
QOS-AWARE WEB SERVICE DISCOVERY,
SELECTION, COMPOSITION AND APPLICATION

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Institute for Sustainable Industries and Liveable Cities

Victoria University

by

Sarathkumar Rangarajan

August 2020

© 2020 Sarathkumar Rangarajan

ALL RIGHTS RESERVED

ABSTRACT

Since the beginning of the 21st century, service-oriented architecture (SOA)

has emerged as an advancement of distributed computing. SOA is a framework

where software modules are developed using straightforward interfaces, and

each module serves a specific array of functions. It delivers enterprise applica-

tions individually or integrated into a more significant composite Web services.

However, SOA implementation faces several challenges, hindering its broader

adaptation. This thesis aims to highlight three significant challenges in the im-

plementation of SOA.

The abundance of functionally similar Web services and the lack of integrity

with non-functional features such as Quality of Service (QoS) leads to the diffi-

culties in the prediction of QoS. Thus, the first challenge to be addressed is to

find an efficient scheme for the prediction of QoS. The use of software source

code metrics is a widely accepted alternative solution. Source code metrics are

measured at a micro level and aggregated at the macro level to represent the

software adequately. However, the effect of aggregation schemes on QoS pre-

diction using source code metrics remains unexplored. The inequality distri-

bution model, the Theil index, is proposed in this research to aggregate micro

level source code metrics for three different datasets and compare the quality of

QoS prediction. The experiment results show that the Theil index is a practical

solution for effective QoS prediction.

The second challenge is to search and compose suitable Web services with-

out the need for expertise in composition tools. Currently, the existing ap-

proaches need system engineers with extensive knowledge of SOA techniques.

A keyword-based search is a common approach for information retrieval which

does not require an understanding of a query language or the underlying data

structure. The proposed framework uses a schema-based keyword search over

the relational database for an efficient Web service search and composition. Ex-

periments are conducted with the WS-Dream data set to evaluate Web service

search and composition framework using adequate performance parameters.

The results of a quality constraints experiments show that the schema-based

keyword search can achieve a better success rate than the existing approaches.

Building an efficient data architecture for SOA applications is the third chal-

lenge as real-world SOA applications are required to process a vast quantity of

data to produce a valuable service on demand. Contemporary SOA data pro-

cessing systems such as the Enterprise Data Warehouse (EDW) lack scalability.

A data lake, a productive data environment, is proposed to improve data in-

gestion for SOA systems. The data lake architecture stores both structured and

unstructured data using the Hadoop Distributed File System (HDFS). Exper-

iment results compare the data ingestion time of data lake and EDW. In the

evaluation, the data lake-based architecture is implemented for personalized

medication suggestion system. The data lake shows that it can generate patient

clusters more concisely than the current EDW-based approaches.

In summary, this research can effectively address three significant challenges

for the broader adaptation of SOAs. The Theil index-based data aggregation

model helps QoS prediction without the dependence on the Web service reg-

istry. Service engineers with less knowledge of SOA techniques can exploit a

schema-based keyword search for a Web service search and composition. The

data lake shows its potential to act as a data architecture for SOA applications.

DOCTOR OF PHILOSOPHY DECLARATION

I, Sarathkumar Rangarajan, declare that the PhD thesis entitled QOS-aware

Web service discovery, selection, composition and application is no more than 100, 000

words in length including quotes and exclusive of tables, figures, appendices,

bibliography, references and footnotes. This thesis contains no material that has

been submitted previously, in whole or in part, for the award of any other aca-

demic degree or diploma. Except where otherwise indicated, this thesis is my

own work.

Signature Date 01/08/2020

5

ACKNOWLEDGEMENTS

I owe my gratitude to all those who have made this thesis possible. First and

foremost, I sincerely thank my principal supervisor, Prof. Hua Wang, for allow-

ing me to embark on a PhD under his guidance. Thank you for believing in

me and for accepting me as your doctoral student. Thank you for sharing your

knowledge, and for giving me your continuous support, kindness, understand-

ing, and patience. Thank you for allowing me to explore my ideas and to choose

the specific research topic that I wanted to pursue. Also, thank you for giving

me the financial support such as the ARC discovery project stipend and the tu-

ition fee waiver at crucial times. Without your help, I would not have been able

to write and submit my research papers, and I could not have attended the con-

ferences and published my research in the Q1 journal. Thank you for sharing

your excellent professional and personal advice over these years, and for being

there with me in times of sadness and happiness, and in failure and success. A

big thank you from the bottom of my heart for making me what I am today.

I am particularly grateful to my associate supervisor Dr Huai Liu for your

kind support, valuable advice and encouragement throughout my PhD can-

didature. Thank you for giving your valuable time to me during our regular

weekly meetings and for correcting my work. Even though you left VU, you

extended your help to improve the quality of my papers and thesis. Thank you

for all the support and for being a very kind mentor. I could not have possi-

bly asked for more. I am also grateful to Prof. Yanchun Zhang, head of our

research group, for your support and enlightenment during our group meet-

ings. I would also like to extend my thanks to Professor Yuan Miao, Head of

Information Technology, for his encouragement and support. Thank you for

the motivation to present my research at the VU Open Day event. Thank you,

6

Professors, as the guidance from both of you was invaluable to me. Thank you,

Dr Rui Zhou and Dr Siuly, for your insightful thoughts that significantly con-

tributed to my research. I would like to thank Dr Khandakar Ahmed for offering

me the sessional position at the university, which I was delighted to accept.

A big thank you to my best friend, Dr Sudha Subramani, for your guidance

and encouragement regarding the PhD program admission into VU. Without

your help, I may not have pursued my dream here. Thanks for supporting me

in my early stages of my PhD in terms of research as well as for assistance with

settling in Melbourne. Thank you for being my friend for the past ten years

since we started our master’s together. I am pleased to thank Sudha’s parents,

Aunty Latha and Uncle Subramani, for considering me as a part of their family

and for giving me their unconditional love. I would like to thank my friends

Hassan, Shekha, Ujjwal, Rubina, Khalid, Ravinder and Dinesh for supporting

me and being there for me whenever I needed help.

I don’t think a simple thank you is enough for the things my lovely wife

Phavithra Manoharan has done for me. I am very grateful that she accepts me

for the way I am and for supporting me through the tough times. For everything

I achieved throughout my PhD candidature, I owe this to you, and I am very

grateful to you. Thank you for bringing our lovely beautiful angel Niralya into

this world.

Last but not the least, I thank my family for their unconditional love and

generous support. Thank you, my beloved sister, Janu, for your love and being

there for Niralya all these years. I am forever grateful to my parents, who sacri-

ficed their lives for me and believed the struggle pays off in the future. I would

like to express my love and gratitude to my dear Appa who believed in me that

I will achieve in my life. Thank you, Amma, for all your effort and dedication in

7

making me dream big. Thank you for taking care of Niralya in India right after

her birth until now and providing her with a memorable childhood. Finally,

thank you, my lovely beautiful daughter, Niralya Sarathkumar. Though I could

not spend much time with you in India and I missed all your childhood fun as

we were apart, our video calls were the fuel which kept me running throughout

this time.

8

I dedicate this thesis to my beloved parents for living their whole life just for me.

I also dedicate this thesis to my dear wife and my sweet baby girl Niralya.

PUBLICATIONS

Based on this research work, the following articles, have been published or

submitted in Internation Journals and conferences.

1. Rangarajan, S., Liu, H., & Wang, H. (2020). Web service QoS prediction

using improved software source code metrics. Plos one, 15(1), e0226867.

2. Rangarajan S., Liu H., Wang H., Wang CL. (2018) Scalable Architecture for

Personalized Healthcare Service Recommendation Using Big Data Lake.

In: Beheshti A., Hashmi M., Dong H., Zhang W. (eds) Service Research and

Innovation. ASSRI 2015, ASSRI 2017. Lecture Notes in Business Informa-

tion Processing, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-

319-76587-7_5.

3. Rangarajan, S., & Chandar, R. K. (2017). Qos-based architecture for dis-

covery and selection of suitable Web services using non-functional prop-

erties. EAI Endorsed Transactions on Scalable Information Systems, 4(12).

iii

TABLE OF CONTENTS

Doctor of Philosophy Declaration . 5
Acknowledgements . 6
Publications . iii
Table of Contents . iv
List of Tables . vii
List of Figures . viii

1 Introduction 2
1.1 Service-Oriented Architecture . 3
1.2 Motivations and problems . 6

1.2.1 Web service discovery . 6
1.2.2 Selection and composition of Web service 10
1.2.3 Application of SOA . 13

1.3 Research Questions . 15
1.3.1 Research Question 1 . 15
1.3.2 Research Question 2 . 17
1.3.3 Research Question 3 . 18

1.4 Thesis Contributions . 20
1.5 Structure of the Thesis . 21

2 Literature review 22
2.1 Service Oriented Architecture . 22

2.1.1 Web service request message 23
2.1.2 Data structure for Web service information 24
2.1.3 Web service discovery using tmodel 25
2.1.4 Web service Selection . 26
2.1.5 Web service discovery using QoS 28

2.2 Quality of Service prediction . 29
2.2.1 Collaborative Filtering based prediction 30
2.2.2 Software source code metrics 36
2.2.3 Correlation between source code metrics and QoS 37
2.2.4 Software metrics aggregation 38

2.3 Web service composition . 38
2.4 Keyword-based search . 40

2.4.1 Keyword-based search in Web services 44
2.4.2 Selection and composition of Web services 46

2.5 Application of SOA . 49
2.5.1 Web service in Big data analytics 49
2.5.2 Healthcare applications using SOA 51
2.5.3 Datalake for Service oriented Architectures 52
2.5.4 Chapter summary . 54

iv

3 Improved software source code metrics to predict Web service QoS 55
3.1 Proposed Work . 56

3.1.1 Research Framework . 56
3.1.2 Source code metrics aggregation 58
3.1.3 Feature reduction & selection 58
3.1.4 Machine learning . 60

3.2 Experiments & Analysis of results 61
3.2.1 Research Questions . 61
3.2.2 Variables and Objects . 62
3.2.3 Empirical environment . 64
3.2.4 Analysis of results . 72
3.2.5 Answers to the research questions 89

3.3 Chapter summary . 90

4 Keyword-based Web service search and ranking 91
4.1 Keyword search . 91

4.1.1 Schema-based keyword search 92
4.2 System Architecture . 95

4.2.1 Data Preprocessing . 95
4.2.2 Service data retrieval engine 97
4.2.3 Candidate network generator 98
4.2.4 Execution Algorithm . 99
4.2.5 Evaluation metrics . 102

4.3 Experiments & analysis of results 102
4.3.1 Research questions . 102
4.3.2 Variables and objects . 104
4.3.3 Analysis of results . 107

4.4 Chapter summary . 114

5 Scalable Architecture for Personalized Healthcare Service Recommen-
dation using Big Data Lake 115
5.1 Enterprise Data Warehouse . 115
5.2 Data lake . 116
5.3 Personalized Healthcare . 117

5.3.1 Role of the Data Lake in Healthcare 118
5.3.2 Research Questions . 119

5.4 Contribution of the research . 120
5.5 Proposed Data Lake Architecture 121

5.5.1 Data ingestion layer . 121
5.5.2 Data governance layer . 123
5.5.3 Security Layer . 126
5.5.4 Analytics layer . 126

5.6 Experiments . 128
5.6.1 Variables and objects . 129

v

5.6.2 Objects . 131
5.6.3 Empirical environment . 131

5.7 Experimental Results . 132
5.7.1 Reduction of Data Ingestion Time 132
5.7.2 Removal of Data Silos . 134

5.8 Chapter summary . 135

6 Conclusion & Future directions 136

Bibliography 142

vi

LIST OF TABLES

3.1 PCA results for object-oriented metrics 59
3.2 PCA results for Baski & Misra metrics 59
3.3 PCA results for Sneed’s metrics 59
3.4 RMSE & MAE comparison for different sets of metrics for mod-

ularity . 84

5.1 Comparison of precision value d for DW and the data lake 135

vii

LIST OF FIGURES

1.1 Service Oriented Architecture . 4

3.1 The proposed framework . 57
3.2 Number of Java files extracted from the available WSDL 65
3.3 BM metrics vs Modularity prediction 73
3.4 CKJM metrics vs Modularity Prediction 74
3.5 Prediction model for Modularity using SM metrics 75
3.6 Modularity prediction results for SM-CKM metrics 76
3.7 Modularity prediction results with BSM-CKM metrics 77
3.8 Modularity prediction results with BSM-SM metrics 78
3.9 Modularity prediction vs actual for all metrics 79
3.10 Testability prediction results with BSM metrics 80
3.11 Testability prediction vs actual for all metrics 81
3.12 Testability prediction results with Sneed’s metrics 82
3.13 Reusability prediction results vs actual for all metrics 83
3.14 Reusability prediction results vs actual for all metrics 84
3.15 Reusability prediction results vs actual for Sneed’s metrics 85
3.16 Maintainability prediction results with BSM metrics 86
3.17 Maintainability predictioin results vs actual for all metrics 87
3.18 Maintainability prediction results with Sneed’s metrics 88

4.1 Schema graph for publication database 93
4.2 Schema graph for Movies database 94
4.3 Architecture for Schema-based keyword search 96
4.4 Response time(in seconds) for various keywords with and with-

out QoS . 108
4.5 Success rate(%) for various keywords with 1000 services in

repository . 109
4.6 Success rate(%) for various keywords with 2000 services in

repository . 109
4.7 Success rate(%) for various keywords with 3000 services in

repository . 111
4.8 Success rate(%) for various keywords with 4000 services in

repository . 111
4.9 Success rate(%) for Flight AND Hotel keyword for different no.

of services . 112
4.10 Success rate(%) for Flight AND Taxi keyword for different no. of

services . 112
4.11 Success rate(%) for Hotel AND Taxi keyword for different no. of

services . 113
4.12 Success rate(%) for Flight AND Taxi AND Hotel keyword for

different no. of services . 113

viii

5.1 Data lake architecture . 122
5.2 Workflow of YARN . 125
5.3 Comparison of data ingestion time of the DW and the data lake . 133

ix

LIST OF ABBREVIATIONS

SOA Service-Oriented Architecture

QoS Quality of Service

EDW Enterprise Data Warehouse

HDFS Hadoop Distributed File System

SOAP Simple Object Access Protocol

WSDL Web Services Description Language

UDDI Universal Description Discovery and Integration

DAML Digital Asset Modeling Language

SLA Service Level Agreement

IoT Internet of Things

MTJNT Minimal Total Joint NeTwork

SBS Services Based Systems

IR Information Retrieval

KS3 Keyword Search for Servicebased Systems

ETL Extract-Transform-Load

CN Candidate Networks

tmodel Technical Model

CF Collaborative Filtering

SVD Single Value Decomposition

MF factorization matrix

LACF location-aware collaborative filtering

x

APC average parameter count

RFC response for the class

ATC abstract type count

CBO coupling between the objects

LOCM lack of cohesion among the methods

VTC void type count

CAM cohesion among the methods of class

LCOM3 lack of cohesion in methods Henderson-Sellers version

TPC total parameter count

EPM empty parameters methods

DIT depth of inheritance tree

NOC number of children

WMC weighted method per class

RFC response for class

IUC interface usage cohesion

SQL Structured Query Language

API Application Programming Interface

PSR Pre-Computing Solution in RDBMS

AI Artificial Intelligence

CSTE cost-sensitive temporally expressive

SCP supply chain planning

IP integer programming

xi

ZB Zetta Bytes

EHR electronic health records

RFID radio frequency identification

CARE Collaborative Assessment and Recommendation Engine

CFDRA collaborative filtering-based disease risk assessment

PTaaS physical therapy-as-a-service

PLSF personal lake serialization format

PCA principal component analysis

MAE Mean absolute error

RMSE root mean squared error

RDBMS relational database management system

SEO search engine optimisation

MPFS Maximum Possible Future Score

1

CHAPTER 1

INTRODUCTION

Web services are scalable, self-descriptive, easily integrated software pro-

grammes that do not rely on any programming language platform. One can

advertise, search, and consume Web services across the internet with the use of

a series of protocols including Simple Object Access Protocol (SOAP), Web Ser-

vices Description Language (WSDL) and Universal Description Discovery and

Integration (UDDI) [1]. The Web service providers encapsulate features and

information for the application and make them accessible via traditional pro-

grammatic interfaces. Service-oriented architecture (SOA) aims to allow busi-

ness applications to be built using independently designed and distributed Web

services. The benefit of SOAs is that they allow the dynamic discovery and in-

corporation of Web services at runtime, thereby understanding the autonomic

characteristics of system versatility and adaptivity. However, the existing main-

stream strategies only partly resolve the concept of SOA. These strategies fo-

cus on static user interface specifications, and other general non-functional ser-

vice attributes to publish and identify Web services. This situation creates three

problems. Firstly, the consumer does not have any assistance in selecting a tar-

get service from the multiple services that appear to perform the same function.

Secondly, the development of a composite Web service is highly complicated

and is a significant obstacle to the further and broader use of SOA. Third, the

data architecture for SOA applications lacks the potential to unearth its capabil-

ity.

2

1.1 Service-Oriented Architecture

SOA is a strategy that fills the gap between enterprise and IT and also aims to

make processes stable. Web service is the foundation of SOA. Businesses can

save time and resources by creating and reusing Online services. Web services

also facilitate the outsourcing of certain parts of an application to an external

provider. Web services can make it possible to utilise the remote vendors for

outsourcing some aspects of an application. Analysis has shown that the intro-

duction of SOA creates economic value within an organisation.

Web services are defined as a programmable components with standardized

interface descriptions developed to support business-to-business inter-operable

communications via standard communication protocols [2]. Web services are

loosely coupled application programs designed to help business-to-business in-

teraction over the web using standard protocols [3]. Web services are developed

and made public in web registries by development companies. Users can dis-

cover, configure, and orchestrate the services according to their business needs.

The most widely used principles in the IT industry for defining and locat-

ing Web services are WSDL and UDDI. Mcllarith et al. suggests Web services

markup using the Digital Asset Modeling Language (DAML) family of Seman-

tic web markup languages [4]. This markup enables the creation, execution,

design and interoperation of a wide range of agent technologies for automated

Web services. Service properties and functions declarative advertising allow au-

tomated product discovery. Declarative APIs provide automated service execu-

tion for individual services. Besides, automatic composition and interoperation

of the service use declarative prerequisites and consequences specifications.

3

Figure 1.1: Service Oriented Architecture

SOA, as depicted in Figure 1.1, is an architecture paradigm which focuses on

building systems through the integration of various Web services to construct

the complete system. SOA has emerged as a medium for using Web services to

process vast amounts of information and knowledge to provide essential ser-

vices and data to users [5]. The basic unit for SOA is Web service. The user

enters their search keywords and QoS preferences for their target SOA. The

SOA middleware shown in the architecture is responsible for Web service com-

position and execution. The Service Composition & Execution layer provides

automatic service composition approaches. This layer is also in charge of the

execution control of these composite services. A critical aspect of this layer is

its resilience to failure and its adaptation to changes in the system. The final

user applications are built from services and executed in the Service Composi-

tion and Execution layer. In most cases, the composite SOA application acts as

a data source for data analytics. Artificial intelligence and machine learning-

based data analytic techniques can be used to extract data from these SOA ap-

4

plications to produce valuable insights.

The frequently discussed ’planning a vacation’ scenario is used as a guide

for a more precise understanding of the sections that follow. In this scenario, a

proposal from a travel agent was envisaged. This application aims to take the

place of a human travel agent, enabling the consumer to make more informed

decisions and book a total package. This application has the functions to en-

able airlines, hotels, charters and taxis for airports to be queried and booked.

Weather forecasts, hotel reviews and weather and currency orders may be in-

cluded. All these will be achieved in a consumer application through the com-

position of relevant services.

It would probably be free to request the booking for currency services, as

the benefit would come from actual reservations or transactions. If this was the

case, the results could be aggregated from different providers (selecting as many

services as possible to provide the full coverage). However, if these resources

are not free, then the impact of search aggregations will be reduced. Note that

QoS arrangements for publicly available services (and this is perhaps one rea-

son for first of all rendering such services free) are unlikely to be provided by

providers. When an agreement is reached, it will be of paramount interest to

keep the search time to a minimum and to agree on acceptable standards of

usability.

Reservation speed is another significant criterion of the customer. It is possi-

ble that the company will add a further clause to this in the arrangement of the

Service Level Agreement (SLA), promising to have response times within those

limitations but only if the server load is below a certain amount. In this case,

QoS measurements and SLA conformance testing are important for the third

5

party, since in this situation consumers can not trust the vendor to correctly

record their server load. Due to the combination of various resources to operate

as an individual SOA, the collection of data from multiple sources is required

in different formats. This situation illustrates the need for a framework for data

management to manage and store data from multiple sources in one place for

accelerated processing.

1.2 Motivations and problems

1.2.1 Web service discovery

Recent advances in the Internet of Things (IoT) have given significant oppor-

tunities for Web services with thin clients. As such, many functionally similar

Web services are available, and their number is continuously increasing [6].

Since there are several functionally similar Web services, a search using func-

tional criteria is no longer enough [7]. Thus, non-functional properties such

as response time and throughput, have become vital criteria to discover, select,

recommend and orchestrate Web services [8].

Issue

QoS data available at Web service repositories are not reliable for various rea-

sons. Therefore, the prediction of QoS data is necessary to discover the most

suitable Web service. However, most of the existing QoS prediction methods do

not calculate the quality parameters from a macro level.

6

Proposed solution

As a response to these challenges, this research proposes an efficient method-

ology to calculate source code metrics using micro level software components.

The inequality measure, the Theil index, is employed as an aggregation model

for Web services at a micro level.

The success of cloud computing depends significantly on the QoS provided

at wireless terminals with restricted computing and storage space, such as mo-

bile phones [9, 10, 11]. Web services are of utmost importance amongst various

types of cloud services [6]. Moreover, every day the number of Web services

is increasing rapidly. According to the “programmableweb.com” open-source

Web service repository, 22,367 Web services are available. There are several

functionally similar services available due to the abundance of Web services

[12, 13]. Therefore, searching for a Web service using a functional feature is no

longer valid. Non-functional properties such as QoS have consequently become

a pivotal criterion in the discovery, selection, recommendation and orchestra-

tion of Web services [8].

Several techniques for selecting QoS-driven Web services were proposed and

successfully used in SOA. The developers made QoS values accessible on repos-

itories for Web services. Due to the following real-world scenarios, it is difficult

to use the QoS data available at service repositories:

1. Web service repositories turn into an elaborate hierarchy in various sit-

uations. Therefore, end-users take quite a lot of time to go through an

enormous volume of QoS records [14].

2. Public service repositories such as Universal Description Discovery and

7

Integration (UDDI) may hold untrustworthy QoS information due to a

lack of monitoring. Thus, they might list unavailable services and out-

dated QoS information in response to a user’ query [5].

3. Commercial Web services require users to pay a subscription fee. Thus, if

a user wants to test a Web services by themselves, they end up paying a

considerable amount of money. It is not possible in practice for a user to

monitor and collect QoS data for all the functionally similar Web services.

4. Some public repositories collect feedback from users to acquire QoS data.

However, network and geological factors influence QoS information. As

the Internet is dynamic and vulnerable, it is not possible to get the same

QoS values for different users from diverse locations for a particular ser-

vice [15, 16].

Even though an SLA contains the QoS parameters of a Web service, users

are still unsure as to the quality it achieves. Indeed, a fundamental pre-request

is to predict the QoS values instead of using the data available at repositories.

Coscia et al. found a statistically significant and robust relationship among sev-

eral conventional source code-level metrics and the catalogue of WSDL level

service metrics [17]. Observing software quality metrics is a standard method-

ology to evaluate software maintainability. Each Web service comprises many

micro level software components such as class, method and package. There-

fore, source code metrics are calculated at the micro level and aggregated into

the macro level to represent the entire software efficiently. Some of the stan-

dard practices in software development industries for aggregating source code

metrics and its disadvantages are as follows [18]:

• Simple average: Calculating the mean of metric results for individual el-

8

ements of a system might not be efficient enough to represent it because

it does not express the standard deviation and may mitigate the effects of

unwanted values in the generalized result. In other words, the average

function simply smooths the results but does not reflect reality.

• Weighted average: Weight factor used to differentiate less important com-

ponents from critical components. However, defining the weight is very

vital and may introduce problems of its own.

• Statistical aggregation methods: Central tendency measures such as mean,

median or standard deviation cannot be trusted due to the highly skewed

distribution nature of software.

The impact of aggregation schemes for source code metrics on Web service

QoS prediction remains unexplored. A hypothesis framed as the metrics aggre-

gation scheme plays a vital role in the high correlation between many param-

eters at the file-level. Furthermore, the performance of QoS prediction models

may be negatively affected by the potential loss of information due to summa-

tion and aggregation.

This research investigates the impact of source code metrics aggregation on

the correlation between QoS attributes and source code metrics. Our investi-

gation will be based on three different sets of quality metrics, namely object-

oriented quality metrics proposed by Chidamber et al. [19], complexity metrics

proposed by Sneed [20] and the maintainability suite by Baski and Misra [21].

9

1.2.2 Selection and composition of Web service

The quality parameters of each Web service aggregate to calculate the quality of

a Web service composite. If different execution paths are available from input

service to output service, the one with the shortest execution time determines

the response time of the framework.

Issue

The construction of a composite Web service is highly complicated and poses

a significant obstacle to the SOA’s further and broader use. To non-experts,

relatively simple tools developed by SOA vendors like Oracle BPEL Process

Manager and IBM System Designer are still too difficult to use.

Proposed solution

This research proposes a relational database-based keyword search to improve

the selection and ranking of Web services. Service information can be stored

in relational databases as tuples, where service composability information is

stored as key references between tuples. A foreign key reference needs to be

stored when the output of service used as input for another service. For a given

set of keywords, given a relational database storing services and their relations,

a set of connected tuples (Minimal Total Joint NeTwork (MTJNT) or candidate

network) is required so that all keywords are covered, and the highly ranked

MTJNT is the result.

In recent years, software development models have evolved from a

10

component-based to a service-based model, due to the widespread adoption

of SOA and its new technologies [22, 23]. Many companies have increasingly

adopted the service-oriented model to build their infrastructure. Not only does

the SOA approach reduce operational costs, time and resources, it also fosters

the reusability, stability and efficiency of the resulting systems [24]. A signifi-

cant number of software systems were built via the discovery and composition

of Web services provided by different vendors [25, 26]. Value-added services

(composite or mash-up) and other such services- based systems (SBSs) devel-

oped using these technologies [27].The development and popularity of the e-

business, e-commerce, and cloud business model helped the growth in the use

of Web services. Online Web service databases such as ProgrammableWeb and

Web services.seekda.co are showing a rapid increase in the number of published

Web services in recent years [28, 29, 30].

Typically, the construction of an SBS takes three steps: 1) system planning to

define the functions required for SBS implementation; 2) discovery of the service

and identification of candidate services for each functionality, and 3) selecting a

service from each pool of candidate services to attain the system quality require-

ment. This research concentrates on discovering a range of candidate services

and a service registry that can perform a particular task and generate an efficient

composite.

Building an SBS is very demanding and had been a significant barrier to

broader applications of SOA. The simple tools built by SOA vendors, such as

Oracle BPEL Process Manager and IBM Process Designer, are also too compli-

cated, and the non-expert requires comprehensive training. The need to find

solutions for systems engineers with no extensive knowledge of system design,

11

service discovery and selection activities has rapidly increased [31, 32].

Keyword search in Service discovery

A keyword-based search has become very popular over the past decade, namely

the widely used information retrieval (IR) model for text and web databases.

Service registries have recently begun to use the keyword search tool to find

services with similar functionalities (e.g. keyword definition of a task) [33]. No

existing keyword search techniques can be effectively used to find multiple Web

services to build an SBS.

There are two approaches to keyword searches over relation databases [34].

The first method converts the database to a graph for the search. The edges

of the graph refer to foreign key relations. The Keyword Search for Service-

based Systems (KS3) is a graph-based keyword search for SOA proposed by He

et al. [35]. The KS3 method combines and automates system planning, ser-

vice discovery and service selection for SBSs. KS3 enables system engineers to

lookup services by entering only a few keywords describing the required sys-

tem tasks. This keyword query, i.e. a keyword query representing the system

tasks needed, is modelled as a problem to optimise constraints and uses the in-

teger programming technique to find systems solutions. However, when the

Web service repository size is increasing, KS3 is not able to improve its perfor-

mance. KS3 suffers from reduced performance in processing queries on reposi-

tories with an abundance of services. It takes up to 100s for queries on a list of

20,000 Web services [35]. He et al., therefore advanced KS3 and proposed KS3 +

by incorporating dynamic programming principles to answer the queries [36].

12

A schema-based approach is the second category of keyword-based searches

using a relational database. A schema-based keyword search approach creates a

candidate network using a database schema. Since this approach involves using

a database schema to create SQL queries to locate l-keyword query structures, it

is called a schema-based approach. Relational databases store data in the form

of columns, tables and the primary key to foreign key relations. There are two

main steps in the schema-based approach. The first is how to generate a list

of SQL queries that can extract all the structures within RDP tuples, and the

second is how to evaluate the structures efficiently. The existing approaches for

RDBMS querying are very inefficient because they obtain all the tuple trees with

all the keywords.

1.2.3 Application of SOA

SOA defined as an open, agile, extensible, federated, composable architecture. It

comprised of autonomous, Quality of Service (QoS)-capable Web services from

a diverse vendor. Web service is an interoperable, discoverable, and potentially

reusable services. Various enterprises increasingly adopt SOA as an enterprise

information technology (IT) architecture. Although there is an increasing trend

in the adoption of SOA in other sectors of the economy, its implementation

in health care has been relatively slow. According to a survey of 2,165 com-

panies conducted by Forrester Research, SOA adoption in healthcare and the

public sector remains low, whereas utilities, financial institutions and insurance

companies show a high rate of acceptance and implementation. In the last two

decades, affordable smart and mobile devices, and digital services enriched our

living and working environments. The interactions with digital services and de-

13

vices will generate a vast amount of data. On the other hand, it is of paramount

importance to collect and analyse the data and then turn them into actionable

knowledge to recommend suitable services to the client.

Issue

Contemporary IT infrastructure provides many data handling systems such as

the enterprise data warehouse (EDW). Still, there is a lack of scalability because

the EDW data management system is for well-known queries and defined poli-

cies. Traditional approaches, such as data warehouses, require the data set to be

processed at the time of storage using extract-transform-load (ETL) processes.

However, ETL processes are expensive. While these traditional ETL approaches

provide structured and refined data, which is easier to analyze and query, this

benefit is outweighed by high cost and time-to-market considerations.

Proposed solution

A data lake, an effective data environment, has been proposed as an alternative

solution. Gartner.com formally defines a data lake as a collection of storage in-

stances of various data assets additional to the originating data sources. These

assets are stored in a near-exact, or even exact, copy of the source format. The

purpose of a data lake is to present an unrefined view of data to only the most

highly skilled analysts. It helps them explore their data refinement and analysis

techniques independent of any of the system-of-record compromises that may

exist in a traditional analytic data store (such as a data mart or data warehouse).

The data lake is a schema-on-read data architecture. Each data entity in the

14

lake is associated with a unique identifier and a set of extended metadata. The

consumers can use purpose-built schemas for query-relevant data, which will

result in a smaller collection of data that can be analysed to help answer a con-

sumer’s question. A data lake can be connected to various target Web services

to ingest data into the data architecture. An SOA for a clinical decision-making

system composed using a certain number of health care Web services and data

lake as a data architecture.

1.3 Research Questions

As discussed earlier, the current Web service technologies are insufficient in sup-

porting dynamic SOA. Based on the motivations, the following research ques-

tions are formulated for this research.

1.3.1 Research Question 1

Can we improve the performance of Web service discovery through QoS-

aware metrics?

This research tackle this question by formulating the following more specific

questions for a detailed investigation in Chapter 3:

15

Sub Research Question 1.1: Will the proposed methodology improve the pre-

dictability of source code metrics?

A software system is not a single stand-alone system to provide a solution. Usu-

ally, it comprises many subordinate pieces of code such as class, method or func-

tion. Therefore, the software metrics must be calculated at the micro level and

should be aggregated to the macro level to represent the source code metrics of a

software system. Since software code metrics are highly skewed values, it is in-

appropriate to use simple statistical aggregation (mean, median, etc.) methods.

The proposed inequality distribution models are very successful in economic

data, which is as skewed as software source code data.

Sub Research Question 1.2: Can we predict the quality of service properties

of Web services using source code metrics?

Given that Web service quality information in repositories is not stable and

trustworthy, there is a need to predict the quality parameters. During the soft-

ware development life cycle, developers extract source code metrics to evalu-

ate maintainability to reduce future issues with the system. Thus, source code

metrics and QoS properties are correlated. This research use the correlation be-

tween source code metrics and QoS to predict the QoS of Web service. Proposed

framework uses linear regression-based Machine learning to create a prediction

model.

16

1.3.2 Research Question 2

Can we search and composite QoS-aware service execution in the dynamic,

unpredictable Web services?

To answer the research question, further sub- research questions are formu-

lated as follows:

Sub Research Question 2.1: How effectively can a schema-based keyword

search improve Web service composition quality?

Schema-based systems create several tuple sets for each database relation to in-

clude all the answers for each query with AND semantics. A tuple set generated

separately with each combination of Q-keywords and each relation. This pro-

cess generally results in an exponential number of CNs for queries containing

more than four keywords.

By comparison, as previously stated, there is only one tuple set of R
Q for

each generated R relation. A post processing step audits queries with AND

semantics that returns the tuple trees comprising all the given query keywords.

This feature of our framework leads to much faster execution, allowing us to

handle larger queries and also increases the quality of the composition.

Sub Research Question 2.2: Can the candidate networks be optimzed to im-

prove the search query?

The queried data assumed as stored in a relational database. Therefore, the

system uses a Relational database with SQL query handling capability. A user

17

issues a keyword query to searches for interconnected tuples that include the

specified keywords. The system considers a tuple when a text attribute of the

tuple contains the keyword. The system searches for subsets of relations that

include the keywords from the queries with the keywords in hand. It extracts

all such subsets from the database, called tuple sets. Candidate Networks (CN)

represent the tuples containing the requested keywords produce join-relations

using relational algebra expressions. That is to say, each CN specifies how the

entered keyword query will provide possible answers. In addition to the tuple

sets created in the last step, CN generation needs information on the referential

integrity limitations taken from the schema. The execution engine produces

many different CNs as the tuples that contain the keywords joined in many

different ways. A tuple set is considered a CN in our approach when it fulfils

the following characteristics:

• The non-free tuple sets in a set do not surpass the number of keywords in

query.

• The leaf of any tuple sets should not be free

• An associative construct form should not be available in tuple form

Chapter 4 discusses in detail on responses to the research questions.

1.3.3 Research Question 3

Can the proposed data architecture improve the efficiency of SOA applica-

tions?

18

This research question decomposed into further sub research questions as

follows and Chapter 5 discusses the responses.

Sub Research Question 3.1: How efficiently does the proposed architecture

reduce the time for data ingesting and crawling from various internal and

external data stakeholders?

Compared with the traditional data warehouse, the data lake allows the stor-

age of data as it comes without bounding with any schema. Also, it uses the

HDFS file system which can connect to any remote application using Apache

tools. The data ingestion time represents the time taken for the data architec-

ture to load and store the data. The less the data ingestion time, the better the

data architecture for healthcare analytics. Therefore, if the proposed data lake

architecture can reduce the data analytics processing time, it will also improve

healthcare recommendations.

Sub Research Question 3.2: Can the data lake architecture avoid data silos?

Due to the pre-defined data schema for data warehouse architecture, it is im-

possible to store different types of data in a centralised storage location which

leads to the creation of numerous data silos for a dataset about each patient. The

precision of clustering is dependent on the perimeter of the data on the patients.

The more the data is from various data stakeholders, the better the results of the

data analytics. Hence, if our proposed data lake architecture can handle multi-

ple types of data in a centralised location without the data swamp threat, it can

improve the precision of the clustering significantly.

19

1.4 Thesis Contributions

The following are the major contributions of this thesis:

• This research suggests an aggregation model at the micro level for Web

service quality prediction using the Theil index, a measure of inequality.

The Web service selection model using QoS is explained in detail.

• This research proposes a framework using a schema-based keyword

search to integrate and automate the planning of the service-based sys-

tem, discovery and the selection of services. It helps the system engineer

without the extensive experience of SOA techniques to design the SBS.

• The widely used relational DB system is adopted to store the Web services

library. Each database tuple represents the information on Web services

and the key references used to demonstrate the composability information

between tuples.

• The experiments are designed to evaluate Schema-based keyword search

model using WS-dream dataset. The success rate and response time of the

proposed model will be used for the performance analysis. The WS-dream

dataset contains the URL of WSDL files for 5825 Web services.

• The data lake architecture is adapted as the data architecture in the SOA

application for healthcare to crawl and ingest data from vendors without

any pre-processing data delay.

• The proposed architecture demonstrates the ability to accumulate data

with different formats and store it in the unified data lake to avoid delay

in processing healthcare SOA data.

20

1.5 Structure of the Thesis

The research conducted is presented in the following chapters. Chapter 2

presents a review of various existing approaches to support Web service dis-

covery, selection and composition and its applications. Chapter 3 introduces

Web service selection using improved software source code metrics. This chap-

ter discusses the significance of source code metrics aggregation and its impact

on QoS-based Web service discovery. Chapter 4 presents an implementation

of our keyword-based Web service selection and composition framework. A

schema-based keyword search is implemented for Web service selection and

composition with and without QoS criteria. Chapter 5 presents our proposed

data architecture for an efficient SoA. Data lake technology is recommended as

the data architecture for healthcare SOA. Chapter 6 concludes this thesis with a

summary, a discussion of the contributions, its limitations, and future research

directions.

21

CHAPTER 2

LITERATURE REVIEW

This chapter outlines the background of service-oriented architecture (SOA),

in particular, its engineering process and its importance to distributed comput-

ing. A Web service data structure and its message structures are discussed, and

the various methodologies used for Web service discovery are presented. Fur-

thermore, the need for quality of service (QoS) in Web service discovery and

selection is discussed, and different methods of QoS prediction are presented.

Later, various studies on keyword-based search approaches in the context of

Web service selection and composition are explained. Lastly, the application of

SOA and the multiple approaches used to achieve efficient data architecture are

presented.

2.1 Service Oriented Architecture

SOA is an architecture paradigm that focuses on building systems using differ-

ent Web services, integrating them to make up the complete system. Due to the

rapid development in pervasive and distributed computing, SOA merged as a

platform to utilize Web services for processing a large amount of information

and knowledge to provide essential services and data to users [5]. Web ser-

vices are the basic units for SOA. Recent developments in the Internet of Things

(IoT) unearthed more opportunities to utilize Web services in thin clients. For

this reason, there are many functionally similar Web services available, and the

number continues to increase [6].

22

2.1.1 Web service request message

A Web service request must contain the functional and non-functional criteria

for the target Web service in standardised XML messages. Harshavardhanan et

al. proposed a standard to define the client request message using XML [37, 7].

For each quality measure, the client can give the weight value to prioritise the

QoS attributes. For example, if a consumer needs a Web service with the best

availability property and price is not a consideration, they need to give a high

weight value (high-5 to low-1) for availability and a lower weight value of the

price. Listing 2.1 shows a sample XML SOAP message request message for the

Web service for credit card validation. The client has a QoS requirement as the

maximum price can be 0.01 with a weight of 2, and response time can be 0.05

with a weight of 3. Furthermore, after choosing the best matching Web services,

a customer can determine the number of Web services to be returned. In this

example, the maximum number of Web services requested is 2.

23

Listing 2.1: Web service request message

<?xml vers ion = " 1 . 0 " encoding ="UTF−8" ?>

<envelope xmlns=" ht tp :// schemas . xmlsoap . org/soap/envelope ">

<body>

< f i n d _ s e r v i c e gener ic = " 1 . 0 " xmlns=" urn : uddi−org : api ">

<functional_Requirement >Credit/deb i t card va l ida t ion </functional_Requirement >

<quality_Requirement >

<property >price </property >

<value >0.01 </ value >

<weight >2</weight >

</quality_Requirement >

<quality_Requirement >

<property >Response time </property >

<value >0.05 </ value >

<weight >3</weight >

</quality_Requirement >

<Max_Service >2<Max_Service >

</ f i n d _ s e r v i c e >

</body>

</envelope >

2.1.2 Data structure for Web service information

Rajendran et al. proposed a data structure called the Technical Model (tmodel)

to represent the functional and QoS properties of a Web service [38]. The role of

a tModel is to register categorizations, which provides an extensible mechanism

for adding property information to a Web service registry. The tModel provides

the QoS details on binding templates. The name and value of the QoS domain

described using the general name-value pair structure of each QoS parameter.

An example of the QoS specifics of a stock quote service is shown in Listing

2.2. The bindingTemplate references the tModel with tModelKey "uddi: my-

company.com: StockQuoteService: PrimaryBinding: QoSInformation" which

contains the QoS attribute categories. The location of a WSDL description stored

in the keyword tModelKey "uddi: mycompany.com: StockQuoteService for fur-

24

ther information management. The purpose of a Web service is expressed in <

function > and < Web serviceid > is the registry’s unique Web service identifier.

Listing 2.2: tmodel for storing QoS Information

<tModel tModelKey="mycompany . com : StockQuoteService : PrimaryBinding : QoSInformation "" >

<funct ion >QoS Information f o r Stock Quote Service </funct ion >

<ws_id>abdc12345 <ws_id>

<overviewDoc>

<overviewURL>

http ://<URL de s cr ib ing schema of QoS a t t r i b u t e s >

</overviewURL>

</overviewDoc>

<categoryBag >

<keyedReference tModelKey=" uddi : uddi . org : QoS : A v a i l a b i l i t y "

keyName=" A v a i l a b i l i t y "

keyValue ="99.9%" />

<keyedReference tModelKey=" uddi : uddi . org : QoS : Throughput "

keyName=" Average Throughput "

keyValue =">10Mbps" />

<keyedReference tModelKey=" uddi : uddi . org : QoS : R e l i a b i l i t y "

keyName=" Average R e l i a b i l i t y "

keyValue ="99.9%" />

</categoryBag >

</tModel>

2.1.3 Web service discovery using tmodel

The client’s service request uses functional criteria information to list the reg-

istry’s functionally similar services. The registry publishes all WSDL service

interfaces as tModels. The tModel is a data structure defined in a Universal De-

scription, Discovery and Integration (UDDI) registry for an XML Web services

type (generic representation of a registered service). They deliver a framework

that facilitates software reuse and standardisation. The tModels can represent

any unique construct or information to embody within the UDDI information

25

model. Therefore, the model reuses metadata information throughout.

Each tModel has the URL to identify as a description of the WSDL service.

Rajendran et al. proposed a find_tModel method which lists all the matching

details of the tModel_id interface [39]. Using the OverviewURL, the content of

the WSDL service interface document can be identified once a tModel_id has

been obtained. Additional keyedReference added to the categoryBag to restrict

the set of tModels returned in response to this query. An example is displayed

in Listing 2.3 for the find_tModel message to find all the stock quote services in

the registry.

Listing 2.3: Sample Web service discovery XML

<?xml vers ion ="1 .0"? >

<find_tModel gener ic = " 1 . 0 " xmlns =" urn : uddi−org : api ">

<categoryBag >

<keyedReference tM_find_Key ="UUID: DB77450D−9FA8−45D4−A7BC−D14E384 "

keyName=" Stock market t rading s e r v i c e s "

key l imi t ="50"/ >

</categoryBag >

</find_tModel >

2.1.4 Web service Selection

For Web service selection, the min-max normalisation technique and weighted

AND-OR tree is proposed by D’Mello et al. to rank the service based on the

QoS and its weight [40]. A Weighted AND-OR tree is an AND-OR tree where

every edge between the parent and child node is labelled with a non-negative

real number in an interval (0, 1). Therefore, for any parent node, the sum of

edge labels (weights) of all child nodes is equal to one, i.e. for any parent node

26

P with C (2≤C≤N) child nodes, the sum of edge weights WPCi (1≤i≤C) is equal

to 1.

In “<“conditioned leaf node:

wssn =

2(WS last−wsx)
10 x = 2, 3, ...last − 1

wss f irst = 1

wsslast = 0

(2.1)

wssn =

2(ws f irst−wsx)
10 x = 2, 3, ...last − 1

wss f irst = 0

wsslast = 1

(2.2)

wssn = QoS score of nth Web service

wss f irst = First Web service in descending order in the leaf node

wsslast = Last Web service in descending order in the leaf node

Equations 2.1& 2.2 are used to calculate the score of the target Web service.

After constructing the tree, the root node will be in a descending ordered list of

the Web services based on their QoS Score. The best Web service based on the

client’s quality requirement is available at the top of the list.

With the growing number of Web services with the same functionalities, the

discovery and selection of the most suitable Web service have become a signif-

icant challenge on service-oriented systems [41]. With the availability of func-

tionally similar Web services, a functionality-based search is no longer valid to

discover suitable services. Therefore, non-functional properties or QoS such as

response time and throughput have become pivotal criteria in Web service dis-

27

covery, selection, recommendation and orchestration [8].

2.1.5 Web service discovery using QoS

There are many QoS-driven Web service-based techniques proposed and suc-

cessfully utilised in SOA [42, 43, 44]. The functional semantic method of de-

scribing Web Services to provide dynamic Web service discovery is described by

Ye and Zhang [45]. Here, defined functional semantic format used to represent

both the Web service and the functional request. Creating a domain-oriented

functional ontology, and a matching algorithm used to match the annotated

services and requests provides Heterogeneity. Ye et al. extend their work by

describing FWSDL, a Web service description language to represent functional

semantics and the structure of discovery system FunWDS [46].

Mello et al. propose a well-formed functional semantics to describe the oper-

ations of Web services by providing extendible functional knowledge to map the

requested or published operation descriptions into an abstract operation [47].

The extended functional knowledge is implemented by maintaining a list of all

the related operations and describing Web services based on both the functional

semantics and extended knowledge to provide dynamic Web service discovery.

However, the focus lies on specifying the structure of the service interfaces

and the exchanged messages. Thus, the previous works address the discov-

ery problem relying on structural, keyword-based matching, which limits their

search capabilities [48]. So, service consumers currently pay more attention

to QoS instead of functionality than ever before. QoS mainly consists of non-

functional attributes such as response time, throughput, availability, etc. [49].

28

Xu et al. proposed a QoS-based Web service discovery model by extending

the data structure types to enhance the UDDI model with QoS properties [50].

However, this approach demands the human consumer to undertake service

discovery and selection. This approach is not scalable if an enormous number

of Web services are available as an option.

Another approach in [51] suggests a QoS-based Web service selection pro-

cedure which receives QoS requests with exact values and fuzzy values and

returns matching offers in both categories: super-exact and partial matches. In

[52], users’ preferences are defined by a lexical ordering in accordance with their

perceived importance. The authors proposed an algorithm which considers QoS

to rank them. Based on that algorithm, if the first QoS attribute distinguishes

Service A from Service B, then Service A will be given a higher rank. This algo-

rithm is simple, but if the user indicates that two preferences are equally impor-

tant, the algorithm will consider only the first preference in the lexical ordering

and ignores the second preference.

2.2 Quality of Service prediction

In practice, it is challenging for an end-user to obtain QoS information. The user

needs to spend a large amount of resource, time and cost to invoke and measure

QoS for all available Web services. Different users will have different QoS ex-

periences while using the same Web service due to the dynamic nature of the

network environment and geographically distributed locations [53]. Therefore,

predicting the QoS properties of a Web service has become an important step

in service-oriented systems. Using available QoS values in invocation records

29

to calculate the unavailable or missing QoS parameters is called QoS predic-

tion [54]. The collaborative filtering (CF) technique is widely adopted in Web

service community due to the success of commercial recommender systems. CF

predicts unknown QoS values based on historical user data [55]. Predicted QoS

values can be used as additional criteria to rank the matching results during

the service discovery and selection process. The top-ranked services hold im-

portance among the other services [56]. In service orchestration, considering

the QoS of services is as important as combining the functionalities of different

services.

2.2.1 Collaborative Filtering based prediction

Using available QoS values in invocation records to calculate the unavailable

or missing QoS parameters is called QoS prediction [54]. CF predicts unknown

QoS values based on historical user data [55]. To satisfy the basic requirements

to develop an SOA, a necessary pre-requisite is to predict the missing QoS val-

ues. At present, CF is a common technique to predict the QoS values among

Web service consumers [57]. Briefly, the CF technique comprises of two steps:

1. Identifying the users or nodes with similarities and mining the likeliness.

2. Calculating the missing QoS values based on the available QoS data from

a similar user cluster.

Predicted QoS values can be used as additional criteria to rank the matching

results during the service discovery and selection process. The top-ranked ser-

vice holds importance among the service results [56]. In service orchestration,

30

composing the QoS of services is as essential as combining the functionalities of

different services. The reliability of the predicted QoS helps to improve end-to-

end QoS output [58]. In 2007, Shao et al. introduced the QoS prediction of Web

service using the CF method [59].

Web services can be defined as programmable components with standard-

ized interface descriptions developed to support business-business interoper-

able communications via standard communication protocols [60]. SOA is an

architecture paradigm that focuses on building systems using different Web ser-

vices, integrating them to make up the complete system.

With the growing number of Web services with the same functionality, the

discovery and selection of the most suitable Web service have become a signif-

icant challenge on service-oriented systems [41]. A QoS-based evaluation of

services has become an ideal method for users to decide on selecting appropri-

ate services.

In many situations, a stand-alone Web service cannot provide the functional-

ity of a user’s demand and often services will be composed together to achieve

a specific functional system [61]. The quality of a composite service depends

on the QoS of the services it comprises. So, the service composer must consider

the QoS of all the candidate services to be able to yield the desired overall QoS

of the service composition [42].

QoS refers to the non-functional properties of Web services, namely avail-

ability, throughput, response time, security and so on. A brief definition for

some of the widely used QoS properties are:

• Availability: Availability is whether the Web service is accessible or ready

31

for immediate use.

• Accessibility: Accessibility means the degree to which a web service re-

quest can be met.

• Integrity: The integrity of the web service is the consistency element of

how the interaction with the source remains correct.

• Performance: Web service efficiency is calculated in terms of through-

put and latency. A reliable Web service performance should have higher

throughput and lower latency.

• Regulatory: This is compliance with the rules, law and guidelines, and

the agreed SLA.

• Security: Security is the quality component of the Web service that offers

privacy and confidentiality, authentication, encryption of messages and

access control for the parties concerned.

However, from a user’s perspective, obtaining QoS information is very dif-

ficult in practice. It demands a significant amount of time, resources and cost

for pay-before-use Web services. The dynamic nature of the network and the

distribution of locations result in different users having different QoS experi-

ences when invoking the same Web service [53]. Therefore, predicting the QoS

properties of a Web service is an essential step in service-oriented systems.

Using the available QoS values in invocation records to calculate the un-

available or missing QoS parameters is called QoS prediction [54]. A user can

provide QoS values for the services which he used and obtain the predicted

QoS values of the services he has not used before. The following mathematical

formulation simplifies the CF-based prediction model [55].

32

1. S = {s1, s2, ...sm} is a set of services with similar functionality where si =

(1 ≤ i ≤ m) denotes one service.

2. U = {u1, u2, ...ul} is the set of service consumers and ui = (1 ≤ i ≤ l) denotes

a service consumer.

3. Qi, j =< p1
i, j, p2

i, j, ..., pn
i, j >, pk

i, j ∈ R ∪ {∅, ?} Qi, j is a vector representing the

quality of s j measured by consumer ui. n denotes the number of regarded

QoS properties. pk
i, j denotes the value of k-th QoS property of service s j

measured by consumer ui. The value of pk
i, j could be a real number, ∅ or ?.

When ui has no QoS data on service s j for the k-th property, pk
i, j denotes as

∅. When denoted as ?, pk
i, j denotes the QoS property to making prediction

on.

4. Di =< Qi,1,Qi,2, ...,Qi,k > is a vector, denoting the QoS data collected from

consumer ui.

5. T =< Di,D2....,Dl > is a vector of all QoS data.

Let’s say Q1,3 is the unknown QoS value. Predicting the Q1,3 from the avail-

able QoS data is the overall idea of CF. It comprises four general steps namey

data preparation, normalization, similarity mining, and prediction making.

• Data Preparation ensures our collected QoS data consistent with the for-

mat of collaborative filtering.

• Normalization makes the values of the QoS property into a uniform scope

based on the Gaussian approach.

• Similarity Mining calculates the similarity between two consumers based

on their historical experiences using the Pearson correlation co-efficient

33

• Prediction Making makes linear prediction for each QoS property based

on the similarity and combine the prediction values into a quality vector.

Zheng et al. suggested a hybrid model of CF that would combine CF algo-

rithms dependent on users and items. The confidence weights have been used

to match the values of both versions, respectively [62]. While CF-based meth-

ods are simple to implement and relatively efficient, they suffer from decreasing

accuracy. The QoS values are scarce and are challenging to combine with any

other variables in the model. The role of geographical data to enhancing the ac-

curacy of the QoS prediction has been studied recently. A hierarchical clustering

algorithm was developed for the detection, which was expected to take place in

the same area, of our neighbours with a similar historic web service involving

experience [63].

This approach is irrational, as users in Seoul and Tokyo can have identical

QoS values in a certain period, infrastructure changes in Seoul cannot impact

Tokyo’s web-service calls. Lo et al. take into account in a true geographical

context, the influence of the surrounding consumers. At the end of the objec-

tive function of the single value decomposition (SVD) factorization matrix was

appended. (MF) [64, 65]. Although the critical aim of this method of use is to

avoid the overfitting of the learning process, it is difficult to understand the QoS

principles from a neighbour’s point of view.

Collaborative filtering focused on neighbourhoods includes user-centred ap-

proaches, item-driven approaches and their mergers. Usage-based models es-

timate one user’s missing values based on identical user values. Item-based

models calculate missing unit values based on relative item values. Zheng et

al. suggested a hybrid user-oriented and item-dependent CF algorithm for pre-

34

dicting QoS values, which performed a series of large-scale tests focused on

a specific dataset of web services [62]. Neighbourhood-based approaches also

use the PCC algorithm and VSS algorithm as the methods of computational sim-

ilarities [66]. PCC-based collaborative filtering methods will typically achieve

greater predictive precision than VSS-based algorithms because PCC acknowl-

edges the user rating differences. Training data sets use hypothesis-based meth-

ods to learn a predefined hypothesis (e.g., clustering model, aspect model, and

matrix factorisation model). Matrix factorisation approaches rely on fitting the

user-item matrix with low-rank approximations and is engaged in making ad-

ditional assumptions if only a limited number of variables impact the values in

the user-item matrices.

The neighbourhood-based approaches use the values of related users or ob-

jects to predict value, while model-based approaches, including matrix factor-

ization models, use all matrix knowledge to predict value. The model-based

methods typically presume that Gaussian is the distribution of QoS values.

Zhang et al. [67] proposed that it would be easier to incorporate consumer

QoS interactions, climate variables, and user feedback variables to estimate QoS

values for the Web site. Some techniques incorporate location-conscious predic-

tion. For example, Tang et al. [68] propose LACF (location-aware collaborative

filtering), and Xu et al. [69] propose WL-PMF (weighted location-aware PMF).

Some methods introduce social relations. For example, Zheng et al. propose

NIMF (neighbourhood integrated matrix factorization) [70].

Predicted QoS values can be used as additional criteria to rank the matching

results during the service discovery and selection process. The top-ranked ser-

vice holds importance among the service results [56]. In service orchestration,

35

composing the QoS of services is as essential as combining the functionalities of

different services.

2.2.2 Software source code metrics

Mateos et al. discussed the methods available in code-first Web services to

remove unnecessary anti-patterns [71]. The authors worked on the hypoth-

esis that the occurrence of anti-patterns can be avoided using object-oriented

source code metrics. To find the existence of an anti-pattern at the WSDL level,

they considered eleven source code metrics, namely: average parameter count

(APC), response for the class (RFC), abstract type count (ATC), coupling be-

tween the objects (CBO), lack of cohesion among the methods (LOCM), void

type count (VTC), cohesion among the methods of class (CAM), lack of cohesion

in methods Henderson-Sellers version (LCOM3), total parameter count (TPC),

weighted methods per class (WMC), and empty parameters methods (EPM)

[72, 73]. Mateos et al. used a real-time Web service dataset to identify the cor-

relation between object-oriented metrics and the occurrence of anti-patterns us-

ing well- known statistical methods. They also measured the impact of simple

metric-driven code refactoring on the existence of anti-patterns to some of the

generated WSDLs from the dataset. As a summary, Mateos et al. observed

that the complexity and maintainability of Web services can be predicted using

object-oriented metrics and refactoring.

36

2.2.3 Correlation between source code metrics and QoS

Charrad et al. introduced a high correlation between traditional object-oriented

source code-level metrics and WSDL-level service metrics [56]. They used

the most comprehensive and thoroughly evaluated set of metrics to calcu-

late the maintainability of Web services using WSDL interfaces. The findings

of this research suggest that software developers can avoid developing non-

maintainable services by applying simple early code refactoring. As Java is

widely used as a programming language to build back-end services, the au-

thors focused on Java-based Web services, but their findings did not depend on

the programming language.

Romano et al. tried to identify the list of source code metrics to predict

Java interfaces that are vulnerable to change [74]. The source code metrics

such as lack of cohesion among methods (LCOM), coupling between objects

(CBO), depth of inheritance tree (DIT), number of children (NOC), weighted

method per class (WMC), response for class (RFC), and interface usage cohe-

sion (IUC) were used along with fine-grained source code changes in interfaces

of ten open-source Java-based systems [72, 73]. The correlation between the

metrics of the source code and the fine-grained changes in the source code was

tested empirically. Romano et al. concluded that the external interface cohesion

source metrics have the most significant association with the number of changes

in the source code.

37

2.2.4 Software metrics aggregation

Software metrics calculated at micro level artefacts and aggregated to macro

level artefacts for the analysis. The popular aggregation technique used for

source code metrics is mean [75], [76] even though there are increasing research

works to demonstrate the inappropriateness of this technique [77], [78] due

to the skewness of source code metrics distribution [79]. The sum is another

popular aggregation technique. Chidamber et al. used the sum to aggregate the

complexity of individual methods to the class level in their metrics suite [19].

Alexander et al. [80] used the Theil index, a widely used inequality measure

in econometrics to identify the wealth distribution to aggregate the software

metrics values as they both share the same kind of data distribution. The Theil

index is not specific to a particular metric and can be used to aggregate a wide

range of metrics.

2.3 Web service composition

The invoking process for services selected on runtime in service-oriented envi-

ronments represented as complex application. In this scenario, an application

described as a flexible process consisting of abstract Web services. Web services

are chosen from a set of services which have similar functionality and different

non-functional properties, i.e. QoS.

Recently, there has been considerable interest from the research community

in the dynamic composition of Web services. The existing literature can be di-

vided into two categories: composition by planning and optimization of busi-

38

ness processes [81]. The first method, suggested by the Semantic Web and AI

groups, explores the question of synthesizing a complicated action from a spe-

cific goal and from a variety of applicant resources, which leads to a partial

solution of the complex issue. The second category defines complex systems as

BPEL procedures, and the best set of services are selected dynamically during

operation by addressing an optimization problem [82, 83].

Varied approaches to semantics are Web and AI. The composite service pro-

cess is built with a high-level functionality specification by automatically or

semi-automatically. A framework is proposed in [84, 85], which incorporates

the planning and execution of complex applications with XSRL and XSAL lan-

guages to specify its functional goal and QoS. Model checking is used to per-

form planning as in [86]. Similarly, in [87], any complex application is con-

structed from a high-level process design that is synthesized through the imple-

mentation of contingency plans. Planning is indeed very adaptable; however, it

is intensively computational, and only sub-optimal solutions can be found from

the QoS point of view [88]. The work in [89] proposes a trade-off between

planning and optimization approaches. The goal is translated into a workflow-

based specification that introduces abstract work in a first semi-automatic log-

ical composition stage. The second physical composition stage brings abstract

activities to concrete services, and the service designer supervises them. The

optimization of business processes enables the specification of complex systems

as abstract software BPEL processes that serve as the placeholders of Web ser-

vice components called upon during runtime. In such instances, a dynamic/late

binding method is applied to the best service collection, chosen to solve an op-

timization problem.

39

2.4 Keyword-based search

The most accepted method for making queries in a text document and over

the internet is Keyword search. A community for the database research has ac-

cepted the benefits of keyword search and have already adopted the same in

relational databases. A relational database, a term coined by E. F. Codd at IBM

(International Business Machines) in 1970, refers to an organized set of data in

tabular form, which can be accessed or restructured in various ways without in-

terfering with the original tabular data. This model uses SQL (Structured Query

Language) as API (Application Programming Interface) [90]. Relational oper-

ators are frequently used to manipulate the data in tabular form. Relational

model uses a unique key for identification of each row, also termed as tuples

or records. Columns, however, are referred to as attributes. Each table/relation

has only one type of entity. Rows contain instances while columns contain val-

ues of that instance [91]. Keyword search is an alternate method of querying the

relational databases just like the queries made on web search engine. Keyword

search enables users to make queries without the knowledge of programming

language or database management. Keyword search in relational databases find

the tuples assigned with unique keys containing keywords [92]. These methods

can be classified into three distinct types:

• Methods using Candidate Network (CN)

• Algorithms using Steiner tree

• Approaches based on Tuple-unit

The first two methods on-the-fly finds the connected tuples using unique

keys (Primary/foreign). These methods are time consuming or slow when the

40

connections are many. These methods lack an indexing service, which can make

the work search faster [93].

The primary purpose of using a search method with keywords is to find a set

of interrelated tuples that fit the keywords together. Data modelling as a graph

is one type of approach which results as sub-trees. A similar kind of approach

using relational databases, in which structured data is placed. Researchers per-

formed several early keyword search systems for relational databases. Using a

l-keyword query, the creation of structural data among tuples in an RDB is sur-

veyed Yu et al. The keyword search systems were addressed by contrasting a

schema-based keyword search with graph-based RDB keyword search. The first

method assessed the sets of results by defining all the minimal total joining net-

works of tuples between CNs. The second method demonstrated how weighted

direct graph visualisation could obtain the keyword query results[94].

DBXplorer considers each tuple tree and generates an undirected graph [95].

The DBXplorer system accesses the symbol table and then computes the tuple

tree as per the schema graph to obtain information about tuples. DISCOVER in-

troduced an algorithm for the CN generator based on an extensive search space

[92]. This algorithm expanded the CNs to include larger partial CNs until all

CNs were produced. The exponentially large number of partial CNs implies

that the algorithm can extend arbitrarily to an incredibly high cost of generat-

ing the CN collection and is retained for further expansion. S-KWS introduced

an algorithm that decreases the number of partial results obtained by expand-

ing components of the nodes in a partial tree and avoids isomorphic testing by

designating a suitable expansion order. While the partial outcomes produced

were reduced, there was an overhead for generating minimal CNs to the query

41

system accessed by a symbol tab to obtain tuple information.[96].

Zhou et al. introduced the exploration of Web services based on keyword

clustering and expanded the idea. In Pareto ’s principal-domain ontology, they

calculate a word similarity matrix and use it to find matching services for se-

mantic reasoning. Bipartite graphs can be used to identify matching degrees

between the requirements for the service and the services available. They de-

scribe this using the Kuhn-Munkres algorithm to determine an optimal match

of a bipartite graph [97].

Unlike plain text, the underlying data in relational databases has an essential

structure to it, which indirectly defines the relationship between the data nodes

that contain those keywords. The underlying structure needs to be taken into

consideration while determining the answers to the keyword searches. Tuples

are viewed as vertices in the data-graph. Connections between the tuples are

primary-foreign key constraints. The results of the keyword searches are sub-

graphsf this data-graph. In RDBMS, it is a multi-query optimization problem to

evaluate all the CNs to obtain all MTJNT. It faces the following two challenges:

1. How to share common generated subexpressions among CNs to reduce

computational costs while evaluating.

2. Where to find a suitable join for the easy evaluation of all CNs. The num-

ber of CNs generated for a keyword query can be very large.

With several joints, an effective query processing strategy is exceedingly dif-

ficult to obtain, since one best strategy for a CN will slow the others down if

other CNs share its sub-trees. The solution to the optimal implementation plan

is an NP-complete problem, as stated by Vagelis et al. in DISCOVER. It suggests

42

an algorithm to evauate all CNs together based on the greedy algorithm using

the following elements:

1. CNs sharing the subexpression should be evaluated at first

2. Subexpressions which may produce a low number of results must be eval-

uated first

Markowetz et al. developed an operator mesh in S-KWS to share the compu-

tation cost of all CNs[96]. There is n. 2(l−1) clusters in a network, where the

number of schema relations is denoted by n in graph G_sand, and the number

of keywords is l. The cluster is made up of a group of operator trees, which

have common expressions, (left-deep trees). A projected relationship with the

smallest number of tuples is selected to continue and join when assessing all

CNs in a mesh.

Zhai et al. motivated to provide a user friendly and accurate query mech-

anism so that by providing keywords the response can be obtained without

any knowledge of programming. The major contribution of the authors was

that they proposed a system with an architecture to produce more meaning-

ful query response by semantic expansion. This was achieved by including the

metadata and keyword matching elements using STAR algorithm for CN gen-

eration. Their architecture was proved by highly efficient. The future work

of the scientists includes the CN reduction strategy for the decreasing the plan

execution pressure and a more efficient ranking system for returned query re-

sponse [98].

The authors of [99] proposed a system with an architecture to produce more

meaningful query by the saved knowledge of using ranking strategies and tu-

43

ple tree methods with good results returned. Appropriate results are achieved

by implementing ranking strategies and an index table where tuples of related

knowledge are used for Information retrieval.

The authors of [100]proposed a tuple-unit-based method for effective key-

word search over relational databases, which integrates multiple relevant

database tuple units to effectively answer keyword queries. They also proposed

two structure-aware indexes and stored the structural relationships between

different tuple units into the indexes. They used the indexes to efficiently find

the relevant answers. They developed effective ranking techniques to rank the

tuple units by considering both the structural compactness of answers from the

database point of view and the textual relevancy from the information retrieval

viewpoint. Existing methods only identify a single tuple unit to answer key-

word queries. However, the previous researches neglect the fact that in many

cases, they need to integrate multiple related tuple units to answer a keyword

query. To address this problem, in this paper, the authors proposed a struc-

ture aware-index-based method to integrate multiple related tuple units to ef-

fectively answer keyword queries.

2.4.1 Keyword-based search in Web services

Qiang et.al., proposed a keyword search for building service-based systems

(KS3) [35]. They used a graph-based keyword search to extract combinations of

Web services for a given keyword queries. KS3 does not consider the database

schema but considers tuples and their primary-foreign key dependencies as the

connections. Moreover, they did not use structured queries like SQL. Steiner

44

tree-based semantics are used to decide the structure of the tuple sub graphs to

be returned. Finding optimal Steiner trees is an NP-complete problem. The KS3

system is efficient when the size of distinct keywords in the query and the size

of the tuple sub graphs (constrained by the top-k scoring or weight function) is

small. According to Qiang et al., it takes up to 100 seconds to answer queries on

a repository with 20,000 Web services. A further development may be required

to increase the efficiency to handle the ever-increasing databases and combining

multiple Web services for a more complex query. Scientist needs to develop a

system to keep the scalability high and better user handling.

Zeng et al. has proposed an unconsolidated storage method to make cloud

computing flexible. This method allows to adapt to any new standard and also

provide highly efficient algorithm for composition. An SMA, is also introduced,

which recognizes the semantic similarities among different input and output pa-

rameters of WordNet. They also draw a comparison between service composi-

tion and precision ratio. The author proposes two algorithms SMA and Fast-EP

for multiple input/output parameters. feasible in theory that search results are

ranked based on semantic similarity degree. But the response time do not sat-

isfy the search requirement in real time. Future work of the authors includes

invention of high efficiency ranking technique of query results on semantic ba-

sis. In the next studies the author wished to provide the composition for more

complex services[101].

Kwon et al. proposed a new system called PSR (Pre-Computing Solution

in RDBMS). It provides a search based on service composition in any RDBMS.

They were trying to tackle the problem of web service composition. Their work

was also contributed towards storing the composition graph into a composition

45

table. The author used synthetic web services dataset with a simple structure,

which consisted of 10,000 web services. They had run random queries over the

synthetic dataset to find the web services composition search. The maximum

number of queries is the value of 1,000. Earlier there was no way to use the out-

put of one service as the input for new service. Their work was a first of its kind

in web service composition in a RDBMS. Lower execution time and good scala-

bility when handling large number of user queries is observed. A further devel-

opment may be required to increase the efficiency to handle the ever-increasing

databases and combining multiple web services for a more complex query. Sci-

entist needs to develop a system to keep the scalability high and better user

handling.[102]

2.4.2 Selection and composition of Web services

The SBS development cycle consists of three steps: system preparation, service

discovery and the selection of services. In each of these steps, there has been

a significant amount of work to solve the problems. Throughout the system

planning process, the system engineer determines the configuration of the SBS

to be performed and the order of execution of the tasks. During this step, most

techniques used to identify tasks necessary to implement SBS are based on the

techniques of Artificial Intelligence (AI) [103]. To illustrate with an example, the

authors model a cost-sensitive temporally expressive (CSTE) as service compo-

sition and a supply chain planning (SCP) solver can be used.

The tasks of an SBS are decided upon completion of the system planning

process. During the service discovery process, the system engineer selects a

46

collection of candidate services for each of the tasks based on the functional

and semantic knowledge of the candidate services through service registries

or service portals. Many semantic Web service languages have been proposed

based on ontology techniques, e.g., DSD, to boost service matching accuracy

[104]and OWLS-MX [105]. Such languages will enrich the service definition

and SBS specification from a semantic perspective. The implementation of an

ontology automates the service matching process defining the services that can

perform the SBS tasks as defined in the planning phase of the programme.

There are typically several operationally equivalent services for one task that

can execute the function [83]. Such services differ in the quality properties of

a multi-dimensional nature. The service discovery process has to be stream-

lined to identify a large number of these services. There are several proposed

approaches to address this problem [106].

Such methods follow ontology techniques such as logical reasoning and tem-

poral planning to simplify the process of service discovery, based on automated

service matching. A group of functionally equivalent candidate services for

each of the tasks needed for the SBS are selected at the end of this process. Dur-

ing the service selection process, the system engineer selects one service for the

composition of the target SBS from each set of functionally equivalent candidate

services. The chosen services must jointly satisfy the multidimensional quality

constraints for the SBS in this process, e.g. reliability, performance, cost, etc.,

which would be an NP-complete problem. The critical technique adopted dur-

ing this process is integer programming (IP) [107].

This was a significant impediment to further and broader SOA applications.

It required a creative approach that can help system engineers easily find re-

47

sources to develop SBSs without needing to go through the challenging pro-

cesses. A few solutions were proposed. Following the concept of tag-based

searches offered in [108], the authors suggest a technique for preparing SBS ap-

proaches by searching for services that fit the SBS tags [31]. The engineer needs

to type in a source tag and a destination tag for every query.

The method of helping system engineers navigate through numerous

queries from the entry service to the exit service is proposed in [109]. This

planning method has two main limitations. First, only two tags, one source

tag and one destination tag are allowed for each query. Multiple tags can

only be entered one by one in different queries and will be evaluated indi-

vidually until a final answer is identified. Second, it cannot determine quality

constraints. Therefore, the design methodology is not appropriate for build-

ing quality-constrained software systems. We are, without doubt, living in a

world of smart devices that generate data for virtually everything. Reuters es-

timated that, in 2020, global data growth will be approximately 35 Zettabytes

(one Zettabyte = one million petabytes) for all computerised organisations. 35

ZB is three times the amount of data we generated in 2015.

Use of search queries in a keyword-based RDBMS is the main component. A

business environment usually facilitates the RDBMS to occupy the architectural

layers. Indexing technology can replace the existing architectural layer. Queries

made into SQL are become obsolete when keyword-based search engines are

used. They can be used for any kind of structured or unstructured data. In this

research the data is maintained in a multi-tier architecture and the information

is retrieved by the keyword-based query search in SQL relational database.

48

2.5 Application of SOA

In 2012, 500 petabytes of data were generated by healthcare industries world-

wide, and this is expected to grow 50-fold to 25,000 petabytes in 2020. So, it is

clear that research on EHR and patient-related auxiliary data will illuminate the

improvised healthcare at the point of care. The availability of rich data sources

could make personalized / precision medication for each individual possible.

Traditional IT infrastructure, such as relational database management systems

(RDBMS), is no longer reliable to handle and manage healthcare big data. Al-

though it can control and process structured data efficiently, it requires a tedious

ETL process to ingest data without a proper structure [110].

2.5.1 Web service in Big data analytics

Due to this enormous usage of data all over the world, the term big data is

widespread and is becoming a part of every business process. Collecting and

storing this vast amount of information is worth nothing without retrieving use-

ful knowledge through processing and analysing it [111]. Unlike traditional

data generation models, big data contains a variety of data from diverse sources

with high velocity in huge volumes.

The evolution of big data has resulted in the healthcare industry transition-

ing to electronic health records (EHRs) and the management of digital archives.

EHRs may contain information about various patients attributes which could

include demographic details, previous medication history, allergies, vaccination

status, laboratory test results, EMR scan reports, payer information, insurer de-

49

tails, earlier visits to the hospital and so on [112].

The sources of the data also range from mobile devices, social media feeds,

wearable devices, radio frequency identification (RFID) devices, sensors and

monitoring devices attached to the patient and their bed [113]. Even though

health IT has seen tremendous technological development, it is challenging to

manage this complex data flood.

Therefore, it is obvious that the research on EHR and patient related auxil-

iary data will illuminate improvised healthcare at the point of care. Inevitably,

big data analytics on healthcare will enhance clinical operation by providing

more relevant, efficient, error-free and cost effective diagnosis and medication.

Since the data are also shared with the patient, it will increase the transparency

and reliability of medical institutions [114].

Proactive, patient-centric and tailored healthcare medication recommenda-

tion to the individual is based on the analysis of the corresponding person’s

EHRs, genomic profile, laboratory data and other related supporting data [115].

The Healthcare organisations create structured, semi-structured and unstruc-

tured data in the form of EHRs. Even more importantly, only 20% of data is in a

structured format, which can easily be utilised by data scientists using analytics

machines but the semi / unstructured production rate is 15 times higher than

the structured one [114].

50

2.5.2 Healthcare applications using SOA

Systems like CARE (Collaborative Assessment and Recommendation Engine)

and its iterative version called ICARE predict the future disease risk of the pa-

tient by analysing the patient’s previous history [116]. However, the CARE sys-

tem depends only on ICD-9-CM (International Classification of Diseases, 9th re-

vision, Clinical Medication) rather than the patient’s lab results and other avail-

able resources. The proposed architecture has the capability to connect with

trusted third parties to collect data on patients.

HealthCare ND is also a system to predict the future disease risk of the pa-

tient [117]. However, it is an interactive system, which obtain health-related

information from the patient and process the data with ICD-9-CM codes then

return the results of the patient’s future prediction. The HealthCare ND sys-

tem does not take any laboratory data into account to avoid the cost and time

needed to perform the prediction. It solely depends on the data given by the

user alone.

Abbas et al. proposed a system called collaborative filtering-based disease

risk assessment (CFDRA) [118], which is a cloud-computing-based risk assess-

ment prediction system. The user requests an assessment and provides their

details to the system. Then the system checks for a possible profile match with

the request. Once it finds the matching profile, it will correlate both profiles and

then calculate the disease risk assessment score for the requesting user. The CF-

DRA system has another module to find the expert’s recommendation for the

user. It analyses the vast number of tweets and identifies the experts for the

health- care recommendation, then it ranks them based on reputation. The user

receives their disease risk assessment score along with some expert’s contacts.

51

The user can interact with the expert and seek their advice.

In a system proposed by Patel et al., genomics and clinical data from pa-

tients’ EHRs are utilised to predict cancer risk [119]. They develop a knowledge

base consisting of different types of cancers and their symptoms and possible

drug suggestions for cancer. The knowledge base is a well-known graph-based

database developed by processing the previous patient’s datasets. A machine

learning algorithm is used to make a support vector machine to learn the pat-

terns of the genomic structures by analysing the omics data so a precise classi-

fication model can be developed. This classification model development needs

the data to be pre-processed. If a new patient profile comes to the system, it con-

siders the knowledge base, patient data, clinical information and classification

model, and then the interface engine identifies whether the patient has cancer

or not. If the system determines that the patient has cancer, it suggests the most

suitable medication and treatment.

The physical therapy-as-a-service (PTaaS) application is a model designed

to connect the sensors available in the patient’s home and the therapist’s office

computer. They use layer 3 internet connection to connect both ends and trans-

mit the real-time data from the patient’s sensor and video cameras. All the data

is stored in the therapist’s institutional database for processing and the therapist

will provide physical therapy through the Internet [120].

2.5.3 Datalake for Service oriented Architectures

The aforementioned healthcare systems using well-defined business rules and

vocabularies. However, health IT systems need a different type of data manage-

52

ment architecture to address their particular challenges. Particularly, healthcare

IT needs a late binding model, which is flexible, time efficient, scalable, and

adaptable [121].

Blockchain data structures utilise data lakes to support data from a variety

of sources such as patients’ mobile applications, wearable sensors, EMR’s, doc-

uments and images [122]. A personal data lake system proposed by Alrehamy

and Walker lays the foundation for designing our proposed approach. They

provide a centralized location for all the data on a single user from different

social networks. They also argued that their system improved privacy and se-

curity by storing data in a single location, and the user is given the right to

design the access rights to their data. They also proposed the personal lake se-

rialization format (PLSF) approach to store meta-data. However, the personal

data lake was restricted with structured and semi-structured data, and it was

not able to manage unstructured data [123].

The proposed approach utilizes the efficient data lake system for healthcare

data. This system can ingest unstructured, semi-structured and structured data

and store it at a low cost using HDFS. Moreover, the data lake can be connected

with trusted third-party data providers by adopting the Apache spring XD tool

with our proposed architecture. This framework does not require any ETL pro-

cess to pull the data to the HDFS. Therefore, it reduces time delay when making

the data available to analytics processing. Hence, a data-lake-based healthcare

recommendation system will overcome the drawbacks of traditional data archi-

tectures and provide additional capabilities for the future of data reusability.

53

2.5.4 Chapter summary

The software source metrics were usually calculated at the micro-level and ag-

gregated to represent the quality of software at the macro level. There are many

popular aggregation techniques proposed in the literature. However, signifi-

cantly less focus was given to explore the aggregation model considering the

nature of software source code data structure. This research addresses this gap

and explores the econometric aggregation model named the Theil index to ag-

gregate the software source code metrics. Web service composition is vital for

a service-oriented architecture. However, choosing the most suitable candidate

web service for the composite is still a challenging task. Recently, many re-

searchers proposing a keyword-based search to list the best-suited web services

for the composition. However, most of the literature’s proposed approaches

were did not efficiently utilise the nature of keyword-based search. This re-

search explores the power of keyword-based search using a relational database.

The data architecture for service-oriented architecture is a significant part. Al-

though several frameworks are proposed in the literature, finding a suitable

data architecture is still an open question. The conventional data architectures

such as Enterprise data warehouse could not handle the unstructured, unpro-

cessed data. This research addresses this gap and proposed data lake architec-

ture as an alternative data architecture for service-oriented architecture. The

data lake is capable of handling instructed, unaltered data from various sources

in real-time.

54

CHAPTER 3

IMPROVED SOFTWARE SOURCE CODE METRICS TO PREDICT WEB

SERVICE QOS

Even though a Web service can act as a single stand-alone system, it com-

prises many methods and classes. Thus, the aggregation of different micro level

metric values for each set of code helps to obtain a single value for the global

evaluation of a Web service. The arithmetic mean is the predominantly used

aggregation function for most of the performance evaluation metric calculation

models. However, most of the software quality metric values are very skewed.

Consequently, the simple mean function is not reliable against this kind of distri-

butions. A known approach to reduce this problem is to select a known family

of distribution such as log-normal, exponential or negative binomial and ag-

gregate the metric value by fitting its observed parameters. This method is not

viable as it repeats the fitting process whenever a new metric is introduced.

This research proposes an aggregation model for Web services at the micro

level by utilizing an inequality measure, the Theil index. The Theil index is

widely used in econometrics to study the inequality of welfare or the income

distribution among various groups of people. The distribution of data in econo-

metrics is very much like data distribution in software engineering. As it has the

potential to summarize a large amount of data, it has been proposed recently as

an aggregation scheme for software source code metrics.

To achieve the goal of this study, the objectives are as follows:

• Extracting the source code metrics for micro level attributes from a Web

service description file named the Web Service Description Language

55

(WSDL).

• Calculating source code metrics values using micro level software compo-

nents.

• Identifying the correlation between source code metrics (example:

weighted methods per class, lack of cohesion in methods) and QoS prop-

erties.

• Automating the prediction of QoS properties using the correlation via ma-

chine learning techniques.

The framework will extract the class files from the WSDL files obtained from

the QWS-WSDL dataset using WSDL2Java tool. Our application will calculate

source code metrics at the class level. Potential source code metrics will be ob-

tained by feature selection and reduction for each quality of service. Finally, a

Machine learning with various kernels will be trained to predict the QoS prop-

erties.

3.1 Proposed Work

3.1.1 Research Framework

Figure 3.1 demonstrates our proposed structure and the methodologies used for

this research. The system comprises of many steps, and the first step is being

to extract Java class files from WSDL files using WSDL2java software. The next

56

Figure 3.1: The proposed framework

step is to measure the various metrics of the source code. By following the steps

described in Figure3.1, the CKJM_extended tool is used to measure the object-

oriented source code metrics. For each Java class file, the application calculates

19 metrics of the source code. Then, the Theil index is used as an aggregation

technique, to sum up, a single value for all the metrics of the source code. The

principal component analysis is used to remove irrelevant features to achieve

dimensionality reduction. As a final step, linear regression is applied to pre-

dict the quality metrics for the Web services. By using different combinations

of available source code metric sets, seven sets of metrics are available to eval-

uate the performance of regression learner. The performance of the prediction

model using different sets of metrics is evaluated by calculating the estimator

evaluation metrics.

57

3.1.2 Source code metrics aggregation

The data on wealth distribution inequality from economics and source code

metrics of software share a similar structure. The Gini coefficient, a widely ap-

plied economics inequality measure, attracted attention in the field of software

metrics. It can be easily explained using the Lorenz curve. However, the Gini

coefficient has a significant drawback as it cannot be decomposed [80]. Sere-

brenik et al. proposed another inequality measure named the Theil index to use

instead of the Gini index as it is decomposable so it can be used not only to

calculate the inequality but also to explain it. Moreover, it is not specific to any

metrics so it can be used to aggregate a wide range of metrics [124]. Therefore,

the Theil index is preferred to calculate the aggregation for source code metrics.

3.1.3 Feature reduction & selection

The framework uses the principal component analysis (PCA) as the data pre-

processing method for feature extraction and selection. For each PC (princi-

pal component), eigenvalue, variance percentage, cumulative percentage and

source code metrics are obtained. PCs with eigenvalue more than one are con-

sidered as potential source code metrics cohorts. Table 3.1shows the PCA re-

sults of the object-oriented metrics. Of the 19 source code metrics, 12 were iden-

tified as having the potential to predict QoS properties. Tables 3.2 and 3.3 show

the PCA results for Baski & Misra metrics and Sneed’s metrics.

58

Principal
component Eigenvalue % Variance % cumulative

Metric
Interpreted

PC 1 5.744292522 38.29528348 38.29528348 WMC,CBO,RFC,
Ca,LCOM,Ce,NPM,
LOC,MOA,CAM,AMC

PC 2 3.553881589 23.69254393 61.98782741 DIT, CBO, LCOM, Ca, Ce,
LOC, DAM, MOA, MFA,
CAM, AMC

PC 3 1.92886401 12.8590934 74.8469208 WMC,CBO,RFC,
Ca,LCOM,Ce,NPM,AMC

PC 4 1.104911736 7.36607824 82.21299904 WMC, RFC,
LCOM,Ca,Ce,NPM, DAM,
MOA, MFA,CAM,AMC

Table 3.1: PCA results for object-oriented metrics

Principal
component Eigenvalue % Variance % cumulative

Metric
Interpreted

PC 1 2.908 48.465 48.465 OPS, DW,MRS,DMC
PC 2 1.489 24.809 73.275 DMC,DMR,ME

Table 3.2: PCA results for Baski & Misra metrics

Principal
component Eigenvalue % Variance % cumulative

Metric
Interpreted

PC 1 2.359 29.490 29.490 Data flow complexity,
Data access complexity,
Interface complexity,
Control flow complexity,
Decisional complexity,
Branching complexity,
Language complexity

PC 2 1.946 24.327 53.817 Data complexity, Data
flow complexity, Deci-
sional complexity, Branch-
ing complexity, Language
complexity

PC 3 1.320 16.501 70.318 Data flow complexity, in-
terface complexity, Lan-
guage complexity

Table 3.3: PCA results for Sneed’s metrics

59

3.1.4 Machine learning

The aim of this research is to examine the impact of aggregation methods of

source code metrics (e.g. Lack of cohesion in methods, coupling between ob-

ject classes) on predicting QoS characteristics (e.g. reaction time, accessibility,

throughput, testability, interoperability, etc.). Therefore, a simple regression

model called the multiple linear regression model is preferred to employ the

prediction. By fitting a linear equation to the measured data, multiple linear

regression aims to model the relationship between two or more independent

variables and a response variable. The training set developed according to the

correlation standards is defined in [73]. Then the number of latent variables

need to be defined for each QoS property. The next step is to build a model to

generate the value of the QoS property using the training set knowledge base.

The data set was submitted to a 10-fold cross-validated paired t-test analysis.

In the 10-fold cross-validated paired t-test procedure the dataset is segmented

into 10 equally sized parts, each of which is then used for analysis, while the re-

maining 10-1 parts (joined together) are used to train the regressor (i.e., generic

k-fold cross-validation). To demonstrate the reliability of the regression learner,

two different performance metrics (MAE, RMSE) are used.

60

3.2 Experiments & Analysis of results

3.2.1 Research Questions

Our experimental study is designed to answer the following two research ques-

tions:

RQ1.1: Will the proposed methodology improve the predictability of source

code metrics?

A software system is not a single stand-alone system to provide the solution.

Normally, it comprises many subordinate pieces of code such as class, method

or function. Therefore, software metrics must calculated at the micro level and

should be aggregated to the macro level to represent the source code metrics

of a software system. Since software code metrics are highly skewed values,

it is inappropriate to use simple statistical aggregation (mean, median, etc.,)

methods. The proposed inequality distribution models are very successful in

economics data, which is as skewed as software source code data.

RQ1.2: Can we predict the quality of service properties of Web services using

source code metrics?

During the software development life cycle, developers extract source code met-

rics to evaluate maintainability to reduce future issues with the system. Thus,

source code metrics and quality of service properties are correlated. The re-

search uses the correlation between source code metrics and quality of service

61

to predict the QoS of Web services. This study use linear regression based Ma-

chine learnings to create a prediction model.

3.2.2 Variables and Objects

Independent Variable

A technique under investigation is defined as an independent variable. The

Theil index is selected as the independent variable for this research. Dutch

statistician Henri Theil presented an inequality measure named the Theil in-

dex [125]. Given a (continuous) univariate distribution function F with the sup-

port X ⊆ R and the mean µ(F) the first Theil index is defined as:

ITheil(F) =
∫

x
µ(F)

log
Å

x
µ(F)

ã
dF(x) (3.1)

The Theil index was introduced for the field of unequal income distribution

aggregation. Let x0 ∈ X be a particular value of income, F is a distribution of

income in the population, and F(x0) is the proportion of the population with

income x less than or equal to x0. Source code metrics calculated at the micro

level are aggregated to represent the macro level software using Theil index.

Metrics that have negative values cannot be aggregated using the Theil index

because of the logarithmic calculation in its formula. Since logx for x ≤ 0 can

produce an undefined value, the Theil index may also be an undefined value if

it contains non-positive values [80].

62

Dependent variable

Mean absolute error (MAE) and root mean squared error (RMSE) are the two

well-known statistical precision measurements utilized to assess the prediction

results. MAE is the average absolute deviation of predictions to the ground

truth data. For all test services and test QoS properties, MAE is calculated as:

MAE =

(∑
i j

∥∥∥Qi j − Q̂i j

∥∥∥)
N

(3.2)

In Equation 3.2, Qi j denotes the observed QoS value of Web service j obtained

from data set entry i; Q̂i j is the predicted QoS value; and N is the number of

predicted values. A smaller value of MAE indicates a better prediction result.

RMSE can be expressed as:

RMS E =

 ∑
i j‖Qi j − Q̂i j‖

2

N
(3.3)

RMSE can be measured using Equation 3.3 to find out the differences be-

tween the actual and predicted values. Once the model yields more than a 90%

accuracy level, the Machine learning can predict the five chosen QoS properties

for the WSDL of a service.

Objects

The proposed framwork used the WS-Dream dataset, an open source dataset

produced by a group of researchers from The Chinese University of Hong Kong.

WS-Dream dataset contains two versions of the datasets and the experiments

63

used version 1. The dataset contains the URLs of 5825 Web services and the

response time and throughput readings from 339 geographically distributed

users. The dataset also has more details about both the Web services and users

such as IP address, country, continent, longitude, latitude, region, and city.

The main goal of this research is to identify the implications of the aggrega-

tion of source code metrics on QoS prediction. Therefore, it is necessary to cal-

culate the source code metrics for the target Web services using its Web Service

Description Language (WSDL). wsimport is a Java function to process WSDL

files and extract class files for the corresponding Web services.

Since the dataset only contains the URL for the WSDL of Web services, a

Java application is developed to crawl the WSDL files using the URLs from the

dataset. Only 457 of the 5825 Web services have an active WSDL available on

the Internet. As previously mentioned, wsimport was used to extract the Java

class files. The number of class files per Web services ranges from one to 281.

Figure3.2 shows the number of class files per Web service. The x-axis represents

the Web service ID and the y-axis represents the number of Java files extracted

from the Web service.

3.2.3 Empirical environment

Source code metrics

This research used three sets of metrics, namely the object oriented source code

metrics proposed by Chidamber et al. [19], Baski and Misra metrics [21] and

Sneed’s metrics [20].

64

Figure 3.2: Number of Java files extracted from the available WSDL

Chidamber and Kemerer Metrics: The Ckjm_extended tool introduced by

Chidamber et al. [19] can be utilized to calculate 19 size and structure soft-

ware source code metrics from the generated Java class files. The metrics are as

follows:

• WMC - Weighted methods per class Weighted methods of a class per

WMC class metric are mostly the sum of the complexities of its methods.

We can use the cyclomatic complexity as a measure of complexity, or we

can assign each method an arbitrary complexity value of 1. The Ckjm soft-

ware assigns each method a complexity value of 1, and thus, the WMC

value is equal to the number of methods in the class.

• DIT - Depth of Inheritance Tree For each class the inheritance levels from

65

the top of the object hierarchy are determined by the depth of the inheri-

tance tree (DIT) metric. The minimum value of DIT is 1 in Java, in which

every class inherits object.

• NOC - Number of Children The number of children in the family (NOC)

metric actually calculates the number of immediate descendants of the

family.

• CBO - Coupling between object classes The coupling between the object

classes (CBO) metric describes the number of classes coupled to the class

(efferent couplings and afferent couplings). This coupling will take place

via method calls, field accesses, inheritance, arguments, form returns, and

exceptions.

• RFC - Response for a Class The metric called the response for a class

(RFC) measures the number of different methods that can be executed

when an object of that class receives a message (when a method is in-

voked for that object). Ideally, we would want to find for each method

of the class, the methods that class will call, and repeat this for each called

method, calculating what is called the transitive closure of the method’s

call graph. This process can however be both expensive and quite inac-

curate. In ckjm, we calculate a rough approximation to the response set

by simply inspecting method calls within the class’s method bodies. The

value of RFC is the sum of number of methods called within the class’s

method bodies and the number of class’s methods. This simplification

was also used in the 1994 Chidamber and Kemerer description of the met-

rics.

• LCOM - Lack of cohesion in methods The lack of cohesion of methods

(LCOM) metric for a class counts the sets of methods in a class not con-

66

nected by exchanging any of the fields of the class. This metric’s original

definition (which is the one used in ckjm) considers all pairs of methods

of a sort. Both methods reach at least one particular field of the class in

some of these pairs, although the two techniques do not share any com-

mon field reach in other pairs. The lack of cohesion of methods is deter-

mined then by eliminating the number of method pairs which do not share

a field from the number of method pairs. Note that the number of disjoint

graph components of the class methods is used as a calculation reference

for subsequent definitions of this metric. Others also changed the concept

of communication to include calls between class methods. Chidamber and

Kemerer’s initial (1994) concept follows the method ckjm.

• Ca - Afferent couplings Afferent couplings in a class are an indicator of

how many other classes utilise the particular class. In that context, the

coupling has the same meaning as that used in CBO calculations.

• Ce - Efferent couplings Efferent couplings in a class are an indicator of

how many other classes the individual class uses. In the scope of Ce, the

coupling has the same meaning as that used for measuring CBO.

• NPM - Number of Public Methods The NPM metric simply counts all the

methods in a class that are declared as public. It can be used to measure

the size of an API provided by a package.

• LCOM3 -Lack of cohesion in methods. LCOM3 varies between 0 and 2.

LCOM3 =

(
1
a

∑ j=1
a µ

(
A j
))
− m

1 − m

67

m - number of procedures (methods) in class

a - number of variables (attributes in class

µ(A)- number of methods that access a variable (attribute)

The constructors and static initializations are taking into accounts as sep-

arately methods.

• LOC - Lines of Code. The lines are counted from java binary code and it

is the sum of number of fields, number of methods and number of instruc-

tions in every method of given class.

• DAM: Data Access Metric This metric is the ratio of the number of private

(protected) attributes to the total number of attributes declared in the class.

A high value for DAM is desired. (Range 0 to 1)

• MOA: Measure of Aggregation This metric measures the extent of the

part-whole relationship, realized by using attributes. The metric is a count

of the number of data declarations (class fields) whose types are user de-

fined classes.

• MFA: Measure of Functional Abstraction This metric is the ratio of the

number of methods inherited by a class to the total number of methods

accessible by member methods of the class. The constructors and the

java.lang.Object (as parent) are ignored. (Range 0 to 1)

• CAM: Cohesion Among Methods of Class This metric computes the re-

latedness among methods of a class based upon the parameter list of the

methods. The metric is computed using the summation of number of dif-

ferent types of method parameters in every method divided by a multipli-

cation of number of different method parameter types in whole class and

68

number of methods. A metric value close to 1.0 is preferred. (Range 0 to

1).

• IC: Inheritance Coupling This metric provides the number of parent

classes to which a given class is coupled. A class is coupled to its parent

class if one of its inherited methods functionally dependent on the new or

redefined methods in the class. A class is coupled to its parent class if one

of the following conditions is satisfied: One of its inherited methods uses

a variable (or data member) that is defined in a new/redefined method.

One of its inherited methods calls a redefined method. One of its inher-

ited methods is called by a redefined method and uses a parameter that is

defined in the redefined method.

• CBM: Coupling Between Methods The metric measure the total number

of new/redefined methods to which all the inherited methods are cou-

pled. There is a coupling when one of the given in the IC metric definition

conditions holds.

• AMC: Average Method Complexity This metric measures the average

method size for each class. Size of a method is equal to the number of

java binary codes in the method.

• CC - The McCabe’s cyclomatic complexity It is equal to number of differ-

ent paths in a method (function) plus one. The cyclomatic complexity is

defined as:

CC = E − N + P

where

E - the number of edges of the graph

N - the number of nodes of the graph

69

P- the number of connected components

A Java-based system was developed to be integrated with the ckjm tool and

calculate 19 metrics for all the 457 Web services. Listing shows an example

calculated metrics for a single class of a passport validation webservice. For the

next step, the R language used for the statistical calculation. The R library called

ineq was used to calculate the Theil index ITheil for the Web services.

<?xml version=" 1 . 0 " ?>

<ckjm>

<metr ic>

<classname>passport . GetVersionResponse</classname>

<WMC> 14 </WMC>

<DIT> 1 </DIT>

<NOC> 0 </NOC>

<CBO> 7 </CBO>

<RFC> 15 </RFC>

<LCOM> 91 </LCOM>

<Ca> 4 </Ca>

<Ce> 3 </Ce>

<NPM> 6 </NPM>

<LCOM3> 1.0769 </LCOM3>

<LCO> 86 </LCO>

<DAM> 0.5000 </DAM>

<MOA> 0 </MOA>

<MFA> 0.0000 </MFA>

<CAM> 0.3776 </CAM>

70

<IC> 0 </IC>

<CBM> 0 </CBM>

<AMC> 5.0000 </AMC>

<CC> 0 </CC>

</metr ic>

</ckjm>

Sneed’s tool: Sneed et al. [20] developed a tool named softAudit to measure

the Web service interfaces. The suite consists of nine different source code met-

rics to measure the complexity of service interfaces: data complexity (Chapin

metric), data flow complexity (Elshof metric), data access complexity (card met-

ric), interface complexity (henry metric), control flow complexity (McCabe met-

ric), decisional complexity (McClure metric), branching complexity (Sneed met-

ric),language complexity (Halstead metric), weighted average program com-

plexity. The Softaudit tool provided by Sneed et al. was used to calculate the

09 complexity metrics for all the Web services by processing micro level class

files. Nine quality metrics using Sneed’s tool were also calculated namely de-

gree of modularity, degree of portability, degree of reusability, degree of testa-

bility, degree of convertibility, degree of flexibility, degree of conformity, degree

of maintainability, weighted average program quality.

Baski and Misra Metrics: Baski and Misra [21] proposed a tool to compute

six different complexity metrics of WSDL files. These metrics are based on an-

alyzing the WSDL and XSD schema elements. The metrics are data weight of

a WSDL (DW), distinct message ratio (DMR), distinct message count (DMC),

message entropy (ME), message repetition scale (MRS) and operations per ser-

71

vice (OPS). Baski & Misra metrics are calculated by processing the WSDL file for

each Web service rather than processing micro level class files. Baski & Misra’s

tool is used to calculate the six metrics for the 457 Web services WSDL files.

The framework uses the three sets as mentioned above of source metrics as

independent variables and quality metrics calculated using Sneed’s tool as de-

pendent variables. Normalization is an essential process for data regression.

Therefore, unsupervised normalization is applied with a range of 0.0 to 1.0 us-

ing the Weka tool. Then the metric sets are grouped in different combinations

to populate more sets of metrics to compare our results. Consequently, the ex-

periments conducted using the following metrics: 1. Chidamber and Kemerer

metrics (CKM), 2. Baski and Misra metrics (BSM), 3. Sneed’s metrics (SM), 4.

CKM- BSM metrics, 5. CKM-SM metrics, 6. BSM-SM metrics, and 7. All metrics

(AM). After grouping, there are seven different sets of metrics. Linear regres-

sion is applied to predict modularity and calculate the quality of service value.

The results show that Sneed’s metrics individually outperform the other sets of

metrics. Object-oriented metrics also have the potential to predict the QoS value

but not as efficiently as Sneed’s metrics. Baski & Misra metrics have the lowest

efficiency of the available groups of metrics. In summary, the metric values cal-

culated at the micro level have better QoS prediction efficiency than those at the

macro level.

3.2.4 Analysis of results

Four QoS metrics, namely modularity, testability, maintainability and, reusabil-

ity for the available Web services were calculated using Sneed’s tool. All three

72

0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52

True response

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

P
re

d
ic

te
d
 r

e
s
p
o
n
s
e

Predictions: model 1 (Linear)

Observations

Perfect prediction

Figure 3.3: BM metrics vs Modularity prediction

sets of metrics and their combinations were used to predict the metrics values

using robust linear regression. Figure 3.3 shows the graph of the actual mod-

ularity values and predicted modularity values. The RMSE and MAE values

respectively are 0.284 and 0.172, which are not better values for a linear predic-

tion model. Figure 3.4 compares the predicted modularity values using CKJM

metrics and the actual modularity values. The RMSE and MAE values are 0.017

and 0.011. The prediction results are better than those obtained using Baski &

Misra metrics. Figure 3.5 compares the results of the actual vs predicted modu-

larity values using Sneed’s metrics.

Figures 3.6, 3.7 and 3.8 show the prediction results with different combina-

tions of the three sets of metrics. Neither combination produced better results

73

0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52

True response

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

P
re

d
ic

te
d
 r

e
s
p
o
n
s
e

Predictions: model 1 (Linear)

Observations

Perfect prediction

Figure 3.4: CKJM metrics vs Modularity Prediction

than Sneed’s set of metrics. As shown in Figure 3.7., the BSM-CKM metrics

have the least potential of producing better predictions of modularity. The pre-

diction and actual modularity values using all the metrics are shown in Figure

3.9. It also is not able to produce better results than Sneed’s metrics. Table

3.4 summarises the RMSE and AME values of different sets of metrics used

for robust linear prediction. Sneed has set of metrics as stand-alone predic-

tors to produce better results for modularity quality prediction. As shown in

Figures 3.10, 3.11, 3.12, all the metrics combined produce slightly better results

than BaSki and Misra (BSM) metrics for predicting testability. However, Sneed’s

metrics yields much better results than the all metrics and the BSM metrics.

Figures 3.13, 3.14, 3.15 show that using all the metrics combined and the

74

Figure 3.5: Prediction model for Modularity using SM metrics

BSM metrics did not achieve better results for reusability prediction. Sneed’s

metrics produced slightly better results compared to the other sets of metrics.

The reusability of REST web services depends on the following characteristics:

• REST API endpoints should be simple and provide parameters to support

a wide range of use cases.

• REST API endpoints should be consistently structured for SQL, NoSQL

and file stores.

75

Figure 3.6: Modularity prediction results for SM-CKM metrics

• REST APIs must be designed for high transaction volume, hence simply

designed.

• REST APIs should be client-agnostic and work interchangeably well for

native mobile, HTML5 mobile and web applications.

• Noun-based endpoints and HTTP verbs are highly effective. Noun-based

endpoints should be programmatically generated based on the database

schema.

• Requests and responses should include JSON or XML with objects, arrays

76

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True response

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

d
ic

te
d
 r

e
s
p
o
n
s
e

Predictions: model 1 (Linear)

Observations

Perfect prediction

Figure 3.7: Modularity prediction results with BSM-CKM metrics

and sub-arrays.

• All HTTP verbs (GET, PUT, DELETE, etc.) need to be implemented for

every use case.

• Support for web standards like OAuth, CORS, GZIP and SSL is also im-

portant.

Therefore, the reusability of a Web service depends on various external factors

rather than software code. The experimental results depicted in Figures 3.13,

3.14, 3.15 support that the software source code metrics possess less potential to

predict usability.

A comparison of Figures 3.16 and 3.17 shows that all the metrics together

77

Figure 3.8: Modularity prediction results with BSM-SM metrics.
R-Squared = 0.9172.
Regression line equation: y(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14) =
2.7482 ∗ x0 + 2.1856 ∗ x1 + 2.3522 ∗ x2 + 0.6562 ∗ x3 + 4.6326 ∗ x4 + −0.2187 ∗ x5 +
1.8057 ∗ x6 + 2.3450 ∗ x7 + −19.0734 ∗ x8 + −0.0930 ∗ x9 + 0.1341 ∗ x10 + 0.0335 ∗
x11 + 0.1329 ∗ x12 + 0.0456 ∗ x13 + −0.0769 ∗ x14 + 2.0273.

78

Figure 3.9: Modularity prediction vs actual for all metrics.
R-Squared = 0.9462.
Regression line equation:
y(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18,
x19, x20, x21, x22, x23, x24, x25, x26, x27, x28, x29) = 1.0537 ∗ x0 + 0.7031 ∗ x1 +
0.8778 ∗ x2 + −0.9179 ∗ x3 + 2.9656 ∗ x4 + −1.7656 ∗ x5 + 0.5277 ∗ x6 + 0.7641 ∗
x7 + −7.2421 ∗ x8 + 0.7665 ∗ x9 + −0.0321 ∗ x10 + 0.1288 ∗ x11 + −1.3603 ∗ x12 +
0.2049∗x13+0.0841∗x14+0.0054∗x15+−0.8873∗x16+−0.1174∗x17+0.6724∗x18+
−0.0095∗ x19+−0.1247∗ x20+0.0353∗ x21+0.1189∗ x22+−0.1507∗ x23+−0.0185∗
x24+0.1659∗ x25+0.0422∗ x26+0.1664∗ x27+0.0883∗ x28+−0.1534∗ x29+2.2353

79

Figure 3.10: Testability prediction results with BSM metrics.
R-Squared = 0.0993.
Regression line equation:
y(x0, x1, x2, x3, x4, x5) = 0.1893 ∗ x0 + 0.3013 ∗ x1 + −0.2701 ∗ x2 + −0.4917 ∗ x3 +
−0.0315 ∗ x4 + 0.2637 ∗ x5 + 0.6984

provide better prediction results than the BSM metrics. As shown in Figure

3.18, Sneed’s metrics show better potential than all the metrics combined and

the BSM metrics for maintainability prediction.

The comparison Table 3.4 shows that the CKM metrics and SM metrics in-

dividually produce better results. When CKM and SM are combined, the effi-

80

Figure 3.11: Testability prediction vs actual for all metrics
R-Squared = 0.943
Regression line equation:
y(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19,
x20, x21, x22, x23, x24, x25, x26, x27, x28, x29) = 0.5717 ∗ x0 + 4.2507 ∗ x1 + 4.1199 ∗
x2 + 3.4248 ∗ x3 + 3.5362 ∗ x4 + 5.3187 ∗ x5 + 4.0641 ∗ x6 + 3.7795 ∗ x7 + −32.9526 ∗
x8 + −9.1198 ∗ x9 + −0.0838 ∗ x10 + 0.0325 ∗ x11 + 2.8808 ∗ x12 + −0.3493 ∗ x13 +
−0.0582 ∗ x14+ 0.0090 ∗ x15+ 5.3039 ∗ x16+ 0.1583 ∗ x17+ 1.2257 ∗ x18+−0.5894 ∗
x19+ 0.2328 ∗ x20+−0.0231 ∗ x21+−0.0966 ∗ x22+−0.2425 ∗ x23+−0.0048 ∗ x24+
−0.0330 ∗ x25+−0.0385 ∗ x26+0.0285 ∗ x27+−0.0115 ∗ x28+−0.0064 ∗ x29+3.1057

81

Figure 3.12: Testability prediction results with Sneed’s metrics
R-squared = 0.8276
Regression line equation:
y(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = −2.4851 ∗ x0 + 0.8176 ∗ x1 + 0.7047 ∗ x2 +
0.3849 ∗ x3 + −0.1102 ∗ x4 + 0.3296 ∗ x5 + 1.2122 ∗ x6 + 0.3881 ∗ x7 + −5.4533 ∗ x8 +
−0.0820 ∗ x9 + 2.4228

82

Figure 3.13: Reusability prediction results vs actual for all metrics
R-Squared = 0.5377
Regression line equation:
y(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19,
x20, x21, x22, x23, x24, x25, x26, x27, x28, x29) = −0.9046 ∗ x0 + −1.7537 ∗ x1 +
−1.5273∗ x2+−1.5990∗ x3+0.3771∗ x4+−4.3778∗ x5+−1.6074∗ x6+−1.8729∗ x7+
11.7508 ∗ x8+−12.9236 ∗ x9+−0.4985 ∗ x10+0.3619 ∗ x11+−1.8918 ∗ x12+0.5193 ∗
x13 + 0.0292 ∗ x14 + −0.1872 ∗ x15 + 12.3371 ∗ x16 + −0.1079 ∗ x17 + 1.7268 ∗ x18 +
−0.0756 ∗ x19+−0.1739 ∗ x20+0.3085 ∗ x21+0.0122 ∗ x22+−0.6268 ∗ x23+0.0713 ∗
x24+0.1877∗x25+−0.1474∗x26+0.0253∗x27+−0.0474∗x28+−0.0364∗x29+1.4964

83

Figure 3.14: Reusability prediction results with BSM metrics.
R-Squared = 0.045
Regression line equation:
y(x0, x1, x2, x3, x4, x5) = −0.0093 ∗ x0 + 0.0011 ∗ x1 + −0.0751 ∗ x2 + 0.0473 ∗ x3 +
−0.0790 ∗ x4 + −0.0379 ∗ x5 + 1.0383

S.No Metric set name RMSE MAE
1 BSM 0.284 0.172
2 CKM 0.017 0.011
3 SM 0.0085 0.0057
4 BSM-CKM 0.1497 0.022
5 BSM-SM 0.0872 0.0581
6 SM-CKM 0.12114 0.085
7 AM 0.1556 0.0743

Table 3.4: RMSE & MAE comparison for different sets of metrics for modularity

84

Figure 3.15: Reusability prediction results vs actual for Sneed’s metrics
R-Squared = 0.2265
Regression line equation:
y(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = −2.3085 ∗ x0 + −2.6429 ∗ x1 + −2.7878 ∗ x2 +
−2.6285 ∗ x3+−2.4115 ∗ x4+−4.1766 ∗ x5+−2.9506 ∗ x6+−2.8893 ∗ x7+ 21.6811 ∗
x8 + −0.0100 ∗ x9 + 0.9880

85

Figure 3.16: Maintainability prediction results with BSM metrics
R-Squared = 0.0359
Regression line equation:
y(x0, x1, x2, x3, x4, x5) = 0.0664 ∗ x0 + −0.1900 ∗ x1 + 0.0152 ∗ x2 + −0.1298 ∗ x3 +
0.0340 ∗ x4 + 0.1691 ∗ x5 + 0.3629

ciency of the prediction quality is reduced as indicated by the increasing MAE

and RMSE values. BSM metrics have lower potential to predict the quality val-

ues individually. The results of BSM combined with SM are better than CKM.

As a conclusion, this study demonstrates that the CKM and SM metrics that are

calculated at a micro level have higher potential to predict the quality of a Web

service.

86

Figure 3.17: Maintainability predictioin results vs actual for all metrics.
R-Squared = 0.8431
Regression line equation:
y(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19,
x20, x21, x22, x23, x24, x25, x26, x27, x28, x29) = −0.3151 ∗ x0 + −0.7992 ∗ x1 +
−1.0216∗ x2+−0.8342∗ x3+−0.4060∗ x4+−1.7812∗ x5+−1.7800∗ x6+−0.9928∗ x7+
5.3500∗ x8+−2.0524∗ x9+−0.7867∗ x10+−0.2536∗ x11+−0.9415∗ x12+−0.2692∗
x13+−0.1068∗ x14+0.3007∗ x15+1.9078∗ x16+0.1880∗ x17+1.6854∗ x18+0.7206∗
x19 + −0.1059 ∗ x20 + 0.0795 ∗ x21 + −0.0664 ∗ x22 + −0.5798 ∗ x23 + 0.1732 ∗ x24 +
−0.1855 ∗ x25+−0.0317 ∗ x26+−0.0475 ∗ x27+ 0.0675 ∗ x28+ 0.0425 ∗ x29+ 1.3905

87

Figure 3.18: Maintainability prediction results with Sneed’s metrics.
R-Squared = 0.8431
Regression line equation:
y(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = −2.4851 ∗ x0 + 0.8176 ∗ x1 + 0.7047 ∗ x2 +
0.3849 ∗ x3 + −0.1102 ∗ x4 + 0.3296 ∗ x5 + 1.2122 ∗ x6 + 0.3881 ∗ x7 + −5.4533 ∗ x8 +
−0.0820 ∗ x9 + 2.4228

88

3.2.5 Answers to the research questions

Answer to RQ1.1: Will the proposed methodology improve the predictability

of source code metrics?

The experiments were conducted using seven different combinations of source

code metrics, including CKM, BSM, SM, CKM-BSM, CKM-SM, BSM-SM and all

metrics. The CKM metrics were not aggregated with the Theil index, and the

other two had the Theil index applied. The results clearly illustrate that Sneed’s,

Baski & Misra metrics suites certainly have more potential than CKM metrics to

predict the web services’ QoS properties.

Answer to RQ1.2: Can we predict the quality of service properties of Web

services using source code metrics?

The experimental results demonstrate that the source code metrics certainly

pose the potential to predict a web service’s quality of service properties. Other

than reusability, the three source code metric suites produce better results for

the multiple linear regression. The results show that the Sneed metrics have a

higher potential to predict the quality metrics for Web services compared to the

two other metrics. The RMSE and MAE values are 0.0085 and 0.0057, which

shows that the prediction results are outstanding.

89

3.3 Chapter summary

Due to the popularity of Web-based applications, various developers have pro-

vided an abundance of Web services with similar functionality. Such similarity

makes it challenging for users to discover, select, and recommend appropri-

ate Web services for service-oriented systems. QoS has become a vital criterion

for service discovery, selection, and recommendation. Unfortunately, service

registries cannot ensure the validity of the available quality values of the Web

services provided online. Consequently, predicting Web services’ QoS values

has become a vital way to find the most appropriate services. In this research,

we proposed a novel methodology for predicting Web service QoS using source

code metrics. The core component is aggregating software metrics using in-

equality distribution at the micro level of an individual class to the macro level

of the entire Web service. The correlation between QoS and software metrics is

used to train the Machine learning. Our approach is validated and evaluated us-

ing three sets of software quality metrics. Our results showed that the proposed

methodology can improve the efficiency of the prediction of QoS properties us-

ing its source code metrics.

90

CHAPTER 4

KEYWORD-BASED WEB SERVICE SEARCH AND RANKING

4.1 Keyword search

The most critical and valuable data, such as business data, is stored in the re-

lational databases. A relational database management system (RDBMS) saves

data in tables and the relationships among the data. The data can be reassem-

bled and accessed in many different ways without changing the table form.

Most commercial relational database management systems use SQL to access

the database. With an increasing trend of using relational databases to store

data, it has become crucial for users to be able to search and browse the informa-

tion stored in them. Keyword research is the process of finding and analysing

search terms that people enter into search engines to use that data for a specific

purpose, often for search engine optimisation (SEO) or general marketing. Key-

word research can uncover queries to target, the popularity of theses queries,

their ranking difficulty, and more. A keyword search on relational databases

enables ordinary users. They do not understand database schema or SQL, to

find the connected tuple sets among the tuples stored in the relations, with a

given set of keywords. The existing methods of keyword searches on relational

databases can be classified into two categories, namely, schema-based methods

and graph-based methods.

A schema-based keyword search on relational databases is a standard

method to generate a candidate network in schema graphs transformed from

relations. The relational databases stores data in the form of columns, tables

and primary key to foreign key relationships. Two schema graphs provided as

91

examples to understand the context. Figure 4.1 shows the schema graph of a

publication database from the DBLP dataset. It consists of six relation schemas,

namely Person, InProceeding, RelationPersonInProceeding, Proceeding, Pub-

lisher and Series. Each relation has a primary key except the RelationPersonIn-

Proceeding relation. The InProceeding relation has one foreign key that refers

to the primary key defined in the Proceeding relation. The Proceeding relation

has two foreign keys that refer to the primary key defined on both the Pub-

lisher and Series relations. The movies database schema graph of the IMDB

dataset is shown in Figure 4.1. It consists of six relation schemas: Movies, Di-

rectors, Movies-Directors, Movies-Genres, Actors and Roles. Each relation has

a primary key except the Movies-Directors relation. The Roles relation has one

foreign key that refers to the primary key defined in the Actors relation.

4.1.1 Schema-based keyword search

The proposed approach uses a schema-based keyword search for Web service

discovery using a relational database. It is a novel work to the best of our knowl-

edge that uses a schema-based keyword search over the relational database for

Web service discovery. Fitting the graph into the main memory is one of the

significant challenges of the graph-based approach. Though many indexing

strategies are proposed in the literature, transforming a relational database with

millions of records into a graph consumes memory. Furthermore, identifying

appropriate sub-graphs as query answers remains an open problem [126]. This

research uses the Inverted index from the database schema in our proposed ap-

proach to quickly locate the candidate data and graph nodes summary.

92

Figure 4.1: Schema graph for publication database

Web service composite quality can be measured using the appropriate ag-

gregation functions on the quality parameters of individual Web services [12].

Where there are several execution paths from the entry service to the system’s

exit service, the one with highest processing time determines the system’s re-

sponse time. The experiments thoroughly demonstrate the efficiency and per-

formance of our keyword-based search and selection approach. The computa-

tion time shows the efficiency, and the success rate illustrates the effectiveness of

our proposed method. The success rate is the percentage of an instance where

a group of keywords obtain a valid query result [127, 128]. The experimen-

tal setup calculates the computational time and success rate with different key-

93

Figure 4.2: Schema graph for Movies database

word lengths, different tuple sets, several composite tasks and, several quality

requirements. The key contributions of this research are:

• to develope a schema-based keyword search which offers a capable archi-

tecture through the integration and automation of system planning, ser-

vice discovery and selection.

• to store Web services in the library, the existing relational database model

is adopted, in which a tuple represents the Web service information and

composability information stored as a key reference between tuples.

• to test the success rate and response time of the schema-based keyword

94

search model, comprehensive experiments were performed using the WS-

Dream data set.

4.2 System Architecture

Relational databases can store service information as tuples and service com-

posability information as key references between tuples. For instance, a foreign

key reference placed if a service’s output used as a service’s input. A relational

database which stores Web services and their relations generate a set of con-

nected tuples (Minimal Total Joint NeTwork (MTJNT) or candidate network)

for a specific number of keywords. A high ranking MTJNT which covers all

keywords is the result. If more results needed, then more candidate networks

are found to identify the top-k, where the user can define k. Figure 4.3 illus-

trates our proposed schema-based keyword search architecture for Web service

discovery and selection. The proposed architecture consists of the following

modules to achieve the keyword search.

4.2.1 Data Preprocessing

The WS-Dream dataset contains the URLs for 5825 WSDL (Web Service Descrip-

tion Link) files used for the experiments. A Java-based framework built to ex-

tract the WSDL files from the URLs in the current dataset, only 457 URLs have

WSDL files for Web services. Sneed’s tool used to calculate nine quality metrics

for the available WSDL files. Keywords related to each Web service functional-

ity are added to improve the search results. As a final step, the system used the

95

Figure 4.3: Architecture for Schema-based keyword search

96

SQL SELECT RANDOM in-built method to generate key references among the

available tuples randomly.

4.2.2 Service data retrieval engine

For the service data retrieval (SDR) engine, the primary objective is to search

for user queries and different related tuples for the keywords that are avail-

able. The Oracle Text tool was employed to test data and to create an index

that records each occurrence of a keyword as an inverted index. Sophisticated

RDBMSs provide an IR-style indexing functionality for the text attribute. The

Service Data Retrieval Engine feature of our architecture uses IR-style indexing

to classify all database tuples with a non-zero score for a given request. The SDR

engine depends on the IR Index, an inverted index which links each keyword

in the database with a set of keyword occurrences; every keyword instance is

registered as a pair of tuple attributes. Oracle Text is used to establish a sep-

arate index of each relation attribute in our implementation. Such indexes are

combined to create the IR index. When a query arrives, the IR Engine uses the

IR Index to extract from each relation R the tuple set R
Q
= {tεR|S core(t,Q) > 0}

, which consists of the tuples of R with a non-zero score for Q. On the arrival

of a Q query, the IR Engine uses the IR Index to retrieve the tuple set with non-

zero score R
Q
= {tεR|S core(t,Q) > 0}. As specified by the top-k query processing

algorithm below, tuple t in the tuple sets are ranked in the order of S core(t,Q).

97

4.2.3 Candidate network generator

The Candidate Network (CN) Generator is the next component in the system.

CN receives the non-empty tuple sets from the SDR Engine, database scheme

and a parameter M. This module plays a vital role in generating CNs, expres-

sions that are essential to building joining tuple trees that are considered as po-

tential answers.

a Java-based system developed to identify the CN from the pool of intercon-

nected tuples provided by the IR engine. The Minimal Total Joining Networks

(MTJN) concept needs to be followed to identify the CNs. The number of tuples

is the size of the CN. An interconnected tuple should meet the following criteria

to qualify as an MTJN:

1. The number of non-free tuple sets in the result set doesn’t exceed the num-

ber of query keywords m: This constraint ensures the development of ad-

equate CNs without compromising a result with all the keywords that are

essential for Boolean-AND semantics. That is, for every result T that con-

tains every keyword exactly once, a CN C exists such that T ∈ C.

2. The result set is not free of leaf tuple sets. This constraint guarantees CN

“minimality.”

3. The result set does not have an associative structure between tuples like

R→ S ← R. If there were such a structure, each resulting tuple joining tree

would contain multiple times the same tuple.

98

4.2.4 Execution Algorithm

The final module in this pipeline is the execution engine which receives many

CNs with non-empty tuple sets. The Execution Engine interacts with the

RDBMS query execution engine repeatedly to classify the top-k database re-

sults. The most challenging feature to incorporate is the Execution Engine mod-

ule. Vagelis et al. [129] proposed an efficient hybrid algorithm to rank the CNs

with the required number of results. The hybrid algorithm emerged from the

Sparse algorithm and Global pipelined algorithms.

Sparse Algorithm

The Sparse algorithm aims to enhance the performance of query-processing by

removing any CN which may not produce a top-k match for the given query.

The steps followed by the Sparse algorithm are as follows:

1. Calculate the Maximum Possible Score (MPS) for tuple tree obtained from

the CN.

2. Compare MPS with the already computed actual score of k for other tuple

trees.

3. The corresponding CN can be ignored safely for further consideration if

the already computed k value exceeds the MPS value.

Global pipelined Algorithm

The global pipelined algorithm performs well for queries with a larger number

of results. The algorithm receives a set of candidate networks along with its non-

99

empty tuple set as input and produces a group of joining tress ranked based on

their overall score for the query. The following steps explain the process of the

single pipelined algorithm.

1. Calculate the Maximum Possible Future Score (MPFS) for the tuple tree

obtained from the CN.

2. CN with a maximum MPFS value is evaluated and its priority is updated.

3. After that, the CN with the next highest MPFS value is selected and anal-

ysed.

4. A CN can be added to the output if its MPFS value is no lower than the

Global MPFS value.

The most potent algorithm for queries with fewer results is Sparse. With

a reasonably large number of results, the Global Pipelined performs best on

queries. In contrast, the Hybrid algorithm estimates the number of results ex-

pected for a query and selects the best algorithm for query processing.

The Hybrid algorithm, as mentioned in Algorithm 1 is significantly depen-

dent on the result-size estimator precision. The RDBMS result-size estimates for

queries with OR semantics were found to be reliable. In contrast, this estima-

tion is more challenging for queries with AND semantics. The RDBMS that we

used for our implementation, Oracle 9i, ignores the text index when produc-

ing estimates. However, this estimation is even more challenging for queries

with AND semantics. We obtain an estimate S of the number of tuples extracted

from a CN from the RDBMS, but we need to refine this estimation so that we

find only tuple trees that include all the keywords for queries. Consider a two-

keyword question to demonstrate the simple adjustment [w1,w2] with two non-

100

empty tuple sets TS 1 and TS 2. When we assume that the two keywords occur

independently within tuples, we modify the estimation S by multiplying by
|TS w1

1 |·|TS w2
2 |+|TS w2

1 |·|TS w1
2 |

|TS 1 |·|TS 2 |
, where TS w

i is a subset of TS i with keyword w. When cal-

culating this adjustment variable, an implicit simplifying assumption is that a

tuple does not have two keywords.

Algorithm 1 Hybrid algorithm

Hybrid Algorithm (CN,k,c,Query,Score())
c is a constant for tuning
E = GetEstimate(CN)
if (E > c . k) then

employ Global pipelined
else

employ Sparse
end if

A Java system developed based on this hybrid algorithm to rank the CNs.

The result size needs to be provided by the end-user. The hybrid algorithm

uses the result size number to restrict the algorithm with the number of results.

Once the top-k CNs obtained, the system extract the top sets of tuples and estab-

lish a service-oriented system. The experiments designed to comprehensively

demonstrate the efficiency and effectiveness of our keyword-based Web service

search and selection methodology. The Calculation of computation time shows

the efficiency, and the success rate illustrates the effectiveness of our proposed

approach. Various keyword lengths with different sets of a number of tuples

used to calculate the computation time. The success rate is the percentage of an

instance when a group of keywords obtain a valid query result.

101

4.2.5 Evaluation metrics

We planned to use two sets of Web service datasets, namely the QWS dataset

and the WS-Dream dataset. The QWS dataset contains around 200 active Web

service with 19 quality metrics, and the WS-Dream dataset contains about 700

active Web Service and two quality metrics. We calculate the computation time

taken to respond to the query with variable lengths of keywords. We compare

the computation time with different lengths of the keyword on both the Web

service datasets.

4.3 Experiments & analysis of results

4.3.1 Research questions

The experiments conducted to answer the following research questions

RQ 2.1: How effectively can the schema-based keyword search improve Web

service composition quality?

Graph-based systems generate multiple tuple sets for each database relation-

ship to find all the answers to a query using this AND semantics. For each

combination of the keywords in Q and each relationship, a separate tuple set

is created. This process usually results in an exponential amount of CNs in the

query size, which makes query execution expensive for queries with more key-

words or an M value greater than 4. In comparison, for each R relationship,

102

we only create a single tuple set R
Q
,as specified above. A post processing step

checks that we only returned tuple trees which comprise all query keywords for

queries with AND semantics. This feature of our system results in considerably

faster executions, which helps us to manage larger queries and also increases

the consistency of the composition.

RQ 2.2: Can the candidate networks be optimzed to improve the search

query?

RDBMS employed to process SQL queries as we planned to query relational

database data. The keyword query given by a user retrieves interlinked tuples

containing the keywords in the query. A tuple comprises a keyword if the key-

word is available in the tuple text attribute. The system searches for subsets

of relationships that include the keywords from the queries with the keywords

in hand. These subsets retrieved from the database are called tuple sets. The

tuples containing the required keywords are combined to generate a relational

algebra expression, namely the CN. In other words, each CN describes potential

answers for the entered keyword query. In addition to the tuple sets generated

in the previous step, creation CN needs information on referential integrity con-

straints taken from the database schema. As there are many different ways to

join relationships that store the keyword containing tuples, many different CNs

may potentially be generated.

In our proposed method, if it satisfies the following properties, we find that

tuple set is a CN:

• the number of non-free tuple sets is not more than the number of query

103

keywords

• there are no free leaf tuple sets

• the multiple set has no associative form construct R→ S ← R

4.3.2 Variables and objects

Most of the existing Web service ranking systems use the unreliable quality pa-

rameters available at Web service repositories. Due to a lack of maintenance,

network connection and geographical disparity, repositories are not able to pro-

vide a valid quality parameter. However, Sneed’s tool processes the source code

of the Web service to generate quality parameters for Web services.Sneed pro-

posed the following QoS properties as potential criteria to choose a more suit-

able web service. This research uses them as an additional search criterion to

query web services:

Modularity = [(No.Moduleinvocationsx2) + (No.ModulesxDesiremodule −

S ize)]/No.S tatements

Portability = [No.S tatements − (No.DatabaseAccessesx8) − (No. − T P −

Operationsx6)−(No.FileAccessesx4)−(No.−Callsx2)−(No.Non−standardS tatements)]/

No.S tatements

Testability = [l − (No.Edges/No. − S tatements)]x[l − (Nopredicates/No.Data)]

Con f ormity = 1 − (No.Noncon f orming_Lines/No.Lines)

Readability = (CommentLinesxCommentWeight)/No.Lines

104

Evaluation Variables

The experimental setup employed response time and success rate, two key pa-

rameters to validate our approach. The success rate is the percentage of cir-

cumstances when an answer to the keyword query for the Web service found.

Finding a composite Web service solution that fulfils all quality constraints de-

spite its various optimisation objectives determines the success rate. We use

success rate to illustrate the efficiency of the proposed solution.

When there are several execution paths from the entry service to the sys-

tem exit service, the system’s response time is determined by the one with the

longest execution time. Different scenarios such as keyword distance, number

of search keywords, number of quality constraints and number of tasks for a

composite are used to define response time.

Objects

The WS Dream dataset, an open-source dataset created by a group of researchers

from the Chinese University of Hong Kong, was used in this research. The WS-

Dream dataset has two dataset versions, and our experiments use version 1. The

data consists of 5825 URLs and the response time and throughput data from

339 geographically distributed users. To improve the search results, we added

keywords for each Web service related to its functionality. As a final step, we use

the SQL SELECT RANDOM in-built method to generate key references among

the available tuples randomly.

105

Empirical environment

The software development utilized different services using the Python lan-

guage. The high levels of the Python language are created in the form of data

structure, dynamic typing and binding. It is well suited as a scripting language

and to connect different components. It is a simpler in terms of learning and

syntax. It is a cost-effective language for programme maintenance. Python has

in built support for modules and packages which provide the function of code

reuse and modularity. It is freely distributed language. Sample Web services

has been built in different python files for different components. The files are

connected using a Rest API. For our purpose the code is accessed using a tool

called POSTMAN for GET and POST methods. The web services are deployed

onto a server (WSGI in our case), which listen to requests on a specific port.

When a request is made the request is processed then a connection is made to

the MySQL Database and then a SQL query is run using this DB connection

which will give us a result set based on the query performed this result is then

converted into a python relevant dictionary which will be the endpoints output.

The dataset was pulled into the MySQL database. The services were com-

bined using the POSTMAN tool, which is a webservice testing tool. AngularJS

and NodeJS are used for the development of the User Interface. In addition,

the Web Description Language is used to define the features of a Web applica-

tion using an XML-based interface description language.The user interface is

developed using node.js and angular.js functions which helps in the good pre-

sentation of the developed work.

This research leveraged the functionality of the postman tool to test the APIs.

A request made to each of these APIs individually to showcase the functionality

106

and then a request made to the POST endpoint which consumes the other three

endpoints and provides a much more consistent output. The system extracts the

results using POSTMAN, a web service testing tool. The architecture utilizes a

combination of Python, Bottle (REST services library), Requests (simple web-

service requester service), MySQL (database), and Postman (the web service

testing tool). The database facilitators such as MySQL and Mongo, which uses

an HTTP API used to provide access to the database files. A web service was de-

veloped to get the user inputs from the user interface. The organization of a web

service composition that includes multiple web services is assumed. Retrieving

data sets which are going to be an input for another service are taken. Node.js

& Angular.js are used for creating the user interface platform in which the user

can raise queries and can retrieve multiple results from which the higher prior-

itized ones are displayed first. The user gives queries in the form of common

human language like “Find me a hotel in the city ***** with **requirements**

and also find taxis around me”, and then the system displays all the related list

of results (List of hotels and taxi services). The result is displayed in the form

of card layout by which the user can find website of the specific field and can

access the taxi service directly without opening a third party application which

helps all the users in a great manner as it makes the job easier of finding various

services at one place rather than accessing them separately.

4.3.3 Analysis of results

The WS-Dream dataset used to create three groups of datasets containing Web

services with three different functional capabilities. The three functionalities

are Hotel, Flight and Taxi. SQL Random function used to populate the foreign

107

Figure 4.4: Response time(in seconds) for various keywords with and without
QoS

key references between the three datasets to utilise them for the experiments.

A Java applicatioin developed for retrieving the Minimum Total Joint Network

Trees (MTJNT) for the given keywords of the user requirements. The system cal-

culated the response time to get the MTJNT for each combination of keywords

without QoS parameters and with QoS parameters. Figure 4.4shows the graph

for both the experiments to calculate the response time with and without QoS.

QoS parameters significantly affect the response time for retrieving MTJNT.

The results presented in Figure 4.4 illustrates that the response time of vari-

ous combinations of queries with QoS requirement is comparatively higher than

the queries without QoS requirement. However, the efficiency of web service

composition depends on the aggregated quality of all the candidate services.

With QoS requirements, the proposed methodology retrieved the best suitable

web services for the query. Figure 4.5 can indicate that the success rate signif-

icantly increased while including QoS requirement in the search query. There-

fore, the disadvantage caused by the QoS requirement in terms of response time

108

Figure 4.5: Success rate(%) for various keywords with 1000 services in reposi-
tory

Figure 4.6: Success rate(%) for various keywords with 2000 services in reposi-
tory

109

can be justified.

The success rate also calculated for the keyword results using the Web ser-

vice testing tool called POSTMAN. Web services repositories are grouped with

different numbers of services to calculate the success rate. Figure 4.5, 4.6, 4.7

and, 4.8 illustrate the results of the success rate with and without QoS property

requirements. Figure 4.5 presents the results of the success rate for the exper-

iment with 1000 services in the web service repository. When using only one

keyword as a criterion, the success rate is always 100% as the repository only

contains services with functionalities such as Flight, Hotel and Taxi. Therefore,

we ignore the details of the success rate when using only one keyword in the

graphs. With a various number of services in the repository, success rate im-

proves while the number of services increases. However, queries without QoS

demonstrate less potential than queries with QoS. This observation indicates

that the success rate is maximising while considering the QoS as a requirement

for Web service discovery.

Figures 4.9, 4.10, 4.11 and 4.12 illustrate the success rate for each combina-

tions of queries with a different number of services in the repository. Based on

Figure4.9, 4.10 ,4.10 and Figures 4.12, Flight and Hotel , Success rate is gradually

increasing while the number of services increases. However, QoS plays a vital

role in improving the success rate. Therefore, it is evident that the repository

with more number of services yields better results while querying with QoS as

a criterin.

110

Figure 4.7: Success rate(%) for various keywords with 3000 services in reposi-
tory

Figure 4.8: Success rate(%) for various keywords with 4000 services in reposi-
tory

111

Figure 4.9: Success rate(%) for Flight AND Hotel keyword for different no. of
services

Figure 4.10: Success rate(%) for Flight AND Taxi keyword for different no. of
services

112

Figure 4.11: Success rate(%) for Hotel AND Taxi keyword for different no. of
services

Figure 4.12: Success rate(%) for Flight AND Taxi AND Hotel keyword for dif-
ferent no. of services

113

4.4 Chapter summary

Construction of SOAs through the composition of the existing Web services was

reflected in the rapid growth of SOAs applications for software engineering.

The selection of appropriate component services to compose is an essential step

in the Web service composite engineering process. Currently, the available ap-

proaches require systems engineers with substantial knowledge of SOA tech-

niques. A schema-based keyword search proposed for Web service discovery

and composition to address the aforementioned issue. System engineers with-

out a comprehensive understanding of SOA techniques can use schema-based

keyword search. To search for SBS component services, they simply need to en-

ter a few keywords that define the SBS functionalities. Experiments conducted

using the WS-Dream dataset and the response time and success rate are esti-

mated to validate our proposed system. The results of the experiment demon-

strate that the scheme-based keyword search and quality constraints are feasible

to achieve a higher success rate.

114

CHAPTER 5

SCALABLE ARCHITECTURE FOR PERSONALIZED HEALTHCARE

SERVICE RECOMMENDATION USING BIG DATA LAKE

5.1 Enterprise Data Warehouse

Due to emerging technologies such as the Internet of Things (IoT), all the entities

are electronified. Since the growth rate of data is 48% every year, it is estimated

that in the year 2020, the world will have 25,000 petabytes of data. Data com-

prises not only structured data but also contains semi and unstructured data.

Only 20% of data is in a structured format which can efficiently be utilized by

data scientists. However, the production rate of semi and unstructured data is

15 times higher than structured data [114]. Essentially, researchers need to pro-

cess all kinds of structured, semi and unstructured data to find valuable insights

[110]. Inevitably, an improved data management system would help data scien-

tists provide tailored insights. The contemporary IT infrastructure offers many

data handling systems such as the Enterprise Data Warehouse (EDW); however,

there is a lack of scalability because the EDW data management system is for

well-known queries and clearly defined policies [130, 131].

To pull the data into the EDW for further processing, it should go through the

procedure of data preprocessing, namely extract, transform, load (ETL) [132].

The ETL process predominantly consumes high cost and time. To provide a

custom-made medical intervention, data from diverse sources need to be pro-

cessed [133, 134]. However, the EDW system is not so capable of handling the

various sourced data. Another contention in healthcare analytics in adapting

EDW is the inability to coexist with contemporary programming-based query

115

languages. An EDW designed for processing specific business rules demands

significant effort to redesign for future needs. Therefore, conventional IT archi-

tecture, such as the EDW, has several limitations in handling the complex nature

of healthcare data [135]. This research addresses the issues faced by the exist-

ing IT architecture and proposes a Big Data Lake architecture for efficient data

analytics and demonstrates its ability for healthcare recommendation.

The experiments were designed based on the following objectives:

• to diminish the data silos across healthcare organisations.

• to plan a system to store a variety of data on a huge scale without ETL

delay.

• to model a language independent data architecture system to cope with

big data initiatives.

• to acquire meta-data along with data to maximise the future reusability of

the data.

• to develop an analytical system to predict personalised healthcare inter-

vention.

5.2 Data lake

The data lake is an emerging data architecture. A data lake uses a flat architec-

ture to store data in their raw format [136]. Each data entity in the lake is asso-

ciated with a unique identifier and a set of extended metadata. The consumers

can use purpose-built schemas for query-relevant data, which will result in a

smaller set of data that can be analysed to help answer a consumer’s question.

116

There are doubts and concerns about the possibility of data becoming incom-

prehensible due to a lack of schema or similar means of interpretation, which

could cause the lake to turn into a "data swamp" [137]. Therefore, a metadata

repository that registers high-level information about data entities (type, time,

creator, etc.) is an essential component of a robust data lake structure. A data

lake’s flat structure stores data regardless of its format and places the responsi-

bility for understanding the data elsewhere.

It motivates us to choose the data lake an alternative data architecture for the

SOAs. A personal data lake system proposed by Walker and Alrehamy [123]

gives a basis for designing our proposed approach.

The promising properties of personal data lake architecture are as follows:

• It can provide a unified location for all the data from different social net-

works about a single user.

• It can improve privacy and security by storing data in a single location

and the user is given the rights to design how to access their data.

• It offers the Personal Lake Serialization Format (PLSF) approach for stor-

ing meta-data.

5.3 Personalized Healthcare

By adopting smart devices, the health care industry has become a predominant

stakeholder of global data. Therefore, personalised healthcare is an emerging

trend in healthcare data analytics. It provides tailored treatment recommenda-

117

tion for an individual by analysing their medical history, environmental factors,

food habits, genomic structures and insurance details [118].

Based on the recent research observations, patients with the same diagnosis

may respond to the same medication in different ways. A drug can be highly

effective for one patient, but the same drug might not produce the expected re-

sults when given to another patient with the same diagnosis. Personalized med-

ication means the prescription of precise treatments and therapeutics which are

well suited to an individual, taking into consideration of all the data that influ-

ence responses to therapy [138]. Due to the enormous growth of the Internet

of things, the healthcare industry is equipped with smart devices and appli-

cations. Consequently, digitalization creates valuable data about the patients

and medications, namely electronic health records (EHR) [139]. The large-scale

availability of EHRs allows researchers to unearth the possibilities of moving

healthcare organizations towards personalized healthcare [140].

5.3.1 Role of the Data Lake in Healthcare

This study proposes to adopt a data lake architecture as a replacement for the

traditional data management architecture for SOAs. A health care based SOA

to predict the tailored medication is demonstrated. A data lake possesses the

following capabilities to address the aims of this research:

• It can store data in its native format (structured/unstructured) as it arrived

without any pre-processing delay.

• A data lake can connect with trusted external sources (clinical lab, genomic

118

centre, insurance payers, and social media) [141]. It will also reduce the

data silo across health care institution [111].

• It can support new types of data processing and improve the adaptability

of the analytics system. It can able to store a massive amount of data from

a diverse source with less cost.

5.3.2 Research Questions

Our experimental study is designed to answer the following two research ques-

tions:

RQ3.1: How efficiently does the proposed architecture reduce the time for

data ingesting and crawling from various internal and external data stake-

holders?

Compared with a traditional data warehouse, the data lake allows the storage

of data as it comes without bounding with any schema. Besides, it uses the

HDFS file system, which can connect to any remote application using Apache

tools. The time taken for the data architecture to load and store the data is repre-

sented as the data ingestion time. The lower the data ingestion time, the better

the data architecture for healthcare analytics. Therefore, if the proposed data

lake architecture can reduce the data analytics processing time, it also improves

healthcare recommendations.

119

RQ3.2: Is the data lake architecture able to avoid Data silos?

Due to the pre-defined data schema for data warehouse architecture, it is im-

possible to store data of different types in a centralized storage location. It leads

to the creation of numerous data silos for datasets about each patient. The preci-

sion of clustering is dependent on the perimeter of the data on the patients. The

more data there is from various data stakeholders, the better the results from

the data analytics. Hence, if our proposed data lake architecture can handle the

multiple data types in a unified location without the data swamp threat, it can

improve the precision of clustering significantly.

5.4 Contribution of the research

A data lake can store data in its raw format, which removes the burden of cleans-

ing and transforming the data according to EDW rules. Hadoop Distributed File

System (HDFS), open-source software used to implement the data lake. It en-

ables the system to store a vast amount of data at a lower cost. EDW cannot

be connected with external real-time streaming data sources because it cannot

manage data which is changing quickly. But the proposed data lake can be con-

nected with external data sources through tools such as Apache Spring XD and

Apache Flume. On successful completion, the results of this research will serve

as a prominent data management model in the healthcare industry. Motivated

by the needs as mentioned above and possibilities, this research proposes a scal-

able architecture for personalized healthcare recommendation.

The main contributions of this study are:

120

• It introduces the data lake architecture in healthcare to crawl and ingest

healthcare data from vendors without any data preprocessing delay.

• It enhances the data IT infrastructure in healthcare by accepting the con-

nection from trusted third party data stakeholders.

• It accumulates data with different formats and stores this in the unified

data lake to avoid data silos across healthcare organizations.

5.5 Proposed Data Lake Architecture

The proposed data lake architecture for this research is plotted in Figure 5.1.

It has four layers, namely, data ingestion layer, data governance layer, security

layer, analytics layer, which will be respectively discussed in the following four

sections.

5.5.1 Data ingestion layer

Typically, data crawled from multitude sources in its raw format. More of-

ten, data is available as structured; still, sometimes it may also arrive as semi-

structured or unstructured. A data lake can ingest all the available data without

any ETL processing. However, it also needs good metadata management be-

cause a data lake without proper metadata management will turn it into a data

swamp. Metadata contains information about how, when and by whom it was

collected, created, accessed, modified and how it is formatted [113]. Metadata

have three categories, such as technical, operational, and business.

121

Figure 5.1: Data lake architecture

An open-source software named Apache Hadoop can implement a data lake

can. It has a Hadoop Distributed File System (HDFS), which allows structured,

semi-structured and unstructured types of files to be stored. HDFS can store

petabytes of data and can act as a single storage location. It is fault-tolerant,

scalable, and straightforward to expand [114]. There are many tools available

to ingest data to the HDFS from various sources. In the healthcare industry,

three basic types of data sources are available. The first type is the bulk size

of data providers, such as genomic centres and biobanks. The next kind of data

sources is an event-based data source, such as doctor’s appointments, pharmacy

purchases, and clinical notes. The last data source type is the trusted third party

122

streaming data [32] providers such as clinical labs, X-ray centres, social media,

wearable devices.

Our proposed architecture has the following settings.

• Hadoop’s Spring XD tool is used to transfer bulk data [142]. It can also

create metadata information while the data ingested and loaded with the

HDFS.

• Apache Flume is a distributed, reliable, and available service for efficiently

collecting, aggregating, and moving large amounts of log data [143]. It has

a simple and flexible architecture based on the data flows and it is robust

and fault tolerant.

• To handle the stream of data and avoid data silos, the Hadoop Spring XD

tool can be utilised. It can perform data ingestion along with metadata

information creation from multiple input sources into HDFS with high

throughput.

5.5.2 Data governance layer

The main purpose of this layer is to understand, organise, manage and provide

access to all the data collected. This layer uses Apache Atlas, a tool for Hadoop,

to handle the metadata framework and governance [143]. It has a set of basic

governance services to meet the compatibility requirements for the HDFS. The

Atlas tool has four important features, namely data classification, centralised

auditing, search and lineage, and security and policy engine.

123

Data Classification

It imports or defines data-oriented metadata from the data source. It states, in-

terprets and understands the relationships between data sets and core elements

including source, target, and ingestion processes.

Centralized Auditing

It makes a log registry for interaction with the data stored in HDFS for reporting.

Search and Lineage

It develops a well-defined path for data exploration by recording the informa-

tion about the creation of data and metadata.

Security and Policy Engine

It defines and justifies data access by role-based access and protects data from

tampering [118].

The data governance layer is also responsible for resource management and

job scheduling. Data available in the data lake are not in a similar structure.

Therefore, efficient resource management is essential to make the negotiation

of data analytics programs easier. The existing healthcare analytics system uses

the Map Reduce methodology to schedule the CPU cycle and memory across

the clusters in Hadoop to process the job [144]. However, MapReduce does

not deal with the scheduling of data resources for waiting jobs. Therefore,

124

Figure 5.2: Workflow of YARN

Apache Hadoop YARN (Yet Another Resource Negotiator) is employed instead

of MapReduce as a data operating system to enable the data processing systems

to interact efficiently with the data [145]. Unlike MapReduce, YARN handles

data processing efficiently by splitting resource management and job schedul-

ing into separate process [119]. Figure 5.2 depict the workflow of YARN.

Application Master (AM), Node Manager (NM), Resource Manager (RM) are

the major actors of YARN. These actors work as follows:

• Once a data processing engine request reaches YARN, it allocates the re-

quired resources to start AM. After start up, AM logs its entry in RM.

• If any additional resources are needed, AM can negotiate with RM. Once

the resource are made available, AM makes the NM allocate the resources

to the process.

• A vacuum created for the resources and the code to run within it. AM gets

the execution status and it is reported to RM too.

• The client can communicate with either AM or RM to get the status up-

date. Once the code is executed, AM for the respective job will remove

itself from the RM and release all the allocated resources.

125

5.5.3 Security Layer

Healthcare data needs a highly secured environment because it contains infor-

mation that is very sensitive [146, 147]. Therefore, a more efficient security sys-

tem for HDFS needed. Authentication and authorization are the two crucial

processes for providing controlled access in HDFS [148, 149].

• To provide authentication, the architecture uses the Kerberos authentica-

tion protocol. The Kerberos protocol creates a proxy server to receive a

client request [150]. If the request is legitimate, it provides a ticket for the

client with a timestamp.

• Apache Ranger is an efficient tool to provide authorization [151]. It is a

unified authorization model for HDFS. It enables the data lake leaders to

create security policies and role-based access control for the data.

Whenever a client with a legitimate ticket enters the system, the Apache

Ranger validates the ticket using its security policies. It has a very flexible user

interface, and it is easy to deploy security policies for the vast amount of data

storage.

5.5.4 Analytics layer

Compared to a data warehouse, a data lake is very effective at utilizing the vast

amount of data with data analytical algorithms to identify valuable insights that

will improve real-time decision analytics. Since the HDFS can be connected with

a large number of data analytics tools, a data lake can be adopted for the future.

126

Clusters of patients with similar health conditions and drug acceptance based

on their details available in the EHR and other data sources created to evaluate

our proposed architecture.

• the K-means clustering algorithm is used to perform the clustering. K-

means clustering is most widely used clustering algorithm which is used

in many areas such as information retrieval, computer vision and pattern

recognition. K-means clustering assigns n data points into k clusters so

that similar data points can be grouped together. It is an iterative method

which assigns each point to the cluster whose centroid is the nearest. Then

it again calculates the centroid of these groups by taking its average. The

follow steps show the basic approach of K-means clustering:

1: An initial clustering is created by choosing k random centroids from

the dataset.

2: For each data point, calculate the distance from all centroids, and assign

its membership to the nearest centroid.

3: Recalculate the new cluster centroids by the average of all data points

that are assigned to the clusters.

4: Repeat step 2 until convergence. The K-means algorithm implemented

using the MATLAB programming environment.

• The next step is to find the best medication practice for each cluster using

a support vector machine (SVM).

Support Vector Machine(SVM) has become an extremely popular algorithm.

SVM is a supervised machine-learning model associated with a learning algo-

rithm [152]. SVM is a supervised machine learning algorithm which can be

127

used for classification or regression problems. It uses a technique called the ker-

nel trick to transform your data and then based on these transformations it finds

an optimal boundary between the possible outputs. Simply put, it does some

extremely complex data transformations, then figures out how to separate your

data based on the labels or outputs you’ve defined. Well SVM it capable of do-

ing both classification and regression. In this research we focus on using SVM

for classification. In particular we will be focusing on non-linear SVM, or SVM

using a non-linear kernel. Non-linear SVM means that the boundary that the

algorithm calculates doesn’t have to be a straight line. The benefit is that one

can capture much more complex relationships between your data points with-

out having to perform difficult transformations on their own. The downside is

that the training time is much longer as it’s much more computationally inten-

sive. Ideal medication training data is used to train the SVM. Then the cluster is

processed by SVM, and the most efficient medication recommendation is iden-

tified. Some sample data will be given to the SVM to validate its accuracy level.

Once the SVM reaches 90% accuracy, it acts as a recommender system for future

medication recommendations.

5.6 Experiments

The architecture can be evaluated via experiments on sample EMRs data. In

this section, a brief description of the research questions is given, and then the

experimental setup to validate the usability of the proposed architecture is ex-

plained.

128

5.6.1 Variables and objects

Independent variables

The independent variable in the experiment is the technique under investiga-

tion. By nature, this research assumes the proposed data lake architecture as

the independent variable. We focused on the patient clustering methodology in

the architecture, as it is the vital process in identifying more suitable healthcare

practices for the given patient pool. Besides, we selected the traditional data

warehouse (DW) as the baseline technique to evaluate and compare clustering

precision.

Dependent Variables

Data Ingestion time: We used data ingestion time as a metric to validate RQ

3.1. The ingestion time is the time taken for the data architecture to load the data

to its storage. The Apache Spring XD updated the metadata log when a new

data entered in the data architecture. The timer starts when the data reaches the

data architecture, and it stops when the data entry is created in the meta-data

log. Data ingestion time can be calculated by finding the difference between the

meta log time and the arrival time. Equation 5.1 shows the calculation of the

data ingestion time for data k by subtracting the data arrival time of k from the

metadata log entry time of k.

ITk = MLtimek − DAtimek, (5.1)

129

where ITk refers to the data ingestion time of kth data, MLtimek represents the

data log entry time for data k, and DAtimek is the data arrival time of data k

Clustering precision: In pattern recognition studies, the importance is in find-

ing the relevance between patterns falling in n-dimensional pattern space. It

is crucial to examine the characteristic distance between them to find out the

connection between the patterns. The characteristics distance between the pat-

terns decides the unsupervised classification (clustering) criterion. As per the

theory, we considered Euclidean distance to evaluate the precision of the clus-

tering [153].

Euclidian distance d =

Ã
n∑

i=1

(xi − yi)2 (5.2)

We used Euclidean distance as a metric for RQ3.2. For the same collection of

patient records, the system needs to create the patient clustering. The distance

between two points can be calculated using Equation 5.2 where, xi and yi are the

ith coordinates for points x and y, respectively, and d is the distance between x

and y.

The clustering metric d was calculated for all the available clusters created

by both DW architecture and proposed the data lake architecture. The lower

value of d indicates the higher precision of clustering. Higher cluster precision

implies a more effective data architecture for the healthcare recommendation

system.

130

5.6.2 Objects

Healthcare research demands a set of data from various sources in public and

private organisations. It may include organisational-level patient enrolment

and payment details, medical records, drug and therapy prescriptions, and clin-

ical notes from general practitioners and nurses. The patient medical records

contain data about the ethnicity, age, family member’s health status and so on.

For this research, a de-identified data set is utilised, which is available online.

Because the focus of the research is to handle data efficiently, sample data can

be used to prove the effectiveness of the proposed data lake architecture.

We made use of anonymized EHR [154] and its supporting data to evaluate

our data lake architecture. We made use of the UCI machine learning reposi-

tory [155], which contains the data set of diabetes from 130 US hospitals during

the years of 1999-2008. It has ten years of inpatient encounters from 130 US

hospitals and integrated delivery networks. It contains 50 features represent-

ing patient and hospital outcomes. The data includes attributes such as patient

number, race, gender, age, admission type, time in the hospital, medical spe-

cialty of admitting physician, number of lab test performed, HbA1c test result,

diagnosis, number of medications, diabetic medications, as well as the number

of outpatients, inpatients, and emergency visits in the year before the hospital-

ization, etc.

5.6.3 Empirical environment

The data set classified as internally sourced data and externally sourced data.

The internal source data was connected with the HDFS system Apache Spring

131

XD and loaded into the data lake. The externally sourced data connected with

the data lake system using Apache Flume. Apache Atlas identified the metadata

available with data from the source. Each data is allocated a unique identifier

for easy access. The K-means algorithm was performed on the available data to

identify the available clusters using MATLAB. The identified cluster contained

patients with similar health conditions. The training data from the data set used

to train the SVM. The SVM runs on each cluster to find the most successful

medication recommendation. When a new data arrives into the system after

authorization, the SVM identifies its personalized recommendation.

5.7 Experimental Results

This section describes the performance of the proposed data lake architecture

compared with the data warehouse.

5.7.1 Reduction of Data Ingestion Time

We collected the data arrival time, and metadata log entry time for all the data

tuples from the dataset in both DW and our data lake architecture. We then

calculated the data ingestion time based on Equation 5.1. Figure 5.3 shows the

average values of the ingestion time for DW and the data lake architecture. It

demonstrates that the data lake architecture has a much lower average value of

ingestion time than the DW.

132

Figure 5.3: Comparison of data ingestion time of the DW and the data lake

Answer to RQ 3.1:

The experiment results clearly show the proposed approach’s ability to store

data, even in native form. The data ingestion time is improved significantly

by the data lake architecture. Since the proposed architecture makes use of the

HDFS file system, it does not require the data preprocessing stage. In contrast,

the DW technique involves the ETL process, which takes much more time to

ingest the data into the data warehouse.

The Apache Flume can pull the data from the remote data vendors and store

it successfully in the data lake environment. The Kerberos engine creates an

authentication ticket for each login and the Apache Ranger tool verifies the au-

thentication tickets and provides the access rights to the remote login. These

steps enable the third-party data stakeholders to connect with the data lake ar-

chitecture with security.

133

5.7.2 Removal of Data Silos

We compared the clustering algorithms based on precision quality. We iden-

tified four clusters with maximum data points for each data architecture. The

data points (namely, x and y) were further identified for the calculation of the

precision value. In particular, the Euclidean distance d between x and y was

calculated according to Equation 5.2. Table 5.1 summarises the values of d for

each cluster. The results clearly show that the data lake architecture has smaller

values of d for clustering than DW. In other words, the proposed data lake ar-

chitecture has higher precision in clustering.

Answer to RQ 3.2:

The precision of clustering typically increases as the amount of data becomes

more substantial. However, due to its schema and the organizational rules of

DW, much vital information about patients will be lost during the ETL process.

In contrast, the data lake architecture makes use of the schema-on-read method

to load the data into the environment, which brings the ability to connect with

the third-party and external data stakeholders. The high availability of data

about patients helps improve the precision of clustering. In summary, the data

lake architecture delivers the ability to store a variety of data within a unified

location. Thus, clustering precision has been significantly improved.

134

Table 5.1: Comparison of precision value d for DW and the data lake

Euclidean distance d value of data lake d value of DW
Cluster 1 0.64 0.76
Cluster 2 0.71 0.87
Cluster 3 0.65 0.87
Cluster 4 0.88 0.99

5.8 Chapter summary

Personalized healthcare services utilise relational patient data and big data ana-

lytics to tailor medication recommendations. However, most healthcare data are

in an unstructured form, and it consumes a lot of time and effort to turn them

into a relational form. This study proposed a novel data lake architecture to re-

duce the data ingestion time and improve the precision of healthcare analytics.

It also removed the data silos and enhanced the analytics by allowing connec-

tivity to third-party data providers (such as clinical labs, chemists, insurance

companies, etc.). The data lake architecture used the Hadoop Distributed File

System (HDFS) to provide storage for both structured and unstructured data.

This study used the K-means clustering algorithm to find patient clusters with

similar health conditions. Subsequently, it employed a support vector machine

to find the most successful healthcare recommendations for each cluster. Our

experiment results demonstrated the ability of the data lake to reduce the time

for ingesting data from various data vendors regardless of its format. Moreover,

the data lake has the potential to generate clusters of patients more precisely

than the existing approaches. It is evident that the data lake provides a unified

storage location for data in its native format. It can also improve personalized

healthcare medication recommendations by removing data silos.

135

CHAPTER 6

CONCLUSION & FUTURE DIRECTIONS

Service-oriented architecture (SOA) has become a modern computing in-

frastructure for most online-based services. The findings of this research will

contribute to the development of an SOA framework to support Web service

consumers in their discovery, selection, and composition of Web services. This

research addressed three significant challenges for the broader adoption of SOA

in various application domains. The first challenge is to improve the efficiency

of QoS prediction and thus the Web service discovery. The second challenge for

developing an efficient SOA is Web service selection and composition. The last

problem is to identify a competent data architecture for SOA applications. On

these grounds, the following objectives are framed for SOA broader adaptation:

• to develop an approach for improved Quality of Service (QoS) prediction

for Web services.

• to introduce a framework for enhanced Web service selection and compo-

sition

• to propose a capable data architecture for the Web service composite to

improve the performance of the SOA application.

To achieve these objectives, this thesis proposed a solution for each. QoS

values have become an essential criterion for choosing a suitable service from

an abundance of functionally similar Web services. On the other hand, service

providers do not provide adequate QoS data, while an unequal computing and

network environment make the QoS data supplied by the user is invalid. There-

fore, predicting the QoS values of a Web service is an essential step in service-

136

oriented systems. One of the independent methods to predict the quality pa-

rameters of the Web service is to utilize software code metrics. A Web service

is not just a single system; rather, it contains many classes and methods. Thus,

source code metrics should be calculated from the micro level, such as classes

and methods to a macro level system. However, most of the current systems

either calculate code metrics at a macro level or use basic arithmetic average

and mean to lift the metrics from the class level to the system level. Such meth-

ods may cover up the inefficient values and provide the values of a rounded-up

metric for the predictor.

This thesis proposed the inequality coefficient for source code metric aggre-

gation for the first problem stated and the limitation identified (Chapter 3).

Three sets of metrics, namely CKM, BSM and SM, were used to validate the

proposed system. The system calculated source code metrics at the class level

for CKM metrics. The framework used the Theil index, a method to aggregate

source code metrics without compromising the distributed nature of the soft-

ware source code. The system used Sneed’s tool For SM metrics to calculate

the complexity metrics from the Web service class files. Macro level WSDL files

instead of class files were used to calculate the BSM metrics. The system ap-

plied Linear regression to predict modularity. The results showed that the SM

metrics individually outperformed the other sets of metrics. CKM metrics also

have the potential to predict the QoS value but not as efficiently as SM metrics.

BSM metrics had the lowest efficiency among the available group of metrics. In

summary, metric values calculated at the micro level have better QoS prediction

efficiency than those at the macro level.

Most SOA applications demand that more than one Web service is combined

137

to do a particular task. Selecting the appropriate Web service and its com-

posite is the second problem addressed in this research. Standard SOA tools

require an extensive understanding of SOA techniques to implement, which

is very demanding. As an alternative, the most commonly used information

retrieval technique, named the keyword-based search, was applied in this re-

search (Chapter 4). A schema-based keyword search with a relational database

is an innovative method for the incorporation and optimization of the SOA de-

sign, search and selection. Experiments used WS-Dream dataset to identify the

appropriate Web service composition. The proposed framework used the suc-

cess rate and the response as the validation parameters. According to the ex-

periment results, the response time of Web services discovery without consid-

ering quality constraints performed well compared to the calculation of qual-

ity constraints. On the other hand, as the number of Web services and quality

constraints increased, the success rate increased significantly. However, it is ig-

norable as the success rate is performed well where the search used the quality

criteria. Despite the low performing response time, the keyword search with

the quality requirement significantly improved the success rate for Web service

discovery. The experiment results showed that schema-based keyword search

technology has the potential to develop valid Web service selection and compo-

sition.

Insufficient support from the existing data architecture for the SOA is a sig-

nificant obstacle for many mission-critical applications such as healthcare. The

current data architecture available for SOA has less potential to handle dynamic

data flow. The traditional data warehouse (DW) technique is no longer suit-

able for healthcare analytics due to its schema on write nature and its inability

to handle data silos. This research proposed data lake as a valid data archi-

138

tecture for an SOA application to address the third problem (Chapter 5). A

personalized healthcare recommendation application was used to demonstrate

the proposed architecture. The data lake is a flat, schema-on-read data archi-

tecture. The experiments were conducted based on the UCI repository dataset

to compare and evaluate both data lake and DW. The data lake architecture

outperformed DW significantly in terms of data ingestion time. The time to

load and store data in the data lake architecture was nearly 50% less than that

for DW. Moreover, the data lake architecture had higher precision in clustering

than DW, mainly because of its ability to connect with more data sources. In

brief, the data lake architecture was demonstrated as an effective alternative to

the existing health IT infrastructure. The proposed system can ingest all data

in unstructured, semi-structured and structured formats. It can store data at a

low cost, taking advantage of HDFS. Hence, the data lake-based healthcare rec-

ommendation system addresses the drawbacks of traditional data architectures

and provides additional capabilities for the future calibre of data reusability.

The research conducted in this thesis can be extended in the several follow-

ing promising directions:

Advanced machine learning on Improved software source code metrics

to predict Web service QoS: The Theil index-based source metric aggrega-

tion framework used multiple linear regression with 10-fold cross-validation to

demonstrate the potential to predict QoS using improved source code metrics.

This framework’s scope is to explore the ability of the Theil index as an alter-

native for source code metrics. However, the machine learning algorithm used

for predicting the QoS is comparatively naïve. In the future, modern machine

learning algorithms such as Artificial neural networks and deep learning can be

139

utilised to improve the prediction quality.

Semantic Web service: Web services can be categorised into two broader

categories, namely syntactic-based and semantic-based. In this research, our

focus was only on syntax Web services, and we ignore semantics Web services

due to time and resource limitations. In future, keyword-based selection and

composition can be extended to semantic Web services. In the domain of the

Semantic Web, the Web Ontology Language for Services (OWL-S) and the Web

service Modelling Ontology (WSMO) are two prominent techniques used for

service composition. Semantic Web services are an extension of the existing

Web services where the information is represented in a well-defined way.

Keyword recommendation: According to the keyword-based search exper-

iment results, irrelevant keywords and the QoS requirement led to less relevant

results for the user query. Thus, the system engineer needs to have a thorough

understanding of the functional properties of the required SOA. In our future

work, collaborative filtering-based prediction can be used to recommend key-

words for system engineers.

Cloud computing: Cloud computing is the next-generation computing

model which has a significant position in the field of scientific and business

computing. Although the proposed Theil-index based approach can be directly

used to predict the QoS values of cloud services, they do not consider the in-

fluence factors underlying the cloud architecture. We can consider more un-

derlying hardware resource data and the relevance of other cloud service QoS

attributes; also, we can increase the number of QoS attributes combined with

software/hardware resources to predict cloud QoS, although complexity will

increase.

140

Social media data lake: Social media and connected devices are twining

with each other and unearthing an abundance of opportunities. Social me-

dia users produce a vast amount of data that can be processed and utilised

to provide more optimised services. The nature of the data lake architecture

and Service-Oriented Architecture’s power can be used for sophisticated ser-

vice offering by processing the social media and connected devices data. We are

planning to explore this as a potential research direction.

Summary of contributions

An inequality distribution named the Theil index was proposed as an alterna-

tive aggregation model for source code metrics. Experiments were conducted

using three different data sets, and the results showed that the Theil index can

significantly improve QoS prediction. A schema-based keyword search sup-

ported by the relational database was adopted for Web service selection and

composition. With a few keywords that explain composite functions, it could

help system engineers without a thorough understanding of SOA technology

to define SOA solutions. An emerging data architecture, the data lake, was

employed to support SOA applications. An SOA-based application for person-

alised healthcare recommendation was implemented using both the data ware-

house and the data lake, and the experiment results demonstrated that the data

lake outperforms the DW.

141

BIBLIOGRAPHY

[1] K. Kritikos and D. Plexousakis, “Qos-based web service description and
discovery,” ERCIM news, 2008.

[2] L.-J. Zhang, J. Zhang, and H. Cai, “Services computing. 2007.”

[3] J. Zhu, Y. Kang, Z. Zheng, and M. R. Lyu, “A clustering-
based qos prediction approach for web service recommendation,” in
Object/Component/Service-Oriented Real-Time Distributed Computing Work-
shops (ISORCW), 2012 15th IEEE International Symposium on. IEEE, 2012,
pp. 93–98.

[4] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic web services,” IEEE
intelligent systems, vol. 16, no. 2, pp. 46–53, 2001.

[5] S.-Y. Lin, C.-H. Lai, C.-H. Wu, and C.-C. Lo, “A trustworthy qos-based col-
laborative filtering approach for web service discovery,” Journal of Systems
and Software, vol. 93, pp. 217–228, 2014.

[6] K. Su, B. Xiao, B. Liu, H. Zhang, and Z. Zhang, “Tap: a personalized
trust-aware qos prediction approach for web service recommendation,”
Knowledge-Based Systems, vol. 115, pp. 55–65, 2017.

[7] P. Harshavardhanan, J. Akilandeswari, and R. Sarathkumar, “Dynamic
web services discovery and selection using qos-broker architecture,” in
Computer Communication and Informatics (ICCCI), 2012 International Confer-
ence on. IEEE, 2012, pp. 1–5.

[8] Z. Chen, L. Shen, F. Li, and D. You, “Your neighbors alleviate cold-start:
On geographical neighborhood influence to collaborative web service qos
prediction,” Knowledge-Based Systems, vol. 138, pp. 188–201, 2017.

[9] M. Peng, G. Zeng, Z. Sun, J. Huang, H. Wang, and G. Tian, “Personalized
app recommendation based on app permissions,” World Wide Web, vol. 21,
no. 1, pp. 89–104, 2018.

[10] J. Li, C. Liu, and J. Xu, “Xbridge-mobile: efficient xml keyword search on
mobile web data,” Computing, vol. 96, no. 7, pp. 631–650, 2014.

[11] M. Li, X. Sun, H. Wang, Y. Zhang, and J. Zhang, “Privacy-aware access

142

control with trust management in web service,” World Wide Web, vol. 14,
no. 4, pp. 407–430, 2011.

[12] X. Huang, “Usageqos: Estimating the qos of web services through online
user communities,” ACM Transactions on the Web (TWEB), vol. 8, no. 1,
p. 1, 2013.

[13] X. Huang, W. Huang, and W. Lai, “Uip: Estimating true rating scores of
services through online user communities,” in 2016 IEEE Symposium Series
on Computational Intelligence (SSCI). IEEE, 2016, pp. 1–7.

[14] J. Xu, C. Zhu, and Q. Xie, “An online prediction framework for dynamic
service-generated qos big data,” in International Conference on Database Sys-
tems for Advanced Applications. Springer, 2017, pp. 60–74.

[15] Z. Chen, L. Shen, D. You, F. Li, and C. Ma, “Alleviating data sparsity in
web service qos prediction by capturing region context influence,” in In-
ternational Conference on Collaborative Computing: Networking, Applications
and Worksharing. Springer, 2016, pp. 540–556.

[16] H. Alexander, I. Khalil, C. Cameron, Z. Tari, and A. Zomaya, “Cooper-
ative web caching using dynamic interest-tagged filtered bloom filters,”
IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 11, pp.
2956–2969, 2014.

[17] J. L. O. Coscia, M. Crasso, C. Mateos, A. Zunino, and S. Misra, “Predicting
web service maintainability via object-oriented metrics: a statistics-based
approach,” in International Conference on Computational Science and Its Ap-
plications. Springer, 2012, pp. 29–39.

[18] K. Mordal, N. Anquetil, J. Laval, A. Serebrenik, B. Vasilescu, and
S. Ducasse, “Software quality metrics aggregation in industry,” Journal of
Software: Evolution and Process, vol. 25, no. 10, pp. 1117–1135, 2013.

[19] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6, pp. 476–
493, 1994.

[20] H. M. Sneed, “Measuring web service interfaces,” in Web Systems Evolu-
tion (WSE), 2010 12th IEEE International Symposium on. IEEE, 2010, pp.
111–115.

143

[21] D. Baski and S. Misra, “Metrics suite for maintainability of extensible
markup language web services,” IET software, vol. 5, no. 3, pp. 320–341,
2011.

[22] K. N. Wang, J. S. Bell, E. Y. Chen, J. F. Gilmartin-Thomas, and J. Ilomäki,
“Medications and prescribing patterns as factors associated with hospi-
talizations from long-term care facilities: a systematic review,” Drugs &
aging, vol. 35, no. 5, pp. 423–457, 2018.

[23] M. R. Islam, M. A. Kabir, A. Ahmed, A. R. M. Kamal, H. Wang, and A. Ul-
haq, “Depression detection from social network data using machine learn-
ing techniques,” Health information science and systems, vol. 6, no. 1, p. 8,
2018.

[24] M. A. H. Masud and X. Huang, “An e-learning system architecture based
on cloud computing,” system, vol. 10, no. 11, pp. 255–259, 2012.

[25] N. Zhang, J. Wang, Y. Ma, K. He, Z. Li, and X. F. Liu, “Web service dis-
covery based on goal-oriented query expansion,” Journal of Systems and
Software, vol. 142, pp. 73–91, 2018.

[26] J. Huang, M. Peng, H. Wang, J. Cao, W. Gao, and X. Zhang, “A probabilis-
tic method for emerging topic tracking in microblog stream,” World Wide
Web, vol. 20, no. 2, pp. 325–350, 2017.

[27] J. Du, S. Michalska, S. Subramani, H. Wang, and Y. Zhang, “Neural at-
tention with character embeddings for hay fever detection from twitter,”
Health information science and systems, vol. 7, no. 1, p. 21, 2019.

[28] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in
the clouds: towards a cloud definition,” 2008.

[29] J. Zhang, X. Tao, and H. Wang, “Outlier detection from large distributed
databases,” World Wide Web, vol. 17, no. 4, pp. 539–568, 2014.

[30] D. Benslimane, S. Dustdar, and A. Sheth, “Services mashups: The new
generation of web applications,” IEEE Internet Computing, vol. 12, no. 5,
pp. 13–15, 2008.

[31] X. Liu, Y. Ma, G. Huang, J. Zhao, H. Mei, and Y. Liu, “Data-driven compo-
sition for service-oriented situational web applications,” IEEE Transactions
on Services Computing, vol. 8, no. 1, pp. 2–16, 2014.

144

[32] H. Li, Y. Wang, H. Wang, and B. Zhou, “Multi-window based ensemble
learning for classification of imbalanced streaming data,” World Wide Web,
pp. 1–19, 2017.

[33] L. Chen, Y. Wang, Q. Yu, Z. Zheng, and J. Wu, “Wt-lda: user tagging
augmented lda for web service clustering,” in International Conference on
Service-Oriented Computing. Springer, 2013, pp. 162–176.

[34] J. X. Yu, L. Qin, and L. Chang, “Keyword search in databases,” Synthesis
Lectures on Data Management, vol. 1, no. 1, pp. 1–155, 2009.

[35] Q. He, R. Zhou, X. Zhang, Y. Wang, D. Ye, F. Chen, J. C. Grundy, and
Y. Yang, “Keyword search for building service-based systems,” IEEE
Transactions on Software Engineering, vol. 43, no. 7, pp. 658–674, 2017.

[36] Q. He, R. Zhou, X. Zhang, Y. Wang, D. Ye, F. Chen, S. Chen, J. Grundy,
and Y. Yang, “Efficient keyword search for building service-based systems
based on dynamic programming,” in International Conference on Service-
Oriented Computing. Springer, 2017, pp. 462–470.

[37] J. Akilandeswari, K. A. Krishna et al., “Semantic web service discovery
with structural level matching of operations,” in International Conference
on Advanced Computing, Networking and Security. Springer, 2011, pp. 77–
84.

[38] T. Rajendran and P. Balasubramanie, “Analysis on the study of qos-aware
web services discovery,” arXiv preprint arXiv:0912.3965, 2009.

[39] ——, “An optimal broker-based architecture for web service discovery
with qos characteristics,” International Journal of Web Services Practices,
vol. 5, no. 1, pp. 32–40, 2010.

[40] D. A. D’Mello, V. Ananthanarayana, and S. Thilagam, “A qos broker
based architecture for dynamic web service selection,” in Modeling & Sim-
ulation, 2008. AICMS 08. Second Asia International Conference on. IEEE,
2008, pp. 101–106.

[41] X. Zhang, Z. Wang, W. Zhang, and F. Yang, “A time-aware qos prediction
approach to web service recommendation,” in Proceedings of the 4th Inter-
national Conference on Computer Engineering and Networks. Springer, 2015,
pp. 739–748.

145

[42] L. Bartoloni, A. Brogi, and A. Ibrahim, “Probabilistic prediction of the qos
of service orchestrations: a truly compositional approach,” in International
Conference on Service-Oriented Computing. Springer, 2014, pp. 378–385.

[43] S. Li, J. Wen, F. Luo, M. Gao, J. Zeng, and Z. Y. Dong, “A new qos-aware
web service recommendation system based on contextual feature recogni-
tion at server-side,” IEEE Transactions on Network and Service Management,
vol. 14, no. 2, pp. 332–342, 2017.

[44] Y. Zhang and M. R. Lyu, “Qos-aware web service searching,” in QoS Pre-
diction in Cloud and Service Computing. Springer, 2017, pp. 81–103.

[45] L. Y. L. Ye and B. Z. B. Zhang, “Web service discovery based on func-
tional semantics,” in 2006 Semantics, Knowledge and Grid, Second Interna-
tional Conference on. IEEE, 2006, pp. 57–57.

[46] L. Ye and B. Zhang, “Discovering web services based on functional se-
mantics,” in Services Computing, 2006. APSCC’06. IEEE Asia-Pacific Confer-
ence on. IEEE, 2006, pp. 348–355.

[47] D. A. D’Mello and V. Ananthanarayana, “Effective web service discov-
ery based on functional semantics,” in Advances in Computing, Control, &
Telecommunication Technologies, 2009. ACT’09. International Conference on.
IEEE, 2009, pp. 1–3.

[48] A. Averbakh, D. Krause, and D. Skoutas, “Exploiting user feedback to
improve semantic web service discovery,” The Semantic Web-ISWC 2009,
pp. 33–48, 2009.

[49] M. Chen and Y. Ma, “A hybrid approach to web service recommendation
based on qos-aware rating and ranking,” arXiv preprint arXiv:1501.04298,
2015.

[50] Z. Xu, P. Martin, W. Powley, and F. Zulkernine, “Reputation-enhanced
qos-based web services discovery,” in Web Services, 2007. ICWS 2007. IEEE
International Conference on. IEEE, 2007, pp. 249–256.

[51] D. Mobedpour and C. Ding, “User-centered design of a qos-based web
service selection system,” Service Oriented Computing and Applications,
vol. 7, no. 2, pp. 117–127, 2013.

[52] R. Iordache and F. Moldoveanu, “Qos-aware web service semantic selec-

146

tion based on preferences,” Procedia Engineering, vol. 69, pp. 1152–1161,
2014.

[53] Z. Chen, L. Shen, and F. Li, “Exploiting web service geographical neigh-
borhood for collaborative qos prediction,” Future Generation Computer Sys-
tems, vol. 68, pp. 248–259, 2017.

[54] P. He, J. Zhu, J. Xu, and M. R. Lyu, “A hierarchical matrix factorization
approach for location-based web service qos prediction,” in Service Ori-
ented System Engineering (SOSE), 2014 IEEE 8th International Symposium
on. IEEE, 2014, pp. 290–295.

[55] J. Zhu, P. He, Z. Zheng, and M. R. Lyu, “A privacy-preserving qos predic-
tion framework for web service recommendation,” in Web Services (ICWS),
2015 IEEE International Conference on. IEEE, 2015, pp. 241–248.

[56] M. Charrad, N. Y. Ayadi, M. B. Ahmed et al., “A semantic and qos-aware
broker for service discovery,” Journal of Research and Practice in Information
Technology, vol. 44, no. 4, p. 387, 2012.

[57] Y. Ma, S. Wang, P. C. Hung, C.-H. Hsu, Q. Sun, and F. Yang, “A highly
accurate prediction algorithm for unknown web service qos values,” IEEE
Transactions on Services Computing, vol. 9, no. 4, pp. 511–523, 2016.

[58] A. Kattepur, “Flexible Quality of Service Management of Web Services
Orchestrations,” Theses, Université Rennes 1, Nov. 2012. [Online].
Available: https://tel.archives-ouvertes.fr/tel-00756048

[59] L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei, “Personalized qos
prediction for web services via collaborative filtering,” in Web Services,
2007. ICWS 2007. IEEE International Conference on. IEEE, 2007, pp. 439–
446.

[60] L.-J. Zhang, H. Cai, and J. Zhang, Services computing. Springer, 2007.

[61] D. B. Claro, P. Albers, and J.-K. Hao, “Web services composition,” in Se-
mantic Web Services, Processes and Applications. Springer, 2006, pp. 195–
225.

[62] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Qos-aware web service recom-
mendation by collaborative filtering,” IEEE Transactions on services com-
puting, vol. 4, no. 2, pp. 140–152, 2010.

147

[63] X. Chen, Z. Zheng, X. Liu, Z. Huang, and H. Sun, “Personalized qos-
aware web service recommendation and visualization,” IEEE Transactions
on Services Computing, vol. 6, no. 1, pp. 35–47, 2011.

[64] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, no. 8, pp. 30–37, 2009.

[65] W. Lo, J. Yin, S. Deng, Y. Li, and Z. Wu, “Collaborative web service qos
prediction with location-based regularization,” in Web services (ICWS),
2012 IEEE 19th international conference on. IEEE, 2012, pp. 464–471.

[66] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predic-
tive algorithms for collaborative filtering,” in Proceedings of the Fourteenth
conference on Uncertainty in artificial intelligence. Morgan Kaufmann Pub-
lishers Inc., 1998, pp. 43–52.

[67] Z. Li, Z. Bin, L. Ying, G. Yan, and Z. Zhi-Liang, “A web service qos pre-
diction approach based on collaborative filtering,” in Services Computing
Conference (APSCC), 2010 IEEE Asia-Pacific. IEEE, 2010, pp. 725–731.

[68] M. Tang, Y. Jiang, J. Liu, and X. F. Liu, “Location-aware collaborative fil-
tering for qos-based service recommendation,” in 2012 IEEE 19th Interna-
tional Conference on Web Services. IEEE, 2012, pp. 202–209.

[69] Y. Xu, J. Yin, W. Lo, and Z. Wu, “Personalized location-aware qos predic-
tion for web services using probabilistic matrix factorization,” in Interna-
tional Conference on Web Information Systems Engineering. Springer, 2013,
pp. 229–242.

[70] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Collaborative web service qos
prediction via neighborhood integrated matrix factorization,” IEEE Trans-
actions on Services Computing, vol. 6, no. 3, pp. 289–299, 2013.

[71] C. Mateos, M. Crasso, A. Zunino, and J. L. O. Coscia, “Detecting wsdl bad
practices in code–first web services,” International Journal of Web and Grid
Services, vol. 7, no. 4, pp. 357–387, 2011.

[72] L. Kumar, A. Krishna, and S. K. Rath, “The impact of feature selection on
maintainability prediction of service-oriented applications,” Service Ori-
ented Computing and Applications, vol. 11, no. 2, pp. 137–161, 2017.

[73] L. Kumar, M. Kumar, and S. K. Rath, “Maintainability prediction of web

148

service using support vector machine with various kernel methods,” In-
ternational Journal of System Assurance Engineering and Management, vol. 8,
no. 2, pp. 205–222, 2017.

[74] D. Romano and M. Pinzger, “Using source code metrics to predict change-
prone java interfaces,” in 2011 27th IEEE International Conference on Soft-
ware Maintenance (ICSM). IEEE, 2011, pp. 303–312.

[75] M. Lanza and R. Marinescu, Object-oriented metrics in practice: using soft-
ware metrics to characterize, evaluate, and improve the design of object-oriented
systems. Springer Science & Business Media, 2007.

[76] S. D. Suh and I. Neamtiu, “Studying software evolution for taming soft-
ware complexity,” in 2010 21st Australian Software Engineering Conference.
IEEE, 2010, pp. 3–12.

[77] M. Lumpe, S. Mahmud, and R. Vasa, “On the use of properties in java ap-
plications,” in 2010 21st Australian Software Engineering Conference. IEEE,
2010, pp. 235–244.

[78] R. Shatnawi, W. Li, J. Swain, and T. Newman, “Finding software metrics
threshold values using roc curves,” Journal of software maintenance and evo-
lution: Research and practice, vol. 22, no. 1, pp. 1–16, 2010.

[79] H. Barkmann, R. Lincke, and W. Löwe, “Quantitative evaluation of soft-
ware quality metrics in open-source projects,” in 2009 International Confer-
ence on Advanced Information Networking and Applications Workshops. IEEE,
2009, pp. 1067–1072.

[80] A. Serebrenik and M. van den Brand, “Theil index for aggregation of soft-
ware metrics values,” in Software Maintenance (ICSM), 2010 IEEE Interna-
tional Conference on. IEEE, 2010, pp. 1–9.

[81] B. Srivastava and J. Koehler, “Web service composition-current solutions
and open problems,” in ICAPS 2003 workshop on Planning for Web Services,
vol. 35, 2003, pp. 28–35.

[82] A. A. Patil, S. A. Oundhakar, A. P. Sheth, and K. Verma, “Meteor-s web
service annotation framework,” in Proceedings of the 13th international con-
ference on World Wide Web, 2004, pp. 553–562.

[83] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and

149

H. Chang, “Qos-aware middleware for web services composition,” IEEE
Transactions on software engineering, vol. 30, no. 5, pp. 311–327, 2004.

[84] A. Lazovik, M. Aiello, and M. Papazoglou, “Associating assertions with
business processes and monitoring their execution,” in Proceedings of the
2nd international conference on Service oriented computing, 2004, pp. 94–104.

[85] ——, “Planning and monitoring the execution of web service requests,”
International Journal on Digital Libraries, vol. 6, no. 3, pp. 235–246, 2006.

[86] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso, “Automated composi-
tion of web services by planning at the knowledge level,” in IJCAI, vol. 19,
2005, pp. 1252–1259.

[87] L. A. da Costa, P. F. Pires, and M. Mattoso, “Automatic composition of
web services with contingency plans,” in Proceedings. IEEE International
Conference on Web Services, 2004. IEEE, 2004, pp. 454–461.

[88] A. Lazovik, M. Aiello, and M. Papazoglou, “Planning and monitoring the
execution of web service requests,” in International Conference on Service-
Oriented Computing. Springer, 2003, pp. 335–350.

[89] V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu, S. Mittal, and
B. Srivastava, “A service creation environment based on end to end com-
position of web services,” in Proceedings of the 14th international conference
on World Wide Web, 2005, pp. 128–137.

[90] E. F. Codd, “A relational model of data for large shared data banks,” in
Software pioneers. Springer, 2002, pp. 263–294.

[91] R. Elmasri and S. Navathe, “Fundamentals of database systems, ch. 3,”
2010.

[92] V. Hristidis and Y. Papakonstantinou, “Discover: Keyword search in rela-
tional databases,” in VLDB’02: Proceedings of the 28th International Confer-
ence on Very Large Databases. Elsevier, 2002, pp. 670–681.

[93] G. Li, J. Feng, and L. Zhou, “Retune: retrieving and materializing tuple
units for effective keyword search over relational databases,” in Interna-
tional Conference on Conceptual Modeling. Springer, 2008, pp. 469–483.

150

[94] J. X. Yu, L. Qin, and L. Chang, “Keyword search in relational databases:
A survey.” IEEE Data Eng. Bull., vol. 33, no. 1, pp. 67–78, 2010.

[95] S. Agrawal, S. Chaudhuri, and G. Das, “Dbxplorer: a system for keyword-
based search over relational databases,” Proceedings 18th International Con-
ference on Data Engineering, pp. 5–16, 2002.

[96] A. Markowetz, Y. Yang, D. Papadias, and D. Papadias, “Keyword search
on relational data streams,” in Proceedings of the 2007 ACM SIGMOD inter-
national conference on Management of data. ACM, 2007, pp. 605–616.

[97] J. Zhou, T. Zhang, H. Meng, L. Xiao, G. Chen, and D. Li, “Web service
discovery based on keyword clustering and ontology,” in 2008 IEEE Inter-
national Conference on Granular Computing. IEEE, 2008, pp. 844–848.

[98] J. Zhai, D. Shen, Y. Kou, and T. Nie, “Richly semantical keyword search-
ing over relational databases,” in 2012 Ninth Web Information Systems and
Applications Conference. IEEE, 2012, pp. 211–216.

[99] L. Zhu, S.-D. Ji, W.-Z. Yang, and C.-N. Liu, “Keyword search based on
knowledge base in relational databases,” in 2009 International Conference
on Machine Learning and Cybernetics, vol. 3. IEEE, 2009, pp. 1528–1533.

[100] J. Feng, G. Li, and J. Wang, “Finding top-k answers in keyword search
over relational databases using tuple units,” IEEE transactions on knowl-
edge and data engineering, vol. 23, no. 12, pp. 1781–1794, 2011.

[101] C. Zeng, Y. Zheng, D. Han et al., “Efficient web service composition and
intelligent search based on relational database,” in 2010 International Con-
ference on Information Science and Applications. IEEE, 2010, pp. 1–8.

[102] J. Kwon, K. Park, D. Lee, and S. Lee, “Psr: Pre-computing solutions in
rdbms for fastweb services composition search,” in IEEE International Con-
ference on Web Services (ICWS 2007). IEEE, 2007, pp. 808–815.

[103] J. Hoffmann, P. Bertoli, and M. Pistore, “Web service composition as plan-
ning, revisited: In between background theories and initial state uncer-
tainty,” in AAAI, vol. 7, 2007, pp. 1013–1018.

[104] U. Küster, B. König-Ries, M. Stern, and M. Klein, “Diane: an integrated
approach to automated service discovery, matchmaking and composi-

151

tion,” in Proceedings of the 16th international conference on World Wide Web.
ACM, 2007, pp. 1033–1042.

[105] M. Klusch and F. Kaufer, “Wsmo-mx: A hybrid semantic web service
matchmaker,” Web Intelligence and Agent Systems: An International Journal,
vol. 7, no. 1, pp. 23–42, 2009.

[106] A. Brogi, S. Corfini, and R. Popescu, “Semantics-based composition-
oriented discovery of web services,” ACM Transactions on Internet Tech-
nology (TOIT), vol. 8, no. 4, p. 19, 2008.

[107] D. Ardagna and B. Pernici, “Adaptive service composition in flexible pro-
cesses,” IEEE Transactions on software engineering, vol. 33, no. 6, pp. 369–
384, 2007.

[108] A. V. Riabov, E. Boillet, M. D. Feblowitz, Z. Liu, and A. Ranganathan,
“Wishful search: interactive composition of data mashups,” in Proceedings
of the 17th international conference on World Wide Web. ACM, 2008, pp. 775–
784.

[109] G. Huang, Y. Ma, X. Liu, Y. Luo, X. Lu, and M. B. Blake, “Model-based au-
tomated navigation and composition of complex service mashups,” IEEE
Transactions on Services Computing, vol. 8, no. 3, pp. 494–506, 2014.

[110] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Networks and
Applications, vol. 19, no. 2, pp. 171–209, 2014.

[111] R. Henry and S. Venkatraman, “Big data analytics the next big learn-
ing opportunity,” Journal of Management Information and Decision Sciences,
vol. 18, no. 2, p. 17, 2015.

[112] D. G. Katehakis and M. Tsiknakis, “Electronic health record,” Wiley Ency-
clopedia of Biomedical Engineering, 2006.

[113] P. S. Mathew and A. S. Pillai, “Big data challenges and solutions in health-
care: A survey,” in Innovations in Bio-Inspired Computing and Applications.
Springer, 2016, pp. 543–553.

[114] B. Feldman, E. M. Martin, and T. Skotnes, “Big data in healthcare hype
and hope,” October 2012. Dr. Bonnie, vol. 360, 2012.

152

[115] J. Yoon, C. Davtyan, and M. van der Schaar, “Discovery and clinical deci-
sion support for personalized healthcare,” IEEE Journal of Biomedical and
Health Informatics, 2017.

[116] D. A. Davis, N. V. Chawla, N. Blumm, N. Christakis, and A.-L. Barabási,
“Predicting individual disease risk based on medical history,” in Proceed-
ings of the 17th ACM Conference on Information and Knowledge Management.
ACM, 2008, pp. 769–778.

[117] B. Dentino, D. Davis, and N. V. Chawla, “Healthcarend: leveraging ehr
and care for prospective healthcare,” in Proceedings of the 1st ACM Interna-
tional Health Informatics Symposium. ACM, 2010, pp. 841–844.

[118] A. Abbas, M. Ali, M. U. S. Khan, and S. U. Khan, “Personalized health-
care cloud services for disease risk assessment and wellness management
using social media,” Pervasive and Mobile Computing, vol. 28, pp. 81–99,
2016.

[119] V. Patel, M. Adhil, T. Bhardwaj, and A. K. Talukder, “Big data analytics
of genomic and clinical data for diagnosis and prognosis of cancer,” in
Computing for Sustainable Global Development (INDIACom), 2015 2nd Inter-
national Conference on. IEEE, 2015, pp. 611–615.

[120] P. Calyam, A. Mishra, R. B. Antequera, D. Chemodanov, A. Berryman,
K. Zhu, C. Abbott, and M. Skubic, “Synchronous big data analytics for
personalized and remote physical therapy,” Pervasive and Mobile Comput-
ing, vol. 28, pp. 3–20, 2016.

[121] S. Barlow, “Comparing the three major approaches to healthcare data
warehousing,” 2017.

[122] L. A. Linn and M. B. Koo, “Blockchain for health data and its poten-
tial use in health it and health care related research,” in ONC/NIST Use
of Blockchain for Healthcare and Research Workshop. Gaithersburg, Maryland,
United States: ONC/NIST, 2016.

[123] C. Walker and H. Alrehamy, “Personal data lake with data gravity pull,”
in Big Data and Cloud Computing (BDCloud), 2015 IEEE Fifth International
Conference on. IEEE, 2015, pp. 160–167.

[124] R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz, “Comparative analy-
sis of evolving software systems using the gini coefficient,” in 2009 IEEE
International Conference on Software Maintenance. IEEE, 2009, pp. 179–188.

153

[125] H. Theil, Economics and information theory, ser. Studies in mathematical
and managerial economics. North-Holland Pub. Co., 1967. [Online].
Available: https://books.google.com.au/books?id=VVNVAAAAMAAJ

[126] M. Kargar and A. An, “Keyword search in graphs: Finding r-cliques,”
Proceedings of the VLDB Endowment, vol. 4, no. 10, pp. 681–692, 2011.

[127] F. Khalil, H. Wang, and J. Li, “Integrating markov model with clustering
for predicting web page accesses,” in Proceeding of the 13th Australasian
World Wide Web Conference (AusWeb07). AusWeb, 2007, pp. 63–74.

[128] F. Khalil, J. Li, and H. Wang, “An integrated model for next page access
prediction,” IJ Knowledge and Web Intelligence, vol. 1, no. 1/2, pp. 48–80,
2009.

[129] V. Hristidis, Y. Papakonstantinou, and L. Gravano, “-efficient ir-style key-
word search over relational databases,” in Proceedings 2003 VLDB Confer-
ence. Elsevier, 2003, pp. 850–861.

[130] W. H. Inmon, D. Strauss, and G. Neushloss, DW 2.0: The architecture for the
next generation of data warehousing. Morgan Kaufmann, 2010.

[131] B. Devlin and L. D. Cote, Data warehouse: from architecture to implementa-
tion. Addison-Wesley Longman Publishing Co., Inc., 1996.

[132] A. Simitisis, P. Vassiliadis, S. Skiadopoulos, and T. Sellis, “Data warehouse
refreshment,” 2007.

[133] A. Amine, R. A. Daoud, and B. Bouikhalene, “Efficiency comparaison and
evaluation between two etl extraction tools,” Indonesian Journal of Electrical
Engineering and Computer Science, vol. 3, no. 1, pp. 174–181, 2016.

[134] A. Simitsis, P. Vassiliadis, and T. K. Sellis, “Extraction-transformation-
loading processes.” 2005.

[135] H. Fang, “Managing data lakes in big data era: What’s a data lake and
why has it became popular in data management ecosystem,” in 2015 IEEE
International Conference on Cyber Technology in Automation, Control, and In-
telligent Systems (CYBER). IEEE, 2015, pp. 820–824.

[136] B. Inmon, Data Lake Architecture: Designing the Data Lake and Avoiding the
Garbage Dump. Technics Publications, 2016.

154

[137] R. Hai, S. Geisler, and C. Quix, “Constance: An intelligent data lake
system,” in Proceedings of the 2016 International Conference on Management
of Data, ser. SIGMOD ’16. New York, NY, USA: ACM, 2016, pp. 2097–
2100. [Online]. Available: http://doi.acm.org/10.1145/2882903.2899389

[138] K. K. Jain et al., Textbook of personalized medicine. Springer, 2009.

[139] Y. Zhang, M. Qiu, C.-W. Tsai, M. M. Hassan, and A. Alamri, “Health-cps:
Healthcare cyber-physical system assisted by cloud and big data,” IEEE
Systems Journal, vol. 11, no. 1, pp. 88–95, 2017.

[140] H. Wang, Y. Zhang et al., “Detection of motor imagery eeg signals em-
ploying naïve bayes based learning process,” Measurement, vol. 86, pp.
148–158, 2016.

[141] M. M. Vernon, B. Ulicny, and D. Bennett, “An information provider’s
wish list for a next generation big data end-to-end information system.”
in CIDR, 2015.

[142] R. Kamal, M. A. Shah, A. Hanif, and J. Ahmad, “Real-time opinion mining
of twitter data using spring xd and hadoop,” in Automation and Computing
(ICAC), 2017 23rd International Conference on. IEEE, 2017, pp. 1–4.

[143] N. Begum and A. A. Shankara, “Rectify and envision the server log data
using apache flume,” International Journal For Technological Research In En-
gineering, vol. 3, no. 9, 2016.

[144] J. Archenaa and E. M. Anita, “A survey of big data analytics in healthcare
and government,” Procedia Computer Science, vol. 50, pp. 408–413, 2015.

[145] S. Shaikh and D. Vora, “Yarn versus mapreduce—a comparative study,”
in 2016 3rd International Conference on Computing for Sustainable Global De-
velopment (INDIACom). IEEE, 2016, pp. 1294–1297.

[146] L. Sun, H. Wang, J. Soar, and C. Rong, “Purpose based access control
for privacy protection in e-healthcare services,” Journal of Software, vol. 7,
no. 11, pp. 2443–2449, 2012.

[147] J. Li, H. Wang, H. Jin, and J. Yong, “Current developments of k-
anonymous data releasing,” Electronic Journal of Health Informatics, vol. 3,
no. 1, p. 6, 2008.

155

[148] L. Sun, H. Wang, J. Yong, and G. Wu, “Semantic access control for cloud
computing based on e-healthcare,” in Computer Supported Cooperative Work
in Design (CSCWD), 2012 IEEE 16th International Conference on. IEEE, 2012,
pp. 512–518.

[149] H. Wang, J. Cao, and Y. Zhang, “A flexible payment scheme and its role-
based access control,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 17, no. 3, pp. 425–436, 2005.

[150] V. Valliyappan and P. Singh, “Hap: Protecting the apache hadoop clusters
with hadoop authentication process using kerberos,” in Proceedings of 3rd
International Conference on Advanced Computing, Networking and Informatics.
Springer, 2016, pp. 151–161.

[151] S. Shaw, A. F. Vermeulen, A. Gupta, and D. Kjerrumgaard, “Hive secu-
rity,” in Practical Hive. Springer, 2016, pp. 233–243.

[152] J. Weston, “Support vector machine,” Tutorial, http://www. cs. columbia.
edu/˜ kathy/cs4701/documents/jason_svm_tutorial. pdf, accessed, vol. 10, no. 0,
pp. 0–5, 2014.

[153] S. Ghosh and S. K. Dubey, “Comparative analysis of k-means and fuzzy c-
means algorithms,” International Journal of Advanced Computer Science and
Applications, vol. 4, no. 4, pp. 35–39, 2013.

[154] X. Sun, H. Wang, J. Li, and Y. Zhang, “Satisfying privacy requirements
before data anonymization,” The Computer Journal, vol. 55, no. 4, pp. 422–
437, 2012.

[155] B. Strack, J. P. DeShazo, C. Gennings, J. L. Olmo, S. Ventura, K. J. Cios,
and J. N. Clore, “Impact of HbA1c measurement on hospital readmission
rates: analysis of 70,000 clinical database patient records,” BioMed research
international, vol. 2014, 2014.

156

