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POSITION STATEMENT

Standard of care versus new‑wave 
corticosteroids in the treatment of Duchenne 
muscular dystrophy: Can we do better?
Stephanie Kourakis1, Cara A. Timpani1,2, Dean G. Campelj1,2, Patricia Hafner3, Nuri Gueven4, Dirk Fischer3 
and Emma Rybalka1,2* 

Abstract 

Background:  Pharmacological corticosteroid therapy is the standard of care in Duchenne Muscular Dystrophy 
(DMD) that aims to control symptoms and slow disease progression through potent anti-inflammatory action. How-
ever, a major concern is the significant adverse effects associated with long term-use.

Main:  This review discusses the pros and cons of standard of care treatment for DMD and compares it to novel data 
generated with the new-wave dissociative corticosteroid, vamorolone. The current status of experimental anti-inflam-
matory pharmaceuticals is also reviewed, with insights regarding alternative drugs that could provide therapeutic 
advantage.

Conclusions:  Although novel dissociative steroids may be superior substitutes to corticosteroids, other potential 
therapeutics should be explored. Repurposing or developing novel pharmacological therapies capable of addressing 
the many pathogenic features of DMD in addition to anti-inflammation could elicit greater therapeutic advantages.

Keywords:  Duchenne muscular dystrophy, Corticosteroids, Standard of care, Anti-inflammatory drugs, Anti-
inflammation
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Background
Pharmacological corticosteroid therapy is the standard 
of care in Duchenne Muscular Dystrophy (DMD), a pro-
gressive, genetically inherited neuromuscular diseases 
arising from mutations in the dystrophin gene. Null dys-
trophin protein expression compromises the stability 
and permeability of the sarcolemma and initiates chronic 
muscle damage, inflammation, degeneration and wast-
ing, with death as an eventual outcome due to cardiores-
piratory failure. With no cure, corticosteroid treatment 
aims to control symptoms and slow disease progression 
through potent anti-inflammatory action. Although the 

clinical efficacy and short-term benefits of steroid use is 
established, of major concern are the significant adverse 
effects associated with long term-use. Although alterna-
tives such as dissociative steroids are developed, non-
steroidal therapeutics with favourable side-effect profiles 
that can be rapidly translated into a clinical setting should 
also be investigated as alternatives to address the high 
unmet medical need in the treatment of DMD patients.

Introduction
Duchenne muscular dystrophy (DMD) is a X-linked 
recessive disorder that arises from mutations in the dys-
trophin gene causing absent or truncated dystrophin pro-
tein [1]. Approximately 60% of mutations arise from large 
deletion or insertion frameshift errors and 40% arise from 
small frameshift errors or point mutations [1]. Out of 
frame mutations usually result in the complete ablation 
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of dystrophin protein expression (DMD) while in frame 
mutations usually result in partial dystrophin expres-
sion and Becker muscular dystrophy (BMD), a milder 
form of dystrophinopathy [2]. Designated a rare disease, 
DMD affects 1 in 3500–7000 live male births worldwide 
[3, 4]. It is characterised by inflammation and progressive 
degeneration of skeletal and cardiac muscles [1, 5]. The 
deterioration of ambulatory function arises initially dur-
ing childhood and culminates in complete loss by early 
adolescence [6]. Further complications include scoliosis, 
contractures and cardiorespiratory decline, which over 
time contribute to death in early adulthood [4]. Thera-
pies that target the underlying genetic mutations of DMD 
such as human micro-dystrophin gene delivery [7, 8] and 
antisense oligonucleotide exon skipping therapeutics [9, 
10] offer a new avenue for a potential cure. However, long 

term clinical benefit has yet to be established for either. 
Presently, standard of care is corticosteroids (glucocorti-
coids), which aim to delay progression of the disease by 
reducing inflammation-induced muscle damage and thus 
muscle strength loss and disease progression [11].

Glucocorticoids diffuse through the cell membrane, 
binding to the cytoplasmic nuclear hormone receptor 
(glucocorticoid receptor (GR)) to form a receptor-ligand 
complex, which translocates to the nucleus [12, 13]. The 
GR supresses the pro-inflammatory nuclear factor kappa 
B (NF-κB) signalling pathway, to exert the well-known 
potent anti-inflammatory effects of steroids in a process 
termed transrepression [14, 15] (Fig. 1). NF-κB transcrip-
tional activity is chronically elevated in DMD and is rec-
ognised as a key molecular feature of disease onset and 
progression [16, 17]. As well as strong transrepressor 

Fig. 1  Comparing the mechanisms of action of standard of care (S.O.C) glucocorticoids (i.e., prednisone and deflazacort) with novel dissociative steroid 
vamorolone and fumaric acid esters (FAE). a Glucocorticoids like prednisone (PRED), diffuse through the cell membrane, bind to the cytoplasmic 
nuclear hormone receptor (glucocorticoid receptor (GR)) to form a receptor-ligand complex, which translocates to the nucleus. This complex 
indirectly binds to the glucocorticoid response element (GRE), activating target genes that are associated with broad spectrum anti-inflammation 
(trans-activation), as well as the nuclear factor kappa B (NF-κB) binding element to supress transcription of master inflammatory regulator, NF-κB 
(trans-repression). These mechanisms elicit the beneficial effects of glucocorticoids in DMD. In contrast, adverse effects are mediated through 
direct binding of the GR-ligand complex to negative GRE on other target genes, which represses their transcription (cis-repression). b Similarly, 
vamorolone binds to the GR and retains the anti-inflammatory effects characteristic of standard of care glucocorticoids, inducing transrepression 
with hardly any transactivation or cis-repression to elicit fewer adverse effects. c Therapeutic efficacy of FAEs is mediated through the dual 
activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcriptional pathway and hydroxycarboxylic acid receptor 2 (HCAR2). Nrf2 
regulates the essential cellular defence system when electrophiles/FAE bind and disrupt the interaction between Nrf2 and its negative repressor 
(Kelch-like ECH-associated protein 1 (Keap1)). This disruption allows Nrf2 to translocate to the nucleus, bind to the antioxidant response element 
(ARE) resulting in cytoprotection. Nrf2 and HCAR2 both strongly inhibit NF-κB signalling within the cellular inflammatory response. Created with 
BioRender.com
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activity against NF-κB, the receptor-ligand complex 
also directly binds the glucocorticoid response element 
(GRE) to increase the transcription of target genes (e.g. 
nuclear factor of kappa light polypeptide gene enhancer 
in B-cells inhibitor, alpha (IκBα) a protein inhibitor of 
NF-κB, annexin 1, interleukin-10 (IL-10)) to elicit broad 
spectrum anti-inflammatory action in a process termed 
transactivation  [15, 18] (Fig. 1). However, the GR recep-
tor-ligand complex can also directly bind negative GRE 
sites (nGRE) on other target genes (e.g., corticotrophin-
releasing hormone (CRH), osteocalcin (OC), proopi-
omelanocortin (POMC)) to supress gene transcription 
in a process called cis-repression [19, 20]. GR-mediated 
cis-repression is associated with the notorious adverse 
effects elicited by glucocorticoids (Fig.  1) including 
growth retardation/failure to thrive (CRH and POMC), 
osteoporosis (OC) and skin fragility (keratins) (for 
detailed reviews see [19, 20]). Although glucocorticoids 
are routinely prescribed for DMD patients, questions still 
remain as to whether some of the more severe side effects 
(e.g., excessive weight gain, cataracts, behavioural issues, 
delayed growth and osteoporosis) contraindicate the 
intended benefits. This review compares the mechanism 
of action of commonly used and novel glucocorticoids 
together with their adverse effects, against pharmaco-
logical alternatives that may offer superior therapeutic 
benefit.

Standard of Care in DMD
Corticosteroids are a class of steroid hormones that are 
released by the adrenal cortex, which include glucocor-
ticoids [21]. Glucocorticoids bind to and activate the GR 
[12], regulating several physiological processes including 
immune response [22, 23], metabolism [24], mood and 
cognitive function [25]. Pharmacological analogues (e.g. 
prednisone and dexamethasone) are often prescribed 
for auto-immune and inflammatory diseases because of 
their considerable immuno-modulatory properties [23, 
26] and have become a clinical mainstay, especially in the 
treatment of DMD. However, the therapeutic benefits 
of glucocorticoids are limited by several adverse effects 
associated with their long-term use.

The glucocorticoids prednisone/prednisolone and def-
lazacort are the gold standard of care for the treatment 
of DMD [27]. Prednisone is a synthetic, anti-inflamma-
tory glucocorticoid, which is converted to prednisolone 
in the liver [28]. Prednisone was approved by the Food 
and Drug Administration (FDA) in the 1950s and is pre-
scribed as a dual immunosuppressive and anti-inflamma-
tory agent to treat a broad range of conditions including, 
but not limited to, rheumatic [26, 29, 30], dermatologic 
[31], ophthalmic [32, 33], respiratory [34, 35], hema-
tologic [36] and gastrointestinal [37, 38] indications. 

Prednisone/prednisolone is currently used off-label for 
DMD to slow progressive muscle weakness and delay 
associated disease milestones (e.g. Gowers’ manoeuvre, 
loss of ambulation and nocturnal ventilation)  [39, 40].

In DMD, the absence of dystrophin causes muscle 
fibres to become vulnerable to contraction-induced 
damage prompting them to undergo repeated cycles 
of necrosis and regeneration until muscle mass is pro-
gressively replaced by fibrous connective tissue and fat 
resulting in muscle weakness and loss of function [41]. 
It was suggested that prednisone slows progression of 
muscle weakness [40, 42–44] and in doing so prolongs 
ambulation for 2–3 years [45–47] and improves pulmo-
nary function [48, 49]. This function seems particularly 
relevant to early intervention i.e. from 2–4  years of age 
[50]. Unfortunately, high dosage or long-term use of 
prednisone is typically accompanied by mild to severe 
adverse effects that can impact the quality of life, reduce 
patient adherence and limit overall therapeutic outcomes 
in DMD sufferers. These include: excessive weight gain 
[40, 42, 48, 49, 51], adrenal insufficiency [52], stunted 
growth [51], cushingoid appearance [48, 49], behavioural 
changes [53], decreased bone mineral density [54] and 
increased incidence of fractures [46, 55]. These adverse 
effects, in combination with the already progressive, ter-
minal nature of DMD may further place undue strain on 
patients and their families, and in particular, increase 
parental stress. For this reason, short-term intermit-
tent prednisone treatment has been investigated as an 
alternative to chronic therapy, with noticeably reduced 
adverse effects and family stress and no impact on thera-
peutic activity [40].

Deflazacort, an oxazoline derivative of predniso-
lone [56] was approved in 2017 for DMD patients aged 
5  years and older. Similar to prednisone, deflazacort is 
also used to treat a variety of other diseases based on 
its anti-inflammatory and immunosuppressive effects. 
Deflazacort shows comparable efficacy to prednisone in 
DMD patients but has been associated with improved 
outcomes such as greater delay in loss of ambulation [46, 
47, 57–59], cardiac, pulmonary and motor function [46, 
58–60] and a lower risk of scoliosis [46, 47] in contrast to 
prednisone/prednisolone [59]. Deflazacort is purported 
as a steroid alternative with fewer adverse effects and 
possibly with less risk of weight gain compared to pred-
nisone [46, 47, 58, 61]. However, in comparison to pred-
nisone it is associated with behavioural changes  [53] and 
cataract formation  [46, 47, 57, 58]. The effects of deflaza-
cort on development and bone health have been incon-
sistent. Balaban (2005), Marden (2020), Bello (2015) and 
Biggar (2001) associated deflazacort with higher frequen-
cies of growth delay and bone fractures [46, 47, 57, 58] 
whereas Mesa (1991) and Angelini (1994) reported fewer 
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effects on bone mass and fractures [60, 62] in comparison 
to prednisone, making it unclear how deflazacort affects 
bone health.

The cardiac effects of corticosteroid treatment in DMD 
patients are not well characterised, although their use 
was associated with benefits such as improved overall 
cardiac function and delayed onset of cardiomyopathy  
[63–65]. Conversely, other studies indicated that patients 
who commence corticosteroid treatment at an early 
age (< 5 years old) are more likely to develop premature 
onset of cardiomyopathy compared to those who initi-
ate treatment in later childhood as well as those who do 
not undergo treatment [66]. Long-term administration 
of glucocorticoids has also been associated with accel-
eration of protein breakdown and inhibition of protein 
synthesis [67–69], which may ultimately lead to skeletal 
muscle atrophy [70–72]. These catabolic effects appear to 
be mediated, at least in part, via modulation of insulin-
like growth factor-1 (IGF-1) signalling and pro-atrophy 
signalling through Atrogin-1 [69, 73]. Despite atrophy 
being counterintuitive to the attenuation of muscle wast-
ing, glucocorticoids are still able to ablate some clinical 
symptoms through anti-inflammatory function. While 
these studies contributed to our understanding con-
cerning the impact of corticosteroid treatment on DMD 
patients, some are disadvantaged by their short duration 
and follow-up times highlighting the need for longitu-
dinal studies to understand the full impact of long-term 
corticosteroid use. Although there is ongoing research to 
establish the most effective dose and regimens for gluco-
corticoids, safer alternatives are needed that offer a better 
benefit to side effect profile. In this regard, a novel disso-
ciative steroid has recently shown some promise.

Vamorolone: a novel dissociative steroid
Vamorolone (formerly VBP-15), is a first-in-class anti-
inflammatory steroid analogue [74] that is currently 
being investigated as a replacement for traditional stand-
ard of care glucocorticoids in DMD. The structure of 
vamorolone is similar to other glucocorticoids: it binds 
to the GR and retains the anti-inflammatory effects char-
acteristic of traditional steroids, preferentially inducing 
transrepression with little-to-no transactivation or cis-
repression (Fig. 1). As such, it is purported to elicit fewer 
adverse effects [13, 75]. Vamorolone is also a mineralo-
corticoid receptor (MR) antagonist [18], and thus has 
the potential to treat DMD-associated cardiomyopathy 
through modulation of blood pressure. Dystrophin-defi-
cient hearts are especially sensitive to damage facili-
tated through MR activation [18] although specific MR 
antagonists (e.g., spirololactone) showed no pre-clinical 
efficacy when administered with an angiotensin convert-
ing enzyme inhibitor drug in mdx mice with exacerbated 

disease [76]. The development of vamorolone for DMD 
was initiated with a Phase I clinical trial (NCT02415439) 
in healthy volunteers to assess its safety, tolerability and 
pharmacokinetics. Vamorolone was well-tolerated at all 
dose levels, with pharmacokinetic and metabolic pro-
files similar to that of prednisone but without the asso-
ciated adverse effects and safety concerns of traditional 
glucocorticoids (e.g., dexamethasone and prednisone) 
[77]. Subsequently, a Phase IIa trial in DMD boys aged 4 
to < 7  years (NCT02760277) investigated safety and tol-
erability of a range of vamorolone doses and explored 
potential efficacy over 6  months. Similar to the Phase I 
trial, Vamorolone was reported to be safe and well-toler-
ated and met the primary efficacy outcome of improved 
muscle function without evidence of adverse effects 
[78, 79]. Rather than transition back to glucocorticoids, 
all patients included in the study requested to continue 
treatment on vamorolone under the 24-month long-term 
open-label extension study (NCT03038399), which was 
recently completed [80]. In this study, treatment with 
vamorolone was associated with improvements in some 
motor outcomes and a favourable safety profile as fewer 
adverse effects were reported (less incidence of weight 
gain, behavioural changes and cushingoid appearance) 
[80] compared to those previously reported with tradi-
tional corticosteroid use. Importantly, vamorolone, did 
not repress growth, which is usually observed with SOC 
treatment. An ongoing Phase IIb randomised, double-
blind trial (NCT03439670) is designed to demonstrate 
efficacy and safety of vamorolone at different doses com-
pared to prednisone and placebo over 24  weeks. Based 
on the available data, vamorolone received orphan drug 
status in the United States and Europe and will likely 
establish itself as a safer and superior alternative to cur-
rent SOC glucocorticoids to benefit DMD patients (as 
well as patients diagnosed with other chronic inflamma-
tory diseases).

Pharmacological anti‑inflammatory alternatives for DMD
Despite some advances, an unmet clinical need remains 
for DMD disease-modifying drugs that are well tolerated 
and effectively mitigate disease progression. Steroids have 
prevailed as the only disease modifying drugs against 
DMD for more than a decade, despite their propen-
sity to promote muscular atrophy [70–72]. Presumably, 
their intense anti-inflammatory function is more influ-
ential to attenuate muscle wasting than their atrophic 
effect progresses it [81]. Particularly, chronic inflamma-
tion is a driver of fast type II muscle fibre loss, which is 
pronounced in DMD [82]. It is possible that other potent 
anti-inflammatory drugs could have equivalent, if not 
greater, beneficial effects on mitigating DMD without the 
associated side-effects—particularly those pertaining to 
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muscle atrophy, which is clearly counterintuitive in DMD 
treatment.

Many anti-inflammatory drugs have been tested pre-
clinically (typically in the mdx mouse) and while a few 
have recently undergone clinical testing (the covalently-
linked salicylic acid and docosahexaenoic acid small 
molecule, edasalonexent/CAT-1004: NCT02439216, 
NCT03703882 [83, 84]; and the tetracosactide (cosyn-
trophin) formulation synthetic melanocortin receptor 
agonist, MNK-1411: NCT03400852 [85]), their clinical 
development was terminated due to lack of efficacy and/
or recruitment issues. There are a variety of other potent 
anti-inflammatory drugs on the market that are yet to be 
investigated in DMD and that could be therapeutically 
advantageous compared to the glucocorticoids. Fuma-
ric acid esters (FAEs) such as dimethyl fumarate (DMF), 
monomethyl fumarate (MMF) and diroximel fumarate 
(DRF) are well-known for their anti-inflammatory and 
immuno-modulatory effects [86–89]. FAEs are pres-
ently approved for several indications including psoria-
sis and Remitting-Relapsing Multiple Sclerosis (RRMS) 
[90–93]. These drugs display robust safety profiles and 
comprehensive clinical utility for diseases characterised 
by inflammation and oxidative stress, and both of these 
are notorious drivers of DMD  [94–102]. The therapeutic 
efficacy of FAEs appear to be mediated through the dual 
activation of the nuclear factor erythroid 2-related factor 
2 (Nrf2) transcriptional pathway [88, 103–105] and the 
hydroxycarboxylic acid receptor 2 (HCAR2) [106, 107] 
(Fig. 1). Nrf2 regulates the essential cellular defence sys-
tem that counteracts potentially harmful stimuli through 
the upregulation of antioxidants and cytoprotective 
response genes [108, 109]. Both Nrf2 and HCAR2 also 
strongly inhibit NF-κB signalling of the cellular inflam-
matory response [106, 110, 111]. Over the last decade, 
several Nrf2 activating drugs have been developed and 
trialled in both clinical [112–117] and pre-clinical [118–
121] settings highlighting the broad therapeutic utility of 
targeted Nrf2 activation against diseases associated with 
inflammation and oxidative stress [122]. There are many 
pharmacological as well as nutraceutical activators of 
Nrf2 including those approved for use as disease modify-
ing treatments (DMF, MMF, DRF, ursodiol and oltipraz). 
Whilst no clinical trials have investigated FAEs for their 
dual Nrf2/HCAR2 activator action in DMD patients at 
present [123], the synthetic flavonone, epicatechin, which 
has strong anti-inflammatory properties [124, 125] and is 
an Nrf2 activator [126] (in addition to several other pur-
ported mechanisms of action such as myostatin suppres-
sion), has tested favourably in the mdx mouse [127, 128] 
and is in clinical development for BMD (NCT04386304) 
[129] (but not DMD). Given the safety and efficacy of 
FAEs and targeted Nrf2 activators established in other 

studies, further translational investigations should be 
undertaken to assess the therapeutic potential of novel 
and repurposed modulators of DMD pathology as corti-
costeroid alternatives. This is particularly relevant since 
Nrf2 activation has additional benefits beyond the anti-
inflammatory activity of glucocorticoids, which include 
energy re-balancing through mitochondrial biogenesis 
as well as muscle regeneration and repair [123]. Through 
multiple mechanisms, FAEs can also modify a more 
extensive cytokine profile than glucocorticoids [130].

Conclusion
In DMD, glucocorticoids represent the most frequently 
used drug class for the management of symptoms. 
However, the current standard of care (prednisone/
prednisolone or deflazacort) acts non-selectively [131] 
contributing to many associated complications which 
impact quality of life. More recently, research has focused 
on novel selective, dissociative steroids, such as vam-
orolone [74, 77–79], which may provide a better alter-
native by reducing steroid-associated adverse effects. 
Although novel dissociative steroids may be a superior 
substitute to glucocorticoids, other potential therapeu-
tics should be explored. Repurposing or developing novel 
pharmacological therapies that are capable of addressing 
the many downstream consequences of dystrophin defi-
ciency, such as FAEs and novel Nrf2 activators, respec-
tively, may be a viable option to improve patient quality 
of life without severe adverse events like those observed 
with corticosteroid use. Since they activate alternative 
receptors/signalling pathways to glucocorticoids, there is 
also scope for combined FAE and corticosteroid regimens 
that could synergistically amplify therapeutic potential.
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