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ABSTRACT Novel nonlinear feedback control based on the dragonfly swarm learning process (D-SLP)
algorithm is proposed in this paper. This approach improves the performance, stability and robustness
of designing the nonlinear system controller. The D-SLP algorithm is the combination of the dragonfly
algorithm (DA) and swarm learning process (SLP) algorithm by applying the DA to the learning process of
the SLP algorithm. Furthermore, the estimation of the nonlinear term by using gradient descent is proposed in
the process of the D-SLP algorithm. The learning rate is adjusted according to the stable learning rate, which
is derived according to the Lyapunov stability theorem. To show the superior performance and robustness
of the proposed control method, it is compared with the simulation of designing the controller based on a
permanent magnet synchronous motor (PMSM) control system with the online autotuning parameter of a
PID controller and LQR controller with two case studies. The conventional SLP algorithm and DA are used
to autotune the PID controller, while an artificial bee colony algorithm and a flower pollination algorithm
(ABC-FPA) autotune the LQR controller. From the simulation results, the proposed control method can
provide a better response than the other control method. Additionally, the global convergence of the D-SLP
algorithm is analyzed according to Markov chain modeling and proved to correspond with the policy of
global convergence for stochastic search algorithms.

INDEX TERMS Dragonfly algorithm (DA), gradient descent method, Markov chain modeling, non-
linear control, nonlinear estimation, permanent magnet synchronous motor (PMSM), swarm learning
process (SLP) algorithm.

I. INTRODUCTION
The nonlinearity of control systems generally appears during
practical applications such as complex industrial processes
and mechanical, power and traffic systems. For some time,
this issue has aggravated the performance of control law
and made control difficult [1]–[3]. Therefore, the nonlinear
control system has been popularly investigated as the solution
for solving this problem [2]–[4]. Many years ago, numerous
control methods were proposed to design a nonlinear control
system, including sliding mode control (SMC), H-infinity
(H∞) control, linear quadratic regulator (LQR), and fuzzy
control [5]–[18].

Reference [14] proposed the SMC to reconstruct
the system state, which influences actuator degradation.

The associate editor coordinating the review of this manuscript and

approving it for publication was Juntao Fei .

Reference [15] presented the composite SMC to control
PMSM system speed and use load torque for feed-forward
compensation. Reference [16] proposed the new sliding-
mode reaching law (NSMRL) to optimize the dynamic
performance of a permanent magnet synchronous motor
(PMSM). Reference [17] proposed the H∞ controller for
aero-engine wireless networked systems. The H∞ controller
is designed based on maximum error first-try once discard
scheduling. Reference [18] proposed finite time H∞ control
for hydraulic turbine governing systems. Reference [19]
studied applying the digital H∞ controller design suitable
for uninterruptible power supply inverters. Reference [20]
proposed the LQR for quadrotor helicopters. This approach
tunes the LQR by a feedback gain matrix (K ). Reference [21]
presented a digital dual-mode linear LQR with feed-
forward optimal controller for nonminimum phase boost
converters. Reference [22] designed the combination of
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passive-base-isolated (PBI) and active structural control
(ASC) by using the LQR. However, the approach requires
complex calculation, especially in high-complexity systems,
and it is difficult and requires time to solve the mathematical
model. Thus, recently, programming methods such as fuzzy
logic control, neural network control, backstepping control,
model predictive control and so on have been proposed to
design the controller. Reference [23] designed a controller for
a class of nonlinear pure-feedback multiple-input multiple-
output (MIMO) systems with unknown dead-zones by using
adaptive fuzzy logic. Reference [24] proposed adaptive fuzzy
tracking control designed to address the problem of single
input and single output (SISO). Reference [25] presented
the fuzzy logic approach to estimate the uncertain function
and using fuzzy observer for approximating the measurable
state. Reference [26] proposed the Takagi–Sugeno fuzzy
model with linear fractional parametric uncertainties to esti-
mate the nonlinear term of dynamic system, while [27] pro-
posed the neural network to approximate the unpredictable
term and used the neural network observer to estimate the
immeasurable state. Reference [28] proposed an adaptive
fuzzy containment control problem for multiple uncertain
nonlinear strict-feedback systems with immeasurable states
and multiple leaders under directed communication graphs.
Reference [29] proposed a neural network based on finite
time horizon for optimal nonlinear control. Reference [30]
developed a neural network for nonlinear systems with un-
modeled dynamics and immeasurable states. Reference [31]
investigated adaptive neural control for unknown MIMO
systems with time-varying asymmetric output constraints.
Reference [30] presented the development of an adaptive
neural controller for a class of nonlinear systemswith unmod-
eled dynamics and immeasurable states. Reference [32] pro-
posed a combination of backstepping techniques based on
an adaptive consensus tracking control strategy for a class
of high-order nonlinear multiagent systems. Reference [33]
applied backstepping and robust control for tracking control
of quadrotors flying outdoors. Reference [34] proposed a
nonlinear model predictive controller (NMPC) with dynamic
particle swarm optimization (DPSO) to reduce the cold-start
hydrocarbon (HC) emission of an automotive spark-ignited
engine. Reference [35] proposed a method of torque control
for induction machines to compensate prediction error by
model-based prediction. However, the control methods are
a complex control algorithm, so they often suffer from high
memory capacity [36]–[38] and sensitivity to the initial value,
which affects access to the local minima point as a result of
system instability [38]. In practice, the memory, convergence
and execution time are limited [39]. From the literature,
the memory capacity and convergence issues were solved by
the SLP algorithm. This algorithm was proposed to autotune
the proportional–integral–derivative (PID) controller; nev-
ertheless, its performance depends on the learning process.
The learning process of the conventional SLP algorithm is
adjusted by the factor of a stochastic process [39]. In the
case of nonlinear control systems, when applied to design,

the system may approach instability. From the literature,
[40] showed that the dragonfly algorithm (DA) provides
effective performance of optimal searching during explo-
ration because it is proposed based on metaheuristics,
i.e., exploration and exploitation. Consequently, this paper
applies the DA to the learning process algorithm, the com-
bination of which is called the dragonfly swarm learning
process (D-SLP) algorithm, to design the controller of the
nonlinear feedback control system.

The D-SLP algorithm is the combination of the SLP algo-
rithm and DA. The concept of the proposed control method
involves improving the learning process of the SLP algorithm
by the DA. The process of the D-SLP algorithm applies the
gradient descent method to estimate the nonlinear term of
the system because the gradient descent method is always
proposed to solve the optimization problem [38]. To improve
the stability, the stable learning rate is derived corresponding
to the Lyapunov stability theorem, which is proposed to
be applied for estimating the nonlinear term in this paper.
Furthermore, to show the superior performance and robust-
ness of the proposed control method, it is compared with
the simulation of designing the controller of PMSM with
the PID controller and LQR controller where both con-
trollers are adjusted online. The conventional SLP and DA
are applied to autotune the PID parameter, with an artifi-
cial bee colony algorithm and a flower pollination algorithm
(ABC-FPA) [41] for the LQR controller. In the verification,
the two cases of step input and sinusoidal input are performed.
Additionally, the global convergence of the proposed control
method is analyzed corresponding to Markov chain modeling
and verified by the global policy of global convergence for
stochastic search algorithms.

Motivated by the above considerations, the D-SLP con-
troller for the nonlinear control system is designed in order to
overcome and improve the performance, stability and robust-
ness of nonlinear control systems. Therefore, the contribu-
tions of this paper consist of three viewpoints:

1. In lieu of existing algorithms for designing the nonlinear
controller in the previous literature, the combination of DA
and SLP algorithms, called D-SLP, is proposed.

2. The performance, stability and robustness of
nonlinear control systems are improved by applying the
gradient descent method to estimate the nonlinear term of
the D-SLP algorithm caused by the stable learning rate,
which this paper derives based on the theorem of Lyapunov
stability. The performance and robustness are verified by
comparing the simulation of designing the controller of
PMSM with the PID controller and LQR controller. The PID
and LQR controllers are designed by online autotuning of the
parameters.

3. The global convergence of the D-SLP algorithm is ana-
lyzed by using Markov chain modeling and judged according
to the policy of global convergence for stochastic search
algorithms.

This paper is organized as follows. Section II describes
the problem statement of nonlinear control systems.
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FIGURE 1. The block diagram of the D-SLP controller for the nonlinear control system.

In Section III, the D-SLP algorithm is presented. Section IV
presents an illustrative example and discussion. Section V
concludes this paper.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. PROBLEM STATEMENT
In this paper, the nonlinear continuous time (CT) control
system is considered as follows [42]:

ẋ(t) = F̄(x(t), u(t)) (1)

= f (x(t))+ g(u(t)) (2)

where x(t) ∈ Rn is the state vector. u(t) ∈ Rm is the vector of
control input, f (·) ∈ Rn is the known nonlinear function, and
g(·) ∈ Rn×m is the matrix of the known nonlinear function.
In case nonlinear terms such as the external disturbances
(d(t)) are added into the system, or parameters of the system
differ from the nominal values, the nonlinear CT control
system can be modified as follows:

ẋ(t) = (f +1f )(x(t))+ (g+1g)(u(t))+ d(t) (3)

= f (x(t))+ g(u(t))+ D(t) (4)

where 1f (x(t)) is the unknown nonlinear function, and
1g(u(t)) is the matrix of the unknown nonlinear function.
D(t) = 1f (x(t)) + 1g(u(t)) + d(t). In practice, D(t) is
the time variance and is unknown; this paper estimates D(t)
by using the stable gradient descent method. The block
diagram of the proposed control method is introduced as
Figure 1.

From Figure 1, S(t) is the setpoint. y(t) is the output. e(t)
is the error of the system, and u(t) is the control input. D̂(t)
is the nonlinear estimation. P(t) is the system. C(t) is the
controller, which this paper proposes as the D-SLP algorithm.
The D-SLP algorithm is a combination of the SLP algorithm
and dragonfly algorithm produced by applying the operation
of the dragonfly algorithm to the learning process of the SLP
algorithm.

B. SLP ALGORITHM
The SLP algorithm is proposed for optimal tuning of the PID
parameter and improves the performance and convergence of
tuning the PID parameter by applying the concepts of the
swarm algorithm and learning algorithm [39]. The approach
to the optimal value by the SLP algorithm is motivated by
student learning. Each student generated must have a score
following the standard of the class. The class consists of a
learning process that involves classifying the students into a
group of bad scores and a group of good scores. The learning
of each group is different. The group of bad scores studies the
group of good scores and students in the bad group, while the
group of good scores studies students in the same group. The
student who has the best score in the class is the best student
and is representedwith the optimal value. Other studentsmust
study until they become better students. The flow chart of the
SLP algorithm is shown in Figure 2.

From the flowchart of the SLP algorithm in Figure 2,
the SLP algorithm consists of 3 operations: initialization,
learning operation and selection. Initialization involves gen-
erating the student in the classroom; each student is then
evaluated with a score based on the standard of the room.
If the scores of students correspond to the standard of the
room, they can study in the room. Otherwise, those students
are sorted out, and a new student is established. For the
learning process in the classroom, the students are classified
into two groups: bad scores and good scores. The group of bad
scores learns based on the students in the group of good scores
and group of bad scores, while the group of good scores learns
based on the students in the good group. Finally, the best
student is selected. Selection is determined based on the score
of each student. The mathematical modeling for establishing
the new students, group of good scores learning and group of
bad scores learning can be written as Equations 5, 6 and 7,
respectively.

S(t)new =

Wn(t)
N∑
i=1

fi(t)si(t)

N
(5)
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FIGURE 2. The flow chart of the conventional SLP algorithm.
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FIGURE 3. The pattern of dragonfly operation [40].

where S(t)new is the new student, N is the number of students
in the classroom, fi(t) is the frequency of si in the classroom,
si(t) is the student in the classroom and Wn(t) is the weight
of establishing a new student operation.

S(t)good =

Wg(t)
M∑
i=1

si(t)

N
(6)

where S(t)good is the good student, M is the number of good
students andWg(t) is the weight of good student learning.

S(t)bad =
Wb(t)(SB(t)+ SG(t))

2
(7)

where S(t)bad is the bad student, SB(t) is the badness of a
student, SG(t) is the goodness of a student and Wb(t) is the
weight of bad student learning.

Considering the learning process of the SLP algorithm,
although classified into groups to quickly approach the opti-
mal value, the training for each student depends on the stu-
dents in the group. It is possible that the scores of students
may exhibit a high distribution, such as when the students
take time to become the best, especially in environments with
high complexity such as nonlinear systems, and it requires
time and causes system instability. Thus, this paper applied
the dragonfly algorithm to improve this issue.

C. DRAGONFLY ALGORITHM
The dragonfly algorithm (DA) is a swarm algorithm that was
proposed byMirjalili [40]. It is inspired by dragonfly survival
behaviors, i.e., navigating, searching for foods and avoiding

enemies. The algorithm classifies the swarming into static
swarming and dynamic swarming. Static swarming repre-
sents dragonfly hunting, and dynamic swarming represents
dragonfly migration. The static algorithm involves dragon-
flies in small groups for hunting butterflies, mosquitoes, etc.,
in the small area. The dynamic swarm involves the migration
of many dragonflies in one direction over long distances.
Hunting and migration are considered to be based on the
dragonfly operator, which consists of 5 corrective patterns:
separation, alignment, cohesion, attraction and distraction.
The operations are shown in Figure 3.

From Figure 3, separation is the avoidance of other drag-
onflies by each dragonfly in the neighborhood. Alignment
indicates the velocity of each dragonfly to match with other
dragonflies in the neighborhood. Cohesion is the tendency of
each dragonfly to approach the central mass in the neighbor-
hood. Attraction is each dragonflymoving towards the food at
the same time, and distraction is each dragonfly avoiding the
enemy. In the DA [40], each operation of dragonfly; i.e., the
separation, the alignment, the cohesion, the attraction and
the distraction is represented by the mathematical model as
follows:

The mathematical model for separation is as follows:

Si(t) = −
N∑
j=1

X (t)− Xj(t) (8)

where X (t) is the position of the current dragonfly, Xj(t) is the
position of the jth neighboring dragonfly and N is the number
of dragonflies. The mathematical model for alignment is as

128800 VOLUME 8, 2020
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follows:

Ai(t) =

∑N
j=1 Vj(t)

N
(9)

where Vj(t) is the velocity of the jth neighboring dragonfly.
The mathematical model for cohesion is as follows:

Ci(t) =

∑N
j=1 Xj(t)

N
− X (10)

The mathematical model for attraction is as follows:

Fi(t) = X+ − X (11)

where X+ is the position of food. The mathematical model
for distraction is as follows:

Ei(t) = X− − X (12)

where X− is the position of the enemy.
Migration involves updating the position of each dragonfly

caused by the dragonfly operation. The behavior of updating
the position is denoted as follows:

X (t + 1) = X (t)+1X (t + 1) (13)

1X (t + 1) = (sSi(t)+ aAi(t)+ cCi(t) (14)

+fFi(t)+ eEi(t))+ w1X (t) (15)

where Si(t),Ai(t),Ci(t),Fi(t) andEi(t) indicate the separation
at the ith iteration, alignment at the ith iteration, cohesion at
the ith iteration, attraction at the ith iteration, food source at
the ith iteration and position of the enemy at the ith iteration,
respectively. 1X (t) = X (t) − X (t − 1). The s, a, c, f , e and
w are the weights of separation, alignment, cohesion, attrac-
tion, distraction and inertial weight, respectively. To balance
each operation, these weights must be properly tuned for the
environment.

III. D-SLP CONTROLLER DESIGN
A. D-SLP ALGORITHM
The D-SLP algorithm applies the operation of the DA to the
learning process of the SLP algorithm to solve the distribution
of information in the space. The algorithm consists of 3 main
processing steps corresponding with the SLP algorithm: ini-
tialization, learning and selection. In initialization, each drag-
onfly is generated by stochastic processing. The learning of
the proposed control method includes separation, alignment,
cohesion, attraction and distraction operations. In this paper,
separation, alignment, and cohesion operations adjust u(t) in
accordance with the system response, while the attraction and
distraction operations are used to estimate the uncertainty
term. For selection processing, the best dragonfly is selected
based on the cost function (J (t)) of each dragonfly, as in
Equation 16.

J (t) =
∫
∞

0
te2(t)dt (16)

where t is the time and e(t) is the error of the system that is
calculated from the setpoint - controlled output.

In this paper, the separation, alignment, and cohesion oper-
ations adjust u(t), X (t) = {x1, x2, x3, . . . , xn} is the position
of the dragonfly, where n is the number of dragonflies, m is
the number of xi, where (xi − xi−1)2 < D̂(t) and where
i = 1, 2, 3, . . . , n, and D̂(t) is the nonlinear estimation term
that is calculated by applying gradient descent as follows:

D̂(t + 1) = D̂(t)− η(t)
∂J (t)
∂e(t)

(17)

where η(t) is the learning rate, which this paper adjusts
according to the stable learning rate as in Equation 21, e(t) is
the error of the system and J (t) is the cost function. Therefore,
the control signal is adjusted as follows:

u(t) = e(t)× argmin(X (t + 1); J (t)) (18)

where X (t + 1) equals Equation 13 when m = 0, and
otherwise,

σ = [
(1+ β − 1)! × (sin 1.5π2 )

( 1+β2 − 1)! × β × 2(β−12 )
]
1
β (19)

X (t + 1) = X (t)+ (0.01×
λ1σ

|λ2|
1
β

) (20)

where β is the constant (1.5 in this paper) and λ1 and λ2 are
the random numbers in [0,1] [40].
Theorem 1: Let z(t) = (xw(t)+ e(t)−

∂J (t)
∂e(t) ), where J (t) is

the best cost function value and xw(t) = es(t)+ea(t)+ec(t)+
ef (t)+ ed (t), where es(t), ea(t), ec(t), ef (t) and ed (t) are the
errors caused by the separation process, alignment process,
cohesion process, attraction process and distraction process,
respectively. e(t) is the error of the system. At time t, if the
learning rate of estimating the term of nonlinearity (η(t)) is
adjusted based on Equation 21, then the D-SLP controller for
the nonlinear feedback system is stable.

0 ≤ ηi(t) ≤
2e(t)
z(t)
; z(t) 6= 0 (21)

Proof: The Lyapunov function for confirming the
stability of the learning factor of the D-SLP algorithm is
considered to be caused by the integral of time multiplied
squared error (ITSE) of the system, which can be defined as
follows:

V (t) =
∫
∞

0
te2(t)dt (22)

The derivation of the Lyapunov function is written as

1V (t) = V (t + 1)− V (t) (23)

=

∫
∞

0
t(e2(t + 1)− e2(t))dt (24)

=

∫
∞

0
t((e(t + 1)+ e(t))(e(t + 1)− e(t)))dt (25)

Given that 1e = e(t + 1)− e(t), e(t + 1) = 1e(t)− e(t).

=

∫
∞

0
t((2e(t)+1e(t))1e(t))dt (26)
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FIGURE 4. The flow chart of the D-SLP algorithm.
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In this paper, the learning rate is adjusted for estimation of
the nonlinear term of the D-SLP algorithm, which is related
to updating the position of the dragonfly as in Equation 15.
If the updating of the position is considered to be caused by
the error, then 1e(t) = s(t)es(t) + a(t)ea(t) + c(t)ec(t) +
f (t)ef (t) + d(t)ed (t) − w(t)e(t + 1), where es(t) is the error
from the separation process, ea(t) is the error from the align-
ment process, ec(t) is the error from the cohesion process,
ef (t) is the error from the attraction process, ed (t) is the
error from the distraction process and s(t), a(t), c(t), f (t),
d(t) and w(t) are the weights of separation, alignment, cohe-
sion, attraction, distraction and inertial weight, respectively.
Letting s(t) = a(t) = c(t) = f (t) = d(t) = w(t),
w(t) = η(t),

1e(t) = η(t)(Xw(t)− e(t + 1))dt (27)

where Xw(t) = es(t)+ ea(t)+ ec(t)+ ef (t)+ ed (t). From the
gradient descent method error, e(t + 1) = e(t) − λ

`
e(t),

where λ is the learning rate, which is set to 1. Therefore,
Equation 27 can be written as follows:

1e(t) = η(t)y(t) (28)

where y(t) = Xw(t) − e(t) −
`
e(t). When Equation 28 is

replaced with Equation 26, the latter can be rearranged as
follows:

1V (t) =
∫
∞

0
t((2e(t)+ η(t)y(t))(η(t)y(t)))dt (29)

=

∫
∞

0
t((2e(t)η(t)y(t)+ η2(t)y2(t)))dt (30)

Considering the Lyapunov stability theorem at sampling
time t , if 1V (t) ≤ 0, the learning factor of the D-SLP algo-
rithm is adjusted according to Equation 21, and the stability of
the closed-loop control system by using the D-SLP algorithm
is verified.

B. MARKOV CHAIN MODELING FOR THE D-SLP
ALGORITHM
Definition 1 [43]: If X is a stochastic process in the

discontinuous state space of finite state (S), then X is a
finite Markov chain when P(xn+1 = in+1|x0 = i0, x1 =
i1, . . . , xn = in) = P(xn+1 = in+1|xn = in) where for all
n are arbitrary states I , n ≥ 0 and {i0, i1, i2, . . .}∈ I , P is a
probabilistic limitation of x, and X = {xn, n = 0, 1, 2, . . .}.
Definition 2 [43]: If the condition probability P(xn+1 =

in+1|xn = in) does not depend on time, it is a homogeneous
Markov chain.

The model of the D-SLP algorithm consists of 9 states,
i.e., the initial state (D(0)), evaluation state (D1(t)), separation
state (D2(t)), alignment state (D3(t)), cohesion state (D4(t)),
attraction state (D5(t)), distraction state (D6(t)), updating
state (D7(t)) and selection state (D8(t)). In the initial state,
the dragonfly is generated on the space number n. For state
(D1(t)), survival is evaluated based on the cost function, and
a new dragonfly is generated when existing dragonflies in

the space provide the cost function corresponding to survival
criteria. The new dragonfly generation is caused by the best
dragonfly in the space. Next, all dragonflies are transferred to
the process of dragonfly operation, which consists of 6 oper-
ations. The first operation is separation (D2(t)), and after
that is a transfer to the alignment operation (D3(t)). Next,
the cohesion operation (D4(t)) is performed, followed by
the attraction operation (D5(t)). Finally, distraction (D6(t)) is
performed. Note that between change stateDi(t) andDi+1(t),
where i is the state number, the weight of each state is deter-
mined. If the weight is 0, the state is skipped to reduce the
execution time. After the dragonfly operation is performed,
the updating of the position for each dragonfly (D7(t)) is
performed, and the best dragonfly is selected at state (D8(t)).
Then, state (D8(t)) is changed to (D(t + 1)).
The D-SLP algorithm changes the process at which weight

adjustment of the conventional dragonfly algorithm occurs
from after all operations finish to after the completion of each
operation. Thus, the execution of each operation depends
on the adjusting weight. The change in the transition state
from Di(t) to Di+1(t), where i ∈ 0, 2, 3, . . . , 8, is a random
transition that is described as |Em| = |E|m = Mm, wherem is
not related with time. Thus, according to Definitions 1 and 2,
the processing of the D-SLP algorithm exhibits a Markov
chain property and represents a homogeneous Markov chain.
The state transition matrix of the proposed control method
in the case of learning processing can be denoted as P =
E×S×A×C×F ×D×U , where E, S,A,C,F,D, and U
are the positive matrices created by evaluation, separation,
alignment, cohesion, attraction, distraction and updating,
respectively.
In the case of the space consisting of m + 1 dragonflies,

the random transition is |Em+1| = |E|m+1 = Mm+1. The
state transition matrix based on Ẽ, S̃, Ã , C̃, F̃, D̃, Ũ can be
expressed as P̃ = Ẽ × S̃ × Ã× C̃ × F̃ × D̃× Ũ , where

Ẽ =


E (∗)T . . . (∗)T

0 E . . . (∗)T
...

...
. . .

...

0 0 . . . E

 ,

S̃ =


S (∗)T . . . (∗)T

0 S . . . (∗)T
...

...
. . .

...

0 0 . . . S

 ,

Ã =


A (∗)T . . . (∗)T

0 A . . . (∗)T
...

...
. . .

...

0 0 . . . A



C̃ =


C (∗)T . . . (∗)T

0 C . . . (∗)T
...

...
. . .

...

0 0 . . . C

 ,
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F̃ =


F (∗)T . . . (∗)T

0 F . . . (∗)T
...

...
. . .

...

0 0 . . . F

 ,

D̃ =


D (∗)T . . . (∗)T

0 D . . . (∗)T
...

...
. . .

...

0 0 . . . D


The updating state (Ũ ) involves updating the position of

the dragonfly and is a positive number. The state transition
for this state can be expressed as follows:

Ũ =


U11 0 . . . 0
U21 U22 . . . 0
...

...
. . .

...

Ux1 Ux2 . . . Uxy


where U11 is a unit matrix, Uxy 6= 0 and x ≤ y. The
state transition matrix of the D-SLP algorithm based on the
Markov chain can be defined as follows:

X̃ =


P (∗)T . . . (∗)T

0 P . . . (∗)T
...

...
. . .

...

0 0 . . . P



U11 0 . . . 0
U21 U22 . . . 0
...

...
. . .

...

Ux1 Ux2 . . . Uxy



=


PU11 0 . . . 0
PU21 PU22 . . . 0
...

...
. . .

...

PU x1 PU x2 . . . PU xy


when X = PU11,

Y =

 SU21
...

PSx1

 , Z =

PU22 . . . 0
...

. . .
...

PU x2 . . . PU xy


Thus, the state transitionmatrix of theD-SLP algorithm based
on the Markov chain can be expressed as follows:

X̃ =
(
X 0
Y Z

)
C. CONVERGENCE ANALYSIS FOR THE D-SLP ALGORITHM
Definition 3 ( [43], [44]): The algorithm I achieves

global convergence when it achieves the condition as follows:
1. For the iteration result from algorithm I (ζ ), if ζ ∈ Z ,

then f (I (x, ζ )) ≤ f (x)
2. If B ∈ Z , then

∏
∞

k=0 (1− uk (B)) = 0, where B is a set
of Lebesgue measurables for which (v(B)) > 0 and uk (B) is
the size of probabilistic algorithm I in the set of B at the k th

iteration.
3. lim

i→∞
P[x i ∈ Re,m] = 1, where Re,m is an optimal region,

x i is a generating order of algorithm I and i ∈ {1, . . . ,∞} is
the iteration.

Lemma 1 [45]: Letting X and Z be the square matrix,
X̃ achieves the properties of finite Markov chain and homo-

geneous Markov chain. If the format X̃ =
(
X 0
Y Z

)
, X k

is a unique stable matrix of X∞, i.e., X k → X∞ =
(πT , πT , . . . , πT ), where πT = (x1, x2, . . . , xm, 0, . . . , 0),
xi > 0 (i = 1,. . . , m), where m is the size of matrix X,
and x∞ is unique irrespective of the initial condition,
xk = lim

t→∞
x0X̃ t = (x∞1 , x

∞

2 , . . . , x
∞
m , 0, . . . , 0), where∑m

i=1 x
∞
i = 1.

Theorem 2: The D-SLP algorithm achieves condition 1 of
Definition 3.

Proof: The process of the D-SLP algorithm consists of
the selecting process, which selects the best dragonfly of the
D-SLP algorithm based on the cost function of each dragonfly
in the space. The best dragonfly (f (X )) is updated to be (f (xi))
when f (X ) ≥ f (xi), where f (xi) is the cost function at the
ith iteration. Thus, the D-SLP algorithm achieves condition 1
of Definition 3.
Theorem 3: The D-SLP algorithm achieves condition 2 of

Definition 3.
Proof: According to the D-SLP algorithm model-

ing based on the Markov chain model, the matrices of
E, S,A,C,F,D and U are positive with P > 0, where P0

is the dictatorial distribution, which is limited according to
Lemma 1 and P∞ is as usual. In the case that the probability
of the D-SLP algorithm is in the global state, the probability
of D-SLP= 0. Thus,

∏
∞

i=0(1−ui(B)) = 0, where ui(B) is the
probabilistic state of the algorithm in the ith iteration in set B.
Therefore, condition 2 in Definition 3 is achieved.
Theorem 4: The D-SLP algorithm achieves condition 3 of

Definition 3 and the property of global convergence.
Proof: The process of the D-SLP algorithm updates the

best dragonfly f (X ) to be f (xi) when f (X ) ≥ f (xi), and then,
the other dragonflies are maintained for becoming the best
dragonfly, assuming that the best dragonfly is in the optimal
region (Re,m). This means that when the ith iteration Re,m
approaches infinity, the P(xi) ∈ Re,m, or, in other words,
lim
i→∞

P(xi ∈ Re,m) = 1. Therefore, it can be concluded that

the D-SLP algorithm achieves condition 3 of Definition 3.
From Theorems 2-4, the D-SLP algorithm can satisfy

the 3 conditions of Definition 3, and it can be determined
that the D-SLP algorithm achieves the property of global
convergence.

IV. ILLUSTRATIVE EXAMPLE AND DISCUSSION
To illustrate the effectiveness of designing a controller by
using the D-SLP algorithm, the tracking error of the PMSM
control system is comparedwith that of the PID controller and
LQR. The comparison is performed by comparing the varia-
tion of the response of the tracking input for each case study.
The PID parameter is designed by parametric autotuning
based on the conventional SLP algorithm and conventional
DA algorithm. The LQR controller adjusts Q and R based
on ABC-FPA [41]. The input signal for verification consists
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of 2 patterns, here, the step input and sinusoidal signal. In the
simulation for both case studies, the motor is started from
0 rpm and the time of simulation is 6 s. The mathematical
model of the PMSM system is performed corresponding to
reference [46]. The parameters of PMSMare adjusted accord-
ing to reference [47].

For the first case study, the simulation and comparison
of tracking error of the designed PMSM control system are
performed by setting the input signal to be 1000 rpm. The
iteration number for each method of adjusting the parameter
is 30 iterations. The simulation result of each algorithm is
shown in Figures 5 to 8. From the simulation results, the vari-
ation of control is 95.13 by using the PID controller with
the SLP algorithm, 110.27 for the PID controller with the
DA, 60.12 for LQR with ABC-FPA [41] and 40.60 for the
proposed control method.

FIGURE 5. Output of tracking step input based on a PID controller by
using the SLP algorithm.

FIGURE 6. Output of tracking step input based on a PID controller by
using the DA.

In the second case study, the sinusoidal signal is utilized
as the input for simulation and comparison of tracking error
to design the PMSM control system. During the simulation,
the minimum reference input is −500 rpm, with the max-
imum input of 500 rpm. From the simulation results of
Figures 9 to 12, the variation of control is 457.07 by using
the PID controller with the SLP algorithm, 264.05 for the PID
controller with the DA, 170.98 for LQR with ABC-FPA [41]
and 147.72 for the proposed control method.

From the simulation of the 2 case studies, the proposed
control method can provide smoother tracking error than
the other designed controller because the proposed control
method designs the controller by estimating the nonlinear

FIGURE 7. Output of tracking step input based on an LQR controller by
using ABC-FPA.

FIGURE 8. Output of tracking step input based on the D-SLP algorithm.

FIGURE 9. Output of tracking sinusoidal input based on a PID controller
by using the SLP algorithm.

FIGURE 10. Output of tracking sinusoidal input based on a PID controller
by using the DA.

term and applying the estimation to the online design con-
troller, while the PID controller by using the SLP, DA and
LQR with ABC-FPA [41] only includes online adjustment of
the parametric controller. Although online adjustment is uti-
lized, adjustment is considered to be caused by the previous
response. Thus, some values of adjustment may be proper for
the current characteristics of a system. In the case of a highly
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FIGURE 11. Output of tracking sinusoidal input based on an LQR
controller by using ABC-FPA.

FIGURE 12. Output of tracking sinusoidal input based on the D-SLP
algorithm.

dynamic system, the value after adjustment can cause system
instability and can require time for adjustment because of the
changing characteristics of the system.
Remark 1: From the simulation result, the proposed

method can control the nonlinear system and provide the
better performance when compared with other designed
approach such as the SLP algorithm, the DA and the LQR
controller based on the ABC-FPA. Furthermore, the perfor-
mance comparison of the tracking reference input is also
performed for verifying the robustness of designing con-
troller. The proposedmethod can show the better results when
compared with the other designed methods due to the fact
that the proposed method estimates the nonlinear term by
online adjusting parameters, while the SLP algorithm, the DA
and the LQR controller based on the ABC-FPA estimate
the parameters based on the previous response. In addition,
for the high dynamic system, the difference value between
the previous value and the current value is normally high.
Those methods may take time to adjust the parameter for
properly obtaining the current characteristic of the system or
sometimes may not obtain the adjusted parameter since the
characteristic of system is always changed.

V. CONCLUSION
In this brief, the D-SLP controller is proposed for designing
a nonlinear feedback control system. The controller design
consists of estimating the nonlinear term of the system and
adjusting the control signal. The process of estimation applies
the stable gradient descent method, and design of the control
system is considered by using the D-SLP algorithm. The rule
of adjusting the learning rate of gradient descent is derived

in the sense of the Lyapunov stability function so that the
stability of estimating the nonlinear term of the system can be
verified. Because the D-SLP algorithm is applied for stochas-
tic processing, the global convergence is also verified based
on the convergence rule of the stochastic search algorithm.
Additionally, to show the superior performance and robust-
ness of controlling the nonlinear control system, the com-
parison of simulation results based on the PMSM control
system is performed. In the comparison, the proposed control
method is compared with the simulation with PID and LQR
controllers, for which the parameters of both methods are
adjusted online. Furthermore, 2 case studies are performed
based on the pattern of input references, namely, step and
sinusoidal. According to the simulation results, the proposed
control method can provide better performance and robust-
ness than the PID and LQR controller when parameters are
adjusted online for both case studies.

Therefore, the simulation study can evaluate whether the
theory that is proposed in this paper can claim better perfor-
mance and robustness with respect to designing the nonlinear
control system for practical applications. However, in this
paper, we only consider the D-SLP for a general nonlin-
ear control system, which may limit the applications of the
designed approach. Therefore, the future work is possible to
focus on the D-SLP controller with the unidirectional input
constraints and the input dead zones which may exist in some
recent research applications such as the pneumatic artificial
muscle (PAM) systems [48], and the indispensable oceanic
transportation [49].
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