
i 

 

CyberPulse: A Security Framework for Software-

Defined Networks 
 

 

 

 

 

 

 

Thesis submitted in fulfillment of the requirements for the degree 

of Doctor of Philosophy 

 

Institute for Sustainable Industries and Liveable Cities (ISILC) 

VU Research 

Victoria University, Melbourne 

 

 

 

By 

Raihan Ur Rasool 

March 2020 

 

 

 



ii 

 

 

 

 

  



iii 

 

Abstract  

Software-Defined Networking (SDN) technology provides a new perspective in traditional 

network management by separating infrastructure plane from the control plane which 

facilitates a higher level of programmability and management. While centralized control 

provides lucrative benefits, the control channel becomes a bottleneck and home to 

numerous attacks. We conduct a detailed study and find that crossfire Link Flooding 

Attacks (LFA) are one of the most lethal attacks for SDN due to the utilization of low-rate 

traffic and persistent attacking nature. LFAs can be launched by the malicious adversaries 

to congest the control plane with low-rate traffic which can obstruct the flow rule 

installation and can ultimately bring down the whole network. Similarly, the adversary can 

employ bots to generate low-rate traffic to congest the control channel, and ultimately bring 

down the control plane and data plane connection causing service disruption.  

We present a systematic and comparative study on the vulnerabilities of LFAs on all the 

SDN planes, elaborate in detail the LFA types, techniques, and their behavior in all the 

variant of SDN. We then illustrate the importance of a defense mechanism employing a 

distributed strategy against LFAs and propose a Machine Learning (ML) based framework 

namely CyberPulse. Its detailed design, components, and their interaction, working 

principles, implementation, and in-depth evaluation are presented subsequently.  

This research presents a novel approach to write anomaly patterns and makes a significant 

contribution by developing a pattern-matching engine as the first line of defense against 

known attacks at a line-speed. The second important contribution is the effective detection 

and mitigation of LFAs in SDN through deep learning techniques. We perform twofold 

experiments to classify and mitigate LFAs. In the initial experimental setup, we utilize 

Artificial Neural Networks backward propagation technique to effectively classify the 

incoming traffic. In the second set of experiments, we employ a holistic approach in which 

CyberPulse demonstrates algorithm agnostic behavior and employs a pre-trained ML 

repository for precise classification. As an important scientific contribution, CyberPulse 

framework has been developed ground up using modern software engineering principles 

and hence provides very limited bandwidth and computational overhead. It has several 

useful features such as large-scale network-level monitoring, real-time network status 

information, and support for a wide variety of ML algorithms. An extensive evaluation is 



iv 

 

performed using Floodlight open-source controller which shows that CyberPulse offers 

limited bandwidth and computational overhead and proactively detect and defend against 

LFA in real-time.  

This thesis contributes to the state-of-the-art by presenting a novel framework for the 

defense, detection, and mitigation of LFA in SDN by utilizing ML-based classification 

techniques. Existing solutions in the area mandate complex hardware for detection and 

defense, but our presented solution offers a unique advantage in the sense that it operates 

on real-time traffic scenario as well as it utilizes multiple ML classification algorithms for 

LFA traffic classification without necessitating complex and expensive hardware. In the 

future, we plan to implement it on a large testbed and extend it by training on multiple 

datasets for multiple types of attacks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

DOCTOR OF PHILOSOPHY DECLARATION 

I, Raihan ur Rasool, declare that the Ph.D. thesis entitled CyberPulse: A Security 

Framework for Software-Defined Networks is no more than 100, 000 words in length 

including quotes and exclusive of tables, figures, appendices, bibliography, references and 

footnotes. 

This exegesis contains no material that has been submitted previously, in whole or in part, 

for the award of any other academic degree or diploma. Except where otherwise indicated, 

this thesis is my own work. 

 

Signature                           Date 01/03/2020 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

 

ACKNOWLEDGEMENTS 

This work would not have been possible without the support of the Institute for Sustainable 

Industries and Liveable Cities (ISILC) at Victoria University (VU). I am especially 

indebted to Dr. Hua Wang and Dr. Khandakar Ahmed who have been supportive of my 

career goals. Their guidance helped me in all the time of research and writing of this thesis. 

I could not have imagined having better advisors and mentors. I am grateful to Sudha 

Subramani and Sarath Kumar for being there for me in need and for the fun-time we spent 

together. 

Nobody has been more important to me in the pursuit of this research than the members of 

my family. I would like to thank my parents; whose love and guidance are with me in 

whatever I pursue. They are the ultimate role models. Most importantly, I wish to thank 

my loving and supportive wife, Rabia Saleem, and my two children, Amna and Ayna. This 

journey would not have been possible if not for them, and I dedicate this milestone to them. 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

PUBLICATIONS  

Journal Articles 

(In Review) 

1. Raihan Ur Rasool, Hua Wang, Usman Ashraf, Khandakar Ahmed, Zahid Anwar, 

Wajid Rafique, “A Survey of Link Flooding Attacks in Software Defined Network 

Ecosystems”. Journal of Network and Computer Applications, 2020.  

2. Raihan Ur Rasool, Khandakar Ahmed, Zahid Anwar, Hua Wang, Usman Ashraf, 

“CyberPulse++: A Machine Learning-Based Security Framework for Detecting 

Link Flooding Attacks in Software Defined Networks”. IEEE Transactions on 

Cybernetics, 2019.  

 (Published) 

1. Wajid Rafiq, Raihan Ur Rasool, Wanchun Dou, "Using Edge Computing: 

Requirements Standardization, and Security Challenges", IEEE Communications 

Surveys and Tutorials, 2020.  

2. Raihan Ur Rasool, Usman Ashraf, Khandakar Ahmed, Hua Wang, Wajid Rafique, 

Zahid Anwar, “CyberPulse: A Machine Learning-Based Link Flooding Attack 

Mitigation System for Software-Defined Networks”. IEEE Access, vol. 7, pp. 

34885-34899, 2019.   

3. Raihan Ur Rasool, Maleeha Najam, Hafiz Farooq Ahmad, Hua Wang, Zahid 

Anwar, “A novel JSON based regular expression language for pattern matching in 

the internet of things”. The Journal of Ambient Intelligence and Humanized 

Computing, vol. 10, no. 4, pp. 1463–1481, 2018. 

4. Abdul Majeed, Raihan ur Rasool, Farooq Ahmad, Masoom Alam, Nadeem 

Javaid, “Near-miss situation based visual analysis of SIEM rules for real-time 

network security monitoring”, Journal of Ambient Intelligence & Humanized 

Computing, 10: 1509, 2018.  

5. Zahra Ali, Raihan ur Rasool, Peter Bloodsworth, Shamyl  Bin Mansoor, 

“Facebook-based cloud resource sharing”, Computers and Electrical Engineering, 

vol 66, pp 162-173, 2018.  



viii 

 

6. Asad W. Malik, Raihan ur Rasool, Zahid Anwar, Shahid Nawaz, “A Generic 

Framework for Application Streaming Service”, Computers & Electrical 

Engineering, vol 66, pp 149-161, 2018.  

7. Sarah Shafqat, Saira Kishwer, Raihan Ur Rasool, Junaid Qadir, “Big data 

analytics enhanced healthcare systems: a review”, The Journal of Supercomputing, 

pp 1-46, 2018.  

8. Amna Riaz, Junaid Qadir, Usman Younis, Raihan Ur Rasool, Hafiz Farooq 

Ahmad, Adnan K. Kiani, “Intrusion Detection Systems in Cloud Computing: A 

Contemporary Review of Techniques and Solutions”. Journal of Information 

Science and Engineering. 33(3): 611-634, 2017.  

9. Syeda ZarAfshan Gohera, Peter Bloodsworth, Raihan Ur Rasool, Richard 

McClatchey, "Cloud provider capacity augmentation through automated resource 

bartering", Future Generation Computer Systems, vol. 81, pp 203-218, 2017.  

10. Zia-Ul-Qamar, Raihan Ur Rasool, Hammad Majeed, "Probability-based measure 

to calculate reliability of multi-layer web applications", International Journal of 

Internet Protocol Technology, pp 224-235, 2017.    

11. Anwaar Ali, Junaid Qadir, Raihan ur Rasool, Jon Crowcroft, "Big Data For 

Development: Applications and Techniques", Journal of Big Data, vol 1, 2016.  

12. Jon Crowcroft Junaid Qadir, Anwaar Ali, Raihan ur Rasool, Andrej Zwitter, 

Arjuna Sathiaseelan, "Crisis Analytics: Big Data Driven Crisis Response", 

Springer-Open Journal of International Humanitarian Action, 2016. 

13. Maleeha Najam, Raihan Ur Rasool, Hafiz Farooq Ahmad, Usman Ashraf, Asad 

Waqar Malik,"Pattern Matching for DNA Sequencing Data Using Multiple Bloom 

Filters", BioMed Research International Journal, 2019  

Published Conference Articles 

1. Raihan Ur Rasool, Hua Wang, Wajid Rafique, Jianming Yong, Jinli Cao, “A 

Study on Securing Software Defined Networks”. In Proc. Intl. Conf. on Web 

Information Systems Engineering (WISE), Moscow Russia, pp. 479-489, 2017.  

2. Fatimah Abdualaziz, Noor Zaman, Raihan Rasool, "Energy Efficient Middleware: 

Design and Development for Mobile Applications", In Proc. 19th International 

Conference on Advanced Communication Technology (ICACT), 2017. 



ix 

 

Table of Contents 

1 Chapter 1. Introduction ................................................................................................ 1 

1.1 SDN Architecture ................................................................................................. 2 

1.1.1 Data Plane ..................................................................................................... 3 

1.1.2 Control Plane ................................................................................................ 4 

1.1.3 Application Plane .......................................................................................... 5 

1.2 Security in SDN ................................................................................................... 5 

1.2.1 Application layer ........................................................................................... 8 

1.2.2 Control Layer ................................................................................................ 9 

1.2.3 Data Layer ..................................................................................................... 9 

1.3 LFA Characteristics............................................................................................ 10 

1.4 Pattern Matching Technology ............................................................................ 11 

1.5 Pattern Matching Algorithms ............................................................................. 13 

1.6 SDN Vulnerabilities ........................................................................................... 14 

1.7 Motivation .......................................................................................................... 15 

1.7.1 Research Questions ..................................................................................... 19 

1.8 Research Contributions ...................................................................................... 20 

1.9 Organization of the Study .................................................................................. 21 

1.10 Chapter Summary ............................................................................................... 22 

2 Chapter 2. Literature Review ..................................................................................... 23 

2.1 SDN Preliminaries in Context to LFA ............................................................... 23 

2.2 DoS Attacks and Relevance ............................................................................... 27 

2.3 Link Flooding Attacks ........................................................................................ 27 

2.3.1 The Crossfire Attack ................................................................................... 28 

2.4 SDN in the Context of LFA ............................................................................... 29 

2.5 Link Vulnerabilities in SDN .............................................................................. 32 

2.6 Control Plane Limitations .................................................................................. 34 

2.7 Review and Analysis of Generic LFA Mitigation Techniques .......................... 35 

2.7.1 Traffic Engineering Principles-based Approaches ..................................... 35 

2.7.2 SDN Principle-based Approaches ............................................................... 36 

2.7.3 Link Inspection-baed Approaches .............................................................. 37 

2.7.4 Comparative Analysis of Techniques ......................................................... 39 

2.8 Flood Mitigation techniques............................................................................... 46 



x 

 

2.8.1 Sinkholing ................................................................................................... 46 

2.8.2 Scrubbing .................................................................................................... 46 

2.8.3 Null routing ................................................................................................. 47 

2.9 Classification of LFA Mitigation Techniques .................................................... 50 

2.9.1 Detection Accuracy and Detection Time .................................................... 50 

2.9.2 Solution Type And Approach Used ............................................................ 51 

2.9.3 Solution Complexity, Analysis Method and Scalability ............................. 53 

2.9.4 Evaluation Method Used............................................................................. 55 

2.10 Chapter Summary ............................................................................................... 57 

3 Chapter 3. Problem Definition ................................................................................... 59 

3.1 Problem Statement ............................................................................................. 60 

3.2 Overview of LFA Defense Components ............................................................ 62 

3.2.1 Link Listener Module ................................................................................. 64 

3.2.2 Pattern Matching Component ..................................................................... 66 

3.2.3 Flood Detection Module ............................................................................. 66 

3.2.4 Flood Mitigation Module ............................................................................ 67 

3.3 Design Considerations for the Framework ........................................................ 68 

3.4 CyberPulse Modules and Working Principle ..................................................... 68 

3.4.1 Configuration Manager ............................................................................... 69 

3.4.2 Statistics Measurement Module .................................................................. 70 

3.4.3 ML Module ................................................................................................. 71 

3.4.4 Feature Extraction ....................................................................................... 72 

3.4.5 Network Status Monitor .............................................................................. 72 

3.4.6 Flood Defender ........................................................................................... 73 

3.5 Chapter Summary ............................................................................................... 75 

4 Chapter 4. Design and development of deep content inspection engine ................... 77 

4.1 Deep Content Inspection for Traffic Filtering.................................................... 78 

4.1.1 Semantic Overlapping for Attack Traffic Pattern Matching ....................... 79 

4.1.2 Traffic pattern Grouping Techniques.......................................................... 81 

4.1.3 Alternative Approaches to Pattern Representation ..................................... 82 

4.2 Pattern Matching Engine for Traffic Filtering ................................................... 83 

4.2.1 JSON Format for Network Pattern Representation .................................... 83 



xi 

 

4.2.2 Description of Patterns ................................................................................ 85 

4.3 Comparative Analysis of Parsing Techniques ................................................... 89 

4.3.1 DOM-style Parser ....................................................................................... 89 

4.3.2 SAX-style Parser ......................................................................................... 90 

4.3.3 StAX-style Parser........................................................................................ 90 

4.4 Experiment for Deep Content Inspection ........................................................... 92 

4.4.1 Comparative Evaluation of Compilation and Matching Phase ................... 92 

4.4.2 Evaluation of JSON-based Patterns ............................................................ 98 

4.4.3 Evaluation of JSON-based patterns ............................................................ 99 

4.4.4 Results Analysis ........................................................................................ 100 

4.5 Chapter Summary ............................................................................................. 104 

5 Chapter 5. Machine Learning Tools, Techniques, and Algorithms......................... 106 

5.1 Selection of Machine Learning Tools .............................................................. 107 

5.1.1 WEKA....................................................................................................... 109 

5.1.2 Encog3 ...................................................................................................... 109 

5.1.3 TensorFlow ............................................................................................... 110 

5.1.4 Deeplearning4j .......................................................................................... 110 

5.1.5 PyTorch ..................................................................................................... 110 

5.2 Selection of Classification Datasets, Features and ML algorithm ................... 111 

5.2.1 ML Algorithm Selection ........................................................................... 113 

5.2.2 Training of CyberPulse Traffic Classifier using Multiple Algorithms ..... 114 

5.3 Data Preprocessing ........................................................................................... 114 

5.3.1 Class Transformation ................................................................................ 115 

5.3.2 Log Transformation of Skewed features ................................................... 115 

5.3.3 Feature Normalization .............................................................................. 116 

5.3.4 Feature Selection ....................................................................................... 117 

5.3.5 Shuffle and Split Data ............................................................................... 117 

5.4 Model Training & Hyper-Parameter Tuning ................................................... 118 

5.4.1 Adaptive Boost and Bagging Classifier .................................................... 119 

5.4.2 Decision Tree and K-nearest Neighbors ................................................... 120 

5.4.3 Logistic Regression and Multi-Layer Perception ..................................... 121 

5.4.4 Naïve Bayes and Random Forest .............................................................. 123 



xii 

 

5.4.5 Stochastic Gradient Descent and Support Vector Culstering ................... 124 

5.5 ML Solution for CyberPulse Traffic Classifier ................................................ 126 

5.6 Chapter Summary ............................................................................................. 127 

6 Chapter 6. Experimental Setup and Evaluation ....................................................... 129 

6.1 Prototype Parameters........................................................................................ 130 

6.1.1 The Topology ............................................................................................ 131 

6.1.2 ML Configuration ..................................................................................... 132 

6.1.3 Traffic Monitoring .................................................................................... 133 

6.2 CyberPulse Overview ....................................................................................... 134 

6.3 CyberPulse Working Implementation .............................................................. 134 

6.4 CyberPulse Deployment ................................................................................... 137 

6.5 Experimental Setup .......................................................................................... 138 

6.5.1 Network Model ......................................................................................... 138 

6.5.2 Flood Traffic Manipulation....................................................................... 140 

6.5.3 Attack Simulation ..................................................................................... 141 

6.6 Evaluation Results ............................................................................................ 143 

6.6.1 Evaluation Parameters .............................................................................. 144 

6.6.2 Evaluation Using Data Partitioning .......................................................... 145 

6.6.3 Prototype Performance Evaluation Using Attribute Selection ................. 146 

6.6.4 Evaluation Using Multiple Classifiers ...................................................... 146 

6.7 CyberPulse Evaluation Using Performance Metrics ........................................ 148 

6.7.1 Evaluation Results for Delay .................................................................... 148 

6.7.2 Evaluation Results for Bandwidth Saturation ........................................... 149 

6.7.3 Evaluation Results for Throughput ........................................................... 150 

6.7.4 Evaluation Results for Input Load ............................................................ 151 

6.7.5 Evaluation Results for Flooding Rate ....................................................... 152 

6.7.6 Evaluation Results for Attack Detection Time ......................................... 153 

6.8 Overhead of CyberPulse................................................................................... 154 

6.9 Chapter Summary ............................................................................................. 155 

7 Chapter 7. Conclusion and Future Research Directions .......................................... 157 

7.1 Future Research Directions .............................................................................. 159 

7.1.1 Control Channel LFA ............................................................................... 159 



xiii 

 

7.1.2 Pattern Matching and ML against LFA .................................................... 160 

7.1.3 Security Against Sources of LFA ............................................................. 160 

7.1.4 Need for Robust Solutions ........................................................................ 161 

7.1.5 Need for Physical Testbed Implementations ............................................ 161 

7.1.6 Section Summary ...................................................................................... 162 

8 References ............................................................................................................... 163 

 

 

  



xiv 

 

List of Figures 

Figure 1-1 SDN architecture, the figure at [70] has been redrawn and expanded. ............. 2 

Figure 1-2 The reference architecture of SDN. .................................................................. 4 

Figure 1-3 Effect of LFAs on SDN..................................................................................... 8 

Figure 1-4 Survey of 439 research papers citing SDN and the attack types. ...................... 9 

Figure 1-5 The setup of LFA on the control channel. ....................................................... 17 

Figure 2-1 Effect of LFA on all SDN planes. ................................................................... 25 

Figure 2-2 The crossfire attacks (the figure at [3] is expanded and redrawn). ................. 28 

Figure 2-3 Controller communicating data plane devices. ............................................... 35 

Figure 2-4 Grouping of LFA mitigation techniques. ........................................................ 37 

Figure 2-5 Classification of LFA mitigation techniques. ................................................. 40 

Figure 2-10 The mechanism of scrubbing the flood traffic. ............................................. 47 

Figure 2-7 The working principle of NULL routing. ....................................................... 48 

Figure 2-8 LFA Classification metrics. ............................................................................ 56 

Figure 3-1 Overview of Proposed Security Solution.. ...................................................... 61 

Figure 3-2 A conceptual framework for the proposed solution. ....................................... 66 

Figure 3-3 CyberPulse architecture. ................................................................................. 69 

Figure 3-4 Modules of CyberPulse. .................................................................................. 74 

Figure 3-5 Flow diagram of CyberPulse operation........................................................... 75 

Figure 4-1 Deep content inspection-based traffic filtering against LFA. ......................... 79 

Figure 4-2 DFA representing.*ab.*cd.*mn and.*efgh. .................................................... 81 

Figure 4-3 Illustration of logical blocks of the pattern. .................................................... 86 

Figure 4-4 Examples of pattern representation in JSON. ................................................. 87 

Figure 4-5 Parsing of JSON files using SAX-style parser. ............................................... 87 

Figure 4-6 Another example of RE representation in JSON. ........................................... 88 

Figure 4-7 Representation of RE ...................................................................................... 89 

Figure 4-8 JSON pattern matching module. ..................................................................... 89 

Figure 4-9 Time elapsed in compilation and matching phase.. ........................................ 95 

Figure 4-10 Cache misses in compilation and matching phase ........................................ 96 

Figure 4-11 Cache misses to instructions ratio.. ............................................................... 97 

Figure 4-12 Occurrences of different instruction types in compilation and matching ..... 98 

file:///D:/Previous%20Data/home%20computer/2018/0_Report%20and%20Towards%20Submission/0_Revision/0_Thesis%2005_03_2020_Raihan.docx%23_Toc36015554
file:///D:/Previous%20Data/home%20computer/2018/0_Report%20and%20Towards%20Submission/0_Revision/0_Thesis%2005_03_2020_Raihan.docx%23_Toc36015557


xv 

 

Figure 4-13 Overview of JSON pattern processing engine. ............................................. 99 

Figure 4-14 Total time elapsed. ...................................................................................... 101 

Figure 4-15 Total cache misses....................................................................................... 102 

Figure 4-16 Cache misses per second. ............................................................................ 102 

Figure 4-17 Cache Misses to instruction ratio. ............................................................... 103 

Figure 5-1 Programming tools selection criteria. ........................................................... 109 

Figure 5-2 ML algorithm selection criteria. .................................................................... 114 

Figure 5-3 Class distribution of BHP flooding attack dataset. ....................................... 115 

Figure 5-4 Illustrates features distribution after removal of the skewness. .................... 116 

Figure 5-5 Overview of the dataset. ................................................................................ 117 

Figure 5-6 Learning curve convergance ......................................................................... 119 

Figure 5-7 Learning curve and AUC. ............................................................................. 120 

Figure 5-8 AUC score on ROC and training instances. .................................................. 121 

Figure 5-9 ROC score corresponding to a perfect separation of the final classes. ......... 121 

Figure 5-10 AUC value and Learning Curve convergance ............................................ 122 

Figure 5-11 A perfect ROC and variations in the accuracy ............................................ 123 

Figure 5-12 Validation of Classifier. .............................................................................. 123 

Figure 5-13 Determining the accuracy of the classifier. ................................................. 124 

Figure 5-14 The evaluation of SGD. ............................................................................... 125 

Figure 5-15 Distinguishing flooding and legitimate classes. .......................................... 125 

Figure 6-1 LFA setup and deployment in the application plane of SDN. ...................... 130 

Figure 6-2 Network topology of CyberPulse. ................................................................. 132 

Figure 6-3 A screenshot of the generated .pkl files. ....................................................... 133 

Figure 6-4 CyberPulse overview. ................................................................................... 134 

Figure 6-5 CyberPulse implementation at application plane. ......................................... 135 

Figure 6-6 The flow diagram of CyberPulse. ................................................................. 136 

Figure 6-7 Floodlight statistics collection setting. .......................................................... 137 

Figure 6-8 The sequence of commands to operate the prototype. .................................. 138 

Figure 6-9 JSON configuration file. ............................................................................... 139 

Figure 6-10 Emulated topology using mininet and Floodlight controller. ..................... 140 

Figure 6-11 Adversary model to attack the control channel. .......................................... 140 



xvi 

 

Figure 6-12 Consumed bandwidth of the network using different number of attackers. 142 

Figure 6-13 Effect of packet drop rate on the attacking nodes. ...................................... 143 

Figure 6-14 Evaluation of the ANN classifier on precision, recall, and f F1Score. ....... 145 

Figure 6-15 CyberPulse classifier evaluation using different data partitioning and 

attribute selection. ........................................................................................................... 146 

Figure 6-16 CyberPulse classifier evaluation with MLP, RF and NB algorithms.......... 147 

Figure 6-17 Relation of Delay with the increase of flood traffic. ................................... 149 

Figure 6-18 Effect of bandwidth saturation with reference to time during LFA. ........... 150 

Figure 6-19 Effect of LFA on the throughput of the network with flooding threshold .. 151 

Figure 6-20 Effect of LFA on input load of the network with flooding threshold ......... 152 

Figure 6-21 Effect of time on the flooding rate on the network. .................................... 153 

Figure 6-22 Attack detection time with reference to number of attackers ..................... 154 

  



xvii 

 

List of Tables 

Table 1-1 Meta characters and their meanings. ................................................................ 12 

Table 2-1 Comparison of different LFA techniques. ........................................................ 29 

Table 2-2 Classification of LFA solutions based on the response time. ........................... 40 

Table 2-3 Comparative Analysis of Link flood mitigation techniques............................. 42 

Table 2-4 Categorization of LFA mitigation research based on different features. ......... 44 

Table 2-5  Taxonomy of LFA mitigation techniques based on performance metrics. ..... 45 

Table 3-1 ML techniques in flood attacks mitigation. ...................................................... 63 

Table 3-2 The extracted features and definitions in the training dataset. ......................... 72 

Table 4-1 Impact of semantic overlapping on DFA states based on RE type. ................. 80 

Table 4-2 RE symbols and their equivalent JSON representation. ................................... 84 

Table 4-3 Comparison of relevant parsers. ....................................................................... 92 

Table 4-4 RE Dataset usage details. ................................................................................. 93 

Table 4-5 Description of characteristics of RE datasets. .................................................. 93 

Table 4-6 Classification of opcodes into categories. ........................................................ 98 

Table 4-7 Summary of demographics. ............................................................................ 100 

Table 4-8 Summary of survey questions and results. ..................................................... 103 

Table 5-1 Comparison of deep learning tools. (scale 0 – 10) ......................................... 108 

Table 5-2 Statistics used in the previous research papers. .............................................. 111 

Table 5-3 Flooding Attack Datasets used in literature.................................................... 112 

Table 5-4 Important Datasets used for Flooding Attacks with their links. ..................... 113 

Table 5-5 Training dataset introduction. ......................................................................... 114 

Table 5-6  Expert analysis of the training dataset. .......................................................... 115 

Table 5-7 Dataset state after applying data normalization. ............................................. 117 

Table 5-8 Inputs parameters applied to the model. ......................................................... 118 

Table 5-9 Evaluation metrics of all the algorithms. ........................................................ 119 

Table 6-1 Parameters for topology creation for evaluation. ........................................... 132 

Table 6-2 Parameters for ML module. ............................................................................ 133 

Table 6-3 The prerequisites for running CyberPulse. ..................................................... 137 

 

 



xviii 

 

 

 

  



1 | 186 

 

1 CHAPTER 1. INTRODUCTION 

Software-Defined Networking (SDN) provides an open interface for the development of 

the software to control the network infrastructure. It enables flexible control of traffic using 

the programmability, moreover, it leverages the softwarization characteristics to modify, 

inspect, and manage the traffic at runtime. All these functions are provided in terms of 

abstract services at different layers of SDN. Link Flooding Attacks (LFAs) have emerged 

as one of the stealthiest attacks on modern networks. These attacks can cause a Denial of 

Service (DoS) by choking important links and ultimately bringing the whole network down 

[1]. Depending on the technique and methodology, several LFAs have broadly been 

described in the literature [2] such as crossfire [3], coremelt [4], and spamhaus attacks [5]. 

Among these, a crossfire LFA is harder to detect as it isolates the target by flooding the 

links around it with low-rate legitimate traffic. Such attacks have the potential of disrupting 

the most widely used SDN in a variety of ways [3].  Current sensor networks operate on 

constant sensor measurements of the underlying physical infrastructure where they are 

attached like temperature sensors, humidity operators, lights, fluid level indicators, and 

many more.   

A huge amount of data is produced by these sensors which need to be transferred to remote 

locations for efficient processing and information extraction. This data, trigger events 

which subsequently relate to certain actions. Data is also filtered at certain locations for 

security and privacy purposes which operates on pattern matching techniques. Therefore, 

pattern matching is essential in the realization of Ambient Intelligence (Aml) and 

humanized computing. A lightweight pattern matching solution provides the first line of 

defense against the lethal security attacks. Pattern matching works in a way that it searches 

for a specific pattern of traffic in the network. Modern network security solutions for 

examples Network Intrusion Detection System (NIDS), firewall and Intrusion Detection 

System (IDS) routinely deploy Deep Content Inspection (DCI) techniques to ascertain 

malicious traffic.  In this chapter, we discuss an overview of SDN, LFA, pattern matching 

technology, and their variants in the networking paradigm. Similarly, we explain the 

vulnerabilities of LFA in SDN, particularly, we focus on control channel LFA as how they 

are lethal for modern network deployments. We provide instances of different attacks on 

SDN layers moreover, the attack vulnerabilities on different SDN interfaces are discussed. 



2 | 186 

 

In the same way, at the end of this chapter, the contributions of this research are formally 

presented. 

 

The primary architecture of the SDN comprises up of infrastructure, control, and 

application layers. The infrastructure layer comprises up of hardware elements of the 

network including switches, routers, and gateways which expose their connectivity with 

the controller using the southbound interfaces often called as Control-Data Plane Interface 

(C-DPI). The network requirements are implemented at the application layer and are 

exposed to the controller using the northbound interface (NBI).  

 

Figure 1-1 SDN architecture, the figure at [70] has been redrawn and expanded. 

The controller accepts the high-level network requirements from the application layer and 

translates them into low-level commands for the network elements. The infrastructure layer 

operates on the commands sent by the controller and forwards the network traffic. The 

infrastructure layer works barely as the forwarding element as all the intelligence has been 

shifted at the controller of the SDN. However, a limited subset of control and management 

functions have also been provided for localized control. The SDN controller manages the 

network according to application-level policy requirements.  



3 | 186 

 

Figure 1-1 illustrates the high-level architecture of SDN representing the three planes. SDN 

calls for the separation of the concerns where the management decisions have been 

implemented at the application layer of the SDN. In contrast to the traditional networks 

where the forwarding devices have the control and data plane functionality at the 

infrastructure, the centralized management offers a broader perspective of the network 

which eases the decision-making process and provides granular control. The abstract 

network services provide programmability of the network where the application plane 

instigate the required services to the controller which delivers them according to the global 

view of the network.  

1.1.1 Data Plane 

The resources in data plane deal with the customer traffic as well as the auxiliary resources 

to enable Quality of Service (QoS) requirements. The data plane normally contains the 

network elements which comprise up of traffic source and sinks, moreover it contains the 

virtualizer which abstracts the data plane services and provides an interface to the controller 

to enforce network connectivity and policy. The traffic in the network can enter or leave 

on physical or logical ports and can be forwarded to the processing units. The decision 

making in the data plane is not autonomous where it is managed by the controller, however, 

the controller can facilitate the data plane to respond autonomously to the events such as 

network failure, policy consistency, or by proactive flow rule installation. The C-DPI 

performs the function of the network capabilities advertisement, event notification, and 

programmatic control of the data plane elements. The data plane agents are the key 

contributors to the implementation of the controller instructions. Moreover, the data plane 

coordinator performs the data plane resource allocation to the client agents and ensure 

policy to use them. Agents and coordinators exist on all the planes of the SDN and serve 

the same functionality. At a low-level, the data plane elements are the hardware elements 

whereas at the highest level of abstraction they are the software services exposed by the 

layer because SDN operates on an abstraction model. Figure 1-2 represents a detailed SDN 

architecture illustrating the OpenFlow (OF) switches at the data plane of SDN. 



4 | 186 

 

 

Figure 1-2 The reference architecture of SDN. 

1.1.2 Control Plane 

The SDN control is logically centralized where the controller usually operates on the subnet 

scope of the network which spans on more than single network element. The services and 

the functions of the network comprise up of controller’s externally observable behavior. 

Other functionalities depend on the circumstances e.g., topology knowledge and optimal 

path computation. In the distributed control of the network resources, the control messages 

portray a high amount of overhead on the network. The control consists of infrastructure 

plane control, virtualizer, coordinators, and agents. The data plane control function known 

as orchestrator provides an abstract singular controller view to the multiple network 

elements. The coordinator acts as manager which setup the client-server environment. The 

virtualizer allocates abstract resources to particular clients and the applications. The 

controller agent model acts in a controller and controlled entity. The agent is supervised by 



5 | 186 

 

the control component of the controller which illustrates the resources of the client from 

the server’s perspective.  

1.1.3 Application Plane 

Applications in SDN allows the behavior and resources to specify the required network 

functionality. The applications in the application plane can invoke other services and has 

the ability to utilize other controllers to accomplish the objectives. The interface between 

the application and the data plane is called the Application-Control Plane Interface (A-

CPI). The applications in the application plane also support an A-CPI agent which enables 

for a recursive application hierarchy.  The latitude of hierarchies depends on the level of 

abstraction on which they exist. The application plane typically sends commands to alter 

the network state, and queries the network state. The A-CPI can also be used for additional 

functions of an input to control virtualized network functions. SDN provides an open 

interaction paradigm where software development is performed to flexibly control the 

communication in a network resource provision and control of network traffic. Moreover, 

it enables efficient surveillance in the network and real-time modification to efficiently 

orchestrate the services and provide security which is one of the prime concern in the 

current network paradigm.  

 

SDN was proposed to deal with the increasing network complexities and size due to the 

continuous development in current networks. SDN reduces network complexity by 

providing simplified and centralized network management and offers separate layers for 

data and control planes that help in flexible and dynamic network operation [6-8]. In SDN, 

data plane can only provide the traffic forwarding functionality while centralized controller 

has the global view of the whole network which can be programmed for desired traffic 

forwarding [9], [10], [11]. SDN utilizes OF protocol for communication between the SDN 

layers [12]. Every OF-enabled device in the data plane has flow tables that are managed by 

the controller. Flow tables contain the entries called flow rules to route the traffic to its 

destined path. All the incoming packets are compared with the flow entries in the flow table 

if flow entry for a flow is not found, it forwards the packet to the controller querying about 

the further action. The controller then updates the rules after the packet inspection in the 



6 | 186 

 

flow table and traffic is forwarded towards the destination. There is a continuous interaction 

between the controller and the data plane for traffic forwarding. However, this continuous 

communication leads to serious issues of security. A crafted adversary can cause flooding 

by generating a large number of different header fields [13] [14], [15]. A more serious 

threat is when a control channel is attacked creating congestion on the link with anomalous 

traffic using LFA [16]. 

LFA is one of the newest forms of flooding attacks which disrupt communication on the 

underlying link. As the name implies that it is a link-based attack, where the link connecting 

to the target server is flooded to cause traffic congestion which ultimately disrupts the 

legitimate traffic to the target server. Initially, the attacker identifies the target server and 

creates a link map of the target by sending traceroute commands [17]. Subsequently, 

specific servers are carefully selected that lie around the path of the target link, these servers 

are called, decoy servers. After the identification of the decoy servers, a number of bots are 

selected which can generate sufficient traffic to flood the link.  Finally, the decoy servers 

are manipulated by bots to send low-rate traffic to each other in order to cause the 

congestion on the target link which will ultimately disrupt the communication of the target 

server with the rest of the network.  

Recently, some studies have been performed to mitigate LFA in SDN. A few of the 

available studies focus on providing fake network map to the adversaries [2], [18], [19]. 

These techniques operate by exposing fake network topology to the attackers. They utilize 

graph metric techniques to identify the critical links that are vulnerable to being attacked 

and afterward present fake links to the attacker making the attack ineffective. Some 

techniques are based on link inspection which performs the operation on the basis of critical 

links surveillance [107], [2], [20]. The basic phenomena of these techniques are to inspect 

the links and if any flooding is identified, then perform the mitigation process. A common 

characteristic of the current LFA defense techniques is that they offer mitigation for the 

traditional networks [20-22], [23], [24]. Some authors used SDN testbed to perform the 

experiments [25],  [26] or use SDN-based techniques to mitigate LFA. However, there is a 

lack of literature available that mitigate LFA on SDN, specifically control channel LFAs. 

Therefore, it is still a challenge to mitigate control channel LFA in SDN, to address this 

challenge, we propose CyberPulse an efficient LFA mitigation system to provide defense 



7 | 186 

 

against control channel LFAs. This study comprised up of comprehensive background 

study of LFA in SDN and provides a framework named as CyberPulse to mitigate LFA. 

Finally, the implementation of the CyberPulse as a module in Floodlight controller is 

presented. CyberPulse offers three modules name as Link Listener, Flood Detection and 

Flood Mitigation Modules. Link Listener Module continuously monitors the link and 

inspects incoming traffic by utilizing a JSON-based pattern matching engine, which has 

the ability to perform the computation on real-time line-speed level.  

Efficient pattern matching is a key enabling technology for the full realization of network 

traffic monitoring. The pattern matching engine represents the traffic signatures into JSON 

format and performs deep traffic inspection. It then compares the incoming traffic with the 

JSON signatures stored in the database and identifies the malicious traffic streams. The 

pattern matching is performed using Regular Expressions (REs). After carefully analyzing 

the network traffic using pattern matching techniques to identify malicious flows, we preset 

CyberPulse Flood Detection Module which employs comprehensive machine learning 

algorithms and deep learning-based Artificial Neural Network (ANN) technique to classify 

the traffic into benign and flooding traffic. We classify the network traffic using two 

experimental paradigms. In the first scenario, we use deep learning-based ANN backward 

propagation technique to accurately classify the incoming traffic and in the second 

experiment, we train the machine learning classifier using any given algorithms and the 

training dataset. The classified traffic is then transferred to the Flood Mitigation Module 

which mitigate the flood traffic by using NULL routing technique and enable the normal 

flow of operation of the network. 

It is to be noted that CyberPulse is implemented as an extension module in the Floodlight 

Controller. Pattern matching technology is the first line of defense towards a network 

security solution implemented in CyberPulse. Therefore, we describe pattern matching 

technology in the following. Most of the IT infrastructure across the globe is virtualized 

and is backed by SDN. Therefore, SDN is the main building block for today’s computing 

powerhouses making it a prime target for different attacks.  SDN’s vulnerability to being 

attacked by LFA increases knowing the fact that there is a central controller that is capable 

of managing the whole network. This centrally controlled network management exposes 

SDN towards a variety of different attacks in general and LFA in particular. In this 



8 | 186 

 

research, we mainly focus on LFA in relation to SDN on all layers (data, control, and 

application layer). Figure 1-3 demonstrate the effect of LFA on three layers of SDN. It has 

been illustrated that the adversary can manipulate bots which send low rate attacks flows 

in order to achieve LFA causing overwhelming damage to different layers/planes of SDN. 

The consequences of an attack are presented in the form of attack results in the figure. We 

explain the attack consequences on different layers of SDN in the following. 

 

Figure 1-3 Effect of LFAs on SDN. 

1.2.1 Application layer 

This layer contains the services and applications that make requests for the network 

functions from the data and control plane. LFA on application plane can cause applications 

running on this plane to crash which disrupts the normal flow of SDN. Network 

management applications are a critical component of the application plane. Network 

security is the prime concern of the application layer, LFA can bring security-related 

problems in the whole SDN. The crash of the application plane can destroy network 

operations and break all the services of SDN [27].  



9 | 186 

 

1.2.2 Control Layer 

 This layer works as a central control unit in SDN which is responsible for successful 

packets delivery from source to the destination [28]. SDN controller makes use of different 

interfaces to communicate with other layers and network elements like east, west, north 

and southbound APIs [28]. The most utilized APIs of the controller are northbound and 

southbound API. By utilizing the southbound API, the controller manages the 

communication with the infrastructure layer and other network devices. The northbound 

API is used to connect the controller with several network applications [29]. The 

northbound APIs don’t use a standardized protocol as opposed to the southbound APIs that 

creates numerous security threats [30-32]. The east and westbound APIs manage the 

distributed controllers that are used to manage different portions of the network [33].  

distributed controllers are installed in order to avoid a single point of failure or bottleneck 

[34].  

   

Figure 1-4 Survey of 439 research papers citing SDN and the attack types. 

LFA on control plane can crash and disconnect distributed controllers from other planes 

provoking network failure. Additionally, flooding can cause DoS on the control plane, 

leaving controllers unable to fulfill legitimate requests. Previously, extensive research has 

been conducted in the field of DoS like [35-39] and exploiting fault-tolerant properties in 

controller [40-45]. Figure 1-4 provides a survey of 439 research papers citing SDN which 

demonstrates that only 18% of research papers have been conducted for specifically SDN 

other have used SDN as a testbed for the proof of concept.  

1.2.3 Data Layer 

 Most of the earlier attacks on data plane were about overloading the flow tables of the 

SDN switches by inserting fake flows and depleting the memory [46, 47], [48]. In [49] 



10 | 186 

 

Sood et al. evaluate the performance of SDN switches by processing the incoming packets 

without the interaction of the controller.  The attack on data plane [27] can severe 

consequences on the network because the data plane contains the core hardware to 

accomplish the communication process. Under LFA, the network devices on the data plane 

can get disconnected making the network services irresponsive. This attack involves 

flooding the infrastructure layer causing communication delays and foster performance 

degradation. Another severe result of such attacks on the data plane is disconnecting 

switches from each other which results in loss of flow rules and synchronization issues 

between coordinating switches [50]. LFA can also harm the flow rules installation process 

in SDN switches which causes delay or even disconnecting rule installation service and 

ultimately slowing the whole network. LFA can isolate the data plane [27] from SDN 

bringing the whole network down. LFA can have an overwhelming effect on SDN 

switches, as the switches cannot process the packets with their actual processing speed.  

The characteristics of LFA has been discussed in the following. 

 

Apart from the above discussion, we have performed an extensive literature survey on LFA 

and found the following characteristics.  

• LFA can get selected links choked and hence disconnect a specific region from 

other regions  [51].  

• Detecting or mitigating the LFA is more difficult than defending the distributed 

DoS attacks [25]. 

• LFA is unique as it has two unique characteristics which make them drastically 

consistent in flooding specific links and interrupting the legitimate traffic.   

• The first is the indirect strategy to attack a target server as the target of the attack 

in is different from traditional DDoS, therefore, it is complex to detect these attacks 

[3]. 

•  The second is the that these attacks employ protocol conforming traffic which is 

indistinguishable from the legitimate traffic which lasts for more time and causes 

much damage to the underlying network.  

With the above characteristics, it is harder to detect LFA and then propose any relevant 

mitigation strategies. Multiple mitigation strategies have been proposed previously in order 

to mitigate LFA [1, 20, 22, 52] including traffic engineering [1, 53, 54], link monitoring 

[2, 18, 23, 54] and SDN principle-based approaches [25, 26, 55]. In [50] Niyaz et al. have 



11 | 186 

 

elaborated different attacks on SDN and their impact on the web services provisioning. 

Figure 1-4 attempts to categorize different attacks in the published research citing SDN. 

Despite its importance, LFA received the attention of about forty research papers. This 

figure highlights that only 18% of the works mentioned in figure were actually targeted 

towards SDN, while the rest used SDN for proof of concept. The bar chart in figure clearly 

describes that only nine research papers have so far considered LFA problem in SDN and 

that too mostly at the data plane. Different techniques have been employed to mitigate the 

LFA. The pattern matching technology is one of them, it provides the first line of defense 

against the LFA.  

 

The security of the SDN plays an important role in future generation computer systems. 

Numerous protection solutions have been proposed against the attack traffic. A lightweight 

pattern matching solution provides a first line of defense against the lethal security attacks. 

Pattern matching works in a way that it searches for a specific pattern of traffic in the 

network [56]. Modern network security solutions for examples NIDS, firewall, and IDS 

routinely deploy DCI techniques to ascertain malicious traffic. The contents of the packet 

are examined using patterns of matching malicious traffic to identify attack packets. It 

searches for the fixed sequence of bytes in a single packet. In most of the cases, pattern 

matching technology works by inspecting the packet whether it is associated with a 

particular service or destined/originated from a specific port.  

Hence, this process helps in identifying the total number of packets to be matched and 

increase detection efficiency. The pattern matching has been used in the social security 

numbers, telephone numbers, zip codes, or any malicious activity detection in a sequence. 

The pattern matching has to fulfill two requirements, first the speed of pattern matching 

should be fast enough and secondly, they should be space-efficient to ensure the Service 

Level Agreements (SLA). Moreover, the security solutions are often provided as the 

middle-boxes at the Gbps links hence the pattern matching engines must be fast enough to 

meet the network requirements. The available pattern matching technologies suffer from 

space-time constraints. We implement a pattern matching engine for the security of the 

network traffic.  



12 | 186 

 

Table 1-1 Meta characters and their meanings. 

Symbol Meaning 

. Any single character 

* Zero or more occurrence of the previous character 

? Zero or single occurrence of the previous character 

+ One or more occurrence of the previous character 

^ Indicates negation or start of the line 

[] 

$ 

Defines character class e. g [A-Z] and [0-9] 

Matches the end of a line 

CyberPulse solution utilizes pattern matching in Link Listener Module to filter network 

traffic in SDN and to identify malicious traffic patterns. Network traffic can include wide-

ranging of formats such as HTTP, Web, Synch traffic, data traffic and network packet 

captures. Pattern matching commonly occurs in the embedded device sensing the physical 

properties of the environment such as cameras, motion detectors, temperature, and light 

sensors or in the cloud where the data is aggregated.  

DCI and intrusion detection and prevention (IDS/IPS) also rely on identifying malicious 

content against defined patterns. In all these cases, the language used needs to be expressive 

enough to parse a variety of patterns as well as efficient in terms of space and time 

requirements. Hence, there exist a number of ways to use patterns in different network 

traffic identification applications. In the past few decades, REs has emerged as the most 

appropriate way to define textual patterns as they are highly flexible as compared to fixed 

strings. At a first glance a RE seems to be an encoded piece of message e.g. “^a {2, 4} 

b*{bc | ae} + [^d]". This lacks in human readability due to excessive use of meta-

characters, which have special meaning when they are combined with the literal characters 

in the RE. At the same time, the flexibility present in REs is also due to the use of meta-

characters and counting constraints. Table 1-1 gives a description of some of the well-

known meta-characters that are mostly used in REs. 

RE searching is a multistage process. First, a RE is generally parsed to obtain a tree 

representation. In the next stage, it is converted into an NFA (Non-deterministic Finite 

Automata) and then into a DFA (Deterministic Finite Automata) using the Thompson 

algorithm and DFA classical respectively. The DFA obtained through this method often 

comprises of redundant states and transitions that occupy large memory. This process of 

RE to NFA or DFA conversion is mostly known as the compilation phase. Moreover, a RE 

can either be compiled individually or a set of REs can be compiled together to generate a 



13 | 186 

 

composite DFA. For k REs, a composite DFA has a processing cost of O (1) whereas it is 

O (k) for individual DFAs (as the processing cost for the DFA of each RE is O (1)). A 

composite DFA has the advantage of low processing cost over individual DFAs [57]. 

However, in certain cases, it becomes infeasible to generate a composite DFA for a given 

set of REs.  

Most of the times this is due to the use of wildcards that result in DFA state explosion. 

Such complex DFAs not only consume time in their construction but also consume a large 

part of memory, which is evident from the experimental study given in this study. This 

problem is faced in both the cases of DFA creation either a group of REs is compiled or 

only a single RE is compiled [58]. Generally, the same pattern can have different RE 

representations but they may differ in their efficiencies. For example, we have a RE 

“SEARCH\s+[^\n]{1024}$", which detects any input string with the occurrence of 

SEARCH at the start of the line, followed by one or more white spaces and then 1024 

characters except for the return character.  

Due to overlapping in this RE (overlapping will be discussed later in this chapter) caused 

by “\s+” and “[^\n] {1024}", the resultant DFA will be of quadratic size. However, the 

same pattern can be represented efficiently by following the rule rewriting technique 

mentioned in [57]. After using the rewriting technique, the new RE “^SEARCH\s [^\n] 

{1024}$" results into a DFA, which is far more memory efficient as compared to the 

previous one. Thus, DFA implementation of REs become impractical in certain cases and 

one has to look for other options for the practical implementation. Many times, a new 

pattern could be written with a minor extension or modification to the existing one. 

Patterns, especially large ones required for big data parsing in IoT environments 

represented in RE format make this task difficult. 

 

There are many algorithms proposed in the past to minimize the size of DFAs that work 

by exploiting the redundancy in transition tables and states. Much of the current research 

work exists either on DFA minimization or in reducing the time of the pattern matching 

engine while matching the input stream against patterns [59], [60], [61], [62], [63], [64], 

[65], [66], [67]. In contrast, there is relatively less work available focusing on the 

compilation phase although it is the most critical phase of a pattern matching process. REs 



14 | 186 

 

that have been expressed in a suboptimal way can lead to a large and overly complex 

compilation of patterns. It used to be the case that the potential problems of this phase were 

mostly overlooked because the compilation of patterns was performed offline very 

infrequently and subsequently stored for long-term use.  

However, nowadays patterns using in-memory databases require frequent updates. In-

memory databases have gained importance because of their high-performance with big data 

applications such as for Internet of Things (IoT). Consequently, it is no longer a good 

solution to store the pre-compiled DFAs in memory. Thus, the significance of the 

compilation phase needs to be highlighted so that this area of research can further be 

explored and the problems related to the online compilation of patterns can be addressed. 

This work considers RE as the root cause of many problems (discussed in next chapter in 

detail) and points out that there is no significant work performed in the literature for better 

representation of patterns or to improve the current RE notation. After discussing the 

pattern matching technology, we present the vulnerabilities in SDN towards LFAs. 

 

In this research, we demonstrate with extensive experiments that how LFA pose threat to 

modern SDNs. We used the testbed comprised up of Mininet network emulator [68] and 

floodlight open-source controller version 1.2 [69]. We perform the simulation of the attack 

by employing low-rate traffic originating from multiple sources to create an effect of LFA 

on SDN. An application has been developed named as CyberPulse leveraging the 

application plane of the SDN. This application is based on three components including 

Link Listener Module, Flood Detection Module, and Flood Mitigation Module.  

A JSON-based pattern matching engine is used to perform the pre-filtering of the traffic by 

comparing the traffic with the already stored patterns using a sophisticated representation 

of REs. The filtering of the traffic is necessary for Aml and humanized computing as the 

IoT generate a huge amount of traffic a pattern matching which can filter the traffic 

efficiently. Previous research in this paradigm stresses the use of hardware and specialized 

systems to provide defense against known attack patterns. However, there is a lack of 

research in the optimization of the pattern matching, RE as well as the compilation process 

of translating patterns into data structures. This study stresses the importance of developing 

efficient REs for efficient pattern representation. Therefore, we conduct an empirical 



15 | 186 

 

comparison of multiple RE processing pattern matching engines and demonstrate with 

practical implementations that the compilation phase of the pattern matching consumes a 

lot of memory as well as take a lot of time in comparison with the pattern matching phase 

where optimization must be sought to optimize this phase.  

A fundamental characteristic of SDN is that it provides separation between the control 

plane and data plane. This separation provides better management and flexible 

programmability of the network elements. OF is one of the widely used protocols for 

communication in SDN. Moreover, network services are developed as applications in the 

application plane which interact with the controller using northbound API. Along with 

certain advantages of centralized network management, there are many threats that 

leverage the centralized control capability of SDN. These threats include increased 

probability of DoS because of centralized control, flow table overflow, open 

programmability related issues, and DoS.  

These threats have the ability to bring down the whole network and disrupt the service 

provision which increases the cost of service orchestration, in the same way, increase traffic 

delays. Network malfunctioning greatly exacerbates the infrastructure service cost, 

indirectly increasing the total network operating cost. Providing seamless network services 

have become a critical challenge nowadays [70], [71]. Hence, mitigating threats to the 

network performance and operation has become vital in order to meet network availability 

requirements 

 

The motivation for this study comes from the analysis of the LFAs which have emerged as 

one of the most devastating attacks during the past some years. In contrast to traditional 

DoS attacks targeting individual servers [72], LFA target critical links that connect to 

important servers [3]. LFAs are devastating in nature because they clog core links 

paralyzing and sometimes disconnecting the target network connected to the link. LFA is 

a growing threat to the network infrastructure and has attracted a lot of attention from 

academia and industry [1]. Mitigating LFA is a challenging task because of three important 

reasons: first arises due to the communication between bots and the public servers. This 

implies that the attack traffic is indistinguishable from the legitimate flows and sometimes 

unobservable when the target server does not belong to the victim’s network. Hence, 



16 | 186 

 

typical flow filtering techniques to screen-out malicious traffic become inoperative. 

Second, the attacked link and the target server’s network are part of different Autonomous 

Systems (ASes) which are different from the source (attacker) AS. These AS have no 

visibility into each other’s network activity and they never know that a link is under-attack. 

In this regard, inter-AS cooperation is necessary to mitigate LFA.  

However, source AS lacks incentives to push them for cooperation because the collateral 

damage for them is negligible. Third, the attack persistence, as multiple bots send traffic to 

the target server which is not distinguishable hence traditional security measures becomes 

spurious and the attack becomes persistent which makes it difficult to mitigate. Traditional 

IDS/IPS countermeasures become invalid in this situation because the attack traffic may 

never reach the target server. The attackers send low-rate traffic to the carefully selected 

servers with a target of flooding the links connecting to the server. This action results in an 

increase in flood traffic on the links leading to the target server. Hence, legitimate traffic 

to the target server is interrupted.  

Typical flow filtering techniques fail in this context because low-rate traffic cannot be 

detected by the rate limit threshold mechanisms. In Figure 1-5, the phenomena of LFA is 

depicted. An adversary is presented as sending traffic to the bots which further send traffic 

to the links towards the target server. Ultimately, the benign user will be unable to connect 

to the target server. In the start of LFA, the prober of the adversaries utilizes traceroute 

packets to create a link map of the network. Then the adversary calculates the attack-cost 

strategy and ascertains the number of bots that can occupy the links. Then the adversary 

sends TCP like traffic to the decoy servers to occupy the links. Due to the fact that bots 

deploy low-rate traffic, they perform LFA by remaining undetected. This sequence of 

operation results in the complete utilization of the link capacity and legitimate traffic will 

be unable to pass through the link.  



17 | 186 

 

 

Figure 1-5 The setup of LFA on the control channel. 

Due to these challenges, LFA has gained immense attention in the literature since they 

were first introduced by Kang et al. and Studer [4], [73], [4]. A typical category of 

techniques to detect LFA is to employ link inspection for network traffic measurement. 

The idea behind these techniques is to permanently inspect the link to detect any malicious 

activity [2], [20]. LinkScope [16] utilizes both hop-by-hop and end-to-end network 

measurements to identify the occurrence of LFA. Such techniques help in diagnosing and 

localizing the attack links and facilitating the countermeasures against LFA.   

Some available techniques employ link obfuscation to provide fake links to the adversaries 

hence making it hard for the adversaries to locate the target link. [2], [74], [19]. Most of 

these techniques use graph metric-based measures to identify the vulnerable links and 

subsequently, present fake links to the attacker to cater to the severity of the attack on the 

weak links. Even though LFA has gained huge attention from researchers, most of the 

existing literature is unable to distinguish the attack taxonomy on SDN versus traditional 

networks.  

Categories of defense against LFA can be divided into three broad types including, link 

inspection, traffic engineering, and SDN-based approaches.  Link inspection techniques 

rely vastly on the network statistics measurement and then utilizing these measures to 

analyze the occurrence of the attack. Some of these techniques utilize the traceroute packets 

to increase measurement methodology to detect and mitigate the sources of LFA. Traffic 



18 | 186 

 

engineering-based categories rely on multiple attackers and defender interactions in the 

network to expose the LFA sources. Techniques like host dropping or NULL routing can 

be further utilized to mitigate sources of LFA. The third type of categories relies on the 

centralized control mechanisms proposed by SDN to identify and mitigate the malicious 

sources. These techniques stress the controller-based measurements to inspect the flows in 

the network, and then utilize SDN principles to increase the network connectivity and 

alleviate the intensity of LFA.  

SDN has become one of the most vastly adopted network standards and has attracted a lot 

of attention from academia and industry. It is a building block for most of the current 

networks, hence, securing SDN will ensure the security of huge network infrastructure all 

over the world. Control plane is the most vital component of SDN which handles all the 

network operating decisions. Data plane is regarded as the forwarding plane which 

forwards the traffic according to the rules installed by the controller on data plane devices. 

Most of the existing literature have been unable to distinguish LFA on SDN and traditional 

networks [20], [22], [21], [23], [1]. Some authors used SDN testbed for proof of their 

research model, however, there is a lack of research available which specifically address 

LFA in SDN paradigm. So, providing defense against control channel LFA is one of the 

prime concerns to secure current internet.  

A recent solution providing defense against flooding attacks in SDN called FloodDefender 

[75], leverages controller capability to perform network measurements and flow rule 

management characteristics to defend against flooding attacks. It also employs table miss-

oriented techniques and packet filtering to mitigate DoS attacks. Similarly, FloodDefender 

distributes the load to the neighboring switches to protect it from clogging. However, flow 

filtering and table miss-based techniques become invalid in case of LFA which uses low-

rate legitimate traffic to flood the network. FloodShield [76] is also one of the current 

technique to cater DoS, however, they are unable to provide mechanisms against low-rate 

traffic. Moreover, the currently available LFA defense techniques lack in providing 

solutions that work on real-time speed. As the current IT infrastructure has become much 

critical due to the heavy reliance on online resources, providing defense in real-time has 

become a vital challenge. In the same way, as network surveillance techniques are 

becoming critical, there is also a need to provide a solution that provides real-time network 



19 | 186 

 

information to the network administrators. Similarly, the available solutions focus only on 

detection, mitigation or have narrow applicability, despite we stress the need for a holistic 

approach to this problem and offer a comprehensive framework which encompasses 

several top-notch components including, real-time network surveillance, LFA defense at 

line-speed, high accuracy of defense, and less overhead in terms of implementation. We 

propose CyberPulse a security framework to comprehensively secure SDN against LFA. 

We make the first effort to deal with LFA in SDN by proposing a robust solution. 

CyberPulse uses an algorithm-agnostic approach which leverages the facility of training 

ten ML algorithms. We propose two novel mechanisms to stimulate the cooperation 

between ML and SDN environment.  We have built a prototype solution after a thorough 

analysis of LFA taxonomy with reference to SDN. CyberPulse provides a secure SDN 

environment which inspects the network traffic on a real-time basis and mitigates LFA.   

The first mechanism is to separately train the ML classifier on various classification 

algorithms. The basic idea is to utilize ML algorithms to perform the training on any 

provided dataset for flood attacks classification. CyberPulse has the capability to provide 

defense against LFA online speed and provides real-time network status information to the 

intended users. The second is a prototype solution, CyberPulse which performs the 

surveillance operation by collecting real-time network statistics. It continuously performs 

ML classification against the trained ML algorithms. CyberPulse employs algorithms for 

testing from the provided ten algorithms with multiple confidence intervals. If CyberPulse 

detects an LFA, it mitigates it by dropping the malicious flows. This framework is capable 

of providing multiple real-time network status graphs which makes it possible to perform 

the surveillance in a very interactive manner.  

1.7.1 Research Questions 

This study aims at mitigating link flooding attacks against modern networks. The critical 

assertion in doing this is that the current network services are increasingly being provided 

using software. This softwarization brings new challenges of security, reliability, fault-

tolerance, and seamless end-to-end delivery. In this regard it is very crucial to secure 

current networks against different attacks to ensure efficient service provisioning in 

modern networks. We systematically evaluated the concern of different attack possibilities 

and came up with the following research questions in this research. 



20 | 186 

 

RQ1. What are the current vulnerabilities in the current networks due to the 

softwarization of the network services? 

RQ2. How these vulnerabilities can be exploited by the adversaries to attack the current 

networks? 

RQ3. How different are SDNs as compared to the conventional networks, and can the 

established mitigation methodologies still be used effectively in SDNs as well? 

RQ4. What are the major attack types with potential to disrupt SDNs, which are still 

unaddressed in the literature? 

RQ5. What are LFAs what are its characteristics, how they evolved from different 

attacks. 

RQ6. What is the current research progress against LFAs in SDN and what are the 

critical approaches that can be adopted to mitigate LFAs. 

RQ7. What are the current LFA mitigation approaches, and how the available ML 

techniques can be effective in mitigating LFAs at real-time?  

RQ8. What are the future research paradigms that must be considered while addressing 

LFAs in the future networks? 

 

Highlights of some of the important contributions of this research are given below:  

1. Extensive experimentation has been performed to demonstrate the challenge and 

impact of LFA on SDN. We illustrate the LFA related vulnerabilities in SDN and 

demonstrate how the performance of SDN is degraded in the absence of precautionary 

measures and indicate how ultimately LFA can bring down the whole network.  

2. A JSON-based pattern matching engine has been developed which is more expressive 

in network traffic pattern representation and efficient in LFA traffic filtering.  We 

conduct detailed experimentation to demonstrate the effectiveness of the JSON-based 

pattern matching engine. Moreover, we illustrate the need for a real-time RE 

compilation phase and demonstrate how our approach is efficient in real-time traffic 

filtering.    



21 | 186 

 

3. A detailed implementation has been performed where the design of an active traffic 

inspection and defense against LFAs has been demonstrated. It is an interactive solution 

which can provide real-time defense against large-scale LFAs.  

4. We also provide a novel algorithm-agnostic approach of CyberPulse which offers 

extensive control over the defense system. CyberPulse introduces a newer trend in the 

ML-based network security which liberates the system from using only a specific ML 

algorithm or training dataset.  

5. The performance evaluation of CyberPulse has been illustrated using ten state-of-the-

art ML algorithms. We employ a multitude of network traffic settings and demonstrate 

the efficiency by practical experiments that it is efficient, induces low overhead, and 

interactively provide defense against large-scale LFAs.  

 

We initially present a comprehensive literature review of LFA and its mitigation techniques 

in relation to all layers of wired and wireless SDNs. Subsequently, a comparative analysis 

of mitigation techniques is presented with pointers to suitability for each of a given SDN 

type. We categorize the LFA and classify existing countermeasures based on where and 

when they prevent, detect, and respond to the LFA. Similarly, the need for robust pattern-

matching technology to provide a first line of defense against LFA has been provided. 

Finally, we present a security framework that comprehensively mitigates LFA on the 

control channel of SDN. This study has been organized as follows. 

Chapter 1 provides an introduction of the study where the problem of LFA on all SDN 

planes has been extensively discussed. Chapter 2 encompasses the literature on SDN, LFA, 

pattern matching technology, and its impact on LFA defense. Chapter 3 formalizes the 

problem and discusses the components of the defense system against LFA. Chapter 4 

provides a detailed analysis of the DCI technology to defend against any abnormal network 

traffic. Chapter 5 discusses the feasibility to use ML as a defense against LFA, we provide 

ML tools used in the classification of LFA traffic and compare different algorithms. 

Chapter 6 illustrates the experimental evaluation of CyberPulse and discusses detailed 

evaluation results. Similarly, Chapter 7 provides the conclusion and presents current issues 

and future research directions. 



22 | 186 

 

 

In this chapter, we provided the preliminary knowledge on LFA and SDN. Moreover, we 

discuss the architecture of SDN and its components. The additional benefits of SDN due 

to its abstract layer representation has been elaborated. It has been illustrated that how SDN 

can benefit efficient traffic forwarding and control due to its centralized management. 

Usually, the centrally singular controller can have multiple other distributed controllers 

which provide an abstraction of a centralized controller. We discussed different attack 

types on SDN planes, specifically how they can be attacked by LFA.  

We illustrate how the control channel can be attacked by a variety of ways. The motivation 

for this study comes by the analysis of the LFAs where there are a few mitigation schemes 

available that too are developed for the traditional networks. Moreover, the centralized 

control also poses vital security bottleneck where the controller can be disconnected from 

the rest of the network. LFA can congest the link between the control plane and the data 

plane. As the communication in SDN is based on the availability of this link, any attack 

can prove to be a degradation of the performance of the network. In ultimate conditions, it 

can disconnect the control plane from the data plane and bring the whole network down. 

We elaborated the DCI principles and how it can provide a first line of defense against 

LFA. Moreover, we provide different algorithms of the pattern matching technology. In 

the next chapter, we will present the literature review on SDN, LFA, and its variants. We 

will especially focus the discussion on how the control channel can become a bottleneck 

in the presence of LFA. We will explain the vulnerabilities of LFA in SDN planes where 

LFA can pose damaging effects. We will explain the vulnerabilities of SDN in all its 

variants including, Software Defined Mobile Networks (SDMN), Software Defined 

Wireless Networks (SDWN), Software Defined Wireless Mesh Networks (SDWMN), and 

Software Defined Wireless Local Area Networks (SDLAN). Moreover, we explain the 

weaknesses of SDN where LFA can be critical.  

  



23 | 186 

 

2 CHAPTER 2. LITERATURE REVIEW 

Network flooding is essentially a DoS which is devised to bring a network or a service 

down by using a large amount of traffic. These attacks occur when the service is brought 

down in such a way that the legitimate connection requests cannot be completed by the 

network/server. DoS and DDoS are one of the most intimidating threats which the modern 

networks face causing an hourly loss to be around $40K an hour [77]. LFA is as a new type 

of DDoS attack which can degrade or even cut off network connectivity of a target area.  

This attack employs low density legitimate flows to flood the certain links, making the  

malicious flows extremely hard to be distinguished by traditional defense mechanisms 

[78]. In order to devise any mitigation technique, it is important to understand LFA’s 

detailed background, types and variants, and what makes it so important in the context of 

SDN. And for this very reason, this chapter summarizes dispersed background studies and 

puts in a perspective of LFAs, and then discusses the evolution of LFAs and the variability 

of these attacks which give rise to different LFA types. It also presents a discussion around 

what makes LFAs so lethal, especially in connection to unique nature of SDNs. With the 

intention to understand the effectiveness of LFA threats against various SDN deployments, 

we categorize prevailing LFA research  [79] on the basis of the mechanism used for the 

detection and mitigation in the context of SDN. Additionally, we present a taxonomy of 

current research to defend against LFA using performance metrics.  

In order to help answer the presented research questions, after covering SDN preliminaries 

we carry out a detailed discussion of LFA and feasibility of mitigation techniques, and its 

implementation on all the SDN variants. The aim is to help reader understand the problem 

along with its intensity, and then gradually steer to a logical solution. The intent is getting 

research questions 1 to 6 answered, hence the details and multiple comparative analysis 

and the associated insights. 

 

In SDN, the network behavior is controlled centrally by using Application Programming 

Interfaces (API). SDN adds intelligence to the network management by decoupling the 

packet forwarding control structure from the switching hardware [9, 12, 33, 80]. Network 

traffic is forwarded without changing any setting of individual switches or routers by using 



24 | 186 

 

this approach. This novel network architecture consists of three planes namely, data, 

control, and the application plane as depicted in Figure 2-1.  

The data plane also commonly known as the infrastructure layer contains forwarding 

devices, responsible for packet forwarding, the control plane is responsible for the 

configuration of the data plane and the application plane receives customized network 

requests from that are implemented by network programmers in the form of applications 

[81, 82].  LFA can severely affect the SDN architecture by attacking the links between 

infrastructure layer and the control layer and disconnecting it from the rest of the network. 

This attack disconnects the entire infrastructure layer from the SDN. SDN controller's 

intelligent logic resides in the control layer that makes the network infrastructure 

programmable.  This is an area where we see a large level of commercialization whereby 

network vendors are offering customized solutions for the SDN controllers and framework.  

The business logic primarily resides here and is responsible for controlling network 

infrastructure and fetching and maintaining different types of network information like 

state, topology, and statistics.  SDN controllers contain all the necessary logic for network 

management that includes routing, security rule set for firewall, DHCP, clustering, DNS, 

switching and routing. In parallel to three layers, there are two interfaces for 

communication between the different layers, i.e. northbound and southbound interfaces.  

The northbound interface is used for communication with the upper layer and in general, 

it is accomplished through the REST API of SDN controllers. The southbound interface is 

used for communication with the lower layer, known as an infrastructure layer, which 

includes network elements and implemented using OF [12], Netconf [83], and Ovsdb [84], 

etc.  

The application layer is a relatively unexplored domain to develop as many innovative 

applications can still be developed that fetch important network information such as traffic 

statistics, state, and topology. There are several possibilities of applications which can be 

developed including those related to network automation, configuration, and management, 

monitoring, troubleshooting of network policies and security. SDN has revolutionized the 

way traditional networks were managed since it dramatically reduces network operating 

cost by using inexpensive switches that can perform automated network functions. 

Different network configurations can be tested without disrupting the actual network.  



25 | 186 

 

Due to the centralization of the Forwarding Information Base (FIB), optimal routes can be 

identified for seamless traffic flow in the network. SDN can filter the packets as they enter 

the network. Data plane switches can act as firewalls and are able to redirect traffic flows 

to security controls at higher-level layers. In contrast to these advantages, centralized 

control of SDN makes it vulnerable to multiple attack types intended on all layers of SDN 

including flow table overflow attacks [13, 46, 85-93], control channel flooding attacks, link 

fabrication attacks [15], and controller failover attacks. SDN implementation is also a very 

challenging task, as it requires a completely dynamic network infrastructure.     

 

Figure 2-1 Effect of LFA on all SDN planes. 

The consequences of LFA on all the three planes of SDN is presented in Figure 2-1 where 

an adversary is sending LFA traffic on all SDN planes. SDN application plane enables 

configuring the switches to forward customized traffic, integration of networked- 

applications and administering controllers. The application plane contains the applications 

which manage the whole SDN, like mobility management, access control, security 

monitoring, and traffic monitoring. Although the complexity of launching LFA on 

application plane is immensely high as it requires authentication, however, it would have 

a disastrous impact on the network if it gains the privileges and passes the authentication.  

The impact of LFA on SDN application plane is severe because it enables the applications 

to run smoothly, the whole network suffers if it happens to be under attack. LFA on 



26 | 186 

 

application plane invokes a complete or partial disruption of these management modules 

from the whole network. Every module in the application plane performs some specific 

and specialized operation that is critical for the seamless operation of SDN. Flood traffic 

in application plane results in network security applications to crash and hence it is a 

security vulnerability in SDN. LFA can also disrupt the traffic running from application 

plane to the control plane in severe conditions the link can be disconnected. The application 

plane holds crucial network management policies like requesting network functions from 

other planes and building an abstract view of the network by requesting information from 

the controller. LFA has the potential to create severe network management issues by 

attacking this plane. 

 In the control plane, there are distributed controllers which coordinate each other to 

accomplish the network control functionality. The purpose of deploying distributed 

controllers is to set up a backup mechanism, as the controller is the backbone of SDN, the 

secondary controller can take charge in case of failure of the primary controller. LFA can 

disrupt communication between the controllers that work synchronously to provide 

network control functionality. As the controller is the critical component of SDN, it can be 

attacked by DoS which creates hindrance to successful network operation and may cause 

complete network failure in extreme LFA conditions. It is imperative from the SDN design 

that if necessary preventive action is not taken against LFA, the entire network can be 

brought down by the adversaries. Therefore, it is important to bake-in a higher level of 

resiliency. 

The data plane is the core working element in SDN as it forwards the packets towards the 

destinations. The data plane switches, routers, and other hardware components forward 

packets according to the rules provided by the control plane. When a new packet arrives at 

the switch, it inspects the rule to forward the packet, if a switch is unable to find a flow 

rule for a packet it asks the coordinating switches about the packet and forwards it in case 

a rule is available in the flow table. LFA can cut-off the intra switch communication by 

flooding the links between the switches which results in rules updating problem and 

disruption of the communication between coordinating switches. Data plane contains the 

hardware to forward the packets to the desired destinations. It can be attacked in a variety 

of ways using LFA, which incurs devastating effects on SDN. A flow rule is added 



27 | 186 

 

according to the packet destination, LFA can isolate the forwarding devices, which affects 

the rule setup in data plane switches.  

 

One of the most lethal attacks in modern networks is DoS. In this attack, an attacker 

employs TCP/UDP packets to flood the target server and intends to drop the services or a 

target server. These attacks shutdowns individuals services and machines which render 

vital communication and revenue loss.  The types of DoS attacks are as follows. 

• Buffer overflow attacks 

• Ping of death (POD) attacks 

• SYN flood attacks 

• Teardrop attacks 

In the DDoS attacks, multiple attackers from different locations send attack packets to a 

target server. Using distributed taxonomy to attacks a target server brings the target down 

easily as the victim will not be able to service such a huge number of simultaneous service 

requests. The attacker creates an army of compromised botnets to attack a target server. 

Following are the main categories of the DDoS attacks. 

• Volumetric Attacks 

• Fragmentation Attacks 

• TCP-State Exhaustion Attacks 

• Application Layer Attacks 

• Link Flooding Attacks 

LFA as a main point of discussion here, has a prominent characteristic being able to use 

legitimate traffic to flood specific links –making it difficult to be detected and mitigated. 

Therefore, it is important to provide a taxonomy of the LFAs and their effects on different 

variations of SDN.  

 

LFAs were first proposed in 2013 as crossfire attacks. They are different from the 

traditional DDoS attacks in a variety of ways. In a DDoS attack, multiple compromised 

hosts send a huge amount of flows comprising of higher traffic rate to choke a target server. 

Hence, they can be detected by rate limit detection techniques. However, LFA uses low-

rate traffic in a stealthy way which is difficult to be detected by rate limit detection 



28 | 186 

 

mechanisms. On the other hand, the attacker uses legitimate hosts to send these flows 

hence, the detection of LFA portrays a greater challenge. The crossfire attack evolved 

further into different forms. We discuss some of its variations as follows. 

2.3.1 The Crossfire Attack 

The crossfire attack is more sophisticated and stealthier as compared to its variants such as 

coremelt attack [79] and is adaptable to route shifts and avoids triggering alarms for 

potential attacks by changing the target links after a specified time interval set by the 

attacker. ISP collaboration is an essential requirement for any effective defense using 

modern security tools. Therefore, all these factors need to be considered when developing 

a mitigation solution. 

Furthermore, crossfire attack is the most critical LFA due to its low detection rate and 

indirect nature. This attack is carried out using bots as demonstrated in Figure 2-2, which 

send low-rate legitimate traffic to the selected decoy servers that are not the target servers 

but are situated on the path of the target. Sending low-rate traffic to decoy servers chokes 

the links connecting the target server with the rest of the network. The sources of the 

crossfire attack are undetectable by any targeted servers since they no longer receive any 

messages or flood traffic [3].  

 

 

Figure 2-2 The crossfire attacks (the figure at [3] is expanded and redrawn). 

It is very difficult to differentiate between legitimate users and malicious bots as both use 

valid IP addresses [3, 94]. The adversary starts by constructing the network profile by 

sending traceroute packets to identify the target server and critical links to attack. It then 

selects the decoy servers and computes the bot-decoy pairs that are sufficient to perform 

the flooding. Finally, it sends low-rate legitimate flows from bots to decoys, hence, all 



29 | 186 

 

paths to the target experience flood traffic, as a result, the legitimate traffic is blocked. 

Crossfire has the potential to attack modern SDN in a variety of ways using the 

characteristics of being indirect and employing low rate traffic. One such scenario can be 

control channel LFA.  

Table 2-1 illustrates the severity of crossfire based on its low detection rate as compared to 

other variants. The crossfire attack can disable network links by flooding them with attack 

traffic.  

Table 2-1 Comparison of different LFA techniques. 

Design Goal Coremelt Attack Spamhaus Attack Crossfire Attack 

Independent bot distribution X Not a goal √ 

Indistinguishable from legitimate flows √ X √ 

Resilience on needed flows only √ X X 

Attack persistence Low Low High 

Use of specialized bots X √ √ 

Scalable for N Servers X X √ 

 

Crossfire attack uses legitimate IP traffic instead of using spoofed IP addresses which can 

easily be distinguished. It then sends legitimate packets to publicly accessible servers 

(decoy servers). So, these packets keep on flowing without any interruption, flooding the 

target link which is situated among these servers. Lastly, it transmits low bandwidth flows 

from each bot individually, these legitimate flows then cumulatively flood certain links in 

the network without being detected.  

The details of Spamhaus and Coremelt attacks have intentionally not given here in the 

interest of space and to keep the focus. Interested readers can refer to [3, 4, 5, 95, 101].  

 

As established in the sections above, an emerging threat targeting internet infrastructure –

LFA has gained a lot of attention in the literature during past several years [51], [96], [97, 

98], [99], [88], [100]; but mostly in the context of traditional networks. LFA was initially 

proposed by Kang et al. called with the name of crossfire attack which has the ability to 

disconnect target links without being detected [3, 73]. We broadly categorize LFA 

techniques into three groups: 1) traffic engineering-based, 2) links inspection-based, and 

3) SDN-based approaches.  



30 | 186 

 

Traffic engineering have broadly been adopted by researchers to mitigate LFA. In such a 

technique, Takayuki et al. [22] employ increase in traceroute packets volume-based 

measurement to detect LFA. Christos et al. [24] present a relational algebra-based 

technique which employs the attacker-defender interaction to attack and balance the 

network traffic. This continuous interaction exposes the attacker’s identity and can be 

easily eliminated. Dimitrios et al. state that the defender reroutes the traffic in case of an 

attack, the defender recalculates the critical paths and send attack traffic again. During the 

multiple interactions between attacker and defender, the malicious sources are identified 

and can be mitigated. Virtual networks-based dynamic resource allocation strategy has 

been proposed by [37], however, the limitation with this technique is that it relies on the 

security of the virtual layer, which becomes vulnerable in case if the layer is exposed.  

Link inspection techniques employ target link surveillance to inspect any malicious activity 

on the target link [102]. The link obfuscation technique proposed by Wang et al. [103] 

presents fake links to the adversaries which makes it harder for them to create a true link 

map of the network. LinkScope [16] inspects network links on hop-by-hop and end-to-end 

basis and reports any malicious activity observed on the link. Min et al. [2] propose SPIFFY 

technique which employs an increase in network bandwidth on a temporary basis and 

measures flow statistics before and after the bandwidth expansion. The legitimate flows 

tend to adapt to the bandwidth expansion, alternatively, malicious flows will result in 

ending up by consuming all their allocated bandwidth and hence will be easily detected. 

SDN HoneyNet proposed in [19] performs the graph-based statistics measurement on the 

network and identify the links with the lowest betweenness centrality that are prone to 

become bottlenecks during LFA. SDN HoneyNet [19] then provides fake link maps to the 

adversaries that will be unable to ascertain the critical links on the network. Collaborative 

Defense (CoDef) [20] portrays the concept of AS collaboration where the links that are not 

under attack can collaborate and the legitimate traffic can be rerouted towards those links 

for successful network operation.  

Some researchers utilized SDN-based techniques to observe all the switches and their 

corresponding flows to avoid LFA. Peng et al. [55] propose a flow table inspection 

technique which inspects the flow tables when the resource utilization ratio of flow is not 

normal and employs bloom filtering technique to detect the adversaries. Incremental SDN 



31 | 186 

 

deployment technique upgrades the routers to SDN switches to increase the network 

connectivity and employs traffic engineering principles to balance the network traffic [25]. 

SDN-based traffic maneuvering technique obfuscates the links making it difficult for the 

adversary to create true link map, hence avoiding the attack [26]. Xiaobao et al. [17] 

propose a cost incentive approach for the source and destination AS domain in order to 

cooperate to alleviate LFA. The source and destination of LFA remain in different AS 

domains, hence, the initiating AS domain have no idea of how its traffic is affecting the 

destination AS. So, a cooperation between the two AS is required to effectively detect and 

mitigate LFA, however for the source AS to cooperate with destination AS, an incentivized 

mechanism can be provided to encourage cooperation.  

The above-mentioned techniques suffer from low detection accuracy, adaptability 

problems, leakage report, and pose more overhead to the network. ML-based solutions 

have the capability to learn from the historical flooding behaviors and detect the 

characteristics of flooding flows. As ML-based techniques have strong learning ability and 

defense efficiency, these techniques can be applied for LFA detection and defense. ML 

techniques have been vastly used by researchers for network security [104], [105], [106], 

[107]. Aapo et al. [108] propose an ML-based technique which “combines normal traffic 

learning, blacklists integration, and elastic capacity invocation to provide effective load 

control, filtering, and service elasticity during an attack”. The external blacklists are 

obtained from existing IDS. Fairuz et al. [109] propose an anomaly detection-based 

approach to evaluating malware detection with ML classifiers.  

They used two publicly available datasets which include, Malgenome and a self-generated 

dataset labeled by the experts. They evaluated their classifier using six ML algorithms 

including Bayes, Random Forest (RF), Multi-Layer Perception (MLP), J48, and K-nearest 

Neighbor (KNN). Their results illustrate that Bayes and RF performed well as compared 

to MLP. In [110] authors “propose a DoS attack detection system on the source side in 

Cloud, based on ML techniques. This system leverages statistical information from both 

the cloud server’s hypervisor and the Virtual Machines (VM) to prevent network packages 

from being sent out to the network”.  

Authors considered multiple attack scenarios for evaluation including SSH [111] brute-

force attacks [112], ICMP flooding attacks [113], DNS reflection attacks [114], and TCP 



32 | 186 

 

SYN attacks [99]. A model is trained using the training dataset and ML module is utilized 

to update the pre-trained module [115]. They used multiple classifiers for evaluation 

including Logistic Regression (LR), SVM linear kernel, SVM, Radial Basis Function 

(RBF) Kernel, SVM Poly Kernel, Decision Tree (DT), Naïve Bayes (NB), RF, K-means 

and Gaussian Expectation Maximization. Flow-based IDS for SDN was proposed in [116]. 

In this technique, an IDS “periodically gathers statistical information about flows from 

SDN” OF-switches [12] and perform the analysis and detects the intruders by utilizing the 

collected traffic features. They perform the classification using SVM, DT, Bagged 

Classifier, RF and KNN. In [76], authors propose a deep learning-based approach for DoS 

defense.  

LFA if successful could potentially take entire countries off the Internet. Particularly, LFA: 

i) uses legitimate rather than spoofed source IP addresses to send traffic; these addresses 

are much harder to filter, ii) sends legitimate packets to publicly accessible servers, and iii) 

transmits low-bandwidth flows from each bot individually; these flows together then bring 

down certain links. In the next section we discuss the impact of LFA on different SDN 

variants. 

The effect of LFA and the necessary mitigation strategies in traditional networks are 

different from SDNs. Therefore, it is important to study different variants of SDN and cross 

compare the features that make SDN unique and vulnerable for attacks. However, in the 

interest of the allowed space, these details are not presented here, and the readers are 

advised to refers to [117-128, 130,311] for in-depth understanding of software defined 

wireless networks, and [132-143] for software defined mobile networks. Research at [144-

152] can be consulted for software-defined Wireless Mesh Networks and [129, 153-156] 

can be referred to for software defined wireless local area networks study. 

 

Majority of the earlier work [50] on SDN defense mitigates attacks that in directly cause a 

DoS [157, 161, 162], it includes threats like flow table overflow [157-159] and bandwidth 

consumption attacks [92, 157, 160]. For example, in [163] authors propose a framework 

for mitigation of control plane saturation attacks. [157] devises a polling strategy from the 

data plane to control plane for analyzing the control flows that come across for new 



33 | 186 

 

communications to defend against control plane saturation attacks. A proactive flow rule 

analyzer and packet migration mechanism has been proposed to defend against control 

plane saturation attacks in [164]. In [36] authors present a list of comprehensive 

vulnerabilities in SDN where an attacker can potentially gain access to SDN and attack the 

network infrastructure.  

From all the above discussion it is pertinent to say that previous work has been performed 

to secure, specifically data plane or the control plane leaving behind the most important 

link capable of driving the communication of the whole network. In case of LFA, the link 

between controllers to data plane can become a bottleneck for the successful operation of 

the network.  Any disconnection in this link can block the information from passing 

between the two planes, resulting in a complete failure of the network. In this context, our 

study has great importance in mitigating attacks on the control channel to secure modern 

network infrastructure. This work directly contributes to overcoming the weakness of SDN 

towards vulnerablility to LFAs.  

Most of the global companies are transferring their infrastructure to the cloud. According 

to the Gartner survey [165] Amazon, Microsoft, and Google have virtualized 100% of their 

global computing facilities. This demonstrates that more and more companies are 

transferring their infrastructure from hardware systems to software [166]. SDN is 

becoming more and more prevalent and replacing traditional networking schemes. 

However, many threat vectors have been identified that can impact SDN architecture [118, 

167-171]. SDN-based networks provide the ease to adapt to changing business 

requirements. Since SDN is a relatively recent concept, new threat vulnerabilities are being 

identified with the time.  

We identify a new threat that can flood the link on the control channel of SDN. If this 

happens in a network, the control channel link can get chocked, making the controller 

irresponsive and not able to manage the traffic at all. The controller is the brain in SDN, it 

installs forwarding rules in the switches to control the traffic forwarding. In an instance of 

a successful attack on control channel link, the rule installation procedure cannot be 

performed and the entire network would go in an undesired state. Meaning, the services 

provided over the network would come to a stop, affecting the network services on the 

cloud and causing the cloud infrastructure to become totally unavailable.  



34 | 186 

 

 

After an elaborated discussion on LFA and its impact on SDN, we summarize the following 

weaknesses in SDN. 

• The control traffic contains the most vital information for SDN because it performs 

all the critical tasks of flow rules installation, network configuration, and optimum 

path selection. The prime concern of an attacker would be to disconnect the 

controller path links to make it ineffective.   

• Data plane is the main traffic maneuvering unit which is dependent on the controller 

communication where it derives all the information through the hardware devices, 

attacking data plane devices result in disruption of the services of the whole 

network. 

• The control channel is a critical resource because all the control information passes 

through this link, and this is only link where any congestion invokes traffic delays. 

• The adversaries can take control of this link by implying hard to detect LFA and 

congest the link in a way that it can become irresponsive resulting in disconnection 

of the whole network.  

• The control channel has the tendency to be chocked by flood traffic hence, there 

must be a link-scanning mechanism that can check whether the congestion is caused 

by the legitimate traffic or due to the adversarial flows. 

• Since the control channel doesn’t have any flood detection and mitigation strategy, 

there is a strong need to imply link congestion detection and mitigation mechanism 

as this link is crucial for the whole network as well as a favorite target for 

adversaries.  

 

The control channel in all the network types including software defined wireless networks 

can have serious challenges if attacked by LFA. The control channel communication can 

stop the interaction between the network devices and the control plane which will 

ultimately bring the whole network down. So, it can be derived that all the SDN variants 

are equally able to be attacked by LFA. In Figure 2-3 the control channel is presented that 

is being attacked by LFA, this can be disconnected resulting in communication failure of 

control plane with network devices. We discuss the prevailing LFA mitigation techniques. 



35 | 186 

 

 

Figure 2-3 Controller communicating data plane devices. 

 

In this section, we perform an in-depth analysis of the available LFA mitigation techniques. 

Existing work in this domain is more towards mitigating LFAs in traditional networks, 

however, a summary of the techniques may be useful to devise a solution for SDN. And 

some works which do site SDN in LFA mitigation work, in fact use SDN as a testbed to 

demonstrate the effectiveness of their techniques formulated for traditional networks. We 

compare existing techniques and categorize LFA mitigation according to the type of 

mitigation method used. Literature review presents three broad categories of LFA 

mitigation techniques are listed below. 

• Traffic engineering principles-based mitigation techniques 

• SDN principles-based approaches 

• Link obfuscation-based techniques 

2.7.1 Traffic Engineering Principles-based Approaches 

Takayuki et al. [22] propose a proactive strategy to mitigate LFAs that make use of 

traceroute packets. This technique is based on the fact that traceroute packets are increased 

in various regions of the network when the network is under LFA. This technique argues 

that link congestion is a postcursor of the behavior of increase of traceroute packets in a 

link. In [21] Christos et al. propose a reactive traffic engineering method based on relational 

algebra principles to mitigate LFAs. This technique is based on the inherent network 

property of defending against flooding attacks. Whenever the flooding attack takes place, 

the defender reroutes the traffic, hence, multiple attacker-defender interactions expose the 

C
o

n
tro

l 

P
la

n
e

D
a
ta

 

P
la

n
e

Control 

Info

Control Plane to Data Plane Link
LFA



36 | 186 

 

identity of the sources that are consistently participating in flooding events. The sources 

that change their destination selection to adapt to the re-routing are particularly suspicious.  

Dimitrios et al. propose a reactive traffic engineering-based method to mitigate LFAs [1]. 

Rerouting is performed when the defender realizes that there is an attack, the attacker 

recalculates the traffic path and identifies the critical links again. This work is based on 

destination-based routing and the variable path which is effective against LFAs.  

The limitation of this technique is that the detection speed is widely dependent on the 

routing rules modification that can cause legitimate traffic delays. Aapo et al. propose a 

method that combines normal traffic learning, external blacklist information, and elastic 

capacity invocation in order to provide effective load control, filtering, and service 

elasticity during an attack [108]. The blacklists come from any IDS or any previous data 

repository. Fida et al. present an agile virtualized infrastructure method against LFA [54]. 

This technique employs Virtualize Networks (VN) to dynamically reallocating network 

resources using VN placement and offers constant VN migration to new resources.  

2.7.2 SDN Principle-based Approaches 

Wang et al. [25] propose Woodpecker which makes use of incremental SDN deployment 

to mitigate LFAs. Their technique is based on upgrading routers to SDN switches, which 

increases the network connectivity. They also use network-probing approach to locating 

the congested links. In the end, Woodpecker makes use of centralized traffic engineering 

to balance the traffic across the network and eliminate the bottlenecks that are caused by 

the adversary during the attack.  

Previous techniques do extra header statistics, which increase costs, however, Peng et al. 

use built-in SDN functionality of flow table inspection [55]. They propose Bloom filter 

which works in coordination with a collector and detector module. When the utilization 

ratio of a link is not normal the flow tables are scanned, and abnormal flows are extracted 

by the parameters of statistical features. The collector module scans flow tables from the 

SDN network and collects traffic flows by IP header inspection. The detector module 

extracts IP features from every packet that are important to link attack detection using the 

Bloom filter.  Abdullah et al propose an SDN based maneuvering technique to defend 

against LFAs [26]. During the link map construction phase, the links are obfuscated hence, 

it is difficult for the attacker to launch the attack. Moreover, it is hard to always form the 



37 | 186 

 

optimal path between links, hence, it increases traffic delays. In [172] a survey has been 

performed on mitigating flooding attacks using SDN principles. Figure 2-4 a taxonomy of 

LFA mitigation techniques is provided along with their basic working principles.  

 

 

Figure 2-4 Grouping of LFA mitigation techniques. 

2.7.3 Link Inspection-baed Approaches 

Qian et al. propose active link obfuscation method which is based on providing fake link 

map to the adversaries and prohibiting the adversary to accurately analyze the network and 

create link map to identify potential links [52]. The link map construction phase is one of 

the most important phases in LFAs, hence, if an adversary is forced to construct a fake link 

map, then it is challenging for the adversary to locate the targets servers and maintain the 

attack. The experiments have been performed on the SDN testbed where SVM algorithms 

are used to distinguish legitimate users from adversaries. The unique flow features of the 

adversary are extracted from the link map construction phase as well as link flooding phase 



38 | 186 

 

where SVM is applied to differentiate legitimate users and the adversaries. The limitation 

of this technique is that SVM is dependent on the volume of the training data where it 

suffers from low accuracy when the training instances are not enough. 

Lei et al. propose LinkScope, which “employs both end-to-end and hop-by-hop network 

measurement to capture abnormal path performance degradation for detecting LFAs” [16]. 

LinkScope learns the path metrics of normal traffic, and then classification is performed 

between the normal and flooding flows. An added advantage of using this technique is that 

LinkScope can be deployed on one end of the path to perform the measurement instead of 

installing it on both sides of the link. In this attack, links are carefully chosen where the 

links with high flow density are selected and bots are used to send low-rate traffic to these 

servers to congest those links.  

Soo et al. propose CoDef which proposes the cooperation among the links that are not 

attacked by the adversaries during the LFAs to collaborate and legitimate traffic is rerouted 

to these links for successful network operation [20]. An AS sends reroute requests to all 

ASs in the network to create a bypass path around the target area to enforce the connectivity 

in the network.  

SPIFFY  relies on the principle of temporary bandwidth expansion and rate change 

measurement to detect adversaries from legitimate traffic [2]. In this technique, the 

bandwidth of the network is increased for a specific time. Subsequently, a network 

measurement is performed before and after the bandwidth expansion. The legitimate traffic 

expands the bandwidth when there is available bandwidth to be used, but the adversaries 

are not able to increase the bandwidth so, they can be easily detected. 

Gkounis et al.[1] propose LFAs in networks and devised a centralized traffic engineering 

method for limiting the impact of LFAs. The limitation of this technique is that the attack 

prevention is reactive, it detects the attacks after LFA occurs and reactive measures are 

taken subsequently where link flooding should have already performed some damage. 

Wang et al. [52]  propose active link obfuscation method against LFAs where a fake link 

map is presented to the adversaries which causes the adversaries to deviate from the actual 

target. In this technique, SVMs are also employed for the attack traffic classification 

however SVM is more accurate when there is a large amount of training data. If the training 

data is short than the classification process is not accurate enough.  



39 | 186 

 

A temporary bandwidth expansion method is utilized where the bandwidth of the network 

is temporarily increased and in response to bandwidth expansion, the legitimate users will 

also increase their bandwidth. However, the bots will not be able to cope-up with the 

bandwidth expansion for long and resulting in consuming all their allocated bandwidth and 

finally being detected [2]. The limitation of this technique is that if the legitimate users are 

also not able to increase their bandwidth during bandwidth expansion phase than there will 

be confusion in differentiating legitimate users and the attackers. 

2.7.4 Comparative Analysis of LFA Mitigation Techniques 

A huge amount of existing work is present in the field of such attacks on SDNs which are 

also applicable to traditional networks. However, the mitigation of LFAs in SDN has not 

yet been explored adequately. We present the crux of the available literature in the field of 

LFA and provide a meaningful and objective comparison of different LFA mitigation 

techniques. 

Table 2-2 categorizes SDN mitigation techniques based on when the actual mitigation 

happens. In reactive solutions mitigation is performed after the occurrence of an attack. In 

a proactive solution, network traffic is handled in a way that the network is always under 

surveillance which makes it challenging for the adversary to attack. A cost-benefit analysis 

must be performed before selecting a potential strategy against the LFAs. However, a pro-

active solution seems to be a logical choice for mitigating LFAs in SDN.  

Table 2-3 summarizes the available literature on LFA mitigation. The first column 

represents the name of the solution, whereas the second represents a brief summary of the 

solution. Similarly, column three discusses the limitation of the current technique and the 

last column represents the year in which the research was published –all sorted in 

chronological order. It can be easily observed that most of the work on LFA started coming 

into picture from 2015 onwards. Also, the presented techniques do not cater for the unique 

features of SDN and are instead applicable to traditional networks only. Some techniques 

with SDN acronym in there, use SDN’s programmability feature to demonstrate the 

effectiveness of their techniques originally developed for traditional networks. Figure 2-5 

further explains this fact by providing the classification of LFA defense on the basis of 

network type used.  It can be observed that in most of the recent research works SDN-based 

testbeds are used for evaluation purpose.  



40 | 186 

 

This all illustrates the importance of SDN in modern network security research. SDN has 

been used in demonstrating the effectiveness of various LFA mitigation techniques, 

however, only a few authors have proposed solutions against LFAs in SDN in general, and 

none is targeting towards mitigating control channel LFAs.  

 

 

Figure 2-5 Classification of LFA mitigation techniques. 

 

Table 2-2 Classification of LFA solutions based on the response time. 

Solution Title Solution Type 

CoDef [20] 

Reactive 

LinkScope [16] 

SDN HoneyNet [19] 

Interplay of LFA and Traffic Engineering [1] 

Incremental SDN Deployment [25] 

Bloom Filter in SDN [55] 

SPIFFY [2] 

Framework for Mitigating LFA [21] 

Flooding DDoS Mitigation [108] 

Proactive 
Active Link Obfuscation Method [18] 

Agile Virtualized Infrastructure [54] 

Traceroute Packets Flow [22] 

SDN approach for Moving Target Defense Attacks [26] Proactive / Reactive 

 

Table 2-4 demonstrates the classification of the available literature on type of mitigation 

technique. Most of the work is around traffic rerouting, and the possibility of LFAs on 

SDN’s control channel is yet unexplored. Traditional techniques can not be used as-is to 



41 | 186 

 

aid mitigating LFAs in SDN and therefore, modern ways need to be explored in order to 

address SDN specific challenges, and the benefits available through its unique features 

such as programmability, ease of use, reconfigurability and extensibility.   

After a thorough literature review of LFA in connection to SDN and categorizing the 

research into groups for objective companions, we have reached to a conclusion that the 

previous works are based on traffic engineering and link inspection aapproaches and 

mostly based on a reactive solution.  Moreover, a proactive mitigation solution for LFA 

resolution on SDN’s control channel is yet to be explored.



42 | 186 

 

Table 2-3 Comparative Analysis of Link flood mitigation techniques. 

Solution Title Main Idea Limitation Published Year 

CoDef [20] 

Autonomous domains that are not affected by bots collaborate during 

LFA and reroute legitimate traffic in response to requests from 

congested routers 

This solution becomes invalid if all autonomous 

domains are attacked by the adversary at the same 

time.  

2013 

LinkScope [16] 
It is based on learning path metrics of normal flows and on the basis of 

that detecting abnormal traffic. 
Controlling false positive rate is a problem. 2014 

Agile Virtualized 

Infrastructure 

[54] 

Proactively applying, Virtual networks (VNs) to dynamically 

reallocate network resources using VN placement. 

If the virtual layer is revealed, the adversary can 

bypass the virtual network to directly flood the 

target. 

2015 

Traceroute 

Packets Flow 

[22] 

Traceroute packets increase in regions when there occurs an LFA. 
It is difficult to classify traceroute commands 

from legitimate users and attackers. 
2015 

Flooding DDoS 

Mitigation [108] 

 It integrates normal traffic learning, external blacklist information, 

and elastic capacity invocation for detection and mitigation. 

The source IP address can be spoofed so there can 

be a partial overlap between the normal user 

clusters and the attacker clusters. 

2015 

Incremental SDN 

Deployment [25] 

LFA detection using centralized traffic engineering based on SDN 

upgraded nodes. 
It detects link flooding after the attack occurs. 2016 

Bloom 

Filter in SDN 

[55] 

Collector and detector module are used, and flow tables are scanned 

for abnormal utilization ratio. 

No extra packet header statistics needs to be performed. 

Controlling false positive rate is a problem. 2016 

SPIFFY [2] 

Temporarily increases the bandwidth of the network, legitimate users 

adopt this increase, but bots are unable to increase throughput after 

expansion, because of depletion of bots and so get detected. 

If the legitimate users are unable to increase 

traffic flow in the temporary bandwidth expansion 

phase. The false-positive rate is affected 

2016 

SDN approach 

for Moving 

Target Defense 

Attacks [26] 

Obfuscating the links at attacker link map creation phase using SDN-

based maneuvering techniques. 

Delay in arriving packets from source to 

destination, routes are changed, new these paths 

may not be the optimal paths. 

2016 

Framework for 

Mitigating LFA 

[21] 

Traffic engineering-based solution using attacker-defender interaction. 

Bots are forced to adopt a suspicious behavior to remain effective, 

revealing their presence. 

Multiple attackers and defender interactions are 

required to reveal the identity of the attacker. 

So, it requires an initial set up time for identifying 

the attackers. 

2016 



43 | 186 

 

Interplay of LFA 

and Traffic 

Engineering [1] 

Defender module perform rerouting it sniffs an attack, the attacker 

updates the link map and calculate critical links again. 

The detection speed is dependent on the routing 

rules modification that can cause legitimate traffic 

delays 

2016 

Active Link 

Obfuscation 

Method [18] 

Linkbait actively mitigates LFA by providing a fake link map to 

adversaries 
It accurately classifies when training data is large. 2017 

SDN HoneyNet 

[19] 

It finds potential links by computing betweenness centrality, 

bandwidth rate, and minimum interaction set and deploys HoneyNet 

topology to provide a fake map of the network to adversaries. 

Accurately identifying the bottlenecks is difficult, 

so weights need to be associated with the 

parameters to assess. 

2017 

Protecting 

Internet Against 

LFA [17] 

ISP cooperation and traffic rerouting by incentivized routing strategy 

where links with low transmission are bypassed. 

This strategy works regardless of LFA occurs or 

not, which creates overhead on the network by 

rerouting traffic to other routes increasing the 

source to destination time. 

2018 

 



44 | 186 

 

Table 2-4 Categorization of LFA mitigation research based on different features. 

# Research Paper Title LFA Mitigation Technique Category 

1. Incremental SDN Deployment 
“Updating M nodes to maximize the network connectivity by monitoring the flow rules 

updating” 
Link Utilization 

2. Active Link Obfuscation 
“By providing the faked link map to adversaries, Linkbait can actively mitigate LFA 

Linkbait intends to hide target links and use bait inks to fake target links.” 
Link Inspection 

3. 
A Novel Framework for 

Modeling and Mitigating LFA 

“After the flood is known, the defender balances the load by re-routing traffic destined to 

different destinations. Sources that change their destination selection to adapt to re-routing are 

particularly suspicious” 

Traffic 

Rerouting 

4. 
Interplay of LFA and Traffic 

Engineering 

“The attacker monitors the network routes and reacts to routing changes performed by the 

defender.  Bots will then change their decoy server selection in case the re-routing has diverted 

their load from the critical link(s), repeating the cycle, thus revealing their identity” 

Traffic 

Rerouting 

5. CoDef 

Providing bypass links by AS rerouting around flood area. “An adversary has to make an 

invalid choice: Conform to rerouting and give up attack persistence at the targeted link Not 

conform and have its flows discovered and bandwidth-limited.” 

Traffic 

Rerouting 

6. 
Towards Defeating the 

Crossfire Attack using SDN 

Balances traffic load by rerouting traffic destined to different destinations, without knowing the 

attacker’s classification. Records sources observed in DoS’ed links to detect suspicious 

recurring sources. 

Traffic 

Rerouting 

7. SPIFFY 
Increasing the bandwidth of the link and then taking back to the original. Bandwidth before and 

after the expansion period is calculated bots will not be able to maintain the bandwidth 

Bandwidth 

Expansion 

8. SDN HoneyNet Provide a fake link to the attacker by employing graph metrics statistics Fake link 

9. LinkScope  “Reactive solution based on learning path metrics of normal and detecting abnormal traffic” Link Inspection 

10. 
Agile Virtualized 

Infrastructure 

Proactively applying, “Virtual networks (VNs) to dynamically reallocate network resources 

using VN placement.” 
VN Placement. 

11. Traceroute Packets Flow “A number of traceroute packets increases in regions when there occurs an LFA.” 
Traffic 

Rerouting 

12. 
Protecting Internet Against 

LFA 
Cooperation among sources and destination autonomous domains 

Traffic 

engineering 

 

 

 



45 | 186 

 

Table 2-5  Taxonomy of LFA mitigation techniques based on performance metrics. 

Technique Accuracy 
Detection 

Time 
Solution Type Approach Complexity Method Scalability Evaluation 

CoDef [20] High Low Reactive Traditional High Traceroute High Simulation 

LinkScope [16] High Low Reactive 
Link 

Inspection 
Low 

Link 

Inspection 
High Real testbed 

Agile Virtualized [54] High Medium Proactive Traditional Low 
VN 

placement 
High Real testbed 

Traceroute Packets 

Flow [22] 
Low Low Proactive Traceroute Low Traceroute Low Simulation 

Flooding DDoS 

mitigation  [108] 
Medium High Proactive ML High SDN-based High Real testbed 

Incremental SDN 

Deployment [25] 
Low High Reactive Woodpecker High SDN-based Low Simulation 

Bloom Filter in SDN 

[55] 
Low High Reactive Bloom filter High SDN-based Low Simulation 

SPIFFY [2] Medium High Reactive Traditional High 
Link 

Inspection 
Medium Simulation 

SDN Approach for 

Moving Target Defense 

[26] 

Low High Proactive/Reactive SDN-based Medium SDN-based Low Simulation 

Framework for 

Mitigating LFA [21] 
Medium High Reactive Traditional low 

Traffic 

Rerouting 
Medium Simulation 

The interplay of LFA 

and Traditional [1] 
Medium High Reactive Traditional Medium 

Traffic 

Rerouting 
Medium Simulation 

Active Link 

Obfuscation [18] 
High Low Proactive 

Link 

obfuscation 
Low 

Link 

inspection 
High Testbed/Simulations 

SDN HoneyNet [19] Low High Reactive HoneyNet Low 
Link 

Inspection 
Low Simulation 

Protecting Internet 

Infrastructure Against 

LFA [17] 

High Medium Proactive Traditional Low 
Traffic 

Engineering 
High Real testbed 



46 | 186 

 

 

In this section, we discuss the link flood mitigation approaches which can be used to 

mitigate the LFA. There are mainly three approaches to mitigate flood namely Sinkholing, 

Scrubbing, and Null Routing. In the interest of space and to keep the reader focused only 

very brief info Sinkholing and Scrubbing will be provided, as the detailed literature can be 

found at [173, 174, 236]. 

2.8.1 Sinkholing 

Sinkholing manipulates the data flow in a network it has been used to redirect traffic from 

its original destination towards a host/server of choosing. This technique can also be used 

by the adversaries to divert legitimate traffic from the intended destinations. However, the 

security operators use this technique to divert the attack traffic towards the chosen 

destinations to react to attacks.  A simple example to explain Sinkholing is when we type 

a web address on the browser, it takes you to the destination website where the DNS is 

responsible for taking care of the destination IP. However, if the domain address is 

sinkholed then the browser will take you to the sinkholed address. Sinkholes rely mostly 

on the DNS to forward the traffic to a carefully chosen sinkhole. This process involves the 

monitoring of the domain name where the network security operators usually try to setup 

automated mechanisms to control a malicious domain name at the time of the expiry of the 

registry. A customized sinkhole can be created that has the ability to forward the traffic 

from the original IP address to a sinkhole address using router modification or firewall 

settings. Sinkholes are widely being used by the security operators for day-to-day 

surveillance activities.  

As botnet IP addresses may also be used by real users, Sinkholing is prone to false 

positives.  

2.8.2 Scrubbing 

This technique is “an improvement on the arbitrary Sinkholing technique, scrubbing routes 

all ingress traffic through a security service.  Flooding packets are identified based on their 

header content, size, type, point of origin, etc.  The challenge is to perform scrubbing at  

line rate without causing lag or otherwise impacting legitimate users” [236]. Figure 2-10 

illustrates the underlying mechanism of the scrubbing technique for flood attack mitigating. 



47 | 186 

 

 

Figure 2-6 The mechanism of scrubbing the flood traffic. 

Scrubbing is understood as an important unit to conduct traffic analysis, cleanse data and 

remove certain traffic. Scrubbing techniques are mainly used by cloud service providers or 

ISPs which tries to off-ramp the data for cleansing purposes. The traffic is redirected 

towards the scrubbing centers where the attack mitigation system eliminates the attack and 

forwards the attack traffic back to the data centers.  

The scrubbing centers should be equipped with handling high volumes of flood at the 

application and the network layer. Moreover, it also involves more human intervention and 

blocks more good traffic instead of the attack traffic. An alternative to Scrubbing is Null 

routing. 

2.8.3 Null routing  

NULL routing or blackholing sends selected traffic to an invalid address. On defining a 

valid route, network then starts sending traffic to specific IP addresses through it. However, 

a NULL route tells the system to drop the traffic destined to a specific IP. This implies that 

any TCP server will not be able to send an SYN/ACK reply to the sender. And UDP traffic 

will be received, however, no reply would be generated to the requesting IP. 



48 | 186 

 

 NULL routing could cause a higher rate of false-positives by disposing-off some 

legitimate packets as well.   

 

Figure 2-7 The working principle of NULL routing. 

Figure 2-7 describes the working principle of the NULL routing. It can be assumed as an 

IP address which does not have a destination. Hence, any traffic sent to that IP address will 

be discarded. It is an efficient technique as when the data moves among the routers, they 

need to have the destination address towards which they route the traffic. This is performed 

by broadcasting the status among the network routers about which IP address they are 

processing and where should they route the packets that are aimed towards them.  

Whenever an IP address has been NULL routed then it is broadcasted as having no 

destination in the network so any data forwarded to this address will not be able to make 

up to the destination and will be discarded. Hence, the network will not have to process 

this data and will be safeguarded from the flood traffic. It is an essential technique that is 

used for flooding attack defense that has no other ways to block the malicious flows. When 

the flooding attack occurs, the target infrastructure may not be the only entity that will be 

affected by the attack, other hosts using the same infrastructure will also face the impact of 

the attack. Where this attack will result in a high risk to the server and the indirect host. 

The defense mechanisms insert a NULL route of the victim into the network and start 

blocking the malicious flows to safeguard the network. However, this technique brings a 

drawback where it alleviates all the malicious traffic but also eliminates the good traffic 

too. Hence, this technique is catastrophic for the users whose business relies on the 24/7 

availability of the internet. If the defense mechanism routes all the traffic to the NULL 



49 | 186 

 

route, then it badly impacts the legitimate traffic. Moreover, most of the flooding attacks 

are spoofed hence, applying NULL routing on the source is almost impossible.  

Furthermore, NULL routing sometimes becomes more damaging for example an ISP with 

the residential customers need to NULL route into their infrastructure which invokes 

service disruption of the hundreds of legitimate customers. NULL routes are usually 

configured as using a special route flag; however, they can also be used by routing the 

traffic to an illegal address such as 0.0.0.0. 

NULL routing is easy to implement than the traditional firewalls since it is available on the 

routers moreover it does not pose high overhead on the network performance. Due to the 

availability of high-speed routers, NULL routing can sustain higher throughput than the 

traditional firewalls. This is the reason why NULL routing can be used in high-performance 

vital routers to block large-scale flooding attacks before reaching the destination. However, 

this technique is also vulnerable to the specially crafted packets that avoid NULL routing 

security.  

2.8.3.1 Creating a NULL route 

NULL routes are created through ‘route’ command in windows and UNIX operating 

systems.  

The following set of commands demonstrate creation and usage of NULL routes. 

For example, if we are getting unwanted SSH requests from an IP 198.168.0.95. Then: 

#route add 193.252.19.0.0.0.0.0 

Add net 193.252.19.0: gateway 0.0.0.0 

route@server:~#netstat -na | grep: 22 

tcp 0 0 0.0.0.0:22 0.0.0.0:*LISTEN 

tcp 0 0 192 168.0.197:22 192.168.0.195:57776 ESTABLISHED 

IP command is used to add a NULL route 

 route@server:~# ip route add blackhole 192.188.0.195/32 

IP route shows command can be used to check whether the route is in place 

route@server:~# IP route shows 

default via 192.168.0.1 dev eth0 metric 100 

blackhole 192.168.0.195 



50 | 186 

 

Subsequently, the connections established will act as time out moreover, the subsequent 

connections from the blocked IP will receive the following.  

baduser@attacker:-~$ ssh 192.168.0.197 

ssh: connect to host 192.168.0.197 port 22: No route to host 

The NULL routing is also often called as the blackhole routing. All the current routers are 

equipped with handling such traffic. Like in Cisco’s terminology NULL route is called the 

NULL interface which is used to create a black hole. Static routes are created for the 

destinations whereas the static route configuration points to the NULL interface. 

 

After a thorough comparison of various flood mitigation techniques presented above, based 

on the characteristics of each we shortlist NULL routing as a useful technique to help 

eliminate control channel LFAs in SDN. 

 

The objective of this section is to come up with the qualitative performance features of 

LFA mitigation techniques. The aim is to introduce these features and quality metrics as a 

must-have in the solution that we are going to propose in the upcoming chapters.  

A thorough study of LFA mitigation techniques has demonstrated that researchers have 

examined this problem from multiple angles. We did not find a single solution that 

addresses all the challenges posed by this attack, with some aspects have been more 

thoroughly studied than the others. In the absence of an objective criterion, it is hard to 

judge the quality of a suitable solution. In this regard, we have proposed a set of quality 

metrics for systematically examining the strengths and weaknesses of LFA mitigation 

techniques based on an objective criterion that uses a set of features to rank and quantify 

them. The qualitative performance features are discussed below: 

2.9.1 Detection Accuracy and Detection Time 

The accuracy with which an LFA mitigation technique alleviate the flood traffic where 

false-positive rate is low. Higher accuracy is desirable in LFA mitigation strategies. We 

categories the LFA mitigation techniques according to their experimentation evaluation to 

detection accuracy levels of high, medium, and low. 



51 | 186 

 

Time that the proposed solution takes to detect LFA after it occurs is defined as the 

detection time. It largely depends on the underlying technology used in the LFA defense. 

Some techniques are based on the analysis of the rise in the traffic flows in a specific region 

as a detection method against LFAs. To carry out such type of detection, the defense 

mechanism should have to analyze the whole network for attack traffic analysis, however, 

high traffic rate can also be caused by the legitimate traffic. So, the defender needs to 

distinguish between the legitimate and the flood traffic. Hence, detection may yield more 

time. Similarly, some LFA defense techniques utilize ML classification strategies which 

may yield comparatively lesser time.  

Detection time plays a significant role in the acceptability of a defense solution. The 

research in the LFA detection and defense is in its early stage hence only limited defense 

mechanisms are available. There is still a need for an optimal solution for LFA defense. 

Low detection time is desirable in LFA mitigation techniques as a solution taking more 

time in order to respond to LFA, the adversaries would have already done damage to the 

network. The detection time is also classified into high, medium and low, where time-

efficient techniques will be categorized as low. There is another aspect of detection time 

where proactive solutions try to establish strong surveillance of the network before the 

occurrence of LFA. Therefore, proactive solutions have low detection time. 

2.9.2 Solution Type And Approach Used 

There are two types of mitigation strategies, i.e. proactive and reactive. The proactive 

strategies setup a prior defense breach in order to avoid LFA before it occurs. These 

techniques are based on zero trust security where no connection is trusted unless it has been 

deliberately allowed. The proactive solutions comprise up of diverse setup tools, for 

example, network visibility, monitoring, and segmentation at various network levels. 

Alternatively, the reactive strategies perform the alleviation after the threat has penetrated 

the network and then react using the pre-defined set of solutions. Most of the prevailing 

defense solutions are reactive.  

The best defense against LFA is proactive solutions, where precautionary measures are 

taken prior to the attack. The reactive solution operates subsequent to the attack occurrence 

which makes the resources of the network vulnerable of security risks. In the reactive 

methods, the information at the edge routers and switches is collected and meta-data 



52 | 186 

 

analysis is performed to detect the attack. If the detection finds the malicious packet or 

attacks it provokes the mitigation procedure. A reactive solution uses the flows that are 

already in the network hence, these solutions are more cost-effective.  

A proactive method uses an inline tool to have a complete visibility of the network traffic. 

This mechanism analyzes every packet it received and uses the underlying predetermined 

patterns to compare the traffic.  Based on the definition it is always better to devise a 

proactive solution as it is always active. Proactive solutions are mostly used where there 

are real-time needs for example video games, video streaming, voice, and medical, real-

time air control communication and other critical infrastructure. Proactive solutions are 

always active hence they cost more and induce a certain overhead. In proactive solutions, 

network traffic is handled in a way that it is very difficult for the adversary to launch an 

attack. Therefore, we find it as the best way to mitigate LFA in this way the damage 

incurred by LFA is minimum. However, the overhead attached of using these solutions is 

the main consideration for the selection. The decision to use the type of solution depends 

on business needs. If the business can afford the higher cost and need precise security then 

the proactive solution is a better choice. Alternatively, if the business can afford some delay 

in detection and do not have real-time requirements then a reactive solution can work fine. 

 

The ‘Approach Used’ corresponds to the type of approach used in the experiment, we 

categorize these techniques as traditional, link obfuscation, and ML. Traditional techniques 

correspond to the approaches widely being used for network operation like packet 

inspection and flow filtering. ML techniques correspond to using ML approaches for 

detection and mitigation of LFA like incoming traffic classification to identify malicious 

flows and adversaries. Link inspection techniques correspond to constantly observing the 

links to identify the malicious activity over the network. 

 Traceroute techniques use traceroute packets in order to alleviate and detect an attack. 

These techniques analyze traceroute packets increase phenomena to identify the malicious 

activity as adversaries send multiple traceroute packets to create a link map of the network 

before launching the attack. For attack mitigation, these techniques reroute the attack traffic 

so that it is unable to reach the destination. In the same way, link obfuscation techniques, 

deceive the adversary to create a correct link map and identify the potential target by 



53 | 186 

 

obfuscating the network links. HoneyNet techniques provide virtual connectivity over the 

nodes attacked by the adversary, this way traffic can be bypassed from the attack point. 

The Bloom filtering approaches use a probabilistic data structure to detect LFA. In the 

same way, the Woodpecker technique incrementally deploys SDN strategies in order to 

enable centralized control of the network and alleviate LFA. 

2.9.3 Solution Complexity, Analysis Method and Scalability 

Although security is one of the prime concerns in the current network paradigms, multiple 

defense mechanisms are used to perform the security of the systems. However, this defense 

mechanism put extra overhead over the network by employing messaging or other 

computation techniques to secure the network. Moreover, client-server messaging during 

security also puts extra overhead on the network. More messages consume greater network 

resources.  

Complexity is the amount of resources that will be consumed by the solution in order to 

mitigate the attack. These resources may correspond to time to detect or mitigate an attack 

or other resource requirements consumed by the solution in order to complete its operation. 

Lower complexity values are preferred for an optimal solution against LFA. Here we 

classify the techniques into low, medium, and high complexity solutions by analyzing the 

experimental setup provided by each technique. 

The ‘Analysis Method’ corresponds to the type of solution that has been used by the 

underlying approach. The examples of analysis methods are traffic engineering, traceroute, 

and SDN-based approaches.  

Traffic engineering is a technique to optimize network performance by dynamically 

predicting, analyzing, and regulating the data transmitted over the network. It can be 

employed on all types of networks. It facilitates efficient network operation and 

concurrently optimizing the performance of the network. This technique moves the traffic 

flood away from the congested areas to comparatively less flooded links. When the level 

of traffic on the network reaches to an allocated limit, the network is denoted as congested.  

In this condition, the traffic engineering principles come into play to alleviate the traffic 

flood on certain links and deviate the traffic to other paths.  



54 | 186 

 

The traceroute techniques are employed to display the route and identifying the transit 

delays of packets across the IP network. A history of the route is recorded and analyzed by 

measuring the Round-Trip Time (RTT) of the packets received from every successive host 

on the route. Moreover, the sum of the mean times in each hop is a measure of total time 

spent in devising a connection. The process of traceroute continues until all the sent packets 

are lost more than twice, this way the connection is lost and the route cannot be evaluated.  

The difference between the approach used and the analysis method is that the approach 

quantifies specific categories of the technique used against LFA. However, the analysis 

method categorizes the solution into broader categories of the techniques. 

Scalability is the property of the LFA mitigation system to accommodate the growing 

amount of task by adding more resources. A routing protocol is considered as scalable 

according to the network size if each node grows as O (log N) where N corresponds to the 

number of nodes in the network. The capability of an LFA solution to be deployed on large 

scale networks is called the scalability. This metric must be considered extensively before 

devising an LFA solution. As more businesses are getting online, the need for a scalable 

solution is highly inevitable.  

Moreover, the prevailing solutions need hardware to perform link-level measurements 

which may require additional hardware in case the network grows. This phenomenon play 

a negative impact on the scalability of the system and can result in the crashing of the 

security solution. Without scalability planning, the costs grow, and efficiency comes down.  

The basis behind planning the scalability is analyzing the security solution development in 

a way that it can be expanded in all the ways including the underlying network size, the 

data rate, and the attack severity.  

The concept of scalability can be understood easily however, it becomes difficult to 

implement in the current paradigm of heterogeneous infrastructure. We categories the 

scalability of solutions as, high, medium, and low. Current networks are expanding 

continuously, so a feasible solution must possess the quality of being highly scalable. Most 

of the available research is based on simulation results, which cannot be tested for 

scalability.  



55 | 186 

 

2.9.4 Evaluation Method Used  

Since the computer networks have currently become too complex for traditional 

experimentation methods to predict an accurate understanding of the behavior of the 

system so it has become a challenging task to perform experiments using traditional 

networks. In computer security research, the network simulation provides a mechanism 

whereby a software program can model the behavior of the attack and its defense. The 

infrastructure entities like routers, switches, nodes, access points, and links can be created 

through the programming model. Most of the network simulators use discrete event 

simulation where the variables tend to change in discrete time stamps.  

And the user can alter the behavior of the components according to the required 

configurations. Multiple attributes can be modified in a logical manner and experiments 

can be performed on how they behave under different conditions. Current network 

simulators are nowadays equipped with latest communication technologies like LAN, 

Wide Area Networks (WAN), LTE, 5G, Bluetooth, Wireless Sensor Networks (WSNs), 

and IoT. The network simulators come with a variety of options like GUI-based and CLI-

based simulators.  The network model illustrates the nodes, links, switches, and events. 

The output metrics may include data rate, packet loss rate, bandwidth consumption, etc. 

The log files contain information regarding every packet and every event occurred during 

the simulation.  

 Moreover, to perform experiments in a software environment that the components used 

mimics the actual hardware, the network emulators are employed. The methodology is that 

the real packets are transferred using a live application to an emulation server, then those 

packets get modulated in a simulation packet. Finally, the real packets get demodulated 

after experiencing the effects of delay, packet loss, and jitter, etc. which injects these effects 

to the rea packets in a way that the real packets have been suggested to real network 

conditions.  

During the past few years, network technology has been progressed in a rapid manner. The 

motive was to reduce the cost and increase the efficiency of the current networks. Network 

security research involves real-time experiments to analyze the impact of a solution in a 

physical system before employing it. The physical testbed is mostly hosted by large 

organizations which can be hired by the researchers to perform the real-time experiments. 



56 | 186 

 

The physical testbeds include real hardware specially designated for performing real-time 

experiments. Figure 2-8 illustrates the classification metrics of LFA mitigation techniques.  

 

Figure 2-8 LFA Classification metrics. 

Different methods are used to perform the evaluation of the proposed solution. Some 

authors use simulations to demonstrate their concept while others use real testbeds. 

Reference is given to solutions that are tested on real testbeds. 

In the Table 2-5 we have compared LFA mitigation techniques based on above-mentioned 

metrics. CoDef and Linkscope have high accuracy however they work in a reactive manner 

that makes them vulnerable to the security issues. Alternatively, the agile virtualized 

technique possesses the qualities for a good solution as it has higher accuracy in detecting 

the malicious flows as well as it is highly scalable. It also works in a proactive manner and 

moreover, they have tested their solution on a real testbed. SDN HoneyNet is a novel 

solution however, it has low detection accuracy and it can suffer from the problem of more 

time to deploy the HoneyNet topology because it computes different graph-based 

measurements to identify the vulnerable nodes. Another drawback of this technique is that 

it is not tested in the real testbed scenarios. SDN approach for moving target defense 

provides a solution that works fine in both proactive and reactive sceneries. In the same 



57 | 186 

 

way, it takes a lot of time in order to detect LFA. This solution has not been tested on the 

real testbed and it also lacks in qualifying scalability requirements. 

The selection for a reliable solution against LFA depends on many factors as provided in 

the comparison metrics. It depends on the requirements of the environment where a 

solution needs to be deployed. Because no solution is perfect in terms of all the defined 

metrics. In some situations, we require the highest accuracy, so we can compromise other 

quality metrics in order to attain accuracy requirements.  

Some basic insights for choosing a mitigation strategy is that the solution should have a 

low false positive rate and low attack detection time. The solution must also be scalable so 

that it can be deployed on large scale networks. As mentioned previously that there is a 

certain tradeoff while selecting an optimal strategy against LFA.  

 The fact that LFA uses low-rate traffic to attack potential targets, makes it difficult to 

mitigate. However, a practical mitigation strategy would be the one that incorporates the 

source and destination AS coordination against LFA. Similarly, the solution must be tested 

on a real testbed while fulfilling the scalability requirements. In our view the real solution 

to mitigate LFAs against control channel attacks, should work at line speed and would 

ideally rely on machine learning to intelligently detect flooding situation and eliminate it 

through NULL routing before it harms the network. 

 

This chapter provides a holistic view of classifying the existing works available in the 

domain of LFA defense. We provide different classification metrics to categorize the 

literature. A detailed taxonomy of LFA mitigation techniques with the related performance 

metrics has also been presented. This comparative analysis helped us answer a few research 

questions and demonstrated that the adequate attention has not been given to mitigating 

LFAs on SDN, and that the control channel has yet to explored for attacks and 

vulnerabilities. Through this study it became clear that due to its simplified configs, SDN 

setups are being used to conduct research for traditional networks. Therefore, quite a few 

papers do talk about study of LFA demonstrated on SDN testbeds, but the mitigation 

techniques are not necessarily targeted for SDNs and their unique operational nature. The 



58 | 186 

 

control channel in SDN is a critical resource and if this link is flooded, the whole network 

can malfunction.  

In this chapter, we bring forward all the variants of SDN to help study if the identified 

weak points are valid for all the types. On finding out control channel as a weak link that 

could be explored for LFAs in all SDN types, we then identify LFA as a lethal attack 

against SDN and for its variants. We classified the prevailing LFA mitigation techniques 

into different categories based on underlying detection and mitigation mechanisms. We 

then reached to a conclusion that there was a lack of defense mechanisms on detecting and 

mitigating LFA in SDN, specifically on the control channel that can easily become a 

bottleneck.  

Through this chapter we were able to select a general technique to mitigate floods on any 

link –NULL routing. We also short listed the quality metrics and features that a practical 

solution must have. And based on the characteristics we reached to a conclusion that an 

intelligent mechanism is required to detect and mitigate floods at line speed.  

In the next chapter, we will formally present the problem statement and provide the 

architecture of our proposed solution named as CyberPulse. We will discuss different 

modules of CyberPulse and elaborate on the working principle of the solution in detail.  



59 | 186 

 

3 CHAPTER 3. PROBLEM DEFINITION 

SDN has proved itself to be the backbone for the current data center networks and is 

currently becoming an industry standard. The big data and virtualization need of the current 

networks greatly stress that we use SDN for network provision and management. With the 

greater dependency on the communication networks, any discrepancy can lead to 

disruption of the network which may cause inefficiencies in the network management and 

even disruption of the services. This can cause severe data and investment loss. In this 

context, LFA can cut off specific areas of the networks from the others using low-rate 

legitimate traffic. It poses a great security threat to the modern networks and can have a 

devastating impact on SDN which can bring individual planes down, disrupt the 

communication between the planes, and ultimately bring down the whole network.  

However, the sensitive nature of the control channel can make this a single point of failure 

for the whole network. So, network community should give serious attention to 

successfully implement and upgrade SDN architecture against LFAs. Therefore, mitigating 

LFA on the control channel of SDN poses a vital challenge. In order to deal with this threat, 

we propose an LFA mitigation framework on the control channel of the SDN named as 

CyberPulse. 

The previous chapter explains that there are profound vulnerabilities of LFA on the control 

channel. There is also a lack of literature available that addresses these weaknesses that 

demonstrates the vital importance of this study. In this chapter, we will discuss how LFA 

can be mitigated using CyberPulse security framework. We discuss the problem of LFA in 

SDN and elaborate on how LFA can severely impact the control channel of SDN. 

Subsequently, we will discuss the proposed CyberPulse solution against LFA. We 

elaborate on different components of CyberPulse including the Link Listener, Flood 

Detection, Flood Mitigation, and Deep Content Inspection (DCI) module.  

We explain design considerations for the framework against LFA in SDN and demonstrate 

how LFA detection can effectively utilize pattern matching technology in SDN. Hence, we 

provide a detailed study of the pattern matching technology and its effectiveness in 

detecting anomalous traffic in the network. Subsequently, we evaluate the pattern matching 

technology using FA mechanism and provide detailed examples to understand the packet 



60 | 186 

 

inspection techniques employed in CyberPulse. We performed extensive experiments to 

compare the complexity of the compilation and matching phase of DFA-based RE 

processing engines which includes RE2, Rexgrep, and Regex-Processor.  

 

The separation of control and data plane in SDN provides a higher level of programmability 

and provoke a more flexible way to manage and control the networks. However, the limited 

bandwidth between the control and data plane can become a bottleneck in the 

communication where SDN may undergo higher packet loss and delay when the control 

channel link is under attack. The previous solutions only rely on one aspect of the problem 

where, however, hybrid solutions are needed in a current versatile network environment 

which has the ability to flexibly adapt to the user requirements. The attacker can aim at 

realizing this bottleneck and launching attacks on this plane. The controller in SDN 

mediates the whole network traffic by installing flow rules on the OF switches. Figure 3-1 

illustrates the step two-layer security against LFA detection and mitigation. 

LFA is considered lethal against modern SDNs because of three reasons, first, it uses 

legitimate IP traffic which makes it harder to filter out rather than using spoofed IP 

addresses which can easily be distinguished. Second, it sends legitimate packets to publicly 

accessible servers called the decoy servers. Hence, a coordinated attack keeps these packets 

flowing without any interruption causing a flood on the attacked links. Third, it transmits 

low bandwidth flows from each bot individually, these legitimate flows then cumulatively 

flood certain links in the network without being detected. The controller of SDN 

accompanies vulnerabilities for LFA as it sends control traffic which is the most critical 

information for SDN as it performs all the crucial tasks of flow rules installation, network 

configuration, and optimum path calculation.  

In LFA, the prime concern of the attacker is to disconnect the controller path links to make 

it ineffective. LFA poses a great security threat on the SDNs, especially the centralized 

control mechanism can be disrupted using SDN. Since LFAs use low-rate traffic which 

resembles legitimate traffic, it cannot be detected using the traditional detection and 

defense mechanisms. Moreover, the centralized network management in SDN portrays that 

only the controller has access to the data plane switches which stresses the need for 

solutions that can leverage the SDN characteristics of centralized management. In this 



61 | 186 

 

context, we propose CyberPulse to effectively mitigate LFA on SDN control channel. 

CyberPulse utilizes the centralized network management of SDN to effectively collect 

network statistics and classify them into benign and flooding flows.  

 

  In the same way. The data plane is the main working unit which is dependent on the 

controller communication, in SDN where it derives all the information through the 

hardware devices, attacking data plane devices result in disruption of the services of the 

whole network. Similarly, the control channel is the most critical resource because all the 

control information passes through this link, as this is a single link and any congestion can 

cause a delay in information.   

The adversaries can take hold of this link by implying hard to detect LFA and congest the 

link in a way that it can become irresponsive resulting in disconnection of the whole 

network.  Control channel has the tendency to be flooded by a bunch of traffic hence, there 

must be a link-scanning mechanism that can check whether the congestion is caused by the 

legitimate traffic or it was caused by an attack. Since the control channel doesn’t have any 

detection and mitigation strategy, there is a strong need to imply link congestion detection 

and mitigation mechanisms.  

Figure 3-1 An overview of the proposed security solution. The network traffic has been subjected to traffic 

monitoring solutions, where the final network traffic to the destination has been filtered out against the 

LFA. 



62 | 186 

 

So, we provide a solution called CyberPulse for the problem of LFA on the control channel 

of SDN by employing ML and JSON-based DCI techniques [175]. We discuss the main 

components of CyberPulse including its modules and a detailed evaluation of JSON-based 

DCI in this chapter. 

 

We discuss CyberPulse framework including its components, the configuration of its 

components and a detailed working principle of the framework. CyberPulse security 

framework has been presented in Figure 3-2, we can observe that there are three main 

components of our proposed framework i.e. Link Listener Module, Flood Detection, and 

Flood Mitigation Modules. There are two planes connected by a link i.e. the control plane 

and the data plane. CyberPulse continuously observes the control channel and perform the 

mitigation operation in case of any congestion found on the link. The Link Listener 

implements link listening algorithm which also includes a submodule called DCI. The link 

listening algorithm continuously listens to the traffic on the control channel and collects 

statistics of the network traffic.  

Link Listening Module sends the network statistics to the Flood Detection Module.  These 

statistics are utilized by the Flood Detection Module to separate the benign traffic from the 

flood traffic on the basis of ML techniques. This ML technique is trained by using the 

training dataset. These three modules collaborate with each other in order to perform the 

flood mitigation process and keep the network clean from flooding.  

The module which interacts with the control channel directly is the Link Listener Module. 

With the help of the link listener algorithm, it performs the surveillance process on the link. 

It continuously observes the link for congestion alert, and if it finds any congestion it 

invokes Flood Detection Module which performs the analysis on the type of congestion on 

the link i.e. flood attack or normal traffic congestion. If it finds normal congestion than it 

allows the link to perform its operation but if it finds any flood traffic, it invokes flood 

mitigation module. The Flood Detection Module performs the analysis on the acquired 

network statistics and separates the legitimate traffic from flooding flows. It is responsible 

to identify the sources that are involved in the flooding of the link. Flood Detection Module 



63 | 186 

 

passes on the identified flood traffic to the flood mitigation module that eliminates the 

flooding flows and enable smooth operation of the network. 

LFA mitigation framework deploys ML technique to classify the network traffic into 

benign and malicious categories. In this context, we have identified different DoS flood 

attack mitigation studies, the name of the ML technique, and the features used for the traffic 

classification in Table 3-1.  

Table 3-1ML techniques in flood attacks mitigation. 

Technique Name ML Algorithm Features Used 

Distributed-SOM [176] 
Distributed Self Organizing 

Maps 

Number of flows 

Number of packets per-flow 

Number of bytes per flow 

Time duration 

Adaptive Artificial Immune Networks 

[96] 
Artificial Immune System Traffic analysis 

DyProSD [177] 

C4.5 

Naïve Bayes 

Decision Tree 

Source IP 

Destination IP 

Sampled Interval  Time 

Flow ID 

Total number of connections 

OpenFlowSIA  [178] SVM 

Protocol 

Source IP 

Source port 

Destination IP 

Destination port 

DDoS Flooding attack Detection 

Algorithm  [179] 
Hop Count Filter Algorithm 

Source IP 

Destination IP 

TDFA [180] IP Trace-back algorithm Traffic analysis 

 

LFA mitigation framework helps in securing the control plane communication with the 

data plane. It is pertinent to note that none of the aforementioned strategies solve the LFA 

problem on the SDN’s control plane to data plane link.  

CyberPulse framework is implemented as a separate application in SDN application plane. 

It penalizes the attack flows by dropping the malicious flows and eases the network from 

flooding attack. The flood mitigation module mitigates the LFA while not interrupting the 

normal traffic. Finally, it facilitates the traffic to pass normally while constantly checking 

the link for further attacks. We explain the detail of the submodules in the Incoming 

subchapters. 



64 | 186 

 

3.2.1 Link Listener Module 

We collect realistic traffic using an SDN-based mininet network and the floodlight 

controller. Link Listener is continuously listening to the control channel and collects the 

network status information. Link Listener works on the basis of an algorithm that runs in 

the Link Listener. If it finds any congestion it invokes Flood Detection Module. This 

module continuously collects network traffic statistics and send them to the Flood 

Detection Module. Link Listener collects network flow statistics and continuously send to 

the Flood Detection Module that will perform the flood traffic detection process. The Link 

Listener Module performs the end-to-end measurements on the control channel. The 

available techniques stress the need for the measurements mechanisms to be employed on 

both ends of the links. However, Link Listener Module in CyberPulse does not need to 

install specialized hardware for the traffic measurements.  

Link Listener Module inspects the key metrics in the network traffic which are given 

below.  

• Utilized Bandwidth 

• Lost Bandwidth   

• Packet Drop Rate   

• Packet Size  

• Full Bandwidth   

• Packets Received  

• Percentage of packet lost Rate   

• Packets Lost  

• Percentage of lost byte rate   

• Transmitted Byte  

• Packets received rate   

• Flooding Status 

Some statistics are directly computed and some of them depend on other statistics. We 

define the network statistics in the following. 

Utilized Bandwidth: It is the percentage of traffic that has been utilized. It is the average 

rate of successful data transfer through a communication network. The utilized bandwidth 

is computed by the equation (3-1). 



65 | 186 

 

𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (%)
=(𝑑𝑎𝑡𝑎 𝑏𝑖𝑡𝑠×100)

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ×𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
…………………………………………..……………….………… (3-1) 

Lost Bandwidth: The bandwidth lost is the maximum bandwidth subtracted from the 

utilized bandwidth. The lost bandwidth can be computed by equation (3-2). 

𝐿𝑜𝑠𝑡 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 𝑀𝑎𝑖𝑚𝑢𝑚 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ − 𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ…………………………..……… (3-2) 

Packet Loss Rate: Packet loss occurs when one or more packets are unable to reach the 

destination. It usually occurs by data transmission errors or congestion on the network 

links. It is measured by the percentage compared with the packets sent. The TCP identifies 

the packet loss and performs retransmission to ensure reliable delivery.  It can be computed 

by equation (3-3). 

𝑃𝑎𝑐𝑘𝑒𝑡 𝐿𝑜𝑠𝑠 𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑙𝑜𝑠𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡
 ………………………..………...…………………...……. (3-3) 

Packet Size: Everything in the internet ecosystem involves packets, for example, every 

web page on the internet is transferred in the form of packets. Network packets carry 

information that helps it to reach the destination. The packet contains control and data 

information. The control information is used to deliver the payload, for example, network 

address error detection code, and sequencing information.  

Full Bandwidth: It is the maximum rate of data transfer across a given data path it can be 

characterized between digital, data, and network bandwidth.  

Packets Received: The number of packets received at the destination is called packets 

received. 

Percentage of packet lost rate: It is the percentage of packets lost in the network during 

a particular time. 

Packets Lost: It is the total number of packets lost in a given time. It is occurred due to 

network congestion or errors in the network.  

Percentage of lost byte rate: The number of bytes lost in a given period of time. 

Transmitted byte: The number of bytes transmitted over a period of time. 

Packets received rate: The number of packets received at the destination. 

Flooding Status: It is the status of flow on the network. It depends on all the previous 

factors discussed. It can be flooding or normal. If a flow has a higher packet loss rate, 

higher bandwidth utilization and lost byte then the status will be flooding. Otherwise, 

normal status is assigned to the flow.  



66 | 186 

 

3.2.2 Pattern Matching Component 

Efficient and expressive pattern matching is a key enabling technology for a complete 

realization of Aml and humanized computing. This component is encapsulated in the Link 

Listener Module, it works by maintaining a flood traffic signature database. The traffic is 

continuously monitored and flows are constantly matched with the signature database. The 

JSON-based pattern matching engine utilizes REs to match the network traffic with the set 

of known attack patterns and virus signatures. Known traffic signatures are mitigated here 

and the unknown signatures are forwarded to the Flood Detection Module. When a flow is 

found to be malicious, it is forwarded to the Flood Detection Module which classifies the 

network traffic and adds the malicious flow to the malicious pattern database. Hence, the 

traffic is efficiently classified.  

 

Figure 3-2 A conceptual framework for the proposed solution. 

3.2.3 Flood Detection Module 

Flooding occurs when an adversary manipulates bots and send low-rate traffic over the 

network. The flooding causes higher packet delay, packet loss, bandwidth decrease, and a 

higher number of bytes transmitted.  Therefore, flood detection is vital before performing 

any mitigation procedure. The flood detection analyzes the occurrence of congestion as 

well as the location of the congestion. The flooding is detected using the collected metrics 

using the Link Listener Module. In contrast to the anomaly detection, this module relies on 

flood detection using the ML classification technique. The Flood Detection Module 



67 | 186 

 

classify the network traffic using binary classification. The extracted features are based on 

the SDN specific traffic paradigms. Flood Detection Module is invoked by the Link 

Listener. If the Link Listener finds any congestion on the link it informs the Flood 

Detection Module which performs two tasks. First, it inspects the type of congestion on the 

link, if the congestion is normal and due to benign traffic than the network is allowed to 

perform its normal flow of operation. If the congestion is caused by an attack, it must be 

mitigated. At this point, Flood Detection Module invokes the flood mitigation module. The 

Flood Detection Module performs the traffic classification using the ML technique that is 

trained using BHP training dataset. The network statistics collected by the Link Listener 

Module are utilized to identify the malicious and legitimate flows.  

3.2.4 Flood Mitigation Module 

Flood Mitigation Module receives the classified traffic provided by the Flood Detection 

Module. It then eliminates the flood traffic using NULL routing or dropping malicious 

flows and enables the network to carry out the normal flow of operation. It also balances 

the network traffic after the flood mitigation process. These three modules constantly 

interact with each other to perform the flood mitigation operation.  

Fig 4-1 illustrates a broader architecture of the CyberPulse illustrating components of the 

proposed architecture. DCI provides the first line of defense against the security threats. It 

manages a signature database which stores the malicious traffic patterns.  The process starts 

with the Link Listener being the first module to interact with the link. The Flood Detection 

Module is invoked if there is any congestion observed. Subsequently, the detector module 

analyzes the type of congestion. If the congestion is caused by normal traffic then the 

network is allowed to perform the normal course of action and flow of the operation is 

transferred to the Link Listener again.  

The Flood Mitigation Module is called on if the flooding is caused by malicious traffic. 

This module eliminates the malicious flows and balances the traffic flow over the network. 

Hence, with the collaboration of all the components, LFA is eliminated and the network is 

able to perform the smooth operation. 

The LFA mitigation framework resides on the application layer as a separate application. 

With the collaboration of all three modules, the successful operation of the LFA mitigation 

framework becomes possible. These modules work according to their specification and 



68 | 186 

 

provide the results to the framework, which ultimately responds to the link congestion or 

attack successfully.  

 

The following design considerations are important for the implementation of the proposed 

framework: 

• For eliminating LFA on the control channel an application is developed that resides 

independently of the control or data plane and keeps a check on the link. 

• CyberPulse is developed as an independent application and hence, poses a very less 

overhead in modifying the complex functionality of default SDN controllers. 

• To minimize chances of the application crashing, CyberPulse is developed in a way 

that it doesn’t interact with the outside world, so there are fewer chances of its 

failure.  

• Traffic consistency is random, so the framework is scalable according to the 

incoming traffic. 

• The Link Listener Module is able to gather network statistics at random time 

intervals. 

 

To address the problem discussed in chapter III, we propose CyberPulse an extension 

application module to secure SDN [181]. The prime purpose of CyberPulse is to detect and 

eliminate LFA on the control channel. In this chapter, we, propose an overall detailed 

architecture of CyberPulse. 

We provide broader modules of CyberPulse in the previous section. In this section, we 

provide a detailed overview of the CyberPulse framework including modules and sub-

modules, architectures, and dependencies. To address the problem of LFA, we propose a 

novel security framework CyberPulse which is developed at the application layer of the 

SDN plane. The core purpose of CyberPulse is to detect and mitigate LFA on SDN. Figure 

3-3 presents the architecture of CyberPulse security solution. CyberPulse contains six 

modules which are as follows: 

1 Configuration Manager 

2 Statistics Measurement Manager 

3 Stat Measurement Module 

4 ML Module 



69 | 186 

 

5 Network Status Monitor 

6 Flood Defender 

The security solution for LFA detection and elimination is based on extracting traffic 

statistics on a specific interval. These statistics represent samples of the current traffic flow. 

CyberPulse utilizes supervised ML model which can be trained on 10 different 

classification algorithms.  

 

Figure 3-3 CyberPulse architecture. 

3.4.1 Configuration Manager 

The configuration manager module incorporates multiple sub-functions which are used to 

input and modify the network configurations. The configurations are provided using a 

JSON configuration file. This configurable file provides flexibility to controls the network 

topology, statistics management, ML configuration, link specifications, and traffic 

configuration. All these configurations are alterable in this architecture. The topology 

manager takes care of the network to use in the experiment. Similarly, the controller 

configuration sub-module handles the controller parameters, like controller port number 

and IP address. The statistics manager defines the program duration, statistics collection 

interval, and flooding threshold of flows in the network. ML configuration module selects 

the ML algorithm to use, and action to be taken with the flow involved in the flooding of 

the network traffic. It also specifies the confidence interval for classification. Link specifier 



70 | 186 

 

denotes the particular link and the switch port number to which this link is attached. The 

traffic configuration module denotes the link capacity, number of switches, number of 

hosts per switch, traffic generation server, and IP addresses of the hosts in the network.  

3.4.2 Statistics Measurement Module 

With the arrival of a flow at the OF switch, the flow entries are matched with the flow table 

of the switch. The flow is forwarded to the destination as per the flow entry in the switch 

if the flow entry is not found, it is forwarded to the controller using PACKET_IN message 

which creates a flow table entry in the switch for forwarding. A Flow_REMOVED 

message is sent to the controller to remove the flow from the flow table. In addition to this, 

a thread continuously runs on the controller and queries at a fixed interval the switch's 

statistics on each flow. In response, it receives a FLOW_STATS message..  

CyberPulse aggregates all the statistics for precise classification. Periodic collection of 

statistics does not impose any overhead as it is basic functionality of SDN architectures 

and is exposed through southbound interface. Additionally, the classification is performed 

in parallel by CyberPulse, which have no effect on the performance of the SDN controller 

by adding any extra functionality.  

The statistics measurement manager defines all the statistics to collect during LFA. We 

collect 14 different statistics as provided in Table 3-2 to detect and mitigate LFA. We 

utilize a floodlight controller for SDN simulation which provides an interface to collect 

flow statistics. This module specifies the statistics that are to be collected during the 

network operation. It includes the schedule of statistical measurement and traffic 

generation source selection. This module also specifies the information of the Iperf server 

and client. Stat collector incorporates further low-level modules which are as follows: 

• Switch manager 

• Flow manager 

• Packet manager 

These modules are discussed in detail below: 



71 | 186 

 

3.4.2.1 Switch manager 

This module manages the switches connected to the controller; it first assigns DPID to 

every switch. It gets the switches list from the '/wm/core/controller/switches/json' json API 

exposed by the floodlight controller [182]. It then keeps a record of all ports in the network. 

The switch manager checks the importance of a switch and the port on the basis of how 

much flooding is being performed by the switch and the port. The switch-id, flow-id is 

extracted and the host connected to that particular switch is blocked by dumping the flow 

rule. Switch manager also defines the bandwidth of a particular switch and all the switches 

connected to the network.   

3.4.2.2 Flow Manager  

The flow manager reads all the flows in the network and it uses 

'/wm/core/switch/all/flow/json' json API to manages these flows. It assigns class to the 

flows on the basis of predefined threshold based on byteCount statistics.  

3.4.2.3 Packet Manager 

It extracts the packet statistics in the network using the json API 

'/wm/core/switch/all/port/json'. It computes all the transmitted and received packets on all 

the ports of the switches and calculates the packet loss by subtracting received packets from 

the transmitted packets. In the same way, it calculates the total bytes, average bandwidth, 

utilized, bandwidth, packet lost, packet size, packet received, packet received rate, packet 

loss rate and lost byte rate.  

3.4.3 ML Module 

Subsequent to statistics collection, this module applies the ML algorithm to identify the 

flows involved in the LFA. It identifies all the flows in the network and perform the 

classification on the basis of provided confidence level. ML module can select one 

algorithm from the available 10 algorithms, the available algorithms are provided in the 

form of .pkl file.  

 

 

 



72 | 186 

 

Table 3-2 The extracted features and definitions in the training dataset. 

Feature Definition Feature Definition 

Node Node generating flow 
Used 

Bandwidth 

This is what each node could 

reserve from the reserved 

bandwidth 

Utilized Bandwidth 

Bandwidth utilized by the 

node, normalized of bandwidth 

used 

Lost 

Bandwidth 

The amount of lost bandwidth 

by each node  

Packet Drop Rate Packets dropped per unit time Packet Size Size of packets on the network 

Full Bandwidth Bandwidth of the network 
Packets 

Received 

Received packets in a given time 

interval 

Percentage of packet 

lost Rate 
Percentage of packets lost Packets Lost 

Packets lost in a given time 

interval 

Percentage of lost 

byte rate 
Percentage of lost byte rate 

Transmitted 

Byte 

Total bytes transmitted per unit 

time 

Packets received rate Packets received per unit time 
Flooding 

Status 

Percentage of flood per node 

based on Packet Drop Rate 

 

3.4.4 Feature Extraction 

The advantage of SDN is that OF switches can send statistical information per flow to the 

controller. The extracted features and their definition in given in Table 3-2. The  

• The statistics are measured after every 5 seconds, however, can be adjusted using 

the configuration file.  

• The traffic run time duration is adjustable and it can be set from 1 min or more. 

• The program runtime duration is also adjustable. 

• ML parameters can be adjusted, and classification model can be used out of 10 

available .pkl files.  

• Any malicious host involved in flooding of the network is dropped. 

• The confidence level with which the classification is performed can also be 

adjusted, any value can be selected from 0-100. 

• Network configuration is also adjustable where link capacity, switch count and 

hosts per switch can be provided.  

The ML engine has a pre-trained module which is trained using 10 different algorithms. 

The pre-trained module is trained in advance to classify the occurrence of LFA.  

3.4.5 Network Status Monitor 

The network status monitor updates the real-time network information in the form of 

graphs. This is the core module of the network because it offers the real-time network to 



73 | 186 

 

the users. This module provides one of the novel solutions to the ongoing traditional 

defense mechanisms to monitor network activity at real-time. The network status monitor 

draws the following graphs. 

1 Flooding rate per unit time: This graph demonstrates the link flooding status with 

respect to time. It presents the link bandwidth status under the attack. Being link and 

host-specific, it can reveal the intensity of flooding on the desired link and the hosts. It 

can also be flow specific where it illustrates the level of flooding on the 

network.  Regarding flooding rate, we are talking about the data plane, not the control 

plane. Also, typically switches themselves are not the terminal points but lead to 

hosts/servers and we consider switches leading to important devices as the important 

switches compared with those connecting to end stations. This graph will demonstrate 

how much data is passing through important links i.e. on links which are connected to 

switches, to servers or other important devices. Strategic links are the fundamental idea 

of this research i.e. some links are more important than others.  

2 Packet drop rate per unit time: This graph describes the packets dropped in unit time. 

3 Network throughput with respect to input load: There should be both, aggregate 

throughput for the network and also individual for the links connected to switches 

connected to servers. For the individual links, you can aggregate throughout them and 

also illustrate them individually as well.  

4 Traffic delay with respect to input load: It is the delay incurred on transferring files 

during LFA. 

5 Bandwidth saturation with respect to attack rate. This is to describe the impact of 

bandwidth saturation with the increase of attack. 

6 Attack detection time with respect to a number of attackers: This describes the 

attack detection time of CyberPulse in the presence of attackers. 

3.4.6 Flood Defender 

The flood defender module eliminates the malicious flows by dropping them. This is 

implemented as a function in CyberPulse which takes statistics of an active flow (e.g. 

source IP, destination IP, switch ID, flow ID) and compares the confidence level of the 



74 | 186 

 

flow with the threshold value set in the configuration file. If the flow has the confidence 

interval greater than the defined in the threshold, the flow is dropped.  

CyberPulse exploits the northbound REST API of the SDN controller to detect and prevent 

LFA [69]. It is worth mentioning here that CyberPulse detects and mitigate LFA traffic 

flows that are active in a current session of the SDN. It works concurrently with other 

modules of SDN in order to perform a seamless operation. CyberPulse incorporates three 

modules, i.e. Link listener Module, Flood Detection Module, and Flood Mitigation Module. 

CyberPulse uses the REST API to connect with the control module of the SDN and in-turn 

the controller uses Southbound API to communicate with the data plane switches [183]. 

 

It can be observed from Figure 3-4 that there are three modules in CyberPulse, every 

module performs a specific operation in order to accomplish the cumulative task of LFA 

mitigation. Fig 4-3 illustrates the flow diagram of CyberPulse process. The process starts 

with the Link Listener Module inspecting the control channel and continuously sending 

network statistics to Flood Detection Module. Flood Detection Module inspects the 

statistics and performs the flow classification. Flood Detection Module incorporates the 

statistics pre-processing component which eliminates the packet headers information like 

ACK, SYN-ACK packets from the statistics and presents only the clean traffic flows to the 

detection module. These statistics are forwarded to the Flood Detection Module which 

incorporates a ML sub-module, the extracted statistics and the units are presented in Table 

3-3. The ML module uses ANN technique to classify network traffic.    

Figure 3-4 Modules of CyberPulse. 



75 | 186 

 

Figure 3-5 illustrates the steps involved in the CyberPulse implementation. The figure 

demonstrates that the network statistics are captured using REST API, subsequently, data 

pre-processing is performed. Then the pre-processed traffic flows are provided to the ANN 

classifier which classifies the legitimate and flooding flows. Finally, malicious traffic is 

mitigated using malicious traffic mitigation module. Similarly, algorithm 1 demonstrates 

the traffic classification method into benign and flooding flows. This algorithm takes the 

input of host no, packet statistics, and the training dataset. It extracts the traffic features 

and classifies the traffic into benign and flooding flows.  

 

Figure 3-5 Flow diagram of CyberPulse operation. 

The ANN classification module builds a training model by using flooding attack dataset 

[184]. Subsequently, based on this trained model, it performs the classification process. 

The classifier outputs the benign flows and the attack flows. The results of the classification 

are forwarded to the Flood Mitigation Module which drop the attack flows using NULL 

routing technique. 

 

SDN has been widely adopted for the datacenter network provisioning and service 

orchestration. Most of the current LFA mitigation techniques employ link inspection, 

traffic engineering, and SDN-based approaches. There are very few available techniques 

that utilize ML to detect LFA. The available ML techniques perform the detection 

operation in an offline manner. Due to the rapid growth of smart infrastructure, there is a 

prime need for real-time attack detection in SDN. Therefore, in this chapter, we proposed 



76 | 186 

 

a security framework CyberPulse which employ ML-based LFA detection and mitigation 

mechanisms in SDN. Most of the available techniques on LFA detection provides the 

defense in a reactive manner, however, we have developed CyberPulse to perform LFA 

defense at real-time. 

Although SDN provides efficient virtualization services and facilitates the management 

problem of the networks. The central controller is the lucrative target for the adversaries. 

Moreover, the control channel can be attacked by DDoS and LFAs which disconnect the 

controller from the data plane. We formally presented the problem statement and assessed 

the feasibility of the ANN technique for flood traffic classification. A holistic approach has 

been used to mitigate the LFA on the SDN. We introduced two defense mechanisms against 

the LFAs. The first defense is the pattern matching engineering where we save the patterns 

of the LFA traffic. We first perform the experiments on the LFA patterns and assign those 

patterns to the pattern matching engine. The pattern matching engine filters the network 

traffic from the LFA patterns which can reduce extra overhead on the higher amount of 

traffic classification.  

The final defense is the binary classification based on ML techniques. The ML technique 

employs Link Listener, Flood Detection, and Flood Mitigation Modules. The purpose of 

the initial assessment using MLP was to ascertain the feasibility and characteristics of ML 

in a way that a holistic solution can be developed later. Deep neural networks are one of 

the most precise classification techniques used in current state-of-the-art problems 

definition. We have used one ML technique as presented in this chapter and analyzed the 

core requirements needed to develop a proactive solution against LFA. 

   



77 | 186 

 

4 CHAPTER 4. DESIGN AND DEVELOPMENT OF DEEP CONTENT INSPECTION ENGINE 

This chapter provides a detailed discussion of the DCI using JSON. DCI provides a first 

line of defense in detecting LFA. It utilizes JSON-based pattern matching technology to 

compare the network traffic with the available traffic patterns. It performs this operation 

by storing a network traffic signature database. This database contains the network flow 

characteristics such as benign, and malicious flows. The incoming traffic is then matched 

with the signature database in order to filter the network traffic. So, in this chapter, a 

detailed background study is performed on a JSON-based pattern matching engine.  

In general, pattern matching can be classified as exact (fixed) string matching and 

approximate matching through REs. In exact string matching, a pattern of a fixed length is 

matched against a data stream to report all the occurrences of the pattern. Patterns are 

extensively used to filter network traffic to determine the events of user interest. Data can 

include wide-ranging formats such as HTTP data and web traffic or network packet 

captures. Pattern matching commonly occurs in the embedded device sensing the physical 

properties of the environment such as cameras, motion detectors, temperature, and light 

detectors or in the Cloud where the data is aggregated. DCI and IDS/IPS also rely on 

identifying malicious content against defined patterns. In all these cases, the language used 

needs to be expressive enough to parse a variety of patterns as well as should be efficient 

in terms of space and time requirement. Therefore, we present DCI in this chapter. 

DCI is a packet filtering technique where the data and the header part of the packet are 

inspected, identifying any abnormality in the packet according to the malicious source, 

virus, flooding flow, and spams. It is a strong packet filtering mechanism which can also 

provide the information on whether the packet has been redirected. The packets are passed 

through the checkpoints in the DCI. These checkpoints compare the network traffic with 

the rules assigned by the administrator. DCI inspects the content of the packets and 

analyzes the sources and content of the traffic packets. The traditional packet filtering 

techniques only analyze the header of the packet which is less sophisticated and trivial. 

Alternatively, DCI can perform intrusion detection and prevention with key enabling 

technologies. It is usually used as a firewall for the packet filtering purposes any traffic that 

passes through this firewall will be clean and conform to the network requirements as the 

discrepancies will be filtered at the firewall. In this chapter, we will discuss in detail about 



78 | 186 

 

the DCI techniques and how DFA technology can be used to filter the traffic in DCI. We 

will discuss different algorithms of DCI and perform the experiments to demonstrate how 

the DFA-based DCI engine performs exceptionally better in filtering the LFA traffic.  

 

Before REs, exact strings were used extensively in different applications and some 

applications even use them now e.g. Snort [57] (an IDS) uses PCRE (Perl Compatible REs) 

for its pattern matching rules especially in its pre-processing stage to speed up the whole 

matching process [14]. A number of algorithms exist for fixed string pattern matching, 

which makes use of character comparison, DFA or NFA etc. [187], [188], [189], [190], 

[191], [192], [193], [194], [195], [196]. In the past few decades, patterns are widely 

expressed as REs which are mostly implemented either using DFA or NFA. Each 

implementation has its own pros and cons. However, in this research, we have focused only 

on DFA-based pattern matching. In the worst case, DFA has processing complexity of O 

(1) for each input character whereas its space complexity is O (n) (refers to alphabet on 

which DFA is defined and n refers to the length of the RE).  

In this domain, most of the previous works are either focusing on increasing pattern 

matching, the speed or on reducing memory consumption. Recently, some attempts are 

utilizing Graphics Processing Units (GPU) and multi-byte pattern matching techniques to 

achieve better matching speed [59], [62], [63]. In [197] the authors discuss high-speed 

automata processing, and their implementations on a variety of parallel platforms: CPUs, 

GPUs, Field Programmable Gate Arrays (FPGAs), Application-specific integrated circuit 

(ASICs), and network processors. Moreover, many algorithms have also been proposed to 

reduce the memory footprint using alphabet reduction, RE rewriting and grouping 

techniques [61], [64], [66], [67], [58], [198], [57], [199], [200], [201], [202], [203], [204], 

[205], [206], [207], [208], [207]. Tsai et al. [209] propose a simultaneous pattern matching 

methodology for wildcard patterns by two separated engines to represent discrete finite 

automata for improving the performance of IoT network security. Wang et al. have pointed 

out that the problem of state explosion does not lie in DFAs. In fact, the root cause of the 

problem actually lies in the REs as it can be seen that no such problem exists in the DFA 

of exact strings [210]. A DCI set up in the CyberPulse has been demonstrated in Figure 4-



79 | 186 

 

1. The figure illustrates the CyberPulse set up in providing surveillance on the control 

channel.  

The DCI is acting as the first line of defense against LFA where the traffic first arrives at 

the packet inspection module. The signature comparison module compares the incoming 

packet with the packet database. If it finds a malicious packet then it drops the packet and 

adds the signature in the database. Otherwise, it forwards the packet to the Link Listener 

Module which performs the normal flow of operation using the traffic classification and 

mitigation. The following are some of the factors that are primarily responsible for 

increasing parsing time of REs that eventually leads to time and space complex DFAs. 

 

Figure 4-1 Deep content inspection-based traffic filtering against LFA. 

4.1.1 Semantic Overlapping for Attack Traffic Pattern Matching 

In real-world REs, character sets are often observed with Kleene closure (e.g. “[a-m]*") or 

counting constraints (e.g. “[a-z] {m, n}”). A counting constraint gives the number of times 

a certain subpattern in a given RE can be repeated e.g. sub-pattern {min, max}. Here, “min" 

and “max" specifies the minimum and a maximum number of times a sub-pattern can be 

repeated respectively. In [211], Kleene closure and counting constraint are termed as 

overlapping factors. Most of the times, overlapping factors are considered to be one of the 

major reasons for constructing time and space complex DFAs. For example, we have two 

patterns, RE1, and RE2, where RE1 is “.*ab.*cd.*mn" and RE2, is “.*efgh". Here, RE1 

comprises of two overlapping factors (“.*") such that the composite DFA of RE1 and RE2 

requires RE1 to replicate states of RE2 sub-DFA at each of its overlapping factors as RE1 



80 | 186 

 

can match any input string that matches with RE2 as represented in Fig 4-2. Composite 

DFA [212], [213] is a basic terminology in Automata theory. For a given RE, the first (last) 

fragment is called its eldestson (youngestson), correspondingly other fragments are non-

eldestsons (non-youngestson).  

To match multiple REs together in a single pass, all the eldestsons are compiled into a 

composite DFA, and each non-eldestson is compiled into an individual DFA. Thus, there 

exists a semantic overlapping between the overlapping factors and the patterns, which 

eventually leads to state explosion. Since REs used in real pattern matching engines 

comprise of a large number of such overlapping factors, therefore, the exponential increase 

in the number of DFA states is often seen. Yu et al. proposed RE rewrite rules for a certain 

type of REs, which can limit the size of the DFA as well as the parsing time of REs [57]. 

Thus, the complexities present in real-world REs especially the presence of repeated 

counting constraints and dot star terms cannot be dealt with pure DFA-based solutions 

[214]. In [58], a hybrid finite automata solution is proposed to cut down the state blowup 

problem. The hybrid approach plays a critical role during subset construction where it 

disrupts the NFA to DFA conversion process at those states of NFA, which otherwise lead 

to state explosion. 

Table 4-1 Impact of semantic overlapping on DFA states based on RE type. 

Types RE Types Number of states 

Type1 ES1. 𝛷 ∗ . ES2 No/constant state inflation 

Type2 ES1. 𝛷 ∗ . ES2 Exponential state explosion 

Type3 ES1. 𝛷{𝑚, 𝑛}. ES2 State explosion 

Type4 ES1.∗ 𝛷{𝑛, }. ES2 No state inflation/linear  or polynomial state inflation 

Type5 ^ES1.∗ . 𝛷{𝑛}. ES2 Polynomial state inflation 

Type6 𝑈𝑘=1
𝑛 (𝐸𝑆𝑘1. 𝛷∗. 𝐸𝑆𝑘2) Exponential state explosion 



81 | 186 

 

 

 

Figure 4-2 DFA representing.*ab.*cd.*mn and.*efgh (Some transitions are not presented due to clarity). 

In [26], a study was conducted on six different types of REs of the form ES1. OF.ES2 to 

view the impact of semantic overlapping on states of the corresponding DFA. The results 

are briefly depicted in Table 4-1  where “ES" refers to exact substring, “Φ" refers to union 

set of characters from the alphabet, “m" and “n" are lower and upper limits of the counting 

constraint respectively. It can be observed that Type 2, 3 and 6 can lead to DFA state 

explosion due to semantic overlapping. The interested reader can refer to [210] for the 

detailed quantitative description of each type. Figure 4-2 illustrates an example of DFA 

*ab.*cd.*mn and.*efgh. 

4.1.2 Traffic pattern Grouping Techniques 

As discussed earlier, composite DFA is greatly preferred as compared to individual DFAs 

due to its lower processing cost however there are certain situations in which creating a 

composite DFA of a set of REs become infeasible. There are two well-known reasons 

behind this infeasibility: 

• The composite DFA gives rise to state explosion and storing such a large DFA in 

memory has a very high cost. 

• The parsing of REs takes too long for composite DFA construction. 

The notation of RE is a bit ambiguous as the same pattern can be represented in different 

regular REs with varying efficiencies. The presence of even a single inefficient RE in a 



82 | 186 

 

group of REs often puts a negative impact on the compilation phase for the construction of 

the DFA. For example, the compilation phase can either take an optimal time or it might 

take extremely long (exhausting system resources) depending upon the REs present in a 

group. Therefore, some authors have proposed grouping algorithms to figure out inefficient 

REs and problematic interactions between the REs before making groups [57], [210]. In 

fact, overlapping factors of different patterns can interact with each other in a certain way 

that prolongs the time to implement their DFA (as in the case of exponential state inflation). 

In [210], these problems are addressed by splitting all the REs in the given RE set into two 

categories. Each category comprises of segments of REs such that the segments in the same 

category do not have semantic overlapping. Thus, small changes in REs can bring an 

overall positive impact on the compilation (parsing) phase. 

4.1.3 Alternative Approaches to Pattern Representation 

In the recent past, some alternative approaches to pattern representation have been 

proposed such as Open Data Description Language (OpenDDL) [215], Human-Optimized 

Config Object Notation (HOCON) [216], YAML [217], and MongoDB [218] that are 

based on JSON. While this research only focuses on pattern matching based on RE a 

comparison is presented here with these competing approaches for the sake of 

completeness. 

The OpenDDL is a text-based language for storing or exchanging generic data in a concise 

human-readable format. The data in an OpenDDL file is explicitly typed to eliminate 

ambiguity and fragile inference practices that can impact the integrity of the data. This 

strong typing is further supported by the specification of the number of bits required to 

store numerical data values when using binary notation. 

HOCON is Human-Optimized Config Object Notation and is a human-readable format for 

storing data. It is a superset of JSON and is supported by several frameworks such as Play 

Akka.NET and Puppet. YAML is a human-readable data serialization language commonly 

used for configuration files. It supports various applications that require storage or 

transmission of data, for instance, debugging output and document headers. YAML 1.2 is 

a superset of JSON. Document databases such as MongoDB use JSON to store records, 

just as tables and rows store records in a relational database. Internally MongoDB 

represents JSON documents in a binary-encoded format called BSON. It is an extension of 



83 | 186 

 

the JSON model for the purpose of having additional data types, ordered fields, and to gain 

efficiency in encoding and decoding within different languages. A JSON database returns 

query results that can be easily parsed, with little or no transformation, directly by web 

programming languages such as JavaScript. 

 

Patterns are extensively used to filter data produced by the networking devices to determine 

the malicious traffic in a network. Data can include wide-ranging formats such as HTTP 

data and web traffic or network packet captures. Pattern matching commonly occurs in the 

embedded device sensing the physical properties of the environment such as cameras, 

motion detectors, and temperature and light detectors or in the cloud where the data is 

aggregated. DCI and IDS/IPS also rely on identifying malicious content against defined 

patterns. In all these cases, the language used needs to be expressive enough to parse a 

variety of patterns as well as efficient in terms of space and time requirement.  

Hence, there exist a number of ways to use patterns in different networking applications. 

In the past few decades, REs has emerged as the most appropriate way to define textual 

patterns as they are highly flexible as compared to fixed strings. At a first glance a RE 

seems to be an encoded piece of message e.g. “^a {2, 4} b*{bc | ae} + [^d]". This lacks 

human readability is due to excessive use of meta-characters, which have special meaning 

when they are combined with the literal characters in the RE. At the same time, the 

flexibility present in REs is also due to the use of meta-characters and counting constraints. 

Table 4-2 gives a description of some of the well-known meta-characters that are mostly 

used in REs. 

4.2.1 JSON Format for Network Pattern Representation 

In this section, we first discuss some of the important notations and keywords that are used 

in our proposed JSON-based pattern language. The notation is compared with its RE 

counterpart in order to make a good comparison of the two pattern expression approaches 

as provided in Table 4-2. All the RE-based notations from 1-11 are expressed using key-

value pairs, which is the key characteristic of data representation in JSON. Most of these 

notations are used to put a restriction on the repetition of characters or digits. For example, 



84 | 186 

 

A {5, 10} in RE indicates that 'A' can occur a minimum of 5 times and a maximum of 10 

times. To express this same case in JSON, a keyword, “Rep_Bound" is introduced. Its value 

is an array consisting of 2 integer values. Both values indicate minimum and maximum 

bound respectively for the repetition of character or a group of characters. 

In REs, chars/digits represented inside square bracket (character classes) can express two 

different things depending upon the presence of the caret symbol “^”. If this symbol is 

present inside brackets then any character is allowed except those present inside brackets. 

Otherwise, if the caret symbol is not present then any single character from the given range 

of characters can appear. In JSON, the character class is represented by the key, “Range” 

and its value is an array of three values, where first two values of the array are Boolean and 

the third one specifies the range of characters or digits. The first value of the array indicates 

whether the set of character needs to be negated. In case of negation, it is set to true else it 

is set to false (false indicates any character from the character class can appear). The second 

value of the array specifies if the set of characters have specific repetition requirement like 

“zeroormore” and “oneormore” etc. 

Table 4-2 RE symbols and their equivalent JSON representation. 

Sr

. 
R.E 

JSON 

Notation Comments 

1 {m,n} “Rep_Bound”:[m,n] Min=m (int) , Max=n (int) 

2 {n} “Rep_Bound”:[n,n] Min=Max or m=n 

3 * “Properties":”zeroormore” - 

4 + “Properties”:”oneormore” - 

5 ? “Properties”:”zeroormore” - 

6 . 
“ANYCHAR”: true 

“sANYCHAR”: true 

“sANYCHAR" is used in that case where it has associated 

properties like zeroormore and oneormore 

7 | “OR”: True - 

8 
{abc} 

{abc}+ 

“Range”:[“false”,”false”,”abc”] 

“Range”:[“false”,”true”,”abc”] 

“Range”:[Negation (bool), Properties (+,*,?) (bool), range 

of chars] 

9 

{^abc} 

{^abc}

+ 

“Range”:[“true”,”false”,”abc”] 

“Range”:[“true”,”true”,”abc”] 
- 

10 ^ “Start”: true Pattern should appear at the start of a string 

11 

TexttP

artofPa

ttern 

“Chars” : “TextPartofPattern” 

“ssChars”: “TextPartofPattern” 

\sChars" is used in that case when the chars have 

associated properties like zeroormore and oneormore 

 

Furthermore, we have also designed and implemented the architecture that makes use of 

JSON-based patterns. These patterns are used for inspecting network traffic and its details 

are given in Chapter 6. Next, the representation of patterns in the JSON format is discussed 



85 | 186 

 

here using examples. 

4.2.2 Description of Patterns 

Following is the description of a pattern, which is to be represented in JSON format: (The 

equivalent RE of this pattern can be expressed as “^a{2,4}b*(bc|ea)+[ ^d]"). 

• The pattern should be present at the start of a string  

• It should start with 'a' that occurs a minimum of 2 times and a maximum of 4 times  

• Followed with zero or more occurrences of 'b'  

• Then, one or more occurrences of “bc” or “ea” 

• At last, the pattern should end with any character other than 'd' 

Example 1: A pattern comprises of different small sub-patterns or logical blocks. The first 

step of the proposed format is the identification of these logical blocks. Once they are 

identified, it becomes easier to write a pattern in JSON without any collision of the same 

keys as multiple keys with identical names are not allowed within the same structure in 

JSON. Here, the pattern described above forms four logical blocks. For each block, a value 

is defined that can be an integer, string, NULL, boolean, array or an object. In our example, 

a pattern is required to be present at the start of the input string that is specified by the key 

“Start”, which is set to “true” in the pattern as described below. Then, “B1” is defined 

which is the next logical block.  

Here, the keyword, “sChars” is used for “a” as it has some specific repetition requirements 

that are defined using “Rep_Bound”. It states that character “a” can occur a minimum of 2 

times and a maximum of 4 times. For the logical block “B2”, another object is defined, 

which states that “b” can occur zero or more times as mentioned by “Properties”. Next, an 

object is defined for “B3” that also has a sub-object “B 3a”. In the absence of “B 3a", the 

key “Chars” might have collision inside the “B3" object resulting in invalid JSON pattern. 

Moreover, keys “GroupStart” and “sGroupEnd” are also used in order to mark a boundary 

on which the OR operation is valid. Here “sGroupEnd” is used, which demonstrates that 

the bounded group of characters has associated repetition properties (“one or more” in this 

example) otherwise “GroupEnd” is used. The last logical block of the pattern is “B4”, 

where “Negation” is set to true in the array of “Range”. This means that any character other 

than “d” can appear as the last character of the pattern. Figure 4-3 provides the illustration 



86 | 186 

 

of logical blocks of the pattern. The Figure 4-4 illustrates the example of pattern 

representation in JSON. 

The first step is again the identification of logical blocks of the pattern. The above pattern 

comprises of 5 logical blocks (“B1”, “B2”, “B3”, “B4”, “B5”). An illustration of the logical 

blocks for the same pattern expressed in a RE is depicted in Fig 4-3. The JSON 

representation of this pattern is also provided. Here, it can be observed that a sub-object 

“B-5a” is defined for logical block “B5”. This is performed in order to avoid the collision 

of key “Chars”. As mentioned earlier, the main role of these blocks is to avoid any identical 

key name collision. 

 

Figure 4-3 Illustration of logical blocks of the pattern. 

Example-2: The following is another description of a pattern for representation in JSON:  

• The Pattern starts with “translate?”. 

• Followed with zero or more occurrences of any character. 

• Then “langpair=” appears. 

• Followed by one or more occurrences of any single character from the range of 

278. 

• a-z or A-Z. 

• At last, the pattern should end with either “|” or “%7C”. 

Example-3: Here is another example of a pattern, equivalent RE which can be expressed 

as “.gif\x3f [a-f0-9] {4, 7}\x3d\d {6, 8}" 

For JSON representation, the description of this pattern is as follows: 

• The pattern can start with any character followed by “gif”. 

• Then, the character “?” with position 0x3f in the character set. 



87 | 186 

 

• Afterwards, any single character from the range of a-f or 0-9 with minimum 

occurrence 4 times and maximum 7 times. 

• Followed by the character “=” with position 0x3d in the character set. 

 

 

Figure 4-4 Examples of pattern representation in JSON. 

  

Figure 4-5 Parsing of JSON files using SAX-style parser. 

Figure 4-5 illustrates the parsing of JSON files using Simple API for XML (SAX)-style 

parser. At last, the pattern should end with a digit from the range 0-9 with minimum 

occurrence 6 times and maximum 8 times. Here, three main objects or logical blocks “B1”, 

“B2” and “B3” are defined for the pattern. It can be seen in this representation that there is 

no special need for object creation for “B1” and “B3”. It is due to the reason that there is 

no keyword in common between the two. As a result, the content of both these logical 



88 | 186 

 

blocks can be written without the creation of any objects. However, the presence of three 

logical blocks avoids any ambiguity in the case of large and complex patterns. 

Furthermore, a pattern can have different representations in JSON. For example, there is a 

pattern that starts with either “Reader” or “Leader” followed by any two digits from the 

range of “0-9”. This pattern can be expressed in different ways but here we discuss only 

two JSON variants of it. Figure 4-6 illustrates another representation of RE in JSON. 

 

 

 

 

 

 

 

Both representations are efficient as they can represent the pattern in an equal number of 

states (i.e. 9 states) in DFA. However, if the DFA minimization algorithm is not applied 

then it is observed that Representation-1 is much more efficient as it can represent a DFA 

in nearly half of the states (9 states) as that required by the Representation-2 (15 states). 

This experiment is conducted on our JSON-based pattern matching engine, which is 

discussed in Chapter 6. Due to the event-based parsing style adopted for patterns and as 

observed through experiments, it can be observed that JSON patterns take optimal time in 

the compilation phase and their resultant DFA structures are realizable in memory too. Fig 

4-8 illustrates the structure of JSON Pattern Matching Module. The pattern can be 

expressed in different ways but here we discuss only two JSON variants of it Figure 4-7. 

 

 

 
Figure 4-6 Another example of RE representation in JSON. 



89 | 186 

 

Figure 4-7 Representation of RE 

 

Figure 4-8 JSON pattern matching module. 

 

Parsing is an initial stage of the multi-stage pattern matching process. Once a pattern is 

defined, it is first divided into tokens, which are then parsed to determine the relationship 

among the tokens. In case of REs, a binary tree is often built during parsing of the 

expression. Next, the tree is converted into an NFA and finally into a DFA. Parsing is a 

significant part of any pattern matching process. Therefore, this chapter reviews different 

parsing techniques available especially for JSON as we have proposed a JSON approach 

for pattern representation. Following are three broad classes of parsers. 

• DOM-style Parser 

• SAX-style Parser 

• StAX-Style Parser 

4.3.1 DOM-style Parser 

The DOM (Document Object Model) allows the parser to load the entire content, which 

needs to be parsed into the memory. The content is stored there in a tree-like structure 

before any program starts processing it. Any node of the tree can easily be accessed, 

modified or deleted as data is always available in the memory. However, this type of parser 

is not considered a good option when memory resources are low and data is large. In such 

a case, it can consume a large memory to store the entire content in a tree-like structure. 

Thus, DOM is only useful when data is small and it often needs modifications.  



90 | 186 

 

In our case, the data comprises of JSON-based patterns. This data can be large if a 

composite DFA of multiple patterns is built otherwise it is small if an individual DFA is 

built against each pattern. Hence, the memory cost actually depends on the design of the 

application. Moreover, the capability of the DOM-based parser to access any part of the 

document easily for modifications/deletions does not add much worth in the present 

scenario. This is due to the reason that JSON-based patterns do not require random access 

while parsing for any sort of modification. 

4.3.2 SAX-style Parser 

SAX is an event-based parser, which reads through the document and triggers an event, for 

instance, it encounters something like the start or the end of the object or array. The events 

are pushed to the event handlers in order to take appropriate action. The SAX () parser is 

based on a push model. An illustration of the scenario using a SAX parser for parsing JSON 

patterns is also presented in Fig 5-4. Unlike the DOM, the content can be read in small 

parts without exhausting the memory as there is no need to load the entire document or 

content into memory. For JSON-based patterns, a SAX-style parser seems to be the most 

appropriate option due to following reasons. 

• The pattern matching engine needs to compile (parse) the set of patterns without 

random access to any pattern and modification on a certain part of the pattern later once 

it is processed.  

• It can handle both large and small pattern files efficiently even if memory resources 

are low. 

4.3.3 StAX-style Parser 

A StAX (Streaming API for XML) parser is based on a pull model in which the program 

decides the part of the streaming data that needs to be accessed. Unlike SAX, the data is 

not pushed into the program but is instead extracted by the StAX parser. This is performed 

based on instructions from the program as parsing is controlled by the application. 

Furthermore, data is read in small chunks just like in the case of a SAX parser instead of 

exhausting resources by storing the entire document into memory. Due to the following 

reasons, a StAX-style parsing is not suitable for parsing JSON patterns: 



91 | 186 

 

• Each part of the pattern file is highly significant and no part of it can be skipped (as 

a StAX parser allows to skip data) while parsing the file. 

• The application needs to know the exact structure of the pattern well before parsing 

as it has to pull the data. However, in our case, every JSON-based pattern will have 

its own structure and it is not convenient for the application to know the structure 

of every pattern before parsing. 

Figure 4-8 illustrates the architecture of the JSON pattern matching module. There are a 

number of parsers available for parsing JSON content. A brief comparison of 

characteristics of some of the well-known parsers is presented in Table 4-3. These 

characteristics include. 

1. Language: Language supported by parser 

2. Technique: The paradigm used by the parser to pass its results to the application. 

For example, SAX, DOM and StAX etc.  

3. Validation: Whether or not the parser checks the JSON for validity and syntax 

errors. 

4. Low memory usage: Whether or not the parser stores the input or a complete 

representation of the input in memory. A system whose memory usage is dependent 

on the length of the input is considered to have high memory usage. 

5. Streaming support: Whether or not the parser can process JSON from a stream in 

real time. This implies that the input can be processed without having the entire 

JSON document on hand. 

6. Here, it needs to be mentioned that no particular parser can be labeled as the most 

efficient as some parsers perform extremely well on small data whereas others 

perform efficiently on larger datasets. For instance, the DOM-based parser 

performs extremely well on small data but in the case of large data, a SAX/StAX 

parser is generally preferred. This is due to the reason that the DOM requires the 

entire content to be stored in memory that exhausts the resources and is highly 

inefficient. Thus, each style of parser has its own pros and cons. Therefore, there 

are many parsers that support a combination of DOM, SAX or StAX in order to 

provide the optimal performance depending upon the application requirements. 

However, it appears from all the above discussion that a SAX-style parser is still 

the most appropriate choice for parsing JSON-based patterns. 



92 | 186 

 

Table 4-3 Comparison of relevant parsers. 

Parser 

 

Langua

ge 
Technique Validation 

Low Memory 

Usage 

Streaming 

support 

RapidJSON 

[34] 
C++ SAX/DOM like Yes 

Yes (in case of 

SAX) 
Yes 

JSONCpp [35] C++ DOM like Yes No No 

JSONlite [36] C SAX like Yes Yes Yes 

YAJL [37] ANSI C SAX like Yes Yes Yes 

Jettison Java Stax like No Yes Yes 

GSON [38] Java 
DOM/Streaming/mixed 

(DOM+ streaming) 

Yes (in case 

of 

DOM) 

Yes Yes 

Jackson [39] Java 
StAX-like, Data 

binding/DOM like 

Yes (in case 

of 

DOM) 

Yes Yes 

 

This section has three main parts. The first part highlights the significance of the 

compilation phase by comparing it with the matching phase on the basis of different 

metrics. As mentioned earlier, patterns are generally compiled offline into a DFA and later 

the stored DFAs are used for pattern matching. However, patterns are nowadays updated 

very frequently. Therefore, if patterns are compiled in real-time then not only can memory 

be conserved but also the latest or updated patterns can be used in real-time. Here, we may 

expect the compilation phase to create a bottleneck. The objective of the experiments in 

the first part of this chapter is to prove the comparative complex of compilation in time and 

memory and make a case that research needs to be conducted in this area. The second part 

of this chapter evaluates the performance of the proposed JSON-based expressions and 

compares the effectiveness of this new approach with REs. All the experiments have been 

performed on a system with 2.5 GHz Intel Core I5-3210 M processor and 4 GB of memory. 

The third part of the evaluation determines the effectiveness of the proposed pattern 

language through a user study whereby real users comment on the acceptability of the 

syntax in comparison to competing approaches. 

4.4.1 Comparative Evaluation of Compilation and Matching Phase 

We performed some experiments to compare the complexity of the compilation and 

matching phase of DFA-based RE processing engines, which includes RE2, Rexgrep and 

Regex-Processor [40], [41], [42]. These engines are profiled and instrumented using Perf 

and Pintool respectively to determine different performance metrics and instruction types 



93 | 186 

 

as will be discussed later in this chapter [43], [44]. Moreover, a network trace file of size 

1.2 GB (obtained from DARPA IDS datasets [45]) is matched against different sets of REs 

using all the available matching engines. The details of these RE datasets is given in Table 

4-4. The datasets ranging from 1-5 comprise of Perl Compatible Regular Expressions 

(PCRE) from Snort [219].  

Table 4-4 RE Dataset usage details. 

Datasets RE2 RE Processor Rexgrep 

snort24 ✓ ✓ X 

Snort30 ✓ ✓ X 

Snort40 ✓ ✓ X 

Snort50 ✓ ✓ X 

Snort60 ✓ ✓ X 

random21 ✓ X ✓ 

Random30 ✓ X ✓ 

Random40 ✓ X ✓ 

Snort24 through snort60 consist of increasing number of RE patterns and hence the DFA 

states that are generated also increase. Snort RE datasets present a good candidate for 

evaluation of our work because pattern matching engines like IDS need to 

be frequently updated with new patterns. However, patterns expressed using REs are long 

and extremely complex; snort60 comprises 60 REs for instance. It is tedious to design such 

patterns and keep them updated. In this regard, if a previously defined RE needs to be 

updated, then one of the problems is to locate the exact place where changes are required. 

Secondly, it is not easy to be certain that one has not disturbed the remaining RE while 

modifying the previously defined RE. 

Table 4-5 Description of characteristics of RE datasets. 

Sr. Dataset No. of RE 

(patterns) 

% anchored 

RE 

(^,$) 

% RE using 

wildcards 

(*,+,?) 

% RE with length 

restrictions 

{n},{n, m} 

1 snort24 24 50 79.16 0 

2 Snort30 30 86.6 100 6.66 

3 Snort40 40 70 30 15 

4 Snort50 50 64 66 26 

5 Snort60 60 58.3 56.66 20 

6 random21 21 0 42.86 4.76 

7 Random30 30 0 30 3.33 

8 Random40 40 0 22.5 2.5 

 



94 | 186 

 

In view of these problems, it can be observed that our proposed JSON representation is 

appropriate for defining large and complex patterns and is also capable of handling quick 

modifications. This approach allows the creation of logical blocks of the pattern. If a 

network security admin were to remove certain blocks from the snort dataset defined in the 

JSON pattern, then it is easier to locate those blocks. Moreover, problems like invalidity 

of the pattern will not arise after certain blocks in the pattern get removed or modified.   

Then, there are three more datasets: random21, random30 and random40, which are created 

using different real-world RE sources of varying complexities. These random datasets are 

non-anchored and are fully compatible with Rexgrep as it does not support anchored REs 

by default and some other important features of PCRE. Non-anchored RE is a pattern that 

has no anchors, ^ for start of string, and $ for the end of string, and thus allows partial 

matches. In the case of Regex-Processor, each random RE datasets gives rise to more than 

100,000 states during the NFA to DFA conversion. This ultimately leads to building up of 

multiple smaller DFAs for a single RE dataset. However, we are interested in performing 

all the experiments using a single composite DFA for each given RE dataset. As discussed 

earlier, multiple smaller DFAs and single composite DFA for a set of REs have different 

impacts on the parsing and matching speed. Therefore, random21, random30 and 

random40 are not used for Regex-Processor. A brief overview regarding the usage of all 

the RE datasets against each of the matching engines is presented in Table 4-4. 

First, we measured the time taken individually by the compilation and matching phases for 

the given RE datasets. In the case of Regex-Processor and Rexgrep, the time taken by the 

parsing (compilation) phase for each dataset is considerably high as compared to the 

matching phase. However, the results are extremely opposite in the case of RE2 where the 

compilation phase takes less time as compared to the matching phase.  



95 | 186 

 

  

 

Figure 4-9 Time elapsed in compilation and matching phase. (a) RE2  (b) Rexgrep (c) Regex-Processor. 

Figure 4-9 demonstrates the time plots for all the three matching engines RE2 takes 3 

milliseconds on average for all the RE datasets, which is the fastest among the three 

matching engines. Such results from RE2 are due to its unique style of compiling REs. In 

RE2, a set of REs is first parsed to create a parse tree, which is then compiled into a set or 

a graph of instructions known as \Prog". Afterward, its DFA engine executes \Prog" to 

search for any pattern against the input stream during the matching phase. 

Next, we determine the cache misses that occurred in all the RE engines during the 

compilation and matching phase while processing the datasets. There are a number of 

factors responsible for slower program execution time and a cache miss is often considered 

one of those factors. The increase in complexity of RE pattern matching directly leads to 

more program instructions being generated during compilation. This degrades the ability 

to cache instructions in fast access memory leading to a higher cache miss rate and more 

instructions have to be fetched from the slower main memory. Overall, this reduces the 

performance of pattern matching. Depending on the application e.g. firewall, IDS this 

might cause some important steaming data to be dropped or clients experiencing a large 



96 | 186 

 

response time as the data arrival rate exceeds the processing rate. As presented in Figure 

4-10, both Regex-Processor and Rexg represented a high number of cache misses in their 

compilation phase as compared to the matching phase.  

  

 

Figure 4-10 Cache misses in compilation and matching phase. (a)RE2 (b) Rexgrep (c) Regex-Processor. 

The impact of cache misses on the execution time of both the phases can also be observed 

in Figure 4-9. The higher number of cache misses during the compilation of REs leads to 

higher execution time as well. Unlike Regex-Processor and Rexgrep, RE2 results in a small 

number of cache miss during compilation as compared to the matching phase. Figure 4-11 

also demonstrates the cache misses per second for each of the RE engines. Here, both RE2 

and Rexgrep results in a higher number of caches miss per second in the parsing phase as 

compared to their respective matching phases. Next, we determined Cache Misses to 

Instructions Ratio (CMIR) that calculates the number of cache misses per instruction. This 

ratio should be as low as possible. CMIR is quite low in all our experiments but if we 

compare this ratio between compilation and matching phases then the results depict that 

RE2 and Rexgrep have high CMIR in their compilation phase. In the case of Regex-

Processor, CMIR is nearly the same for both the phases as represented in Figure 4-11. 



97 | 186 

 

  

 

Figure 4-11 Cache misses to instructions ratio. (a)RE2 (b) Rexgrep (c) Regex-Processor. 

The processing speed of the instructions is often highly affected by the use of complex 

instructions. Therefore, a comparison of the instruction set (determined using Intel's 

Pintool) is made that is used by the compilation and matching phases for all the three RE 

processing engines. The significant instructions are broadly classified into five categories: 

Arithmetic, Logical, Cmp and Test, Data Movement and Jump instructions as provided in 

Table 4-5. Due to space limitations, the results for Regex-Processor (snort50) and Rexgrep 

(random40) are only presented in Figure 4-12. It can be seen that the compilation phase 

has a higher set of instructions in all the categories as compared to the matching phase. In 

addition to this, data movement instructions are highly used during the compilation of 

patterns that often adversely affects the energy efficiency and performance of the system. 

Therefore, it can be concluded from these experiments that the compilation phase is highly 

memory intensive as compared to the matching phase. 



98 | 186 

 

  
Figure 4-12 Occurrences of different instruction types in compilation and matching phase. (a)Rexgrep 

(random40), (b) Regex-Processor (snort50). 

Table 4-6 Classification of opcodes into categories. 

Instruction Types OPCODES 

Arithmetic ADD,DEC,INC,SUB,PSUBB, DIV,IDIV,IMUL,MUL,NEG 

Logical AND, OR, XOR, POR, PXOR, ROR 

Cmp and Test TEST, CMPXCHG, CMP 

Data Movement 
MOV,MOVD,MOVDQA,MOVDQU,MOVHPD, 

MOVLPD,MOVQ,MOVSQ,MOVSD XMM,MOVSX,MOVSXD,MOVZX 

Jump JB,JBE,JL,JLE,JMP,JNB,JNBE,JNL,JNLE,JNS,JNZ,JS,JZ 

4.4.2 Evaluation of JSON-based Patterns 

In this section, we evaluated the performance of our proposed JSON-based patterns with a 

particular focus on their compilation (or parsing) phase. Fig 4-13 presents an overview of 

the JSON pattern processing engine that is used for the evaluation. We used the Regex-

Processor available at [42] to facilitate the compilation of JSON patterns. By default, 

Regex-Processor makes use of only REs to create automata that are further used for 

matching patterns against any input stream. However, we added another module in the 

Regex-Processor for processing JSON-based patterns. This module is marked as 

compilation phase-I in Figure 4-13. In addition to this, some modifications were also made 

in the Regex-Processor to make it compatible with JSON patterns. Moreover, we used five 

datasets of patterns, which includes snort 24, snort30, snort40, snort50 and snort60 for 

performance evaluation of JSON patterns.  

Table 4-6 contains the opcodes used in pattern matching in the current research. These are 

the same datasets that we described in the previous chapter but there each dataset comprised 

of REs. Here, the patterns used in the dataset are the same but are expressed in JSON 

format. Once the pattern file is taken as input in the compilation phase-I then it is parsed 

using the Rapidjson library [34] to extract meaningful tokens from the file. Here, the term 



99 | 186 

 

“meaningful tokens" refers to those tokens that play a critical role in the creation of FA. 

As a result, tokens like “StartofObject”, “EndofObject”, “Start of Array” and some Boolean 

values, etc. are ignored while parsing the pattern file (comprises of a number of JSON 

patterns).  

The output of the compilation phase-I is a file of tokens. This file is then read in the next 

stage where the NFA is formed using the information conveyed by the token or a group of 

tokens. After the formation of the NFA, the engine makes use of its built-in algorithms to 

reduce the size of the NFA, which is then converted into the DFA. Next, the compiled DFA 

is used to match patterns against the input stream. We used different performance metrics 

for evaluation of the compilation phase. The metrics used for evaluation include cache 

misses, cache misses per second, cache miss to instructions ratio and time elapsed. The 

results are given in Figure 4-12 where it can be observed that the JSON approach has not 

resulted in a significant change over REs. In fact, both REs and JSON expressions have 

depicted nearly the same trend in performance. 

 

Figure 4-13 Overview of JSON pattern processing engine. 

4.4.3 Evaluation of JSON-based patterns 

Figure 4-13 describes the overview of JSON pattern processing engine. For the empirical 

evaluation of the effectiveness of our work regarding the acceptance of syntax, we 

conducted a user study. On-line access to the JSON pattern processing engine and 



100 | 186 

 

associated rule-sets was provided to a mix of programmers and students, the demographics 

summary of which is demonstrated in Table 4-7. 

Table 4-7 Summary of demographics. 

Total: 26 

Total Users Postgraduate students: 15 (58%) Professionals: 11 (42%) 

Age 25-48 years 

Working Experience in IoT Yes: (27%) No: 0% 

Experience in RE parsing techniques. 3-6 years (19%) 8-12 years (23%) 

The procedure for the study was as follows: 

1) The participants were initially provided the domain background regarding the use of 

pattern matching using REs without going into any details of the strengths or limitations 

of the current state of the art RE pattern languages. 

2) The objective of the study was communicated, namely to determine the effectiveness 

of a new RE language for pattern matching.  

3) The architectural design and side-by-side examples of expressions for the proposed and 

existing approaches for the snort dataset were provided. 

4) Participants practiced writing their own expressions using online-access to the JSON 

pattern processing engine based on the syntax and usage details provided. 

5) After completing the exercise, the participants answered the survey questions. 

 The survey results (Table 4-8) corroborate the expressiveness and extensibility of the 

proposed JSON-based RE pattern expression language.  

4.4.4 Results Analysis  

This section summarizes the results and conclusions drawn from all of the above 

experiments. The experiments are divided into two sections where the first section signifies 

the critical nature of the compilation stage of the pattern matching engine. For unbiased 

evaluation, we performed all these experiments on three different RE processing engines 

which include RE2, Rexgrep, and Regex-Processor. Then, compilation and matching 

phases of these engines are compared on different metrics like time elapsed, cache misses, 

cache misses per second and CMIR. The datasets of patterns (REs) with varying 

complexities run against each matching engine. The results related to cache misses 



101 | 186 

 

demonstrated that cache misses are relatively high in the compilation phase as compared 

to the matching phase. 

Figure 4-14 illustrates the time elapsed and Figure 4-15 presents the cache misses on 

different dataset patterns. High cache misses and CMIR has a negative impact on a 

particular task as they are one of those factors that are often considered responsible for the 

slower execution of the task. In the present case, Regex-Processor and Rexgrep 

demonstrated higher execution time for the compilation phase that can be linked with 

higher cache misses. Furthermore, we also analyzed the instruction types involved in both 

the phases in order to determine the memory-intensive phase between the two. Again, it 

was observed that the compilation phase is much more memory intensive (a large number 

of data movement instructions) as compared to matching phase. Hence, the experiments 

conclude that the compilation phase of the patterns is also as significant as matching phase 

especially if patterns are compiled in real-time. 

 

 

Figure 4-14 Time elapsed. 



102 | 186 

 

 

Figure 4-15 Cache misses. 

 

Figure 4-16 Cache misses per second. 

The second part of this section evaluates the performance of our proposed JSON-based 

patterns. Again, JSON patterns are evaluated at the same time and cache related metrics. 

However, the comparison is made this time between JSON-based patterns and REs. JSON 

patterns and (optimized real-world) REs illustrated nearly the same results. This 

phenomenon demonstrates that JSON-based patterns can be used in matching engines 

without any efficiency compromise while providing an extensible and unambiguous 

notation. Figure 4-16 illustrates the cache misses per second on different datasets. 

Moreover, Figure 4-17 presents the cache misses to instructions ratio where the snort40 

has the lowest and snort60 has the highest cache miss to instruction ratio.  



103 | 186 

 

 

Figure 4-17 Cache Misses to instruction ratio. 

The JSON-based pattern matching engine was also compared for studying accuracy with 

the three systems listed in the Table 4-4. All performed equally accurate for their supported 

RE datasets, as all worked on the principle of exact match. However, the coverage of each 

system is different as depicted in the table refrenced above. Only our presented system and 

RE2 were able to run all kind of regular expression sets. It is to highlight that due to the 

custom design, our developed system can also handle the approximate matching scenarios. 

Our research focus was to come up with a pattern matching engine with wider coverage, 

support for all matching scenarios and with efficient pattern compilation step, and the 

presented sytem ticks all the boxes. 

Finally, the results of the user survey support the effectiveness of the approach. A majority 

of the users surveyed indicated that the proposed JSON-based RE language is extensible, 

expressive, user-friendly and useful for their development activities. 

Table 4-8 Summary of survey questions and results. 

Survey Questions 
Results 

Yes Some extent No 

The JSON-based parser allows defining the patterns in a less ambiguous way as 

compared to other related languages. 
74% 11% 15% 

The proposed JSON-based parser is extensible. 86% 7% 7% 

The proposed JSON-based parser is expressive. 92% 4% 4% 

I was easily able to learn the JSON-based RE syntax and define simple to 

complex patterns. 
69% 19% 12% 



104 | 186 

 

The JSON-based parser stimulated my interest in learning about good pattern 

writing techniques. 
58% 15% 27% 

Were you already aware of the limitations of current RE-based pattern matching 

languages? 
31% 38% 31% 

Application is user-friendly. 46% 23% 31% 

I would like to use the JSON-based parser in my development activities. 65% 19% 16% 

The abilities of the proposed parser are useful for my technical domain. 74% 12% 14% 

 

 

In this research, we propose a JSON-based pattern matching engine as the first line of 

defense in order to solve the problem of LFA on the control channel. To the best of our 

knowledge, we are the first ones to propose the idea to protect the control channel against 

LFAs. Our work lies at the intersection of infrastructure security and enables virtualization. 

It aims at securing large-scale infrastructures from LFA and providing seamless operation 

during the attacks. In this chapter, we presented high performing co-processing architecture 

which performs efficient pattern classification using the DFA techniques. It stores a 

repository of the attack patterns however it is equally feasible in using the novel traffic 

patterns which are aimed by the smart adversaries to deceive the pattern matching engines.  

Current state-of-the-art techniques employ pattern matching techniques to identify 

malicious traffic patterns. The patterns of the malicious traffic are identified and the 

incoming traffic is compared with those patterns. The requirements for the DCI 

technologies need faster algorithms to perform the rea-time packet inspection. More often 

the network security applications are implemented in the high-speed networks as middle 

boxes hence the algorithms need to perform the tasks in near real-time. The DCI techniques 

are often deployed as hardware solutions which possess a very high-cost memory; 

therefore, space efficiency is required in the DCI solutions. Our proposed DCI engine 

consumes a low amount of space and is extremely time-efficient. It offers efficient time-

space efficiency which makes it an optimal solution for pattern matching problems.   

We have developed a pattern matching engine which incorporates a repository of malicious 

traffic patterns. Some attackers confuse the DCI engine by employing unconventional 

fragmented IP packets however, our DCI engine can detect these novel type of attack 



105 | 186 

 

patterns. Moreover, the processor in the prevailing solutions may not be equally supportive 

in novel traffic patterns however, the processor we used can detect the new attacks 

efficiently.  

We have discussed the importance of pattern matching technique in detecting LFA. Pattern 

matching provides an efficient mechanism to represent different data patterns using REs. 

In the same way, malicious network traffic patterns can be represented using REs. Hence 

we can learn the flood traffic patterns and compare them with the attack traffic and mitigate 

them. We use pattern matching as the first line of defense against LFA. In the next chapter, 

we discuss ML techniques to detect and defend against LFA, tools used in this context, and 

algorithms which can provide efficient results in classifying network traffic.  

  



106 | 186 

 

5 CHAPTER 5. MACHINE LEARNING TOOLS, TECHNIQUES, AND ALGORITHMS 

In this Chapter, we aim to answer research questions 7 & 8  given in the section 1.7.1. It is 

important to present a study of various ML algorithms relevant to traffic classification, and 

to explore the various training datasets used by researchers globally. The intent of the 

upcoming sections is to provide basis for designing a ML classifier capable to use multiple 

data sets, and then conduct some basic experimentation to ascertain the suitability of it as 

a module in the larger CyberPulse solution. Therefore, the study of different ML 

algorithms, and training these through various tools with variety of dataset is essential to 

shortlist the tools that we will be using to train and test CyberPulse traffic classifier. 

Towards this end we also provide an overview of selecting the right tools for ML problems 

by considering multiple performance parameters. To help reader understand the context, 

we also discuss the steps to select the right ML algorithm depending upon the problem 

scenario. Finally, we connect all the dots and provide a detailed explanation on the training 

of CyberPulse ML classifier including the preprocessing, the dataset explanation, and the 

steps for training the classifier.   

ML algorithms are being deployed in every field of life during the past few years. 

Previously ML was supped to be used in the traditional computing studies only, however, 

due to the huge amount of data production during recent years, they are being used in every 

field of life [220]. Modern networks also produce a huge amount of data on traffic 

forwarding, network attacks, surveillance, and traffic engineering. This data can be utilized 

to perform security checks in the networks. Efficient handling of data facilitates the 

decision making which ultimately helps current data center networks to operate without 

facing network outages.  

In this chapter, we provide a detailed discussion on ML algorithm, tools, their working 

principles, selection of the relevant tools, and algorithms for the required problems. This 

chapter will facilitate the network security providers to select appropriate tools and 

algorithms for their problems and will make the basis of the key decisions taken in the 

CyberPulse prototype.  

The ML algorithms provide the ability to learn from the data and to aid in decision making. 

The learning in the ML algorithms can be regarded as learning from the functions or 

leaning the intrinsic structures in the unlabeled data. Moreover, an instance-based learning 



107 | 186 

 

example can be employed to learn from the training data which can produce the class label 

for the new record without much human intervention. This is performed by comparing the 

new record with the already available records.  There are a huge number of algorithms 

available which produce results based on intrinsic computational methods to transform the 

inputs into the output. Selection of right ML algorithm poses a vital challenge on the ML 

experts who need to solve a complex computation problem. As different algorithms are 

used for disparate problems as classification, clustering, anomaly detection, outlier 

detection, variance detection, and outcome prediction algorithms are used for different 

types of problems.  

For an optimum decision on ML algorithm selection, different algorithms can be analyzed 

by running a small-scale experiment and finally the best performing algorithm can be 

chosen. Keeping in view this challenge in the upcoming section, we provide a detailed 

analysis of the ML algorithms which highlight the core properties of the algorithms for 

specific tasks. Below is a list of well-known algorithms. Details of each are intentionally 

being skipped as any ML text contains step by step guides on these and the variants.  

• K-means Clustering 

• Principal Component Analysis 

• Logistic Regression 

• Support Vector Machines 

• Feed Forward Neural Networks 

• Conditional Random Fields 

• Decision Trees 

• Artificial Neural Networks 

Some experimentation in the forthcoming section 5.4 and 5.5 cites these algorithms for 

model training and tuning.  

 

ML tools are an important part while solving complex real-world problems where the 

selection of the right tool can become an important aspect in working with the ML 

algorithms. Proper tools selection assists in automating the process of applied ML. Without 

a properly selected tool, each capability needs to be developed manually from scratch 



108 | 186 

 

which consumes a lot of time. The tools in this domain make it easy to perceive an idea 

and quickly getting the results out of it, but there are plenty of free ML tools available on 

the internet. Therefore, a short survey on tooling is deemed necessary here. 

Flood traffic classification comes under the category of normal data classification which 

do not require support for big data. Considering this, Weka seemed to be a logical choice 

to perform the classification of the given traffic dataset. However, for the benefit of the 

research community, a comparative analysis was intended to assess the feasibility and 

various features of all useful freely available tools.  

Table 5-1, compares state-of-the-art ML tools which include Weka, D4J (Deep 

Learning4J), Tensor Flows and Encog3. Selection of these tools is based on their extensive 

use for current ML problems. The comparison is performed based on parameters, including 

source code, help and support, license type, programming language support, compatibility, 

documentation, and performance. Figure 5-1 describes the parameters for the programming 

tool selection for ML tasks. The detailed description of comparison parameters is given in 

the subsections. 

Table 5-1 Comparison of deep learning tools. (scale 0 – 10) 

Comparison 

Parameters 
Weka D4j TensorFlow Encog3 PyTorch 

Source Code 
Java 

framework 

Java 

framework 

Python API 

over C++ 

engine 

C# framework Lua-based 

License 
Open 

source 

Open 

source 
Open source Open source Open source 

Programming 

Language 
Java Java Python C# Python 

Compatibility No issues No issues 
Less backward 

compatibility 

Less backward 

compatibility 

Less backward 

compatibility 

Dataset Size 
Small 

datasets 

Larger 

datasets 
Big datasets 

Medium sized 

datasets 
Big Datasets 

Development 

Mode 
GUI-based Code-based Code-based Code-based Code-based 

Help & Support 9 6 7 5 4 

Documentation 9 6 7 5 6 

Performance 9 7 6 8 9 

 

 



109 | 186 

 

 

Figure 5-1 Programming tools selection criteria. 

 

From the table above PyTorch and Weka are the two tools with a very high rating on 

performance scale. At this stage it is important to discuss each of the five mentioned tools 

one by one. 

5.1.1 WEKA 

WEKA facilitates the core of ML problems, i.e. classification and clustering. It contains 

useful preliminary features to do data-related tasks including filtering, preprocessing, 

classification, aggregation, clustering, and many others. It facilitates the development of 

novel approaches in the field of ML. It has been developed using JAVA programming 

language. WEKA offers SQL connectivity using JAVA Database Connectivity (JDBC). It 

offers an explorer interface moreover it also offers the same functionality using the 

knowledge flow and Command Line Interface (CLI). 

5.1.2 Encog3 

 Encog3 is a C# based framework for ML tasks, it can be used for all the ML problems 

along with a range of medium-sized datasets. However, there is limited support available 

for Encog3 and it requires strong skills of C# language to develop ML solutions. It is 



110 | 186 

 

mainly used for neural network programming. The weight, thresholds and the number of 

hidden layers in ANN can be efficiently computed using Encog3.  

5.1.3 TensorFlow 

 Google TensorFlow is the most widely used deep learning library in the world. Google 

uses TensorFlow to classify the datasets and provide the user with a good experience. 

TensorFlow is a state-of-the-art ML tool which supports Big Data, however, TensorFlow 

is fully supported only by python language. It is an advanced ML repository for solving 

ML problems which is suitable for big datasets, the computations performed by 

TensorFlow are highly accurate, but it requires slightly higher time for model development 

as TensorFlow operates based on graphs.  

5.1.4 Deeplearning4j 

Deeplearning4j ML tool is based on the java framework and requires higher performance 

computing infrastructure for operation. It supports the state-of-the-art Big Data 

frameworks like Apache Spark, and Hadoop to boost the model training. Moreover, it uses 

open-source libraries and its backend language is Java which enables it to be utilized with 

any JVM language like Scala, Clojure, and Kotlin. The Eclipse D4j is the first of its kind 

library to be employed with Java and Scala. It introduces deep neural networks from the 

shallow nets which individually is called as a layer enabling the data scientists to employ 

multiple autoencoders like recurrent and conventional nets. 

5.1.5 PyTorch 

It is a deep learning framework which is based on Lua. The underlying operation of 

PyTorch is based on TensorFlow which works by generating Directed Acyclic Graph 

(DAG) of each model. A graph is defined prior to the model generation in TensorFlow and 

the input is generated from the tf.Session and tf.Placeholder outer world interfaces. 

Alternatively, PyTorch works in a dynamic manner where the nodes of the DAG are 

dynamically defined and executed. Moreover, session and placeholder variables are not 

required. This framework is coupled to use with python language providing seamless 

integration. PyTorch can perform scalable ML operations in a distributed way where a rich 

set of tools and libraries extends its support to be used for compute-intensive ML tasks 

including Computer Vision (CV), Natural Language Processing (NLP) and various other.  



111 | 186 

 

Based on this discussion, it can be ascertained that Weka is suitable for small datasets 

classification and clustering tasks. Encog3 can be utilized ML tasks on medium-sized 

datasets. D4j and TensorFlow can be deployed for big datasets and complex ML tasks. For 

basic experimentation we used Weka, while for extensive evaluation and detailed modeling 

we benefitted from PyTorch. The details are given in the Chapter 6. 

 

Recently, ML techniques for network traffic classification has gained immense popularity 

where multiple authors worked on the traffic classification using different traffic features. 

Table 5-2 and Table 5-3 contain different research paper titles, their technique name and the 

network statistics/features used for traffic classification. 

Table 5-2 Statistics used in the previous research papers. 

Sr. Paper Title Technique Name Statistics Used 

1 

Towards Autonomic 

DDoS Mitigation using 

SDN 

Distributive 

Collaborative 

Framework 

“IP Source, IP destination, Port Source, Port 

Destination” 

2. 

Targets Can Be Baits: 

Mitigating Link-

flooding 

Attacks with Active 

Link Obfuscation 

Linkbait 

Bot detection rate, (identified/total bots), False 

Positive Rate ( legitimate hosts wrongly 

identified as bots/ total legitimate hosts) 

 

3. 

SDN-Guard: DoS 

Attacks Mitigation in 

SDN Networks 

SDN Guard 
“Flow throughput, Switch TCAM usage, Link 

bandwidth usage” 

4. 

Mitigating Crossfire 

Attacks using SDN-

based 

Moving Target Defense 

MTD Average Link Usage, End to End Delay 

5. 
Towards Detecting 

Target LFA 
LinkScope 

Packet Loss Rate, Round trip time, Jitter, 

Number of loss pairs, Available bandwidth, 

Packet rerouting, Connection failure rate 

6. 

An Efficient DDOS 

Detection with Bloom 

Filter in SDN 

Bloom filter packetCount, byteCount durationSeconds 

7. 
NSL-KDD Dataset for 

Training Model 
ML 

Duration, Protocol_type, Service, Src_bytes, 

Dst_bytesCount, Srv_count (no. of connections 

to the same service) 

 

The paper # 7 listed in the table above, helped us find out the statistics set to start with. The 

Distributed-SOM and DyProSD papers listed in the Table 5-3 below helped us figure out 

the features to note from the dataset, and made the basis for our ML module of CyberPulse. 

 



112 | 186 

 

Table 5-3 Flooding Attack Datasets used in literature. 

Paper Title Year Dataset Used Technique Features Access 

Distributed-

SOM 
2017 

Anonymized 

Internet Traces 

DoS Attacks, 

CAIDA 

Distributed 

Self 

Organizing 

Maps 

Number of Flows 

Number of 

Packers per 

Flow, Number of 

bytes per flow, 

Duration 

Anonymized 

Internet Traces 

Adaptive 

artificial 

immune 

networks  

2017 

Anonymized 

Internet Traces, 

DoS Attacks, 

KDD, CAIDA 

NA NA 

Anonymized 

Internet Traces,  

CAIDA, KDD 

DyProSD 2016 

Anonymized 

Internet Traces, 

DoS Attacks, 

CAIDA, MIT 

Lincoln Laboratory 

Datasets 1999 

 

C4.5 

Naïve Bayes 

Decision 

Tree 

Source IP, 

Destination IP 

Sampled Interval 

time 

Flow ID, Total 

Number of 

connections 

Anonymized 

Internet Traces, 

MIT Lincoln 

OpenFlowSIA 2016 

Anonymized 

Internet Traces 

DoS Attacks, 

CAIDA 

1.SVM 

Protocol, IP 

Source, IP 

Destination, Port 

Source, Port 

Destination 

Anonymized 

Internet Traces, 

CAIDA 

 

A lightweight 

DDoS  
2015 

CAIDA, 

Anonymized 

Internet Traces 

DoS Attacks 

Hop Count 

Filter 

Algorithm 

Source IP, 

Destination IP 

 

Anonymized 

Internet Traces, 

CAIDA 

 

TDFA 2014 

Anonymized 

Internet Traces 

DoS Attacks, 

CAIDA 

 

IP Trace-

back 

algorithm 

 

 

Anonymized 

Internet Traces, 

CAIDA 

 

 

Through this section, we aim to select an appropriate dataset for traffic classification to 

train CyberPulse classifier. Selecting a relevant dataset for the classification task is a key 

to get better results. Each problem requires extensive analysis and modeling according to 

its domain which needs different preprocessing and data filtering steps.  

Table 5-4 demonstrates flooding attack datasets in the literature used for the classification 

of the attack traffic. After selection of a suitable dataset, the next step is to select the features 

that will be used for the classification. Regression, classification, anomaly detection, and 

predication are some of the problem types that one need to carefully review while selecting 

a dataset. Another key element is to find out the number of features available in the given 

problem domain and the data types these features belong to.  Moreover, the performance 

https://www.impactcybertrust.org/
https://www.impactcybertrust.org/
https://www.impactcybertrust.org/
https://www.impactcybertrust.org/
http://www.caida.org/data/overview/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.impactcybertrust.org/
https://www.impactcybertrust.org/
https://www.ll.mit.edu/ideval/data/2000/LLS_DDOS_2.0.2.html
https://www.impactcybertrust.org/
https://www.impactcybertrust.org/
http://www.caida.org/data/overview/
https://www.impactcybertrust.org/
https://www.impactcybertrust.org/
http://www.caida.org/data/overview/
https://www.impactcybertrust.org/
https://www.impactcybertrust.org/
http://www.caida.org/data/overview/


113 | 186 

 

baseline required from the ML problem and knowing the best- and worst-case scenarios 

should also be carefully considered.  

Table 5-4 Important Datasets used for Flooding Attacks with their links. 

Sr. No Dataset Repository 

1.  MIT Lincoln Laboratory LLSDDoS Dataset 199  

2.  KDD cup Dataset 1999  

3.  UCLA Dataset 2001 

4.  CAIDA DDoS Attack Dataset 2007 

5.  DARPA DDoS attack dataset 2009 

6.  TUIDS DDoS Dataset 2012 

7.  Booter DNS Dataset 2014 

After a careful review of the datasets based on the described guidelines, we selected the 

data sets given at Sr.No 3, and 5. 

5.2.1 ML Algorithm Selection 

There are many ML algorithms available to choose from when we come across a ML 

problem. The selection of the algorithm depends on the type of problem we are dealing 

with; however, the performance of multiple ML algorithms depends on the size and the 

structure of data.  So, plain trial and run methods can be employed for the selection of an 

appropriate algorithm. 

 However, pros and cons are associated with each ML algorithm, Figure 5-2 demonstrates 

the classification algorithm selection strategy. Initially, when a ML task is assigned, the 

first question to ask is that how many numbers of classes are to be predicted, if there are 

two classes, then further decision depends on multiple other aspects i.e. accuracy, training 

time, and performance. In the next step, analysis is performed to assess accuracy and 

training time.  

In CyberPulse, we initially selected ANN technique since our main concern was accuracy 

as the system accuracy highly depends on the false positive rate. 



114 | 186 

 

 

Figure 5-2 ML algorithm selection criteria. 

 

5.2.2 Training of CyberPulse Traffic Classifier using Multiple Algorithms  

For initial training and testing of CyberPulse classifier, a ML model was trained using 10 

different algorithms for LFA classification. The training dataset called, Burst Header 

Packet (BHP) flooding attack, was downloaded from the UCI ML repository. Python 3.6 

programming language with Anaconda and Jupyter Notebook as an integrated 

development environment was used. The training dataset contained 1075 records and 22 

features. The first four instances of the dataset are presented in Table 5-5, the outcome was 

very encouraging. 

Table 5-5 Training dataset introduction. 

Node UBR PDR Bandwidth PLR % LBR % PRR % Used Bandwidth 

3 0.82 0.19 1000 19.03 19.03 0.81 822.04 

9 0.27 0.73 100 72.89 72.91 0.27 27.55 

3 0.92 0.09 900 9.03 9.03 0.91 831.34 

3 0.37 0.64 100 63.74 63.77 0.36 36.88 

 

This section gives details on dataset pre-processing, class and log transformation and 

feature normalization etc for the CyberPulse ML traffic classifier. The UCI dataset was 

loaded in the Jupyter Notebook and expert analysis method was applied to summarize the 

features. Categorical variables were excluded before the analysis because they belong to 

limited categories and certain mathematical operations couldn’t be performed.  Data 



115 | 186 

 

description illustrates the statistics of all the attributes including, count, mean, standard 

deviation, minimum, maximum, 25%, 50% and 75% of the data as presented in Table. 5-

6.   

Table 5-6  Expert analysis of the training dataset. 

Statistic UBR PDR Bandwidth PLR % LBR % PRR% Used Bandwidth 

Mean 0.59 0.41 540 41.16 41.19 0.59 340.78 

Std 0.19 0.18 289 18.35 18.37 0.18 232.14 

Min 0.24 0.09 100 8.61 8.61 0.23 27.55 

25% 0.45 0.25 300 24.75 24.75 0.43 138.40 

50% 0.58 0.44 500 43.80 43.80 0.56 291.59 

75% 0.76 0.56 800 56.67 56.67 0.75 515.18 

max 0.93 0.77 1000 76.79 76.79 0.91 867.03 

The packet lost rate feature contained some missing values which were replaced with a 

median value of the same feature to ensure justifiable distribution of all the features.  

5.3.1 Class Transformation 

The actual class distribution in the BHP flooding attack training dataset was Block, NB-

No Block, No Block, and NB-Wait. We transformed the classes into Flooding and 

legitimate, where Block corresponds to flooding and the rest of the classes assigned to 

legitimate. The final class distribution can be observed in Figure 5-3. Here 88% of the 

values represent legitimate and 12% are related to flooding class.   

 

Figure 5-3 Class distribution of BHP flooding attack dataset. 

5.3.2 Log Transformation of Skewed features 

Data visualization demonstrated the following features were skewed.  



116 | 186 

 

• Used Bandwidth 

• Lost Bandwidth 

• Packet Received 

• Received Byte 

• Flood Status 

In order to remove this skewness, python’s np.log function was applied, subsequent to 

application of the log function, these attributes were plotted again. The results of the plot 

are provided in Figure 5-4. 

   

 
 

Figure 5-4 Illustrates features distribution after removal of the skewness. 

5.3.3 Feature Normalization 

In this step, scaling was used to standardize the range of independent features. The features 

were rescaled in a way that they attained the characteristics of a standard normal 

distribution having a mean value of zero and standard deviation of one. Feature scaling has 

a high impact on the results as our training dataset contains features which consist of a 

diverse range, units, and magnitudes. In this regard, Mini-Max scaling was performed on 

the dataset which transformed the values in the range of 0 to 1 Table 5-7 demonstrates the 

dataset after the normalization operation. 

 



117 | 186 

 

Table 5-7 Dataset state after applying data normalization. 

Node UBR PDR Bandwidth PLR % LBR % PRR 
Used 

Bandwidth 

3 0.85 0.15 1.00 0.15 0.15 0.85 0.98 

9 0.058 0.94 0.00 0.94 0.94 0.06 0.00 

3 0.99 0.0062 0.89 0.06 0.01 0.99 0.99 

3 0.19 0.81 0.00 0.81 0.81 0.19 0.083 

5.3.4 Feature Selection 

A Recursive Feature Elimination (RFE) technique was used for feature selection which 

considers wrapper method built on top of various other algorithms i.e. SVM or regression. 

This helped in model development based on different data subsets. The RFE repeatedly 

construct a model and choose from the best performing features.  

5.3.5 Shuffle and Split Data 

The data was split into training and test set in the form of an array of features where test 

size was set to 0.2.  Figure 5-5 presents the overview of the dataset.  

 

Figure 5-5 Overview of the dataset. 

The parameters of all the following algorithms were defined, and then all the models 

were initialized.



118 | 186 

 

1. Support Vector Clustering 

2. K-Nearest Neighbor 

3. Decision Tree 

4. Logistic Regression 

5. Random Forest 

6. Adaptive Boosting 

7. Stochastic Gradient Decision 

8. Bagging Classifier 

9. Naïve Bayes 

10. Multi-Layer Perception 

The results of cross-validation are then printed, the model is fit to the training data using 

slicing with sample size. Input parameters applied to the models are given in Table 5-8.  

Table 5-8 Inputs parameters applied to the model. 

Input Detail 

Learner The learning algorithm to be trained 

X_train The features training set 

y_train The training set 

X_test Features testing set 

y_test The testing set 

 

In this section, we discuss the results of the training and testing of all the implemented ML 

algorithms. The evaluation metrics were F1Score and Accuracy, where F1Score 

corresponds to the weighted harmonic mean of precision and recall. A F1Score of 1 is the 

best performing value, and a score of 0 corresponds to the worst-case scenario.  The 

accuracy score is the ratio between correct predictions divided by the total number of 

predictions.  Similarly, the Receiver Operating Characteristic (ROC) curve and Learning 

Curve were plotted for the evaluation of each algorithm. ROC curve is drawn to illustrate 

the relationship between true positive and false positive values, which represents the 

accuracy of class discrimination in a binary classifier. Table 5-9 summarizes the results of 

the training of the dataset.  

The Area Under Curve (AUC) is important in ROC curve, where AUC value of 1, 

represents the perfect separation of the classes. Learning curve describes the cross-

validation score and training score of a model on a varying number of training samples. It 

demonstrates the behavior of a model on adding more training instances if the training 

score and cross-validation score converges on a small training sample then adding more 

data will not benefit the model. The accuracy equation can be computed by equation (5-

18) and the F1Score can be computed by equation (5-19).  



119 | 186 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 …………………………………………………………………………… (5-1) 

𝐹1Score = 2 ∗ 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 ……………………………………………………………………… (5-2) 

Table 5-9 Evaluation metrics of all the algorithms. 

Algorithms 
F1Score Accuracy 

Training Testing Training Testing 

Ad boost 1 1 1 1 

BC 0.98 0.96 0.98 0.96 

DT 1 1 1 1 

KNN 1 0.99 1 0.99 

LR 0.98 0.95 0.98 0.95 

MLP 0.99 0.98 0.99 0.98 

NB 0.97 0.98 0.88 0.93 

RF 1 1 1 1 

SGD 1 1 1 1 

SVC 0.94 0.91 0.82 0.89 

5.4.1 Adaptive Boost and Bagging Classifier  

Adaptive boosting is a ML algorithm which utilizes ensemble learning method to 

develop a precise learning algorithm. Initially, it chooses a baseline algorithm e.g. Naïve 

Bayes and iteratively, increase the its performance by taking into consideration the 

incorrectly classified instances [221]. In adaptive boost algorithm, the evaluation metrics 

i.e. F1Score and Accuracy for training and testing were 1.0 which correspond to the 

excellent performance of the trained model. The learning curve plot demonstrates that the 

cross-validation and training score converge on a sufficient amount of training samples.  

  

Figure 5-6 Learning curve converges at higher training instance and a perfect AUC score provides 

excellent separation of the classes. 

The ROC curve given in Figure 5-6 represents excellent results where the area under the 

curve is equal to 1, which is the perfect separation of the flooding and legitimate classes. 

 



120 | 186 

 

Bagging Classifier (BC) is one of the bootstrap methods which invites individuals for its 

ensemble by training each of the classifiers. It performs this operation by randomly 

redistributing the instances of the training set [222]. Results of the BC can be observed in 

Figure 5-7 and Table 5-9. The Learning Curve converge at lower training instances which 

demonstrates that adding more training instances will not benefit the trained model. The 

AUC value on ROC curve corresponds to 0.83 which describes a fair separation of the 

predicted classes.  

  

Figure 5-7 Learning curve converged at 150 training instances and AUC value of 0.83 on ROC Curve is 

observed. 

5.4.2 Decision Tree and K-nearest Neighbors 

Decision tree is a non-parametric ML modeling technique, used for classification and 

regression problems. A decision tree provides hierarchical and sequential decisions about 

the outcome class on the basis of training data [223]. The ROC curve demonstrates 

excellent results where AUC is 1, which is a perfect separation of the flooding and 

legitimate classes. The performance evaluation values of F1Score and Accuracy 

corresponded to 1 which represents the best performance of the model.   

The learning curve in Figure 5-8 expresses the results of cross-validation and training 

score. Both curves converge at lower training instances which describes that adding more 

training instances will not benefit the trained model.  



121 | 186 

 

  

Figure 5-8 A perfect AUC score on ROC while Learning Curve converges around 400 training instances. 

 

K-nearest Neighbors is one of the most used classification algorithms which predicts the 

likelihood of a data point to be a member of a group on the basis of nearest data points 

[224]. KNN also provided the best performance fit where values of evaluation metrics were 

1.  

  

Figure 5-9 An excellent ROC score which corresponds to a perfect separation of the final classes, the 

Learning curve illustrates that adding more number of instances will not benefit the model. 

Figure 5-9 represents the ROC and Learning Curve of the KNN model. The learning 

curve converges around 200 instances of the training set. The ROC curve illustrates 

excellent results where the area under the curve is 0.96, which expresses a perfect 

separation of the flooding and legitimate classes. 

5.4.3 Logistic Regression and Multi-Layer Perception 

Logistics regression predicts the probability of an outcome that will only result in a binary 

value. It generates a logistic curve limited by binary values [225]. The results of the LR 

classifier are given in Table 5-9 and Figure 5-10. Evaluation metrics of F1Score and 



122 | 186 

 

Accuracy for the testing set is around 95 percent. The cross-validation is sharply increased 

with the accuracy of 92% to 97% when training set size was 200. The accuracy is 

continuously increased when the training data is increased.  The ROC curve demonstrates 

good results where the AUC is 0.8, which is a good separation of the flooding and 

legitimate classes. 

 
 

Figure 5-10 AUC value of 0.8 is a good separation of classes, as well as Learning Curve, converges on 

lower training set instances. 

 

Multi-Layer Perception is a FNN, which generates a set of outputs characterized by 

multiple layers of input that are connected as directed graphs between input and output 

layers [226]. The evaluation metrics for the testing set is greater than 97% which 

demonstrates the effectiveness of the training model. The results of the evaluation metrics 

are given in Table 5-9. Here the cross-validation score follows a zig-zag pattern with sharp 

downward peaks at two points as given in Figure 5-11. The accuracy is thoroughly 

increased with the increase in the training set size from 91% to 95%. However, when the 

training set size reached 400, the accuracy suddenly dropped. This pattern is observed due 

to the variations in the accuracy of the training set which subsequently affected the cross-

validation. The ROC curve represents excellent results where AUC is 0.92, which 

corresponds to the perfect separation of the flooding and legitimate classes. 



123 | 186 

 

  
Figure 5-11 A perfect ROC and variations in the accuracy of the trained model in Learning Curve. 

5.4.4 Naïve Bayes and Random Forest 

Naïve Bayes uses Bayes algorithm to classify the objects which uses the concept of naïve 

or strong independence among the attributes of data points [227]. The evaluation metrics 

of the trained model can be observed in Table 5-9. The accuracy score is 92% for the test 

set, which is lower than the previous discussed algorithms. In Figure 5-12. the Learning 

Curve converge at around 500 training instances which demonstrates that an increase in 

training instances will have a positive effect on the performance of the classifier. The ROC 

curve demonstrates excellent results where AUC is 0.92, which is a perfect separation of 

the flooding and legitimate classes. 

  

Figure 5-12 An excellent score of 0.95 of AUC, in the same way, increase in the training instances have 

a positive effect on the validation of the classifier. 

Random Forest algorithm develops random decision trees by analyzing a set of variables 

and providing the output of the class that is the mean prediction of the individual decision 

trees [228].  Table 5-9 illustrates the evaluation results of the Random Forest model on the 

training and testing set. In the Random Forest classifier, the evaluation metrics for training 



124 | 186 

 

and testing were 1.0 which illustrates the excellent efficiency of the trained model in 

accurately classifying the dataset. The ROC curve describes exceptional results where 

AUC is 1, which is a perfect separation of the flooding and legitimate classes. The accuracy 

of the cross-validation curve increases continuously and converges with the training score 

at around 600 instances of the training set.  The results are given in Figure 5-13. 

  

Figure 5-13 A perfect AUC score on ROC while in Learning Curve, training instances are playing a 

positive role in the accuracy of the classifier. 

5.4.5 Stochastic Gradient Descent and Support Vector Culstering 

This is an iterative algorithm to optimize a differential objective function which is a 

stochastic approximation of gradient decent optimization [229]. In Stochastic Gradient 

Descent classifier, the evaluation metrics were 1.0 which is a perfect result for accurately 

classifying the dataset. The ROC curve demonstrates excellent results where the AUC 

score is 1. The Learning curve illustrates that initially, the accuracy of the test set was lower 

and with the increase of training data the accuracy of the test set was increased and reached 

100% when the cross-validation converged at 400 training instances. The evaluation results 

of training and testing are given in Figure 5-14. 



125 | 186 

 

  

Figure 5-14 The evaluation of SGD. 

 

Support Vector Clustering is a classification algorithm which sorts the data into one or two 

categories and constructs a map of the sorted data by adding a margin between them as far 

as possible and classifies an unknown data to which data point it will belong to [230]. Table 

5-9 presents the evaluation metrics of SVC algorithm; the Accuracy score is 0.89 which is 

the lowest accuracy in all the implemented models. Overall the evaluation results of this 

classifier were poor. The region under the ROC curve is 0.62 given in Figure 5-15, 

illustrates the poor separation of flooding and legitimate class. The Learning Curve 

converges at around 300 training set instances.  

  

Figure 5-15 The AUC value of 0.62 illustrates the power performance in distinguishing between 

flooding and legitimate classes. 

We compare all the algorithms after training and testing and results are given in the Table 

5-9. It can be observed that Adaptive Boosting, Decision Tree, Random Forest, and 

Stochastic Gradient Descent performed the best among all the algorithms. Subsequently, 

we can also observe that the KNN produced results close to the value of 1. There is a vast 

difference among performance metrics of Naïve Bayes, as the values of F1Score is 0.9288 



126 | 186 

 

as compared to Accuracy which is around 0.9803. MLP also performed better, however, 

the accuracy values of SVC were the least among all the algorithms.  

 

In the section above, it is clear that different algorithms responded differently, and we were 

able to get good results from Adaptive Boost, Decision Tree and SGD. Upon further 

research ANN turned out to be a strong candidate for CyberPulse solution. It is a widely 

used technique for classification tasks it deals with the connected group of nodes called 

neurons. The input features are represented in terms of nodes that are mapped to the 

neurons in the ANN layers.  It contains multiple layers where the outputs of different layers 

are passed to the next layer which performs some computations moreover, an activation 

function is used. The non-linearity is applied on the data usually at the output layer. The 

backward propagation and SGD algorithms are used to train the ANN which transforms 

the computation into the output. The ANN accompanies many advantages where some of 

them are given below. 

• Due to the use of numerous intermediate layers, ANN can model complex non-linear 

relationships in an effective manner. Moreover, it provides precise results which makes 

them an optimal choice for the flood traffic classification problems. 

• The structure of the data does not matter highly in ANNs, in this way, they can be used 

with any type of relationships involving the variables.  

Keeping in view this discussion, ANNs seemed suitable for use in the CyberPulse LFA 

traffic classification solution. However, following are some important points to note:  

• Because of the complexity of these models, they’re not easy to interpret and 

understand. 

• ANN can be quite challenging and computationally intensive to train, requiring careful 

hyper-parameter tuning and setting of the learning rate schedule. 

• ANN requires a lot of data to achieve high performance and are generally outperformed 

by other ML algorithms in “small data” cases. 

Looking at the limitations, we reached to a conclusion that CyberPulse ML classifier should 

be dataset and algorithm agnostic, supporting any pre-trained number of models up to 10. 



127 | 186 

 

The design should allow passing the input traffic through these models simultaneous, hence 

a multi-threaded design pattern should be adopted. 

 

LFAs employ low-rate legitimate looking traffic and hence pose a unique challenge for 

identification. Through experimental study in this chapter, we were able to ascertain that 

ML is an effective technique in the detection and mitigation of LFAs in SDNs. Using the 

detailed analysis presented, we were able to select a suitable dataset for ML model training. 

We also reached to a conclusion that CyberPulse traffic classifier component needs to be a 

multi-threaded engine that supports up to ten pre-trained models; making it dataset and 

algorithm agnostic.  Additionally, the research questions 7 and 8 were adequately answered. 

In order to help better understand the CyberPulse evaluation results presented in the 

upcoming chapter, a brief preliminary study of ML algorithms was also presented in this 

chapter along with pointers on the selection of a right algorithm depending upon the problem 

scenario.  This section of the thesis helps build the CyberPulse ML classifier and provides 

necessary details along the way such as dataset and features explanation, preprocessing and 

the steps involved in training models. These details ensure that this research remain re-

producible.  

CyberPulse user will essentially need to train models and therefore a comparative study of 

tools along with coverage has been discussed. Pytorch was found to be fit for purpose in 

this context. The 10 trained models were tested without first fitting in the developed 

prototype, that helped tune and optimize certain characteristics for best results. These ROC 

and learning curve graphs and the data visualizations are not presented in the CyberPulse 

evaluation chapter, as we believe these are part of the CyberPulse development phase and 

are best suited here in chapter 5.  

The outcome from this chapter made the basis for us to believe that creating a multi-threaded 

CyberPulse prototype will indeed be a good idea that could work on ten trained models in 

parallel and yet work at the line speed. Overall this chapter provides a comprehensive 

discussion on selecting optimal ML algorithm and ML tool for training models and data 

visualization. These trained models are provided as an input to CyberPulse to help it classify 

traffic at real-time.  



128 | 186 

 

In the next chapter, we aim to connect all dots and discuss the CyberPulse experimental 

setup and implementation. We will comprehensively demonstrate the evaluation of the 

CyberPulse using carefully designed performance metrics. 

  



129 | 186 

 

6 CHAPTER 6. EXPERIMENTAL SETUP AND EVALUATION 

SDN facilitates centralized management of the network where the network policies, 

security, and management can be implemented in a granular way. The network can be 

programmed to respond to certain types of events. SDN has a holistic view of the network 

which can help to measure the traffic features at any time. These statistics can be utilized 

to identify the malicious and adversarial flows. Traditional networks need hardware to 

perform sophisticated network measurements. However, SDN provides flexibility to 

perform granular network traffic measurements which can be utilized by the network 

programmers to develop customized applications. SDN provides an opportunity for 

application developers to develop applications to manage SDN in a customized way.  

It provides application developers more visibility into the organization’s network. The 

controller provides a single security point which can provide insights into the impending 

threats. The programmability in the network facilitates the application developers to 

develop customized applications and manage diverse devices without knowing the 

complex internal working mechanism of the network hardware. By finding the locations 

where the congestion or security vulnerabilities are occurring, network outages can be 

prevented before they occur. Experimentation is necessary for the evaluation of any 

developed solution. The experimentation needs a realistic setup that will be deployed in 

the actual network paradigm. Therefore, we setup an experimentation testbed to evaluate 

CyberPulse using mininet and Floodlight controller.  

We explain how useful CyberPulse is in dealing with the LFAs in the SDN scenario. In 

this chapter, we comprehensively discuss the experimental setup of the current research 

including the network topology, parameters for topology creation, and operational 

workflow of CyberPulse. We will discuss CyberPulse deployment and parameters for 

traffic generation and attack hosts selection. We provide an in-depth explanation of how to 

download, setup, and deploy CyberPulse framework for the users how don’t have any prior 

experience in SDN security. Subsequently, we provide detailed evaluation study using 

different experimental scenarios. We initially evaluate CyberPulse using ANN algorithm 

and provide detailed comparisons of our results with four different algorithms. Finally, we 

evaluate CyberPulse using different performance parameters including detection time, link 



130 | 186 

 

degradation, number of attackers, and throughput. We also evaluate CyberPulse using 

different algorithms and provide the results. 

 

Figure 6-1 LFA setup and deployment in the application plane of SDN. 

 

Figure 6-1 describes the implementation of CyberPulse at the application layer of the SDN 

controller. We integrate all the modules developed in python to perform the experimental 

evaluation. In order to generate traffic for experiments, we deploy mininet. Initially, we 

will provide the configuration of the testbed and subsequently, a detailed explanation of 

the development and deployment will be discussed. This chapter also includes the tools 

used and the workflow of CyberPulse. This prototype works as an independent system in 

the SDN ecosystem to enable network surveillance against LFAs. It provides a 

comprehensive paradigm in the network security it has the following advantages.  

• Network status information 

• Automatic detection 

• Flexibility to use any algorithm 

• Flexible to use any confidence interval 

• Selection of the links and port numbers 

• Any remote controller selection 

• Customized program duration selection 

• Customized link capacity specification 

• Selection of traffic generating hosts and servers 



131 | 186 

 

With the above-mentioned characteristics, CyberPulse becomes a sustainable choice 

against LFAs. It can provide a holistic solution against LFAs which was not previously 

present to the best of our knowledge. Early LFA detection is necessary in devising a 

solution against these attacks. CyberPulse devises a solution that incorporates pre-trained 

algorithms; hence, the overhead of the real-time training can be minimized. Moreover, the 

mitigation solutions need to provide 24/7 services. Hence, CyberPulse can work with SDN 

all the times and provide surveillance.  

Every solution against LFA must not affect the legitimate traffic. Alternatively speaking, 

the false positive rate must be low. CyberPulse has been tested with many network 

configurations, traffic parameters, and mitigation algorithms. It puts a very less 

performance load on the infrastructure and has a very minimal overhead on the network. 

The onboarding of a mitigation solution involves the alignment of the solution with the 

underlying process model. It ensures that all the components of the solution are up and in 

a synchronous state while prior to performing the mitigation thereby does not take much 

time for the setup to initialize. CyberPulse in this regard, perfectly aligned with the SDN 

ecosystem and can provide an effective defense against LFAs in SDN.  

6.1.1 The Topology 

We implemented a prototype of our system using five servers each connected to an OF 

Switch. We developed the solution in python which uses mininet for traffic generation. 

Initially, the attack is launched and the iperf server send LFA traffic to the destined server. 

Network topology was designed as presented in Figure 6-2. It is a linear topology which 

includes 5 hosts and 5 OF switches. The remote controller running on a Windows machine 

is utilized and accessed from the Ubuntu machine using port 6634. The host 1 was used to 

send low-rate legitimate traffic on the network using iperf tool. The emulated network 

topology consisted of the parameters given in Table 6-1, the values of jitter and delay were 

0. 



132 | 186 

 

 

Figure 6-2 Network topology of CyberPulse. 

CyberPulse was developed as a security solution on the application layer of SDN 

controller. The process starts by running floodlight controller [231] on the Ubuntu 

machine. By default, the statistics collector is turned off in the floodlight controller so, we 

need to turn it on. We can also adjust the statistics collection interval timing. CyberPulse 

is developed in python and it can be started from a separate terminal. A separate JSON 

configuration file is incorporated so that the parameters of the prototype can be changed 

according to the desired set up.  

Table 6-1 Parameters for topology creation for evaluation. 

Parameter Value 

Switch Count 5 

Hosts per switch 1 

Controller Port No 6653 

Link Capacity 1.25 Byte 

Mininet OS Ubuntu 

Controller OS Windows 

Flooding threshold 10000 

Link Bandwidth 10 Mbps 

 

6.1.2 ML Configuration 

In the CyberPulse security solution, the ML parameters can be adjusted by a JSON 

configuration file. Table 6-2 contains the parameters that can be supplied for ML 

configuration. The model name comprised up of the algorithm to use out of 10 available 



133 | 186 

 

algorithms given in Figure 6-3 which is supplied in a .pkl file. Confidence values according 

to the precision requirement can be supplied, however it must be noted that increasing 

confidence interval can result in an increase in the false-positive rate. Action parameter 

comprised of the decision of dropping the host. We perform the experiments on different 

datasets to train the selected classifiers. Based on the accuracy of accurately classifying 

flood traffic, we selected UCI ML repository for training  [232]. UCI dataset was providing 

the best results for classification where the false positive rate was also low.  

Table 6-2 Parameters for ML module. 

Parameter Value 

Model Name The name of algorithm 

Confidence level Confidence level of detection 

Action Action to be taken (e.g. drop host) 

6.1.3 Traffic Monitoring 

A stat collector module was developed in python which loads the trained model in a .pkl 

file format. It then gets the traffic flow ID, switch list, and Node ID and then reads the flow 

statistics and define the flow classes according to the thresholding criteria given in the 

training set. Subsequently, it reads the packets and switch port statistics of the network 

traffic. It then collects all the statistics defined in the Table 6-2 using the switch and port 

statistics APIs exposed by the floodlight controller.  

 

Figure 6-3 A screenshot of the generated .pkl files. 

In the next step, it saves all the statistics in an array and subsequently, it evaluates the shape 

of the array using python NumPy.reshape method. The extracted statistics are applied with 

the ML model with a desired confidence level and the graph is plotted according to the 

network status information.  



134 | 186 

 

 

Figure 6-4 provides an overview of CyberPulse security framework, it can be observed 

from the figure that Floodlight is connected with data plane devices using southbound API. 

One malicious host is also present which is generating flood traffic on the network. The 

statistics measurement module is extracting network statistics from the Floodlight 

controller using REST API. The classifier contains pre-trained classification algorithms 

which get traffic features from the statistics measurement module. It classifies the network 

traffic by given confidence interval and algorithm, it then transfers the results to flood 

defender. Finally, the flood defender module drops the malicious flows by updating rule in 

the OF switches. The network status monitor plots surveillance graphs by getting 

information from the statistics measurement and flood defender modules. 

 

Figure 6-4 CyberPulse overview. 

 

A mininet testbed provides network researchers to simulate threats in a secure environment 

and to develop, simulate and deploy security solutions. This subchapter includes the 

procedure of CyberPulse development, we discuss the architecture, its, modules, 

configuration and the detailed procedure to run and setup. We have developed a security 

solution for SDN simulating LFA and developed a prototype. In CyberPulse we use python 



135 | 186 

 

to generate traffic, collect statistics to train the ML model, test the traffic, and visualize the 

results.  

 

Figure 6-5 CyberPulse implementation at application plane. 

Figure 6-5 provides the implementation of CyberPulse at the application plane of SDN. 

CyberPulse is developed in two phases: the ML training system which provides interface 

to train ML classifiers using the training dataset and outputs the .pkl files. The .pkl file is 

an output file generated by python which enables files to be serialized onto the disc and de 

serialized back using byte stream which represents the objects. The .pkl file is generated to 

save network overhead of transferring huge files. Python dumb () and load () methods were 

used to create and load .pkl files respectively. The ML training system train 10 algorithms 

discussed in the previous chapter. The respective algorithm can be loaded using load () 

method of python. Figure 6-6 contains the flow of operation that CyberPulse uses to 

perform the network surveillance operation.  

CyberPulse starts by providing network configuration including topology, traffic 

generation, and ML parameters selection. When the network is configured and deployed, 

the Link Listener starts to collect statistics of the flow. The Link Listener collects the 

statistics keeping in view all the available resources including, flow, switch, and packet 

statistics. Link Listener forwards these collected network statistics to the classifier module 

which consists of pre-trained algorithms selection containing the information of the source 

.pkl files. It is to be noted that only one algorithm is used for the classification of network 

traffic.  



136 | 186 

 

 

Figure 6-6 The flow diagram of CyberPulse. 

The classifier module identifies the malicious flows using the selected classifier and 

confidence rate. The malicious flow drop module performs the classified flows elimination. 

In the same way, the network status monitor draws real-time network graphs. This module 

concurrently runs with the start of the network and draws the real-time network information 

on the screen. This module efficiently demonstrates the impact of LFA on different 

parameters of the network including, bandwidth, file transfer, packet drop rate and the 

effect of a number of attackers.  

The traffic generation module receives an input from a user via a JSON configuration file 

containing the topology information, iperf clients, and ML configuration. Detailed 

information about JSON configuration is given in Figure 6-9. 

In this file the input information is categorized in different sections, the first category 

contains the information regarding, controller management, it assigns the controller IP, 

controller port and REST API port numbers. In the next category, statistics collector 

information is collected in which we can input program duration, collection interval, and 

flooding threshold values. ML configuration category of the JSON file contains the model 

name and the confidence level at which the ML module will perform the LFA mitigation. 

The confidence interval can be given from 0-100 depending upon the required accuracy of 

LFA mitigation.  In the traffic configuration, link capacity, switch count, host per switch, 

iperf server, and traffic duration can be specified. Furthermore, specifications of iperf 

server can also be adjusted here.  



137 | 186 

 

 

CyberPulse can be deployed on Ubuntu machine, by installing following pre-requisites. 

The source files of CyberPulse can be downloaded from the link given in the appendix of 

this report. The prerequisites for CyberPulse deployment are given in Table 6-3. 

Table 6-3 The prerequisites for running CyberPulse. 

Object Version 

Ubuntu 16.0.4 

Java Runtime 8 

Floodlight Controller 1.2 

Anaconda Any version 

Mininet latest 

The floodlight controller is run first on a separate terminal and on the other terminal the 

CyberPulse source files are loaded. CyberPulse is started using /run.sh command which 

starts initially by creating the network topology, assigning the link bandwidth, jitter and 

delay. Then it checks the connectivity of the components using ping command. 

Subsequently, the traffic is generated by the Iperf server and flooding of the links is started, 

in the meanwhile statistics collector start gathering statistics of the network and 

classification is started. The flood drop module drops the flows identified by the 

classification module. Finally, the network status monitor draws graphs for the visual 

analysis of traffic on the network.  

For statistics collection using Floodlight controller following parameters need to be 

supplied in the floodlight resource files as represented in Figure 6-7. Code in Figure 6-8 

needs to be run in sequence to start the operation of CyberPulse. The configuration of the 

JSON configuration file has been given in Figure 6-9. 

 

Figure 6-7 Floodlight statistics collection setting. 

 

 

 

 

 



138 | 186 

 

 

cd floodlight-1.2; make 

Initialize: 

Sudo rm –rf /var/lib/floodlight/ 

Run: 

Cd floodlight-1.2; 

Sudo java –jar target/floodlight.jar 

Run project 

Unzip mlsdn.zip 

Cd mlsdn 

./run.sh 

Check status | 

Tail –f Statcollector.log 

Figure 6-8 The sequence of commands to operate the prototype. 

 

In this section, we perform extensive simulation and analysis to evaluate the performance 

of CyberPulse in two scenarios, i.e. in a flooding attack scenario and in normal traffic 

scenario. Traditional SDN environment, offers no flooding attack defense mechanism, we 

will demonstrate how CyberPulse is an effective extension in SDN environment.   

A virtual network was designed using a single desktop computer to implement CyberPulse 

in an emulated network environment. We run our experiments on a PC with Intel(R) 

Xeon(R) CPU E3-1225 v5 @ 3.30GHz and 16 GB RAM. Windows was running on the 

host machine and Ubuntu was running on Oracle VM VirtualBox. We used floodlight OF 

controller which is well known OF controller written in java programming language. 

6.5.1 Network Model 

We created network topology as presented in Figure 6-10 as it can be observed from the 

Figure that it is a tree topology with three levels consisting of 8 hosts and 7 OF switches. 

We interfaced the remote controller running on the windows machine with mininet using 

port 6634. We used iperf tool to send network traffic to hosts. We plot graphs to illustrate 

the impact of flood traffic on the links. In the next step, we train the ML model using flood 

attack dataset provided by UCI ML repository the emulated network topology consisted of 

the following parameters. 

• Eight virtual hosts each having unique IP address 

• Seven OF software switches 

• OF switches were configured to connected with a remote controller 

• The bandwidth of all the link was set to 10 Mbps 



139 | 186 

 

• Floodlight remote controller, running on Windows machine 

{ 

    "controller": 

    { 

        "controller_ip": "127.0.0.1", 

        "controller_openflow_port": "6653", 

        "controller_rest_port": "8080" 

    }, 

    "stat_collector_config": 

    {  

        "programme_duration_min":1, 

        "collection_interval_sec":5, 

        "flooding_threshold_byteCount":1000 

    }, 

    "machine_learning_config": 

    { 

        

"model_name":"ML/Pickle_files/LogisticRegression.pkl", 

        "action":"drop_host", 

        "confidence_level":80 

    }, 

    "important_link": 

    { 

        "switch_id":"00:00:00:00:00:00:00:01", 

        "port_number":1 

    }, 

    "traffic_config": 

    { 

        "link_capacity_in_MByte":1.25, 

        "switch_count":5, 

        "host_per_switch":1, 

        "iperf_server":"10.0.0.1", 

        "traffic_duration_min":1, 

        "iperf_client":[ 

       {"host_ip":"10.0.0.2"}, 

            {"host_ip":"10.0.0.3"}, 

            {"host_ip":"10.0.0.4"} 

        ] 

    } 

} 

Figure 6-9 JSON configuration file. 

 



140 | 186 

 

 

Figure 6-10 Emulated topology using mininet and Floodlight controller. 

6.5.2 Flood Traffic Manipulation  

The test-bed network comprised up of 7 OF switches, and 8 hosts, connected with the 

controller each having link capacity of 100 Mbps. We used iperf tool to send legitimate 

traffic to different hosts. Iperf is an open-source tool to send and measure network 

performance by sending TCP traffic.  

 

Figure 6-11 Adversary model to attack the control channel. 

We set one host as a server and one as a client and sent TCP traffic over the network. There 

are various parameters in iperf that can be changed for measuring different network 



141 | 186 

 

metrics. We used Hping to generate flood traffic and analyze the impact of the traffic on 

the links. Figure 6-11 illustrates how we utilized some hosts as adversaries in our 

experiment. We perform experiments by sending flood traffic towards target servers and 

analyze link bandwidth after sending this traffic. It can also be noted that network 

bandwidth was set to 1000 Mbps at the time of topology creation in mininet. Following 

command was used to create a tree topology and fixing the bandwidth of the links to 1000 

Mbps.  

 

 

 

In our experiment, we used some hosts as attackers as presented in Figure 6-11, which were 

sending Hping traffic towards targets links. We send attack traffic by opening a separate 

terminal for every attack node. We used iperf –s command to start a TCP connection server. 

Using this command, a host will start listening on TCP port 5001 subsequently any host 

that need to connect to server can connect to this server using iperf –s –c 10.0.0.1 –t 

15 command.  This command starts a host to connect to the server with an IP address of 

10.0.0.1 and time limit of 15 seconds. At the end of the connection a summary of data 

transferred and bandwidth information is displayed on both client and server terminals. 

After a TCP connection completion, the server keeps on listening to the port creating an 

opportunity for any other host to connect with the server.  

6.5.3 Attack Simulation 

We assumed hosts in the network as decoy servers which are manipulated by an adversary. 

We set the bandwidth of all the links to 1000 Mbps and measure the bandwidth after 

sending and receiving attack traffic between decoy servers. We used Wireshark [233] a 

network packet analyzer tool, for packet capturing and analysis. We started an attack by 

manipulating decoy servers around a target link. The decoy servers started to send traffic. 

The role of decoy server, H2 was set as server and H3, H4 and H5 was set as client decoys. 

As it was discussed in Chapter 3 that in LFA decoy servers send traffic to each other in 

order to achieve target link flooding. We run the experiment by varying the number of 

decoys and measure the bandwidth consumption of the links. We perform the experiment 

with one, two, and three attackers and measure the values of bandwidth consumption.  

sudo mn --controller=remote, ip <ip of windows machine> --topo=tree, 

3 –link tc, bw=1000 

 



142 | 186 

 

We run the experiment multiple times and each time the reported bandwidth was extracted 

using Wireshark. With the increase in the numbers of the hosts, the bandwidth tends to 

decrease. Figure 6-12a and b illustrate the effect on link bandwidth with the increase of the 

number of attackers. Figure 6-12a demonstrates the impact of the increase in the number 

of attackers and the bandwidth saturation. It can be observed that with the increase of the 

number of attackers, the bandwidth started to saturate and when the number of attackers 

reached to 35 the remaining bandwidth reached nearly 50 Mbps, which describes the effect 

of LFA on the SDN control channel. Figure 6-12b illustrates the effect of the number of 

attackers and link bandwidth, it can be noted that with the increase in the number of 

attackers the bandwidth consumption also tends to increase.  

Another interesting phenomenon was noted that with the increase in the number of 

attackers and increase of the traffic on the network, the packet loss rate also tends to 

increase. Figure 6-13 demonstrates the effect of the increase of attackers on the packet drop 

rate.  

 

Figure 6-12 Consumed bandwidth of the network using different number of attackers.  



143 | 186 

 

 

Figure 6-13 Effect of packet drop rate on the attacking nodes. 

It can be observed that when the attack traffic was increased on the network packets drop 

rate also increased. There was a rapid vertical shift in the packet drop rate when the number 

of attackers increased to 7, which illustrates that when the number of attackers increased 

to a certain level, the packet drops rate increases. This have severe consequence on the 

performance of the network. And with the attackers increased to 7, there was a vertical 

shift in the packet drop rate. After running the experiment, we extracted flows for every 

node in the network. We used the training set for building the model and subsequently 

trained model was used to classify the statistics into benign and malicious traffic. 

 

In this section, we discuss and analyze the results of our experiments. Our results are based 

on two scenarios first in the normal SDN traffic flow and secondly, with attack traffic. We 

used deep learning-based ANN technique to classify network traffic. We use UCI ML 

repository flooding attack dataset UCI_ML_BOS for training [184] and Impact flood attack 

classification datasets. The traffic was classified into two categories depending upon the 

severity of the attack i.e. the legitimate traffic flows and flooding flows. According to 

previous studies [185], [186] when the utilization ratio of the network resources, is 

increased more than 40 %, it indicates that the network performance has started to degrade. 

In a similar way, the increase in link utilization ratio also indicates that the network is under 



144 | 186 

 

LFA. We perform extensive experiments and evaluate our technique on three ML 

evaluation metrics, precision, recall, and F1score. 

6.6.1 Evaluation Parameters 

We use three metrics for accuracy evaluation, i.e. precision, recall, and F1score. Precision 

is the measure of how close the predicted values are to the actual values. It is the value of 

the number of relevant flows retrieved divided by the total number of flows.  The formula 

of accuracy is given in equation (6-1): 

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
 …………………………………………………………………..………...………... (6-1) 

The results of the accuracy evaluation metrics are given in Figure 6-14. Precision values, 

closed to one are considered to be more accurate. It is pertinent to say that CyberPulse was 

able to classify the traffic correctly into three categories. The accuracy of the three 

categories is more than 85%. Recall can be defined as the relevant flow classification 

divided by the total number of relevant retrieved flows. The formula of recall is given in 

equation  (6-2). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
 ……………………………………………………………………………….…………. (6-2) 

CyberPulse performed slightly lower in the case of recall as compared to the precision. The 

Flooding flows were more accurately classified as compared to the Legitimate flows. The 

overall accuracy of the recall measure was around 95%. F1Score is also an important 

evaluation measure as it combines both precision and recall values. The formula for 

F1Score is given in equation (6-3). 

𝐹1Score = 2 ×
𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 ………………………………………………………………………… (6-3) 

It can be observed from precision and recall in Figure 6-14 the F1Score metrics performed 

better as compared to precision and recall. The values of flood traffic detection are higher 

than that of recall. The overall accuracy of the F1Score was around 76%. The accuracy of 

these metrics for legitimate traffic detection was approximately the same as the values of 

precision and recall metrics. Our results and analysis illustrate that CyberPulse was able to 

accurately classify the traffic. Based on the classification values the Flood Mitigation 

Module was able to eliminate the flooding traffic. Overall it can be concluded that if the 

link flooding attacker is powerful and able to send high volumes of flood traffic than the 

overall bandwidth of the system will be dropped as it can be observed from the Figure 6-



145 | 186 

 

12a and b. In the same way, if the flooding attack is increased, the packet drop rate will 

also tend to increase, severely affecting the legitimate traffic in the network. It can also be 

noted that CyberPulse effectively identifies the flows that are involved in the flooding of 

the network. 

 

 

Figure 6-14 Evaluation of the ANN classifier on precision, recall, and f F1Score. 

In the same way, if the flooding attack is increased the packet drop rate will also tend to 

increase, severely affecting the legitimate traffic in the network. It can also be noted that 

CyberPulse effectively identifies the flows that are involved in the flooding of the network, 

it classifies the flows into two categories, besides categorizing the flows into two distinct 

classes, it also identifies a third class, which we call it as the suspicious class. 

6.6.2 Evaluation Using Data Partitioning 

In this section, we first evaluate the technique using different data splitting strategies. 

Initially, the data was split into multiple chunks and provided as input to the MLP algorithm 

to evaluate the effect of data partitioning strategies on the accuracy. The idea was to 

implement the best-suited strategy for the classification of CyberPulse flood traffic. We 

also perform evaluation by selecting critical attributes that play an important role in the 

classification of the network traffic. We split data into three partitions with reference to 

training and testing i.e. 50% each, 70% training, and 90% training. As it can be observed 

from Figure 6-15 that CyberPulse classifier performed well when the size of the training 

73 76 75 



146 | 186 

 

set was increased. There was a significant increase in the accuracy of the evaluation metrics 

when the training percentage of data was increased from 50% to 70%. The precision 

metrics rapidly increased to over 80% which was around 74% while 50% data was used 

for training. This comparison provides insight for selecting a fair split of training and 

testing data to get better results.  

6.6.3 Prototype Performance Evaluation Using Attribute Selection 

As it can be observed from Figure 6-15 that the correct selection of attributes plays a 

significant role in the accuracy of the classifier. We first performed the experiment by 

employing all the attributes and subsequently performed analysis by removing attributes 

such as node, the percentage of lost packet rate, lost bandwidth, packet size and packet 

received. It can be clearly observed that the accuracy of the classifier was increased after 

removing these attributes.  

 

Figure 6-15 CyberPulse classifier evaluation using different data partitioning and attribute selection.  

6.6.4 Evaluation Using Multiple Classifiers  

In this section, we provide a comparative analysis of our classification algorithm with 

respect to competing for algorithmic approaches. In the MLP deep learning technique, 

there are multiple layers including, the input sensory layer, output layer and one or more 

hidden layers that collaborate to extract salient features of the problem space. MLP has the 

ability to model and learn complex non-linear relationships of the given domain. Therefore, 

it was best suited in our case where some attributes of the network traffic were not linearly 

dependent on each other such as maximum bandwidth and packet drop rate. To validate 

75 74 75 
82 

78 79 
87 

81 83 75 76 75 
81 81.5 80 



147 | 186 

 

the classifier, the comparison was performed to analyze the validity of the results using the 

MLP classifier with three different classification algorithms i.e. RF, SLR, NB. The reason 

for using the NB algorithm for comparison was that it has been used as a baseline method 

for several classification techniques in the past due to its simplicity and ease of 

implementation [103]. 

 

 Figure 6-16 CyberPulse classifier evaluation with MLP, RF and NB algorithms. 

We applied ANN classifier for flood traffic classification in our experiments. In this 

chapter, we compare ANN with other novel ML classification techniques.  

SLR and RF have also been widely used for classification of real-time data because of their 

good predictive performance and excellent comprehensibility [234]. It can be observed 

from Figure 6-16 that the values of precision, recall, and F1Score are approximately the 

same for all the algorithms. We observed that the value of recall changed in case of SLR 

and NB, where it dropped and increased respectively in both algorithms. However, there is 

a big difference in other performance metrics between the SLR and NB algorithms. It is 

also noted that the value of F1Score dropped in the NB algorithm because the NB classifier, 

considers all the attributes to be independent and there is a very minor impact on the value 

of accuracy when the attributes are dependent on each other [235]. While NB provides the 

best Recall, overall MLP performed better for all the accuracy metrics. As we were 

interested in the classification of network traffic, therefore the overall accuracy of the 

classification was of foremost importance. Therefore, considering our requirement, MLP 

82 
80 

83 82 80 82.5 85 

78 
82 78 

85.5 

74 



148 | 186 

 

algorithm was the best suited as it performed well and provided reasonably good 

cumulative results. 

After successful classification of the flood traffic, the responsible flows are identified. This 

information is sent to the Flood Mitigation Module which terminates the flows using the 

null routing technique. The flows are dropped and not forwarded to any further route by 

configuring the null route with a route flag. Null routing technique was chosen because it 

is a simplified technique and is available on all network routers with no performance impact 

of the network. 

 

In this section, we present and discuss the experimental results to demonstrate the 

performance of CyberPulse prototype in an LFA paradigm. The prototype has been 

developed to act as a defense against LFA on the control channel of SDN. It uses the ML-

based classification methodology to identify the malicious flows and then alleviate those 

to safeguard the network. Multiple configuration parameters have been used to provide the 

required level of the defense.  

To simulate a flooding attack, multiple sources were setup to send relatively low-rate traffic 

as compared to one or two sources sending huge files. Unfortunately, we could not find 

any similar study to compare our experimental evaluation. Therefore, the effectiveness of 

CyberPulse has been demonstrated by comparing the results in different experimental 

configurations. We perform the experiment with two threshold frequencies i.e. 50Kbps and 

30Kbps and demonstrate the performance of CyberPulse in both the conditions and set the 

bandwidth of the control channel as 10Mbps. Our previous work performs the evaluation 

using different algorithms and illustrates that the MLP provides best results. Hence, we 

perform the evaluation of CyberPulse using MLP with a confidence interval of 95%. We 

run the experiments five times and plot the cumulative standard error during the 

experiments which can be observed on all the evaluation graphs. The results of the 

evaluation are as follows. 

6.7.1 Evaluation Results for Delay 

The graph in Figure 6-17 demonstrates the delay incurred during LFA, the x-axis in the 

graph illustrates the time while y-axis corresponds to the delay incurred in Milliseconds 



149 | 186 

 

(ms). For delay measurement, we send File Transfer Protocol (FTP) traffic over TCP which 

needs traffic generation tool to transfer files over the network. We consider all traffic to be 

part of the calculations including background and foreground traffic. When LFA occurs, 

the legitimate traffic faces delays which increases source to destination delivery time of the 

packets.  

We use the ping command to measure the RTT between the hosts in two traffic intensities 

and measure the end-to-end network traffic delay during the attack. In the low traffic 

intensity, the maximum delay incurred was around 173ms. Moreover, when the attack was 

mitigated, the delay decreased significantly and remain around 71ms at around 90seconds 

time. The maximum delay observed at the increased attack frequency was around 400ms. 

Similarly, subsequent to the attack defense, the delay became stable around 75ms. This 

illustrates that the delay decreased significantly during both the experiments which 

illustrate the efficiency of CyberPulse against LFA. 

 

Figure 6-17 Graph illustrates how the delay is affected with the increase of flood traffic. 

6.7.2 Evaluation Results for Bandwidth Saturation 

Bandwidth saturation measures the percentage of link capacity consumption or degradation 

during the attack by flooding flows. Figure 6-18 demonstrates that the bandwidth saturation 

increases with the increase in time during the experiment. The adversaries start to send 

LFA traffic towards the targets as soon as CyberPulse is executed on the Ubuntu machine 

terminal. During LFA, bandwidth saturation follows a proportional pattern with respect to 



150 | 186 

 

time. When the attack was mitigated, the saturation reached to a normal level. The figure 

illustrates that bandwidth saturation dropped significantly when the attack was mitigated 

in both the attack thresholds. It remained around 4.5Mbps after the mitigation due to the 

legitimate traffic in the network which do not pose any threat as it was still lower than the 

actual link bandwidth. The impact of bandwidth saturation was continuous which can 

exhaust the available bandwidth of the network if the mitigation has not bee performed as 

it can be observed in both of the graphs in Figure 6-18 

  

Figure 6-18 Graph demonstrates the effect of bandwidth saturation with reference to time during LFA. 

6.7.3 Evaluation Results for Throughput 

Throughput can be defined as the data delivered per second on a specific link. In this 

experiment, we measure the throughput of the network while running the experiment 

during LFA. Figure 6-19 illustrates the effect of LFA on network throughput. It can be 

observed from the throughput graph that the data has continuously been delivered on the 

links which increased the throughput continuously. However, CyberPulse was able to 

detect the attack and perform the mitigation thus the throughput dropped immediately 

which can be observed at the peak points in the graph. throughput has been dropped at the 

endthe  of experiment. 



151 | 186 

 

 

Figure 6-19 Graph describes the effect of LFA on the throughput of the network with flooding threshold of 

2000. 

6.7.4 Evaluation Results for Input Load 

Input load denotes the total traffic in the network including flooding and benign. We can 

observe that the input load has been increased with the increase in flooding threshold. 

Figure 6-20 illustrates the effect of flooding on the input load which starts to increase with 

the time where the flood traffic was continuously being sent on the control channel link. 

The reason behind the increase in the input load was that the adversary was sending 

carefully crafted packets which cause packet miss in the data plane switches. This packet 

miss instigates new flow rule installation by requesting the controller. Thus, frequent 

interaction with the controller causes the input load on the control channel to increase 

significantly. Subsequently, the attack was mitigated which can be observed at the 

maximum peak points in both of the graphs. Finally, we can observe that there is still a 

certain amount of input load on the links which is due to the benign traffic in the network. 

Both graphs share a similar pattern during the input load experiment.  



152 | 186 

 

  

Figure 6-20 Graph illustrating the effect of LFA on input load of the network with flooding threshold of 

2000. 

6.7.5 Evaluation Results for Flooding Rate 

In this experiment, we observe the effect of LFA on the control channel of SDN. When 

flooding occurs, it increases the number of flow rule installation requests to the controller. 

Multiple such requests exhaust the control channel bandwidth and result in lowering down 

the performance. We run the experiment with low and high attack traffic and the results 

have been presented in Figure 6-21. The result of both the experiments demonstrates that 

the flooding rate instantaneously rises in the start and reaches at peak value. The peak has 

been observed because the flooding rate was increasing continuously whereas the 

CyberPulse takes some delay in first capturing and then classifying the flood traffic. Hence, 

due to the mitigation, a sudden decrease in the flooding threshold can be observed in both 

the graphs as presented in Figure 6-21. 



153 | 186 

 

  

Figure 6-21 Graph demonstrating the effect of time on the flooding rate on the network. 

6.7.6 Evaluation Results for Attack Detection Time 

When the flooding rate is low, flows in the network may not consume a large number of 

network resources thereby allowing them to remain undetected which increases the attack 

detection time. In the same way, a large number of attackers consume more network 

resources and can be easily detected hence, attack detection time will be low. We perform 

this experiment by iteratively employing attack hosts from 1 through 8, we added more 

traffic sending hosts in this experiment. The attack detection time with one host was around 

147ms. The flooding intensity increased with the increase in the number of attack hosts 

due to the increase in the packet drop rate and bandwidth saturation. The traffic intensities 

are increased which makes the flooding flows prominent and can be detected in a shorter 

period of time. The attack detection time with 8 attacking hosts was around 23ms. Figure 

6-22 demonstrates that with the increase in the number of attackers the detection time 

decreases. 



154 | 186 

 

 

Figure 6-22 Graph describing the attack detection time with reference to number of attackers with flooding 

threshold of 2000. 

The experimental results demonstrate that CyberPulse effectively defends LFA and 

provides seamless network operation. Recent solutions against LFA like LinkScope, and 

LFADefender [51] employing software agents to perform specialized traffic measurements 

which increases overhead on the network. However, CyberPulse applies SDN-based 

measurements to collect network statistics which poses no or very less overhead on the 

network. 

 

Although CyberPulse employs SDN-oriented measurements, which pose a very minimal 

overhead. However, CyberPulse needs to compute a long range of features which increase 

delay in the network traffic. The experiment evaluation illustrates that CyberPulse induces 

0.1 ms delay in the normal network traffic. CyberPulse has an added complexity of 

employing a ML approach, however, the cost-benefit trade-off is worth using this technique 

to safeguard current Software-Defined internet infrastructure from LFAs. 

  



155 | 186 

 

 

SDN provides an innovative mechanism in the network management for granular network 

programmability and control. There are a very few routers, switches, and control 

mechanisms available which offers the SDN-based experimentation facilities. Moreover, 

the existing hardware is expensive and cannot be used for a testbed. So, SDN researchers 

have developed a mininet tool to perform experiments and test novel SDN features they 

develop. Mininet allows rapid prototyping of SDN on a single computer. It is scalable for 

the network virtualization including hardware, processes, and control. The core 

characteristics of mininet are scalability, applicability, realistic experiments LFAs are hard 

to detect as they employ stealthy traffic to flood a target link. In this regard, we have 

developed a network security solution and tested using mininet.  

CyberPulse is a security solution which actively mitigates control channel LFAs by first 

identifying malicious flows using ML-based classification technique and then dropping the 

malicious flows using NULL routing. CyberPulse comprises of Link Listener, Flood 

Detection, and Flood Mitigation Modules. In this chapter, we presented the evaluation of 

CyberPulse using a comprehensive evaluation parameter which proved the endurance of 

CyberPulse in mitigating LFA. Extensive care was taken to incorporate intended 

requirements of the best solution for SDN under LFA. Therefore, we developed 

CyberPulse considering all the required features that a state-of-the-art solution should 

possess.  

A critical aspect of providing a solution against LFA is to get the network status at runtime. 

CyberPulse provides real-time network status information which enables efficient network 

surveillance. It provided efficient results in detection and mitigation of LFA. It has the 

ability to use any ML algorithm and dataset to provide defense against LFA. Moreover, 

CyberPulse uses an in-band control strategy where only one switch is connected with the 

controller, all the other switches need to use the services through the connected switch. In-

band control strategy is cost-effective as providing a separate link for each switch may 

incur more cost and controller communication overhead. After a detailed discussion on the 

evaluation of the CyberPulse, we will now present the conclusion of the research in the 

upcoming section. The ML techniques used in this research need minimal time for 



156 | 186 

 

classification which poses minimal overhead on the network. However, it remains close to 

0.1ms which is negligible.  

  



157 | 186 

 

7 CHAPTER 7. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

Since the rise of cloud services, big data processing on large server farms, and changing 

traffic patterns, there is an increasing need for a dynamic, manageable and adaptable 

network architecture. The Software Defined Network (SDN) ecosystem has grown to fill 

this gap. After a complete revamp of the data-center network's market, SDN is now 

growing popular in mobile networking and wide-area networks. SDN allows seamless 

management of large-scale complex networks by centralizing the network intelligence into 

one network control component. Unfortunately, the intelligent centralization has serious 

underlying disadvantages when it comes to security. Link Flooding Attacks (LFAs) are 

considered crippling for traditional networks and are even more devastating for the SDN 

ecosystem.  

Existing solutions lack in securing SDN from LFA which is one of the powerful forms of 

attack. This research presented a comparative analysis and identified crossfire link flooding 

technique as one of the lethal attacks that can potentially target the control channel. We 

presented a comprehensive analysis of LFAs on SDN and proposed a solution named as 

CyberPulse in securing SDN infrastructure from LFAs. Initially, we perform an in-depth 

study of the outcomes of LFA on all the SDN planes. Subsequently, we evaluate the effect 

of LFA on the popular SDN variants including SDMN, SDWN, SDLAN, and SDMNs. We 

perform an extensive analysis of the available literature on LFA and compare different 

LFA mitigation techniques. We establish that the control channel is very critical and a 

successful LFA has the potential to disrupt the communication of the entire network. In the 

absence of any viable solution in the literature, we developed a framework for securing the 

control channel from LFA called CyberPulse.  

It consists of four modules including Link Listener Module, JSON-based Pattern Matching 

Module, Flood Detection Module, and Flood Mitigation Module. We explain the working 

principle of the modules and how they interact to accomplish the task of LFA mitigation. 

We explain the flow of the information in the modules and explain the design 

considerations needed to develop this framework. Initially, we discussed the literature on 

LFAs in SDNs. A Mininet testbed using Floodlight controller and JSON pattern matching 

technology using DFA was arranged to perform the evaluation. The JSON pattern matching 

engine comprised up of two major phases, compilation phase, and matching phase. The 



158 | 186 

 

evaluation results demonstrated that despite being extendable and expressive, the 

performance of the proposed approach did not degrade as compared to optimally designed 

REs which is actually beneficial for long patterns mostly found in IDS systems. JSON 

approach is comparatively easier to express and extendable for new patterns due to the use 

of logical blocks and its unambiguous notation. CyberPulse utilized the Link Listener and 

JSON Pattern Matching Module to analyze the network traffic and on the basis of 

performed analysis, it invothe kes Flood Mitigation Module to secure SDN from LFA. 

CyberPulse is implemented on the application plane and it monitors, control channel to 

keep track of the ongoing traffic flows. For each flow in the network, CyberPulse examines 

the statistics on the control channel using the Link Listener Module and JSON-based 

Pattern Matching Module.  

The pattern matching operation acts as the first line of defense by comparing the traffic 

packets with the underlying patterns stored in the database. It immediately drops the flow 

if a malicious signature is found for the compared packet in the database. Subsequently, 

CyberPulse has the flexibility to classify the network traffic using any ML algorithm. 

CyberPulse is a robust solution in a way that it operates at line speed level and alleviates 

the LFA during the normal network flow. The available solutions against LFA involve 

complex hardware for detection and defense, however, LFA is distinct in its quality that it 

operates on real-time traffic paradigm as well as it utilizes multiple ML classification 

algorithms for LFA traffic classification. To this end, CyberPulse comprises of two main 

components, ML training, and mininet traffic generation and defense mechanism. 

CyberPulse is developed after careful consideration of all the aspects of LFA.  

We conducted an extensive evaluation to demonstrate the effectiveness of CyberPulse on 

a simulation testbed. The ML component trains 10 state of the art classification algorithms 

with high precision. The traffic generation and defense mechanism provide the 

implementation flexibility to use any of the algorithms to classify the LFA traffic and 

perform mitigation. CyberPulse has the capability to provide real-time network status 

graphs which enables efficient network surveillance. CyberPulse is a novel solution which 

can be deployed for highly secure network provisioning to perform the defense against 

LFAs. CyberPulse is highly scalable and can be deployed on the high-tech network 



159 | 186 

 

environments. CyberPulse can be deployed in highly sensitive network installations where 

real-time network surveillance and defense is required.  

 

For the future work, we are planning to extend CyberPulse by training the classifier on 

multiple datasets for multi types of security threats and perform the surveillance on a 

variety of attacks at the same time. This work can be extended to design a robust multi-

layer and multi-types of attacks and defense mechanisms. After an in-depth analysis of 

research on LFA in SDN, we have identified multiple open research issues and challenges 

in this paradigm. Generally, a lot of work has been performed to mitigate LFA in traditional 

networks, however, less work has been conducted on LFA in the context of SDN. 

Specifically, a major research challenge is to provide LFA mitigation strategy for SDN. As 

the current networks are widely deploying SDN for network operation, there is a strong 

need to provide LFA mitigation strategy for SDN. We discuss the current issues and 

challenges in the following. 

7.1.1 Control Channel LFA 

Control channel LFA is critical, so devising a solution for this channel will be a valuable 

scientific contribution. Following guidelines should be considered while developing a 

solution. Any solution for control channel LFA should be an independent application in 

order to pose less overhead in modifying the complex functionality of default SDN 

controllers. To minimize the chances of application crashing, the solution should be 

designed in such a way that its communication outside the network is limited to ensure its 

reliability.  

In the current network circumstances, the traffic consistency is random, so any acceptable 

solution must be scalable according to the incoming traffic. In real time network scenarios, 

traffic inspection and analysis takes a significant amount of time so, it is difficult to provide 

a real-time solution for LFA. However, there is a strong need for a solution that works on 

a real-time basis because LFA can immediately disrupt the communication with the vital 

resource which can result in vital information loss. 



160 | 186 

 

7.1.2 Pattern Matching and ML against LFA 

The adversaries exhibit special traffic patterns when they attack. In this regard, the 

identification and mitigation of these patterns can help against LFA. Efficient pattern 

matching is a key technology for effective network traffic monitoring. DCI and IDS/IPS 

techniques also rely on identifying malicious content against predefined patterns. For 

providing a solution against LFA on SDN, pattern matching techniques can be designed 

which helps in analyzing traffic patterns on line speed. The normal traffic features can be 

represented as signatures and can efficiently be used to identify malicious patterns in the 

network. Pattern matching techniques can be utilized as the first line of defense against 

LFA by filtering the flood from the known attackers.  

When traffic streams are processed through the pattern matching engine, the traffic can be 

further analyzed using ML techniques. ML techniques are widely being deployed for 

network traffic classification. A solution based on ML techniques can be devised to classify 

flood traffic on control channel. Similar to a solution provided by [168] for pattern 

matching in IoT, a solution can be provided for LFA attack patterns identification using 

historical attack data, which can be used to classify traffic flow statistics into benign and 

flooding flow categories. This vital identification can be further utilized to mitigate the 

flood traffic using any state-of-the-art mitigation strategy. 

7.1.3 Security Against Sources of LFA 

The attack traffic in LFA is persistently sent from the adversaries because most of the times 

they use network of bots to send low-rate traffic. All the current solutions work by 

mitigating these attacks on the victim side, there is a strong need to provide solutions at the 

source side of LFA. However, it is very difficult to identify the sources of LFA because 

the intensity of traffic at the source sides is very low which makes it hard to discriminate. 

A better solution to alleviate the sources of LFA is through coordination between the ASs 

at the source and destination sides. However, the source ASs needs economic incentives to 

collaborate with the destination ASs. Source side security solutions can also be provided 

by implementing highly secure authentication services to identify and alleviate malicious 

hosts. 



161 | 186 

 

7.1.4 Need for Robust Solutions 

 A much-needed future direction is to develop a solution to mitigate LFA in SDN as an 

application. Most of the current controllers use REST API to communicate with the 

physical hardware’s in the network. REST API can be utilized to collect flow statistics 

which subsequently can be used for surveillance of the control channel. With the rapid 

developments in the field of information and communication technology, the need for 

reliable networks have been increased. LFA has become one of the most dangerous attacks 

on the networks. So, there is a strong need to provide highly robust defense against these 

attacks. Most of the available solutions for LFA are reactive in their implementation.  

With the advent of big data technologies most of the organizations are operating online, 

hence, strongly secure networks are preferred by the organizations. Therefore, the need for 

proactive and reliable solutions have been increased. Most of the current solutions against 

LFA are tested on simulation methods which do not guarantee their effectiveness if 

deployed in real network environments. Therefore, there is a strong need to provide 

solutions evaluated in real testbeds. This way the requirements of scalability, complexity, 

and real-time accuracy can be validated.  

7.1.5 Need for Physical Testbed Implementations 

There is a need to implement CyberPulse on a physical testbed and to extend it by training 

on multiple datasets for multiple types of attacks while simultaneously performing the 

surveillance and analyze the network behavior in multiple attack conditions. This work can 

be extended to design a robust multi-layer and multi-attack defense mechanism. 

 

 

 

 

 

 

 



162 | 186 

 

7.1.6 Section Summary 

Section 7.1 provides future research directions in securing SDN against LFAs. Since LFA 

is a novel security threat, there is a lack of available solutions which safeguard SDN against 

LFAs. In this regard, we highlighted the requirements for an optimal solution against LFAs 

in SDN. Finally, we discussed the need for proactive solutions which work on the real-time 

speed to effectively defend the LFAs.  

As the current network technologies are becoming more and more virtualized, SDN is 

considered as the core building framework for those networks. Though this study provides 

a comprehensive solution against LFA, the attacks on control channel of SDN still needs 

to be identified in a comprehensive way. The centralized control in SDN sometimes 

becomes a point of bottleneck where the whole network remains under the availability of 

the controller which can be attacked any time. The in-band control strategy is cost-efficient 

in maintaining large data centers. However, it suffers from the problems of scalability and 

single point of failure.  

The security solutions for the in-band controllers can be provided to handle the problems 

of the security. Besides the challenges at the controller, many other vulnerabilities are 

present at the data plane of SDN also. The TCAM memory at the data plane switches is 

used to store the flow rules in the SDN. However, TCAM memory induces a huge cost 

therefore, only a meager capacity is available in the current SDN-based infrastructure.  The 

data plane switches possess a very low memory which can be overloaded with a variety of 

attacks. A flood of new flow rule installation requests can be instigated by the attacker 

which can deplete the TCAM memory and the switch may become in-accessible which can 

disrupt the communication. A carefully crafted attack on an ingress switch can cause the 

discrepancies in the network and badly affect the inflow of the traffic. Moreover, a variety 

of other attacks are possible in SDN, where a holistic security solution is required to 

mitigate such attacks. 

In the current literature, there are many security solutions that address an individual aspect 

of the defense either control layer, data layer, or any individual channel. Therefore, a 

comprehensive solution to mitigate these attacks is necessary which can deal with different 

types of threats. Moreover, proactive solutions are required with a lower computational 

overhead as the available solutions pose a higher amount computational cost.  



163 | 186 

 

8 REFERENCES 

[1] V. K. Dimitrios Gkounis, Christos Liaskos,  Xenofontas Dimitropoulos, , "On the interplay 

of link-flooding attacks and traffic engineering," ACM SIGCOMM Computer 

Communication Review, vol. 46, pp. 5-11, 2016. 

[2] M. S. Kang, V. D. Gligor, and V. Sekar, "SPIFFY: Inducing Cost-Detectability Tradeoffs 

for Persistent Link-Flooding Attacks," in Proc. Network and Distributed System Security 

Symposium (NDSS), San Diego, CA, USA, 2016, pp. 1-16. 

[3] M. S. Kang, S. B. Lee, and V. D. Gligor, "The crossfire attack," in Proc. IEEE Symposium 

on Security and Privacy (SP), San Francisco, California, USA, 2013, pp. 127-141. 

[4] A. Studer and A. Perrig, "The coremelt attack," in Proc. Springer, European Symposium 

on Research in Computer Security (ESORICS), Saint-Malo, France, 2009, pp. 37-52. 

[5] G. G. Alan Mclean, Archie Tse. (2013, June 24). How the Cyberattack on Spamhaus 

Unfolded. Available: 

https://archive.nytimes.com/www.nytimes.com/interactive/2013/03/30/technology/how-

the-cyberattack-on-spamhaus-unfolded.html? 

[6] F. Hu, Q. Hao, and K. Bao, "A survey on software-defined network and openflow: From 

concept to implementation," IEEE Communications Surveys & Tutorials, vol. 16, pp. 2181-

2206, 2014. 

[7] B. Görkemli, A. M. Parlakışık, S. Civanlar, A. Ulaş, and A. M. Tekalp, "Dynamic 

management of control plane performance in software-defined networks," in Proc. IEEE 

NetSoft Conference and Workshops (NetSoft), Seoul, South Korea, 2016, pp. 68-72. 

[8] R. Mohammadi and R. Javidan, "An adaptive type-2 fuzzy traffic engineering method for 

video surveillance systems over software defined networks," Multimedia Tools and 

Applications, vol. 76, pp. 23627-23642, 2017. 

[9] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, 

"Software-defined networking: A comprehensive survey," Proc. of the IEEE, vol. 103, pp. 

14-76, 2015. 

[10] S. Agarwal, M. Kodialam, and T. Lakshman, "Traffic engineering in software defined 

networks," in Proc. IEEE Int. Conf. on Computer Communications (INFOCOM), Turin, 

Italy, 2013, pp. 2211-2219. 

[11] A. Yaar, A. Perrig, and D. Song, "SIFF: A stateless internet flow filter to mitigate DDoS 

flooding attacks," in Proc. IEEE Symposium on Security and Privacy, California, USA, 

2004, pp. 130-143. 



164 | 186 

 

[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, et al., 

"OpenFlow: enabling innovation in campus networks," ACM SIGCOMM Computer 

Communication Review, vol. 38, pp. 69-74, 2008. 

[13] S. Scott-Hayward, S. Natarajan, and S. Sezer, "A survey of security in software defined 

networks," IEEE Communications Surveys & Tutorials, vol. 18, pp. 623-654, 2016. 

[14] L. Wei and C. Fung, "FlowRanger: A request prioritizing algorithm for controller DoS 

attacks in software defined networks," in Proc. IEEE Int. Conf. on Communications (ICC), 

London, UK, 2015, pp. 5254-5259. 

[15] D. Smyth, S. McSweeney, D. O'Shea, and V. Cionca, "Detecting Link Fabrication Attacks 

in Software-Defined Networks," in Proc. IEEE 26th Int. Conf. on Computer 

Communication and Networks (ICCCN), Vancouver, BC, Canada, 2017, pp. 1-8. 

[16] L. Xue, X. Ma, X. Luo, E. W. Chan, T. T. Miu, and G. Gu, "LinkScope: Toward Detecting 

Target Link Flooding Attacks," IEEE Transactions on Information Forensics and Security, 

vol. 13, pp. 2423-2438, 2018. 

[17] X. Ma, J. Li, Y. Tang, B. An, and X. Guan, "Protecting internet infrastructure against link 

flooding attacks: A techno-economic perspective," Information Sciences, vol. 479, pp. 486 

- 502, 2018. 

[18] Q. A Wang, F. A Xiao, M. A Zhou, Z. A Wang, and H. A Ding, "Mitigating Link-flooding 

Attacks With Active Link Obfuscation," Computing Research Repository  (CoRR), vol. 

abs/1703.09521, pp. 1-14, 2017. 

[19] S. S. Jinwoo Kim, "Software-Defined HoneyNet:Towards Mitigating Link Flooding 

Attacks," in Proc. 47th Annual IEEE/IFIP Int. Conf. on Dependable Systems and Networks 

Workshops, Denver, CO, USA, 2017, pp. 99-100. 

[20] S. B. Lee, M. S. Kang, and V. D. Gligor, "CoDef: Collaborative defense against large-scale 

link-flooding attacks," in Proc. 9th ACM Conf. on Emerging Networking Experiments and 

Technologies (CoNEXT), Santa Barbara, California, USA 2013, pp. 417-428. 

[21] C. Liaskos, V. Kotronis, and X. Dimitropoulos, "A novel framework for modeling and 

mitigating distributed link flooding attacks," in Proc. IEEE 35th International Conference 

on Computer Communications (INFOCOM), San Francisco, CA, USA, 2016, pp. 1-9. 

[22] T. Hirayama, K. Toyoda, and I. Sasase, "Fast target link flooding attack detection scheme 

by analyzing traceroute packets flow," in Proc. IEEE Int. Workshop on Information 

Forensics and Security (WIFS), Rome, Italy, 2015, pp. 1-6. 



165 | 186 

 

[23] L. Xue, X. Luo, E. W. Chan, and X. Zhan, "Towards Detecting Target Link Flooding 

Attack," in Proc. USENIX 28th Conf. on Large Installation System Administration (LISA), 

Seattle, WA, USA, 2014, pp. 81-96. 

[24] D. Gkounis, V. Kotronis, C. Liaskos, and X. Dimitropoulos, "On the interplay of link-

flooding attacks and traffic engineering," ACM SIGCOMM Computer Communication 

Review, vol. 46, pp. 5-11, 2016. 

[25] L. Wang, Q. Li, Y. Jiang, and J. Wu, "Towards mitigating Link Flooding Attack via 

incremental SDN deployment," in Proc. of  IEEE Symposium on Computers and 

Communication (ISCC), Messina, Italy, 2016, pp. 397-402. 

[26] A. Aydeger, N. Saputro, K. Akkaya, and M. Rahman, "Mitigating crossfire attacks using 

sdn-based moving target defense," in Proc. of IEEE Conference on Local Computer 

Networks (LCN), Dubai, United Arab Emirates, 2016, pp. 627-630. 

[27] D. M. Kristian Slavov, Makan Pourzandi, "Identifying and Addressing Vulnerabilities and 

Security Issues in SDN," Ericsson, Stockholm, Sweden2015. 

[28] Y. Jarraya, T. Madi, and M. Debbabi, "A survey and a layered taxonomy of software-

defined networking," IEEE communications surveys & tutorials, vol. 16, pp. 1955-1980, 

2014. 

[29] W. Zhou, L. Li, M. Luo, and W. Chou, "REST API design patterns for SDN northbound 

API," in In Proc. IEEE 28th Int. Conf. on Advanced Information Networking and 

Applications Workshops (WAINA), Victoria, Canada, 2014, pp. 358-365. 

[30] P. Sharma, S. Banerjee, S. Tandel, R. Aguiar, R. Amorim, and D. Pinheiro, "Enhancing 

network management frameworks with SDN-like control," in Proc. IFIP/IEEE Int. 

Symposium on Integrated Network Management (IM), Ghent, Belgium, 2013, pp. 688-691. 

[31] A. Hakiri, A. Gokhale, P. Berthou, D. C. Schmidt, and T. Gayraud, "Software-defined 

networking: Challenges and research opportunities for future internet," Computer 

Networks, vol. 75, pp. 453-471, 2014. 

[32] S. Cho, S. Chung, W. Lee, I. Joe, J. Park, S. Lee, et al., "An software defined networking 

architecture design based on topic learning-enabled data distribution service middleware," 

Advanced Science Letters, vol. 21, pp. 461-464, 2015. 

[33] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan, et al., "Are 

we ready for SDN? Implementation challenges for software-defined networks," IEEE 

Communications Magazine, vol. 51, pp. 36-43, 2013. 



166 | 186 

 

[34] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, "Towards an elastic 

distributed SDN controller," in Proc. ACM 2nd SIGCOMM workshop on Hot topics in 

software defined networking (HotSDN), Hong Kong, China, 2013, pp. 7-12. 

[35] H. W. Peng Zhang, Chengchen Hu, and Chuang Lin, "On Denial of Service Attacks in 

Software Defined Networks," IEEE Network, vol. 30, pp. 28-34, 2016. 

[36] F. M. V. R. Diego Kreutz, Paulo Verissimo, "Towards Secure and Dependable Software-

Defined Networks," in Proc. ACM 2nd SIGCOMM workshop on Hot topics in software 

defined networking (HotSDN), Hong Kong, China, 2013, pp. 55-60  

[37] G. B. Rishikesh Sahay, Zonghua Zhangy and Herv´e Debar, "Towards Autonomic DDoS 

Mitigation using Software Defined Networking 

" in Proc. NDSS Workshop on Security of Emerging Networking Technologies (SENT), San Diego, 

California, US, 2015, pp. 1-7. 

[38] M. F. Z. Lobna Dridi, "SDN-Guard: DoS Attacks Mitigation in SDN Networks," in Proc. 

IEEE 5th Int. Conf. on Cloud Networking, PISA, Italy, 2016, pp. 212-217. 

[39] K. K. G. G. F. Alagoz, "Defense Mechanisms against DDoS Attacks in SDN 

Environment," IEEE Communications Magazine vol. 55, pp. 175 - 179, 2017. 

[40] B. a. T. Chandrasekaran, Brendan and Benson, Theophilus, "Isolating and Tolerating SDN 

Application Failures with LegoSDN," in Proc. ACM  Symposium on SDN Research 

(SOSR), Santa Clara, CA, USA, 2016, pp. 7:1--7:12. 

[41] T. K. Karim ElDefrawy, "Byzantine Fault Tolerant Software-Defined Networking (SDN) 

Controllers," in Proc. IEEE 40th Annual Computer Software and Applications Conference 

(COMPSAC), Atlanta, GA, USA, 2016, pp. 208-213. 

[42] H. Z. Naga Katta, Michael Freedman, Jennifer Rexford, "Ravana: Controller Fault-

Tolerance in Software-Defined Networking," in Proc. ACM 1st SIGCOMM Symposium on 

Software Defined Networking Research (SOSR), Santa Clara, California. 

[43] J. R. S. Hyojoon Kim, Yoshio Turner, "CORONET: Fault Tolerance for Software Defined 

Networks," in Proc. IEEE 20th Int. Conf. on Network Protocols (ICNP), Austin, TX, USA, 

2012. 

[44] A. R. J. Kuan-yin Chen, Ishant Kumar Siddhrau, "SDNShield: Towards more 

comprehensive defense against DDoS attacks on SDN control plane," in Proc. IEEE Conf. 

on Communications and Network Security (CNS), Philadelphia, PA, USA, 2016. 

[45] J. H. Lei Xu, Sungmin Hong, Jialong Zhang, Guofei Gu, "Attacking the Brain: Races in 

the SDN Control Plane," in Proc. 26th USENIX Security Symposium (SEC), Vancouver, 

BC, Canada, 2017, pp. 451-468  



167 | 186 

 

[46] D. Z. Bin Yuan, Shui Yu, Senior Member, IEEE, Hai Jin, Senior Member, IEEE, Weizhong 

Qiang, and Jinan Shen, "Defending against Flow Table Overloading Attack in Software-

Defined Networks," Transactions on Services Computing, vol. 12, pp. 231 - 246, 2019. 

[47] C. P. akayuki Sasaki , Taeho Lee, Torsten Hoefler, Adrian Perrig, "SDNsec: Forwarding 

Accountability for the SDN Data Plane," in Proc. IEEE Int. Conf. on Computer 

Communication and Networks (ICCCN), Waikoloa, HI, USA, 2016, pp. 1-10. 

[48] S. Khan, A. Gani, A. W. A. Wahab, M. Guizani, and M. K. Khan, "Topology discovery in 

software defined networks: Threats, taxonomy, and state-of-the-art," IEEE 

Communications Surveys & Tutorials, vol. 19, pp. 303-324, 2017. 

[49] K. S. S. Y. Y. Xiang, "Performance Analysis of Software-Defined Network Switch using 

M/Geo/1 Model," IEEE Communications Letters, vol. 20, pp. 2522-2525, September 2016 

2016. 

[50] Q. Niyaz, W. Sun, and M. Alam, "Impact on SDN Powered Network Services Under 

Adversarial Attacks," in Proc. Intl. Conf. on Soft Computing and Software Engineering 

(SCSE), University of California, Berkeley, Suta, 2015, pp. 228-235. 

[51] J. Wang, R. Wen, J. Li, F. Yan, B. Zhao, and F. Yu, "Detecting and Mitigating Target Link-

Flooding Attacks Using SDN," IEEE Transactions on Dependable and Secure Computing, 

pp. 1-1, 2018. 

[52] Q. Wang, F. Xiao, M. Zhou, Z. Wang, and H. Ding, "Mitigating Link-flooding Attacks 

With Active Link Obfuscation," arXiv preprint arXiv:1703.09521, 2017. 

[53] C. Liaskos, V. Kotronis, and X. Dimitropoulos, "A novel framework for modeling and 

mitigating distributed link flooding attacks," in Computer Communications, IEEE 

INFOCOM 2016-The 35th Annual IEEE International Conference on, 2016, pp. 1-9. 

[54] F. Gillani, E. Al-Shaer, S. Lo, Q. Duan, M. Ammar, and E. Zegura, "Agile virtualized 

infrastructure to proactively defend against cyber attacks," in Proc. IEEE Conference on 

Computer Communications (INFOCOM), San Francisco, CA, USA, 2015, pp. 729-737. 

[55] P. Xiao, Z. Li, H. Qi, W. Qu, and H. Yu, "An Efficient DDoS Detection with Bloom Filter 

in SDN," in Proc. IEEE Trustcom/BigDataSE/I SPA, Tianjin, China, 2016, pp. 1008-1015. 

[56] R. U. Rasool, M. Najam, H. F. Ahmad, W. Hua, and Z. Anwar, "A novel JSON based 

regular expression language for pattern matching in the internet of things," Journal of 

Ambient Intelligence & Humanized Computing, vol. 10, pp. 1463–1481, 2018. 

[57] F. Yu, Z. Chen, Y. Diao, T. Lakshman, and R. H. Katz, "Fast and memory-efficient regular 

expression matching for deep packet inspection," in Prof. ACM/IEEE Symposium on 

Architecture for Networking and Communications systems, 2006, pp. 93-102. 



168 | 186 

 

[58] M. Becchi and P. Crowley, "A hybrid finite automaton for practical deep packet 

inspection," in Proc. ACM CoNEXT Conference, New York, USA, 2007, pp. 1-12. 

[59] M. Najam, U. Younis, and R. ur Rasool, "Speculative parallel pattern matching using 

stride-k DFA for deep packet inspection," Journal of Network and Computer Applications, 

vol. 54, pp. 78-87, 2015. 

[60] D. Ficara, A. Di Pietro, S. Giordano, G. Procissi, F. Vitucci, and G. Antichi, "Differential 

encoding of DFAs for fast regular expression matching," IEEE/ACM Transactions On 

Networking, vol. 19, pp. 683-694, 2011. 

[61] T. Liu, Y. Yang, Y. Liu, Y. Sun, and L. Guo, "An efficient regular expressions compression 

algorithm from a new perspective," in Proc. Int. Conf. on Computer Communications 

(INFOCOM), Shanghai, China, 2011, pp. 2129-2137. 

[62] D. Luchaup, R. Smith, C. Estan, and S. Jha, "Multi-byte regular expression matching with 

speculation," in Proc. Springer Int. Workshop on Recent Advances in Intrusion Detection 

(RAID), Saint-Malo, France, 2009, pp. 284-303. 

[63] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P. Markatos, and S. Ioannidis, "Regular 

expression matching on graphics hardware for intrusion detection," in International 

Workshop on Recent Advances in Intrusion Detection, 2009, pp. 265-283. 

[64] S. Kong, R. Smith, and C. Estan, "Efficient signature matching with multiple alphabet 

compression tables," in Proc. ACM 4th international Conf. on Security and privacy in 

communication netowrks (SecureComm), Istanbul, Turkey, 2008, pp. 1-10. 

[65] D. Ficara, S. Giordano, G. Procissi, F. Vitucci, G. Antichi, and A. Di Pietro, "An improved 

DFA for fast regular expression matching," ACM SIGCOMM Computer Communication 

Review, vol. 38, pp. 29-40, 2008. 

[66] M. Becchi and S. Cadambi, "Memory-efficient regular expression search using state 

merging," in Proc. 26th IEEE Int. Conf. on Computer Communications (INFOCOM), New 

York, NY, USA, 2007, pp. 1064-1072. 

[67] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, "Algorithms to accelerate 

multiple regular expressions matching for deep packet inspection," in ACM SIGCOMM 

Computer Communication Review, 2006, pp. 339-350. 

[68] B. Heller. (2018, June 24). A Virtual Network on Your Desktop. An instant virtual network 

on your laptop (or other pc)-mininet 

  Available: http://mininet.org/ 

[69] N. Mate. (2018). Project Floodlight. Available: 

http://www.projectfloodlight.org/floodlight/ 

http://mininet.org/
http://www.projectfloodlight.org/floodlight/


169 | 186 

 

[70] M. Karakus and A. Durresi, "Service Cost in Software Defined Networking (SDN)," in 

Proc. IEEE Int. Conf. on Advanced Information Networking & Applications (AINA), 

Taipei, Taiwan, 2017, pp. 468-475. 

[71] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, "A distributed and robust sdn control 

plane for transactional network updates," in Proc. IEEE Int. Conf Computer 

Communications (INFOCOM), Kowloon, Hong Kong, 2015, pp. 190-198. 

[72] S. T. Zargar, J. Joshi, and D. Tipper, "A survey of defense mechanisms against distributed 

denial of service (DDoS) flooding attacks," IEEE communications surveys & tutorials, vol. 

15, pp. 2046-2069, 2013. 

[73] M. S. Kang and V. D. Gligor, "Routing bottlenecks in the internet: Causes, exploits, and 

countermeasures," in Proc. ACM SIGSAC Conf. on Computer and Communications 

Security, Scottsdale, Arizona, USA, 2014, pp. 321-333. 

[74] D. Setsirichok, T. Piroonratana, W. Wongseree, T. Usavanarong, N. Paulkhaolarn, C. 

Kanjanakorn, et al., "Classification of complete blood count and haemoglobin typing data 

by a C4.5 decision tree, a naïve Bayes classifier and a multilayer perceptron for 

thalassaemia screening," Biomedical Signal Processing & Control, vol. 7, pp. 202-212, 

2012. 

[75] G. Shang, P. Zhe, X. Bin, H. Aiqun, and R. Kui, "FloodDefender: Protecting data and 

control plane resources under SDN-aimed DoS attacks," in Proc. IEEE Int. Conf. on 

Computer Communications (INFOCOM), Atlanta, GA, USA, 2017, pp. 1-9. 

[76] M. Zhang, J. Bi, J. Bai, and G. Li, "FloodShield: Securing the SDN Infrastructure Against 

Denial-of-Service Attacks," in Proc. IEEE 17th Int. Conf. On Trust, Security And Privacy 

In Computing and Communications/12th IEEE International Conference On Big Data 

Science And Engineering (TrustCom/BigDataSE), New York, NY, USA, 2018, pp. 687-

698. 

[77] D. Kobialka. (2018, June 24). Kaspersky Lab Study: Average Cost of Enterprise DDoS 

Attack Totals $2M. Available: https://www.msspalert.com/cybersecurity-

research/kaspersky-lab-study-average-cost-of-enterprise-ddos-attack-totals-2m/ 

[78] R. U. Rasool, W. Hua, W. Rafique, J. Yong, and J. Cao, "A Study on Securing Software 

Defined Networks," in Proc. Springer Int. Conf. on Web Information Systems Engineering 

(WISE), Moscow, Russia, 2017, pp. 479-489. 

[79] H. W. R. U. Rasool, U. Ashraf, K. Ahmed, Z. Anwar, W. Rafique, "A Survey of Link 

Flooding Attacks in Software Defined Network Ecosystems," ACM Computing Surveys, 

2019, Under Review. 

http://www.msspalert.com/cybersecurity-research/kaspersky-lab-study-average-cost-of-enterprise-ddos-attack-totals-2m/
http://www.msspalert.com/cybersecurity-research/kaspersky-lab-study-average-cost-of-enterprise-ddos-attack-totals-2m/


170 | 186 

 

[80] S. Khan, A. Gani, A. W. A. Wahab, A. Abdelaziz, and M. A. Bagiwa, "FML: A novel 

forensics management layer for software defined networks," Proc. IEEE 6th Int. Conf. on 

Cloud System and Big Data Engineering (Confluence), vol. 44, pp. 619-623, 2016. 

[81] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, "A survey of 

software-defined networking: Past, present, and future of programmable networks," IEEE 

Communications Surveys & Tutorials, vol. 16, pp. 1617-1634, 2014. 

[82] Y. Cai, F. R. Yu, C. Liang, B. Sun, and Q. Yan, "Software-defined device-to-device (D2D) 

communications in virtual wireless networks with imperfect network state information 

(NSI)," IEEE Transactions on Vehicular Technology, vol. 65, pp. 7349-7360, 2016. 

[83] A. Csoma, B. Sonkoly, L. Csikor, F. Németh, A. Gulyas, W. Tavernier, et al., "ESCAPE: 

Extensible service chain prototyping environment using mininet, click, netconf and pox," 

in ACM SIGCOMM Computer Communication Review, 2014, pp. 125-126. 

[84] M. Brandt, R. Khondoker, R. Marx, and K. Bayarou, "Security Analysis of Software 

Defined Networking Protocols—OpenFlow, OF-Config and OVSDB," in Proc. IEEE 5th 

Int. Conf. on Communications and Electronics (ICCE), Da Nang, Vietnam 2014, pp. 51-

56. 

[85] Y. Qian, W. You, and K. Qian, "OpenFlow flow table overflow attacks and 

countermeasures," in Proc. IEEE European Conf.  on Networks and Communications 

(EuCNC), Athens, Greece, 2016, pp. 205-209. 

[86] T. Xu, D. Gao, P. Dong, C. H. Foh, and H. Zhang, "Mitigating the Table-Overflow Attack 

in Software-Defined Networking," IEEE Transactions on Network and Service 

Management, vol. 14, pp. 1086-1097, 2017. 

[87] L. Zhang, S. Wang, S. Xu, R. Lin, and H. Yu, "TimeoutX: An adaptive flow table 

management method in software defined networks," in Proc. Global Communications 

Conference (GLOBECOM), San Diego, CA, USA, 2015, pp. 1-6. 

[88] B. Leng, L. Huang, X. Wang, H. Xu, and Y. Zhang, "A mechanism for reducing flow tables 

in software defined network," in Proc. IEEE Int. Conf. on Communications (ICC), London, 

UK, 2015, pp. 5302-5307. 

[89] D. B. Rawat and S. R. Reddy, "Software defined networking architecture, security and 

energy efficiency: A survey," IEEE Communications Surveys & Tutorials, vol. 19, pp. 325-

346, 2017. 

[90] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, "Security in software defined networks: 

A survey," IEEE Communications Surveys & Tutorials, vol. 17, pp. 2317-2346, 2015. 



171 | 186 

 

[91] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V. Maglaris, "Combining 

OpenFlow and sFlow for an effective and scalable anomaly detection and mitigation 

mechanism on SDN environments," Computer Networks, vol. 62, pp. 122-136, 2014. 

[92] R. Kandoi and M. Antikainen, "Denial-of-service attacks in OpenFlow SDN networks," in 

Proc. IFIP/IEEE Int. Symposium on Integrated Network Management (IM), Ottawa, ON, 

Canada, 2015, pp. 1322-1326. 

[93] H. T. N. Tri and K. Kim, "Assessing the impact of resource attack in Software Defined 

Network," in Proc. IEEE Int. Conf. on Information Networking (ICOIN), Combodia, 2015, 

pp. 420-425. 

[94] X. W. Arjun P. Athreya, Yu Seung Kim, Yuan Tian and Patrick Tague, "Resistance is Not 

Futile: Detecting DDoS Attacks without Packet Inspection," in Proc. 14th Int. Workshop 

on Information Security Applications, Jeju Island, Korea, 2013, pp. 1-15. 

[95] W. H. Highleyman. (2013) History's Largest DDoS Attack. Availability Digest. 1-5. 

Available: http://www.availabilitydigest.com/public_articles/0804/spamhaus.pdf 

[96] J. M. Vidal, A. L. S. Orozco, and L. J. G. Villalba, "Adaptive artificial immune networks 

for mitigating DoS flooding attacks," Swarm and Evolutionary Computation, vol. 38, pp. 

94 -108, 2018. 

[97] H. Luo, Z. Chen, J. Li, and A. V. Vasilakos, "Preventing distributed denial-of-service 

flooding attacks with dynamic path identifiers," IEEE Transactions on Information 

Forensics and Security, vol. 12, pp. 1801-1815, 2017. 

[98] D. Gkounis, "Cross-domain DoS link-flooding attack detection and mitigation using SDN 

principles," Masters Thesis, Information Technology and Electrical Engineering, ETH 

Zurich, Zurich, Switzerland, 2014. 

[99] R. Mohammadi, R. Javidan, and M. Conti, "Slicots: An sdn-based lightweight 

countermeasure for tcp syn flooding attacks," IEEE Transactions on Network and Service 

Management, vol. 14, pp. 487-497, 2017. 

[100] M. Karakus and A. Durresi, "A survey: Control plane scalability issues and approaches in 

software-defined networking (SDN)," Computer Networks, vol. 112, pp. 279-293, 2017. 

[101] F. J. Ryba, M. Orlinski, M. Wählisch, C. Rossow, and T. C. Schmidt, "Amplification and 

DRDoS Attack Defense-A Survey and New Perspectives," arXiv preprint, vol. 

arXiv:1505.07892, pp. 1-19, 2015. 

[102] R. Sahay, G. Blanc, Z. Zhang, K. Toumi, and H. Debar, "Adaptive policy-driven attack 

mitigation in SDN," in Proc. ACM 1st Int. Workshop on Security and Dependability of 

Multi-Domain Infrastructures, Belgrade, Serbia, 2017, pp. 4:1--4:6. 

http://www.availabilitydigest.com/public_articles/0804/spamhaus.pdf


172 | 186 

 

[103] X. Chen, G. Zeng, Q. Zhang, L. Chen, and Z. Wang, "Classification of Medical 

Consultation Text Using Mobile Agent System Based on Naïve Bayes Classifier," in Proc. 

Springer Int. Conf. on 5G for Future Wireless Networks, Beijing, China, 2017, pp. 371-

384. 

[104] K. S. Hoon, K. C. Yeo, S. Azam, B. Shunmugam, and F. De Boer, "Critical review of 

machine learning approaches to apply big data analytics in DDoS forensics," in Proc. IEEE 

Intl. Conf. on Computer Communication and Informatics (ICCCI), Coimbatore,  India, 

2018, pp. 1-5. 

[105] B. Anderson and D. McGrew, "Machine learning for encrypted malware traffic 

classification: accounting for noisy labels and non-stationarity," in Proc. ACM 23rd Int. 

Conf. on Knowledge Discovery and Data Mining (SIGKDD), 2017, pp. 1723-1732. 

[106] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim, "A survey of deep learning-

based network anomaly detection," Cluster Computing, In Press, pp. 1-13, 2017. 

[107] M. Agarwal, D. Pasumarthi, S. Biswas, and S. Nandi, "Machine learning approach for 

detection of flooding DoS attacks in 802.11 networks and attacker localization," 

International Journal of Machine Learning and Cybernetics, vol. 7, pp. 1035-1051, 2016. 

[108] A. Kalliola, K. Lee, H. Lee, and T. Aura, "Flooding DDoS mitigation and traffic 

management with software defined networking," in Proc. IEEE Int. Conf. on Cloud 

Networking (CloudNet), Niagara Falls, Canada, 2015, pp. 248-254. 

[109] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, "Evaluation of machine learning 

classifiers for mobile malware detection," Soft Computing, vol. 20, pp. 343-357, 2016. 

[110] Z. He, T. Zhang, and R. B. Lee, "Machine learning based ddos attack detection from source 

side in cloud," in Proc. IEEE 4th Int. Conf. on Cyber Security and Cloud Computing 

(CSCloud), New York, USA, 2017, pp. 114-120. 

[111] L. Hellemons, L. Hendriks, R. Hofstede, A. Sperotto, R. Sadre, and A. Pras, "SSHCure: a 

flow-based SSH intrusion detection system," in Proc. Springer 6th Int. Conf. on 

Autonomous Infrastructure, Management, and Security (AIMS) luxembourg, luxembourg 

2012, pp. 86-97. 

[112] L. R. Knudsen and M. J. Robshaw, Brute force attacks in the series of  The Block Cipher 

Companion. Information Security and Cryptography. Berlin, Heidelberg: Springer, 2001. 

[113] R. Daş, A. Karabade, and G. Tuna, "Common network attack types and defense 

mechanisms," in Proc. IEEE 23rd Conf. on Signal Processing and Communications 

Applications (SIU), Malatya, Turkey, 2015, pp. 2658-2661. 



173 | 186 

 

[114] D. H. Ahmed, M. Hussin, A. Abdullah, and R. A. R. Mahmood, "Distributed Defense 

Scheme for Managing DNS Reflection Attack in Network Communication Systems," 

Journal of Telecommunication, Electronic and Computer Engineering (JTEC), vol. 8, pp. 

71-75, 2016. 

[115] X. N. Zeng, A. Ghrayeb, and M. Hasna, "Joint Optimal Threshold-Based Relaying and ML 

Detection in Network-Coded Two-Way Relay Channels," IEEE Transactions on 

Communications, vol. 60, pp. 2657-2667, 2012. 

[116] G. A. Ajaeiya, N. Adalian, I. H. Elhajj, A. Kayssi, and A. Chehab, "Flow-based Intrusion 

Detection System for SDN," in Proc. IEEE Symposium on Computers and 

Communications (ISCC), Heraklion, Greece, 2017, pp. 787-793. 

[117] C. J. Bernardos, A. De La Oliva, P. Serrano, A. Banchs, L. M. Contreras, H. Jin, et al., "An 

architecture for software defined wireless networking," IEEE wireless communications, 

vol. 21, pp. 52-61, 2014. 

[118] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and M. Tyson, "FRESCO: 

Modular Composable Security Services for Software-Defined Networks," in Proc. 20th 

Annual Network & Distributed System Security Symposium, San Diego, CA United States, 

2013, pp. 1-16. 

[119] J. Schulz-Zander, C. Mayer, B. Ciobotaru, S. Schmid, and A. Feldmann, "Unified 

Programmability of Virtualized Network Functions and Software-Defined Wireless 

Networks," IEEE Transactions on Network and Service Management, vol. 14, pp. 1046-

1060, 2017. 

[120] H. Wang, H. Tang, and S. Zhang, "Joint Optimization in Software Defined Wireless 

Networks with Network Coded Opportunistic Routing," in Proc. IEEE 14th Int. Conf. on 

Mobile Ad Hoc and Sensor Systems (MASS), Orlando, FL, USA, 2017, pp. 298-302. 

[121] C.-F. Liu, S. Samarakoon, M. Bennis, and H. V. Poor, "Fronthaul-Aware Software-Defined 

Wireless Networks: Resource Allocation and User Scheduling," IEEE Transactions on 

Wireless Communications, vol. 17, pp. 533-547, 2018. 

[122] C. Liang, Y. He, F. R. Yu, and N. Zhao, "Enhancing QoE-Aware Wireless Edge Caching 

With Software-Defined Wireless Networks," IEEE Transactions on Wireless 

Communications, vol. 16, pp. 6912-6925, 2017. 

[123] P. Graubner, M. Sommer, M. Hollick, and B. Freisleben, "Dynamic role assignment in 

Software-Defined Wireless Networks," in Proc. IEEE Symposium on Computers and 

Communications (ISCC), Heraklion, Greece, 2017, pp. 760-766. 



174 | 186 

 

[124] B. O. Kahjogh and G. Bernstein, "Energy and latency optimization in software defined 

wireless networks," in Proc. IEEE Int. Conf. on Ubiquitous and Future Networks (ICUFN), 

Milan, Italy, 2017, pp. 714-719. 

[125] X. Liu, A. Liu, and Z. Li, "Adaptive Broadcast Times for Program Codes in Software 

Defined Wireless Networks," in Proc. IEEE Int. Conf. Mobile Ad-Hoc and Sensor 

Networks (MSN), Hefei, China, 2016, pp. 405-408. 

[126] M. J. Abdel-Rahman, E. A. Mazied, A. MacKenzie, S. Midkiff, M. R. Rizk, and M. El-

Nainay, "On stochastic controller placement in software-defined wireless networks," in 

Proc. IEEE Wireless Communications and Networking Conference (WCNC), San 

Fransisco, CA, USA, 2017, pp. 1-6. 

[127] K. Mizuyama, Y. Taenaka, and K. Tsukamoto, "Estimation based adaptable Flow 

Aggregation Method for reducing control traffic on Software Defined wireless Networks," 

in Proc. IEEE Int. Conf. on Pervasive Computing and Communications Workshops 

(PerCom Workshops), Kona, HI, USA, 2017, pp. 363-368. 

[128] B. Cao, Y. Li, C. Wang, G. Feng, S. Qin, and Y. Zhou, "Resource Allocation in Software 

Defined Wireless Networks," IEEE Network, vol. 31, pp. 44-51, 2017. 

[129] S. M. Mingjie FENG, Tao JIANG, "Enhancing the performance of future wireless 

networks with software-defined networking," Frontiers of Information Technology & 

Electronic Engineering, vol. 2016 17(7), pp. 606-619, 2016. 

[130] N. Zhang, N. Cheng, N. Lu, H. Zhou, J. W. Mark, and X. Shen, "Risk-aware cooperative 

spectrum access for multi-channel cognitive radio networks," IEEE Journal on Selected 

Areas in Communications, vol. 32, pp. 516-527, 2014. 

[131] Y. T. Hou, Y. Shi, and H. D. Sherali, "Optimal spectrum sharing for multi-hop software 

defined radio networks," in Proc. IEEE 26th Int. Conf. on Computer Communications 

(INFOCOM), Barcelona, Spain, 2007, pp. 1-9. 

[132] I. Ahmad, S. N. Karunarathna, M. Ylianttila, and A. Gurtov, Load balancing in software 

defined mobile networks: John Wiley & Sons, Ltd., 2015. 

[133] H. Selvi, S. Güner, G. Gür, and F. Alagöz, "The controller placement problem in software 

defined mobile networks (SDMN)," in Software Defined Mobile Networks (SDMN): 

Beyond LTE Network Architecture, ed: John Wiley & Sons, Ltd, 2015, pp. 129-147. 

[134] R. G. L. Narayanan, Software Defined Networks for Mobile Application Services: John 

Wiley & Sons, Ltd, 2015. 



175 | 186 

 

[135] C. Liang and F. R. Yu, "Enhancing mobile edge caching with bandwidth provisioning in 

software-defined mobile networks," in Proc. IEEE Int. Conf. on Communications (ICC), 

Paris, France, 2017, pp. 1-6. 

[136] M. Liyanage, I. Ahmad, J. Okwuibe, M. Ylianttila, H. Kabir, J. L. Santos, et al., 

"Enhancing Security of Software Defined Mobile Networks," IEEE Access, vol. 5, pp. 

9422-9438, 2017. 

[137] C. Liang and F. R. Yu, "Bandwidth Provisioning in Cache-Enabled Software-Defined 

Mobile Networks: A Robust Optimization Approach," in Proc. IEEE 84th Vehicular 

Technology Conference (VTC), Montreal, QC, Canada, 2016, pp. 1-5. 

[138] I. Ahmad, M. Liyanage, S. Namal, M. Ylianttila, A. Gurtov, M. Eckert, et al., "New 

concepts for traffic, resource and mobility management in software-defined mobile 

networks," in Proc. IEEE 12th Int. Conf. Wireless On-demand Network Systems and 

Services (WONS), Cortina d'Ampezzo, Italy, 2016, pp. 1-8. 

[139] M. Liyanage, I. Ahmed, M. Ylianttila, J. L. Santos, R. Kantola, O. L. Perez, et al., "Security 

for future software defined mobile networks," in Proc. IEEE 9th Int. Conf. on Next 

Generation Mobile Applications, Services and Technologies, Cambridge, UK, 2015, pp. 

256-264. 

[140] L. J. Chaves, V. M. Eichemberger, I. C. Garcia, and E. R. M. Madeira, "Integrating 

OpenFlow to LTE: Some issues toward software-defined mobile networks," in Proc. IEEE 

Int. Conf. on New Technologies, Mobility and Security (NTMS), Paris, France, 2015, pp. 1-

5. 

[141] R. Riggio, M. K. Marina, and T. Rasheed, "Interference management in software-defined 

mobile networks," in Integrated Network Management (IM), 2015 IFIP/IEEE 

International Symposium on, 2015, pp. 626-632. 

[142] M. Liyanage, M. Ylianttila, and A. Gurtov, "Securing the control channel of software-

defined mobile networks," in Proc. IEEE 15th Int. Symposium on a World of Wireless, 

Mobile and Multimedia Networks (WoWMoM), Sydney, NSW, Australia, 2014, pp. 1-6. 

[143] I. Katzela and M. Naghshineh, "Channel assignment schemes for cellular mobile 

telecommunication systems: A comprehensive survey," IEEE personal communications, 

vol. 3, pp. 10-31, 1996. 

[144] F.-Y. Wang, "Parallel control and management for intelligent transportation systems: 

Concepts, architectures, and applications," IEEE Transactions on Intelligent 

Transportation Systems, vol. 11, pp. 630-638, 2010. 



176 | 186 

 

[145] J. Chung, G. Gonzalez, I. Armuelles, T. Robles, R. Alcarria, and A. Morales, "Experiences 

and challenges in deploying openflow over real wireless mesh networks," IEEE Latin 

America Transactions, vol. 11, pp. 955-961, 2013. 

[146] F. Yang, V. Gondi, J. O. Hallstrom, K.-C. Wang, and G. Eidson, "OpenFlow-based load 

balancing for wireless mesh infrastructure," in Proc. IEEE Consumer Communications and 

Networking Conference (CCNC), Las Vegas, NV, USA, 2014, pp. 444-449. 

[147] W. Zhao and J. Xie, "IMeX: intergateway cross-layer handoffs in internet-based 

infrastructure wireless mesh networks," IEEE Transactions on Mobile Computing, vol. 11, 

pp. 1585-1600, 2012. 

[148] M. K. Marina, S. R. Das, and A. P. Subramanian, "A topology control approach for 

utilizing multiple channels in multi-radio wireless mesh networks," Computer networks, 

vol. 54, pp. 241-256, 2010. 

[149] S. L. K. Sood, S. Yu, and Y. Xiang, "Dynamic Access Point Association Using Software-

Defined Networking," in IEEE Telecommunication Networks and Applications Conference 

(ITNAC), Sydney, NSW, Australia, 2015, pp. 226-231. 

[150] P. Dely, A. Kassler, and N. Bayer, "Openflow for wireless mesh networks," in Proc. IEEE 

Int. Conf. on Computer Communications and Networks (ICCCN), Maui, HI, USA, 2011, 

pp. 1-6. 

[151] A. Detti, C. Pisa, S. Salsano, and N. Blefari-Melazzi, "Wireless mesh software defined 

networks (wmSDN)," in Proc. IEEE 9th Int. Conf. on Wireless and Mobile Computing, 

Networking and Communications (WiMob), Lyon, France, 2013, pp. 89-95. 

[152] H. Huang, P. Li, S. Guo, and W. Zhuang, "Software-defined wireless mesh networks: 

architecture and traffic orchestration," IEEE network, vol. 29, pp. 24-30, 2015. 

[153] J. Chen, B. Liu, H. Zhou, Q. Yu, G. Lin, and X. Shen, "QoS-Driven Efficient Client 

Association in High-Density Software Defined WLAN," IEEE Transactions on Vehicular 

Technology, vol. 66, pp. 7372 - 7383, 2017. 

[154] A. Amelyanovich, M. Shpakov, A. Muthanna, M. Buinevich, and A. Vladyko, "Centralized 

control of traffic flows in wireless LANs based on the SDN concept," in Proc. IEEE 

Systems of Signal Synchronization, Generating and Processing in Telecommunications 

(SINKHROINFO), Kazan, Russia, 2017, pp. 1-5. 

[155] X. Sang, Q. Wu, and H. Li, "Client-network collaborative load balancing mechanism for 

WLAN based on SDN and 802.11 u," in Proc. IEEE 13th Int. Wireless Communications 

and Mobile Computing Conference (IWCMC), Valencia, Spain, 2017, pp. 506-511. 



177 | 186 

 

[156] C. C. Min Cheng Chan, Jun-Xian Huwang, Chien Chao Tseng, "OpenNet: A simulator for 

software-defined wireless local area network," in Proc. IEEE Wireless Communications 

and Networking Conference (WCNC), Istanbul, Turkey, 2014, pp. 3332-3336. 

[157] S. Shin and G. Gu, "Attacking software-defined networks: A first feasibility study," in 

Proc. ACM 2nd SIGCOMM workshop on Hot topics in software defined networking, Hong 

Kong, China, 2013, pp. 165-166. 

[158] M. Antikainen, T. Aura, and M. Särelä, "Spook in your network: Attacking an sdn with a 

compromised openflow switch," in Proc. Springer Nordic Conference on Secure IT 

Systems, Tromsø, Norway, 2014, pp. 229-244. 

[159] J. Leng, Y. Zhou, J. Zhang, and C. Hu, "An inference attack model for flow table capacity 

and usage: Exploiting the vulnerability of flow table overflow in software-defined 

network," arXiv preprint, vol. Preprint arXiv:1504.03095, pp. 1-13, 2015. 

[160] H. Wang, L. Xu, and G. Gu, "OF-GUARD: A DoS attack prevention extension in software-

defined networks," The Open Network Summit (ONS), 2014. 

[161] T. Chin, X. Mountrouidou, X. Li, and K. Xiong, "Selective packet inspection to detect DoS 

flooding using software defined networking (SDN)," in Proc. IEEE 35th Int. Conf. on 

Distributed Computing Systems Workshops (ICDCSW), Columbus, OH, USA, 2015, pp. 

95-99. 

[162] N.-N. Dao, J. Park, M. Park, and S. Cho, "A feasible method to combat against DDoS 

attack in SDN network," in Proc. IEEE Int. Conf. on Information Networking (ICOIN), 

Cambodia, Cambodia, 2015, pp. 309-311. 

[163] M. C. M. Ambrosin, F. De Gaspari, R. Poovendran, "LineSwitch: Tackling Control Plane 

Saturation Attacks in Software-Defined Networking," IEEE/ACM Transactions on 

Networking, vol. Volume: 25, Issue: 2, April 2017, p. 14, 29 November 2016. 

[164] H. Wang, L. Xu, and G. Gu, "Floodguard: A dos attack prevention extension in software-

defined networks," in Proc. IEEE 45th Annual IEEE/IFIP International Conference on 

Dependable Systems and Networks (DSN), 2015, pp. 239-250. 

[165] G. Waller. (2015, June 24). Gartner Says a Massive Shift to Hybrid Infrastructure Services 

Is Underway Gartner Survey. Available: http://www.gartner.com/newsroom/id/3666917 

[166] F. Kobuszewski. (2017, June 24). Software Defined Networking: Trend or technology 

movement? Will SDN be coming soon to a network near you? Available: 

http://www.networkworld.com/article/2981667/cisco-subnet/software-defined-

networking-trend-or-technology-movement.html  

http://www.gartner.com/newsroom/id/3666917
http://www.networkworld.com/article/2981667/cisco-subnet/software-defined-networking-trend-or-technology-movement.html
http://www.networkworld.com/article/2981667/cisco-subnet/software-defined-networking-trend-or-technology-movement.html


178 | 186 

 

[167] S. A. Mehdi, J. Khalid, and S. A. Khayam, "Revisiting traffic anomaly detection using 

software defined networking," in Proc. Springer Intl. Workshop on Recent Advances in 

Intrusion Detection, 2011, pp. 161-180. 

[168] S. Lim, J. Ha, H. Kim, Y. Kim, and S. Yang, "A SDN-oriented DDoS blocking scheme for 

botnet-based attacks," in Proc. IEEE 6th Int. Conf. on Ubiquitous and Future Networks 

(ICUFN), Shanghai, China, 2014, pp. 63-68. 

[169] Q. Yan and F. R. Yu, "Distributed denial of service attacks in software-defined networking 

with cloud computing," IEEE Communications Magazine, vol. 53, pp. 52-59, 2015. 

[170] A. Akhunzada, A. Gani, N. B. Anuar, A. Abdelaziz, M. K. Khan, A. Hayat, et al., "Secure 

and dependable software defined networks," Journal of Network and Computer 

Applications, vol. 61, pp. 199-221, 2016. 

[171] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, "Survey on network virtualization 

hypervisors for software defined networking," IEEE Communications Surveys & Tutorials, 

vol. 18, pp. 655-685, 2016. 

[172] J. A. S. Narmeen Zakaria Bawany, Khaled Salah, "DDoS Attack Detection and Mitigation 

Using SDN: Methods, Practices, and Solutions," Arab J Sci Eng, vol. 42, pp. 425–441, 

2017. 

[173] J. Fruhlinger. (2018, June 24). What is WannaCry ransomware, how does it infect, and who 

was responsible? Available: https://www.csoonline.com/article/3227906/what-is-

wannacry-ransomware-how-does-it-infect-and-who-was-responsible.html 

[174] B. Appleby. (2019, June 24). Protect Your Business and Stay Online During a DDoS 

Attack. Available: https://www.f5.com/pdf/products/f5-silverline-ddos-protection-

datasheet.pdf 

[175] R. U. Rasool, U. Ashraf, K. Ahmed, H. Wang, W. Rafique, and Z. Anwar, "Cyberpulse: A 

Machine Learning Based Link Flooding Attack Mitigation System for Software Defined 

Networks," IEEE Access, vol. 7, pp. 34885-34899, 2019. 

[176] T. V. Phan, N. K. Bao, and M. Park, "Distributed-SOM: A novel performance bottleneck 

handler for large-sized software-defined networks under flooding attacks," Journal of 

Network and Computer Applications, vol. 91, pp. 14-25, 2017. 

[177] D. Boro and D. K. Bhattacharyya, "DyProSD: a dynamic protocol specific defense for 

high-rate DDoS flooding attacks," Microsystem Technologies, vol. 23, pp. 593-611, 2017. 

[178] T. V. Phan, T. Van Toan, D. Van Tuyen, T. T. Huong, and N. H. Thanh, "OpenFlowSIA: 

An optimized protection scheme for software-defined networks from flooding attacks," in 

http://www.csoonline.com/article/3227906/what-is-wannacry-ransomware-how-does-it-infect-and-who-was-responsible.html
http://www.csoonline.com/article/3227906/what-is-wannacry-ransomware-how-does-it-infect-and-who-was-responsible.html
http://www.f5.com/pdf/products/f5-silverline-ddos-protection-datasheet.pdf
http://www.f5.com/pdf/products/f5-silverline-ddos-protection-datasheet.pdf


179 | 186 

 

Proc. IEEE 6th Int. Conf. on Communications and Electronics (ICCE), Ha Long, Vietnam, 

2016, pp. 13-18. 

[179] C. Li, J. Yang, Z. Wang, F. Li, and Y. Yang, "A Lightweight DDoS Flooding Attack 

Detection Algorithm Based on Synchronous Long Flows," in Proc. IEEE Global 

Communications Conference (GLOBECOM), San Diego, CA, USA, 2015, pp. 1-6. 

[180] V. A. Foroushani and A. N. Zincir-Heywood, "TDFA: Traceback-based defense against 

DDoS flooding attacks," in Poc. IEEE 28th Int. Conf. on Advanced Information 

Networking and Applications (AINA), Victoria, BC, Canada, 2014, pp. 597-604. 

[181] H. W. Raihan Ur Rasool, Usman Ashraf, Zahid Anwar, Khandakar Ahmed, Wajid Rafique, 

"CyberPulse: A Security Framework for Link Flooding Attacks Mitigation in Software 

Defined Networks," IEEE Transactions in Network and Service Management, Under 

Review, pp. 1-14, 2019. 

[182] T. Bray, "The javascript object notation (json) data interchange format," ed: Internet 

Engineering Task Force (IETF), 2017, p. 22. 

[183] (2014, June 24). OpenFlow Switch Specification V1. 4.0. Available: 

https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.4.0.pdf 

[184] D. a. K. T. Dheeru, Efi, "UCI Machine Learning Repository," I. University of California, 

School of Information and Computer Sciences, Ed., April 20, 2018 ed. USA: University of 

California, 2017. 

[185] (2018, June 24). Network Resource Utilization. Available: 

http://nsl.csie.nctu.edu.tw/nctuns.html 

[186] H. P. Company. (1999, June 24). Utilization, HP TopTools for Hubs & Switches. Available: 

http://hp.com/rnd/device_help/help/hpwnd/webhelp/HPJ4093A/utilization.htm 

[187] B. Commentz-Walter, "A string matching algorithm fast on the average," in Proc. Int. 

Colloquium on Automata, Languages, and Programming, Verlag London, UK, 1979, pp. 

118-132. 

[188] J. Kuri and G. Navarro, "A fast algorithm for multi-pattern searching," in Proc. IEEE 7th 

Int. Symposium on String Processing and Information Retrieval (SPIRE), A Curuna, Spain, 

Spain, 2000, pp. 169-180. 

[189] C. J. Coit, S. Staniford, and J. McAlerney, "Towards faster string matching for intrusion 

detection or exceeding the speed of snort," in Proc. IEEE Information Survivability 

Conference & Exposition (DARPA), Anaheim, CA, USA, 2001, pp. 367-373. 

[190] M. Fisk and G. Varghese, "Applying fast string matching to intrusion detection," United 

States. Department of Energy, Los Alamos National Laboratory, U.S2002. 

http://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.4.0.pdf
http://nsl.csie.nctu.edu.tw/nctuns.html
http://hp.com/rnd/device_help/help/hpwnd/webhelp/HPJ4093A/utilization.htm


180 | 186 

 

[191] M. A. Sustik and J. Moore, "String searching over small alphabets," Report of Computer 

Science Department, University of Texas at Austin, Texas at Austin, USA2007. 

[192] M. E. Nebel, "Fast string matching by using probabilities: on an optimal mismatch variant 

of Horspool's algorithm," Theoretical Computer Science, vol. 359, pp. 329-343, 2006. 

[193] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, "Deterministic memory-efficient string 

matching algorithms for intrusion detection," in Proc. IEEE 23rd Int. Conf. on Computer 

Communications (INFOCOM) 2004, pp. 2628-2639. 

[194] D. P. Charboneau, "Apparatuses, systems, and methods for efficient graph pattern 

matching and querying," US Patent, 2013. 

[195] P. Ravindra, H. Kim, and K. Anyanwu, "An intermediate algebra for optimizing RDF 

graph pattern matching on MapReduce," in Peoc. Springer 8th Int. extended semantic web 

conf. on The semanic web: research and applications  (ESWC), Heraklion, Crete, Greece, 

2011, pp. 46-61. 

[196] B. Emir, "Object-oriented pattern matching," in Proc. Springer European Conf. on Object-

Oriented Programming (ECOOP), Berlin, Germany, 2007, pp. 273--298. 

[197] M. Nourian, X. Wang, X. Yu, W.-c. Feng, and M. Becchi, "Demystifying automata 

processing: GPUs, FPGAs or Micron's AP?," in Proc. ACM Int. Conf. on Supercomputing, 

Chicago, IL, USA, 2017, pp. 1:1--1:11. 

[198] M. Najam, U. Younis, and R. U. Rasool, "Multi-byte Pattern Matching Using Stride-K 

DFA for High Speed Deep Packet Inspection," in Proc. IEEE Int. Conf. on Computational 

Science and Engineering (CSE), Chengdu, China, 2014, pp. 547-553. 

[199] T. Liu, A. X. Liu, J. Shi, Y. Sun, and L. Guo, "Towards fast and optimal grouping of regular 

expressions via DFA size estimation," IEEE Journal on Selected Areas in 

Communications, vol. 32, pp. 1797-1809, 2014. 

[200] Y.-K. Chang, Y.-S. Li, and Y.-T. Chen, "A Memory Efficient DFA Using Compression 

and Pattern Segmentation," Procedia Computer Science, vol. 56, pp. 292-299, 2015. 

[201] R. Antonello, S. Fernandes, D. Sadok, J. Kelner, and G. Szabó, "Design and optimizations 

for efficient regular expression matching in DPI systems," Computer Communications, vol. 

61, pp. 103-120, 2015. 

[202] J. Patel, A. X. Liu, and E. Torng, "Bypassing space explosion in high-speed regular 

expression matching," IEEE/ACM Transactions on Networking, vol. 22, pp. 1701-1714, 

2014. 



181 | 186 

 

[203] Y. Xu, J. Jiang, R. Wei, Y. Song, and H. J. Chao, "TFA: a tunable finite automaton for 

pattern matching in network intrusion detection systems," IEEE journal on selected areas 

in communications, vol. 32, pp. 1810-1821, 2014. 

[204] X. Yu, B. Lin, and M. Becchi, "Revisiting state blow-up: Automatically building 

augmented-fa while preserving functional equivalence," IEEE Journal on Selected Areas 

in Communications, vol. 32, pp. 1822-1833, 2014. 

[205] A. X. Chang and C. D. Manning, "TokensRegex: Defining cascaded regular expressions 

over tokens," Stanford University, CA, USA2014. 

[206] Y. Fang, R. ur Rasool, D. Vasudevan, and A. A. Chien, "Generalized pattern matching 

micro-engine," in Proc. 4th Workshop on Architectures and Systems for Big Data (ASBD), 

Held in conjunction with The 41st International Symposium on Computer Architecture 

(ISCA), Minneapolis, MN, USA, 2014, pp. 1-10. 

[207] A. Giurca and E. Pascalau, "JSON Rules - The JavaScript Rule Engine," in Proc. 4th 

Workshop on Knowledge Engineering and Software Engineering  (KESE) at the 31st 

German Conference on Artificial Intelligence, Kaiserslautern, Germany, 2008. 

[208] D. Tomaszuk, "Document-oriented triple store based on RDF/JSON," Studies in Logic, 

Grammar and Rhetoric,The Journal of University of Bialystok, vol. 4, pp. 125-140, 2010. 

[209] H.-J. Tsai, C.-C. Chen, Y.-C. Peng, Y.-H. Tsao, Y.-N. Chiang, W.-C. Zhao, et al., "A 

Flexible Wildcard-Pattern Matching Accelerator via Simultaneous Discrete Finite 

Automata," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, 

pp. 3302-3316, 2017. 

[210] K. Wang, Z. Fu, X. Hu, and J. Li, "Practical regular expression matching free of scalability 

and performance barriers," Computer Communications, vol. 54, pp. 97-119, 2014. 

[211] K. Wang and J. Li, "Towards fast regular expression matching in practice," ACM 

SIGCOMM Computer Communication Review, vol. 43, pp. 531-532, 2013. 

[212] N. Moreira and R. Reis, "Implementation and Application of Automata," in Proc. Springer 

17th Int. Conf. on  Implementation and Application of Automata (CIAA), Implementation 

and Application of Automata:, 2012, pp. 1-381. 

[213] M. Thottan, G. Liu, and C. Ji, "Anomaly detection approaches for communication 

networks," in Algorithms for Next Generation Networks, ed: Springer London, 2010, pp. 

239-261. 

[214] M. Becchi and P. Crowley, "Extending finite automata to efficiently match perl-compatible 

regular expressions," in Proc. ACM CoNEXT Conference, Madrid, Spain 2008, pp. 25:1--

25:12. 



182 | 186 

 

[215] E. Lengyel. (2017, June 24). OpenDDL, Open Data Description Language 

  Available: Available from: http://openddl.org/. 

[216] D. Wijnand. (2018, June 24). HOCON, "Human-Optimized Config Object Notation". . 

Available: Available from: https://github.com/lightbend/config/blob/master/HOCON.md 

[217] C. Evans. (2001, June 24). YAML, "YAML Ain't Markup Language". Available: 

http://yaml.org/ 

[218] C. Evans. (2001, June 24). MongoDB Regular Expression Capabilities. Available: 

Available from: http://yaml.org/ 

[219] (2019, June 24). SNORT. Available: https://www.snort.org/ 

[220] D. Reisnger. (2019, June 24). A.I. Expert Says Automation Could Replace 40% of Jobs in 

15 Years. Available: http://fortune.com/2019/01/10/automation-replace-jobs/ 

[221] Y. Freund, "An adaptive version of the boost by majority algorithm," Machine learning, 

vol. 43, pp. 293-318, 2001. 

[222] L. Breiman, "Bagging predictors," Machine learning, vol. 24, pp. 123-140, 1996. 

[223] R. Kohavi, "Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree hybrid," in 

Proc. ACM 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD), Portland, 

Oregon, 1996, pp. 202-207. 

[224] O. Kramer, "K-nearest neighbors," in Dimensionality reduction with unsupervised nearest 

neighbors, ed: Springer, Berlin, Heidelberg, 2013, pp. 13-23. 

[225] P. Peduzzi, J. Concato, E. Kemper, T. R. Holford, and A. R. Feinstein, "A simulation study 

of the number of events per variable in logistic regression analysis," Journal of clinical 

epidemiology, vol. 49, pp. 1373-1379, 1996. 

[226] M. W. Gardner and S. Dorling, "Artificial neural networks (the multilayer perceptron)—a 

review of applications in the atmospheric sciences," Atmospheric environment, vol. 32, pp. 

2627-2636, 1998. 

[227] D. D. Lewis, "Naive (Bayes) at forty: The independence assumption in information 

retrieval," in Proc. Springer European Conf. on Machine Learning (ECML), Chemnitz, 

Germany, 1998, pp. 4-15. 

[228] A. Liaw and M. Wiener, "Classification and regression by randomForest," R news, vol. 2, 

pp. 18-22, 2002. 

[229] L. Bottou, "Large-scale machine learning with stochastic gradient descent," in Proc. 

Springer 19th Int. Conf. on Computational Statistics (COMPSTAT), Paris France, 2010, 

pp. 177-186. 

http://openddl.org/
http://yaml.org/
http://yaml.org/
http://www.snort.org/
http://fortune.com/2019/01/10/automation-replace-jobs/


183 | 186 

 

[230] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, "A practical guide to support vector classification," 

Journal of National Taiwan University, vol. 1, pp. 1-16, 2016. 

[231] L. V. Morales, A. F. Murillo, and S. J. Rueda, "Extending the floodlight controller," in 

Proc. IEEE Int. Symposium on Network Computing and Applications (NCA), Cambridge, 

MA, USA, 2015, pp. 126-133. 

[232] A. Rajab "Burst Header Packet (BHP) Flooding Attack on Optical Burst Switching (OBS) 

Network Data Set," U. M. L. Repository, Ed., ed. University of South Carolina, 2017. 

[233] (2018, June 24). Wireshark Go Deep. Available: https://www.wireshark.org/ 

[234] A. De Caigny, K. Coussement, and K. W. De Bock, "A new hybrid classification algorithm 

for customer churn prediction based on logistic regression and decision trees," European 

Journal of Operational Research, vol. 269, pp. 760 - 772, 2018. 

[235] J. D. M. Rennie, L. Shih, J. Teevan, and D. R. Karger, " Tackling the poor assumptions of 

naive bayes text classifiers, " in Proc. AAAI 20th Int. Conf. on Machine Learning, 

Washington, DC, USA, 2003. 

[236] (2019, July 30). Network layer mitigation techniques. Available: 

https://www.imperva.com/learn/application-security/ddos-mitigation-services/ 

 

  

http://www.wireshark.org/


184 | 186 

 

Appendix 

CyberPulse can be downloaded from the link below, it provides a .sh script which can be run on a 

Ubuntu shell. This package will automatically create network and start capturing the traffic, 

however, the user need to run the floodlight controller first. Various parameters can be changed 

using the config.json file.  

https://app.box.com/s/igb3fhmotbi7as1b7zcy130k7jhz4hv3   

  

https://app.box.com/s/igb3fhmotbi7as1b7zcy130k7jhz4hv3


185 | 186 

 

List of acronyms used in this research. 

Symbol Description Symbol Description 

LFA Link Flooding Attack DT Decision Tree 

SDN Software Defined Network RF Random Forest 

IP Internet Protocol KNN K-nearest Neighbors 

ISP Internet Service Provider MLP Multi-Layer Perception 

DoS Denial of Service ML Machine Learning 

LAN Local Area Network TCP Transmission Control Protocol 

VM Virtual Machine REST Representational State Transfer 

Wi-Fi Wireless Fidelity LTE Long Term Evolution 

IXP Internet Exchange Point SSID Service Set Identifier 

API Application Programming Interface OLSR Optimized Link State Routing 

ASes Autonomous Systems VN Virtual Networks 

FIB Forwarding Information Base SVM Support Vector Machine 

IDS Intrusion Detection system CoDef Collaborative Defense 

OF OpenFlow VPN Virtual Private Network 

ROC Receiver Operative Curve IPS Intrusion Prevention System 

DNS Domain Name System AUC Area Under Curve 

DHCP Domain Host Configuration Protocol RFE Recursive Feature Elimination 

SYN Synchronization HTTP Hyper Text Transfer Protocol 

RE Regular Expression DFA Deterministic Finite Automata 

NFA (Non-deterministic Finite Automata IoT Internet of Things 

DDoS Distributed Denial of Service PCRE Perl Compatible Regular Expressions 

IT Information Technology ANN Artificial Neural Networks 

IPS Intrusion Protection System DP Dropped Packets 

PDR Packet Drop Rate MLP  

AP Arrived Packets SLR Simple Logistic Regression 

NB Naïve Bayes pkl Python Pickle File 

FTP File Transfer Protocol SGD Stochastic Gradient Descent 

SVC Support Vector Classification DT Decision Tree 

LR Logistic Regression SVM Support Vector Machines 

RFE Recursive Feature Elimination D4J Deep Learning4j 

BHP Burst Header Packet CRF Conditional Random Fields 

MTD Moving Target Defense PCA Principal Component Analysis 

FFNN Feed Forward Neural Networks PCRE Pearl Compatible Regular Expressions 

CMIR Cache Miss to Instructions Ratio OpenDDL Open Data Description Language 

HOCON Human-Optimized Configuration Object Notation LTE Long-Term Evolution 

REST Resourceful State Transfer AS Autonomous Systems 

UCI University of California Irvine PLR Packet Loss Rate 

PDR Packet Drop Rate LBR Lost Bandwidth Rate 

UBR Utilized Bandwidth Rate SDWMN Software Defined Wireless Mesh Networks 

PRR Packets Received Rate GUI Graphical User Interface 

POD Ping of Death 5G Fifth Generation 

CLI Command Line Interface RTT Round Trip Time 

WSN Wireless Sensor Networks VN Virtual Networks 

IoT Internet of Things TCAM Ternary Content Addressable Memory 

DCI Deep Packet Inspection EM Expectation Maximization 

SVD Singular Value Decomposition L-BFGS Limited Memory Broyden–Fletcher–Goldfarb–Shanno 

BFGS Broyden–Fletcher–Goldfarb–Shanno RBF Radial bias function 

MAXENT Maximum Entropy Classifier PGMs Probabilistic Graphical Models 

CNN Convolutional Neural Network CART Classification and Regression Tree 

NTM Neural Machine Translation AI Artificial Intelligence 



186 | 186 

 

BT Boosting tree DAG Directed Acyclic Graph 

Aml Ambient Intelligence OpenDDL Open Data Description Language 

HOCON Human-Optimized Config Object Notation GRE Generic Routing Encapsulation 

CLI Command Line Interface MAXENT Maximum Entropy Classifier 

DCI Deep Content Inspection SSID Service Set Identifiers 

NBI Northbound Interface C-DPI Controller-Data Plane Interface 

A-CPI Application-Control Plane Interface FA Finite Automata 

NFA Non-Deterministic Finite Automata NIDS Network Intrusion Detection System 

SLA Service Level Agreement SDWN Software Defined Wireless Networks 

SDMN Software Defined Mobile Networks SDLAN Software Defined Local Area Networks 

FIB Forward Information Base ICMP Internet Control Message Protocol 

IXP Internet Exchange Point IDS Intrusion Detection System 

UDP User Datagram Protocol EM Expectation Maximization 

SSID Service Set Identifier GRE Generic Routing Encapsulation 

SOC Security Operation Center RTT Round Trip Time 

WAN Wireless Area Network 5G Fifth Generation  

BGP Border Gateway Protocol GSOC Global Security Operation Center 

CMIR Cache Misses to Instructions Ratio PCRE Perl Compatible REs 

EM Expectation Maximization PC Principal Components 

PCA Principal Component Analysis TP True Positive 

FP False Positive FN False Negative 

TN True Negative CRF Conditional Random Fields 

BT Boosting Tree JVM Java Virtual Machine 

CV Computer Vision RFE Recursive Feature Elimination 

AUC Area Under Curve ROC Receiver Operative Characteristic 

UCI University of California, Irvine   

 




