 2013). During soccer competition, 18% of the total distance 

was covered above the high-speed running threshold of 14.4 km.hr-1, compared to 26% 

above a metabolic power of 20 W.kg-1, representing an ~ 8% underestimation of energy 

cost via high-speed running distance (Osgnach et al., 2010). These differences between 

high-speed running and high metabolic power distances pale in comparison to during 

rugby league competition, where using the same thresholds for both measures, high-

speed running underestimated energy cost by 37-76% (ES: 1.3-3.0) depending on 

playing position (Kempton et al., 2015c). Whilst metabolic power presents an 

ecologically valid premise providing a representative measure of both speed and 

acceleratory movements common to football codes, it has many limitations. 

1. Any measure that summates multiple measures will inherently sum measurement 

errors too. Since all GPS devices have reduced accuracy for measuring short distance, 
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high-speed or acceleratory movements, the increased error of measurement will 

concurrently be observed within metabolic power estimates.  

2. Creating one ‘magic bullet’ metabolic power number masks the underlying 

mechanism of the external load (i.e. accelerated running or high-speed running) 

(Buchheit et al., 2015). 

3. In the mathematical model, the overall mass of the athlete is assumed to be located 

at their centre of mass, thereby disregarding the contribution of the limbs to the 

energetics (Di Prampero et al., 2005). This is equivalent to assuming that the energetic 

cost of running uphill at a constant speed is the same as sprinting up an equivalent slope, 

which is unlikely. 

4. The energetic cost model (Di Prampero et al., 2005) incorrectly implies that the 

frequency of movement is the same during both accelerated running on flat vs. uphill 

terrain (Osgnach et al., 2010).  

5. The model calculates the average force by active muscles during ground contact 

(one foot) and neglects frontal plane contributions (Di Prampero et al., 2005). 

Moreover, the model erroneously assumes that the joint angles and forces during the 

landing phase of a gait cycle are the same during uphill running at a constant speed and 

during sprinting at an equivalent slope (Di Prampero et al., 2005).  

6. Original model calculations were based on the energy cost of treadmill running at 

different constant speeds and inclines of -0.45 to +0.45 (Minetti et al., 2002), which are 

much less than the inclines (equivalent slopes) reported whilst maximally accelerating 

and sprinting (+0.70) (Di Prampero et al., 2005). Therefore, the validity of values for 

slope inclines greater than 0.45 is based on the assumption that the relationship between 

slope incline and energy cost of running holds true beyond 0.45.   
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7. The energy cost equation was derived from direct oxygen uptake measurements 

during aerobic steady state exercise at constant speeds (Minetti et al., 2002). Energy 

sources during sprint running are largely anaerobic and thus energetic costs and 

metabolic power estimates should be considered with caution (Di Prampero et al., 

2005). 

8. The calculation for the equivalent slope of accelerated running is compared to 

running at a constant speed on flat terrain where the equivalent slope is assumed to be 

zero. Yet humans have a small forward lean whilst running, even at low speeds (Di 

Prampero et al., 2005). The model assumes that the equivalent slope and equivalent 

mass values are in excess of those during constant speed running and the average force 

required to move the athlete’s body mass is equal to that prevailing under the Earth’s 

gravitational field (Di Prampero et al., 2005). These assumptions should not introduce 

substantial error into energy cost and metabolic power estimates though, since the 

model’s reference value was the energy cost of constant speed running per unit of body 

mass (Di Prampero et al., 2005).  

9. The initial energetic model (Di Prampero et al., 2005) neglected the known energy 

required to overcome air resistance. Although alterations to equations can be made to 

account for air resistance where required (Di Prampero et al., 2015).  

10. The model calculates energy expenditure from speed and acceleratory locomotor 

movements, but is unable to quantify many energetically taxing non-locomotor 

movements such as tackling, kicking, throwing or jumping that frequently occur in the 

football codes  (Brown et al., 2016; Buchheit et al., 2015; Highton et al., 2016; Stevens 

et al., 2014b). 

Despite several limitations of the metabolic power model (Di Prampero et al., 2005), it 

has many benefits compared to speed-based methodologies. Many factors may restrict 
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a player’s ability to cover distances at high-speeds during competition such as spatial 

constraints, rules of the game and positional role etc. Therefore, the metabolic power 

model gleans novel insights into the bioenergetics of accelerations and decelerations, 

providing coaches with a more holistic picture of the external loads of competition 

when compared to the sole use of speed-based measures. Yet, to be used confidently in 

practice the validity of the metabolic power model must be assessed.  

Locomotor related metabolic power measured by either GPS or local positioning 

systems (LPS) differs substantially from the true metabolic demands as measured by 

indirect calorimetry (V̇O2 measures, PVO2) (Brown et al., 2016; Buchheit et al., 2015; 

Highton et al., 2016; Stevens et al., 2014b). Table 2.3 illustrates that metabolic power 

grossly underestimates the energetic cost of exercise that is intermittent in nature, 

including shuttle running (Stevens et al., 2014b), soccer (Buchheit et al., 2015), rugby 

(Highton et al., 2016) and field sport specific circuits (Brown et al., 2016).  

 

Authors Exercise Task 
Velocity 

(km.hr-1) 
GPS/LPS - V̇O2 derived 

(%) 

(Stevens et 

al., 2014b) 

Continuous running 
7.5-10 

+ 6 to 11% 

-13 to -16% Shuttle running 

(Buchheit et 

al., 2015) 

 

Soccer specific 

circuit 

6.5-7.5 

-29 ± 10% during 

exercise,  

-85 ± 7 % during recovery 

(Highton et 

al., 2016) 

Rugby specific 

circuit 

 

9-14.4 -45% 

 

 

 

(Brown et al., 

2016) 

Walking 4 +43% 

Jogging 8 -7.8% 

Running 12 -4.8% 

Field sport circuit 

 

Self-selected  

 

-44% 

Negative energy cost percentage differences indicate positioning systems underestimated the energy cost 

of exercise when compared to indirect calorimetry. 

Table 2.3 Exercise energy cost comparison between indirect calorimetry (V̇O2) 

and Global or Local Positioning Systems using metabolic power equations (Di 

Prampero et al., 2005; Osgnach et al., 2010).  
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Using portable gas analysers and local positioning systems (500 Hz) to measure the 

energy cost of constant and shuttle running at six different speeds (7.5-10 km.hr-1) in 

soccer players, GPS derived metabolic power overestimated (6-11%) measured energy 

cost via gas analysis during constant running. Conversely metabolic power significantly 

underestimated (-13 to -16%) energy cost of shuttle running when compared to direct 

gas analysis (Stevens et al., 2014b). During a soccer specific circuit, Metabolic power 

measured via 4 Hz GPS devices was 29 ± 10% lower than PV̇O2 measured via portable 

gas analysers during 1 minute exercise bouts at speeds of 6.5, 7 and 7.5 km.hr-1 and 85 

± 7% lower during 30 second passive recovery periods (Buchheit et al., 2015). During 

a 90 minute exercise session (30 minutes exercise, 60 minutes recovery) that comprised 

of 6 × 5 minute randomised bouts of walking, jogging, running or a field sport circuit 

separated by 10 minutes of recovery, energy cost estimates were compared between 

GPS (5Hz, interpolated to 15 Hz) and portable gas analysis (Brown et al., 2016). Similar 

to previous findings comparing direct and indirect energy cost estimates, metabolic 

power was significantly lower (p < 0.01) and underestimated to a moderate extent 

(19%) over the entire 90 minute exercise session. When assessing the randomised bouts 

within the session, no substantial differences were observed during jogging (7.8%) or 

running (4.8%). However, GPS overestimated metabolic power to a very large extent 

during walking (43%) and underestimated all field sport circuits to a very large extent 

(-44%, p < 0.01) compared to PV̇O2 derived energy cost measurement (Brown et al., 

2016). During a rugby specific circuit involving three sets of 6 × 8 meter runs at 4 m.s-

1 (14.4 km.hr-1) with 60 seconds standing recovery between each set, metabolic power 

was underestimated by GPS (10 Hz) when compared to open circuit spirometry 

(Highton et al., 2016). Energy cost was systematically underestimated (-5.94 ± 0.67 
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kcal.min-1) by GPS during the rugby specific circuit (7.2 ± 1.0 kcal.min-1) compared to 

open circuit spirometry (13.2 ± 2.3 kcal.min-1) (Highton et al., 2016).  

Altogether, GPS derived metabolic power largely underestimates the energy cost of 

intermittent exercise, especially during recovery periods. The underestimation of 

energy cost during intermittent exercise may be due to a host of limitations and 

assumptions of the metabolic power model (Di Prampero et al., 2005; Osgnach et al., 

2010), as previously discussed in this chapter. For example, GPS derived metabolic 

power is unable to measure the energy cost from accelerations or decelerations 

associated with physical contact or static exertions (Highton et al., 2016). Another 

explanation for the gross underestimation of energy expenditure during intermittent 

exercise is that GPS is unable to quantify excess post-exercise oxygen consumption 

(EPOC) during periods of rest (Buchheit et al., 2015; Highton et al., 2016). The large 

divergence between estimated energy cost via GPS or LPS compared to direct 

measurement via portable gas analysis, illustrates that Metabolic power is not a valid 

measure during intermittent exercise incorporating rest periods, however it does 

provide a reasonably accurate estimation of continuous low speed movement.  

Despite poor validity for measuring intermittent exercise, metabolic power has been 

suggested to be of use as a global indicator of external load, encompassing accelerated, 

decelerated and speed-based running (Delaney et al., 2016a). Justifying this view, 

metabolic power displayed good accuracy when compared to a criterion method (radar) 

utilising both 5 Hz (CV = 4.5%) and 10 Hz (CV = 2.4%) GPS devices (Rampinini et 

al., 2015). Moreover, distances covered above high (> 20 W.kg-1) and very high (> 35 

W.kg-1) metabolic power thresholds exhibited comparable or reduced variability when 

compared to high-speed running distances (CV = 4.5-12% vs. 4.7-23%) (Rampinini et 

al., 2015). During the peak intensity periods of rugby league competition, metabolic 
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power was greater for hookers, half-backs and fullbacks compared to middle forwards 

and outside backs (Delaney et al., 2016a). Further, the way in which players 

accumulated metabolic power (i.e. via acceleratory or speed-based movements) 

differed between playing positions, providing coaches with valuable information that 

may aid training monitoring and prescription.  Although metabolic power should not 

be used in isolation as a measure of external load as the combination of acceleratory 

and speed-based running into one metric masks the underlying mechanism of the load 

(Buchheit et al., 2015) 

In conclusion, increasing the sampling rate of GPS receivers appears to improve the 

validity and reliability for measurement of distance and speed during both linear, non-

linear and team sport-simulated activities. Whilst GPS athlete tracking data can be of 

great value to practitioners, it has reduced validity and reliability for quantifying rapid 

changes of direction (Rawstorn et al., 2014) and velocity (Akenhead et al., 2014; 

Jennings et al., 2010), estimating metabolic power (Buchheit et al., 2015) and for 

assessing short duration, high-velocity tasks that frequently occur in team sports (Coutts 

et al., 2010a; Jennings et al., 2010). As GPS receivers rely on satellite communication, 

they are not able to quantify athlete activity profiles indoors. Movements that incur little 

horizontal displacement (e.g., collisions, tackles, kicking, jumping, throwing) are also 

likely to be underestimated by GPS (Boyd et al., 2013).  Considering several football 

codes are characterised by engaging in or evading contact and success is heavily 

dependent on tackling ability (Gabbett, 2013b), it is not too speculative to suggest that 

the activity profile or external load may have been substantially underestimated 

(Coughlan et al., 2011; Cunniffe et al., 2009) via the use of GPS technology alone 

(Boyd et al., 2013). Practitioners must interpret high-speed and acceleratory GPS 

estimates with caution when making training monitoring and prescription decisions. 
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Quantification of all movements that take place in football codes may require the use 

of additional technologies such as accelerometers to better inform the training process. 

2.5.7 Accelerometers  

Accelerometers can quantify the frequency and magnitude of acceleration (Hendelman 

et al., 2000a). Kinetic (motion) energy as measured by accelerometers can be converted 

into electrical energy and subsequently translated and recorded by the receiver as 

acceleration measurement data (Boyd, 2011). Processed data is subsequently recorded 

via internal memory and then may be downloaded to computers for further analysis, 

interpretation and practical use. Accelerometers are highly responsive motion sensors 

that measure acceleration based upon English physicist Isaac Newton’s elementary 

second law of motion: Force (N) = mass (kg) × acceleration (m.s-2) (Newton, 1687). 

The equation may then be rearranged to calculate acceleration (i.e. acceleration = Force 

/ mass). Acceleration is measured in gravitational acceleration units (i.e. g; g = 9.8 m.s-

2) (Chen et al., 2005). Put simply, accelerometers measure accelerations by sensing how 

much a mass moves when a force acts on it, not by calculating how speed changes over 

time (i.e. acceleration = ∆ speed / time). More specifically, when the accelerometer is 

moved, the acceleration of a seismic mass inside the receiver presses on a piezoelectric 

sensing element (potentiometer) that the mass is attached to (Figure 2.6) (Chen et al., 

2005). The sensing element subsequently produces an electrical voltage output 

proportional to the applied acceleration (Nedergaard et al., 2015). When acceleration is 

zero, the body of interest is no longer changing its speed, yet it may still be moving at 

a constant speed. As acceleration is proportional to the net external force involved and 

thus more directly reflective of energy costs, measurement of physical activity using 

acceleration is preferred to using speed (Chen et al., 2005).  
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Accelerometer technology is not new, with the earliest commercialised model credited 

to McCollum and Peters in the 1920’s (McCullom et al., 1924; Walter, 1999) and the 

first model specifically designed for measuring human movement was invented in the 

1950’s (Inman et al., 1953). There are many different types of accelerometers used for 

a wide range of applications across industry and science. Piezoelectric accelerometers 

(Figure 2.6) are commonly used to measure human locomotion as they are unrivalled 

in terms of their high sampling frequency range (typically 100 Hz with criterion range: 

1-10,000 Hz), thereby allowing more accurate measurement of rapid movements. 

Piezoelectric accelerometers have additional benefits such as light packaged weight and 

temperature range (Levinzon, 2015). To ensure that rapid human movements (e.g. 

maximal accelerations) are accurately quantified by accelerometers, its sampling 

frequency should be at least twice the frequency of the highest frequency movement 

measured, known as the Nyquist criterion (Oppenheim et al., 1983). Having these 

characteristics alongside having high outputs for small strains and the potential of a 

large dynamic range (Togowa et al., 1998) make piezoelectric accelerometers ideal for 

Figure 2.6 Schematic of the two common piezoelectric accelerometer 

configurations. During acceleration, the seismic mass causes the piezoelectric 

element to change shape either by bending beam sensors (right-hand image), or 

by direct tension or compression in integrated chip (IC) sensors (Chen et al., 2005). 
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quantifying the physical activity of humans. Whilst piezoelectric sensors can be reliably 

used to measure dynamic movements, their ability to measure static loading (e.g. rugby 

scrum) is limited. This can be explained by a phenomenon known as leakage, whereby 

the initial change in charge in the piezoelectric element dissipates over time, even if the 

static loading that produced the initial change is still present (Togowa et al., 1998).   

Initially accelerometers were used to count the frequency of accelerations that occurred 

within a set time period (Rowlands, 2007). Both uni-axial (measure one axis of 

movement) and tri-axial (measure three axes) accelerometer models have been widely 

used to measure human physical activity across many subject populations and during 

numerous exercise tasks (Fudge et al., 2007; Steele et al., 2000). As the name suggests, 

tri-axial accelerometers measure accelerations in three axes: mediolateral (sideways-x), 

anteriorposterior (forwards/backwards-y) and craniocaudal (vertical-z). Although the 

premise of calculating a vector magnitude derived via the summation of acceleration in 

three dimensions that accounts for both the frequency and magnitude of movement has 

been around since the 1960’s (Cavagna et al., 1961), it’s wide spread adoption occurred 

much later, now commonly referred to via proprietary names such as PlayerLoadTM or 

BodyLoadTM.  

Manufacturers of accelerometer technology used by sporting practitioners and scientists 

have created modified vector magnitude proprietary algorithms, with frequently 

published measures being PlayerLoadTM (Catapult Sports) (Boyd et al., 2013) and 

BodyLoadTM (GPSports) (Weaving et al., 2014). Vector magnitudes provide an 

estimate of the totality of physical movement, often referred to as external load. The 

vector magnitudes are mathematically expressed as the square root of the sum of the 

squared instantaneous rate of change in acceleration in three orthogonal planes 

accumulated over time or sampling interval (i.e. 100 Hz):  
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PlayerLoadTM or BodyloadTM = (Forward2 +Side2 +Up2), where Forward, Side 

and Up refer to directions of acceleration, and  refers to the change over the sampling 

interval (10 ms). 

Seminal accelerometer research focused on the validity and reliability of the receivers 

(Nichols et al., 1999), followed by using the technology to measure physical activity 

levels of various populations, including youth (Eston et al., 1998), aging (Sumukadas 

et al., 2008) and diseased (Steele et al., 2000). Research examining tri-axial 

accelerometers ability to estimate energy expenditure (Jakicic et al., 1999) and to 

measure human locomotion in a variety of populations prompted further investigations 

of the receivers in sporting populations (Boyd et al., 2010; Gabbett et al., 2011b; 

Montgomery et al., 2010; Wixted et al., 2007). The first application of tri-axial 

accelerometers for the measurement of elite sporting movement was in 2007 (Wixted 

et al., 2007). The following sections will provide a synopsis of accelerometer research, 

with a focus on the validity, reliability and utility of tri-axial accelerometers to track 

player movement within football codes.  

2.5.8 Accelerometer Validity & Reliability in Football 

Considering there are several types of accelerometers (e.g. piezoelectric, piezoresistive, 

capacitive), positioned on humans in many locations (e.g. hip, head, trunk), that 

measure acceleration in multiple planes (uni-, bi-, tri-axial) for multiple purposes (e.g. 

gait analysis, classify movements, estimate energy expenditure or external load), 

discussion of all is not feasible nor relevant for the purpose of this thesis. Consequently, 

subsequent sections will chronologically discuss accelerometer validity and reliability 

through the prism of piezoelectric tri-axial accelerometers housed within commercially 

available GPS receivers designed for quantifying athletic movement.  
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Accelerometers are commonly used to objectively measure impacts (i.e. high-intensity 

movements involving a rapid change of acceleration), providing coaches with 

information that may help them to plan and prescribe subsequent recovery and training 

(Gastin et al., 2013; Kelly et al., 2012; McLellan et al., 2012). Impacts were the focus 

of an investigation examining the validity of a commercially available accelerometer to 

measure impacts during jumping and landing tasks that commonly occur in field based 

team sport contexts (Tran et al., 2010). Ten participants completed a drop-landing task 

from a range of heights (30-50 cm) and a counter movement jump. Peak acceleration 

quantified by a tri-axial accelerometer sampling at 100 Hz embedded within a GPS 

receiver (SPI Pro, GPSports Pty Ltd, Australia) was compared to vertical ground 

reaction force measured by a portable force plate (model ACG, Advanced Mechanical 

Technologies Inc., USA) sampling at 100 Hz, acting as the criterion measure. All 

accelerometer derived peak accelerations were moderately correlated (r = 0.45-0.70, p 

< 0.05) yet they were significantly higher than criterion vertical ground force reaction 

values adjusted for body weight. Raw acceleration was highly variable (CV > 20%), 

although smoothing the data reduced error margins (CV = 11-22%) (Tran et al., 2010). 

Findings indicated that although raw accelerometer values displayed large error, 

smoothed accelerometer data improves accuracy and efficacy for the quantification of 

jumping-based impacts. 

To assess the within- and between-receiver reliability of tri-axial accelerometers  

(100 Hz) in a laboratory setting, eight accelerometers (MinimaxX 2.0, Catapult, 

Australia) were fixed to a hydraulic universal testing machine (Instron 8501) and 

mechanically shaken (dynamic condition) at 0.5 g and 3.0 g in addition to a static 

assessment (Boyd et al., 2011). The accelerometer derived vector magnitude 

PlayerLoadTM displayed acceptable within- (dynamic: CV = 0.91-1.05%; static: CV = 
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1.10%) and between-receiver (dynamic: CV = 1.02-1.04%; static: CV = 1.10%) 

reliability.  

To assess the between-receiver reliability of accelerometers in the field, the same 

research group instrumented 10 semi-professional AFL players with two receivers 

inserted into a custom made tightly fitted vest located on the posterior side of the upper 

torso between the scapulae during competitive matches. Similar to findings in the 

laboratory, during Australian football matches the accelerometers between-receiver 

reliability was acceptable (CV = 1.9%). The noise (CV = 1.9%) of accelerometer 

derived PlayerLoadTM was lower than the smallest worthwhile difference (SWD) or 

signal (SWD = 6%). The MinimaxX tri-axial accelerometer demonstrated good (CV < 

5%) within- and between-receiver reliability during laboratory conditions and good 

between-receiver reliability during competitive AFL matches. Therefore, authors 

concluded that these accelerometers may be used with confidence in the field as a 

reliable tool to measure physical activity in team sports, between players and 

competitive matches. The much lower noise of PlayerLoadTM when compared to the 

signal, indicates that accelerometers are sensitive to detecting changes or differences in 

physical movement during Australian Rules Football competition (Boyd et al., 2011).  

Accelerometers are valid tools for quantifying the frequency and magnitude of collision 

during professional rugby league training (Gabbett et al., 2010). Collisions were 

detected using tri-axial accelerometers housed within a GPS receiver also comprising 

magnetometers and gyroscopes (MinimaxX, Catapult Sports, Melbourne, Victoria) and 

compared to video based coding of actual events (criterion measure) during training. 

The accelerometers and gyroscopes (measures orientation) housed within the GPS 

receiver were used to detect collisions. In order for a collision to be detected, the 

receiver worn between the player’s scapulae had to be moved into a non-vertical 
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position (i.e. the player was leaning forwards, backwards, to the left or to the right). 

Further, a spike in the instantaneous PlayerLoadTM immediately before the change in 

orientation of the receiver was required for collision detection. The magnitude of each 

collision were categorised as mild, moderate or heavy. A mild collision was defined as 

contact made with a player but they were able to continue forward progress/momentum 

out of a tackle. Moderate collisions were defined as contact made with player, forward 

progress/momentum continued until tackled. Lastly, heavy collisions were defined as 

contact made with a player, with forward progress/momentum stopped, and forced 

backwards in the tackle. The MinimaxX receiver was an ecologically valid tool for 

detecting the frequency and magnitude of mild (r = 0.89), moderate (r = 0.97) and heavy 

(r = 0.99) collisions, displaying very high relationships with video based coding (Figure 

2.7) (Gabbett et al., 2010). Whilst accelerometer validity for detecting the frequency 

and magnitude of collisions during training was promising for its efficacy within 

football codes, translation to validity during competition was yet to be examined.  
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Body worn tri-axial accelerometers (i.e. SPI Pro GPSports Systems, Canberra, ACT, 

Australia) sampling at 100 Hz are capable of accurate automatic detection of tackles 

and collisions during professional rugby competition without video assessment (Kelly 

et al., 2012). Such data may provide valuable information to practitioners given the 

importance of tackling in football codes and its association with injury risk. A 

combination of different non-linear pattern recognition techniques; 1. support vector 

machine and 2. hidden conditional random field models were used to classify rugby 

union tackles during competition. These machine learning techniques were selected to 

learn and understand the relationship between the source data (i.e. acceleration signals) 

and the target data (i.e. decision of what is and is not a collision). This technique was 

then validated by comparing the automatically detected collisions to manually labelled 

collisions using video analysis of elite and international level rugby players during 

Figure 2.7 Comparison of MinimaxX and video methods for recording collisions. 

Reproduced from (Gabbett et al., 2010). Data are recorded as counts for ‘video’ 

and ‘MinimaxX’ tackle detection methods. Each data point on the figure 

represents the individual player collisions coded from video and recorded via 

MinimaxX. 
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competition. The validation analysis illustrated that by applying machine learning 

techniques to accelerometer signal data, it is not only possible to automatically detect 

and distinguish what is and is not a tackle during competition, but also to do it 

accurately. The learning grid model yielded very few false positives (i.e. detecting a 

collision when there was not one) and false negatives (i.e. not detecting a collision when 

in fact there was one), with very high recall and precision ratings of 0.933 and 0.958 

respectively (Kelly et al., 2012). Automatic tackle detection data derived from 

accelerometers may provide coaches and medical staff with objective data to help 

develop training, prehabilitation and conditioning programs to reduce the likelihood of 

collision-related injuries.   

Supporting the use of tri-axial accelerometers to assess impact forces in collision-based 

football codes are investigations that demonstrate the convergent validity of 

accelerometer derived parameters during training and matches (Boyd et al., 2013; 

Gastin et al., 2013). During AFL matches, peak GPS and accelerometer data were 

identified at the point of physical contact (i.e. tackles made and against) via video based 

coding and subjectively categorised into low, medium and high impact groups. Peak 

running velocity immediately prior to contact was substantially greater in high intensity 

tackles (19.5 ± 6.1 kmh−1) compared to medium (13.4 ± 5.8 kmh−1) and low intensity 

(11.3 ± 5.0 kmh−1) tackles. Peak PlayerLoadTM of high intensity tackles (7.5 ± 1.7 a.u.) 

was significantly (p < 0.01) greater compared to medium (4.9 ± 1.5 a.u.) and low 

intensity (4.0 ± 1.3 a.u.) tackles. Making intuitive sense, results demonstrated that when 

compared to tackles of lower intensity, high intensity tackles are significantly (p < 0.01) 

greater in speed of movement immediately prior to physical contact and in the resultant 

impact acceleration (Gastin et al., 2013). Accelerometers thereby display convergent 

validity, given increased running velocity immediately prior to contact did in fact lead 
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to increases in Peak PlayerLoadTM at impact. Consequently, practitioners may use GPS 

receivers with embedded accelerometers to differentiate between tackles of varying 

intensity or magnitude and aid in the quantification, monitoring and prescription of 

physical contact loads in football codes.  

In AFL training and competition, similar patterns between the number of contact-based 

events performed by each playing position and low-velocity external loads quantified 

by accelerometer-derived PlayerLoadTMSlow (i.e. PlayerLoadTM at movement speeds 

below 2 m.s-1) provides further justification for the use of accelerometers to quantify 

contact loads (Boyd et al., 2013). For example, ruckmen displayed the greatest 

PlayerLoadTMSlow of any position, which is in congruence with their involvement in a 

greater number of contact-related activities compared to other playing positions 

(ruckmen 173 ± 36, midfielders 119 ± 17, center half-forwards and backs 92 ± 20, small 

forwards and backs 75 ± 11, and full forwards and backs 71 ± 19) (Dawson et al., 2004).  

Locomotor loads of AFL training and matches may be estimated by accelerometers, 

given the strong relationship observed between total running distance and 

PlayerLoadTM (r = 0.9, Figure 2.8) (Aughey, 2011; Boyd et al., 2013). Accelerometer-

derived vector magnitudes may therefore be used as a proxy measure of total running 

distance covered when GPS methods are unavailable (e.g. within indoor environments). 

Strong relationships between total distance and PlayerLoadTM, accelerometers ability 

to discriminate between playing positions, playing drills and quantify many frequently 

occurring, low-velocity movements provided initial evidence to support the use 

accelerometers to measure external loads of footballers (Boyd et al., 2013). 
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Whilst correlations between total distance and accelerometer derived PlayerLoadTM 

were promising for applications of accelerometers within team sport, the validity of tri-

axial accelerometers worn on the upper body to estimate peak forces during running 

and change of direction tasks was still unknown. To tackle this gap in knowledge, 

researchers evaluated the validity of an accelerometer (SPI Pro, ASP00725, GPSports 

Pty. Ltd., Canberra, Australia) to measure peak vertical and resultant (i.e. tri-axial) force 

during running and change of direction tasks by comparing values with a criterion in-

ground force plate (BP600900, Advanced Mechanical Technology Inc.,Watertown, 

MA, USA) (Wundersitz et al., 2013). Seventeen participants completed four different 

running and change of direction tasks (0°, 45°, 90° and 180°) five times each. The peak 

vertical and resultant acceleration values of each exercise task were then converted to 

force (via: F = m × a) to compare to the peak ground reaction force raw and smoothed 

values. The resultant smoothed (10 Hz) and peak vertical raw acceleration data (except 

180°) were not significantly different (p < 0.05) to the resultant and vertical ground 

Figure 2.8 The relationship between total distance and PlayerLoadTM in elite AFL 

players. Reproduced from (Aughey, 2011). 
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reaction for all running and change of direction tasks. Resultant accelerometer measures 

displayed no to strong correlations with the ground reaction forces (r = 0.0-0.8) and 

moderate to large measurement errors (CV = 12-24%). Vertical accelerometer measures 

exhibited small to moderate correlations (r = -0.26 to 0.39) and moderate to large 

measurement errors (CV = 15-21%). Findings illustrated that dynamic movements that 

occur in multiple planes such as running and change of direction are more accurately 

measured using resultant (i.e. multiple planes summated) data as opposed to using 

single axis (e.g. crania-caudal) accelerometer data alone. This is likely due to the body 

worn accelerometer at the upper back deviating from a ‘true’ vertical position during 

many running and change of direction tasks. For example, during high-speed running 

trials (5-6 m.s-1) recreational athletes assumed a more forward-leaning and crouched 

posture (Keller et al., 1996). Further, during anticipated and unanticipated running and 

side-step cutting tasks, participants displayed minor lateral trunk orientations outside of 

the vertical plane of between 5-10% (Houck et al., 2006). Together, peak foot-strike 

impact forces should be recorded using resultant 10 Hz smoothed accelerometer data to 

improve measurement accuracy (Wundersitz et al., 2013).  

To ascertain the reliability and convergent validity of accelerometer-derived 

PlayerLoadTM and the individual component planes of PlayerLoadTM for quantifying 

running at various speeds, forty-four team sport athletes completed two standardised 

incremental treadmill running tests (7-16 km.h-1) seven days apart (Barrett et al., 2014). 

During the running tests, oxygen uptake, heart rate and tri-axial accelerometer 

(MinimaxX, Catapult Sports, Scoresby, Victoria) data were measured between the 

scapulae and at the athlete’s center of mass. Accelerometer data from the three 

individual PlayerLoadTM planes were also assessed (anteroposterior, mediolateral and 

craniocaudal).  PlayerLoadTM and its three individual planes exhibited moderate to high 
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test-retest reliability (ICC = 0.80-0.97, CV = 4.2-15%) at both scapulae and center of 

mass receiver locations. Interestingly PlayerLoadTM was significantly higher at the 

center of mass compared to the scapulae (223 ± 43 vs 186 ± 26 a.u.; p = 0.001). 

Percentage contributions of the individual planes to the vector magnitude PlayerLoadTM 

were evident between the two accelerometer placements on the body. The contribution 

of the mediolateral plane (i.e. side-to-side movements) to the total tri-axial 

PlayerLoadTM were higher at center of mass accelerometer placements when compared 

to scapulae placement across all running speeds (center of mass =  27% ± 5%, scapulae 

= 20% ± 4%, p = 0.001). When it came to craniocaudal (i.e. up and down) acceleration 

contributions to total PlayerLoadTM, center of mass estimates were lower than at the 

scapulae (center of mass = 50% ± 7%, scapulae = 56% ± 5%; p = 0.001). Correlations 

between PlayerLoadTM and oxygen uptake and heart rate were nearly perfect within 

subject between the two standardised running tests (r = 0.92-0.98) demonstrating 

convergent validity, whilst between-subject correlations were trivial to moderate  

(r = -0.43 to 0.33). Altogether, PlayerLoadTM displayed moderate to high test-retest 

reliability and exhibited convergent validity with measures of exercise intensity on an 

individual basis at both body placements (Barrett et al., 2014). Thus, PlayerLoadTM may 

be used reliably to examine differences in individual athlete’s external load. Yet authors 

cautioned the use of accelerometers placed at the scapulae for making between-athlete 

external loading comparisons to identify lower-limb movement patterns due to the 

influence of individual running styles (e.g. stride rate) on ground-reaction forces. 

Whilst the convergent validity and reliability of accelerometers was deemed acceptable 

during incremental running tests at 7-16 km.h-1, the criterion validity of accelerometers 

to measure peak accelerations at a range of locomotor speeds was still unclear.  
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To elucidate the validity of accelerometers for measuring peak accelerations during 

walking, jogging and running, thirty-nine participants wore a trunk-mounted 

accelerometer that measured 10 peak accelerations per movement (n = 390) whilst 

running on a treadmill (Wundersitz et al., 2014). To assess the validity of the tri-axial 

accelerometer, a 12-camera motion analysis system acted as the criterion measure that 

tracked the position of a retro-reflective marker attached to the accelerometer receiver. 

Compared to the criterion motion analysis system, the peak raw acceleration values 

were overestimated by the trunk-worn (housed within a vest between the scapulae) 

accelerometer (p = < 0.01). Filtering the raw peak acceleration values using 8 and 10 

Hz cut-off frequencies did however significantly improve the correlations with the 

criterion measure (p = < 0.01). As the magnitude of acceleration increased from walking 

to jogging to running, the validity of accelerometer recordings when compared to the 

criterion decreased. In brief, raw peak acceleration data overestimates criterion-

referenced values, filtering data improves accuracy and error of peak acceleration 

estimates increases linearly with increases in locomotor speed.  

For player tracking receivers to be capable of providing coaches with an accurate 

representation of the external load their athlete’s complete during training or 

competition, they must provide valid information on collisions, tackles, jumping, non-

linear tasks such as change of direction and many sports-specific movements. To 

evaluate the validity of accelerometers to measure peak impacts during team sport 

movements, 76 participants completed a circuit comprised of: walking, jogging, 

sprinting, change of direction, tackling and jumping; with accelerometer measurements 

concurrently compared to a criterion 36-camera motion analysis system (Wundersitz et 

al., 2015a). Peak accelerations per movement were compared using two methods. The 

first involved pooling the peak accelerations of each movement together and filtering 
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the raw accelerometer data at 13 different cut-off frequencies (6-25 Hz) to identify the 

optimal accelerometer signal filtering frequency. The second involved using the 

optimal cut-off filtering frequency discovered using the first method to split the 7 

movements (walking, jogging, sprinting, change of direction, tackling, single and 

double leg jumps) performed (n = 532). Raw and 16-25 Hz filtered accelerometer data 

significantly overestimated the criterion 36-camera system peak acceleration values, 

whilst 6 Hz filtering of accelerometer data underestimated peak accelerations of typical 

team sport movements (p < 0.007). Filtering data at 12 Hz yielded the strongest 

relationship between accelerometer and criterion values (accuracy: -0.01 ± 0.27 g, ES: 

-0.01, agreement: -0.55 to 0.53 g, precision: 0.27 g, and relative error: 5.5% ; p = 1.00) 

(Wundersitz et al., 2015a). Peak accelerations during tackling and jumping were 

underestimated by the accelerometer, and overestimated during walking, jogging, 

sprinting and change of direction. During sprinting, jumping and tackling there was 

lower agreement between accelerometer and criterion values and reduced precision. 

When filtered at 12 Hz, the accelerometer (100 Hz tri-axial accelerometer; Minimax 

S4, Catapult Sports, Australia) data displayed acceptable concurrent validity compared 

to the 36-camera motion analysis system. Findings advocated for the use of 

accelerometers to measure many movements that frequently occur during team sports.  

To thoroughly examine the validity of trunk-worn accelerometers to measure physical 

collisions in team sports, peak impact acceleration data produced from accelerometers 

were compared to a criterion 3-dimensional motion analysis system during tackling and 

bumping (Wundersitz et al., 2015b). Twenty-five semi-elite rugby players wore a 

tracking receiver with an embedded 100 Hz tri-axial accelerometer (MinimaxX S4, 

Catapult Sports, Australia). A retroreflective marker was attached to the receiver, with 

its position measured via a 12-camera motion analysis system (Raptor-E, Motion 
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Analysis Corp, USA) operating at 500 Hz) during three physical collision tasks (tackle 

bag, bump pad, and tackle drill; n = 625). The body-worn (i.e. trunk) accelerometer 

overestimated peak impact accelerations during physical collisions when compared to 

the criterion motion analysis system (mean bias = 0.6 g; p < 0.01). When the raw 

accelerometer data were filtered at 20 Hz, the accelerometers relationship (i.e. accuracy, 

agreement, precision) with the criterion dramatically improved (mean bias = 0.01 g;  

p > .05), signifying improved measurement validity. Peak impact accelerations during 

the three collision tasks of 3.0 g or less (i.e. low impact accelerations) were the most 

accurately measured by accelerometers when compared to the criterion. Precision of 

the accelerometer reduced as the magnitude of impact acceleration increased from 

above 3 g to 10+ g. The tackle-bag task that involved participants running for 5 meters 

before tackling a stationary upright tackle bag exhibited the strongest agreement and 

precision between the accelerometer and motion analysis system of the three collision 

tasks. Results demonstrated that the MinimaxX S4 accelerometer can accurately 

measure peak impact accelerations during physical collisions, provided accelerometer 

data are filtered at a 20 Hz cut-off frequency (Wundersitz et al., 2015b). Consequently, 

accelerometers may be useful to measure physical collisions during collision-based 

football codes. However, further investigations were required to test the validity and 

reliability of accelerometers for the measurement of both dynamic and static 

movements in more controlled conditions.  

In a laboratory controlled environment, the validity and reliability of four SPI-ProX II 

GPS receivers (GPSports, Canberra, Australia) with embedded accelerometers was 

evaluated under both dynamic and static conditions (Kelly et al., 2015). Both intra- and 

inter-receiver reliability was examined via the ability of the SPI-ProX II accelerometer 

to repeatedly measure peak gravitational accelerations during impact based testing 
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using a purpose-built rotating mechanical device. Validity of the SPI-ProX II that is 

commonly used in football codes was assessed by comparing acceleration values to a 

criterion-referenced ADXL345 tri-axial sensor (Analog Devices, Victoria, Australia) 

during static and dynamic (5-15 Hz) mechanically evoked oscillations. The 

accelerometer housed within the SPI-ProX II was a BMA150 (Bosch, Germany) tri-

axial sensor, that sampled at 100 Hz, with a ± 8 g full-scale seismic-acceleration range. 

The accelerometer operates through a bandwidth of 25 to 1500 Hz and within a 

temperature range of -40°C to +80°C. In comparison, the criterion referenced and 

certified calibrated ADXL345 accelerometer operated over a much larger bandwidth of 

0.1 to 3000 Hz, with the same sampling frequency (100 Hz), 8 g full-scale seismic-

acceleration range and similar operating temperature range of -40°C to +85°C. During 

reliability testing of the SPI-ProX II accelerometer, impacts of the mechanically 

rotating device were delivered at 82 milliseconds to peak force to approximate the 

epoch of a tackle in contact based field sports (Pain et al., 2008). To ensure the vibration 

platform (Galileo Sport Control 0544, Novotec Medical, Germany) used for dynamic 

validity testing of both accelerometers was reliable; the platform was previously tested 

over 40 oscillations using an 8 Hz frequency. The 8 Hz frequency was selected as it 

approximates high-frequency, non-contact human locomotion (Chen et al., 2005). Both 

the rotating mechanical device and the vibration platform displayed good reliability 

(CV of 2.3% and 1.7% respectively).  

The SPI-ProX II accelerometers exhibited excellent intra-receiver reliability  

(CV = 1.9-2.2%), with no significant (p < 0.05) differences observed between the four 

accelerometer receivers. The SPI-ProX II accelerometer consistently measured peak 

gravitational acceleration between 7.9 and 8.5 g across 10 repeated impacts, with no 

significant differences (p = 0.5) observed between receivers, indicating excellent inter-
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receiver reliability. However, validity testing exposed poor static and dynamic validity 

of the SPI-ProX II accelerometer when compared to the criterion-referenced 

accelerometer. During static validity testing, there were very large differences (ES > 

3.4) between receivers, equating to 28 to 31%. In addition, the four SPI-ProX II 

accelerometers recorded less than ± 1 g when rotated through all degrees of freedom 

(vector magnitude range: 0.69 to 0.74 g). This is concerning given accelerometers 

should read close to 1 g when stationary due to the gravitational acceleration of earth 

being equivalent to 9.8m.s-2, corresponding to 1 g. For comparison, the criterion 

referenced accelerometer recorded static vector magnitudes of between 0.988 to 1.006 

g, evidently much closer to 1 g. Dynamic validity testing revealed large 

underestimations of peak acceleration across all 5 to 15 Hz vibration platform 

oscillating frequencies, with differences compared to the criterion ranging from 32 to 

35%. Altogether, the SPI-ProX II accelerometers proved reliable but not valid during 

laboratory controlled static and dynamic tasks, underestimating the magnitude of 

acceleration by approximately 30%. Similar large error differences of > 20% have been 

reported between GPSports SPI Pro accelerometers compared to a force-plate criterion 

measure for measurement of impacts during jumping and landing tasks (Tran et al., 

2010). Accelerometer receiver placement and receiver vibration occurring due to 

movement within the harness were thought to have attributed to the poor accuracy of 

the raw data (Tran et al., 2010).  Equivocal accelerometer validity findings across 

several investigations provoked researchers to further question whether body-worn 

accelerometers provide accurate estimates of whole-body mechanical loading. 

Accelerometers embedded within GPS receivers are often used in professional team 

sports to estimate the external forces acting on player’s bodies (Barrett et al., 2016; 

Boyd et al., 2013; Colby et al., 2014). The receivers are worn on the dorsal part of the 
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upper trunk between the scapulae within an elastic vest and thereby quantify the 

acceleration of a player’s upper trunk segment. Using trunk accelerometry to estimate 

the external forces acting on the human body is based on Newton’s second law of 

motion [Force (whole-body) = mass (whole-body) × acceleration (whole-body)] and 

the assumption that body-worn accelerometers are able to measure whole-body 

acceleration (Nedergaard et al., 2016). As GPS embedded accelerometers measure 

trunk accelerations, the external forces measured are not necessarily whole-body related 

[i.e. Force (trunk) = mass (trunk) × acceleration (trunk)]. Yet if segmental accelerations 

measured from the trunk relate to whole-body accelerations then it may be feasible to 

estimate external forces athletes endure on the field during training and competition.  

The relationship between body-worn accelerometer location and whole-body 

mechanical loading during running and change of direction tasks that frequently occur 

in team sports has been investigated in recent years (Nedergaard et al., 2016). Forward 

running and anticipated 45° and 90° side-cuts at approach speeds of 2, 3, 4 and 5 m.s-1 

were completed in randomised order four times each, by twenty male team sport 

athletes. Whole-body accelerations, biomechanically expressed as Center of Mass 

(CoM) accelerations were measured via ground reaction forces collected from one foot-

ground-contact using a Kistler force plateform (9287C, Kistler Instruments Ltd., 

Winterthur, Switzerland) embedded in the floor, that sampled at 3000 Hz. Segmental 

accelerations were measured by a commercially available GPS receiver (MinimaxX S4, 

Catapult Sports, Scoresby, Australia) with an embedded accelerometer (KXP94, 

Kionex, Inc., Ithaca, NY, USA). The commercially available accelerometer sampled at 

100 Hz, with an output range of ± 13 g and was placed on the upper trunk between the 

scapulae within a tightly fitting elastic vest in accordance with manufacturer’s 

recommendations. In addition, three higher specification tri-axial accelerometers (518, 
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DTS accelerometer, Noraxon Inc., Scottsdale, USA) with an 1000 Hz sampling 

frequency and 24 g output range were affixed to three body segments: 1. directly fixed 

to the posterior aspect of the commercially available accelerometer on the trunk, 2. 

dorsal aspect of the pelvis and 3. shaft of the tibia. The relationships between 

mechanical load variables (peak acceleration, loading rate and impulse) calculated via 

both CoM as well as segmental accelerations were examined by regression analysis. 

Statistical parametric mapping was used to investigate the relationship between peak 

CoM vs. segmental acceleration profiles during whole foot-ground-contact on the force 

plate.  

Weak associations were reported for the mechanical load variables regardless of the 

accelerometer location and exercise task (r2 peak acceleration: 0.08-0.55, r2 loading 

rate: 0.27-0.59 and r2 impulse: 0.02-0.59). The segmental accelerations (i.e. trunk, 

pelvis and tibia) consistently overestimated the whole-body mechanical load variables 

(peak acceleration, loading rate and impulse). The commercial and criterion 

accelerometer placement at the trunk yielded the strongest predictions of whole-body 

peak acceleration and impulse, whilst accelerometer placement at the pelvis and tibia 

were the best predictors of loading rate regardless of the running or cutting task. 

Somewhat surprisingly, the addition of multiple accelerometer location data to the 

regression model analysis only slightly improved the relationship with the CoM 

acceleration mechanical loading variables. Peak segmental acceleration data were most 

highly correlated to whole-body mechanical loading during the 10-50% (i.e. initial 

phase) of foot-ground-contact (Nedergaard et al., 2016).  

The consistent overestimation of peak whole-body loading from body-worn 

accelerometers can simply be explained via the differences in acceleration of the 

individual body segments (tibia, pelvis and trunk) being much greater than CoM 
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(whole-body) accelerations. Similar findings were observed between peak resultant 

accelerations from a trunk mounted accelerometer and resultant peak ground reaction 

forces produced during running and change of direction tasks at comparable speeds 

(Wundersitz et al., 2013). These findings make intuitive sense, as body-worn 

accelerometers can only measure the acceleration of the body segment they are attached 

to. Therefore the common assumption of a strong linear relationship (based on 

Newton’s second law of motion) between segmental (often trunk) acceleration and 

whole-body (CoM) acceleration is flawed and not sufficient to accurately quantify the 

linked multi-segment dynamics of the human body during team sports in the field. 

Future investigators should explore the application of multi-segment accelerometer 

models to more accurately estimate the mechanical loading team sport athletes 

experience (Nedergaard et al., 2016).  

Lending support for the common current practice of positioning the GPS-embedded 

accelerometers on the trunk was that peak segmental accelerations measured at the 

trunk displayed the strongest relationship to the peak whole-body (CoM) acceleration 

(Nedergaard et al., 2016). This may be due to the attenuation of the accelerometer signal 

as it travels up through the body from the ground (Hamill et al., 1995), and/or because 

the trunk represents a much larger proportion of the body (50%) when compared to the 

pelvis (14%) and tibia (4.7%) (Dempster, 1955). Results demonstrate that whilst trunk 

accelerometry data displays only weak correlations to whole-body loading variables 

during team sport movements; it is likely practitioners’ best bet to estimate whole-body 

mechanical loading in the field. Practitioners should reflect on the weak to moderate 

linear relationships between body-worn accelerometry and whole-body mechanical 

loading when interpreting accelerometer data in the field.  
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To understand whether body-worn accelerometer derived PlayerLoadTM (exercise 

volume measure) and PlayerLoadTM.min-1 (exercise intensity measure) are reliable, 

task- and player-specific measures that demonstrate convergent validity, fifteen male 

participants completed a football match simulation protocol twice (Barreira et al., 

2017). The modified soccer-specific simulation protocol (mSAFT90) (Raja Azidin et 

al., 2015) comprised of four multidirectional actions common in football (i.e. jog, side 

cut, stride and sprint) that participants completed whilst wearing a trunk mounted GPS 

receiver (Viper model, Statsports Technologies, USA) embedded with a tri-axial 100 

Hz accelerometer (ADXL 326, Analog Devices, Norwood, USA). Both PlayerLoadTM 

and PlayerLoadTM.min-1 displayed moderate to high reliability (ICC = 0.81 - 0.95) 

across multidirectional football tasks of varying intensity from jogging to maximal 

sprinting. Moderate to high accelerometer derived PlayerLoadTM reliability has been 

observed across several studies using a range of protocols, including: soccer-specific 

SAFT90 (Barrett et al., 2016), treadmill running (Barrett et al., 2014), mechanical (Kelly 

et al., 2015; Nicolella et al., 2018) and/or field based testing (Boyd et al., 2011). 

Between participant PlayerLoadTM and PlayerLoadTM.min-1 variation during the soccer-

specific mSAFT90  protocol (CV = 15-25%) was reported to be more related to an 

individual’s locomotor skills than their body composition (Barreira et al., 2017). This 

finding was surprising given individual characteristics such as body mass are known to 

influence ground reaction forces (Derrick et al., 2000) and thereby increased participant 

body mass should have resulted in increased PlayerLoadTM recordings from the 

accelerometers if they were to display convergent validity. Although the accelerometers 

did display some level of convergent validity in that PlayerLoadTM.min-1 was related to 

the running velocity of the exercise tasks. 
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Recent mechanical testing of commercially available GPS receivers with integrated 

accelerometers has found excellent intra-receiver reliability, mixed inter-receiver 

reliability (i.e. very large to nearly perfect intraclass correlation coefficients: 0.77 - 1.0) 

depending on the magnitude and direction of the applied motion and poor validity of a 

commonly used accelerometer (Nicolella et al., 2018). Nineteen accelerometers 

(Catapult OptimEye S5, Catapult Sports, Team Sport 5.0, Melbourne, Australia) 

sampling at 100 Hz were mounted to an aluminium bracket that was bolted to an 

electrodynamic shaker table (Unholtz Dickie 20K) and subjected to a series of 

oscillations, varying in direction and magnitude. The electrodynamic shaker table 

oscillated the fixed accelerometers in three directions (forward-back, side-to-side and 

up-down) at various peak acceleration levels (0.1 g, 0.5 g, 1.0 g, and 3.0 g) for 30 

seconds each. This process was repeated five times, culminating in 60 trials per 

accelerometer receiver, for a total of 1140 peak acceleration measurements across the 

nineteen receivers. To examine the criterion validity of the nineteen commercially 

available receivers, a calibrated single-axis reference accelerometer (J353B31, PCB 

Piezoelectronics, Depew, NY) was also mounted to the shaker table. To further assess 

the validity of the Catapult accelerometer PlayerLoadTM recordings, investigators 

calculated PlayerLoadTM independently from the raw acceleration data using Catapult’s 

publicly available Cartesian algorithm for direct comparison.  

Similar to previous mechanical testing protocols (Boyd et al., 2011; Kelly et al., 2015), 

the commercially available accelerometers exhibited excellent intra-receiver reliability, 

with intra-class correlation coefficients ranging from 0.8 (very large, 95% CI: 0.6 ± 0.9) 

to 1.0 (nearly perfect, 95% CI: 0.99 ± 1.0). Conversely, inter-receiver reliability 

displayed mixed results, with small (ES = 0.5, 95% CI: 0.3 ± 0.7) to large (ES = 1.2, 

95% CI: 1.1 ± 1.3) effect size differences between accelerometer receivers for mean 
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peak accelerations and PlayerLoad™ for each direction and level of acceleration. Small 

(ES = 0.4, 95% CI: 0.2 ± 0.5) to moderate (ES = 1.2, 95% CI: 1.0 ± 1.3) effect size 

differences were observed between the Catapult OptimEye S5 and the criterion 

accelerometer peak acceleration recordings in all three directions and all four 

acceleration magnitudes. The Catapult reported PlayerLoad™ was consistently 15% 

lower than the vector magnitude calculated via the use of raw acceleration data and the 

Cartesian formula. This suggests that the manufacturer further manipulates 

PlayerLoad™ beyond the Cartesian algorithm described (Nicolella et al., 2018), 

presumably via the division of PlayerLoad™ by a “scaling factor” that is unfortunately 

not transparently described for commercial users. Due to the excellent intra-receiver yet 

mixed inter-receiver reliability findings, practitioners may confidently use OptimEye 

S5 receivers to monitor and prescribe player movement across time provided they use 

the same receiver. Comparison of different player’s movement profiles with different 

accelerometer receivers should be exercised with caution due to the highly variable 

(trivial to extreme) inter-receiver reliability. Given these results, authors stressed the 

importance of establishing industry wide standards for periodically evaluating the 

reliability and validity of wearable technology so that practitioners may reliably, 

confidently and interchangeable use receivers in practice (Nicolella et al., 2018). 

2.5.9 Global Positioning Systems & Accelerometers as Player Tracking Tools 

Position, velocity and distance can be derived via GPS (Larsson, 2003). Subsequently, 

change in velocity (acceleration and deceleration) may be calculated (Varley et al., 

2012b) and potentially used in combination with velocity-based events to estimate the 

energy cost of exercise (metabolic power) (Di Prampero et al., 2005). Whilst GPS 

athlete tracking data can be of great value to practitioners, it has reduced validity and 

reliability for quantifying rapid changes of direction (Rawstorn et al., 2014) and 
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velocity (Akenhead et al., 2014; Jennings et al., 2010), estimating metabolic power 

(Buchheit et al., 2015) and for assessing short duration, high-velocity tasks that 

frequently occur in team sports (Coutts et al., 2010a; Jennings et al., 2010). Movements 

that incur little horizontal displacement (e.g., collisions, jumping, tackles and many 

sport-specific movements) are also likely to be underestimated by GPS (Boyd et al., 

2013).  

Accelerometers overcome some of the limitations of GPS and have been used to 

quantify athlete external load (Boyd et al., 2013) and energy expenditure (Walker et al., 

2015) during training and competition, with PlayerLoadTM moderating the recovery 

response of footballers (Rowell et al., 2016). Accelerometers are reliable in laboratory 

(Kelly et al., 2015) and field settings (Boyd et al., 2011), can accurately detect physical 

contact (Hulin et al., 2017; Kelly et al., 2012; Wundersitz et al., 2015b), jumping and 

landing (Spangler et al., 2018; Tran et al., 2010) sport-specific movements (McNamara 

et al., 2015) and alterations in movement strategies, efficiency or kinematic changes 

(Barrett et al., 2016; Cormack et al., 2013). Unlike GPS, accelerometers can also 

operate within indoor environments, providing greater utility (Aughey, 2011).  

Accelerometers have a much higher data sampling rate when compared to GPS (100 

Hz vs. 10 Hz respectively) allowing the detection of small and rapid movements. 

Subsequently, accelerometers are better able to detect changes in how locomotion is 

produced and temporal changes in player movement (Cormack et al., 2013). For 

instance, in a study comparing the relative contribution of each accelerometer axis  

(x, y, z) to overall PlayerLoadTM, AFL players who were classified as fatigued pre-

match had a reduction in the contribution of the vertical axis during competition 

(Cormack et al., 2013). Reduced vertical axis contribution during locomotor and sport-

specific movements when fatigued may reflect a reduced capacity to accelerate or 
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sprint, vertical stiffness (Girard et al., 2011) or relate to player’s adopting running 

patterns characterised by increased knee flexion (McMahon et al., 1987). 

Accelerometers may therefore detect alterations in technique or movement strategies 

and offer a more sensitive measure of transient fatigue in athletes than absolute external 

load measures (Cormack et al., 2008).  

Variations in accelerometer-derived external load parameters can differentiate between 

playing positions (Boyd et al., 2013; Cormack et al., 2014), contact vs non-contact 

small-sided games (Boyd et al., 2013) and between training and matches in AFL (Boyd 

et al., 2013). For instance, PlayerLoadTMSlow (that removes activity above 2 m·s−1 from 

PlayerLoadTM) was able to identify that whilst midfield players consistently had the 

highest match PlayerLoadTM of any position, ruckmen had higher PlayerLoadTMSlow 

than all other positions. This result suggested that PlayerLoadTMSlow may provide 

different information about low-speed activity (e.g. grappling, contact). Most football 

codes are characterised by contact and comprise many low-speed movements that likely 

impose different physical stress than running locomotion alone. External load may be 

severely underestimated if these low-speed activities are not quantified and monitored. 

Accelerometer-derived external load information has the potential to inform recovery 

and training practices. Whilst there are many promising applications of commercially 

available accelerometers to measure human movement, they too have limitations that 

ought to be acknowledged.  

Poor accelerometer validity observed in both mechanical (Kelly et al., 2015; Nicolella 

et al., 2018) and laboratory (Nedergaard et al., 2016) settings may result from many 

sources, such as accelerometer hardware, body placement (Barrett et al., 2014; 

Nedergaard et al., 2016), harnessing apparatus, and data processing procedures (Tran 

et al., 2010; Wundersitz et al., 2014). Reduced accelerometer accuracy during static 
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testing may result from errors produced via incorrect axis orientation, high cross-axis 

sensitivity and poor stability (Hansson et al., 2001). Processing of the raw 

accelerometer data also has large ramifications on the accuracy and thereby validity of 

the data. For instance, smoothed (e.g. fourth order, zero lag, dual pass, Butterworth 

digital filter with a 20 Hz cut-off frequency) accelerometer data reduced error compared 

to a force plate criterion measure (CV = 11-22%) versus raw accelerometer data 

estimates (CV = 17-31%) (Tran et al., 2010). Selection of an appropriate bandwidth 

filter to reduce non-physiological noise derived from accelerometer drift errors or 

vibrations is imperative for valid data (Chen et al., 2005). Narrow bandwidth filters may 

not record all data from physical activity (Welk, 2005), whilst exclusion of signal 

fluctuations above set cut-off frequencies can substantially alter the original signal 

(Bisseling et al., 2006). For example and as mentioned previously, 16-25 Hz bandwidth 

filtered accelerometer data significantly overestimated criterion 36-camera system peak 

acceleration values, whilst 6 Hz filtering of accelerometer data underestimated peak 

accelerations of typical team sport movements (p <0.007) (Wundersitz et al., 2015a). 

Accelerometers also display some insensitivity to quantifying low-intensity 

movements, while recording non-linear data at higher-intensity movements 

(Hendelman et al., 2000b).  

The ability of accelerometers to accurately estimate whole-body accelerations when 

attached to various body locations has also been questioned (Nedergaard et al., 2016). 

Accelerometer-derived PlayerLoadTM measured from the player’s trunk is commonly 

used in practice to estimate the total external load during training or competition. Whilst 

trunk-mounted accelerometer data displayed only weak correlations to whole-body 

loading variables during team sport movements; it is likely practitioners best bet to 

estimate whole-body mechanical loading in the field, with greater associations than 
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pelvis or tibia placement (Nedergaard et al., 2016). Practitioners should reflect on the 

strengths and limitations of any technology, understanding its validity, reliability and 

sensitivity to best interpret and use the data to inform decisions that influence the 

training process. Altogether, accelerometers provide valuable additive external load 

information to GPS that may aid practitioners in more accurately quantifying, 

monitoring and prescribing movement in collision-based team sports. The following 

section will discuss activity profile data analysis techniques, with a focus on techniques 

used to quantify the most intense (i.e. peak) periods of football competition using 

wearable technology. 

2.6 Football Activity Profile Analyses  

Tracking athlete field position and activity profiles can be done via an array of optical 

systems, global and local positioning systems. These tracking systems can give 

practitioners valuable information on player position, distance, velocity, distances 

covered across a range of velocities and changes in velocity, thus acceleration. Absolute 

activity profile measures such as distance travelled give practitioners information about 

the volume of physical work completed. Absolute measures such as distance are often 

better expressed as distance relative to time spent exercising, to better understand the 

intensity of a match or training session (Varley et al., 2013b). For instance, GPS 

technology revealed the total distance travelled during international cricket competition 

was 13,400 m (Petersen et al., 2010), whilst an elite AFL player ran 12,939 m (Coutts 

et al., 2010b), suggestive that cricket is the more “demanding” sport (Aughey, 2011). 

In contrast, when the distance covered is expressed per minute of match time, the AFL 

player nearly doubled the relative distance (109 m.min-1) or “average intensity” of the 

cricketer (63 m.min-1). This finding stresses the importance of using relative measures 
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when trying to make activity profile comparisons between sports that have different 

match durations (see Table 2.1). In an activity profile comparison of the football codes, 

AFL players covered the greatest relative distances (129 ± 17 m.min-1) compared to 

rugby league (97 ± 16 m.min-1) and soccer players (104 ± 10 m.min-1) (ES: 1.0-2.8) 

(Varley et al., 2013b). Expressing absolute measures relative to the time spent on the 

field is incredibly important when evaluating the activity profile of full-match players 

versus substitutes, the intensity of matches versus training or comparing the intensity 

of players being rotated on and off the field of play (Aughey, 2010). However, 

fluctuations in running intensity are expected during football competition given their 

stochastic nature and whole-match averages such as relative distances are not sensitive 

enough to detect these subtle activity profile fluctuations (Delaney et al., 2016d; Furlan 

et al., 2015; Jones et al., 2015). Simply assessing the average intensity of a competition 

hides the worst-case scenarios that players will be exposed to in matches and need to 

be physically and psychologically conditioned for. This has ramifications for training 

prescription, as drills based on whole-match averages will inevitably underprepare 

athletes for the most intense periods of competition (Delaney et al., 2016d). Despite the 

majority of team sport competition being spent at submaximal intensity, high intensity 

periods of competition are often aligned with key events that determine the match 

outcome (Faude et al., 2012; Gabbett et al., 2016). Therefore, conditioning football 

players for the most intense (peak) periods of competition is imperative to match 

outcome (winning or losing). Understanding athlete movement during the most intense 

periods of team sport matches may assist in the development and prescription of 

training that is more representative of competition and inform match-day substitution 

decisions (Delaney et al., 2015). The following sections will discuss methods for 

identifying and quantifying fluctuations in player movement during competition, with 
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an emphasis on identifying peak periods of football competition and declines in 

movement thereafter using wearable technology.   

 

2.6.1 Identifying & Quantifying Peak Periods of Football Competition 

Several studies have investigated temporal fluctuations in player movement during 

football competition to harvest insights on pacing strategies, relationships to skilled 

performance and fatigue (Aughey, 2010; Bradley et al., 2013b; Carling et al., 2011; 

Furlan et al., 2015; Jones et al., 2015; Lacome et al., 2017; Mohr et al., 2003). The 

nature of football movement is very complex and temporal oscillations during 

competition relates to a host of contextual factors. Earlier in this chapter, a simple 

framework for conceptualising the numerous factors (not all encompassing) that may 

influence the intermittent and chaotic nature of football movement was created based 

upon review of the literature (Table 2.2). Four clear factor categories emerged from our 

review: 1. Sport-, 2. Team- & Match-, 3. Individual- and 4. Environmental-related 

contextual factors. The plethora of factors within these four broad categories may help 

to explain the chaotic and undulating nature of football match movement. Improved 

understanding of the links between these factors and resultant player movement and 

pacing strategies during match-play may aid representative training design and inform 

real time substitution or rotation decisions. Several factors that may influence player 

movement during the most intense periods of match-play will be explored further in 

Chapter 5. The ensuing sections will provide a synthesis of literature investigating 

fluctuations in player movement during various football competitions, as there are 

many similarities in how these factors may influence movement between codes.  

A recent systematic review identified the methodologies and wearable micro-

technology variables used to determine the peak “match demands” or intensities and 
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summarised the peak periods of competition across the football codes (Whitehead et 

al., 2018b). Twenty-seven studies met eligibility criteria and six football codes were 

reported on: rugby league (n = 7), rugby union (n = 5), rugby sevens (n = 4), soccer (n 

= 6), Australian Football (n = 2) and Gaelic Football (n = 3). Three peak period 

identification methodologies were identified: 1. Rolling/moving average analysis, 2. 

Pre-defined/segmental analysis and 3. Longest period ball in play analysis. In pre-

defined or segmental analysis, a time period of interest is chosen (e.g. 5 minutes) and 

then the match data is split up into the chosen time period accordingly following the 

zero minute mark when the match commences (e.g. 0-5, 5-10, 10-15 minutes, etc.). 

Identification of the peak period of competition is then simply a matter of selecting the 

period with the highest value for any movement measure/s of interest (Whitehead et al., 

2018b).   

During professional soccer, high-intensity (>18 km.h-1) running distance quantified by 

computerised tracking systems was significantly lower (35-45%; p < 0.05) in the last 

15 minutes of matches compared to the first 15 minutes, irrespective of playing position 

or competition level (Mohr et al., 2003). Immediately following the peak 5 minute pre-

defined period of high-intensity running, high-intensity distance declined by 12% in the 

ensuing 5 minutes compared to the match average. Similarly, during professional soccer 

both total and high-speed running (> 14.4 km.h-1) distances were greater in the first 

versus second half of matches (p < 0.001) and in the first versus final 15 minutes of 

play (p < 0.05) (Carling et al., 2011). Moreover, high-intensity (≥ 14.4 km.h-1) running 

distance was significantly greater in the first versus last 5 minutes of matches, and 

during the peak 5 minutes versus the 5 minute period immediately following and match 

average (p < 0.05). Likewise, post the most intense 5 minute period of soccer 

competition, computerised tracking quantified an 8% decline in high-intensity (≥ 14.4 



 

    

89 

 

km.h-1) running (p < 0.05) when compared to the match average (ES = 0.2) (Bradley et 

al., 2013b). 

Using computerised video-based player tracking, the relationship between end-game 

and transient changes in match running activity and whether these periods were 

concomitantly associated with declines in skilled performance was evaluated in senior 

international rugby union (Lacome et al., 2017). Both rugby forwards and backs 

displayed small to moderate reductions (-42%, ± 10 to -21%, ± 7) in high-speed (≥ 18 

km.h-1) running distance in the final 5 and 10 minutes of matches compared to the 

average across all other 5 and 10 minute pre-defined periods (Lacome et al., 2017). 

Although only small concomitant changes (-18%, ± 51 to 13%, ± 41) in skill-related 

performance were observed. Drastic reductions in high-speed running distances were 

observed for both forwards and backs from the peak 5-minute period to the following 

5-minute period (-50% ± 21 and -49% ± 16, respectively). Large reductions in high-

intensity running distances covered following the peak 5 minute period of competition 

however did not translate to reduced skilled performance (number of passes). Trivial 

differences were observed between the number of passes completed in the period 

following the peak when compared to the mean number of passes completed across all 

other 5 minute epochs (backs: -8% ± 58, forwards: -11% ± 74) (Lacome et al., 2017).  

Temporal movement fluctuations between match-halves and between pre-defined 10-

minute periods of matches have been investigated using wearable 10 Hz GPS receivers 

(MinimaxX v.4.0, Catapult Sports, Melbourne, Australia) with embedded 100 Hz 

accelerometers during professional rugby competition (Jones et al., 2015). Temporal 

analysis of match-halves revealed that PlayerLoadTM.min-1, cruising (2.7-3.8 m.s-1) and 

striding (3.8-5.0 m.s-1) relative distances significantly (p < 0.05) declined from first to 

second halves (PlayerLoadTM.min-1: 6.9 vs 6.5 a.u., cruising distance: 11.8 vs. 10.6 
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m.min-1, striding distance: 7.4 vs. 6.5 m.min-1). Several measures of both low- and high-

intensity movement and acceleration/deceleration progressively declined during match-

halves and across successive 10 minute periods (p < 0.05), indicative of accumulative 

fatigue (Jones et al., 2015). Whilst the number of repeated high-intensity efforts 

(Gabbett et al., 2012b) and contacts did not significantly change between any 10-minute 

period during the first half, both measures significantly declined during the 50-60, 60-

70 and 70-80 minute periods when compared to the first 10 minutes of the second half 

(40-50 minute period). High-intensity running (5.0-5.5 m.s-1) and sprinting  

(> 5.6 m.s-1) distances covered during the final 10 minutes of matches were not 

significantly different to the average distance covered across all other 10 minute match 

periods. Similarly, no substantial declines were observed between high-intensity 

running (5.0-6.7 m.s-1) and sprinting (> 6.7 m.s-1) distances covered during progressive 

10 minute periods across 80 minute professional rugby matches (Roberts et al., 2008). 

In contrast, rugby players covered greater total distances during the first 10 minutes of 

matches when compared to the 50-60 and 70-80 minute match periods in the second 

half. Taken together, findings suggest that rugby players may preserve their energy by 

completing less low-intensity activity as matches progress so that they may recover to 

a greater extent in order to complete higher-intensity tasks when called upon to do so, 

with similar findings observed during AFL matches (Coutts et al., 2010b). Reduced 

low-intensity activity as rugby matches progress may be characterised by an inability 

of players to maintain defensive position or run supporting lines in attack (Roberts et 

al., 2008). Quantifying team, position and individual fluctuations in football activity 

profile during competition using wearable technology and temporal analyses may 

inform preparation of conditioning and rehabilitation drills, tactical decisions (e.g. 

substitutions/rotations) and the application of match-day strategies to enhance physical 
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performance (e.g. half-time re-warm up) (Jones et al., 2015). Whilst temporal analyses 

of football match quarters, halves or pre-defined periods have provided valuable 

information on match activity profile fluctuations, the sensitivity of these data analyses 

techniques to accurately identify these fluctuations (e.g. peak movement periods) has 

been questioned (Varley et al., 2012a).  

The most intense or peak periods of football competition do not often fall completely 

within a pre-defined period of time and therefore these methods underestimate the most 

intense periods of match-play and overestimate subsequent periods of activity 

(Cunningham et al., 2018; Ferraday et al., 2020; Varley et al., 2012a). During elite 

soccer competition the peak periods of high-velocity running distance were identified 

using either pre-defined (distance covered in 5 minutes at every 5 minute time point) or 

rolling time periods (distance covered in 5 minutes from every time point). Rolling or 

moving average methods involve analysing raw instantaneous data from the receiver 

used. For example, GPS receiver data are commonly sampled at 10 Hz (i.e. ten times 

per second) and accelerometer data typically at 100 Hz (i.e. one hundred times per 

second). To identify the peak periods of competition using a moving average approach, 

one must select a duration of interest (e.g. 5 minutes), with that window of time then 

moved across every second of the competition, collecting a moving average from every 

single time point. For example, using a one-minute window that equates to 600 samples 

(60 s with ten samples per second using 10 Hz GPS), the moving average would be 

applied to a player’s match data file as follows: 0-600, 1-601, 2-602, 3-603 etc., to 

identify the one-minute peak measure/s of interest (Whitehead et al., 2018b). During 

professional soccer competition, peak high-velocity running distance was 

underestimated by up to 25% using pre-defined time period analysis, with the 

subsequent period distances overestimated by up to 31% when compared to rolling time 
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period analysis. When the distance decline in high-velocity running between the peak 

and following period were examined, there was up to a 52% greater reduction in 

running performance using rolling vs. pre-defined periods (Varley et al., 2012a). 

Likewise during international rugby competition, both high-speed running (>5 m.s-1) 

and relative distance (m.min-1) were consistently underestimated by pre-defined 

compared to rolling period analyses of 60-300 seconds (Cunningham et al., 2018). Pre-

defined epoch analyses on average underestimated relative distances covered by ~11% 

and high-speed running by up to ~ 20% compared to rolling epoch analyses, with the 

greatest underestimations occurring using the 60 second epoch (95% compatibility 

interval, high-speed running: -6.1 to -4.7 m.min-1, relative distance: -18.5 to -16.4 

m.min-1) (Cunningham et al., 2018). Similarly in English Championship soccer 

matches, pre-defined epoch analyses of 60-600 seconds underestimated peak 

movement intensities of competition when compared to rolling epoch analyses for both 

total distance (∼ 7-10%) and high-speed (∼ 12-25%) distance, irrespective of playing 

position (Ferraday et al., 2020). Therefore, it is recommended that researchers and 

practitioners use rolling/moving time period analyses when trying to accurately identify 

and quantify the peak periods of football competition (Varley et al., 2012a).   

Duration- and position-specific player movement differences have been observed 

during the most intense periods of match-play using rolling epoch analysis across 

various football codes including: rugby league (Delaney et al., 2015), rugby union 

(Delaney et al., 2016d), Australian Rules Football (Delaney et al., 2017a) and soccer 

(Delaney et al., 2017b). These investigations amongst others have provided valuable 

insights into the highly intermittent nature of team sport movement and highlighted that 

rolling time-motion analyses may assist practitioners in the design and prescription of 

training that is more representative and specific to competition. The following sections 
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will elaborate on findings from investigations using wearable GPS and accelerometer 

technology and rolling epoch analyses to identify, quantify and predict the most intense 

periods of football code competition and periods thereafter. Whilst the focus of this 

thesis is on rugby (rugby union), considerable insights can be gleaned from examining 

methodologies, analysis techniques and findings reported from other football codes, 

warranting further discussion.  

2.6.1.1 Predefined vs. rolling epoch analysis  

The first investigation to explore the most intense periods of football competition and 

periods thereafter discovered that pre-defined epoch analysis substantially 

underestimated peak 5 minute high-velocity running distance and overestimated the 

distance in the subsequent period compared to rolling epoch analysis (Varley et al., 

2012a). The peak 5 minute high velocity (≥ 4.17 m.s-1) running distances of 19 elite 

soccer players pooled across 11 matches and all positions was 177 ± 91 m.min-1 and 

166 ± 43 m.min-1 in the first and second match-halves respectively using rolling epoch 

analysis. In contrast, using pre-defined period analysis the peak periods were 142 ± 24 

m.min-1  and 138 ± 41 m.min-1 respectively, representing a ~ 20-25% underestimation 

(ES range: 0.6-0.7). The 5 minute period immediately following the most intense period 

of competition saw drastic reductions in movement intensity using both analysis 

techniques (pre-defined: 72-80 m.min-1 vs. rolling: 52-64 m.min-1). However, as pre-

defined period analysis underestimated the peak intensity of soccer competition by  

~ 20-25% it subsequently overestimated the following period by ~ 24-31%. 

Consequently, the overall average decline in movement between the most intense 5-

minute period of elite soccer matches and the subsequent period was underestimated by 

113 m.min-1 or ~ 52% when using pre-defined analysis. This seminal study paved the 

way for subsequent research attempting to quantify, characterise and understand the 
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most intense periods of football competition and periods thereafter, for the primary 

purpose of match-specific training prescription and monitoring.    

2.6.1.2 Rolling epoch analysis 

Wearable GPS receivers have been used to investigate the temporal fluctuations in 

running intensity within and between match-halves and to establish the level of 

agreement between external load measures used to identify movement fluctuations 

within elite rugby sevens competition (Furlan et al., 2015). During twenty-one World 

Sevens Series matches, 12 elite rugby sevens players wore trunk positioned 5 Hz 

(interpolated to 15 Hz) GPS receivers (Spi HPU, GPSport Systems, Canberra, 

Australia) to quantify their activity profiles. Both relative distance (kinematic, m.min-

1) and metabolic power (energetic, W.kg-1) measures were calculated via velocity-time 

curves and used to evaluate between match-half fluctuations. Rolling average 2 minute 

periods were used to calculate the peak intensity of competition and compare peak 

relative distance to metabolic power. The pre- and post-peak adjacent 2 minute periods 

were also examined to identify fluctuations in intensity. Both relative distance and 

metabolic power displayed small to moderate declines from the first to second half (9% 

and 6%, respectively). The peak 2 minute intensities of the respective measures (130 

m.min-1 and 13 W.kg-1) were understandably significantly greater than the match 

average (94 m.min-1 and 10 W.kg-1) and the pre- and post-peak periods (p < 0.001). 

Relative distance underestimated (p < 0.001) the intensity of the peak 2 minute period 

when compared with metabolic power [mean bias = 16%, 95% Limits of Agreement 

(LoA) = 16% ± 6]. The point in time during competition when the peak 2 minute 

intensity period occurred and was identified differed between the two measures (mean 

bias = 21 seconds, LoA ± 212 seconds). Findings illustrated that running intensity 

fluctuates both within and between match-halves and that the external load measure 
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utilised influences both the magnitude and the temporal identification of the peak 

periods (Furlan et al., 2015).  

The first study to investigate the position and duration specific running intensities of 

professional football using several rolling average epochs found that the peak periods 

of rugby league match-play are considerably more intense than previously reported 

(Delaney et al., 2015). Utilising 15 Hz GPS receivers (SPI HPU, GPSports, Canberra, 

Australia), 32 professional rugby league players were tracked across a competitive 

season. Maximum relative distance values were calculated via rolling average analysis 

of the velocity-time curve using durations of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 minutes for each 

player, during each match. Pairwise comparisons between rolling-average durations 

revealed significant (p < 0.05) relative distance differences between all durations, with 

the exception of the 9- vs. 10-minute comparison. As the length of the rolling epoch 

decreased, the peak relative distance substantially increased relative to the longest 

epoch duration (10 minutes). There were moderate to large differences displayed 

between the 1- and 2-minute peak relative distances and all other rolling average 

duration peak intensities (p < 0.05), yet the magnitude of these differences decreased 

as the rolling average duration increased. Significant positional differences were 

observed across positional groups and rolling averages, although these differences were 

small and would not be substantial enough to warrant the prescription of different 

intensities. However, fullbacks produced greater peak relative distances than both 

middle and edge forwards across 1- and 2-minute rolling durations (ES: 0.8-1.2, p < 

0.05). Further, the running intensity of fullbacks was greater than that of middle 

forwards and outside backs for durations of 3 minutes or greater (ES: 1.1-1.4, p < 0.05) 

(Delaney et al., 2015).  
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Creation of duration and position specific peak intensity of competition frameworks 

provides valuable information to coaches for the planning, prescription and monitoring 

of specific training drills, such as small-sided games (Delaney et al., 2015). For 

example, as fullbacks were the only position to display substantially greater running 

intensity than any other position, training prescription attempting to replicate the peak 

periods of match-play should reflect this. It was recommended that coaches periodically 

prescribe specific game-based methodologies such as small-sided games to better 

replicate the reactive and multidirectional nature of rugby league (Delaney et al., 2015). 

Coaches may manipulate the drills field size, number of players, rules and verbal 

encouragement to achieve the desired training intensity obtained via rolling-epoch 

analysis of competition. Whilst this study provided valuable frameworks for the 

prescription and monitoring of position and duration specific running speeds, the 

energetic and acceleration profile of professional rugby league athletes was still 

unknown.   

To investigate the energetic cost of running and acceleration efforts during the most 

intense periods of rugby league competition, 37 professionals wore trunk-mounted 15 

Hz GPS receivers (SPI HPU, GPSports, Canberra, Australia) to track player movement 

over two competitive seasons (Delaney et al., 2016a). Peak values for relative distance, 

average acceleration/deceleration and metabolic power were calculated using 

rolling/moving average durations from 1-10 minutes for each positional group. Relative 

distance is a commonly used measure in time-motion analyses, yet it only considers 

speed of movement and pays no regard to the energetic cost of accelerated running. 

Therefore, relative distance was used to compare a speed-based measure against 

acceleration-centric measures of metabolic power and average 

acceleration/deceleration. Metabolic power considers the energetic cost of accelerated 
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running on flat terrain to be energetically analogous to running on an equivalent uphill 

slope at a constant speed (Di Prampero et al., 2005). Instantaneous metabolic power 

output (W.kg-1) of an individual may subsequently be calculated if acceleration and 

velocity are known (Di Prampero et al., 2005; Osgnach et al., 2010). The average 

acceleration/deceleration measure turned all acceleration and decelerations values 

positive to create an indicator of the total acceleration requirements of an athlete, 

independent of velocity (Delaney et al., 2016a).  

To evaluate the effect of rolling average duration on running intensities, a magnitude-

based approach (Hopkins, 2007a) was used to compare the 1-9 minute averages with 

the 10 minute average, for each of the three outcome measures. A multilevel mixed-

effects statistical model was used to examine the effect of playing position for each 

rolling epoch duration, with individual comparisons made using a magnitude-based 

decision approach (Hopkins, 2007a). Large differences (ES: 1.2-1.9) in peak relative 

distance and metabolic power were reported between the 10 minute rolling period and 

all durations less than 5 minutes. The positional groups of fullbacks, halves and hookers 

covered greater peak relative distances when compared to outside backs, edge forwards 

and middle forwards for all rolling average durations between 2-10 minutes. Hookers 

and halves had greater peak acceleration/deceleration profiles versus fullbacks, middle 

forwards and outside backs. Somewhat in agreement, the other acceleratory measure 

metabolic power was also greatest in hookers, halves and fullbacks compared to middle 

forwards and outside backs. Findings shed further light on position and duration 

specific movement profiles of rugby league athletes during the most intense periods of 

match-play, whilst emphasising the importance and need to accurately quantify 

acceleratory movements to better prescribe and monitor specific training drills 

(Delaney et al., 2016a). 
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The most intense periods of rugby (rugby union) competition were first quantified by 

Delaney and colleagues (Delaney et al., 2016d), employing an identical framework to 

describe the duration and position specific intensities as their previous investigation in 

rugby league (Delaney et al., 2016a). Peak running intensity increased as the duration 

of the rolling average epoch decreased. Small to moderate (ES = 0.3-1.0) increases in 

peak relative distance and average acceleration/deceleration were observed for outside 

backs, half-backs and loose forwards compared to the tight 5 group (props, hooker, 

locks) across all 1-10 minute durations. Outside backs and half-backs produced 

moderately greater metabolic power when compared to the tight 5 (ES = 0.9-1.0). Half-

backs covered the greatest relative distances and produced the highest metabolic power 

outputs of any positional group, yet had similar average acceleration/deceleration 

profiles to outside backs and loose forwards during the most intense periods of rugby 

competition (Delaney et al., 2016d). The study provided a novel framework to describe 

the peak running profiles of elite rugby players during competition by position, which 

were substantially greater than previously reported whole-period rugby match averages.  

2.6.1.3 Longest periods of ball in play 

The longest periods of ball in play during matches may be used to identify and quantify 

activity profile worst-case scenarios of football competition (Reardon et al., 2017). 

Thirty-nine professional rugby player’s movement was tracked during 6 games in the 

European Rugby Championship and 11 games in the Guinness Pro12 league using 10 

Hz GPS receivers (10 Hz S5, Catapult Sports, Scoresby, VIC, Australia). The ERC was 

considered the higher standard of rugby competition, as teams qualify for the ERC by 

finishing in a high ladder position in domestic leagues such as Pro12. Ball in play 

duration was defined as the time the ball entered play until it went dead or until the play 

was stopped by the referee. The longest period of ball in play was then compared 
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between positional groups (regardless of competition level) and between levels of 

competition for each position using separate multivariate analyses of variance. Two 

expert video analysts determined the number of collisions during the “worst-case 

scenario” period of competition for each player. Collision count reflected the count of 

all tackles, scrums, mauls, carriers into contact and positive impact rucks. The longest 

period of ball in play averaged across the four positional groups was 156 seconds (range 

152-161 seconds). Similar to rolling average epoch analysis, using the longest period 

of ball in play time to identify the peak running intensity periods of competition yielded 

substantially greater running intensities than the use of whole-match averages (average 

relative distance: 117 m.min-1 vs. 68 m.min-1 respectively).  

During the worst-case scenarios of competition, compared to forwards the backs 

covered greater total distances (318 m vs. 289 m), completed more high-speed running 

(11 m.min-1 vs. 6 m.min-1) and achieved higher maximum velocities. Outside backs 

recorded the highest maximal velocity (6.8 m.s-1) and covered the most high-speed 

running distance (14 m.min-1). Within the worst-case scenarios of competition forward 

positions are characterised by more collisions and low-speed running than backs. For 

instance, tight five and back row forwards engaged in substantially more collisions than 

inside and outside backs (0.7 & 0.9 collisions.min-1 vs. 0.3 & 0.4 collisions.min-1 

respectively). These results are consistent with previous global activity profile analyses 

of rugby competition, with forwards engaging in more high-intensity collision-based 

movements and backs completing more high-intensity running and sprinting (Duthie et 

al., 2006; Quarrie et al., 2013).  

Within the longest periods of ball in play (~ 156 seconds) the majority of activity is 

low-intensity in nature with intermittent bursts of high-intensity running and collision-

based movements. The vast majority of “worst-case scenario” comparisons between 
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levels of rugby competition yielded non-significant differences. Despite the lack of 

statistical significance, there were some inter-competition differences during that may 

be of practical significance to coaching staff. For example, outside backs covered 

substantially greater high-speed running distances during Pro12 competition than in the 

European Rugby Championship (16 m.min-1 vs. 9.7 m.min-1). The use of longest ball 

in play time analysis to identify the “worst-case scenario” of competition, 

individualised speed zones and video analysis to help accurately quantity collision 

events were study novelties that have contributed to our understanding of the most 

intense periods of rugby competition.   

2.6.1.4 Factors influencing peak and post peak football intensties 

Whilst not the central focus of the investigation, Kempton and colleagues examined an 

array of physical, possession and collision variables during the peak 5 minutes of rugby 

league competition and compared these values to the subsequent 5 minutes and the 5 

minute match average values using GPS and rolling epoch analysis (Kempton et al., 

2015b). Movement data were obtained from 18 rugby league players during 38 games 

throughout two National Rugby League seasons using 5 Hz GPS receivers (SPI-Pro, 

GPSports, Canberra, Australia). Physical movement measures included: total distance 

(m), high-speed running (> 14.4 km.h−1) distance, high-power (> 20 W.kg−1) distances, 

average metabolic power (W.kg−1) and collisions (n). The most physically intense 5 

minutes of competition was significantly greater than both the subsequent (ES range: 

1.7-3.5) and mean (ES range: 2.0-4.3) 5 minute periods for total distance, high-speed 

distance, high-power distance and metabolic power (p < 0.001). However, no 

significant differences were observed for the frequency of collisions between the peak, 

subsequent and mean 5 minute periods.  



 

    

101 

 

Contextual analysis of possession status revealed on average across all matches and 

positional groups that rugby league players spent more time in defence (121 seconds) 

than in attack (106 seconds) during the peak 5 minute period of competition. The 

remaining 74 seconds of the 5 minute (300 seconds) peak rolling average period (study 

stated 301 s presumably via rounding values) were spent with the ball out of play. 

Results of this investigation highlighted the drastic temporal changes in activity profile 

that occur during rugby league competition, possibly due to fatigue and/or several 

contextual factors (Kempton et al., 2015b). Quantifying the inevitable decline in 

physical movement directly after the most intense periods of match-play (explored 

further in Chapter 6) has implications for match-day substitution/rotation decisions and 

prescribing active recovery training intensities between maximal efforts. Analysis of 

the number of collisions alongside locomotor variables during the most intense periods 

of match-play whilst providing contextual information such as time in attack or defence 

may aid the design of training drills aiming to replicate the worst-case scenarios of 

competition.   

The most intense periods of football competition likely differ between playing 

standards, from juniors to semi-professional to professional standards, culminating in 

international competitions such as World Cups. To examine the peak running relative 

distances (m.min-1) of both club and international youth under-16 rugby league players 

during matches, 10 Hz GPS receivers (Optimeye S5, Catapult Sports, Melbourne, 

Victoria) were used, with rolling epoch analysis of 10, 30, 60- to 600 seconds conducted 

(Whitehead et al., 2018a).  International youth forwards covered very likely (95-100%) 

greater (than the smallest worthwhile change: 0.2 × between subject standard deviation) 

(Hopkins, 2007a) peak relative distances than club level forwards for durations of 60, 

180 and 600 seconds. Although for the backs, club level players produced greater peak 
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relative distances during the 10 and 60 second epochs, with unclear effects for other 

time periods. The shorter (i.e. 10 and 30 second) rolling epoch durations used than 

previous rugby league studies of between 1-10 minutes (Delaney et al., 2016a; Delaney 

et al., 2015) may aid the design of conditioning drills with repeated very high-intensity 

bouts. The longer duration epoch (e.g. 10 minutes) peak running intensities may be used 

to monitor the intensity of training drills that aim to replicate match intensity whilst 

concurrently focussing on technical and tactical elements (i.e. tactical periodization) 

(Whitehead et al., 2018a). Differences in the peak relative distances covered between 

youth competition level were position dependent, with greater relative distances 

covered at club level for backs but at the international level for the forwards. Improved 

understanding of the peak intensities of different levels of competition (investigated in 

Chapter 5) provides coaches with indicators of how the activity profile change when 

players progress to higher levels of competition.  

During the World Rugby under 20 Cup tournament 62 player’s match running and 

skilled performance was monitored using GPS to examine the potential effects of 

congested playing schedule and high exposure time (Carling et al., 2017). Of the 62 

players across two teams that were monitored with 10 Hz GPS receivers (Viper 2™, 

Statsports Technologies™, Newry, Northern Ireland), 36 (57%) participated in 4 

matches and 23 (37%) in all 5 matches of the tournament. High-metabolic load distance 

(distance covered > 5.5 m.s-1 + accelerating > 2 m.s-2) (Osgnach et al., 2010) was 

identified and quantified using 5 minute rolling average analysis for each player, 

positional group (forwards and backs) and match. The peak 5 minute high metabolic 

power distances covered were likely (75-95%) to very likely (95-99%) higher to a 

moderate extent in the final match compared to matches 1 and 2 of the tournament for 

both backs and forwards (ES range: 0.6-1.2). Across all five-tournament matches, the 
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backs produced on average 11.5 m.min-1 higher metabolic power distances during the 

peak 5 minutes when compared to the forwards. Findings suggest that backs have 

greater metabolic loads than forwards do during the peak 5-minutes of matches and that 

the two teams as a whole coped physically well with the intensive tournament match 

scheduling.  Sufficient recovery time between matches (4-5 days), effective monitoring 

and recovery practices and the highly developed physical qualities of players of 

international standards were offered as potential explanations as to why the players peak 

5-minute high-metabolic load distance was not reduced as the tournament progressed 

(Carling et al., 2017). Novel insights into the peak metabolic loads produced by 

international youth rugby players across an intensified tournament schedule may have 

implications for team selection during such tournaments, or aid subsequent training and 

recovery monitoring and prescription practices. 

The maximum running intensities of rugby player’s during matches are duration and 

position specific for both youth (Read et al., 2018b) and senior (Delaney et al., 2016d) 

competitions. In youth rugby, running intensity for consecutive rolling epoch durations 

(e.g. 15 vs. 30 s, 30 s vs. 60 s) decreased from a small to very large extent as duration 

increased (ES range: 0.5 – 2.8). Maximum running intensity as measured by the peak 

relative distance was lower for forwards than backs across all 15-600 second durations 

(ES ± 90% CI: −0.7 ± 0.2 to −1.2 ± 0.2) (Read et al., 2018b). When breaking the large 

positional forward and back packs into sub-positional groups, youth front row forwards 

and scrum half backs peak relative distances were substantially different to other sub-

positional groups. The novelty of this research when compared to previous research 

was that authors chose the rolling durations of 30 seconds and 2.5 minutes to correspond 

with the mean and maximum ball in-play cycles for academy rugby (33 and 149 seconds 
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respectively) (Read et al., 2018a), providing ecological validity for the use of these 

durations to monitor and prescribe training intensity.  

The physical activity profile of players is only of importance if physical prowess 

improves a player’s ability to execute their technical and tactical roles effectively to 

help their team win. The effect of intense periods of competition on physical and 

technical performance of elite AFL athletes was investigated and compared between 

more and less experienced players (Black et al., 2016). Twenty-four professional AFL 

players from one team were monitored across 13 matches using 10 Hz GPS receivers 

(S4, Catapult Sports, Melbourne, Australia). Player distances covered during 

competition were segmented into total distance, low-speed activity (0-2.78 m.s-1), 

moderate-speed running (2.79-4.14 m.s-1) and high-speed running (≥ 4.15 m.s-1) 

distances. The number and quality of game-specific technical skills were manually 

coded using match broadcast video footage. The quality of player kicks, handballs, ball 

handling and attempted tackles were classified using a standardised 5-point Likert scale 

(1 = poor; 5 = excellent) that was developed in consultation with football analysis 

professionals and an expert coach. Players were classified as ‘experienced’ if they had 

played at the elite level for five or more years (n=14), whilst players with four or less 

years experience were classified as ‘less experienced’ (n = 10). Peak physical and 

technical skill performance were analysed using a 3 minute rolling average approach 

(Varley et al., 2012a), as 6 minutes was the minimum amount of time between player 

rotations at the football club.  To investigate whether the peak 3 minutes of competition 

influenced physical and/or technical performance, the same measures were compared 

to the 3 minutes immediately subsequent to the peak and the mean of all the other 3 

minute match periods (not including the peak and subsequent period) for each 
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individual. Any players that were substituted off the field during the 3-minute period 

following their peak running period were excluded from analysis.  

Following the most intense 3 minute period of competition, the experienced players ran 

greater distances at high-speeds in match quarters two (ES ± 90% CI = 0.42 ± 0.30) and 

three (0.38 ± 0.33) than less experienced players. Relative to their less experienced 

counterparts, experienced players performed more skill involvements during the second 

(0.42 ± 0.33) and fourth quarter peak 3 minute bouts of exercise intensity (0.40 ± 0.30). 

Experienced players also performed a greater number of skilled involvements directly 

after the most intense 3 minutes of match quarters one (0.49 ± 0.29) and three (0.33 ± 

0.20), when compared to less experienced players. Less experienced elite AFL players 

displayed greater reductions in both physical and technical performance following the 

most intense passages of competition. Findings suggested that it may be pertinent to 

regularly, progressively and periodically expose less experienced players to the worst-

case scenarios of competition so that they are better able to maintain high physical 

intensities and gain possession of the football during and following these very high-

intensity periods (Black et al., 2016). Further, authors proposed that coaches consider 

rotating less experienced players on and off the field more frequently in an effort to 

prevent declines in exercise intensity following the most intense passages of play (Black 

et al., 2016). Future research should explore the relationships between the most intense 

passages of play, key technical performance indicators and match outcome (win/loss). 

Player movement post the most intense passages of competition is likely dependent on 

the duration of the peak period analysed, competition level, playing position, time on 

field, time of match the peak occurs alongside a host of other variables, which will be 

examined in Chapter 6. 
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Identifying whether the most intense periods of competition are influenced by score 

line, opponent rank and substitutes may assist coaches to contextualise the activity 

profile of players. During an international rugby sevens tournament, 17 professional 

players wore GPS receivers to measure both full-match and peak 1-minute periods of 

activity. Measures of relative distance, high-speed running distance (4.17 - 10.0 m.s-1), 

and the occurrence of maximal accelerations (≥ 2.78 m.s-2) were assessed via a 1-minute 

rolling average. The first 1-minute period at the start of each match-half for distance 

per count was recorded in absolute terms (m/count). Peak relative distance and high-

speed running distance declined between professional rugby sevens match-halves, 

regardless of the score line or opponent ranking (Murray et al., 2015). Close match 

score lines (i.e. 7 points or less difference between team scores) at halftime were 

associated with greater high-speed running distance in the first minute of both the first 

and second match-halves when compared to a winning (i.e. reference team was winning 

by more than 7 points) half-time score line. In matches played against higher vs. lower 

ranked opposition, players covered moderately (26%; 90% CL = 6, 49) greater total 

distances during the first minute of the first match-half. Late substitutions (i.e. players 

on the field < 4 minutes) had greater relative distance, high-speed running and 

accelerations than players who played a full match but the peak 1-minute periods for 

all three measures were lower than for early substitutes (came on field in the first 4 

minutes of the second half) and full match players. Altogether, findings demonstrated 

that match score line, opposition rank and timing of substitutions can influence both the 

average and peak intensity of rugby sevens competition (Murray et al., 2015). Rugby 

sevens players are likely to perform more running when the score line is close and when 

competing against higher-ranked opposition teams. Given peak periods of activity were 

reduced in the second compared to the first match-half regardless of score line or 
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opposition, there is need to condition players appropriately to attenuate these declines. 

These findings have the potential to inform team selection, substitution decisions and 

half-time strategies. Further research should continue to investigate the influence of a 

range of contextual factors (see Table 2.2 for a comprehensive framework) on the most 

intense periods of competition, across several epoch durations and positional groups. 

2.6.1.5 Match-to-match peak intensity variability  

It is important for coaches to understand the typical match-to-match variation of player 

activity profiles to accurately assess and confidently monitor differences or changes in 

the physical output and performance of players. Forty-five elite female soccer players 

were monitored with GPS and accelerometry to examine the match-to match variation 

of running across a whole-match and during and post the most intense periods of 

international soccer matches (Trewin et al., 2018). Player activity profile data were 

collected via the use of 10 Hz GPS receivers (Minimax S4, Catapult Sports, Australia) 

with an embedded accelerometer. A rolling 5 minute epoch was used to identify the 

most intense 5 minutes of matches as well as the subsequent 5 minutes, for players who 

played the entire 90 minutes of matches (172 files). The activity profile measures used 

to assess the whole-match and peak running intensity of each playing position during 

competition were: relative distance (m.min-1), high-speed (> 4.58 m.s-1) running per 

minute and counts per minute, sprint efforts (> 5.55 m.s-1) per minute, maximal 

acceleration counts (> 2.26 m.s-2) per minute and PlayerLoadTM (a.u.) per minute. 

Match-to-match variation of these measures were calculated via the co-efficient of 

variation and 90% compatibility limits. The smallest worthwhile difference (SWD) of 

each measure was calculated as 0.2 of the raw between-player standard deviation, prior 

to log transformation. The SWD may be used to assess ‘true’ differences in player 

activity, observed as a change greater than the SWD (Hopkins et al., 2009). Peak 5 
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minute movement periods were no more variable than full-match activity profile 

analyses, underlining that rolling epoch analyses are able to identify the worst-case 

scenarios of competition. For instance, the peak 5 minute relative distance match-to-

match variation of 7.2% (90% CL: 6.5, 8.0) was similar to the whole-match relative 

distance match-to-match variation of 6.8% (90% CL: 6.2, 7.6). Relative distance 

displayed the smallest variation of any measure. Movement after the most intense 5 

minutes of competition was substantially more variable than during peak running 

periods or across the whole match, limiting the efficacy of post peak analyses for 

identifying transient fatigue. For example, the amount of high-speed running per minute 

completed after the peak 5 minutes was extremely variable (CV = 143%, SWD = 13%). 

The greater frequency and reduced variability of maximal acceleration count per minute 

(CV = 17%) when compared to high-speed running and sprint efforts per minute (CV 

= 34% and 56% respectively) demonstrates accelerations improved stability and 

suitability for tracking player movement from match to match.  Further, acceleration 

per minute may also be a more sensitive measure to detect worthwhile changes in 

activity profile or performance between matches, with a smaller SWD (3.8%) compared 

to high-speed based metrics (6.4-9.2%). PlayerLoadTM per minute was also a more 

stable external load measure from match-to-match during both peak periods (CV = 

14%, 90% CL: 13, 15) and whole matches (CV = 14%, 90% CL: 13, 16) than high-

speed running per minute and counts (CV range: 31-33%) and sprinting counts per 

minute (CV = 53%, 90% CL: 46, 60). Authors suggested that PlayerLoadTM could be 

used with relative certainty, although only within player comparisons should be 

considered. Positional differences in match-to-match variation of the measures was 

evident, with center backs exhibiting the largest variation in high-speed movements 

(CV = 41-65%).  
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The novel examination of match-to-match variation of commonly used GPS and 

accelerometer-derived measures during and post the peak intensities of elite female 

soccer competition (Trewin et al., 2018) provided insights that can help coaches to 

assess and interpret changes in player activity profiles within and between matches. The 

match-to-match and SWD data for each movement measure can be used by practitioners 

to monitor often small yet important changes in movement within individuals (or 

grouped into positions), between matches that may inform training prescription and 

subsequent monitoring practices. Future research should examine the match-to-match 

variation of peak movement periods and periods thereafter using a range of rolling 

epoch durations across the football codes. Likewise the within individual, between 

match and between individual, within match reliability and sensitivity (i.e. signal: 

noise) of GPS and accelerometer-derived measures during the peak periods of match-

play is poorly understood. Improved understanding of the reliability and sensitivity of 

wearable technology measures during peak periods of competition (Investigated in 

Chapters 3 and 4) would help coaches to interpret and use player movement data to 

influence the training process.  

2.6.1.7 Modelling peak intensity periods of Football 

Human beings are principally nonlinear organisms that rely on complex interactions 

between many physiological feedback systems (Higgins, 2002; Katz et al., 1994). 

Several developments in our understanding of nonlinear systems have discovered that 

fractal (power law) relationships may be the rule, not the exception in physiological 

systems (Goldberger et al., 1990; Katz et al., 1994). Human senses perceive the 

intensity of sound, light, taste, smell, pain and pressure stimuli with power law 

characteristics (Lodge, 1981). The allometric relationship (Thompson et al., 1917) 

between a mammal’s mass and its resting metabolic rate (White et al., 2005) and human 
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DNA sequences (Oliver et al., 1993) have also been characterised via power law. Power 

law relationships have been reported to characterise a wide array of natural phenomena 

in ecology, biology, physical and social sciences (White et al., 2008). Power law 

describes a nonlinear yet dependent relationship between two variables (x and y), where 

one variable (y) changes as a fixed power (exponent) of another (x). The parameters of 

power law relationships are used to make inferences about processes underlying 

phenomena, to test theoretical or mechanistic models, and to estimate and predict 

patterns or processes that are outside of and beyond the scope of observed experimental 

data (White et al., 2008).  

The first development and use of power law to mathematically explain the relationship 

between  running time (T) and distance (D) covered for human athletic events and horse 

races was in 1906 (equation 1) (Kennelly, 1906). Equation 1 represents the power law 

relationship between running time and distance, with c and n being positive constants:  

T = cDn                                                                                           (1) 

Kennelly stated, “…the records (i.e. speeds of racing humans and horses) align 

themselves closely to a simple mathematical relation” that “could hardly be expected 

from the performances of different animals at different times and in different parts of 

the world” (Kennelly, 1906). Kennelly termed the power law relationship between 

running times and distances “an approximate law of fatigue” that may be used for 

practical purposes given the “satisfactorily small limits of deviation” from the 

mathematical model. Since Kennelly’s seminal work, several others (Henry, 1955; Katz 

et al., 1999; Katz et al., 1994; Lietzke, 1954; Riegel, 1981) have used this power law 

model due to its goodness of fit to human running records of various distances with R2 

values (coefficients of determination) very close to 1. However, even linear regression 

analysis of running and swimming times and distances yielded similarly strong R2 
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values of close to 1 (Katz et al., 1999). Despite strong correlations, linear regression 

models overestimated 100, 200 and 400 m men’s world record running times by 209%, 

73% and 13% respectively. Conversely, power law analysis underestimated 200 and 

400 m times by ~6%, whilst 1000, 1500, 1600, 2000 m running times were consistently 

overestimated by only ~3% (Katz et al., 1999). Further, the world record running times 

for distances of 100 to 10,000 m are scattered about the power law regression lines in a 

pattern that remained consistent for 70 years from 1925 to 1995. Thus, power law 

regression values display smaller standard errors of the estimate when compared to 

linear regression models for such purposes, illustrating improved goodness of fit and 

model accuracy (Katz et al., 1999).  

Aerobic and anaerobic contributions to energy expenditure during exercise have been 

proposed to fit a power function, likely underpinning the excellent fit of running 

performance times over a wide array of distances, and moderating errors of the power 

law model estimates (Katz et al., 1999). A.V. Hill, an exercise physiology pioneer stated 

(1926, p. 98) “Some of the most consistent physiological data available are contained, 

not in books on physiology, not even in books on medicine, but in the world’ s records 

for running different horizontal distances’ (Hill, 1926). Hill proposed that the 

relationship between a runner’s power output (PT) and the total duration (T) of a race, 

can be described by a hyperbolic function: 

         PT = (A/T) + R      (2) 

Where A and R symbolize the capacity of anaerobic metabolism and the rate of energy 

produced from aerobic metabolism respectively (Lloyd, 1966; Péronnet et al., 1989). 

Incorporating human metabolic physiology parameters into running time-distance or 

power-duration equations extended on initial models (Kennelly, 1906), improving their 

accuracy. Further modification of the hyperbolic model initially developed by Lloyd 
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(Lloyd, 1966) based upon Hill’s observations (see equation 2) yielded average absolute 

error between predicted and actual Olympic Games running times of 0.86% for 

distances of 100 to 10,000 m (Ward-Smith, 1985). However, original hyperbolic 

models (Lloyd, 1966; Ward-Smith, 1985) incorrectly assumed mean aerobic power 

could be sustained indefinitely, whereas it progressively declines as running distances 

increase beyond ~3000 m (Péronnet et al., 1987). By accounting for progressive 

reductions of aerobic power output with increasing running time, model accuracy 

improved with an average absolute prediction error of 0.73% when estimating world 

record race times over a wide range of events (60 m to marathon distances) (Péronnet 

et al., 1989).  

Power law (García-Manso et al., 2012; Katz et al., 1994; Kennelly, 1906), exponential 

decay (Weyand et al., 2006), and hyperbolic models (Monod et al., 1965; Péronnet et 

al., 1989; Ward-Smith, 1985), which included critical power models and derivatives 

(Hill, 1993; Skiba et al., 2014) have attempted to achieve ‘good fit’ to physical 

performance data with reasonable approximation of underlying physiology. The critical 

power (CP) model  has been popularised in the last ~30 years, particular in cycling and 

is based on a hyperbolic relationship between power output and the time that the power 

output can be sustained (Hill, 1993). Critical power signifies the boundary between 

steady-state and non-steady-state exercise and has been proposed to be a more 

meaningful measure of aerobic fitness than the lactate threshold and maximal oxygen 

uptake (Vanhatalo et al., 2011). The physiological fatigue mechanisms underpinning 

the power-duration relationship have been segmented into four exercise intensity 

domains: 1. Moderate intensity domain (below the lactate threshold), 2. Heavy intensity 

domain (above lactate threshold but below critical power), 3. Severe intensity domain 

(above critical power) and 4. Volitional exhaustion (above V̇O2max) (Burnley et al., 
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2016). The intensity domain of the exercise dictates the type and degree of fatigue 

experienced (Burnley et al., 2016). Whilst various non-linear mathematical models 

have been utilised to describe and predict the power-duration relationship of individual 

sports (e.g. running, cycling, swimming), there is limited comparative literature 

examining power-duration relationships in team sports. Non-linear models do have a 

theoretical basis for practical application in team sports such as soccer and rugby 

(Vanhatalo et al., 2011), with for example modifications of the critical power model for 

intermittent exercise contexts (Morton et al., 2004).  

Power law analysis has been recently applied in professional soccer (Delaney et al., 

2017b; Lacome et al., 2018) and in rugby league (Duthie et al., 2017) to quantify peak 

intensities and the rate of peak exercise intensity decline as a function of time during 

competition (Delaney et al., 2017b) and training (Lacome et al., 2018). Power law 

analysis has also been used to assess youth soccer (Duthie et al., 2018) by age and 

position and evaluate the relationship between physical performance tests and peak 

intensities achieved during rugby league competition (Duthie et al., 2017). Power law 

may be practically applied in team sports to improve match specific exercise intensity 

prescription and monitoring for any given exercise duration, using specific game-based 

methodologies, such as small-sided games (SSG) (Delaney et al., 2017b; Lacome et al., 

2018).  
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Using wearable Global Positioning Systems (GPS) and rolling average epoch analysis 

(Varley et al., 2012a) to quantify peak intensities of professional soccer competition, 

speed- and acceleration-based measures exhibited almost perfect linear declines with 

increasing exercise durations of 1-10 minutes when log-transformed (r = 0.97-0.98), 

displaying power law characteristics (Delaney et al., 2017b). Likewise, power law log-

log plots have been able to accurately estimate exercise intensity-duration relationships 

(r = 0.94-1.0) across three exercise measures (total distance, high-speed distance and 

mechanical work) between professional soccer matches and SSGs (Lacome et al., 

2018). However, no team sport study to date has examined the standard errors of power 

law regression model estimates. Improved understanding of model errors (examined in 

Chapter 7) may enhance or reduce confidence and use of power law for 

Table 2.4 Football code power law intercept comparisons (i.e. 1-minute peak 

intensities). 

 

Football Code Authors Measure Positional 

Intercept Range 

 

Rugby League (Duthie et al., 2017) Mean speed 171-195 m.min-1 

  Metabolic power 17-20 W.kg-1 

Soccer (Delaney et al., 

2017b) 

Mean speed 173-196 m.min-1 

  Metabolic power 16-18 W.kg-1 

Soccer (Lacome et al., 2018) Mean speed 147-176 m.min-1 

  Metabolic power Not reported 

Soccer 

Youth Under  

15-17 

(Duthie et al., 2018) Mean speed 182-194 m.min-1  

 

  Metabolic power 24-26 W.kg-1  
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estimating/modelling match-specific exercise intensities for any given training drill 

duration. 

Rates of decline in running intensity as a function of time were similar between 

professional soccer playing positions, with trivial to small differences observed 

(Delaney et al., 2017b).  Similarly in youth soccer, there were no substantial differences 

between playing levels in the decline in running intensity as exercise duration increased 

(Duthie et al., 2018). In contrast, exercise intensity differences between professional 

soccer matches and SSG training were highly playing position and SSG type (4v4, 6v6, 

8v8 and 10v10) dependent, irrespective of rolling average duration (Lacome et al., 

2018). Further, in professional rugby league there were large negative correlations 

between a player’s physical qualities (maximum speed and relative squat strength) and 

the rate of decline in running speed and metabolic power during competition (Duthie et 

al., 2017). Rates of peak intensity decline as a function of exercise duration have yet to 

be examined with power law models incorporating rolling epoch durations of less than 

1 minute. No study to date has investigated team sport peak intensity-duration power 

law characteristics using accelerometer and match-half data. Lastly, whether the power 

law relationship can accurately predict/model exercise intensities as a function of time 

in both elite and sub-elite rugby union (rugby) that have higher collision and stoppage 

frequencies, limiting “free running” time compared to other football codes is still 

unknown. The purpose of Chapter 7 was to establish whether power law models could 

accurately model the peak intensities of rugby competition as a function of time. 

2.6.1.8 Peak intensity periods of Football: Summary & Gaps in Knowledge 

Duration- and/or position-specific player movement differences have been observed 

during the most intense periods of match-play across various football codes including: 

rugby league (Delaney et al., 2015; Whitehead et al., 2018a), rugby (Delaney et al., 
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2016d; Reardon et al., 2017), rugby sevens (Furlan et al., 2015), Australian Rules 

Football (Delaney et al., 2017a), soccer (Delaney et al., 2017b) and Gaelic football 

(Malone et al., 2017b). These investigations amongst others have provided valuable 

insights into the highly intermittent nature of team sport movement and highlighted that 

rolling time-motion analyses may assist practitioners in the design, prescription and 

monitoring of training that is more representative and specific to competition. Further 

applications of these investigations included informing: match-day substitution/rotation 

decisions, half-time re warm up strategies, recovery practices and team selection. 

However, there are still many gaps in scientific knowledge when it comes to quantifying 

and characterising the peak intensities of team sport competition. For example, the 

sensitivity, reliability and convergent validity of wearable player tracking systems for 

quantifying peak intensities of team sport competition is not known, limiting a 

practitioner’s ability to interpret and use such data to inform practice (see Chapter 4). 

There is also a scarcity of research using inertial sensor (e.g. accelerometer) technology 

for quantifying peak periods of team sport competition, which is surprising given the 

reduced accuracy of GPS for quantifying high-velocity and acceleratory movements 

that frequently occur in team sports (Boyd et al., 2013; Jennings et al., 2010; Rawstorn 

et al., 2014). In a recent systematic review investigating the use of microtechnology to 

quantify the peak match demands of football codes (Whitehead et al., 2018b), only 2 of 

the 27 studies that met author’s eligibility criteria used accelerometer-derived metrics 

such as PlayerLoadTM or BodyLoadTM, whilst GPS-derived relative distance was 

reported in 63% of studies. Other poorly understood phenomena that will be examined 

throughout this thesis include: quantifying activity profiles post peak periods of 

competition (Chapter 6), quantifying peak player intensities over very short durations 

(< 1 minute), quantifying peak movement intensity between match-halves and between 
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levels of competition within the same football code (rugby). Characteristics of the most 

intense periods of rugby competition such as the time of the match they occur, within-

season trends and whether time on field influences player peak movement intensity will 

also harvest innovative findings (Chapter 5). Finally, this thesis will explore the use and 

accuracy of power law modelling to model professional rugby match intensity as a 

function of time (Chapter 7). 
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3. CHAPTER 3: STUDY 1 - QUANTIFYING 

IMPORTANT DIFFERENCES IN ATHLETE 

MOVEMENT DURING COLLISION-BASED TEAM 

SPORTS: ACCELEROMETERS OUTPERFORM 

GLOBAL POSITIONING SYSTEMS 

 

Published:  

S. T. Howe, R. J. Aughey, W. G. Hopkins, B. P. Cavanagh and A. M. Stewart, 

"Quantifying important differences in athlete movement during collision-based team 

sports: Accelerometers outperform Global Positioning Systems," 2017 IEEE 

International Symposium on Inertial Sensors and Systems (INERTIAL), Kauai, HI, 

2017, pp. 1-4. DOI: 10.1109/ISISS.2017.7935655. 

3.1 Introduction 

Collision-based team sports such as rugby union are characterised by engaging in, or 

evading physical contact. Alike many team sports, rugby union is stochastic in nature 

with the majority of match activity performed at low intensities, punctuated by short 

periods of high-intensity activity (Duthie et al., 2003). Global Positioning Systems 

(GPS) are able to calculate and record data on player position, time and velocity 

(Larsson, 2003). However, GPS has reduced validity and reliability when assessing 

short duration, high-speed straight line running and rapid changes of direction or 

velocity that commonly occur during team sport competitions (Coutts et al., 2010a; 

Jennings et al., 2010). Whether GPS can adequately quantify movements that incur little 

horizontal displacement (e.g., collisions, tackles) and sport-specific movements even 
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with multiple constellation systems that increases measurement accuracy (Malone et 

al., 2017a) is questionable (Boyd et al., 2013). Commercially available piezoelectric tri-

axial accelerometers embedded within GPS receivers are valid and reliable in 

laboratory and field settings (Boyd et al., 2011) and are able to accurately detect 

individual contact events (Gabbett et al., 2010), sport-specific movements (McNamara 

et al., 2015) and changes in how locomotion is produced (Cormack et al., 2013). 

Accelerometers may quantify and account for a greater proportion of an athlete’s total 

physical movement in collision-based team sports compared to GPS technology (Boyd 

et al., 2013). Accelerometers may therefore be more effective in detecting small but 

meaningful differences in athlete activity profiles during both training and matches.  

Valid and reliable quantification of athletic movement via wearable technology is 

important for sporting practitioners as it provides objective data to inform decision 

making around: training prescription, player readiness to play, injury risk and player 

interchange decisions, amongst other emerging applications. The quality of decisions 

made by practitioners on a daily basis relies on valid and reliable objective data from 

technologies, measures and analysis methods that are sensitive enough to detect 

differences in activity within and between players in order to glean useful information. 

The now widespread adoption of GPS with integrated inertial sensor technology in 

elite team sports is testament to its perceived worth and impact on player and team 

preparation and performance. These receivers can capture over 250 physical 

movement metrics. Given the tsunami of movement metrics or variables to choose 

from, it is important that practitioners use those that are valid, reliable and sensitive 

whilst primarily considering each variable’s potential utility to influence the training 

program.  

 



 

    

120 

 

In a recent meta-analysis (Akenhead et al., 2016), acceleration, total distance, high-

speed running distance and estimated metabolic power were ranked as the most 

important variables in the eyes of elite football practitioners. Expressing player 

movement variables per minute of match time spent on the field as opposed to an 

absolute total (e.g., completing 100 m.min-1 vs 8000 m during an 80 minute match) 

allows for quantification of movement intensity that may then be used to help guide 

training prescription (Aughey, 2011). However, if team sport training is prescribed 

relative to the average intensity of an entire match (e.g., 80-100 m.min-1) players will 

likely be under-prepared for the most intense periods of match-play (e.g., 172 m.min-1) 

(Delaney et al., 2015). Despite the majority of collision-based team sport competition 

being spent at submaximal intensity, high intensity activities are often aligned with key 

events that determine the match outcome (win/loss). For example, in rugby league 

approximately 56% of 2083 repeated high intensity efforts occurred within 5 minutes 

of either scoring or defending a try during 21 semi-professional matches across 11 

teams (Gabbett et al., 2016). These findings have lead to growing interest in using 

wearable technology to quantify the most intense periods of match-play. The most 

intense periods of a match do not often fall completely within a pre-defined period of 

time and therefore these analysis methods may underestimate the most intense periods 

of match-play and overestimate subsequent periods of activity (Varley et al., 2012a). It 

is recommended that practitioners and researchers use rolling average epochs (epochs 

from every time point)  as opposed to pre-defined epochs when attempting to accurately 

quantify the most intense periods of competition as well as fluctuations in activity 

across a match (Varley et al., 2012a). Given the aforementioned information, the three 

selected variables of maximum mean movement in the present investigation were: mean 

speed (m.min-1, GPS derived), metabolic power (Metabolic power, GPS derived) and 
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PlayerloadTM (accelerometer derived) using a rolling average duration of 600-s, chosen 

as it is a commonly used training drill duration when attempting to replicate the most 

intense periods of team sport match-play. 

Accelerometers may quantify and account for a greater proportion of an athlete’s total 

physical movement in collision-based team sport compared to GPS technology. There 

is limited evidence of the utility of accelerometers to detect positional and half 

differences in player movement during collision-based team sports when compared to 

GPS technology. The purpose of the present investigation was to determine the 

effectiveness of the respective technologies for detecting differences in measures of 

maximum mean movement between positions and halves during professional rugby 

union match-play using a 600-s rolling average epoch. 

3.2 Methods 

3.2.1 Participants 

Movement data were collected via GPS and accelerometers for 30 male professional 

rugby union players (16 forwards, 14 backs) of an Australian National Rugby 

Championship team across an eight-match season. All players gave informed consent 

to participate and the study was approved by the Victoria University Human Research 

Ethics committee. 

3.2.2 Equipment 

Commercially available OptimEyeTM S5 GPS and GLONASS-enabled receivers were 

used (firmware version 7.22, Catapult Sports, Melbourne, Australia), housing an inbuilt 

tri-axial piezoelectric accelerometer. Unfortunately the specific model of accelerometer 

used and many of its specifications were largely unavailable to the authors due to 

proprietary issues, so attempts were made to provide high-level descriptions to 

substitute where possible. The GPS receiver samples at 10 Hz with the integrated 
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accelerometer using a micro-electromechanical system (MEMS) sampling at 100 Hz 

with an output range of ± 16 g. Prior to data collection, the receivers were turned on 

and left outside on the playing surface in an open area to attain a satellite connection 

before placing them on the rugby players. The small OptimEyeTM receivers (96 × 52 × 

14 mm, weighing 67 g) were placed within a custom-made pouch within the back of 

the player’s playing uniform, situated between their scapulae. Each OptimEyeTM S5 

receiver contains its own microprocessor, gyroscopes (3D, 2000 deg ·s-1, up to 1000 

Hz), magnetometers (3D, 100 Hz, full scale of 1200 micro tesla), 2 GB internal flash 

memory, a high-speed USB interface to record, store and retrieve data, a lithium ion 

rechargeable battery with 6 hours life and is water resistant. Boyd et al. (Boyd et al., 

2011) performed stability testing with two of the predecessor model accelerometers to 

that used in the present study (Catapult MinimaxX 2.0, Kionix: KXP94) in an 

environmental chamber to assess any drift from the baseline gravity measure. The 

MEMS receiver was designed to deliver a high signal to noise ratio with manufacturer 

specified operating temperature ranges from -40 to 85°C. Over three-hours the 

temperature was gradually increased from 15 to 35°C and was then reduced back to 

15°C. The resultant change of 0.1 PlayerLoadTM  arbitrary units (au, measure explained 

below) is negligible when considering PlayerLoadTM values in excess of 700 au are 

regularly observed in rugby union training and matches (Howe, unpublished 

observations). Environmental temperature and humidity across the eight match season 

(mean ± SD) was 18.8 ± 6.3°C and 42 ± 23% respectively. During acute whole-body 

dynamic exercise skin blood flow and temperature increases linearly with core 

temperature until approximately 38°C, beyond which any further elevation in core 

temperature provokes no further elevation in skin blood flow and temperature 

(González-Alonso et al., 1999). Therefore, the temperature of the accelerometer placed 
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on the skin surface between the player’s scapulae during a whole body dynamic task 

such as rugby union should not exceed the operating temperature ranges of the 

accelerometer used in the present study. 

3.2.3 Measures of Maximum Mean Movement 

Manufacturers of the technology used in the present study created a modified vector 

magnitude (PlayerLoadTM), expressed as the square root of the sum of the squared 

instantaneous rate of change in acceleration in three orthogonal planes, accumulated 

over time (1). The accumulated PlayerLoadTM value is then divided by a scaling factor 

to reduce the value to make it easier to use. Creation of a vector magnitude such as 

PlayerLoadTM that produces one value improves industry uptake of the technology and 

usability of the data.  

PlayerLoadTM (accumulated)t=n = 

∑ √(fwdt=i+1-fwdt=i)2+(sidet=i+1-sidet=i)2+ (up
t=i+1

-up
t=i
)

2
  t=n

t=0  

for t = 0, 0.01, 0.02, 0.03….n                                         (1) 

 

Where: fwd = forwards acceleration, side = sideways acceleration, up = vertical 

acceleration, t = time 

 

Metabolic power (Metabolic power) is a GPS derived measure of power that combines 

both velocity and acceleration based events. The metabolic power theoretical model 

proposed by di Prampero et al. (Di Prampero et al., 2005), considers the energy cost of 

accelerated running on a flat surface to be energetically equivalent to running on an 

equivalent uphill slope at a constant speed. If acceleration and velocity are known, the 

instantaneous metabolic power output (W.kg-1) of each athlete may be calculated (for 
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underlying mathematical principles see (Di Prampero et al., 2005; Osgnach et al., 

2010). Mean speed (m.min-1, GPS derived) expresses a player’s absolute distance 

covered in a given time period.  

3.2.4 Performance Evaluation Criterion 

Given the applied field-based nature of the present study, a criterion measure (e.g., 

video analysis) to evaluate the respective GPS and accelerometer technologies against 

was not available. The sensitivity of the technologies to quantify differences that should 

exist between forwards and backs and between first and second halves was therefore 

compared. The t-statistic is the fundamental statistical measure of sensitivity 

(signal/noise or more specifically, change in the mean divided by the standard error). 

However the t-statistic does not provide a practical measure of the magnitude of effect, 

other than to convey whether the observed effect was different from zero or not. 

Expressing differences or changes in the mean in standardized units (dividing 

differences by an appropriate average of the between player standard deviations in the 

compared groups) provides a similar measure to t-statistics but is easier to interpret and 

practically use. Consequently, standardized effects were the primary statistical measure 

used to compare and evaluate performance of the respective technologies. 

3.2.5 Statistical Analyses 

General linear mixed modelling (PROC MIXED) was carried out using SAS to predict 

measures, with fixed effects for positional differences (backs, forwards), match half 

(1st, 2nd), and with random effects for between-player differences, within-player 

variabilities, and between-match differences. All data were log-transformed to reduce 

non-uniformity error. Effects were quantified using standardization and interpreted 

with magnitude-based inferences (Hopkins et al., 2009). Threshold values for 

standardized effects were: < 0.2 (trivial), > 0.2 (small), > 0.6 (moderate) and > 1.2 
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(large) (Hopkins et al., 2009). Effects were deemed unclear when the 90% 

compatibility limits crossed -0.2 and 0.2. 

Raw GPS data were calculated using the Doppler-Shift method. Proprietary software 

(Catapult SprintTM version 5.1.4) filtered the raw velocity, acceleration and subsequent 

metabolic power data using a median filter to reduce inherent signal noise (Varley et 

al., 2017a). Unfortunately, the processing algorithm for PlayerLoadTM was unavailable 

to authors due to proprietary issues, with unpublished calculations of raw PlayerLoadTM 

(calculated via raw individual axis data and use of the available PlayerLoadTM equation) 

providing values systematically divergent from manufacturer provided PlayerLoadTM 

values (Howe, unpublished observations). Player match movement files were cropped 

to include only match time using proprietary software. Further file inclusion criteria 

included: mean horizontal dilution of position (HDOP) of ≤ 1.5 and mean number of 

satellites ≥ 4. Individual player files were then exported to a comma-separated values 

(CSV) format from proprietary software into Microsoft Excel 2013 (version 

15.0.4701.1001, Microsoft Corp, Redmond, WA, USA) and then imported into 

Statistical Analysis System software (version 9.4; SAS Institute, Cary, NC, USA) for 

further data processing. Within the SAS environment, statistical code was written to 

process the imported CSV files, with velocity spikes ≥ 11 m.s-1 and maximum 

accelerations ≥ 6 m.s-2 (unrealistic values) removed and only player files ≥ 600-s field 

time included. The mean ± SD number of satellites and HDOP during matches was 14.3 

± 1.7 and 0.8 ± 0.2, respectively, indicative of good GPS signal quality as per 

manufacturer’s recommendations. A total of 256 match-half files remained for further 

analysis. 
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3.3 Results 

All t-statistics directly paralleled the standardized effects for both positional and half 

differences, thus only standardized half (Figure 3.1) and positional (Figure 3.2) effects 

are presented. 

Figure 3.1 illustrates the maximum mean half standardised effects (1st – 2nd half) over 

a 600-s rolling epoch duration by positional group (forwards and backs). For both 

forwards and backs, accelerometer-derived PlayerLoadTM displayed larger standardised 

match-half effects when compared to GPS derived measures of metabolic power and 

mean speed. For instance, GPS metrics measured a small standardised increase (ES > 

0.2)  in mean speed and metabolic power in the first half compared to the second  halves 

for backs, whilst  PlayerLoadTM  measured a moderate standardised increase (ES > 0.6) 

in the first match-half compared to the second.  

Figure 3.2 displays the maximum mean positional standardized effects (backs - 

forwards) over a 600-s rolling epoch by half. Positional differences between backs and 

forwards as measured by accelerometer-derived PlayerLoadTM displayed clear 

moderate to large standardized differences, as opposed to unclear or less likely 

positional differences quantified by both GPS measures.



 

    

127 

 

 

 

 

 

  

 

 

0

F o rw a rd s

B a c k s

S ta n d a r d iz e d  d if f e r e n c e  (±  9 0 %  C L )

6
0

0
-
s

 R
o

ll
in

g
 E

p
o

c
h

- 2

- 1
.2

- 0
.6

- 0
.2

0
.2

0
.6

1
.2

2

M e ta b o l ic  P o w e r M e a n  S p e e d P la y e r  L o a d
T M

 

Figure 3.1 Maximum mean half standardized effects (1st – 2nd  half) over a 600-s rolling epoch by position. 
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    Figure 3.2 Maximum mean positional standardized effects (backs - forwards) over a 600-s rolling epoch by half. 
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3.4 Discussion 

Accelerometers outperformed GPS in quantifying positional and half differences in 

player maximum mean movement during professional rugby union match-play. 

Accelerometer derived PlayerLoadTM was more sensitive for quantifying declines in 

maximum mean movement in the second half compared to the first half for both playing 

positions (up to a 17.6% decline), indicated by larger positive standardized effects than 

either GPS measure (Figure 3.1). Positional differences between backs and forwards 

were also more adequately quantified by accelerometer technology, with clear 

moderate to large standardized differences observed, as opposed to unclear or less likely 

positional differences quantified by GPS measures (Figure 3.2). Relative to the backs, 

the forwards produced greater PlayerLoadTM per unit of distance covered or metabolic 

power generated. This finding is in line with forwards spending more time in physical 

contact with the opposition and completing more total work throughout a match than 

backs (Duthie et al., 2003). If sporting practitioners were to solely use GPS technology 

to quantify and monitor activity profile differences between players and positions, 

many movements performed frequently by forwards that incur little horizontal 

displacement (e.g., collisions) would be severely underestimated. Misrepresentive 

quantification of   physical movement during matches and training may lead to training 

workload errors, maladaptation or heighten the likelihood of illness or injury. However, 

GPS still provide valuable activity profile contextual information practitioners can use 

to help quantify, monitor and prescribe subsequent training from. 

The different technologies provided different results fundamentally because 

accelerometers primarily measure vertical displacement, whereas GPS technology 

primarily measures horizontal displacement. It is recommended that practitioners select 

technologies and measures depending on the primary sporting movements of interest 
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(i.e., use the right tool for the job). As collision-based team sports involve many 

movements comprising both vertical and horizontal displacement, both technologies 

should be used. 

3.5 Conclusions and Practical Applications 

Accelerometers outperformed GPS in quantifying important differences in athlete 

movement between positions and halves during rugby union match-play. The use of 

GPS technology alone underestimates movement of collision-based team sport athletes. 

Accelerometers provide meaningful additional information to GPS technology that may 

aid practitioners in physically preparing and monitoring collision-based team sport 

athletes. 
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4. CHAPTER 4: STUDY 2 - SENSITIVITY, RELIABILITY 

AND CONVERGENT VALIDITY OF GPS AND 

ACCELEROMETERS FOR QUANTIFYING PEAK 

PERIODS OF RUGBY COMPETITION 

 

Published:  

S. T. Howe, R. J. Aughey, W. G. Hopkins, A. M. Stewart. (2020). Sensitivity, reliability 

and convergent validity of GPS and accelerometers for quantifying peak periods of 

rugby competition. PLoS One, 15 (7): e0236024. 

https://doi.org/10.1371/journal.pone.0236024 

4.1 Introduction 

Using wearable global positioning systems (GPS) and inertial sensors to quantify 

athletic movement is an application of the technology long preceded by navigation and 

military applications (Lachow, 1995). Quantification of athletic movement via 

wearable technology is important for sporting practitioners as it provides objective data 

to inform the decision-making process around training load management (Gallo et al., 

2015), training prescription (Delaney et al., 2015), player readiness to play (Barrett et 

al., 2016), injury risk (Gabbett et al., 2011a), and player interchange decisions (Aughey 

et al., 2010; Delaney et al., 2016c). The prolific adoption of GPS with integrated inertial 

sensor technology in elite team sports is testament to its perceived worth and impact on 

player and team preparation and performance.  

Position, velocity and distance can be derived via GPS (Larsson, 2003). Subsequently, 

change in velocity (acceleration and deceleration) may be calculated (Varley et al., 

           

https://doi.org/10.1371/journal.pone.0236024
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2012b) and potentially used in combination with velocity-based events to estimate the 

energy cost of exercise (metabolic power) (Di Prampero et al., 2005). Whilst GPS 

athlete tracking data can be of great value to practitioners, it has reduced validity and 

reliability for quantifying rapid changes of direction (Rawstorn et al., 2014) and 

velocity (Akenhead et al., 2014; Jennings et al., 2010), estimating metabolic power 

(Buchheit et al., 2015) and for assessing short duration, high-velocity tasks that 

frequently occur in team sports (Coutts et al., 2010a; Jennings et al., 2010). Movements 

that incur little horizontal displacement (e.g., collisions, tackles and many sport-specific 

movements) are also likely to be underestimated by GPS (Boyd et al., 2013). Further, 

positional and match-half differences in athlete maximal movement were 

underestimated by GPS technology when compared to accelerometers during 

professional rugby union match-play (Chapter 3). In light of these findings, authors 

recommended that researchers and practitioners use accelerometers alongside GPS 

technology to adequately quantify important positional differences and match-half 

changes in athlete movement during collision-based team sports.  

Manufacturers of accelerometer technology used by sporting practitioners and scientists 

have created modified vector magnitude proprietary algorithms, with frequently 

published measures being PlayerLoadTM (Catapult Sports) (Boyd et al., 2013) and 

BodyLoadTM (GPSports) (Weaving et al., 2014). Vector magnitudes sum the squared 

instantaneous rate of change in acceleration in three orthogonal axes accumulated over 

time, providing an estimate of totality of movement often referred to as external load. 

Accelerometers have been used to quantify athlete external load (Boyd et al., 2013) and 

energy expenditure (Walker et al., 2015) during training and competition, with 

PlayerLoadTM moderating the recovery response of footballers (Rowell et al., 2016). 

Accelerometers are reliable in laboratory (Kelly et al., 2015) and field settings (Boyd 
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et al., 2011) and can accurately detect individual contact events (Hulin et al., 2017), 

sport-specific movements (McNamara et al., 2015), and alterations in movement 

strategies, efficiency or kinematic changes (Barrett et al., 2016; Cormack et al., 2013). 

Unlike GPS, accelerometers can also operate within indoor environments, providing 

greater utility (Aughey, 2011). Accelerometers provide valuable additive external load 

information to GPS that may aid practitioners in more accurately quantifying player 

totality of movement in collision-based team sports (Chapter 3). Quantifying external 

load during collision-based team sports may help practitioners to prescribe and monitor 

training in a more objective manner, carefully balancing the need for physiological and 

biomechanical load to induce positive adaptations whilst mitigating overuse to reduce 

injury likelihood, or put more simply, balance fitness and fatigue (Banister, 1991).  

Team sports that contain a substantial collision-based component (e.g., rugby union, 

rugby league, National Football League and Australian Rules Football) are 

characterised by low-intensity activity interspersed with frequent bouts of high-

intensity activity (Aughey, 2010; Deutsch et al., 2007). Despite the majority of team 

sport competition being spent at submaximal intensity, high-intensity activities are 

often aligned with key events that determine match outcome (Faude et al., 2012; 

Gabbett et al., 2016), signifying the importance of physically conditioning athletes for 

these intense periods of match-play. The most intense or peak periods of football 

competition do not often fall completely within a pre-defined period of time and 

therefore these methods underestimate the most intense periods of match-play and 

overestimate subsequent periods of activity (Cunningham et al., 2018; Ferraday et al., 

2020; Varley et al., 2012a). During elite soccer competition the peak periods of high-

velocity running distance were identified using either pre-defined (distance covered in 

5-minutes at every 5-minute time point) or rolling time periods (distance covered in 5 
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minutes from every time point). Rolling or moving average methods involve analysing 

raw instantaneous data from the device used. For example, GPS receiver data are 

commonly sampled at 10 Hz (i.e. ten times per second) and accelerometer data typically 

at 100 Hz (i.e. one hundred times per second). To identify the peak periods of 

competition using a moving average approach, one must select a duration of interest 

(e.g. 5 minutes), with that window of time then moved across every second of the 

competition, collecting a moving average from every single time point. For example, 

using a one-minute window that equates to 600 samples (60 s with ten samples per 

second using 10 Hz GPS), the moving average would be applied to a player’s match 

data file as follows: 0-600, 1-601 s, 2-602 s, 3-603 seconds etc., to identify the one-

minute peak measure/s of interest (Whitehead et al., 2018b). During professional soccer 

competition, peak high-velocity running distance was underestimated by up to 25% 

using pre-defined time period analysis, with the subsequent period distances 

overestimated by up to 31% when compared to rolling time period analysis. When the 

distance decline in high-velocity running between the peak and following period were 

examined, there was up to a 52% greater reduction in running performance using rolling 

vs. pre-defined periods (Varley et al., 2012a). Likewise during international rugby 

competition, both high-speed running (>5 m.s-1) and relative distance (m.min-1) were 

consistently underestimated by pre-defined compared to rolling period analyses of 60 

– 300 seconds (Cunningham et al., 2018). Pre-defined epoch analyses on average 

underestimated relative distances covered by ~ 11% and high-speed running by up to  

~ 20% compared to rolling epoch analyses, with the greatest underestimations occurring 

using the 60 second epoch (95% compatibility interval, high-speed running: -6.05 to -

4.70 m.min-1, relative distance: -18.45 to -16.43 m.min-1) (Cunningham et al., 2018). 

Similarly in English Championship soccer matches, pre-defined epoch analyses of 60 
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– 600 seconds underestimated peak movement intensities of competition when 

compared to rolling epoch analyses for both total distance (∼7–10%) and high-speed 

(∼12–25%) distance, irrespective of playing position (Ferraday et al., 2020). Therefore, 

it is recommended that researchers and practitioners use rolling/moving time period 

analyses when trying to accurately identify and quantify the peak periods of football 

competition (Varley et al., 2012a).   

Duration- and position-specific player movement differences have been observed 

during the most intense periods of match-play across various football codes including: 

rugby league (Delaney et al., 2015), rugby union (Delaney et al., 2016d), Australian 

Rules Football (Delaney et al., 2017a) and soccer (Delaney et al., 2017b). These 

investigations provided valuable insights into the highly intermittent nature of team 

sport movement and highlighted that rolling time-motion analyses may assist 

practitioners in the design and prescription of training that is more representative and 

specific to competition. However, the sensitivity, reliability and convergent validity of 

GPS- and accelerometer-derived measures for quantifying player movement during the 

most intense periods of match-play in team sports is not known, limiting a practitioner’s 

ability to interpret and use such data to inform practice.  Our aim was therefore to 

determine the sensitivity, reliability and convergent validity of measures derived from 

GPS and accelerometer technology to quantify the most intense periods of rugby union 

match-play. 

4.2 Methods 

4.2.1 Participants 

Movement data were collected via integrated GPS and accelerometer receivers for 60 

professional rugby union players (30 elite and 30 sub-elite) across two team’s respective 

seasons. The 30 elite players (18 forwards and 12 backs) played in the 2015 Super 15 
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Rugby competition, an international rugby union competition played between 5 

Australian, 5 New Zealand and 5 South African teams. The Super 15 competitive 

season comprised of 18 rounds with 2 bye rounds per team, making 16 total matches (8 

home, 8 away). The 30 sub-elite players (16 forwards and 14 backs) played in the 2014 

National Rugby Championship, an Australian competition played between 9 teams 

from 5 states and territories, with the season comprising of 8 matches (4 home, 4 away) 

prior to a finals series for the top 4 finishing teams. The National Rugby Championship 

is the highest standard of rugby union played in Australia below Super 15 and 

international representative rugby. The data set for sub-elite includes 7 regular season 

matches and the semi-final (8 matches total), as 1 match did not meet our inclusion 

criteria (see methods for inclusion criteria, data filtering and processing section). 

Players were grouped by playing position into forwards and backs rather than more 

specific playing positions (e.g., prop, centre, scrum-half) to increase precision of 

estimates and to first assess if the respective technologies were sensitive enough to 

quantify broader positional classifications prior to comparing specific positional 

groupings. Elite and sub-elite participant numbers and physical characteristics can be 

seen in Table 4.1. All players gave informed consent to participate and the study was 

approved by the Victoria  

University Human Research Ethics Committee.  
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4.2.2 Equipment and Data Collection 

Match movement data were collected via commercially available OptimEyeTM S5 GPS 

and GLONASS-enabled receivers with an embedded tri-axial piezoelectric 

accelerometer (firmware version 7.22, Catapult Sports, Melbourne, Australia). Prior to 

data collection during match-play, the receivers were turned on and left outside on the 

playing surface in an open area to attain a satellite connection before placing them on 

the rugby players. The receivers (96 mm × 52 mm × 14 mm, weighing 67 g) were placed 

within a custom-made tightly-fitting pouch within the back of the player’s playing 

uniform, situated between their scapulae. To minimize inter-receiver variability, each 

player was assigned the same receiver for the entirety of the respective seasons 

(Buchheit et al., 2014).  

 

Table 4.1 Participant numbers and physical characteristics of the rugby union 

players 

 Elite (Super 15) Sub-elite (NRC) 

Number of participants 30 30 

Number of forwards 18 16 

Number of backs 12 14 

Mean age (y) 25 ± 4 24 ± 4 

Mean height (cm) 187 ± 7 185 ± 7 

Mean body mass (kg) 106 ± 12 106 ± 13 

Forwards age (y) 25 ± 4 24 ± 3 

Forwards height (cm) 187 ± 8 187 ± 8 

Forwards body mass (kg) 113 ± 8 115 ± 10 

Backs age (y) 25 ± 4 24 ± 4 

Backs height (cm) 185 ± 5 183 ± 5 

Backs body mass (kg) 95 ± 6 96 ± 9 
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Manufacturers of the technology used in the present study did not reveal to authors the 

specific model of accelerometer. However, we have attempted to provide high level 

specification descriptions of the technology used where possible. Sampling frequencies 

for the GPS and tri-axial accelerometer were 10 Hz and 100 Hz respectively, with the 

accelerometer having an output range of ±16 g. Each receiver has its own 

microprocessor, gyroscopes (3D, 8000 deg·s-1, up to 1000 Hz), magnetometers (3D, 

100 Hz, full scale of 1200 micro tesla), 2 GB internal flash memory, 250 m wireless 

frequency transmission, a high-speed USB interface to record, store and retrieve data, 

a lithium ion rechargeable battery with 6-hours life and is water resistant.  

Accelerometer signal drift errors from the baseline gravity measure are negligible with 

temperature changes from 15 to 35°C, using the predessor model accelerometer 

(Catapult MinimaxX 2.0, Kionix: KXP94) to that used in the present study (Boyd et al., 

2011). Positioning the accelerometer between player’s scapulae near the surface of the 

skin during a whole-body dynamic task such as rugby union should not exceed the 

manufacturer specified operating temperature ranges of -40 to 85°C. 

4.2.3 Measures of Maximum Mean Movement  

The three measures of maximum mean or peak movement investigated were: 

PlayerloadTM (au, accelerometer-derived), mean speed (m.min-1, GPS-derived) and 

metabolic power (W.kg-1, GPS-derived) as they provide estimates of global external 

load and are frequently reported in research and used in practice. Acceleration, total 

distance, high-speed running distance and estimated metabolic power were ranked as 

the most important variables in the eyes of elite football practitioners (Akenhead et al., 

2016), lending further support for the chosen measures.  
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PlayerLoadTM is a Catapult Sports proprietary vector magnitude, mathematically 

expressed as the square root of the sum of the squared changes in acceleration in three 

orthogonal planes over the sampling interval (set at 100 Hz).  

PlayerLoadTM = (Forward2 +Side2 +Up2), where Forward, Side and Up refer to 

directions of acceleration, and  refers to the change over the sampling interval (10 ms) 

(Boyd et al., 2011). The receivers of acceleration are m.s-2, but the Catapult software 

applies an arbitrary unknown scaling factor when this measure is accumulated and may 

have applied such a factor to this "instantaneous" measure. We have therefore shown 

its units as arbitrary (au). 

Metabolic power is a GPS-derived measure of power that considers the energetic cost 

of accelerated running on flat terrain to be energetically analogous to running on an 

equivalent uphill slope at a constant speed (Di Prampero et al., 2005). Instantaneous 

metabolic power output (W.kg-1) of an individual may subsequently be calculated if 

acceleration and velocity is known (Di Prampero et al., 2005; Osgnach et al., 2010). 

Whilst the measure was lauded and widely applied when first published, extensive 

validity and reliability testing had not yet been carried out. The application of metabolic 

power in team sports has been questioned in recent years (Buchheit et al., 2015; Highton 

et al., 2016), yet its perceived importance and application is still prevalent (Akenhead 

et al., 2016). We were therefore interested to investigate whether metabolic power has 

merit for quantifying external load during the most intense periods of a collision-based 

team sport like rugby union.  

Mean speed or relative distance (m.min-1) is a GPS-derived measure that expresses the 

absolute distance an athlete covers relative to the time they spent on the field. For 

instance, if an athlete covers 8000 m during an 80 minute rugby union match; their 

relative distance would be 100 m.min-1. Quantification of mean speed or relative 
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distance may assist subsequent training prescription and monitoring of intensity and 

enables reasonable comparison between full-match and substitution players and 

between different sporting codes (Aughey, 2011).  

4.2.4 Data Filtering and Processing  

The Doppler-shift method (change in frequency of the satellite signal) was used to 

calculate the raw GPS data (Townshend et al., 2008). The raw velocity and subsequent 

acceleration and metabolic power data were filtered by proprietary software (Catapult 

SprintTM version 5.1.4) using a median filter to reduce inherent signal noise (Varley et 

al., 2017b). Acceleration derived via GPS used for the calculation of metabolic power 

was derived over a 0.2 second time interval (smoothing filter width as defined in the 

software). The intelligent motion filter option provided within Catapult SprintTM 

software was not activated. The processing algorithm for PlayerLoadTM was 

unfortunately not available to authors for proprietary reasons.  

Player match movement files were cropped to include only match time using Catapult 

SprintTM. Individual player files were then exported from Catapult SprintTM via comma-

separated values files into Microsoft Excel 2013 (version 15, Microsoft Corp, 

Redmond, WA, USA) and then imported into the Statistical Analysis System (SAS, 

version 9.4; SAS Institute, Cary, NC) for further data processing. A program was 

written within SAS to identify the maximum mean value of each measure 

(PlayerLoadTM, mean speed and metabolic power) using a rolling moving average of a 

given duration (5, 10, 20, 30, 60, 120, 300 and 600 seconds). Stringent data inclusion 

criteria were applied to individual player files before performing further analyses. Data 

inclusion criteria for individual player files included mean horizontal dilution of 

position (HDOP) of ≤ 1.5, mean number of satellites ≥ 4, and ≥ 600 seconds spent on 

field. Unrealistic velocity spikes ≥ 11 m.s-1 and maximum accelerations ≥ 6 m.s-2 were 
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also removed during this process. The mean ± standard deviation (SD) number of 

satellites for the elite and sub-elite cohort’s data sets were 13.5 ± 1.1 and 14.3 ± 1.7 

respectively, whilst HDOP was 0.9 ± 0.3 and 0.8 ± 0.2 respectively. These values are 

indicative of good GPS signal quality as per manufacturer’s recommendations. A total 

of 421 elite and 256 sub-elite player match-half files remained for further analysis. 

4.2.5 Statistical Analyses  

Each of the three measures of maximum mean movement was analysed with the general 

linear mixed modelling procedure (Proc Mixed) in SAS. The measures were log-

transformed prior to analysis to reduce non-uniformity of error (Hopkins et al., 2009) 

and to express effects and errors in percent units after back-transformation. The fixed 

effects in the model were player position (backs, forwards) interacted with match-half 

(1st, 2nd) to provide estimates of least-square means and differences between the means 

of these variables; these effects were also interacted with time on the field (numeric 

linear) to produce maximum mean values that adjust to the average time a player is on 

the field across the positions and halves. The random effects in the model were player 

identity (to estimate differences between player means), match identity (to estimate 

differences between match means), the interaction of player and match identities (to 

estimate changes within players between matches); different variances were estimated 

for the random effects for the two positions (forwards, backs). The residual in the model 

estimated within-athlete variability (typical error or "noise") between match halves; 

different residual variances were estimated for the four position*half groups and to 

simplify presentation were averaged. The random effects were combined into intraclass 

correlation coefficients (ICCs) representing reliability of each measure. Compatibility 

limits for the correlations were generated with a bootstrap method, in which the 
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independent standard errors of the variances provided by the mixed model were 

combined with random normal deviates to generate bootstrap samples. 

The magnitudes of effects (differences or changes in means; standard deviations 

derived from random effects) were evaluated by standardisation, which was performed 

by dividing each effect by the between-player standard deviation in a typical match. 

This standard deviation was derived for ease of calculation from four separate analysis 

(for each position and half) by adding the variances for the random effects for player 

identity and the residual, converting the resulting variances to standard deviations and 

deriving the harmonic mean, which provided an appropriate mean standard deviation 

for all pairwise comparisons of positions and halves (Hopkins, 2007b). The smallest 

worthwhile difference or change in means (the "signal", for comparison with "noise") 

is 0.2 standard deviations; thresholds for moderate, large and very large differences are 

0.6, 1.2 and 2.0, respectively (Hopkins et al., 2009). Thresholds for evaluating standard 

deviations (derived by taking square roots of random-effect variances) were half these 

values (Smith et al., 2011). Typical error was evaluated via the following thresholds: < 

0.5 neligable error, 0.5-1.5 small, 1.5-3 moderate, 3-6 large, 6-10 very large > 10 

extremely large. 

Uncertainty in effects was expressed as 90% compatibility limits and as probabilities 

that the true effect was substantially positive and negative (derived from standard 

errors, assuming a normal sampling distribution). These probabilities were used to 

make a qualitative probabilistic non-clinical magnitude-based decisions about the true 

effect (Hopkins et al., 2009): if the probabilities of the effect being substantially positive 

and negative were both > 5%, the effect was reported as unclear; the effect was 

otherwise clear and reported as the magnitude of the observed value, with the qualitative 

probability that the true effect was a substantial increase, a substantial decrease, or a 
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trivial difference (whichever outcome had the largest probability). The scale for 

interpreting the probabilities was as follows: 25–75%, possible; 75–95%, likely; 95-

99.5%, very likely; > 99.5%, most likely.  

For a sample size of approximately 50, standardised residuals (t-statistics) of > 3.5 can 

be considered outliers (Hopkins et al., 2009). Considering the cohort size (60 

participants, 30 in each group) and the number of subsequent player files in each cohort 

(421 and 256 files respectively), a standardised residual outlier threshold of > 3.5 was 

applied, with those above the threshold removed.  

4.2.5.1 Evaluating Sensitivity  

Sensitivity of measures was quantified via evaluation of the smallest worthwhile 

difference or change in means ("signal") and typical error of measurement ("noise"). 

The smallest worthwhile difference (SWD) is 0.2 between player standard deviations 

of a given position in a typical game; thresholds for moderate, large and very large 

differences are 0.6, 1.2 and 2.0, respectively (Hopkins et al., 2009). To estimate the 

typical error or noise of each measure, the difference between observed and predicted 

values (the residual) was added as a random effect in the general linear mixed model as 

stated previously.  

4.2.5.2 Evaluating Reliability 

Variabilities within and differences between players represented reliability of each 

measure. The random effects of player identity, interaction of player and match 

identities and the residuals were combined into intraclass correlation coefficients, 

representing reliability of each measure between-halves within a match and within 

halves, between matches. Magnitudes of ICCs were evaluated using the following 

thresholds: > 0.99, extremely high; ≤ 0.99 to ≥ 0.90, very high; < 0.90 to ≥ 0.75, high; 

< 0.75 to ≥ 0.50, moderate; < 0.50 to ≥ 0.20, low; < 0.20, very low (Hopkins, 2015). 
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4.2.5.3 Evaluating Convergent Validity 

Convergent validity is a type of construct validity (i.e. tool measures what it is supposed 

to measure) that reflects the extent to which two measures capture a common construct 

(Carlson et al., 2012). Convergent validity of the three measures (mean speed, 

PlayerLoadTM and metabolic power) was assessed by comparing mean differences 

between playing positions and match halves with findings from previous rugby union 

time-motion analyses that use other tools (e.g. other GPS and accelerometer models, 

local positioning systems, optical systems, notational analysis etc.) and measures 

(several high-intensity metrics) to quantify a common construct (i.e. player movement). 

More specifically, many rugby union time-motion analyses have observed differences 

in high-intensity movement between playing positions and match-halves (Cunningham 

et al., 2018; Delaney et al., 2016d; Deutsch et al., 2007; Duthie et al., 2003; Jones et al., 

2015; Roe et al., 2016). If the peak intensity of competition differences observed in the 

present study were consistent with expected positional and match-half activity profiles 

from previous studies, then the measures were deemed to “converge” or relate to 

previous findings and display convergent validity. For example, if the weight of rugby 

time-motion analysis literature revealed that backs produce greater maximal speeds and 

accelerations than forwards during competition, and the mean speed and metabolic 

power measures used in the present study quantified similar positional differences, the 

measures display some level of convergent and construct validity.  

4.3 Results 

Duration-specific grand means and standard deviations (SD) of each measure of 

maximum mean movement are shown in Tables 4.2, 4.3 & 4.4 to provide context for 

the positional differences and match-half changes. The random effect for match identity 
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showed that the maximum mean (peak) intensity of matches varied typically by 3-6%, 

2-6% and 0-6% for mean speed, metabolic power and PlayerLoadTM respectively. 

4.3.1 Sensitivity of Measures 

Global positioning system and accelerometer measures had poor sensitivity for 

quantifying maximum mean movement across all epochs and both levels of 

competition, with noise 4 to 5 the signal (Tables 4.2, 4.3 & 4.4). Elite 5-600 second 

maximum mean typical error ranges across positional groups and halves were 8-14%, 

8-17% and 7-15% for mean speed, metabolic power and PlayerLoadTM respectively. 

Similarly, for the sub-elite cohort the typical error ranges were 6-12%, 6-18% and 6-

16% respectively. When comparing the within (typical error) and between player 

average standard devations, the typical error was ~ 0.8-1.0 the between subject SD, 

indicative of large (>0.6) to very large (>1) error, which was 8 to 10 fold greater than 

the smallest important error (0.1) (Smith et al., 2011).  

4.3.2 Within-Match, Between-Half Reliability 

Maximum mean movement measured via GPS- and accelerometer-derived measures 

displayed very low to moderate within-match, between-half reliability (ICC range; 0.0 

to 0.7) during both sub-elite and elite rugby union match-play. Maximum mean 

PlayerLoadTM displayed higher within-match, between-half reliability in the elite cohort 

than either mean speed or metabolic power for epoch durations ≥ 60 seconds, although 

this test-retest reliability was still low (ICC ~ 0.4). For the sub-elite backs, mean speed 

and metabolic power generally had slightly higher ICCs (~ 0.4) than PlayerLoadTM (~ 

0.2) for epochs ≥ 30 seconds. 
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Epoch 

duration 

(s) 

Grand mean 

(m.min-1) 

Between-

subject SD 

(%) Typical error (%) 

SWD 

(%) 

Positional differences  

(backs – forwards)  

Match-half change  

(second – first half) 

Mean; 

±90%CI (%) Inferencea  

Mean; 

±90%CI (%) Inferencea 

Super 15 Rugby (elite) 

5 380 12.3 10.1 2.5 19.8; ± 6.9 Large ↑****  -3.7; ± 1.7 Small ↓**  

10 309 13.6 12.3 2.7 18.3; ± 6.7 Large ↑****  -5.4; ± 2.1 Small ↓***  

20 235 12.7 12.0 2.5 15.6; ± 5.5 Large ↑****  -4.8; ± 2.0 Small ↓***  

30 201 11.0 11.1 2.2 14.5; ± 5.0 Large ↑****  -5.1; ± 1.9 Small ↓***  

60 155 9.8 10.1 2.0 11.7; ± 4.6 Large ↑****  -3.2; ± 1.7 Small ↓**  

120 123 9.5 9.8 1.9 8.2; ± 4.9 Moderate ↑***  -2.6; ± 1.7 Small ↓**  

300 91 10.6 11.1 2.1 7.8; ± 5.4 Moderate ↑***  -6.6; ± 1.8 Moderate ↓****  

600 76 9.7 9.9 1.9 9.1; ± 6.3 Moderate ↑***  -5.7; ± 1.7 Moderate ↓****  

 

National Rugby Championship (sub-elite) 

5 387 13.6 11.5 2.7 22.3; ± 9.6 Large ↑****   -3.8; ± 5.8 Small ↓*  

10 320 14.1 12.1 2.8 22.9; ± 10.5 Large ↑****   -1.6; ± 6.3 Trivial 

20 236 12.3 11.3 2.5 22.3; ± 9.4 Large ↑****   2.1; ± 5.9 Small ↑ 

30 201 11.8 10.0 2.4 13.7; ± 8.8 Moderate ↑***   0.6; ± 5.4 Trivial 

60 158 10.0 8.9 2.0 10.2; ± 7.3 Moderate ↑***   -3.6; ± 3.7 Small ↓**  

120 128 10.3 9.4 2.1 8.9; ± 7.6 Moderate ↑**   -6.2; ± 4.1 Moderate ↓***  

300 98 10.0 9.5 2.0 4.3; ± 8.4 Small ↑  -2.3; ± 4.8 Small ↓ 

600 82 10.1 8.0 2.0 2.7; ± 7.6 Small ↑  -6.2; ± 3.7 Moderate ↓***  

Grand means represent the mean of pooled positional (backs, forwards) and match-half (first, second) data.  

SWD, smallest worthwhile difference (0.2 of between-subject SD); 90%CI, 90% compatibility interval. 
aInferences specify the magnitude, direction and likelihood of the true value of clear effects. Magnitudes were defined by standardisation (see text). Likelihood for clear 

trivial effects: 0possible, 00likely, 000very likely. Likelihood for clear substantial effects: *possible, **likely, ***very likely, ****most likely.  

Table 4.2 Maximum mean mean speed (m.min-1) descriptive, effect and inferential statistics for rolling epoch durations of 5 to 600-s within 

elite and sub-elite rugby union competition. 
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Epoch 

duration 

(s) 

Grand mean 

(W.kg-1) 

Between-

subject SD 

(%) 

Typical 

error 

(%) 

SWD 

(%) 

Positional differences  

(backs – forwards)  

Match-half change  

(second – first half) 

Mean; 

±90%CI (%) Inferencea  

Mean; 

±90%CI (%) Inferencea 

Super 15 Rugby (elite) 

5 54.9 16.8 13.1 3.4 30.0; ±10.1 Large ↑****  -1.5; ±2.3 Trivial 00 

10 41.2 16.7 13.7 3.3 29.3: ±9.4 Large ↑****  -4.3; ±2.3 Small ↓** 

20 29.9 15.1 13.1 3.0 24.6; ±7.3 Large ↑****  -4.3; ±2.2 Small ↓** 

30 25.0 12.7 11.9 2.5 23.5; ±6.1 Large ↑****  -4.6; ±2.0 Small ↓*** 

60 18.7 12.1 11.0 2.4 17.3; ±6.4 Large ↑****  -3.6; ±1.9 Small ↓** 

120 14.3 11.8 10.6 2.4 11.8; 6.6 Moderate ↑***  -3.3; ±1.8 Small ↓** 

300 

10.3 12.5 
12.0 

2.5 11.6; ±6.5 Moderate ↑***  -7.0; ±2.0 

Moderate 

↓**** 

600 

8.4 11.7 
11.6 

2.3 11.9; ±7.0 Moderate ↑***  -7.0; ±2.0 

Moderate 

↓**** 

 

National Rugby Championship (sub-elite) 

5 54.2 16.6 13.6 3.3 34.8; ±13.6 Large ↑****  -6.8; ±6.3 Small ↓** 

10 41.4 17.2 14.2 3.4 35.9: ±14.3 Large ↑****  -4.9; ±6.8 Small ↓* 

20 29.0 14.3 12.2 2.9 35.6: ±12.2 V. Large ↑****  1.1; ±6.6 Trivial 

30 23.7 13.0 9.6 2.6 28.5: ±11.1 V. Large ↑****  3.9; ±5.6 Small ↑* 

60 18.3 11.5 9.5 2.3 19.4; ±9.0 Large ↑****  -4.3; ±4.3 Small ↓** 

120 14.4 11.3 10.4 2.3 17.0; ±8.9 Large ↑****  -7.7; ±4.7 Moderate ↓*** 

300 10.9 10.6 9.9 2.1 8.8; ±9.4 Moderate ↑**  -4.6; ±4.9 Small ↓** 

600 9.0 11.2 8.7 2.2 4.9; ±8.9 Small ↑  -7.3; ±4.0 Moderate ↓*** 

Grand means represent the mean of pooled positional (backs, forwards) and match-half (first, second) data.  

SWD, smallest worthwhile difference (0.2 of between-subject SD); 90%CI, 90% compatibility interval. 
aInferences specify the magnitude, direction and likelihood of the true value of clear effects. Magnitudes were defined by standardisation (see text). Likelihood for clear 

trivial effects: 0possible, 00likely, 000very likely. Likelihood for clear substantial effects: *possible, **likely, ***very likely, ****most likely.   

Table 4.3 Maximum mean metabolic power (W.kg-1) descriptive, effect and inferential statistics for rolling epoch durations of  

5 to 600-s within elite and sub-elite rugby union competition. 
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Epoch 

duration 

(s) 

Grand mean 

(au) 

Between-

subject SD 

(%) 

Typical error 

(%) 

SWD 

(%) 

Positional differences  

(backs – forwards)  

Match-half change  

(second – first half) 

Mean; 

±90%CI (%) Inferencea  

Mean; 

±90%CI (%) Inferencea 

Super 15 Rugby (elite) 

5 3.8 15.9 13.5 3.2 7.4; ±6.5 Small ↑**  -0.8; ±2.4 Trivial 00 

10 2.8 15.3 12.1 3.1 7.0; ±6.8 Small ↑**  -1.2; ±2.2 Trivial 00 

20 2.0 13.6 11.0 2.7 1.9: ±5.8 Small ↑  -0.2; ±0.2 Trivial 000 

30 1.8 12.2 9.8 2.4 -0.9; ±5.2 Trivial  -0.2; ±1.8 Trivial 000 

60 1.4 12.7 8.7 2.5 -5.3; ±5.9 Small ↓**  -0.2; ±1.7 Trivial 000 

120 1.1 13.6 9.8 2.7 -11.3; ±6.3 Moderate ↓***  0.1; ±1.8 Trivial 000 

300 0.7 13.9 10.2 2.8 -11.4; ±7.2 Moderate ↓***  -2.5; ±1.8 Small ↓* 

600 0.6 14.1 9.8 2.8 -11.9; ±7.7 Moderate ↓***  -1.8; ±1.7 Trivial 00 

 

National Rugby Championship (sub-elite) 

5 3.5 15.5 14.0 3.1 15.5; ±10.1 Moderate ↑***  2.5; ±6.8 Small ↑ 

10 2.7 15.6 14.4 3.1 12.6; ±9.7 Moderate ↑***  -2.7; ±6.6 Small ↓ 

20 2.0 12.9 12.1 2.6 10.1; ±8.2 Moderate ↑**  -0.9; ±6.2 Trivial 

30 1.6 10.6 9.7 2.1 8.5; ±6.9 Moderate ↑**  2.8; ±5.1 Small ↑ 

60 1.3 9.3 8.5 1.9 0.6; ±5.0 Trivial  -8.3; ±3.5 Moderate ↓**** 

120 1.0 10.0 10.5 2.0 -3.7; ±6.3 Small ↓  -12.4; ±4.3 Large ↓**** 

300 0.7 9.5 9.7 1.9 -6.9; ±6.9 Moderate ↓**  -8.8; ±4.4 Moderate ↓*** 

600 0.6 10.0 8.1 2.0 -10.4; ±6.8 Moderate ↓***  -11.8; ±3.7 Large ↓**** 

Grand means represent the mean of pooled positional (backs, forwards) and match-half (first, second) data.  

SWD, smallest worthwhile difference (0.2 of between-subject SD); 90%CI, 90% compatibility interval. 
aInferences specify the magnitude, direction and likelihood of the true value of clear effects. Magnitudes were defined by standardisation (see text). Likelihood for clear 

trivial effects: 0possible, 00likely, 000very likely. Likelihood for clear substantial effects: *possible, **likely, ***very likely, ****most likely. 

Table 4.4 Maximum mean PlayerLoadTM descriptive, effect and inferential statistics for rolling epoch durations of 5 to 600-s within elite 

and sub-elite rugby union competition. 
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4.3.3 Between-Match, Within-Half Reliability 

Reliability of maximum mean movement within a specific match-half from match-to-

match was generally very low to low for all measures (ICC < 0.5), with movement 

reliability typically increasing with rolling epoch duration. PlayerLoadTM generally had 

lower reliability when compared to either GPS-derived measure for both sub-elite 

forwards and backs for epoch durations ≥ 60 seconds in the 2nd match-half. However, 

during elite match-play maximum mean movement quantified by accelerometer-

derived PlayerLoadTM generally had higher between-match, within-half reliability 

when compared to mean speed and metabolic power. As the epoch duration increased 

in the elite cohort, so too did the reliability of maximum mean PlayerLoadTM, with 

moderate to high ICCs for both positions and match halves for the 300 and 600-s epochs 

respectively (ICC range 0.5 to 0.8).  

4.3.4 Playing Position Differences in Maximum Mean Movement 

Relative to the backs, forwards had greater accelerometer-derived PlayerLoadTM per 

unit of distance covered or metabolic power across all rolling epochs (5 to 600-s), 

during both elite and sub-elite rugby union match-play (Figures 4.1 & 4.2). Elite backs 

produced clearly greater maximum mean speed and metabolic power compared to elite 

forwards for all rolling epoch durations (Table 4.2). A similar result was observed for 

the sub-elite cohort, with backs producing moderate to large higher mean speeds and 

large to very large higher metabolic power compared to the forwards for the shorter 

duration epochs of 5 to 30-s (Tables 4.2 & 4.3). However, there were unclear positional 

differences as quantified by GPS-derived measures for the longer duration 300 and 600-

s epochs (Figure 4.1). Metabolic power consistently estimated higher maximum mean 

standardised differences between positions when compared to mean speed for both 
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levels of competition and match halves, whilst also estimating larger opposing 

positional differences to PlayerLoadTM when compared to mean speed (Figures 4.1 & 

4.2). As the rolling epoch duration increased from 5 to 600-s, positional differences 

between backs and forwards decreased (especially for the sub-elite cohort), with an 

evident divergence of maximum mean movement as measured by accelerometer-

derived PlayerLoadTM when compared to GPS-derived mean speed and metabolic 

power post the 30-s epoch for both levels of competition (Figures 4.1 & 4.2). Elite 

forwards produced very likely greater maximum mean PlayerLoadTM compared to the 

backs (moderate effects) for longer epoch durations of 120 to 600-s across both match 

halves (Figure 4.2 & Table 4.4). Conversely, for the same epoch durations (120 to 600-

s) the maximum means for GPS-derived measures of mean speed and metabolic power 

were likely to most likely higher for the backs compared to the forwards (Tables 4.2 & 

4.3). Sub-elite forwards produced likely to very likely greater PlayerLoadTM compared 

to the backs for the 300 and 600-s epochs (small to large effects), compared to mostly 

unclear positional differences as quantified by GPS-derived measures (Figure 4.1 & 

Table 4.4) 
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Figure 4.1 Sub-elite (National Rugby Championship) maximum mean standardised positional differences (backs – forwards) for  

rolling epoch durations of 5 to 600-s by match-half (1st and 2nd match halves). 
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Figure 4.2 Elite (Super 15 rugby) maximum mean standardised positional differences (backs – forwards) for rolling epoch durations of 5 

to 600-s by match-half (1st and 2nd match halves). 
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4.3.5 Match-Half Changes in Maximum Mean Movement  

Sub-elite match-half declines in maximum mean movement were more adequately 

quantified with accelerometer-derived PlayerLoadTM when compared to either GPS 

measure, with clearer and larger effects for epoch durations ≥60-s (Figure 4.3). For 

example, sub-elite forwards had large reductions in PlayerLoadTM during the 2nd match-

half for epoch durations ≥60-s, whilst mean speed and metabolic power half changes 

were mostly unclear across comparable durations (Figure 4.3, panel A and Table 4.4). 

Sub-elite match-half changes were mostly unclear for all measures and both positions 

for epoch durations of 5 to 30-s (Figure 4.3). Conversely during elite match-play, GPS-

derived measures quantified larger and clearer 2nd match-half declines in maximum 

mean movement than accelerometer-derived PlayerLoadTM (Figure 4.4). PlayerLoadTM 

displayed trivial or unclear match-half changes for both positions and across all epoch 

durations during elite match-play (Figure 4.4). Maximum mean metabolic power and 

mean speed generally declined in the 2nd match-half by a small to moderate standardised 

extent, with the longer duration epochs of 300 and 600-s displaying the largest 2nd 

match-half declines (Figure 4.4). Reductions in 2nd match-half maximum mean 

movement were more evident for forwards than for backs for longer duration epochs 

during both sub-elite (≥60-s) and elite (≥300-s) match-play (Figures 4.3 & 4.4). 
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Figure 4.3 Sub-elite (National Rugby Championship) maximum mean match-half standardised changes (2nd match-half - 1st match-

half) for rolling epoch durations of 5 to 600-s by position (forwards and backs). 
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Figure 4.4 Elite (Super 15 rugby) maximum mean match-half standardised changes (2nd match-half - 1st match-half) for rolling epoch 

durations of 5 to 600-s by position (forwards and backs). 
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4.4 Discussion 

Several key and novel findings were observed: (1) Both GPS- and accelerometer-

derived measures had poor sensitivity for quantifying rugby union maximum mean 

movement of 5 to 600-s; (2) To obtain adequate precision for assessing individual 

differences or changes in maximum mean rugby union match movement, practitioners 

require ~ 16 full matches of player movement data (approximate length of a team sport 

season); (3) Maximum mean movement of 5 to 600-s was inherently unreliable, with 

typically very low to moderate within-match, between-half reliability and between-

match, within-half reliability during both elite and sub-elite match-play across all 

measures; (4) All measures displayed convergent validity by quantifying similar 

movement differences between playing positions and match halves to previous rugby 

union time-motion analyses; (5) Relative to the backs, forwards had greater 

PlayerLoadTM per unit of distance covered or metabolic power across all rolling epochs 

during both elite and sub-elite rugby union match-play; (6) Backs produced clearly 

greater maximum mean speed and metabolic power compared to forwards for all epoch 

durations for elites, and all epochs except for 300 and 600-s for sub-elites; (7) Elite and 

sub-elite forwards produced clearly greater maximum mean PlayerLoadTM than backs 

during longer (≥300-s) epoch durations; (8) Larger 2nd match-half declines in maximum 

mean movement were evident as epoch duration increased, with greater declines for 

forwards than backs; (9) Maximum mean PlayerLoadTM, mean speed and metabolic 

power of 5 to 600-s was of substantially higher intensity than previously reported rugby 

union whole-period match averages; and (10) Rolling epoch analysis of less than 1-

minute (i.e., 5, 10, 20, 30-s) provided useful data that may inform high-intensity interval 
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training prescription and monitoring. The remainder of the discussion focusses on 

interpretation and application of our findings in the context of others. 

4.4.1 Sensitivity of Measures  

Both GPS- and accelerometer-derived measures had poor sensitivity for quantifying 

athlete movement during the most intense passages of rugby union match-play. A 

professional rugby union athlete’s maximum mean movement of 5 to 600-s during 

match-play will vary on average from measurement to measurement by ~ 11% (mean 

range; 8 to 14%). This typical error of measurement or noise represents the error that 

practitioners must contend with when assessing individual differences or changes in 

athlete movement. The noise (~ 11%) can then be compared to smallest worthwhile 

change or signal (mean SWD of 2.5%) to calculate the number of repeated 

measurements required to attain adequate precision of estimates. If signal equal to the 

noise was deemed acceptable precision by a practitioner, then using the present data as 

an example, approximately 16 measurements (16 match halves or 8 total matches) 

would be required to reduce the noise 4 fold to ~ 2.5%. However, for more adequate 

precision of estimates ideally the noise should be half that of the signal (Hopkins, 2015). 

Thus practitioners of professional rugby union athletes require ~ 32 match-half 

measurements or ~ 16 full matches of player movement data (approximate length of a 

team sport season) to obtain adequate precision (i.e., noise half that of the signal) for 

assessing individual differences or changes in maximum mean match movement of 5 

to 600-s. Hopefully in the future more researchers report the sensitivity of investigated 

external load measures to inform practitioners on the number of measurements required 

to accurately interpret and confidently act on movement data. 
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4.4.2 Reliability of Measures  

Rugby union maximum mean movement of 5 to 600-s was inherently unreliable, with 

typically low to very low within-match, between-half reliability and between-match, 

within-half reliability during both elite and sub-elite match-play across all measures 

(ICC; <0.50). Similarly, in English Championship professional rugby union matches, 

within- and between-player variability of high-intensity activity was large whilst player 

“match load” variables such as PlayerLoadTM provided a more stable measure of 

between-match player movement with a coefficient of variation of ~ 10% (McLaren et 

al., 2015). In agreement, maximum mean PlayerLoadTM displayed improved between-

match, within-half reliability (moderate to high) when compared to either mean speed 

or metabolic power (low) as epoch duration increased past 60-s during elite rugby union 

match-play (up to ICC; 0.8). PlayerLoadTM may therefore be a more reliable and stable 

measure of external load than mean speed or metabolic power for monitoring elite 

rugby union athletes during longer training drills or match bouts (e.g., match-half or 

whole match). 

Present data provides further evidence that reliability of team sport movement as 

measured by both GPS and accelerometers is inversely related to speed of movement. 

This finding creates a dilemma for practitioners when selecting measures and is in 

accordance with the suggestion that validity and reliability of a measure is likely 

inversely related to its importance for external load quantification and monitoring 

(Akenhead et al., 2016; Buchheit et al., 2017). Low measure reliability does not mean 

that PlayerLoadTM, mean speed and metabolic power should not be used in the context 

of quantifying and monitoring maximum mean movement, but rather suggests that 

more caution is needed when interpreting individual differences or changes. Defining a 
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larger and more conservative SWD (Buchheit, 2016) and/or having more repeated 

measures are possible solutions to this dilemma, as highlighted by poor measure 

sensitivity and correspondingly low reliability findings in the present investigation.  

4.4.3 Playing Position Differences in Maximum Mean Movement 

As expected, GPS was unable to quantify all forms of external load experienced by elite 

and sub-elite rugby union athletes during the most intense periods of match-play, 

particularly underestimating external load of the forwards. Forwards are primarily 

responsible for engaging in contests for possession involving contact such as scrums, 

lineouts, rucks, mauls and tackles, whilst backs are primarily tasked with trying to gain 

territory and score points (Quarrie et al., 2013). Compared to rugby union backs, 

forwards have increased frequency of impacts (Lindsay et al., 2015), “static” exercise 

bouts (i.e., scrums, rucks & mauls) and durations of “static” bouts (Roberts et al., 2008). 

During competition forwards also produce greater mean acceleration than backs  

(Lacome et al., 2013) and “aggregated accelerometer body demands” (Owen et al., 

2015). Accelerometer-derived PlayerLoadTM findings corroborate with rugby union 

time-motion analysis positional movement differences, demonstrating the convergent 

validity of accelerometers to quantify many frequently occurring rugby union 

movements that are underestimated by GPS. If the present rolling epoch analysis 

findings of 5 to 600-s were to be extrapolated in duration to well beyond 600-s (e.g., 

40-min match-half) that typically occurs in practice, then the gradual accumulation of 

many sport-specific and collision-based movements that incur little horizontal 

displacement over time would likely result in further underestimation of external load 

via the sole use of GPS. Practitioners should use accelerometers alongside GPS to more 
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adequately quantify, monitor and prescribe totality of athlete movement (external load) 

during collision-based team sports such as rugby union. 

Over shorter exercise bout durations, backs produced greater intensity of movement 

than forwards. Elite backs produced greater mean speed and metabolic power compared 

to forwards for all durations of 5 to 600-s (ES >0.60), with similar results for the sub-

elite cohort with exception of the 300 and 600-s yielding unclear positional differences. 

Consistent with present findings, outside backs and half-backs cover greater peak 

relative running distances than tight 5 forwards (front row and locks, ES >0.60) for 

rolling average durations of 1 to 10-mins (Delaney et al., 2016d). Facilitating back’s 

ability to produce higher peak running intensities during match-play is greater recovery 

time to regenerate energy stores between efforts compared to forwards, with a mean 

exercise: rest ratio of 1: 8.5 vs 1: 6.5 respectively. Increased rest time between efforts 

is largely due to forwards spending ~ 33% of their time exercising throughout a match 

completing “static” movements (e.g., scrums, rucks and mauls) compared to ~ 8% for 

backs (Lacome et al., 2013). Relative to forwards, backs complete a greater frequency 

of accelerations and decelarations (Owen et al., 2015), contributing to likely greater 

metabolic power for outside backs and half-backs when compared to the tight 5 (ES 

range; 0.86 to 0.99) (Delaney et al., 2016d). These findings are not surprising 

considering backs are required to evade opponents with rapid acceleration, change of 

direction and/or maximal speed to score tries or chase down and tackle opponents to 

deny try scoring, but do highlight the need for position specific training prescription 

and monitoring. Practitioners may alter the playing area, number of players, rules and 

the duration of small-sided games to modify the frequency and intensity of player 

movements to achieve desired position-specific activity profiles. For example, larger 
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small-sided game playing areas with less players will facilitate more high-speed 

running whilst smaller playing areas with more players will facilitate more acceleratory, 

change of direction and collision-based movements. 

When compared to the current Super 15 Rugby cohort findings, international rugby 

union players cover more distance yet accelerate less during the most intense periods 

of competition (Delaney et al., 2016d). International test-match players thus may 

complete a greater amount of “constant” speed running compared to Super 15 players, 

who run at a lower mean speed, yet accelerate more during maximum mean periods of 

activity as reflected by the increased metabolic power production. Super 15 mean 

speeds may be comparably lower than test-match rugby because our analysis provided 

a maximum value for each match-half, whilst the test-match analysis produced one 

maximum value from the entire match (Delaney et al., 2016d). Maximum mean 

movement differences between investigations may also be attributed to level of 

competition, team and opposition playing styles, technologies used (Catapult Optimeye 

S5 vs GPSports SPI HPU receivers) and statistical analyses performed (e.g., fixed and 

random effects within model, data inclusion/exclusion criteria etc.). Movement 

comparisions between levels of competition may help performance staff to prescribe 

competition level match-specific training intensities to their athletes who are “handed-

over” from professional club to national team environments and vice-versa. 

Findings provide some evidence to support the convergent validity of mean speed and 

metabolic power for quantifying positional differences during the most intense periods 

of elite and sub-elite rugby union match-play. Mean speed and metabolic power 

positional differences of this study are in agreement with prior rugby union 

investigations (Delaney et al., 2016d), positional playing roles, and the metabolic power 
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theoretical model accounting for both velocity and acceleration based events. Present 

findings help to improve limited understanding of position- and duration-specific peak 

energy expenditures of professional rugby union competition. However, many 

limitations of the metabolic power method for estimating energy cost during 

intermittent team sport movement are acknowledged. Metabolic power grossly 

underestimates movement during shuttle running by 13 to 16% (Stevens et al., 2014b), 

a soccer-specific circuit by 29% (Buchheit et al., 2015), a generalised team sport circuit 

by ~ 44% (Brown et al., 2016) and a rugby-specific circuit by ~ 45% (Highton et al., 

2016), underpinning its lack of criterion validity versus portable gas analysers. Given 

metabolic power’s sensitivity and reliability to quantify movement differences was no 

better than the other investigated measures, metabolic power data (W.kg-1) are hard to 

prescribe team sport training from, and many poor criterion validity findings from 

previous literature, caution with its use is advised. 

4.4.4 Match-Half Changes in Maximum Mean Movement  

Present findings suggest that professional rugby union athletes preserve their ability to 

complete maximal intensity movement over shorter durations (≤30-s) across match 

halves by reducing the amount of movement they perform at lower relative intensities. 

Similar declines in lower relative intensity cruising and striding distances have been 

reported as match-half duration progresses and between match halves during rugby 

union competition (Jones et al., 2015). Reduced running “performance” across the 

course of a match has been proposed to broadly identify physiological impairment of a 

player, suggestive of acute fatigue (Mohr et al., 2005). Gradual declines in running 

intensity throughout match-play are suggestive of players adopting a “slow-positive” 

pacing profile, common amongst many team sport activity profiles (Waldron et al., 
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2014). Whilst longer duration efforts of lower relative intensity generally declined in 

the 2nd match-half (up to 12%), efforts of shorter duration and higher relative intensity 

(≤30-s) exhibited trivial or small match-half reductions. The lack of decline in very 

high-intensity rugby union movement between halves is similar to other elite rugby 

union time-motion analysis findings reporting “no change” in work-to-rest ratios 

(Lacome et al., 2013) and high-intensity running (Roberts et al., 2008) between halves. 

Equally, high-intensity movements (high-intensity running, sprinting, maximal 

accelerations, repeated high-intensity efforts and contacts) did not substantially 

decrease between halves during professional rugby union as quantified by GPS and 

integrated inertial sensors (Jones et al., 2015). Consensus on match-half changes in very 

high-intensity movement between our findings and other investigations across both 

GPS and accelerometer measures and within both elite and sub-elite rugby union 

competition demonstrates that the investigated wearable technology measures display 

convergent validity in measuring what they “ought” to measure. Duration- and position-

specific match-half change data may improve our understanding of athlete pacing 

strategies and this information may then be used to inform substitution/rotation 

decisions.  

4.4.5 Relationship between Accelerometer and GPS Measures 

It was clear from the pattern of positional differences across epoch durations and levels 

of competition that GPS and accelerometer measures provided different information 

about rugby union player movement. These findings demonstrate that use of either GPS 

or accelerometers in isolation is inadequate to accurately quantify all forms of rugby 

union external load. Findings of this investigation support a recent training load 

monitoring framework for team sports that separates physiological and biomechanical 
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load-adaptation pathways (Vanrenterghem et al., 2017). This framework uses an 

analogy of a car to describe the physiological vs biomechanical external load that team 

sport athletes experience. The physiological load component can be viewed as a car 

engine with GPS time, distance and speed derivatives providing an estimate of “fuel” 

in the player’s “engine”, facilitating monitoring of external work to estimate internal 

energy demands or metabolic load (e.g., glycogen depletion, heart rate). Whereas 

biomechanical load refers to external work performed by the body’s soft tissues (e.g., 

muscles, bones and ligaments, analogous to a car’s suspension) against the ground and 

other player’s during impact, that can be estimated in the field with highly responsive 

motion sensors such as accelerometers.  

PlayerLoadTM has strong positive correlations with total distance in Australian Rules 

Football [r = 0.63 to 0.76; (Boyd et al., 2010) and r = 0.90; (Aughey, 2011)], and is 

mainly derived from vertical axis accelerations (44.1% ± 2.5%) during Australian Rules 

Football match-play (Cormack et al., 2013) and  treadmill running (55.7% ± 5.3%) 

(Barrett et al., 2014). These results make intuitive sense as team sport athletes run great 

distances leading to a high frequency of propulsive and braking forces against the 

ground that are quantified by accelerometers as vertical accelerations accumulated over 

time. Variations in physiological and biomechanical loads are generally experienced 

together (Vanrenterghem et al., 2017), hence why total distance and PlayerLoadTM often 

correlate. Present results indicate that neither accelerometer nor GPS measures should 

be used as a proxy measure for the other when attempting to quantify the most intense 

periods of collision-based team sport match-play as whether they are correlated or not, 

they clearly measure different constructs. Furthermore, the common use of total 

distance as a proxy measure of overall training and/or match volume (Buchheit et al., 
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2017) should be undertaken with caution and is not advised when monitoring and 

prescribing rugby union athlete external training loads. If practitioners want to 

understand both the physiological and biomechanical external loads of their athletes for 

informing subsequent recovery and training design, both GPS and accelerometers 

should be used. 

No research using optical or local positioning systems to quantify player movement has 

utilised the methodological approach outlined in the present study, although this could 

be easily achieved in future investigations. All that would be required are player 

positional x and y coordinates for these alternate player tracking solutions to calculate 

distance, velocity, acceleration and subsequently replicate mean speed and metabolic 

power measures we used. Global positioning systems may calculate velocity via 

positional differentiation (change in receiver location with each satellite signal) or using 

the Doppler-shift method (change in frequency in the satellite signal). Most GPS 

manufacturers now use the Doppler-shift method as it has been reported to have greater 

precision and reduced measurement error (Townshend et al., 2008) when compared to 

deriving velocity via distance over time calculations that optical and local positioning 

systems use. Another key advantage of wearable systems is the 3-dimensional (x, y and 

z) quantification of athletic movement via integrated accelerometry, highlighted by 

present findings suggesting that athlete external loads will be underestimated if only 

movement in x and y coordinates are measured, making intuitive sense. 

4.4.6 Implications for Training Prescription  

The most intense periods of rugby union match-play were of substantially higher 

intensity than previously reported whole-period match averages. For example, Super 

15 rugby union forwards and backs produced match mean speeds of 56.1 and 68.7 
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m.min-1 respectively (McLellan et al., 2013). These whole match mean speed numbers 

are lower than the longest epoch duration (600-s) maximum means of elite Super 15 

forwards (72.3 m.min-1) and backs (79.1 m.min-1) (Table 4.2). Grand mean speed 

reached 155 m.min-1 during the maximum mean 60-s epoch and 380 m.min-1 during the 

most intense 5-s epoch (Table 4.2). Similar stark discrepancies between movement 

intensities can be observed when comparing the 5 to 600-s maximum means of 

PlayerLoadTM and metabolic power herein compared to previous rugby union 

investigations quantifying whole-period averages. Current data illustrates that if 

professional rugby union training is prescribed relative to the average activity profile 

of a match, players will be under-prepared for the most intense periods or worst-case 

scenarios of match-play. 

Not surpringly, present data indicate that as exercise duration increases, intensity of 

rugby union match movement declines. The declines in movement are non-linear and 

logarithmic in nature, with this intensity-duration physiological relationship often 

referred to as the power law relationship (Delaney et al., 2017b). The power law 

relationship will be further explored in Chapter 7, however for the purpose of the 

present investigation it was clear that although there are many complex interactions 

between central and peripheral fatigue (either transient and/or accumulated) and 

numerous contextual match factors inherent within team sports, movement duration is 

still very predictive of movement intensity. Subsequently, practitioners may use 

mathematical modelling of the power law relationship to predict movement intensity 

over a range of durations outside of those collected by wearable technology with 

reasonable accuracy, enabling practitioners to prescribe training that is more specific to 

the physiological and biomechanical rigors of competition. 
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4.5 Strengths, Limitations & Future Directions  

Whilst this investigation provides many novel and meaningful insights that may aid 

coaching and performance staff in quantifying, monitoring and prescribing athlete 

external loads, there are limitations that need to be acknowledged. Positional analyses 

were limited to positional forward and back packs rather than more specific playing 

positions (e.g., prop, centre, scrum-half) to increase precision of estimates and to first 

assess if the respective technologies were sensitive enough to quantify broader 

positional classifications prior to comparing specific positional groupings. The case 

study nature of the present study may be considered a limitation and whilst two 

professional teams of two competitive levels with many repeated measures were 

included, league-wide investigations with opposition analyses is the way forward to 

better understand collision-based team sport activity profiles. It is acknowledged that 

placement of an accelerometer to the trunk is only an estimate of whole-body 

accelerations that is far from perfect, although offers a starting point for biomechanical 

load estimation in the field. Future research should continue to investigate the influence 

of sensor location, sensor harnessing and relationships between segmental and whole-

body acceleration. Further, whether these intense periods of match-play have any 

bearing on individual and/or team key performance indicators and/or match outcome is 

unclear. Understanding of player movement immediately following these maximum 

mean periods of activity is also limited and may provide valuable insights on player 

pacing strategies and accumulated or transient fatigue that may inform real-time player 

substitution or rotation decisions. Altogether, knowledge of the strengths and 

limitations of the technologies and the measures they provide is crucial for both 

practitioners and researchers alike to accurately interpret the external load data 
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produced and subsequently provide recommendations for action to influence the 

training process. 

4.7 Practical Applications  

 Professional rugby union player movement needs to be monitored across many 

matches to obtain adequate precision for assessing individuals during intense 

periods of match-play. 

 Accelerometers should be used in addition to GPS to quantify, monitor and 

prescribe player movement in rugby union and other collision-based team 

sports. 

 Neither accelerometer nor GPS measures should be used a proxy measure for 

the other, as they measure different external load constructs (biomechanical and 

physiological load respectively). 

 Duration- and position-specific player movement data derived from wearable 

technologies and rolling epoch analyses may be used as a reference for training 

monitoring and prescription to objectively prepare players for the most intense 

periods of competition. For example, small-sided games may be modified (pitch 

size, number of players, rules, verbal encouragement) to achieve desired 

duration- and position-specific physiological and biomechanical external loads 

whilst simultaneously training technical and tactical skills. 

 Given metabolic power’s sensitivity and reliability to quantify movement 

differences was no better than the other investigated measures, and metabolic 

power data are hard to prescribe team sport training from, we advise caution 

with its use. 
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4.8 Conclusions 

The poor sensitivity and low reliability of GPS and accelerometer measures of 

maximum mean movement imply that rugby union players need to be monitored across 

many matches to obtain adequate precision for assessing individuals. Although all 

measures displayed convergent validity, accelerometers provided meaningful 

information additional to that of GPS. It is recommended that practitioners use 

accelerometers alongside GPS to quantify, monitor and prescribe player movement in 

rugby union and other collision-based team sports. 
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5. CHAPTER 5: STUDY 3 – FACTORS INFLUENCING 

THE PEAK INTENSITIES OF ELITE AND SUB-ELITE 

RUGBY UNION COMPETITION 

 

5.1 Introduction 

Collison-based team sports such as rugby union are characterised by low-intensity 

activity interspersed with frequent bouts of high-intensity activity (Duthie et al., 2003). 

If rugby union training is prescribed relative to the average activity profile of a match, 

players will likely be underprepared for the most intense periods of match-play 

(Delaney et al., 2016d). Despite the majority of team sport competition being spent at 

submaximal intensity, high-intensity activities are often aligned with key events that 

determine match outcome (Faude et al., 2012; Gabbett et al., 2016). For example, in 

rugby league 56.1% of 2083 repeated high-intensity efforts (1169) occurred within 

5minutes of either scoring or defending a try during 21 semi-professional matches 

across 11 teams (Gabbett et al., 2016). Similarly, 83% of 360 goals scored in 

professional soccer were preceded by at least one powerful physical action of the 

scoring or the assisting player, with straight line sprinting the most frequent action prior 

to goal scoring (Faude et al., 2012). These results signify the importance of physically 

conditioning football athletes for high-intensity passages of competition.  

There is limited research using accelerometers to quantify the most intense periods of 

football competition, which is surprising given the reduced accuracy of GPS for 

quantifying high-velocity and acceleratory movements that frequently occur (Boyd et 
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al., 2013; Jennings et al., 2010; Rawstorn et al., 2014). In a recent systematic review 

investigating the use of microtechnology to quantify the peak match demands of 

football codes (Whitehead et al., 2018b), only 2 of the 27 included studies used 

accelerometer-derived metrics such as PlayerLoadTM, whilst GPS-derived relative 

distance was reported in 63% of studies. Clearly, there is a need to examine the efficacy 

of accelerometers to quantify and characterise intense passages of football competition. 

Activity profile analyses have evolved substantially over the past 30 years, due largely 

to technological and methodological advances. Analyses have evolved from reporting 

whole match movement values (Edgecomb et al., 2006), to segmenting movement 

completed into discrete match periods (e.g. halves, quarters, rotations) (Aughey, 2010; 

Duthie et al., 2005), to movement relative to time on field (Coutts et al., 2010b; Varley 

et al., 2013b), to movement within pre-defined periods of matches (Jones et al., 2015) 

and more recently, to movement within rolling average time periods (Delaney et al., 

2016d; Varley et al., 2012a). The segmentation of player movements into discrete 

periods allows practitioners to detect fluctuations in player movement (i.e. peaks and 

troughs), that is not possible with whole match values. A better understanding of within-

match fluctuations in player movement may enable practitioners to prescribe training 

that is more representative of the rigors of competition.  

The most intense periods of football competition do not fall completely within pre-

defined periods of time and therefore likely underestimate peak periods and 

overestimate subsequent periods of activity (Varley et al., 2012a). Pre-defined time-

motion analysis using wearable GPS technology found peak 5minute high-velocity (≥ 

4.17 m.s-1 or ≥ 15 km.h-1) distance covered during football matches was underestimated 

by up to 25% whilst overestimating subsequent periods of activity by up to 31% 
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compared with rolling periods (5 minute average from every time point) (Varley et al., 

2012a). The decrement in player distance covered between the peak and the following 

period was also up to 52% greater using rolling compared to pre-defined periods. 

Subsequently, practitioners should use rolling average epochs when attempting to 

accurately identify and quantify peak periods of player movement and periods 

thereafter during competition (Cunningham et al., 2018; Ferraday et al., 2020; Varley 

et al., 2012a).   

Duration- and/or position-specific player movement differences have been observed 

during the most intense periods of match-play across various football codes including: 

rugby sevens (Couderc et al., 2017; Furlan et al., 2015; Murray et al., 2015), rugby 

league (Delaney et al., 2016a; Delaney et al., 2015; Kempton et al., 2015b; Whitehead 

et al., 2018a), rugby union Chapter 3, (Carling et al., 2017; Delaney et al., 2016d; Read 

et al., 2018b) Australian Rules Football (Black et al., 2016; Delaney et al., 2017a), 

Gaelic football (Malone et al., 2017b) and soccer (Delaney et al., 2017b; Ferraday et 

al., 2020; Sparks et al., 2016; Trewin et al., 2018; Varley et al., 2012a). These 

investigations amongst others have provided valuable insights into the highly 

intermittent nature of team sport movement and highlighted that rolling time-motion 

analyses may assist practitioners in the design, prescription and monitoring of training 

that is more representative and specific to competition. Yet many factors that may 

influence player movement during the most intense periods of football competition are 

poorly understood, and deserve further investigation.  

Little is known about how time on field influences player peak intensities, how these 

peak periods of activity change across the course of a season, or if differences exist 

between match-halves or between levels of competition. There is a paucity of research 
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investigating the use of accelerometers to measure the peak intensities or worst-case 

scenarios of competition, with GPS measures of relative distance and metabolic power 

predominating the player tracking literature. Further, only two studies to date (Read et 

al., 2018b; Whitehead et al., 2018a) have utilised rolling average epochs of less than 1 

minute, with neither investigating professional rugby union athletes. Subsequently, the 

present investigation aimed to quantify and characterise the most intense periods of 

rugby union competition within and between individuals, examining factors that may 

influence peak intensities, such as: a) epoch durations of 5 to 600s, b) playing positions, 

c) match-halves, d) levels of competition, e) within-season trends, f) time on field and 

g) match-time the peak occurred. 

5.2 Methods  

This study extends on Chapter 4, with the study design, participants, equipment and 

data collection, measures of maximum mean (peak intensity) and data filtering and 

processing procedures all previously established (Chapter 4, methods). Consequently, 

this chapter will focus on novel statistical analyses that enable the quantification and 

characterisation of peak intensities of elite and sub-elite rugby union. 

5.2.1 Statistical Analyses  

All measures were analysed with two general linear mixed modelling procedures (Proc 

Mixed) in SAS (detailed in Chapter 4) and log-transformed to reduce non-uniformity 

of error (Hopkins et al., 2009). The first mixed model provided the four means and 

standard deviations of the positions and the match-halves shown in Figures 5.1 and 

Figure 5.2; this model also provided the harmonic mean of the four standard deviations, 

which is an appropriate mean standard deviation for assessing magnitudes of effects via 
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standardisation (Hopkins, 2007b). The model included a simple linear numeric fixed 

effect for calendar date interacted with playing position (to estimate a separate within-

season trend for each position averaged across the halves). The second model provided 

magnitude-based decisions about the differences and changes in the means; in this 

model, mean time on the field for each player in each half was re-scaled to zero to avoid 

adjusting the peak intensities to a grand mean time on the field for positions and halves. 

This re-scaling enabled better quantification of positional (forwards vs backs) and 

match-half (1st half vs 2nd half) mean differences. The magnitude of the effect of time 

on the field was also evaluated by standardising the change in the peak measure 

corresponding to two within-player standard deviations for each playing position and 

match-half (Hopkins et al., 2009). Comparisons of peak movement between elite and 

sub-elite levels of rugby competition were made using a spreadsheet for combining 

outcomes from several subject groups (Hopkins, 2006). The time in each half when the 

peak intensity occurred (defined by the mid point of the rolling-average window) was 

summarised with means and standard deviations.  

The magnitudes of effects (positional differences or match-half changes in means; 

standard deviations derived from random effects) were evaluated by standardisation, 

which was performed by dividing each effect by the between-player standard deviation 

in a typical match to provide the effect size (ES). This standard deviation was derived 

by adding the variances for the random effects for player identity and the residual. The 

smallest worthwhile difference (SWD) or change in means is 0.2 standard deviations; 

thresholds for moderate, large and very large differences are 0.6, 1.2 and 2.0, 

respectively (Hopkins et al., 2009). Thresholds for evaluating standard deviations 

(derived by taking square roots of random-effect variances) were half these values 
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(Smith et al., 2011). Uncertainty in effects was expressed as 90% compatibility limits 

or intervals and as probabilities that the true effect was substantially positive and 

negative. These probabilities were used to make a qualitative probabilistic non-clinical 

magnitude-based decisions (MBD) about the true effect (Hopkins et al., 2009): if the 

probabilities of the effect being substantially positive and negative were both > 5%, the 

effect was reported as unclear. The scale for interpreting the probabilities was as 

follows: 25-75%, possible; 75-95%, likely; 95-99.5%, very likely; > 99.5%, most likely 

(Hopkins et al., 2009). 

5.3 Results 

5.3.1 Elite Rugby Peak Intensities 

Figure 5.1 illustrates the increase in Super 15 Rugby (elite) peak intensity as time 

decreases across the three measures (mean speed, metabolic power and PlayerLoadTM) 

by playing position and match-half. Backs produced greater peak mean running speed 

than forwards across all epoch durations, with moderate (ES ± 99% CI: 0.8 ± 0.5) to 

large (1.7 ± 0.5) effects (Figure 5.1, top panel). There were small to moderate 

standardised peak mean speed differences between match-halves (0.3 ± 0.3 to 0.8 ± 

0.3). The match-half 'grand' mean speed averaging both positions and half data (i.e. b1, 

b2, f1, f2 = 65.5, 62.3, 59.4, 55.7 m.min-1) for visual comparison with the peak 

intensities reached across each epoch duration was 60.7 m.min-1 (Figure 5.1, top panel 

dashed line). Unsurprisingly, all duration- and position-specific peak running speeds 

produced were substantially higher than the ~ 40 minute rugby union match-half 60.7 

m.min-1 mean speed (Figure 5.1). Similar findings were observed across all measures 

and both levels of competition (Figures 5.1 & 5.2). 
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Elite backs produced greater metabolic power when compared to forwards across all 5 

to 600 s epoch durations, ranging from moderate (0.8 ± 0.5) to large (1.7 ± 0.5) effects  

(Figure 5.1, middle panel). Similarly to mean speed, players of both positions generally 

produced greater peak metabolic power in the first match-half compared to the second 

across a range of epoch durations (0.2 ± 0.2 to 0.6 ± 0.2). The match-half 'grand' 

metabolic power mean averaged across both positions and whole-half data (i.e. b1, b2, 

f1, f2 = 7.53, 7.15, 6.53, 6.11 W.kg-1) for visual comparison with the peak intensities 

reached across each epoch duration was 6.83 W.kg-1 (Figure 5.1, middle panel). 

Backs produced greater accelerometer-derived PlayerLoadTM than forwards for very 

short duration epochs (5 and 10 s), with small (0.4 ± 0.5) to moderate (0.6 ± 0.5) 

standardised effects (ES ± 99% CI, Figure 5.1, bottom panel). However, as epoch 

duration increased past 120 s, forwards produced moderately (0.6 ± 0.4 to 0.7 ± 0.4) 

greater PlayerLoadTM when compared to backs. There was good evidence for trivial or 

marginally trivial-small changes between halves for both forwards and backs for 

PlayerLoad except for the two longest epoch durations, where there is a greater 

likelihood of a small effect (Figure 5.1, bottom panel). The match-half 'grand' 

PlayerLoadTM, averaging both positions and whole-half data (i.e. b1, b2, f1, f2 = 0.46, 

0.46, 0.54, 0.52 au) for visual comparison with the peak intensities reached across each 

epoch duration was 0.5 au (Figure 5.1, bottom panel dashed line). 
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Data presented are means ± SD. Superscripts indicate observed magnitudes as follows: T, Trivial; S, 

Small; M, Moderate; L, Large; VL, Very Large. Asterisks indicate likelihood of true substantial effects 

as follows: *possibly, **likely, ***very likely, ****most likely. Superscript zeros indicate likelihood of 

true trivial effects as follows: 00likely, 000very likely, 0000most likely. T* indicates a possibly trivial, 

possibly substantial effect. Effects shown in bold have adequate precision with 99% compatibility limits. 

Effects without asterisks or superscript zeros are unclear (inadequate precision) with 90% compatibility 

limits. Dashed line = half mean intensity. 

 
Figure 5.1  Peak-mean speed, metabolic power and PlayerLoadTM for rolling 

epoch durations of 5 to 600 s during elite rugby competition. 
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Data are means ± SD. Superscripts indicate observed magnitudes: T, Trivial; S, Small; M, Moderate; L, 

Large; VL, Very Large. Asterisks indicate likelihood of true substantial effects: *possibly, **likely, 

***very likely, ****most likely. Superscript zeros indicate likelihood of true trivial effects: 00likely, 
000very likely, 0000most likely. T* indicates a possibly trivial, possibly substantial effect. Effects shown 

in bold have adequate precision with 99% compatibility limits. Effects without asterisks or superscript 

zeros are unclear (inadequate precision) with 90% compatibility limits. Dashed line = half mean intensity.  

 
 

Figure 5.2 Peak-mean speed, metabolic power and PlayerLoadTM for rolling epoch 

durations of 5 to 600 s during sub-elite rugby competition. 
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5.3.2 Sub-Elite Peak Intensities 

Figure 5.2 illustrates the increase in National Rugby Championship (sub-elite) peak 

intensity as time decreases across the three maximum mean measures (mean speed, 

metabolic power and PlayerLoadTM) by playing position and match-half. Backs 

produced greater peak mean speed compared to forwards for epoch durations of 5 to 

120 s, displaying small (0.5 ± 0.6) to large (1.9 ± 0.6) standardised positional 

differences (Figure 5.2, top panel). Greater peak mean running speed differences were 

observed between match-halves as epoch duration increased, with moderate (0.6-0.7) 

standardised differences for both posititons during the peak 600 s epoch (Figure 5.2, 

top panel). The NRC match-half 'grand' mean speed averaging both positions and half 

data (i.e. b1, b2, f1, f2 = 71.2, 68.3, 68.3, 64.2 m.min-1) for visual comparison with the 

peak intensities reached across each epoch duration was 68 m.min-1 (Figure 5.2, top 

panel dashed line). 

Peak metabolic power produced was greater for sub-elite backs than forwards for all 5-

120 s epoch durations across both match-halves, from a moderate (1.0 ± 0.7) to very 

large extent (2.4 ± 0.6) (Figure 5.2). Positional differences in peak metabolic power 

typically decreased as epoch duration increased. Substantial match-half changes in peak 

metabolic power were of small (0.4 ± 0.4) to moderate (0.7 ± 0.3) magnitude. The 

match-half 'grand' metabolic power, averaging both positions and whole-half data (i.e. 

b1, b2, f1, f2 = 7.91, 7.57, 7.26, 6.78 W.kg-1) for visual comparison with the peak 

intensities reached across each epoch duration was 7.38 W.kg-1 (Figure 5.2, middle 

panel dashed line). 

Sub-elite backs generally produced greater accelerometer-derived PlayerLoadTM than 

forwards for epoch durations of less than 30 s (ES ± 99% CI: 0.8 ± 0.5 to 1.2 ± 0.6), 
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Figure 5.2, bottom panel). However similarly to the elite cohort, as epoch duration 

increased beyond 60 s sub-elite forwards produced small to moderate increases in 

PlayerLoadTM when compared to backs for durations of 120 to 600 s (ES range: 0.5 ± 

0.5 to 1.0 ± 0.7)(Figure 5.2). The first match-half had greater peak 60 to 600 s 

PlayerLoadTM than the second half for both positions (ES range: 0.2 ± 0.3 to 1.1 ± 0.4, 

Figure 5.2). The National Rugby Championship match-half 'grand' PlayerLoadTM 

averaging both positions and whole-half data (i.e. b1, b2, f1, f2 = 0.48, 0.47, 0.56, 0.52 

au) for visual comparison with the peak intensities reached across each epoch duration 

was 0.51 au (Figure 5.2, dashed line). 

5.3.3 Elite vs. Sub-Elite Peak Intensities of Competition 

Of 96 elite (Super 15) vs sub-elite (National Rugby Championship) peak intensity of 

competition comparisons made across 8 epoch durations (5, 10, 20, 30, 60, 120, 300, 

600 s), 2 positions (forwards, backs), 2 match-halves (1st, 2nd) and 3 measures (mean 

speed, metabolic power and PlayerLoadTM), only 25/96 comparisons (26%) found clear 

peak intensity differences between levels of competition that were greater than the 

smallest worthwhile difference or change in means (i.e. 0.2 × between-player standard 

deviation). When partitioned into positional comparisons between levels of 

competition, 43/48 (90%) of comparisons between backs found no clear elite vs sub-

elite differences greater than the SWD. Of the 5 out of 48 (10%) comparisons that were 

clear and greater than the SWD, peak mean speed was greater for sub-elite than elite 

backs across a few sporadic epoch durations by match-half. For the forwards, 20/48 

level of competition comparisons (42%) were clear and greater than the SWD. Sub-

elite forwards produced greater peak mean speed and metabolic power than elite 

forwards during longer duration epochs (i.e. 300 and 600 s). However, elite forwards 
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produced greater peak PlayerLoadTM than sub-elite forwards across shorter epoch 

durations (i.e. 5 to 120 s). 

5.3.4 Peak Intensity of Competition Within-Season Trends 

5.3.4.1 Elite rugby 

GPS-derived measures of mean speed and metabolic power displayed mostly trivial and 

unclear 5 to 600 s peak intensity within-season trends across the Super Rugby season. 

The largest observed within-season trend was a decline in the peak mean speed attained 

by the backs in the 600 s epoch during the first match-half, with a moderate decline of 

0.7 ± 0.7 (86% likely substantial). Similarly, metabolic power declined within the same 

600 s epoch duration during the first match-half to a small extent for the backs over the 

course of the season 0.4 ± 0.6 (73% possible). 

PlayerLoadTM had mostly small within-season trend standardised declines, with shorter 

duration epochs in the 1st match-half displaying the largest magnitude of decline as the 

season progressed (i.e. 5 to 30 s decline ranges: backs; -0.4 ± 0.2 to -0.6 ± 0.2 and 

forwards; -0.3 ± 0.3 to -0.5 ± 0.4), equating to an ~ 6% within-season peak 

PlayerLoadTM decline. 

5.3.4.2 Sub-elite rugby 

National Rugby Championship within-season peak movement declined to a greater 

extent as the epoch duration increased from 5 to 600 s. Declines in peak movement 

were generally more pronounced for forwards than backs as the season progressed. For 

the forwards, the 60 and 120 s epochs consistently displayed the largest magnitude of 

within-season decline across all measures, especially during the 1st match-half (ES 

range ± 90% CI; -1.4 ± 0.6 to -1.9 ±1.0) equating to a mean large decline of 13 to 15%. 

Backs in the 2nd match-half displayed increased peak PlayerLoadTM as the season 
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progressed for shorter duration epochs (i.e. 10 to 30 s, ES range ± 90% CI; 0.8 ± 0.4 to 

1.2 ± 0.7) equating to a mean increase of 11 to 20%. 

5.3.5 Influence of Time on Field on Peak Intensities of Competition  

Super 15 and NRC players who were on the field for a longer amount of time (Table 

5.1) generally achieved small (ES: ~ 0.2) increases in peak mean speed, metabolic 

power and PlayerLoadTM than players who were on field for shorter durations. The 

average time on field (min) during elite rugby competition by position and match-half 

was (Backs 1st: 43, Backs 2nd: 39 Forwards 1st: 44, Forwards 2nd: 35). Corresponding 

average time on field for sub-elite players was (Backs 1st: 43, Backs 2nd: 35, Forwards 

1st: 43, Forwards 2nd: 33 minutes). Time on field influenced peak intensity to a greater 

extent in the second match-half compared to the first for both sub-elite and elite rugby 

competitions. The majority of 5-600 s epoch durations displayed trivial and unclear 

standardised effects of time on field influencing the peak mean speed, metabolic power 

and PlayerLoadTM during the first match-half. In contrast, most 5-600 s duration epochs 

displayed small to moderate standardised (ES range: 0.2-0.6) and percent effects (up to 

9% and 11% for NRC and Super 15 competitions respectively) for the influence of time 

on the field on peak second match-half intensity. 

 

Position Half Sub-elite Rugby  Elite Rugby  

Back 1st  2.4 6.4 

Back 2nd  7.6 9.6 

Forward 1st  1.9 7.2 

Forward 2nd  10.1 8.8 

 

Table 5.1 Within-player standard deviations for time on the field (min) during 

sub-elite and elite rugby competition. 
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5.3.6 Game Time of Peak Intensity Periods 

The most intense 5-600 s passages of elite and sub-elite rugby union competition 

occurred near the middle of both first and second match-halves. The grand pooled 

position and match-half game time of peak movement (mean ± SD, averaged across the 

three variables and all epoch durations) was 23 ± 12 and 21 ± 13 minutes into the match 

for NRC and Super 15 Rugby matches respectively. Comparing the mean game time 

that peak periods of intensity occurred (NRC: 23 minutes and Super 15: 21 minutes) 

with the middle of the match-half durations (NRC: 22 minutes and Super 15: 23 

minutes) enables practitioners to understand when these peak periods of competition 

occur relative to random chance. For example, rugby union has 40-minute halves plus 

any additional stoppage time, thus the 20 minute mark of each half represents the 

theoretical point in time that the peak period of activity would occur on average (at the 

population and not study sample level) by pure chance for a 40 minute half if every 

minute of the game recorded the same frequency of individual player peaks. The NRC 

peak periods of intensity occurred on average 53 seconds after the middle of the half 

and occurred ~ 2 minutes prior to middle of the half during Super 15 competition.  

Whilst the peak intensities of competition occurred near the middle of match-halves, 

the time that they occurred between the first and second half differed. The most intense 

passages of competition occurred at latter stages in the second match-half when 

compared to the first. The game time of peak intensity for each position and match-half 

averaged across all epoch durations and three measures were: (backs 1st; 22.4, backs 

2nd; 25.1, forwards 1st; 19.6, forwards 2nd 23.4) for NRC match-play and (backs 1st; 

20.5, backs 2nd’; 23.2, forwards 1st; 20.5, forwards 2nd; 21.2) for Super 15 Rugby match-

play. Match-half duration including stoppage time for each competition was: NRC (1st; 
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43.1 ± 1.9, 2nd; 45.3 ± 1.4 minutes) and Super 15 Rugby (1st; 45.5 ± 3.6, 2nd; 46.9 ± 2.8 

minutes). When the game time of peak intensity in each half was adjusted for by the 

duration of the half, peak intensities of 5 to 600 s occurred 1.1 and 2.1 minutes later in 

the second match-half compared to the first for NRC and Super 15 Rugby respectively. 

In Super 15 Rugby, the 300 and 600 s peak intensity periods occurred later in the second 

match-half when compared to the first for both the backs and the forwards (3.8 and 6.9 

minutes respectively), when adjusted for differences in match-half duration. During 

NRC matches, the most intense 60 to 120 seconds of competition displayed the greatest 

differences between halves, occurring later in the second half compared to the first for 

both backs (1.5 minutes) and forwards (5.1 minutes). 

 

5.4 Discussion 

The present investigation aimed to quantify and characterise the most intense periods 

of rugby union competition within and between individuals, examining factors that may 

influence peak intensities, such as: a) epoch duration, b) playing positions, c) match-

halves, d) levels of competition, e) within-season trends, f) time on field and g) match-

time the peak occurred. The key and novel findings of the present study were: (1) Rugby 

union backs produced greater peak mean speed and metabolic power than forwards 

during both sub-elite and elite competitions across most durations from 5 to 600 

seconds (typically ES > 0.6). (2) The peak intensity of matches was typically greater in 

the first half than the second half (ES > 0.2), across sub-elite and elite rugby 

competitions for durations of 60 seconds and beyond. (3) The majority (74%) of 96 

comparisons made between the most intense periods of elite versus sub-elite rugby 

competition yielded unclear or trivial differences, irrespective of duration, position, 
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match-half or the measure used. Of the remaining 26%, there were more clear 

differences > SWD for forwards than backs. (4) Within-season declines in peak 

intensity of competition were more pronounced for sub-elite players compared to elite 

players and for forwards compared to backs. Peak intensity within-season declines that 

were clear and greater than the smallest worthwhile difference tended to be of shorter 

durations (≤ 60 s) for the elite cohort, where the opposite was true for sub-elites (≥ 60 

s). (5) The most intense 5-600 s passages of elite and sub-elite rugby union competition 

occurred near the middle of both match-halves on average. Between halves, peak 

intensities of matches occurred slightly later (~ 1-2 minutes) in the second half 

compared to the first for both competitions. (6) Elite and sub-elite rugby players who 

were on the field longer generally produced greater peak mean speed, metabolic power 

and PlayerLoadTM (ES > 0.2). Time on field influenced peak intensity to a greater extent 

in the second match-half compared to the first for both levels of competition. 

Rugby union backs produced greater peak mean speed and metabolic power than 

forwards during both sub-elite and elite competitions across most durations from 5-600 

seconds. Similarly in international rugby union match-play, outside backs, half-backs 

and loose forwards had small to moderate (ES range: 0.3-1.0) increases in relative 

distance and average acceleration than tight 5 (i.e. props, hooker, locks) forwards across 

all 1 to 10 minute moving average durations (Delaney et al., 2016d). Metabolic power 

was also likely greater for outside backs and half-backs when compared to tight 5 

forwards (ES range: 0.9-1.0) (Delaney et al., 2016d). Peak relative distance and 

metabolic power differences between back and forward positional packs is logical given 

their respective roles they play for the team, rules of the game and their anthropometric 

profiles. Forwards are primarily tasked with securing possession of the ball and halting 
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the progression of the opposition when not in possession of the ball (Lindsay et al., 

2015). Given their increased involvement in collision-based events, forwards are 

generally heavier, taller and have an increased body fat percentage, absolute muscular 

strength and power compared to backs (Duthie et al., 2003). Given more force is 

required to move greater mass and that forwards are always in close proximity to 

opposition engaging in contact based events, total distance and distances covered at 

high speeds are reduced compared to backs who are lighter and have more space to 

engage with “free running” (Cunniffe et al., 2009; Quarrie et al., 2013). Training for 

the worst-case scenarios of competition should reflect positional role requirements by 

modulating player density (congestion of players in a given area) and rules to elicit 

desired player external loads and physiological adaptations. 

The external load that rugby athletes experience is likely underestimated with the sole 

use of GPS measures, especially for forwards and as exercise duration increases. Peak 

relative distance and metabolic power were consistently greater for backs compared to 

forwards across 5-600 second epochs, however as exercise duration increased post 1 

minute, accelerometer-derived PlayerLoadTM was greater for forwards than for backs. 

If player tracking durations continued beyond the 10 minute maximum sampling 

duration of the present study (e.g. half or whole match analysis), then the gradual 

accumulation of many movements that incur vertical or little horizontal displacement 

over time would result in further underestimation of external load via the sole use of 

GPS. If only GPS metrics were used to quantify external load, then these positional 

differences would not be detected and the coach would be led to believe that the 

forwards did not complete as much physical work as the backs, influencing subsequent 

recovery and training prescription. Further, the different type of external load forwards 
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are exposed to would not be detected by the sole use of GPS metrics. External load has 

been recently proposed to be broadly segmented into physiological and biomechanical 

load-adaptation pathways (Vanrenterghem et al., 2017). During competition, rugby 

union forwards produce greater mean acceleration (Lacome et al., 2013), repeated high-

intensity efforts (Jones et al., 2015), aggregated “body demands” (Owen et al., 2015), 

number of collisions (Reardon et al., 2017) and “static” bouts (i.e.,  scrums, rucks and 

mauls) (Roberts et al., 2008). Increased frequency, duration and often magnitude of 

collision-based movements alongside their increased body mass means forwards are 

exposed to greater biomechanical stress from other players and the ground when 

compared to backs, placing greater strain on the body’s soft tissues. Any sport-specific 

or collision-based movements that involve vertical displacement (e.g. jumping, 

tackling) will not be measured by GPS and many rapid movements that incur little 

horizontal displacement are likely underestimated. This is largely a function of GPS 

only being able to quantify movement in two dimensions (x, y) and having one-tenth 

the sampling rate of accelerometers (100 Hz vs 10 Hz). Findings illustrate that 

practitioners should use accelerometers alongside GPS to more adequately quantify, 

monitor and prescribe intensity and external load during collision-based team sport 

training and competition.  

Present findings suggest that professional rugby players preserve their ability to 

complete very high-intensity, short duration (≤ 30 s) movement across match-halves by 

reducing the amount of movement they perform at lower relative intensities of longer 

durations (≥ 60 s). This was evident as whilst longer duration efforts of lower relative 

intensity generally declined in the second match-half (up to 12%), efforts of shorter 

duration (≤ 30 s) and higher relative intensity exhibited trivial or small match-half 
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reductions. The lack of decline in very high-intensity, short duration (≤ 30 s) peak 

movement between halves is similar to other professional rugby union time-motion 

analysis findings reporting “no change” in work-to-rest ratios (Lacome et al., 2013) and 

high-intensity running (Roberts et al., 2008) between match-halves. Moreover, high-

intensity movements including: high-intensity running, sprinting, maximal 

accelerations, repeated high-intensity efforts and contacts did not considerably decline 

between professional rugby union match-halves (Jones et al., 2015). In contrast, players 

covered lower relative intensity cruising and striding distances as matches progressed, 

both within and between rugby union match-halves (Jones et al., 2015).  

Reduced running volume and/or intensity during competition may be used to identify 

physiological impairment of a player, suggestive of transient fatigue (Waldron et al., 

2013). It has been proposed that team sport athletes distribute their energy resources or 

‘pace’ themselves in order to optimize running performance whilst avoiding the 

harmful failure of any physiological system (Waldron et al., 2014). The gradual decay 

of running intensity across progressive match periods is suggestive of players adopting 

a “slow-positive” pacing profile, common amongst many team sports (Waldron et al., 

2014). Findings from the present study suggest that professional rugby players adopt a 

‘slow-positive’ pacing strategy for lower relative intensity movements ≥ 60 s, whilst 

very high-intensity, shorter duration (≤ 30 s) profiles are typically ‘flat’ across matches, 

in accordance with others (Waldron et al., 2014). Altogether, rugby players may 

sacrifice the distances they cover at lower relative speeds to preserve their ability to 

complete very high-intensity, short duration efforts when the time arises during 

competition. Knowledge of duration-, position- and match-half-specific peak intensities 
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of competition improves our understanding of athlete pacing strategies and may inform 

player substitution or rotation decisions. 

Training relative to the average intensity of competition will leave professional rugby 

players substantially underprepared for the most intense periods of matches. As may be 

observed in Figure 5.1 and Figure 5.2, the whole-match average intensity of 

competition measured by mean speed, metabolic power and PlayerLoadTM in the 

present investigation was substantially lower than the peak 5-600 second intensities 

reported for both levels of competition, playing positions and match-halves. The 

average match intensity for pooled playing positions and match halves for elite (mean 

speed = 60.7 m.min-1, metabolic power = 6.8 W.kg-1, PlayerLoadTM = 0.5 au) and sub-

elite (mean speed = 68 m.min-1, metabolic power = 7.4 W.kg-1, PlayerLoadTM = 0.51 

au) rugby competition was substantially lower than the 5-600 second peak intensities 

reported for both playing positions and match-halves. For example, the 60 second most 

intense period of competition for elite backs averaged across both halves as quantified 

by the 3 measures was ~ 2.5-3 fold that of the match average intensities (mean speed = 

165 m.min-1, metabolic power = 20 W.kg-1, PlayerLoadTM  = 1.3 au). The same ~ 2.5-3 

fold increase between the match average and 60 second peak intensity was true for the 

forwards (mean speed = 147 m.min-1, metabolic power = 17 W.kg-1, PlayerLoadTM  = 

1.4 au). Present findings are in concordance with others (Delaney et al., 2016d; Reardon 

et al., 2017), who have highlighted the stark discrepancies between whole-match 

average and peak intensities of professional rugby competition.   

Fluctuations in running intensity are expected during rugby competition given its 

stochastic nature and whole-match averages are not sensitive enough to detect these 

subtle activity profile fluctuations (Delaney et al., 2016d; Furlan et al., 2015; Jones et 
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al., 2015). Simply assessing the average intensity of competition hides the worst-case 

scenarios that players will be exposed to in matches. The intensity of training can be 

referenced against the peak periods of activity during competition to ensure the players 

are prepared for the rigours of match-play in a position- and duration-specific manner 

(Delaney et al., 2016d). This practice would theoretically increase the likelihood of 

players thriving and not just surviving during the peak periods of competition due to a 

reduced relative intensity for the adapted athlete. Coaches need to expose their athletes 

to very intense periods of training in a periodised manner using game-based 

methodologies such as small-sided games (Delaney et al., 2015) to elicit physiological 

adaptations (Rampinini et al., 2007b), reduce injury likelihood (Verrall et al., 2005) and 

improve athlete readiness to perform when confronted with worst-case scenarios during 

competition. The present findings have provided position specific intensities across 

GPS- and accelerometer-derived metrics for durations of 5 seconds to 10 minutes to 

help coaches prescribe training that is representative of the most intense periods of 

competition.  

This study is the first to compare the most intense periods of elite vs. sub-elite rugby 

competition using GPS and accelerometer technology and rolling epoch analysis. The 

majority (74%) of 96 comparisons made between the most intense periods of elite 

versus sub-elite rugby competition yielded unclear or trivial differences, irrespective of 

duration, position, match-half or the measure used. Similarly, comparing the worst-case 

scenarios (defined as the longest period of ball in play) of European Rugby 

Championship (ERC) and Guinness Pro12 league competitions revealed that the vast 

majority of locomotor and collision measures were not significantly different between 

levels of rugby competition (Reardon et al., 2017). The ERC was considered the higher 
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standard of rugby competition, as teams qualify for the ERC by finishing in a high 

ladder position in domestic leagues such as Pro12. The only statistically significant 

difference between the levels of competition was between the tight five forward 

positional group, where during ERC matches players covered greater high-speed 

running distance (8.9 m.min-1) compared to their Pro12 counterparts (3.2 m.min-1) 

(Reardon et al., 2017). These findings align to those of the present study, given the 

greater number of clear differences greater than the SWD observed between levels of 

competition for forwards vs. backs (20 vs. 5 respectively, cumulatively representing 

26% of 96 comparisons). Sub-elite forwards produced greater peak mean speed and 

metabolic power than elite forwards during longer duration epochs (i.e. 300 and 600 s). 

However, elite forwards produced greater peak PlayerLoadTM than sub-elite forwards 

across shorter epoch durations (i.e. 5 to 120 s). Similar or greater running intensities 

(relative distance) reported in rugby union youth (Read et al., 2018b) compared to 

senior international players (Delaney et al., 2016d) may be due to improved defensive 

structures at international level, with youth academy defences allowing more space for 

players to run (Read et al., 2018b). This may explain why in the present study (where 

clear differences > SWD were reported) the sub-elite forwards produced greater peak 

mean speed and metabolic power yet lower PlayerLoadTM than elites, potentially 

attributable to less time spent in collision-based contests and more time in “open” 

spaces. Knowledge of the most physically intense periods of matches across different 

levels of competition or playing standards may inform the progression of duration- and 

position-specific conditioning as athletes move from one playing level to the next. 

A novelty of this study was evaluating gradual changes in the most intense periods of 

both elite and sub-elite professional rugby across the course of their respective seasons. 



 

    

192 

 

The majority of within-season trends for peak mean speed and metabolic power were 

trivial or unclear across respective rugby seasons. However, for clear and substantial 

within-season trends, peak intensities of competition typically declined across 

respective seasons. Within-season declines in peak intensity of competition were 

typically more pronounced for sub-elite players compared to elite players and for 

forwards compared to backs. Contrary to our findings, high-speed, very-high speed 

running, sprint distance and sprint number during matches were all greater at the end 

of a professional AFL season compared to the beginning (Kempton et al., 2014). 

Increased high-speed activity during matches at the end of football seasons compared 

to the start may be due changes in team tactics, increased importance of matches leading 

into finals and improvements in player’s physical capacity after repeated match 

exposures, leading to physiological adaptations (Kempton et al., 2014; Mohr et al., 

2003; Rampinini et al., 2007a). 

Given the nature of football movement is very complex and relates to a host of 

contextual factors (Paul et al., 2015), match-related factors (Murray et al., 2015) and 

individual player characteristics (Kempton et al., 2015a), it would be speculative to 

attempt to explain why peak intensities of competition tended to decline across elite 

and sub-elite rugby competitions in the present study. That being said, one possible 

explanation could be accumulated long-term fatigue reducing player’s ability to 

complete high-intensity actions such as maximal accelerations and high-velocity 

running. Sub-elite rugby players potentially exhibited greater within-season declines in 

peak match intensities compared to elites because post-match fatigue is lower in 

player’s with well-developed high-intensity running ability and lower body strength, 

despite these players having increased internal and external match loads (Johnston et 
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al., 2015b). Although this explanation assumes the sub-elite rugby cohort in the present 

study had less developed high-intensity running ability and lower body strength, which 

is often the case (Quarrie et al., 1995; Smart et al., 2013), but was not directly measured 

in the present study.  

A within-season decline in peak intensity was typically greater for sub-elite rugby 

forwards than backs across all external load measures. This was particularly evident 

during the peak 60 and 120 second periods of competition in the first match-half, where 

peak mean speed, metabolic power and PlayerLoadTM declined by 13 to 15% (ES range: 

1.4-1.9). Reduced physical capacity of sub-elite footballers (Ingebrigtsen et al., 2012), 

paired with forwards engaging in more collision events that increase perception of effort 

(Johnston et al., 2011), muscle damage (Twist et al., 2012), neuromuscular fatigue 

(Johnston et al., 2014) and energy expenditure (Costello et al., 2018) may have led to 

accumulated long-term fatigue that reduced peak intensities achieved as the season 

progressed. Large within-season declines were observed for sub-elite forwards peak 

movement specifically for the 60 and 120 second epochs potentially due to these epoch 

durations approximating the average longest ball in play time duration of 152-161 

seconds reported during professional rugby (Reardon et al., 2017).  

The simple within-season linear trend model used in the present investigation may aid 

planning of individual and team training load. For example, a within-season trend of 

the peak intensities attained by players during competition rising or falling could inform 

on player physical readiness to play and inform the progression or regression of training 

volumes and intensities to balance fitness and fatigue in preparation for competition. 

Moreover, tracking within-season peak period of competition trends may aid 

monitoring of player’s speed and acceleratory capabilities and inform subsequent 
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training prescription to improve these qualities. Future research should investigate non-

linear peak intensity within-season trend models given evidence of non-linear dose-

response relationships between training load and stress markers (Milanez et al., 2014), 

whilst including contextual factors (e.g. ball in vs. out of possession) and individual 

player characteristics (e.g. physical capacity) in such models. 

The most intense passages of elite and sub-elite rugby union competition occurred near 

the middle of match-halves. Contrary to present findings, several measures of both low- 

and high-intensity movement and acceleration/deceleration progressively declined 

across successive 10 minute periods during professional rugby (p < 0.05), indicating 

the first 10 minutes of each match-half was of the highest intensity (Jones et al., 2015).  

Whilst the peak intensities of competition occurred near the middle of match-halves in 

the present study, the most intense passages of competition occurred at latter stages in 

the second match-half when compared to the first. Possibly, the most intense passages 

of matches occur later in the second match-half compared to the first due to increasing 

pressure to win the match with decreased time on the clock to do so. Identifying when 

the most intense periods of matches occur within each half may inform tactical 

decisions (e.g. player substitutions/rotations or formation changes). If consistent 

patterns of when these worst-case scenarios arose within competition emerged, then 

such data could inform warm up and half time re-warm up protocols if peak periods 

tended to be earlier in match-halves. Conversely, if the most intense periods 

consistently occur later in match-halves then this may suggest that players could benefit 

from training for these peak periods at the latter stages of training sessions under more 

duress or support the efficacy of their current training program.  
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Elite and sub-elite rugby players who were on the field longer generally produced 

greater peak mean speed, metabolic power and PlayerLoadTM (ES > 0.2). This finding 

makes intuitive sense, as players who are on field for longer have greater opportunity 

to express their physical prowess. Alternatively, those players on field for longer are 

typically older, more experienced and physically conditioned (Young et al., 2005). In 

contrast to the present findings, rugby substitutes (who have less time on field) 

exhibited increased running intensity than their starting and replaced counterparts (ES 

range: 0.2-0.5) (Lacome et al., 2016). However, substitute’s short-term running 

intensity (i.e. first 10 minutes on field) was far superior to their long-term intensity. 

Whilst substitutes may provide an initial increase in physical intensity than starters and 

those that they replace (given they are physically “fresh”), several contextual and 

match-related factors govern the peak intensities they produce. 

Time on field influenced the most intense passages of competition to a greater extent in 

the second compared to the first match-half across both levels of rugby competition. It 

is well established that more substitutions occur in the second half of rugby matches 

and that forwards are subbed more frequently than backs (Lacome et al., 2016; Quarrie 

et al., 2013). These common practices increased within-player standard deviations for 

time on field during the second match-half, especially for forwards (Table 5.1). Given 

influence of time on field was evaluated by standardising the change in peak intensity 

corresponding to two within-player standard deviations for each playing position and 

match-half across both levels of competition, the peak intensities were inevitably 

influenced more by time on field in the second half of matches. 

Whilst the present investigation has provided several novel insights, it is not without 

limitation. Positional analyses were limited to positional packs (i.e. forwards and backs) 
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rather than more specific playing positions (e.g., hooker, fly-half, full-back) to increase 

the precision of our estimates. Further, the case study nature of the present study may 

be considered a limitation and whilst two professional teams of two competitive levels 

with many repeated measures were included, league-wide investigations including 

opposition analyses would greatly improve our understanding of the peak intensity 

periods of rugby competition.  

5.5 Practical Applications 

Quantifying and characterising peak periods of both elite and sub-elite rugby 

competition using GPS- and accelerometer-derived measures may be  

practically used to: 

 Design and prescribe duration- (5 seconds to 10 minutes) and position-specific (i.e. 

forwards, backs) training intensities (mean speed, metabolic power, PlayerLoadTM) 

that replicate the most intense passages of elite and sub-elite rugby competition 

using game-based methods such as small-sided games to train tactical, technical 

and physical match elements simultaneously. 

 Monitor and contextualise the intensity of training sessions. 

 Inform player match readiness, influencing team selection. 

 Inform player progressions during return to play. 

 Inform player transitions between sub-elite and elite levels of competition. 

 Inform match day substitutions or rotation decisions. 

 Help determine the effect of rule modifications on player activity profiles. 
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 Inform the use of technologies: findings recommend the use of accelerometers 

alongside GPS to holistically quantify rugby external loads and detect duration- 

and position-specific differences during the most intense periods of competition. 

5.6 Conclusions 

Quantification and characterisation of the peak intensities of professional rugby using 

GPS and accelerometers has provided coaches with duration- and position-specific 

intensities to aid prescription and monitoring of match-specific training, whilst 

improving our understanding of factors that influence player peak intensities. 



License: Creative Commons: Attribution 4.0. https://creativecommons.org/  licenses/by/  4.0/Howe ST, Aughey RJ, Hopkins WG, Cavanagh BP, Stewart AM (2020) Sensitivity, reliability and construct validity of GPS and accelerometers for quantifying peak periods of rugby competition. PLoS ONE 15(7): e0236024. https://doi.org/10.1371/journal.pone.0236024This is an open access article distributed under the terms of the Creative Commons Attribution License.
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6. CHAPTER 6: STUDY 4 - PROFESSIONAL RUGBY 

UNION ACTIVITY PROFILES POST PEAK PERIODS 

OF COMPETITION 

 

6.1 Introduction 

Several player tracking technologies and analysis techniques have been used to identify 

peak periods of player movement and quantify reductions in activity thereafter. 

Numerous studies have reported a decline in player distance covered and high-intensity 

activity within and between match-halves, possibly indicative of transient or 

accumulated fatigue (Jones et al., 2015; Mohr et al., 2003). For instance, professional 

rugby union athletes performed the highest relative distance in the first 10 minutes of 

each match-half, declining thereafter (Jones et al., 2015). Distance travelled during the 

first 5 minutes of each rugby league match-half was significantly higher than the 5 

minute periods later in the halves (p < 0.001) (Kempton et al., 2013). Large reductions 

in total distance covered comparing the peak 5-minute period to the period immediately 

subsequent were also observed (p < 0.001) (Kempton et al., 2013). Greater high speed 

running distance (≥ 14.4 km.h-1) was covered in the first versus the final 5 minutes of 

soccer matches and in the peak 5 minutes of activity compared to the subsequent and 

mean 5 minute periods (p < 0.05) (Carling et al., 2011). In concert, during professional 

soccer competition, high-intensity running distance (≥ 15 km.h-1) was 35-45% lower in 

the last 15 minutes of matches compared to the first, independent of competitive 

standard and playing position (Mohr et al., 2003). Post the peak pre-defined 5 minutes 
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of high-intensity running for the entire match, distance covered at high-intensity 

declined by 12% in the subsequent 5 minutes compared to the match average (Mohr et 

al., 2003). However, the most intense periods of player movement during a match do 

not fall completely within pre-defined periods of time, and therefore likely 

underestimate peak periods and overestimate subsequent periods of activity 

(Cunningham et al., 2018; Ferraday et al., 2020; Varley et al., 2012a). 

During professional soccer competition, peak high-velocity (≥ 4.17 m.s-1) running 

distance was underestimated by up to 25% using pre-defined time period analysis, with 

the subsequent period distances overestimated by up to 31% when compared to rolling 

time period analysis. When the distance decline in high-velocity running between the 

peak and following period were examined, there was up to a 52% greater reduction in 

running performance using rolling vs. pre-defined periods (Varley et al., 2012a). 

Therefore, it was recommended that researchers and practitioners use rolling or moving 

average time period analyses when trying to accurately identify and quantify the peak 

periods of football competition and movement thereafter (Varley et al., 2012a).   

Accurately quantifying the inevitable intensity decline directly after peak periods of 

matches may improve our understanding of professional rugby players pacing 

strategies. Such data may inform match-specific high-intensity interval training (HIIT) 

prescription, programming for both high-intensity periods and for “active recovery” 

periods. No study to date has used a large range of rolling epochs to examine movement 

intensity post peak periods using Global Positioning Systems (GPS) and accelerometry. 

Player movement after the most intense passages of competition is likely dependent on 

the duration of the peak period analysed, competition level and playing position. Little 

evidence exists detailing the time-course of player activity profiles following peak 
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periods of competition comparing these factors. Therefore, the aim of this study was to 

quantify rugby union athlete activity profiles post the most intense 5-600 seconds of 

professional competition. 

6.2 Methods  

Many methods pertaining to the participants, equipment and data collection, measures 

of peak movement and data filtering and processesing have been established and 

described in detail (Chapter 4, methods section). Consequently, in this chapter these 

methods will be described in brief, with more detail of the novel statistical analyses 

investigating rugby player activity profiles post the peak periods of professional 

competition.  

6.2.1 Methodology – In brief 

Movement data were collected from 30 elite and 30 sub-elite professional rugby union 

athletes across respective seasons. Player movement data were collected via 

commercially available OptimEyeTM S5 GPS and GLONASS-enabled receivers with 

an embedded tri-axial piezoelectric accelerometer (firmware version 7.22, Catapult 

Sports, Melbourne, Australia). Accelerometer-derived PlayerLoadTM and Global 

Positioning Systems (GPS) derived measures of mean speed (m.min-1) and metabolic 

power (W.kg-1) were analysed using a rolling average to identify the maximum mean 

(peak) values for 5, 10, 20, 30, 60, 120, 300 and 600 second durations. Rolling average 

time-motion methodology (Delaney et al., 2015; Varley et al., 2012a) and detailed 

descriptions of the three external load measures (Aughey, 2011; Boyd et al., 2011; 

Osgnach et al., 2010) have been previously established (Chapter 3 & 4). 
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Player activity profiles immediately post their maximum mean (peak) 5 to 600 s were 

identified using five epoch duration-matched intervals. Using the 60 s (1 minute) epoch 

as an example, the peak 1 minute intensity during competition was identified for each 

measure (i.e. PlayerLoadTM, mean speed and metabolic power) using a rolling average 

and then subsequent activity was measured across five duration-matched 1 minute 

epochs (i.e. 0 to 1, 1 to 2, 2 to 3, 3 to 4 and 4 to 5 minutes). Five duration-matched 

intervals were chosen to enable fair comparison between intensities during the peak and 

subsequent periods, with five intervals chosen arbitrarily to reveal the time-course of 

intensity fluctuations post the most intense passages of play. 

6.2.1 Statistical Analyses 

Each of the three measures of maximum mean movement were analysed with the 

general linear mixed modelling procedure (Proc Mixed) in SAS. The measures were 

log-transformed prior to analysis to reduce non-uniformity of error (Hopkins et al., 

2009). The fixed effects in the model were player position (backs, forwards) interacted 

with match-half (1st, 2nd), interacted with time on the field to adjust for this variable. 

The random effects in the model were player identity and match identity. 

Peak 5 to 600 second values for the three movement measures alongside values for each 

of the five duration-matched subsequent intervals were calculated as means ± SD 

(Figures 6.1 to Figure 6.6). The effect of peak intensity attained during any given 

duration on subsequent movement during the five duration-matched intervals post peak 

was also assessed via percent decline from peak (Table 6.2). The match-half mean 

intensity for each measure is presented (dashed line, Figures 6.1 to 6.6) to provide an 

easy visual gauge of the influence of peak intensity periods on player activity profiles 

post. 
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The smallest worthwhile difference (SWD) or change in means is 0.2 standard 

deviations; thresholds for moderate, large and very large differences are 0.6, 1.2 and 

2.0, respectively (Hopkins et al., 2009). Uncertainty in effects was expressed as 90% 

compatibility limits or intervals and as probabilities that the true effect was substantially 

positive and negative. These probabilities were used to make a qualitative probabilistic 

non-clinical magnitude-based decisions (MBD) about the true effect (Hopkins et al., 

2009): if the probabilities of the effect being substantially positive and negative were 

both > 5%, the effect was reported as unclear. The scale for interpreting the probabilities 

was as follows: 25-75%, possible; 75-95%, likely; 95-99.5%, very likely; > 99.5%, 

most likely. “Substantial” differences were considered as those that met the following 

criteria: ES ≥ 0.2 (SWD) and ≥ 75% likely.  
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Elite (Super 15 Rugby) mean speed files  
 

Sub-elite (NRC) mean speed files 
   

Epoch 

Duration 

(s) 

 

Int 1 

 

 

Int 2 

 

 

Int 3 

 

 

Int 4 

 

 

Int 5 

 

 

Epoch 

Duration 

(s) 

 

 

Int 1 

 

 

Int 2 

 

 

Int 3 

 

 

Int 4 

 

 

Int 5 

 

5 416 415 415 413 394  5 268 266 264 264 265 

10 416 417 407 393 382  10 263 260 262 262 260 

20 418 404 403 396 398  20 262 265 261 258 258 

30 411 404 397 388 390  30 264 260 259 257 252 

60 403 386 371 367 368  60 255 246 248 240 230 

120 377 357 345 327 303  120 254 240 225 205 182 

300 358 271 244 208 166  300 221 172 131 97 70 

600 274 200 94 1 0  600 130 58 29 0 0 

  Elite (Super 15 Rugby) PlayerLoadTM files 

  

Sub-elite (NRC) PlayerLoadTM files 

 
 

Epoch 

Duration 

(s) 

 

 

Int 1 

 

 

Int 2 

 

 

Int 3 

 

 

Int 4 

 

 

Int 5 

 

 
Epoch 

Duration 

(s) 

 

Int 1 

 

 

Int 2 

 

 

Int 3 

 

 

Int 4 

 

 

Int 5 

 

5 420 419 420 416 414  5 269 264 264 265 265 

10 418 415 409 406 407  10 261 258 260 257 257 

20 415 407 406 401 400  20 258 254 254 253 250 

30 410 405 406 405 400  30 261 256 253 248 246 

60 404 389 381 379 366  60 256 242 235 224 219 

120 378 350 335 320 302  120 250 236 224 208 182 

300 346 276 247 215 175  300 212 178 140 108 78 

600 285 203 99 4 0  600 143 76 42 0 0 

 

Elite (Super 15 Rugby) metabolic power files 

 

 
 

Sub-elite (NRC) metabolic power files 

 

Epoch 

Duration 

(s) 

 

 

Int 1 

 

 

Int 2 

 

 

Int 3 

 

 

Int 4 

 

 

Int 5 

 

 
Epoch 

Duration 

(s) 

 

Int 1 

 

 

Int 2 

 

 

Int 3 

 

 

Int 4 

 

 

Int 5 

 

5 405 413 409 405 400  5 262 265 266 263 261 

10 416 412 409 398 376  10 264 261 263 263 261 

20 409 395 396 388 382  20 260 261 255 251 250 

30 399 395 388 384 376  30 266 259 254 251 248 

60 402 376 366 349 346  60 258 241 240 228 219 

120 372 335 322 318 285  120 245 227 215 192 170 

300 319 235 205 175 150  300 206 151 115 92 66 

600 218 130 74 2 0  600 106 46 25 0 0 

Table 6.1 Total number of player movement files analysed across five duration-

matched intervals (Int 1-5) post the peak periods of elite and sub-elite rugby 



 

    

204 

 

6.3 Results 

6.3.1 Activity profile declines post peak periods of competition 

Exercise intensity measured by mean speed, metabolic power and PlayerLoadTM 

declined sharply (~ 29 to 86%) post the most intense 5 to 600 seconds of competition 

(Table 6.2 and Figures 6.1 to 6.6). Shorter duration, higher-intensity peak periods 

caused larger declines in movement intensity during subsequent periods (Table 6.2 and 

Figures 6.1 to 6.6). For example, player exercise intensities declined by ~ 78 to 86% 

post the peak 5 to 30 seconds of elite and sub-elite rugby competition. In contrast, player 

exercise intensities declined by ~ 30% post the peak 600 seconds across both levels of 

rugby (Table 6.2). Using Figure 6.1, panel A as an example, the 5 second peak mean 

speed for backs in the first half was 423 m.min-1 (7.1 m.s-1 or 25 km.h-1), with intensity 

declining 79% to an average of 88 m.min-1 (1.5 m.s-1 or 5.3 km.h-1) in the following 25 

seconds (five duration-matched intervals post). On the other end of the duration 

spectrum, the 600 second peak mean speed for backs in the first half was 82 m.min-1 

with intensity declining 29% to 58 m.min-1 during the five intervals post. 

In general, there were greater exercise intensity declines post the peak periods of elite 

competition as measured by PlayerLoadTM (69%) and metabolic power (69%) when 

compared to mean speed (66%) when averaged across 5 to 600 second epochs, both 

positions and match-halves (mean difference ~ 3%, Table 6.2). Similarly, in sub-elite 

rugby greater exercise intensity declines (~ 5%) were measured by PlayerLoadTM (66%) 

and metabolic power (66%) when compared to mean speed (61%). The largest intensity 

decline disparity between the three measures was post the peak 20 s of sub-elite 

competition (mean speed declined 63% vs. metabolic power and PlayerLoadTM 

declining 84 and 85% respectively, Table 6.2). 



 

    

205 

 

The half-mean exercise intensity (dashed lines, Figures 6.1 to 6.6) was greater than 

exercise intensities post the peak 5 to 600 s intensities of competition on 742 of 911 

interval 1 to 5 occasions (81%). 



 

    

206 

 

 
Figure 6.1 Super 15 Rugby duration specific (5-600 s) maximum mean speed (m.min-1) and mean speed post (duration-matched intervals 

1-5). Panels by playing position and match-half. (A); backs 1st match-half, (B); backs 2nd match-half, (C); forwards 1st match-half, (D); 

forwards 2nd match-half. Data presented are means ± standard deviation. 
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Table 6.2 Exercise intensity declines post 5 to 600 second peak intensities of elite 

and sub-elite rugby competition.  

Exercise intensity declines post peak intensities of rugby competition (%)  

Epoch duration (s) 5 10 20 30 60 120 300 600 

Mean speed  

 

Elite backs 79 82 82 81 71 59 42 29 

Elite forwards 78 81 82 80 70 58 42 30 

Sub-elite backs 80 82 63 76 66 53 39 24 

Sub-elite forwards 77 82 78 75 65 53 37 26 

Epoch duration (s) 5 10 20 30 60 120 300 600 

Metabolic power 

 

        

Elite backs 85 88 86 84 76 62 43 28 

Elite forwards 84 84 84 82 73 62 42 32 

Sub-elite backs 86 88 85 82 73 59 41 34 

Sub-elite forwards 84 84 80 74 64 52 36 25 

Epoch duration (s) 5 10 20 30 60 120 300 600 

PlayerLoadTM 

         

Elite backs 86 86 86 85 78 65 47 31 

Elite forwards 86 85 85 80 71 61 41 29 

Sub-elite backs 88 88 84 81 69 57 41 42 

Sub-elite forwards 83 83 76 74 64 53 38 25 

Epoch duration (s) 5 10 20 30 60 120 300 600 

Measures & 

positions averaged 

 

 

       

Elite rugby 83 84 84 82 74 61 46 31 

Sub-elite rugby 83 85 79 78 68 55 39 29 

Difference (%) 0.0 -0.9 5 4 6 6 7 2 

 

Each measure was averaged across peak period duration-matched intervals 1-5 post and across both 

match-halves. 
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6.3.2 Match-half activity profile differences post peak periods of competition 

Of the 229 elite match-half activity comparisons during intervals 1 to 5 post peak 5 to 

600 second intensities, only 37 or 16.2% were “substantial” (i.e. ES ≥ 0.2 and ≥ 75% 

likely). All substantial match-half effects were of small to moderate magnitude (ES 

range: 0.2 to 1.1, 75 to 99.8% likely). Of the 37 substantial differences, 32 or 87% 

revealed reduced exercise intensity post the peak intensities of competition in the 

second compared to the first match-half. 

Of the 226 sub-elite match-half activity comparisons during intervals 1 to 5 post peak 

intensities, 79 or 35% were substantial. Each measure of mean speed, metabolic power 

and PlayerLoadTM contributed 25, 27 and 27 substantial differences respectively of the 

79 total, with no evident epoch duration trends. Whilst the majority (65%) of 226 

match-half differences were either trivial or unclear, 77/79 interval 1 to 5 comparisons 

revealed substantial intensity declines during the second compared to first match-

halves. Of the 79 substantial sub-elite match-half differences, 75% revealed forwards 

had decreased exercise intensity post the peak 5 to 600 seconds of competition when 

compared to backs (ES range: 0.3 to 1.1, 77 to 99% likely).   

6.3.3 Positional activity profile differences post peak periods of competition 

Exercise intensity declines post the peak 5 to 600 seconds of rugby were mostly similar 

between positional groups across both levels of competition. Of the 229 elite and 226 

sub-elite interval 1 to 5 post peak comparisons, 76 and 79% respectively displayed no 

substantial differences between positions. Where substantial differences were evident 

between forwards and backs (elite: 55/229, sub-elite: 48/226), the majority (elite: 23, 

sub-elite: 32) were detected by PlayerLoadTM. Where substantial active recovery profile 

differences existed between positions, mean speed and metabolic power were greater 
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for backs than forwards for 32/32 elite and 15/16 sub-elite intervals (ES: 0.3 to 1.7, ≥ 

75% likely). In contrast, PlayerLoadTM was greater for forwards vs. backs for 22/23 

elite and 27/32 sub-elite intervals (ES: 0.3 to 1.5, ≥ 75% likely).
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Figure 6.2 Super 15 Rugby duration specific (5-600 s) maximum metabolic power (W.kg-1) and metabolic power post 

(duration-matched intervals 1-5). Panels by playing position and match-half. (A); backs 1st match-half, (B); backs 

2nd match-half, (C); forwards 1st match-half, (D); forwards 2nd match-half. Data presented are means ± standard 

deviation 
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Figure 6.3 Figure 3: Super 15 Rugby duration specific (5-600 s) maximum mean PlayerLoadTM (au) and 

PlayerLoadTM post (duration-matched intervals 1-5). Panels by playing position and match-half. (A); backs 1st 

match-half, (B); backs 2nd match-half, (C); forwards 1st match-half, (D); forwards 2nd match-half. Data presented 

are means ± standard deviation 
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Figure 6.4 National Rugby Championship duration specific (5-600 s) maximum mean speed (m.min-1) and mean 

speed post (duration matched intervals of 1-5). Panels by playing position and match-half. (A); backs 1st match-half, 

(B); backs 2nd match-half, (C); forwards 1st match-half, (D); forwards 2nd match-half. Data presented are means 

± standard deviation. 
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Figure 6.5 National Rugby Championship duration specific (5-600 s) maximum metabolic power (W.kg-1) and 

metabolic power post (duration-matched intervals 1-5). Panels by playing position and match-half. (A); backs 1st 

match-half, (B); backs 2nd match-half, (C); forwards 1st match-half, (D); forwards 2nd match-half. Data presented 

are means ± standard deviation. 
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Figure 6.6 National Rugby Championship duration specific (5-600 s) PlayerLoadTM (au) and PlayerLoadTM post 

(duration-matched intervals 1-5). Panels by playing position and match-half. (A); backs 1st match-half, (B); backs 

2nd match-half, (C); forwards 1st match-half, (D); forwards 2nd match-half. Data presented are means ± standard 

deviation. 
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6.4 Discussion 

The aim of the present investigation was to quantify rugby union activity profiles post 

the most intense periods of professional competition. This study was the first to 

sequentially track the time-course of exercise intensity decline post the most intense 

periods of team sport competition using GPS and accelerometry. Mean speed, 

metabolic power and PlayerLoadTM declined sharply (~ 29 to 86%) post the most 

intense 5 to 600 seconds of professional rugby competition, with the magnitude of 

decline principally dependent on the peak intensity attained during any given period.  

Typically, exercise intensity declines post the peak 5 to 600 seconds of professional 

rugby competition were similar between match-halves, positional groups and levels of 

competition. However, where substantial (i.e. ES ≥ 0.2 and ≥ 75% likely) differences 

arose, exercise intensity post peak periods of competition declined to a greater extent 

in second match-halves, backs produced greater mean speed and metabolic power, 

whereas forwards produced more PlayerLoadTM.  

Consistently PlayerLoadTM and metabolic power quantified a larger exercise intensity 

decline (~ 3 to 5%) post peak periods than mean speed. Accelerometer-derived 

PlayerLoadTM detected the majority of substantial positional differences post peak 

periods, indicating improved sensitivity compared to GPS-derived measures in doing 

so. Post the most intense periods of rugby competition, exercise intensity declined 

below the average match-half intensity (i.e. mean speed, metabolic power and 

PlayerLoadTM) 81% of the time and rarely returned to or exceeded it. Exercise intensity 

declines post peak periods of rugby competition were typically greater during elite vs. 
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sub-elite matches by ~ 4%. The following sections will describe present findings in 

light of others.  

Findings suggest elite and sub-elite rugby players reduce their exercise intensity 

dramatically (by up to 86%), with exercise intensity below the average ~ 40 minute 

match-half mean speed, metabolic power and PlayerLoadTM 81% of the time (Figures 

6.1 to 6.6). Post the most intense periods of professional rugby matches, exercise 

intensity rarely (19%) returns to the match-half average intensity. Similarly, several 

professional football investigations have observed large reductions in exercise intensity 

post the peak periods of competition (Table 6.3) (Black et al., 2016; Furlan et al., 2015; 

Kempton et al., 2013; Kempton et al., 2015b; Varley et al., 2012a). During elite rugby 

sevens competition, running intensity was reduced to a very large extent (46-64%) 

following the most intense 2 minute period of the match (relative distance ES: 2.9, 

metabolic power ES: 4.1, both p < 0.001) identified using rolling average epoch 

analyses (Table 6.3) (Varley et al., 2012a). Moreover, during professional rugby league 

the most physically intense 5 minutes of competition was significantly greater than both 

the subsequent (ES range: 1.7-3.5) and mean (ES range: 2.0-4.3) 5 minute periods for 

total distance, high-speed distance, high-power distance and metabolic power (p 

<0.001) (Kempton et al., 2015b).  

Accurate identification of the peak intensities of competition using rolling epoch 

analysis and quantifying subsequent exercise intensity declines improves our limited 

understanding of team sport athlete pacing strategies and fatigue, which may inform 

match-day substitution or rotation decisions, player positional changes and team 

formations. For instance, live player movement data may be collected via GPS receivers 

and relayed to a receiver antenna connected to a computer, with proprietary software 
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allowing for real-time player movement tracking. If historical data have been collected 

on the previous peak intensities of competition for a cohort of interest (assuming rolling 

epoch averages could be programmed into software), it would be possible in real-time 

to identify similarly intense periods (via pre-defined alerts set within the software). 

Alternatively, practitioners could use the peak, post peak and average intensities of 

competition quantified in the present investigation and others (see Table 6.3) as 

reference values for the football code of interest to set alerts within player tracking 

software. Consequently, it is possible to identify very intense periods of competition in 

real-time during matches and quantify inevitable declines in exercise intensity 

thereafter. Such data may be relayed from the person watching and interpreting the live 

data stream (e.g. sport scientist) to a coach, ideally providing them with context around 

the values such as the current match average exercise intensity and/or normative 

historical values for the team, position or player of interest. Preferably, such activity 

profile data would be used in conjunction with performance analyst technical key 

performance indicators to help inform the coach’s expert opinions on tactical decisions, 

such as player substitutions and team formations. 
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Mean speed (m.min-1), Metabolic power (W.kg-1)  

Percent decline comparisons made using rolling 2- and 5-minute averages with comparative 2- 

and 5-minute epochs post. Data averaged across reported positional groups. 

 

Temporal exercise intensity reductions have been used as evidence of match-related 

fatigue during football competition (Kempton et al., 2013; Mohr et al., 2003). Multiple 

central and peripheral physiological mechanisms underpin these reductions in physical 

performance, such as reduced motor drive, glycogen depletion and accumulation of 

metabolites to name a few, ultimately impeding excitation-contraction coupling (Ament 

et al., 2009). Alternatively, a decline in physical output may be due to players adopting 

pacing strategies in an attempt to distribute their energy resources throughout a match 

Table 6.3 Comparison of peak, post peak and average intensities of professional 

football competition. 

Football 

Code 

Epoch Half Peak 

Intensity  

Post  

Peak 

Intensity 

Decline  

(%) 

Average 

Intensity 

Soccer  
(Varley et al., 

2012a) 

5 mins 1st 

2nd 

177 m.min-1  

166 m.min-1 

64 m.min-1 

52 m.min-1 

↓64% 

↓69% 

Not 

reported 

Rugby 

League 
(Kempton et 

al., 2015b) 

5 mins Both 108 m.min-1 

11 W.kg-1 

81 m.min-1 

8 W.kg-1  

↓25% 

↓26% 

86  m.min-1 

9 W.kg-1 

Rugby 

Sevens 

(Furlan et al., 

2015) 

2 mins Both ~ 130 

m.min-1 

~ 13 W.kg-1 

~ 70 

m.min-1 

~ 5 W.kg-1 

↓46% 

↓64% 

~ 95 

m.min-1 

~ 10 W.kg-1 

Rugby Union 

(present study, 

Super Rugby 

data) 

 

 

 

 

 

2 mins 

 

2 mins 

 

5 mins 

 

5 mins 

 

1st 

2nd 

1st 

2nd 

1st 

2nd 

1st 

2nd 

125 m.min-1 

121 m.min-1 

15 W.kg-1 

14 W.kg-1 

94 m.min-1 

88 m.min-1 

11 W.kg-1 

10 W.kg-1 

45 m.min-1 

41 m.min-1 

5 W.kg-1 

4 W.kg-1 

52 m.min-1 

47 m.min-1 

5 W.kg-1 

5 W.kg-1 

↓64% 

↓66% 

↓67% 

↓71% 

↓45% 

↓47% 

↓54% 

↓50% 

62 m.min-1 

59 m.min-1 

7 W.kg-1 

7 W.kg-1 
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(Waldron et al., 2014). Whilst numerous investigations have examined pacing during 

team sport competition, it is very difficult to establish its existence as fluctuations in 

exercise intensity may also be due to match-related fatigue and other contextual factors 

(Aughey, 2010; Kempton et al., 2015b). These contextual factors have been broadly 

classified into: situational factors, match-related factors and individual player 

characteristics (Kempton et al., 2015a). Situational factors relate to things such as 

opposition strength (Gabbett, 2013) and between match recovery time (Murray et al., 

2014). Match-related factors include but are not limited to: possession status (Gronow 

et al., 2014), match scoreline (Sullivan et al., 2014), playing formation (Bradley et al., 

2011), field position and phase of play (Gabbett et al., 2014) and team success (Hulin 

et al., 2015b). An individual’s exercise intensity during match-play is also underpinned 

by their physiological qualities (Duthie et al., 2017). The sharp decline in physical 

activity following the peak periods of professional rugby competition in this study are 

suggestive of player’s pacing their efforts to minimize physiological stress and transient 

fatigue as they attempt to recover from intense exercise bouts (Furlan et al., 2015). 

However, a myriad of contextual factors likely contribute to rugby players reducing 

their exercise intensity post these peak periods of competition and warrant future 

investigation. 

The physical activity profile of players is only of importance if physical prowess 

improves a player’s ability to execute their technical and tactical roles effectively to 

help their team win. The effect of intense periods of competition on physical and 

technical performance of elite AFL athletes was investigated and compared between 

more and less experienced players (Black et al., 2016). Peak physical and technical skill 

performance were analysed using a 3 minute rolling average approach (Varley et al., 
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2012a), as 6 minutes was the minimum amount of time between player rotations at the 

football club. Following the most intense 3 minute period of competition, the 

experienced players ran greater distances at high-speeds in match quarters two (ES ± 

90% CI = 0.4 ± 0.3) and three (0.4 ± 0.3) than less experienced players. Relative to their 

less experienced counterparts, experienced players performed more skill involvements 

during the second (0.4 ± 0.3) and fourth quarter peak 3 minute bouts of exercise 

intensity (0.4 ± 0.3). Experienced players also performed a greater number of skilled 

involvements directly after the most intense 3 minutes of match quarters one (0.5 ± 0.3) 

and three (0.3 ± 0.2), when compared to less experienced players. Less experienced 

elite AFL players displayed greater reductions in both physical and technical 

performance following the most intense passages of competition. Findings suggested 

that it may be pertinent to regularly, progressively and periodically expose less 

experienced players to the worst-case scenarios of competition so that they are better 

able to maintain high physical intensities and gain possession of the football during and 

following these very high-intensity periods. Further, authors proposed that coaches 

consider rotating less experienced players on and off the field more frequently in an 

effort to prevent declines in exercise intensity following the most intense passages of 

play (Black et al., 2016).  

In contrast to the findings in AFL, this study found that when compared to the more 

experienced elite rugby cohort, the sub-elite players (generally less experienced) 

typically produced slightly greater (~ 4%, Table 6.3) exercise intensities post the peak 

periods of competition. One potential reason for this is that it is common in higher levels 

of rugby competition to observe greater frequency and magnitude of collision-based 

events, potentially leading to reductions in player movement thereafter due to structural 
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muscle damage (Takarada, 2003). Following the most intense 5 minute period of 

professional rugby league competition there were significant reductions in distance 

covered, quantity and quality of skilled involvements and contextual factors (ball in 

play time) (all p < 0.001) (Kempton et al., 2013). Further research is required to 

elucidate the influence of competition level and several contextual factors on physical, 

technical and tactical performance during and post the most intense periods of rugby 

competition. 

Typically, exercise intensity declines post the peak 5-600 seconds of professional rugby 

competition were similar between match-halves, positional groups and levels of 

competition. However where substantial differences arose, exercise intensity post peak 

periods of competition declined to a greater extent in second match-halves, backs 

produced greater mean speed and metabolic power, whereas forwards produced more 

PlayerLoadTM. Moreover, sub-elite rugby players typically displayed higher exercise 

intensities post peak periods of matches compared to their elite counterparts. The 

following sections will briefly discuss both the lack of match-half, positional and level 

of competition differences whilst mentioning some substantial differences relative to 

previous investigations. 

Post peak match-half findings of this study are in contrast with the majority of previous 

investigations revealing that rugby union athletes generally exhibit a ‘slow-positive’ 

pacing profile for lower-intensity movements and a ‘flat’ pacing profile for higher-

intensity movements across matches.(Waldron et al., 2014) A ‘slow-positive’ pacing 

profile indicates that players reduce low intensity movements as match’s progress and 

‘flat’ pacing profiles indicate that exercise intensity is maintained across match periods 

(Waldron et al., 2014). The severe exercise intensity reductions post the peak periods 
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of rugby competition in the present study were generally similar across match-halves, 

indicating very low intensity movement typically remains ‘flat’ across professional 

rugby match-halves. However, during sub-elite rugby competition, 35% of all post peak 

period comparisons revealed exercise intensity substantially declined in second match-

halves and that these declines were more frequent and severe for forwards than backs 

(ES range: 0.3-1.1). This finding suggests that sub-elite rugby players may preserve 

their energy by completing less low-intensity activity after very intense periods of 

competition in the second half so that they may recover to a greater extent in order to 

complete higher-intensity tasks when called upon to do so. Reduced low-intensity 

activity post peak periods of rugby competition may impede player’s ability to maintain 

defensive position or run supporting lines in attack (Roberts et al., 2008). This 

investigation provides some support for current conventional practice (Waldron et al., 

2014), making more substitutions during second match-halves and substituting 

forwards more often than backs. 

Sharp reductions in exercise intensity after the most intense periods of elite and sub-

elite rugby competition are similar between positional groups (backs and forwards). In 

contrast, professional AFL midfielders consistently displayed greater total distance, low 

speed activity, moderate speed running and high speed running distance than key 

position players during and post the peak 3 minutes of competition (Black et al., 2016). 

Unfortunately, there is a dearth of literature investigating positional movement 

differences after the most intense periods of football competition, with studies tending 

to group playing positions (e.g. see Table 6.3) (Furlan et al., 2015; Kempton et al., 

2015b; Varley et al., 2012a). Given rugby forwards are typically heavier, taller and have 

a greater percentage of body fat, backs have greater relative aerobic and anaerobic 
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power, forwards spend greater time in contact whilst backs in free running, and 

forwards complete greater total work with lower work: rest ratios than backs (Duthie et 

al., 2003), one might expect movement differences between positions post the peak 

intensity period of competition. It is likely that several situational and match-related 

contextual factors are contributing to the lack of positional activity profile differences 

post the peak periods of matches, with individual player fatigue not the only culprit. 

For example, given higher intensity activities are often aligned with goal/try scoring 

(Faude et al., 2012; Gabbett et al., 2016), and post scoring reviews often occur before 

one player takes a conversion kick, both positions movement are likely equally reduced 

during these “rest” periods.  

Accelerometer-derived PlayerLoadTM detected the majority of substantial positional 

differences post peak periods, indicating improved sensitivity compared to GPS-

derived measures in doing so. In congruence, accelerometers outperformed GPS in 

quantifying positional and match-half differences in player peak intensities during 

professional rugby union competition (Chapter 3). Where substantial positional 

differences occurred, PlayerLoadTM was greater for forwards vs. backs (ES: 0.3-1.5), 

whilst GPS-derived mean speed and metabolic power was greater for backs vs. 

forwards (ES: 0.3-1.7). Given accelerometer-derived PlayerLoadTM displayed 

improved sensitivity in quantifying positional differences during and post peak periods 

of rugby competition, we recommend the use of accelerometers alongside GPS 

technology. Findings suggest that GPS-derived measures of mean speed and metabolic 

power were sensitive to detecting fluctuations in player movement for backs, whilst 

PlayerLoadTM was more sensitive to detecting movement fluctuations of forwards and 

detecting positional pack differences.  
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Metabolic power and PlayerLoadTM consistently quantified larger exercise intensity 

declines post peak periods of competition when compared to mean speed. Consistent 

with our findings, relative distance (i.e. mean speed) underestimated the intensity of 

peak periods of rugby sevens competition when compared to metabolic power (Furlan 

et al., 2015). Theoretically these findings make intuitive sense, as the metabolic power 

model (Osgnach et al., 2010) considers both speed and acceleration, whereas relative 

distance/mean speed only quantifies the velocity of movement. Further, movements 

that incur little horizontal displacement (e.g., collisions, tackles and many sport-specific 

movements) are likely underestimated by GPS (Boyd et al., 2013). Accelerometers that 

quantify tri-axial accelerations at much higher sampling frequencies than GPS 

evidently quantify a greater proportion of player rapid acceleratory movements that 

incur little horizontal displacement. By being able to quantify more of what rugby 

players physically do (external load), accelerometer- derived PlayerLoadTM and GPS-

derived metabolic power displayed improved sensitivity in quantifying exercise 

intensity fluctuations compared to a speed-based metric. Present findings are in support 

of others (Delaney et al., 2016a; Furlan et al., 2015) in recommending the use of 

acceleration-based indices alongside speed-based metrics to measure the external load 

of rugby players.  

6.5 Practical Applications 

 Real-time declines in player movement post intense periods of competition may 

inform coach tactical decisions such as player positional changes, team 

formation changes and player substitutions. 
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 Activity profile data post peak periods of competition may inform match-

specific high-intensity interval training (HIIT) prescription, programming for 

both high-intensity periods and for “active recovery” periods between efforts 

using game-based methodologies such as small-sided games. 

 The right tool needs to be used for the job. Accelerometers were better able to 

detect positional movement differences between forwards and backs post peak 

periods. GPS-derived measures of mean speed and metabolic power were more 

sensitive to detecting fluctuations in player movement for backs, whilst 

PlayerLoadTM was more sensitive to detecting movement fluctuations of 

forwards.  

 Both speed- and acceleration-based measures should be used to quantify the 

external load of rugby players.  

6.6 Conclusions 

This study was the first to sequentially track the time-course of exercise intensity 

declines post the most intense periods of team sport competition using GPS and 

accelerometry. Mean speed, metabolic power and PlayerLoadTM declined sharply  

(~ 29-86%) post the most intense 5-600 seconds of professional rugby competition, 

with the magnitude of decline principally dependent on the peak intensity attained 

during any given period. Post the most intense periods of rugby competition, exercise 

intensity declined below the average match-half intensity 81% of the time and rarely 

returned to or exceeded it. Typically, exercise intensity declines post the peak intensities 

of competition were similar between match-halves, positional groups and levels of 

rugby competition. Accurate identification of the peak exercise intensities of 
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competition using rolling epoch analysis with five duration-matched sequential periods 

post has improved limited understanding of rugby player fatigue and pacing strategies, 

which may inform tactical match decisions and match representative training 

prescription and monitoring.
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7. CHAPTER 7: STUDY 5 - MODELLING 

PROFESSIONAL RUGBY PEAK INTENSITY-

DURATION RELATIONSHIPS USING POWER LAW 

 

7.1 Introduction 

Human beings are principally nonlinear organisms that rely on complex interactions 

between many physiological feedback systems (Higgins, 2002; Katz et al., 1994). 

Power law describes a nonlinear yet dependent relationship between two variables (x 

and y), where one variable (y) changes as a fixed power (exponent) of another (x). The 

parameters of power law relationships are used to make inferences about processes 

underlying phenomena, to test theoretical or mechanistic models, and to estimate and 

predict patterns or processes that are outside of and beyond the scope of observed 

experimental data (White et al., 2008).  

Power law analysis has been recently applied in professional soccer (Delaney et al., 

2017b; Lacome et al., 2018) and in rugby league (Duthie et al., 2017) to quantify peak 

intensities and the rate of peak exercise intensity decline as a function of time during 

competition (Delaney et al., 2017b) and training (Lacome et al., 2018). Power law 

analysis has also been used to assess youth soccer (Duthie et al., 2018) by age and 

position and evaluate the relationship between physical performance tests and peak 

intensities achieved during rugby league competition (Duthie et al., 2017). Power law 

may be practically applied in team sports to improve match-specific exercise intensity 

prescription and monitoring for any given exercise duration, using specific game-based 
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methodologies, such as small-sided games (SSG) (Delaney et al., 2017b; Lacome et al., 

2018).  

Using wearable Global Positioning Systems (GPS) and rolling average epoch analysis 

(Varley et al., 2012a) to quantify peak intensities of professional soccer competition, 

speed- and acceleration-based measures exhibited almost perfect linear declines with 

increasing exercise durations of 1-10 minutes when log-transformed (r = 0.97-0.98), 

displaying power law characteristics (Delaney et al., 2017b). Likewise, power law log-

log plots have been able to accurately estimate exercise intensity-duration relationships 

(r = 0.94-1.0) across three exercise measures (total distance, high-speed distance and 

mechanical work) between professional soccer matches and SSGs (Lacome et al., 

2018). However, no team sport study to date has examined the standard errors of power 

law regression model estimates. Improved understanding of model errors may enhance 

or reduce confidence and use of power law for estimating/modelling match-specific 

exercise intensities for any given training drill duration. 

Rates of decline in running intensity as a function of time were similar between 

professional soccer playing positions, with trivial to small differences observed 

(Delaney et al., 2017b).  Similarly in youth soccer, there were no substantial differences 

between playing levels in the decline in running intensity as exercise duration increased 

(Duthie et al., 2018). In contrast, exercise intensity differences between professional 

soccer matches and SSG training were highly playing position and SSG type (4v4, 6v6, 

8v8 and 10v10) dependent, irrespective of rolling average duration (Lacome et al., 

2018). Further, in professional rugby league there were large negative correlations 

between a player’s physical qualities (maximum speed and relative squat strength) and 

the rate of decline in running speed and metabolic power during competition (Duthie et 
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al., 2017). Rates of peak intensity decline as a function of exercise duration have yet to 

be examined with power law models incorporating rolling epoch durations of less than 

1 minute. No study to date has investigated team sport peak intensity-duration power 

law characteristics using accelerometer and match-half data. Chapters 3, 4, 5 & 6 

revealed accelerometers provide meaningful additional information to GPS technology 

that may aid practitioners in physically preparing and monitoring team sport athletes, 

warranting examination using power law. Lastly, whether the power law relationship 

can accurately predict/model exercise intensities as a function of time in both elite and 

sub-elite rugby union (rugby) that have higher collision and stoppage frequencies, 

limiting “free running” time compared to other football codes is still unknown. The 

purpose of the present investigation was to establish whether power law models could 

accurately predict/model the peak intensities of rugby competition as a function of time. 

7.2 Methods 

This study represents an extension of Chapter 4. Consequently, only the novel 

methodologies pertaining to power law modelling and statistical analysis are presented. 

7.2.1 Power Law Modelling 

To estimate the decline in match exercise intensity as exercise duration increased, each 

measure of exercise intensity (i.e. mean speed, metabolic power and PlayerLoadTM) was 

assessed relative to the rolling average 5-600 second duration as a power law 

relationship (Katz et al., 1999; Katz et al., 1994; Kennelly, 1906). Power law models 

applied to human locomotion: y = cxn (equation 1) that compare running times (y) and 

distances (x), yield positive constants (i.e. c and n are positive values), meaning 

increased running distances result in increased running times. However, when plotting 
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running speed and/or acceleration measures against running time, the inverse is true for 

the exponent (i.e. speed/acceleration decreases with increased running time). A plot of 

log (y) against log (x) results in a straight line with slope n and an intercept of ce (Katz 

et al., 1994) (Figure 7.1). Linear regression produced values for slopes and intercepts 

for each measure (mean speed, metabolic power and PlayerLoadTM), for each player’s 

match-half file. The exponential of the intercept was calculated, creating a prediction 

equation of running intensity (i) as a function of time (t), using the power law equation: 

 i = ctn  

Intensity = Intercept × (Time) Slope 

The intercept established from the power law relationship reflects the theoretical 

highest intensity that occurs during competition as time approaches zero (Delaney et 

al., 2017b; Lacome et al., 2018). Although much higher running intensities can be 

reached in isolated running drills (Lacome et al., 2018), the intercept values reported 

can be used as match-specific references when prescribing and monitoring training 

activities incorporating both technical and tactical development (e.g. SSGs and game-

specific drills) (Duthie et al., 2018). The slope represents the rate of decline in peak 

exercise intensity as exercise duration increases.  

Figure 7.1 provides an example of the calculation of the power law relationship for an 

individual, where the mean speed (m.min-1) is plotted as a function of time, whilst the 

predicted values from the log-transformed data are presented by the regression 

line/curve. The close relationship between the predicted and actual data displayed in 

Figure 7.1 illustrates the “goodness of fit” of the power law model and provides support 
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for its use. Individual player files were then grouped by broad playing positions 

(forwards, backs), match-half (first, second) and level of competition (elite: Super 15 

Rugby, sub-elite: National Rugby Championship) to create a power law modelling 

framework for each of the three measures of exercise intensity. Power law models were 

chosen instead of hyperbolic models such as the critical power model (Hill, 1993) for a 

few reasons. First, power law models are simpler: the exponent from power analysis 

has been shown to be correlated to speed at critical power/maximal aerobic speed in 

elite runners (Zinoubi et al., 2017). Practitioners are likely to use models that are 

simpler to both compute and understand. Second, critical power models typically used 

in individual sports such as cycling collect power-time datum via several independent 

exercise tests. Conversely, power law exponential functions usually characterise 

continuous temporal processes where the value of a datum is dependent on the value of 

its predecessor (Burnley et al., 2016), with dependence likely using team sport data sets. 

Third, to validly apply the critical power model during collision-based intermittent 

sports like rugby would require modelling each individual athlete’s: critical power, 

amount of finite work capacity available above critical power (W’) and their time 

constants to recover W’ (Skiba et al., 2012; Vanhatalo et al., 2011). These modelling 

procedures were beyond the scope of the present investigation, but do provide an 

exciting avenue for future research applying critical power to team sport contexts. 

Lastly, in rugby, the declines in exercise intensity with increasing exercise duration may 

be largely determined by contextual factors such as stoppages, e.g. refereeing decisions 

and point scoring occasions (Delaney et al., 2016a). Large proportions of stoppage time 

decreases player work-to-rest ratios, potentially limiting the application of the critical 
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power model as anaerobic work capacity may not be seriously challenged in rugby 

(Vanhatalo et al., 2011).  

7.2.2 Statistical Analysis 

Each of the three measures of maximum mean movement were analysed with the 

general linear mixed modelling procedure (Proc Mixed) in SAS. The measures were 

log-transformed prior to analysis to reduce non-uniformity of error (Hopkins et al., 

2009). The fixed effects in the model were player position (backs, forwards) interacted 

with match-half (1st, 2nd), interacted with time on the field to adjust for this variable. 

Mean time on the field for each player in each half was re-scaled to zero to avoid 

adjusting the peak intensities to a grand mean time on the field for positions and halves. 

This re-scaling enabled better quantification of positional (forwards vs backs) and 

match-half (1st half vs 2nd half) mean differences. Match identity was the only random 

effect in the model. Player identity was not included as a random effect unlike other 

power law investigations (Delaney et al., 2017b; Duthie et al., 2017). In previous studies 

(Delaney et al., 2017b; Duthie et al., 2017) authors have derived a standard error of the 

estimate for each subject separately and then presented an average SEE. However, this 

approach underestimates the error when there are real differences between individuals 

in the slopes and intercepts, which there are. The general linear mixed modelling 

process was repeated for elite and sub-elite levels of rugby competition. Each model 

produced an intercept and slope that gave the line of best fit for the log intensity, log 

duration transformed least squares mean data (Figure 7.1), as well a standard error of 

the estimate for each positional group and match-half, across each of the three measures 

(Tables 7.1 & 7.2). Power law model goodness of fit was assessed using coefficients of 

determination (R2), with the following scale for the square root of R2, correlation 
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coefficient (r): < 0.1 trivial, < 0.3 small, < 0.5 moderate, < 0.7 large, < 0.9 very large 

and > 0.9 almost perfect (Hopkins, 1997). The SEE expressed the root mean square 

error of each power law model, enabling quantification of the accuracy of each model’s 

predictions through examination of the scatter of points about the regression line 

(Hopkins, 1997). Residual vs. predicted plots were generated for each measure and 

level of competition (individual player prediction error, not by position and match-half) 

to assess not only the average model error (SEE), but to assess exercise intensity 

prediction error across all 5-600 second exercise durations (Figure 7.3).   
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Figure 7.1 Example of power law analysis modelling the relationship between 

professional rugby exercise intensity: mean speed (m.min-1) plotted for each 

rolling average exercise duration of 5-600 seconds. The power curve represents 

predicted exercise intensity values as a function of time. If the raw mean speed 

(m.min-1) and duration are logged, a linear relationship results, permitting the 

calculation of y intercepts and slopes. 
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7.3 Results 

The log of peak exercise intensity (i.e. mean speed, metabolic power and PlayerLoadTM) 

and log of exercise duration (5-600 s) displayed almost perfect power relationships  

(R2 = 0.969 to 0.993) for elite and sub-elite rugby backs and forwards and during the 

first and second match-halves (Tables 7.1, 7.2 and Figure 7.2). The standard errors of 

the estimates for the prediction models ranged from 5 - 9.7% (mean 7.5%) and 4.1 - 

12% (mean 8.3%) for elite and sub-elite rugby respectively (Tables 7.1 & 7.2). 

Residuals vs. predicted values revealed unequal variance along the regression lines 

(bimodal ‘U’ shaped heteroscedasticity), indicating power prediction models typically 

underestimated shorter (5 to 10 s) or longer (300 to 600 s) exercise intensities and 

overestimated 20 to 120 second intensities (Figure 7.3), by up to ~ 20-25%.  

The y intercepts (analogous to 1-second theoretical peak intensity) were greater for 

backs than forwards for mean speed, metabolic power and PlayerLoadTM by 20%, 28% 

and 14% respectively during elite rugby and by 14%, 34% and 25% respectively during 

sub-elite rugby (Tables 7.1 & 7.2). The rate of decline in peak intensity as duration 

increased (slope) was also greater for backs than forwards for mean speed, metabolic 

power and PlayerLoadTM by 6%, 6% and 11% respectively during elite rugby and by 

13%, 14% and 15% respectively during sub-elite rugby (Tables 7.1 & 7.2). The y 

intercepts and slopes were typically similar between match-halves and levels of rugby 

competition.   
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 Half Intercept Slope Error (%) R2 

Mean speed (m.min-1) 

 

     

Backs  1st 748 -0.355 5.0 0.993 

 2nd  716 -0.356 5.1 0.993 

Forwards  1st  602 -0.332 5.9 0.989 

 2nd  571 -0.334 5.6 0.990 

 

Metabolic power (W.kg-1) 

 

     

Backs  1st 118 -0.412 6.8 0.991 

 2nd 116 -0.417 7.0 0.990 

Forwards  1st 85 -0.374 8.5 0.983 

 2nd 83 -0.382 8.8 0.982 

 

PlayerLoadTM (au) 

 

     

Backs  1st 7.1 -0.402 9.5 0.981 

 2nd 7.1 -0.405 9.7 0.981 

Forwards 1st 6.3 -0.363 9.4 0.978 

 2nd 5.9 -0.352 8.4 0.981 

 
Power law equation:  Predicted intensity = Intercept × (Duration of interest in seconds)Slope 

Goodness of model fit was evaluated by the standard error of the estimate and R-squared values.  

Table 7.1 Intercepts and slopes to predict peak exercise intensity of Elite Super 

Rugby competition using power law. 
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Power law equation:  Predicted intensity = Intercept × (Duration of interest in seconds)Slope 

 

Goodness of model fit was evaluated by the standard error of the estimate and R-squared values. 
  

Table 7.2 Intercepts and slopes to predict peak exercise intensity of sub-elite 

National Rugby Championship competition using power law. 

 Half Intercept Slope Error (%) R2 

Mean speed (m.min-1) 

 

     

Backs  1st 742 -0.349 8.7 0.979 

 2nd  747 -0.356 9.5 0.976 

Forwards  1st  541 -0.298 4.1 0.993 

 2nd  557 -0.316 8.3 0.976 

 

Metabolic power (W.kg-1) 

 

     

Backs  1st 122 -0.415 8.7 0.985 

 2nd 111 -0.408 12 0.973 

Forwards  1st 77 -0.349 8.8 0.979 

 2nd 76 -0.360 11 0.969 

 

PlayerLoadTM (au) 

 

     

Backs  1st 7.3 -0.407 8.3 0.986 

 2nd 6.9 -0.400 8.6 0.984 

Forwards 1st 5.3 -0.335 5.3 0.991 

 2nd 5.4 -0.354 6.8 0.987 
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Figure 7.2 Elite Super 15 Rugby log-log mean speed-epoch duration power law 

relationships by playing positon and match-half. 
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Figure 7.3 Individual player residuals vs predicted values for 5 to 600 second 

exercise intensities, for each measure of exercise intensity across both levels of 

rugby competition. Predicted values are 100 × the natural log. Residuals can be 

interpreted as approximate percents (%). 
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7.4 Discussion 

The purpose of the present investigation was to establish whether power law models 

could accurately predict the peak intensities of rugby competition as a function of time. 

This study was the first to demonstrate that professional rugby union peak intensities 

of competition can be accurately predicted from exercise duration using power law  

(R2 = 0.97-0.99), irrespective of playing position, match-half, level of competition or 

measure of exercise intensity. These findings advance the practical application of power 

law models in team sports by providing novel insights on model prediction typical error 

as well as the patterns of error as a function of time. Power law models had a typical 

exercise intensity prediction error of 7.5% and 8.3% for elite and sub-elite rugby 

respectively, across 5 to 600 second exercise durations. Prediction models typically 

underestimated shorter (5-10 s) and longer (300-600 s) duration peak exercise 

intensities and overestimated 20-120 s exercise intensities, by up to ~ 20-25%. The 

present findings support the use of power law models in team sports to improve match-

representative exercise intensity prescription and monitoring for any given exercise 

duration, using specific game-based methodologies, such as small-sided games. 

However, practitioners should be aware of prediction model errors when interpreting, 

prescribing and monitoring match-specific exercise intensities for any given training 

drill duration. 

The present investigation extends on recent football power law investigations (Delaney 

et al., 2017b; Duthie et al., 2017; Lacome et al., 2018) that incorporated individual 

athletes as a random effect in their linear mixed models. By doing this, these prediction 

models reported exercise intensity predictions as a function of time for a given match 

within a competitive season. Such analysis is very useful to predict and understand 
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match-to-match variation in peak intensities of competition. However, better ‘ground 

truth’ exercise intensity predictions for training prescription and monitoring purposes 

are yielded by using each player’s season long mean peak intensities of competition, 

across all matches for each duration analysed  (e.g. 5-600 s). By doing this, the power 

models in the present study give more realistic estimates and standard errors of the 

estimates for a given individual for exercise intensity prediction purposes. 

Power law models are capable of accurately modelling exercise intensities as a function 

of time during professional soccer (Delaney et al., 2017b; Lacome et al., 2018), rugby 

league (Duthie et al., 2017) and now rugby union competition, with almost perfect 

correlations (0.90-0.99).  However, model prediction typical error of 4.1-12% and 

heteroscedastic residuals of up to ± 25% for peak 5-600 second exercise intensities of 

professional rugby indicate power law models are far from perfect. Power law models 

applied to individual sports such as running observed prediction errors of 3-6% for 200-

2000 m running times (Katz et al., 1999). Hyperbolic models incorporating metabolic 

energy yielding processes reduced absolute error between predicted and actual Olympic 

Games running times to 0.86% for distances of 100 to 10,000 m (Ward-Smith, 1985) 

and reduced world record running time prediction error to 0.73% for 60-42,000 m 

events (Péronnet et al., 1989). Several differences between individual sports (e.g. 

running, cycling and swimming) and team sports may explain reduced nonlinear model 

prediction errors in the former. Team sports are multi-directional, intermittent and 

chaotic in nature, often with substantial physical contact elements and stoppages in 

play. These factors mean that exercise duration cannot possibly explain all of the 

variance in peak exercise intensity during team sports such as rugby. The complexities 

of team sport movement dictate that power law models will inevitably display better 
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goodness of fit and lower prediction errors for individual sports, being able to explain 

greater variance in exercise intensity with changes in exercise duration. We recommend 

that practitioners quantify and understand the error and limitations associated with 

power law prediction models to aid their interpretation and use of such models for 

training prescription and monitoring purposes in team sports.  

Knowledge of the most intense passages of competition allows coaches to train players 

in a match-specific or representative manner.  The power law equations of the present 

investigation (Tables 7.1 & 7.2) provide rugby coaches with an ability to predict both 

speed and acceleration based peak match intensities for both elite and sub-elite players 

across any duration of interest. For instance, if a coach wanted to know the peak 60 

second speed of elite rugby backs in the first match-half they could use equations in 

Table 7.1 to predict this [e.g. peak mean speed = 748 m.min-1 × (60 seconds)-0.355]. The 

result is a peak 60 second mean speed of 175 m.min-1 (equivalent to 2.9 m.s-1 or 10.5 

km.h-1), which may be used to prescribe and monitor the intensity of sport-specific 

training.  

The power law model intercepts and slopes presented here are not directly comparable 

with other investigations (Delaney et al., 2017b; Duthie et al., 2018; Duthie et al., 2017; 

Lacome et al., 2018) due to novel investigation of durations less than 1 minute, resulting 

in present models having larger intercepts and slope declines. Thus, power law 

prediction models (Tables 7.1 & 7.2) were used to predict the 60 second peaks, which 

can be directly compared to the 60 second intercepts of previous football code research 

(Table 2.4) for mean speed and metabolic power that are common measures amongst 

published studies. The peak 1 minute mean speed of elite and sub-elite professional 

rugby (145-175 m.min-1) was lower than rugby league (Duthie et al., 2017) and national 
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and youth soccer (Delaney et al., 2017b; Duthie et al., 2018), yet similar for 

international soccer (Lacome et al., 2018) (Table 2.4). The generally lower peak mean 

speed observed in professional rugby compared to the other football codes is likely due 

to increased collision-based elements (e.g. tackles, rucks, mauls, scrums, lineouts etc.) 

obstructing free running (Duthie et al., 2003). Metabolic power 1 minute peaks (17-22 

W.kg-1) were typically similar between professional rugby and other football codes 

(Table 2.4), with the upper range limits (22 W.kg-1) exceeding professional rugby 

league and soccer, yet falling below elite youth soccer (Duthie et al., 2018). Considering 

metabolic power accounts for both speed and acceleratory movements and rugby 

players produced lower peak speeds, accelerations must have accounted for a greater 

proportion of metabolic power during rugby compared to rugby league and soccer. 

Whilst speculative, greater peak speed and metabolic power intercepts observed during 

youth elite soccer (Duthie et al., 2018) compared to all professional football codes 

(Table 2.4) may be due to reduced defensive structures and strategies employed in 

combination with reduced frequency and magnitude of collision-based movements. 

Elite and sub-elite rugby backs produced greater mean speed, metabolic power and 

PlayerLoadTM intercepts than forwards by 14-34% (Tables 7.1 & 7.2). Similarly, in 

rugby league, forward positions (edge forward and hooker) produced the lowest peak 

mean speed and metabolic power intercepts respectively, whilst fullbacks produced the 

greatest peak values of all positions (Duthie et al., 2017). In support of our findings, 

rugby backs typically produce greater intensity of movement than forwards over shorter 

durations as they are required to evade opponents with rapid acceleration, change of 

direction and/or maximal speed to score tries or chase down and tackle opponents to 

deny try scoring (Quarrie et al., 2013).  
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The decline in peak exercise intensity as time increased (slope) was greater for rugby 

backs than forwards (6-15%). In rugby league, large negative correlations between a 

player’s physical qualities (maximum speed and relative squat strength) and the rate of 

decline in running speed and metabolic power have been observed during competition 

(Duthie et al., 2017). Rugby backs also demonstrate superior anaerobic power and 

muscle strength relative to body weight when compared to forwards (Duthie et al., 

2003). The steeper slope decline of exercise intensity for backs in the present study may 

be due to faster player’s (typically backs), having a higher proportion of fast twitch 

muscle fibres, that have reduced fatigue resistance over longer exercise durations 

(Trappe et al., 2015). Perhaps professional rugby backs also display negative 

correlations between physical speed/acceleratory qualities and slope declines as 

exercise duration increases, with future research warranted to confirm this. In contrast 

to rugby findings, slope declines have been shown to be similar across professional 

soccer positions (Delaney et al., 2017b), potentially due to match stoppages (e.g. 

referring decisions, set piece, substitutions etc.) influencing player movement similarly 

or due to all players receiving the same training stimulus. The intercept and slope values 

generated from the present investigations power law analysis highlight the need for 

rugby training prescription and monitoring to be position-specific but not necessarily 

match-half or level of competition specific due to typically negligible differences. 

Speed and acceleratory slope results also highlight the need to vary the volume of time 

players are exposed to match intensities during training, to improve their ability to 

repeat and maintain exercise intensities for longer periods of time.  

The main limitation of the present investigation is that the power law models only 

considered exercise duration in its predictions of peak exercise intensity. Prediction 
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models were constructed by playing position, match-half and level of professional 

rugby, however future research should consider methods that attempt to capture the 

little yet potentially meaningful unexplained variance from power law models. For 

example, future nonlinear power or hyperbolic models that can validly incorporate 

match contextual factors (e.g. stoppages) and individual physical/physiological 

parameters (e.g. metabolic energy contributions) will likely improve model goodness 

of fit, homoscedasticity and prediction error. 

7.5 Practical Applications  

Rugby coaches may use power law to predict peak speed and acceleration based 

exercise intensities for any duration of interest to prescribe and monitor match-specific 

training. For instance, when prescribing a small-sided game aiming to replicate the most 

intense periods of matches, using Tables 7.1 or 7.2 coaches can predict intensity by 

inputting intercept, time and slope values into the equation: Intensity = Intercept × 

(Time)Slope. If a coach wished to overload mechanical loading of elite forwards during 

a 5-minute (300 s) training drill, PlayerLoadTM could be solved for using values in Table 

7.1: PlayerLoadTM = 6.3 × (300 s)-0.363. This results in a predicted PlayerLoadTM match 

intensity of 0.8 au/second or  240 au across the 5 minute drill. Practitioners should be 

aware that there is error associated with exercise intensity prediction models and 

incorporate this typical error (4.1-12%, Tables 7.1 & 7.2) into their interpretation and 

use of them. In relation to the generalisability of the present findings, previous 

investigations have used power law and found relative distance (m.min-1) and average 

acceleration/deceleration (m.s-2) intercept and slope differences between football codes 

(i.e. AFL, rugby league, rugby union and soccer) and between playing positions within 
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codes (Delaney et al., 2016b). Our comparable rugby union relative distance intercept 

and slope values differ vastly from previous investigations (Delaney et al., 2016b), 

namely due to the calculation of time measured in seconds as opposed to minutes in our 

power law models given we calculated peak 5 s to 600 s peak intensities of competition. 

Using Delaney and colleagues (Delaney et al., 2016b) relative distance mean intercept 

(169 m.min-1) and slope (-0.29) values for rugby union backs, if prescribing a 5 minute 

training drill their predicted relative distance intensity would equal:  

Intensity = 169 m.min-1 × (5 minutes) -0.29 , that comes to 106 m.min-1. Using the present 

investigations comparable rugby union backs and power law model that calculated time 

in seconds (i.e. 5 minutes = 300 seconds) our predicted relative distance would equal: 

Intensity = 748 m.min-1 × (300 seconds) -0.35, that comes to 99 m.min-1. This power-law 

prediction difference of only 6 m.min-1 between the two rugby union studies 

demonstrates that our findings are somewhat generalisable if comparing to similarly 

trained elite rugby cohorts within the same positional group. Between 4-6 specific 

positional groups within each of four football codes, relative distance intercepts 

(theortical peak intensity) tended to fluctuate by no more than 31 m.min-1, with the 

smallest positional intercept differences observed in rugby league (13 m.min-1 range 

across 6 positions) and rugby union had the largest positional intercept differences of 

all football codes (31  m.min-1 range across 4 broader positional groups). These findings 

are likely due to the fact that rugby league positional anthropometrics and physiological 

capacities are typically more homogeneous compared to rugby union playing positions 

that are more heterogeneous. Whilst findings may be somewhat generalisable to 

football athletes of similar training status within the same code and positional group, 
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we advise each team to use power law to calculate exercise intensity as a function of 

time for their specific cohort of interest. 

Coaches can concurrently train physical, technical and tactical sporting elements by 

using match- and position-specific peak exercise intensities reported in the present 

study. Coaches can manipulate the number of players, field dimensions and rules of 

training drills to over or underload the speed and/or acceleratory demands as desired, 

whilst monitoring player training intensities relative to peak match intensities (%). 

Training time spent below, at or above ‘match intensity’ could be quantified and 

monitored to help periodise training programs and to better understand player internal 

load responses to external training loads. If players are unable to achieve peak 

intensities of competition during game-based training, they may not possess the 

underlying physiological capacity needed to effectively perform their tactical roles 

during competition and therefore may benefit from isolated physical development. On 

the other hand, if players are able to achieve peak intensities of competition during 

training, they can be progressively overloaded in a periodised manner by repeated 

exposures to such intensities to further improve their physiological qualities. 

7.6 Conclusions 

This study was the first to demonstrate that professional rugby union peak intensities 

of competition can be accurately predicted from exercise duration using power law, 

irrespective of playing position, match-half, level of competition or measure of exercise 

intensity. Present findings have advanced the practical application of power law models 

in team sports by providing novel insights on model prediction typical error as well as 

the patterns of error as a function of time. Results support continued use of power law 
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models in team sports to improve match-representative exercise intensity prescription 

and monitoring using specific training methodologies. However, practitioners should 

be aware of prediction model errors when interpreting, prescribing and monitoring 

match-specific exercise intensities for any given training drill duration.  
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8. CHAPTER 8: GENERAL DISCUSSION 

8.1 Thesis Synopsis 

The series of five novel studies presented within this thesis (Figure 8.1) have identifed, 

quantified and characterised the most intense periods of professional rugby competition 

and periods thereafter. The main aim and practical application of this research was to 

help coaches prescribe and monitor training that is more representative of the peak 

periods of competition and to aid match-day tactical decisions. The final section of the 

thesis will provide discussion of original research (Chapters 3 to 7), research 

progression, practical applications, limitations, future directions and conclusions. 

8.1.1 Use the right tool/s for the job 

In both research and practice, accelerometers are grossly underutilised compared to 

GPS for quantifying, monitoring and prescribing the peak periods of team sport 

competition. This is surprising given the reduced accuracy of GPS for quantifying high-

velocity and acceleratory movements that frequently occur in team sports (Boyd et al., 

2013; Jennings et al., 2010; Rawstorn et al., 2014). In a recent systematic review 

investigating the use of microtechnology to quantify the peak match demands of 

football codes (Whitehead et al., 2018b), only 2 of the 27 studies (7%) that met author’s 

eligibility criteria used accelerometer-derived metrics such as PlayerLoadTM or 

BodyLoadTM, whilst GPS-derived relative distance was reported in 63% of studies. This 

series of studies adds considerably to the body of knowledge on the application of 

accelerometers to quantify physically intense periods of football competition. 

Study one (Chapter 3) found that accelerometers outperformed GPS in quantifying 

positional and match-half peak intensity differences during rugby competition, 
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identified using rolling epoch analysis. Relative to professional rugby backs, the 

forwards produced greater PlayerLoadTM per unit of distance covered or metabolic 

power generated. This finding is in line with forwards spending more time in physical 

contact with the opposition and completing more total work throughout a match than 

backs (Duthie et al., 2003). If team sport performance staff were to solely use GPS 

technology to quantify and monitor activity profile differences between players and 

positions, many frequently occurring movements that incur little horizontal 

displacement (e.g., collisions, tackles, jumping, change of direction etc.) would be 

underestimated. Misrepresentive quantification of physical movement during matches 

and training may lead to training workload errors, maladaptation or heighten the 

likelihood of illness or injury.  

Accelerometers and GPS provided different results fundamentally because 

accelerometers measure player movement in three dimensions (x, y & z) including 

vertical displacement, whereas GPS technology only measures player movement in two 

dimensions (x & y, i.e. forwards-backwards and side-to-side). Further, accelerometers 

sampling rate was ten times that of the GPS receivers used (100 Hz vs 10 Hz), enabling 

more accurate quantification of rapid movements. As most team sports involve many 

movements comprising both vertical and horizontal displacement across a broad range 

of speeds, both technologies should be used. It is recommended that football 

practitioners and researchers select technologies and measures depending on the 

primary sporting movements and questions of interest (i.e., use the right tool for the 

job). 

It was clear from the pattern of positional differences across 5 to 600 second epoch 

durations, match-halves and levels of competition in Chapters 3 & 4 that GPS and 
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accelerometer measures provided different information about rugby union player 

movement. These findings demonstrate that use of either GPS or accelerometers in 

isolation is inadequate to accurately quantify all forms of rugby union external load. 

Both chapters 3 & 4 findings support a recent training load monitoring framework for 

team sports that separates physiological and biomechanical load-adaptation pathways 

(Vanrenterghem et al., 2017). This framework uses an analogy of a car to describe the 

physiological vs biomechanical external load that team sport athletes experience. The 

physiological load component can be viewed as a car engine with GPS time, distance 

and speed derivatives providing an estimate of “fuel” in the player’s “engine”, 

facilitating monitoring of external work to estimate internal energy demands or 

metabolic load (e.g., glycogen depletion, heart rate). Whereas biomechanical load refers 

to external work performed by the body’s soft tissues (e.g., muscles, bones and 

ligaments, analogous to a car’s suspension) against the ground and other player’s during 

impact, that can be estimated in the field with highly responsive motion sensors such 

as accelerometers. Chapter 4 findings imply that neither accelerometer nor GPS 

measures should be used a proxy measure for the other, as they measure different 

external load constructs (biomechanical and physiological load respectively). If football 

performance staff wish to accurately detect duration-, position- and half-specific 

differences in player activity profiles during the most intense periods of competition, 

both speed and acceleratory indices derived from both GPS and accelerometer 

technology should be used.  

8.1.2 Understand the utility & limitations of technology 

Study two (Chapter 4) assessed the sensitivity, reliability and convergent validity of 

GPS and accelerometer measures for quantifying peak 5 to 600 second intensities of 
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rugby. Innovative insights were garnered on the utility of commonly used GPS and 

accelerometer measures (mean speed, metabolic power and PlayerLoadTM) for 

quantifying peak rugby intensities, improving a coach’s ability to interpret and use such 

data to inform practice. Prior to this study, there was no available literature on the 

sensivity or reliability of these commonly used GPS- and accelerometer-derived 

measures for quantifying the peak intensity periods of team sport competition. This 

study provided further evidence that the reliability of team sport movement as measured 

by both GPS and accelerometers is inversely related to speed of movement. This finding 

creates a dilemma for practitioners when selecting measures and is in accordance with 

the suggestion that validity and reliability of a measure is likely inversely related to its 

importance for external load quantification and monitoring (Akenhead et al., 2016; 

Buchheit et al., 2017). The poor sensitivity and low reliability of GPS and accelerometer 

measures implied that rugby players need to be monitored across many matches 

(approximately one team sport season) to obtain adequate precision for assessing 

individuals. In professional practice, applied sport scientists must work at a fast pace, 

interacting with coaches and players to deliver innovative, efficient and effective 

performance programs (Coutts, 2016). Poor sensitivity and low reliability does not 

mean that PlayerLoadTM, mean speed and metabolic power measures should not be used 

to quantify, monitor and prescribe peak intensity periods, but rather suggests that more 

caution is needed when interpreting individual differences or changes. Defining a larger 

and more conservative smallest worthile difference (Buchheit, 2016) and/or having 

more repeated measures are possible practical solutions to this dilemma. The present 

findings derived from slow research processes has established the reliability, 

convergent validity and signal to noise of commonly used external load measures, 
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providing quality controlled evidence to support the immediate decision making of fast 

working practitioners. 

8.1.3 Team sport movement is complex & multifactorial 

Study three (Chapter 5) examined factors that may influence peak intensities of rugby 

competition, such as exercise duration, positional group, match-half, level of 

competition, within-season trends and time spent on field. Findings highlighted that 

duration- and position-specific player movement data derived from wearable 

technologies and rolling average analyses may be used as a reference for training 

monitoring and prescription to objectively prepare players for the most intense periods 

of competition.  

Whilst several studies have provided similar duration- and position-specific peak 

intensity frameworks across an array of football codes (Delaney et al., 2016a; Delaney, 

2016; Delaney et al., 2015; Delaney et al., 2016d), this series of studies was the first to 

utilise accelerometers in combination with GPS to more adequately quantify totality of 

team sport movement, use periods less than 1 minute, and quantify peak periods for 

each match-half, across two levels of football competition. Game based methodologies 

such as small-sided games may be modified (pitch size, number of players, rules, verbal 

encouragement) to achieve desired duration- and position-specific physiological and 

biomechanical external loads whilst simultaneously training technical and tactical 

skills. For example, larger small-sided game playing areas with less players will 

facilitate more high-speed running whilst smaller playing areas with more players will 

facilitate more acceleratory, change of direction and collision-based movements. 

The nature of football movement is very complex and relates to a host of contextual 

factors (Paul et al., 2015), match-related factors (Murray et al., 2015) and individual 
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player characteristics (Kempton et al., 2015a). Chapter 5 explored several factors that 

may influence the peak intensities of professional rugby competition, yet have received 

little scientific attention. The majority of comparisons made between the most intense 

periods of elite versus sub-elite rugby competition yielded unclear or trivial differences, 

irrespective of duration, position, match-half or measure of intensity used. Within-

season declines in peak intensity of competition were more pronounced for sub-elite 

players compared to elite players and for forwards compared to backs. The most intense 

5-600 s passages of elite and sub-elite rugby union competition occurred near the 

middle of both match-halves on average. Professional rugby players who were on the 

field longer generally produced greater peak mean speed, metabolic power and 

PlayerLoadTM, with time on field influencing peak intensity to a greater extent in the 

second match-half compared to the first for both levels of competition.  

Knowledge of factors that may influence football activity profiles (Table 2.2) and the 

magnitude of impact they may have, improves scientific understanding of the complex 

dynamics of team sport movement. Understanding that team sport movement is 

multifactorial may inform training and match day practices. For instance, football 

coaches may alter training drills based on factors known to elicit changes in player 

movement (e.g. duration, pitch size, number of players, rules etc) to replicate or exceed 

match-specific peak intensity scenarios. During competition, coaches may use 

knowledge of other factors such as the influence of time spent of field and positional 

role on player peak intensities to inform tactical decisions (e.g. substitutions/rotation or 

formation changes). Altogether, Chapter 5 provides professional rugby coaches with 

duration- and position-specific intensity frameworks to aid prescription and monitoring 



 

    

255 

 

of match-specific training, whilst improving broader understanding of factors that 

influence player movement intensity.  

8.1.4 Exercise intensity declines drastically post peak periods of competition   

The majority of football time-motion analysis research has used a pre-defined period of 

time (e.g. 5 min) to identify the peak intensity of competition and comparable periods 

post (5 min). However, the most intense periods of player movement during a match do 

not fall completely within pre-defined periods of time, and therefore likely 

underestimate peak periods and overestimate subsequent periods of activity 

(Cunningham et al., 2018; Ferraday et al., 2020; Varley et al., 2012a). Therefore, rolling 

or moving average time period analyses should be used to more accurately identify and 

quantify the peak periods of football competition and movement thereafter (Varley et 

al., 2012a).   

Studies that have used rolling average analysis to identify the peak period of 

competition tend to only use one epoch duration to quantify both the peak and post peak 

periods (Black et al., 2016). Study four of this thesis (Chapter 6) sequentially tracked 

the time-course of exercise intensity declines post the peak periods of rugby 

competition using novel analysis. The novel analysis entailed using eight rolling 

average epoch durations (5-600 s) to identify the peak intensity periods of competition, 

with five duration-matched intervals used to sequentially track player movement post.  

Mean speed, metabolic power and PlayerLoadTM declined sharply (~ 29 to 86%) post 

the most intense 5 to 600 seconds of professional rugby competition, with the 

magnitude of decline principally dependent on the peak intensity attained during any 

given period. Post the most intense periods of rugby competition, exercise intensity 

declined below the average match-half intensity 81% of the time and rarely returned to 
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or exceeded it. Post peak intensity analysis of different epoch durations, playing 

positions, match-halves, levels of competiton and measures of exercise intensity were 

elaborated upon (see Chapter 6). If identical analysis techniques to those in the present 

study were applied across other football codes, there is no doubt movement intensity 

would substantially decline post peak periods of competition but to varying extents. In 

football codes that are of a “stop/start” nature (e.g. rugby, NFL), peak intensities of 

competition that may be prior to scoring or conceding a try or touchdown are followed 

by a conversion kick that inevitably reduces post peak period exercise intensity 

dramatically. In more continuous and “free-flowing” football codes (e.g. soccer, AFL) 

the reductions in exercise intensity post the peak periods of competition are likely to be 

less severe.  Nonetheless, across all the football codes objective player activity profile 

data post peak periods of competition may inform tactical match decisions (e.g. 

substitutions/rotations) and match representative training prescription and monitoring 

of both “work” and “active rest” periods.  

Accurate quantification of player activity profiles post the most intense periods of 

competition improves limited understanding of team sport athlete pacing strategies and 

fatigue, which may inform match-day substitution or rotation decisions, player 

positional changes and team formations. For instance, live player movement data may 

be collected via GPS receivers and relayed to a receiver antenna connected to a 

computer, with proprietary software allowing for real-time player movement tracking. 

If historical data have been collected on the previous peak intensities of competition for 

a cohort of interest (assuming rolling epoch averages could be programmed into 

software), it would be possible in real-time to identify similarly intense periods (via 

pre-defined alerts set within the software). Alternatively, practitioners could use the 
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peak, post peak and average intensities of competition quantified in the present 

investigation and others (see Table 6.3) as reference values for the football code of 

interest to set alerts within player tracking software. Consequently, it is possible to 

identify very intense periods of competition in real-time during matches and quantify 

inevitable declines in exercise intensity thereafter. Such data may be relayed from the 

person watching and interpreting the live data stream (e.g. sport scientist) to a coach, 

ideally providing them with context around the values such as the current match average 

exercise intensity and/or normative historical values for the team, position or player of 

interest. Preferably, such activity profile data would be used in conjunction with 

performance analyst technical key performance indicators to help inform the coach’s 

expert opinions on tactical decisions, such as player substitutions and team formations. 

8.1.5 Modelling peak intensities of rugby using power law  

Study five (Chapter 7) was the first investigation to demonstrate that professional rugby 

union peak intensities of competition can be accurately predicted from exercise duration 

using power law (R2 = 0.97-0.99), irrespective of playing position, match-half, level of 

competition or measure of exercise intensity (both GPS and accelerometer derived). 

Rugby coaches may use power law to predict peak speed and acceleration based 

exercise intensities for any duration of interest to prescribe and monitor match-specific 

training. For instance, when prescribing a small-sided game aiming to replicate the most 

intense periods of matches, using Tables 7.1 or 7.2 coaches can predict intensity by 

inputting intercept, time and slope values into the equation: Intensity = Intercept × 

(Time)Slope.  

Whilst power law has been applied to other football codes (Delaney et al., 2017b; 

Duthie et al., 2018; Duthie et al., 2017; Lacome et al., 2018), present findings advance 
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the practical application of power law models in team sports by providing novel insights 

on model prediction typical error as well as the patterns of error as a function of time. 

Power law models had a typical exercise intensity prediction error of 7.5% and 8.3% 

for elite and sub-elite rugby respectively, across 5 to 600 second exercise durations. 

Prediction models typically underestimated shorter (5-10 s) and longer (300-600 s) 

duration peak exercise intensities and overestimated 20-120 s exercise intensities, by 

up to ~ 20-25%. The present findings support the use of power law models in team 

sports to improve match-representative exercise intensity prescription and monitoring 

for any given exercise duration, using specific game-based methodologies, such as 

small-sided games. However, practitioners should be aware of prediction model errors 

when interpreting, prescribing and monitoring match-specific exercise intensities for 

any given training drill duration.
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8.2 Research Progression  

 

Chapter 3
Utility of GPS & accelerometer measures for quantifying 
playing position and match-half differences during peak periods 
of rugby

Chapter 4
Sensitivity, reliability & convergent validity of GPS and 
accelerometers for measuring peak intensities of rugby

Chapter 5
Factors influencing peak 
intensities of rugby

Chapter 6
Quantifying activity 
post peak intensities 
of rugby

Chapter 7
Modelling
peak intensities 
of rugby

Figure 8.1 Research progression 
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8.3 Practical Applications 

The following is a simple list of practical applications and recommendations based upon 

the findings of the present thesis. 

1. Use the right tool for the job. Accelerometers should be used in addition to GPS to 

quantify, monitor and prescribe player movement in rugby union. 

a. Neither accelerometer nor GPS measures should be used a proxy measure for 

the other, as they measure different external load constructs (biomechanical 

and physiological load respectively). 

b. Both speed- and acceleration-based measures should be used to quantify the 

external load of rugby players.  

c. Use rolling or moving average epoch analysis to more accurately identify and 

quantify the peak periods of matches and periods thereafter.  

d. Given metabolic power’s sensitivity and reliability to quantify movement 

differences was no better than the other investigated measures, and metabolic 

power data are hard to prescribe team sport training from, we advise caution 

with its use. 

2. Professional rugby union player movement needs to be monitored across many 

matches to obtain adequate precision for assessing individuals during intense periods 

of match-play. 

3. Once (2.) has been achieved, peak match intensity data may be used to: 

a. Monitor and contextualise the intensity of training sessions. 

b. Inform training periodization (% training below, at or above match intensity). 
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c. Inform player match readiness, potentially influencing team selection. 

d. Inform player progressions during return to play (% of peak progressions). 

e. Inform player transitions between sub-elite and elite levels of competition. 

4. Duration- (5 seconds to 10 minutes) and position-specific (i.e. forwards, backs)  

player movement data derived from wearable technologies and rolling epoch 

analyses may be used as a reference for training monitoring and prescription to 

objectively prepare players for the most intense periods of competition. For example, 

small-sided games may be modified (pitch size, number of players, rules, verbal 

encouragement) to achieve desired duration- and position-specific physiological and 

biomechanical external loads whilst simultaneously training technical and tactical 

skills. 

5. Activity profile data post peak periods of competition may inform match-specific 

high-intensity interval training (HIIT) prescription, programming for both high-

intensity periods and for “active recovery” periods between efforts using game-

based methodologies such as small-sided games. 

6. Improved understanding of player activity profiles post the peak periods of 

competition may inform match day tactical decisions such as player positional 

changes, team formation changes and player substitutions or rotations. 

7. Rugby coaches may use power law to predict peak speed- and acceleration-based 

exercise intensities for any duration of interest to prescribe and monitor match-

specific training using game-based methods. 
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a. Practitioners should be aware that there is error associated with exercise 

intensity prediction models and incorporate this typical error into their 

interpretation and use of them. 

8.3 Limitations 

Whilst this series of studies provides many novel and meaningful insights that may aid 

coaching and performance staff in identifying, quantifying, monitoring and prescribing 

player peak exercise intensities, there are several limitations that need to be 

acknowledged. 

1. The case study nature of the present study may be considered a limitation and whilst 

two professional teams of two competitive levels with many repeated measures were 

included across two seasons, league-wide investigations with opposition analyses is 

the way forward to better understand collision-based team sport activity profiles.  

2. Positional analyses were limited to positional forward and back packs rather than 

more specific playing positions (e.g., prop, centre, scrum-half) to increase precision 

of estimates and to first assess if the respective technologies were sensitive enough 

to quantify broader positional classifications prior to comparing specific positional 

groupings. Specific playing position groups (e.g. prop, lock, scrum-half) are ideal, 

provided sample size and number of repeated measures are large enough.  

3. Whilst some factors that may influence peak intensities of rugby competition were 

examined (e.g. time on field, playing position, match-half, level of competition, 

within-season trends), there are many factors (Table 2.2) that would help to explain 

fluctuations in exercise intensity during competition.  
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4. No attempt was made to quantify the frequency and magnitude of collisions during 

the peak intensity periods of rugby, which would enhance game-based training 

prescription specificity of the worst-case scenarios of competition.  

5. The placement of an accelerometer on the trunk is only an estimate of whole-body 

accelerations that is far from perfect, although offers a starting point for 

biomechanical load estimation in the field. 

6. Research consensus indicates that metabolic power underestimates energy cost 

during intermittent team sport movements, underpinning its lack of criterion validity 

versus portable gas analysers. 

8.4 Future Directions 

Avenues for future research based upon findings from the present thesis include: 

1. Overlaying visual match-analysis with player tracking solutions to synchronise peak 

and post peak player movement with several contextual factors (e.g. ball in/out of 

play/possession). Time synchronised performance analyst data tracking player 

tackles, set piece (e.g. scrums, rucks, mauls, lineouts, penalties etc.) and technical 

key performance indicators (e.g. passes, meters gained etc.) alongside player 

movement data during and post peak periods of matches, is the way forward. 

a. The synchronisation of physical, technical and tactical data during the most 

intense periods of matches and periods thereafter will enhance understanding 

of player fatigue and pacing strategies, whilst potentially improving tactical 

decision processes and match representative training prescription and 

monitoring. 
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2. Explore the relationships between the most intense passages of play, key technical 

performance indicators and match outcome (win/loss). 

3. Examine the validity, reliability and sensitivity of GPS- and accelerometer-derived 

measures to quantify team sport movement pre, during and post the most intense 

periods of competition. New GPS models are constantly emerging or being updated, 

increasing the necessity for stringent testing of their accuracy and reproducibility. 

4. Explore the relationships between a raft of player physical qualities and capacities 

(e.g. maximal speed, relative strength, aerobic capacity) and their relation, if any, to 

generating high exercise intensities during match-play. 

5. Investigate the influence of sensor location, sensor harnessing and relationships 

between segmental and whole-body acceleration. For instance, the application of 

multi-segment accelerometer models to more accurately estimate the mechanical 

loading of team sport athletes should be examined. Whilst multi-segment models are 

unlikely to be permitted during competition until further receiver miniaturisation and 

safety testing occurs, they may be applied during training settings.  

6. Investigate nonlinear power or hyperbolic models (e.g. critical power model) that 

can validly incorporate individual physical/physiological parameters (e.g. metabolic 

energy contributions) and potentially match contextual factors (e.g. stoppages) in an 

attempt to improve exercise intensity prediction model goodness of fit, 

homoscedasticity and prediction error. 
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8.5 Conclusions 

Fluctuations in running intensity are expected during professional rugby competition 

given its stochastic nature and whole-match averages are not sensitive enough to detect 

these subtle activity profile fluctuations (Delaney et al., 2016d; Furlan et al., 2015; 

Jones et al., 2015). Simply assessing the average intensity of competition hides the 

worst-case scenarios that players will be exposed to in matches. This has ramifications 

for training prescription, as drills based on whole-match averages will inevitably 

underprepare athletes for the most intense periods of competition (Delaney et al., 

2016d). The intensity of training can be referenced against the peak periods of activity 

during competition to ensure the players are prepared for the rigours of match-play in a 

position- and duration-specific manner (Delaney et al., 2016d). This practice increases 

the likelihood of players thriving and not just surviving during the peak periods of 

competition due to a reduced relative intensity for the adapted athlete. Coaches should 

expose their athletes to very intense periods of training in a periodised manner using 

game-based methodologies such as small-sided games (Delaney et al., 2015) to elicit 

physiological adaptations (Rampinini et al., 2007b), reduce injury likelihood (Verrall 

et al., 2005) and improve athlete readiness to perform when confronted with worst-case 

scenarios during competition. This thesis has provided rugby playing position, match-

half and level of competition specific intensities across GPS- and accelerometer-

derived metrics for durations of 5 seconds to 10 minutes, to help coaches prescribe and 

monitor training that is representative of the most intense periods of competition.  

 

This series of studies has clearly established that performance staff and coaches need 

to “use the right tool for the job”. The use of GPS technology alone underestimates the 
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peak intensities of professional rugby players (namely of forwards as exercise duration 

increases). Present findings suggest that neither accelerometer nor GPS measures 

should be used a proxy measure for the other, as they measure different external load 

constructs. Practitioners should use accelerometers alongside GPS with both speed- and 

acceleration-based measures to quantify, monitor and prescribe player movement in 

rugby union and other collision-based team sports.  

Findings from this series of studies make it abundantly clear that practitioners should 

reflect on the strengths and limitations of any technology and its derived measures; 

understanding its validity, reliability and sensitivity to best interpret and use the data to 

inform decisions that influence the training process. The poor sensitivity and low 

reliability of GPS and accelerometer measures of peak intensity imply that rugby 

players need to be monitored across many matches to obtain adequate precision for 

assessing individuals.  

Accurate identification of the peak intensities of competition using rolling epoch 

analysis and quantifying subsequent exercise intensity declines has improved limited 

understanding of rugby player pacing strategies and fatigue, which may inform match-

day substitution or rotation decisions, player positional changes and team formations. 

Similarly, examination of factors that may influence peak player intensities achieved 

during competition aid broader understanding of the mechanisms underpinning 

physical “performance”. Results of the present thesis underline the need for future 

research to holistically incorporate physical, contextual, technical and tactical data to 

begin to unpack the very complex nature of team sport movement and the peak 

intensities thereof.  
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Professional rugby coaches may now confidently use power law to predict the peak 

intensities of competition for any duration of interest.  Present findings have advanced 

the practical application of power law models in team sports by providing novel insights 

on model prediction typical error as well as the patterns of error as a function of time.  

This series of studies will enable rugby coaches to more accurately interpret, prescribe 

and monitor match-specific exercise intensities for any training drill duration of 

interest. If players are repeatedly exposed to the worst-case scenarios of competition 

during training in an appropriately periodised manner, the adapted player will thrive 

and not simply survive when faced with these physically challenging periods during 

competition. 
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