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Abstract 
 

 
 
This study develops a model to forecast inbound tourism to Japan, using a 

combination of artificial neural networks and fuzzy logic and compares the 

performance of this forecasting model with forecasts from other quantitative 

forecasting methods namely, the multi-layer perceptron neural network model, the 

error correction model, the basic structural model, the autoregressive integrated 

moving average model and the naïve model.  

 

Japan was chosen as the country of study mainly due to the availability of reliable 

tourism data, and also because it is a popular travel destination for both business and 

pleasure. Visitor arrivals from the 10 most popular tourist source countries to Japan, 

and total arrivals from all countries were used to incorporate a fairly wide variety of 

data patterns in the testing process. 

 

This research has established that neuro-fuzzy models can be used effectively in 

tourism forecasting, having made adequate comparisons with other time series and 

econometric models using real data. This research takes tourism forecasting a major 

leap forward to an entirely new approach in time series pedagogy. As previous 

tourism studies have not used hybrid combinations of neural and fuzzy logic in 

tourism forecasting this research has only touched the surface of a field that has 

immense potential not only in tourism forecasting but also in financial time series 

analysis, market research and business analysis. 
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Chapter 1 

Introduction 
 

 

Due to the continued growth in global tourism and the importance of overseas travel 

for both business and pleasure, national and international travel organisations and 

governments are currently placing considerable effort on generating accurate tourism 

forecasts. The World Tourism Organisation, the Pacific Asia Travel Association, 

Tourism and Travel Intelligence (UK), the Australian Tourism Forecasting Council 

and the Bureau of Tourism Research are involved in producing tourism forecasts for 

use by industry. The travel, transport and accommodation sectors are major users of 

these forecasts. This research plays a significant role in taking current methodology a 

step forward by testing a hybrid neuro-fuzzy model in forecasting tourism flows. 

 

Traditional quantitative forecasting techniques can be broadly categorised into two 

main areas: time series techniques such as autoregressive and moving average 

methods, and econometric techniques such as regression methods. Publications on 

tourism demand forecasting have been mainly based on these time series and 

econometric models. However, more recently, artificial neural networks have been 

used in tourism forecasting (Law 2000). Though fuzzy logic has been used in 

quantitative forecasting, no work on forecasting tourism demand has yet been 

published using a neuro-fuzzy hybrid of fuzzy logic and artificial neural networks. 
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This study branches away from both the earlier econometric and time series studies to 

develop a new approach to tourism forecasting. The presentations made by Fernando, 

Turner and Reznik at the 1998 and 1999b Australian Tourism Research CAUTHE 

conferences established the potential for both artificial neural networks and fuzzy 

logic in tourism forecasting. However, the concept of a hybrid neuro-fuzzy 

forecasting model for tourism demand needs to be tested on a wider scale. Because 

this research is on the leading edge of tourism forecasting, it makes a significant 

contribution to the current literature. 

 

This study uses the principles of artificial neural networks and fuzzy logic to develop 

forecasting models for tourism to Japan. The forecasts obtained using these models 

are compared with those from traditional time series and econometric models, to 

determine the comparative level of accuracy of these techniques in forecasting tourist 

arrivals. The terms travel and tourism are used synonymously as arrivals data 

collected at ports of entry to a country include people traveling for business, pleasure, 

sightseeing, visiting friends and relatives, employment, education and many other 

reasons. This research focuses on total inbound arrivals to Japan. 

 

The reason for selecting Japan as the subject country of this study is three-fold. 

Firstly, Japan has well documented and reliable tourist data. Secondly, Japan is a 

significant travel destination both for business and pleasure. Thirdly, no work has 

been published in the literature on tourism demand forecasts for Japan that examines 

the comparative merits of time series, econometric, neural network and fuzzy 

forecasting techniques. 
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1.1 Overview of the Thesis 

 

Chapter 1 introduces the research problem, states the aims and objectives of the 

research and provides an outline of the research methodology. Since the research uses 

Japanese tourism data, a brief review of Japan's tourism potential, inbound tourist 

flows, economy and trade policy is also included in Chapter 1.  The data and 

information on tourism presented in Chapter 1 were obtained from the Japan National 

Tourism Organisation, partly from its published reports and partly during a visit to 

Japan in 2002. Chapter 2 is a comprehensive review of the literature on tourism 

forecasting, time series modeling, econometric modeling, artificial neural networks, 

fuzzy logic and the neuro-fuzzy hybrid.  

 

In Chapter 3 the univariate multi-layer perceptron neural network model is used to 

forecast tourist arrivals to Japan. Three neural network models, a non-periodic model, 

a partial periodic model and a periodic model are presented. Forecasts using these 

models are compared with those of the naïve model.  

 

Chapter 4 presents forecasts of tourist arrivals to Japan using the ARIMA model and 

the Basic Structural Model (BSM). In Chapter 5 the error correction model (ECM) is 

compared with the multivariate multi-layer perceptron model. The neuro-fuzzy model 

ANFIS is used in Chapter 6 to forecast arrivals using a combination of neural 

networks and fuzzy logic. Chapter 7 concludes the thesis with a summary comparison 

of the forecasting models and suggestions for the direction of future research.  
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1.2 The Research Problem 

 

Over the past few decades, international travel has increased significantly. Tourism 

has become a growing industry sector in many countries. Japan is one of many 

countries that actively promote inbound tourism. The need for forecasts of tourist 

arrivals has been highlighted by the rapid growth of the travel sector. Quantitative 

forecasting methods have been used in the past to forecast inbound tourism and the 

level of sophistication of forecasting techniques has increased with the development 

of research interest directed at improving forecasting accuracy. A combination of 

fuzzy logic and artificial neural networks has not been used so far in tourism 

forecasting. The main research problem is to develop a hybrid neuro-fuzzy model for 

tourism forecasting and establish whether it is a viable alternative to contemporary 

tourism forecasting methods. 

  

Fuzzy logic is a relatively new field of mathematics, which recognises the vagueness 

of reality. Crisp data (i.e. exact measurements) cannot always convey the true picture 

of reality because reality viewed in totality is vague, hazy and unclear. Since total 

reality is not always accurately represented by crisp data, due to inherent variability, 

the traditional significance attached to crisp measurements is questionable. The fuzzy 

approach takes forecasters away from the notion of crisp accuracy to the domain of 

fuzzy meaningfulness. 

 

Quantitative forecasting techniques identify patterns in historical data by 

decomposing time series data into its basic components. Much effort has been 

expended in studying the error component in attempts to reduce forecasting errors. 



Chapter 1 Introduction 5

 

However, uncertainties of the future, and the non-conformance of data series with the 

assumptions of forecasting theory, make accurate forecasts difficult to achieve and 

forecasting an inexact science. Since reality is not always accurately represented by 

crisp data, fuzzy thinking is introduced to forecasting in the hope of improving 

forecasting accuracy. This study converts crisp tourism data and national indicators 

into fuzzy sets and identifies, using artificial neural networks, the underlying rules 

that describe the data. These rules are then used to make fuzzy forecasts, which are in 

turn converted into crisp forecasts for comparison with actual data. Therefore, this 

technique combines artificial neural networks and fuzzy logic to form a neuro-fuzzy 

hybrid, giving forecasting a new direction.  

 

While short term data analysis (such as in financial market forecasting) has benefited 

from successes in short term quantitative forecasting, other quantitative forecasting 

applications have had to be content with lower levels of accuracy, or be modified by 

expert systems. Tourism demand forecasting is an example where travel patterns vary 

for a variety of reasons that make it difficult to establish a consistent historical pattern 

within the stochastic time series movement.  This study attempts to highlight the need 

for better forecasts using quantitative techniques that, model historical data but do not 

fit them into pre-designed patterns that may not reflect the true properties of the data. 

The fundamental time series forecasting assumption that historical data and error 

patterns will follow through into the future is made in this study. However, the 

objective of the study is not only to obtain low forecast errors, but also to 

acknowledge the varying characteristics of data series beyond the four basic 

components (trend, cycle, seasonality and irregularity) in order to identify the best 

forecasting method for idiosyncratic data series. In pursuing this objective the study 
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uses a range of data series and compares empirical forecasting results from a range of 

techniques, to identify an alternative empirical tool for tourism forecasting. 

 

The neural network paradigm has the capacity to hold aspects of all elements of a 

historical data series encapsulated within a black-box of parameters, making the 

model unique to that set of data. Forecasters currently have the difficult task of using 

relatively rigid models to predict a stochastic future and this becomes especially 

difficult in the long term. This use of rigid models in turn exasperates the problem of 

different characteristic time series for each arrival analysis. However, the neural 

network concept opens up possibilities for a wide variety of empirical analyses within 

the one methodology. The neuro-fuzzy concept is also empirical, but refines the 

neural network forecasting process into modelling fuzzy rather than crisp data, 

recognizing the vagueness rather than the preciseness of stochastic tourist arrival data.  

 

More recently artificial neural networks have been developed as an alternative 

forecasting tool (Fernando, Turner and Reznik (1999a), Law and Au (1999), Law 

(2000), Cho (2003) and Kon and Turner (2005)) and have been shown to produce 

superior forecasts for certain time series data primarily using multi-layer perceptron 

neural network models. A second aspect of the research problem is to compare the 

accuracy of artificial neural network multi-layer perceptron forecasts with neuro-

fuzzy forecasts to determine the effect of fuzzy analysis on forecasting accuracy.  

 

A third aspect of the research problem is to test whether neuro-fuzzy tourism forecasts 

compare well with other modern univariate time series forecasts such as those from 

the ARIMA model and the basic structural model. Time series and econometric 



Chapter 1 Introduction 7

 

methods have been used in the past to forecast tourism demand, for example, Martin 

and Witt (1987), Morley (1996), Turner, Kulendran and Fernando (1997a), Kulendran 

and King (1997), Chu (1998a), Turner and Witt (2001a), Song and Witt (2003) Song, 

Wong and Chon (2003). 

 

Econometric methods identify cause and effect relationships between tourism demand 

and variables that cause the flow of tourists. Multivariate structural causal models 

(Turner and Witt 2001a) and the error correction model (Kulendran, 1996) are 

examples of causal methods recently used in tourism demand forecasting. A fourth 

aspect of the research problem is to compare neuro-fuzzy forecasts with those of the 

error correction model, incorporating national economic indicators that have 

commonly been used in previous econometric studies (Kulendran and Witt (2001), 

Song and Witt (2000)), together with tourist arrival data. National economic 

indicators commonly used in tourism studies are, per capita gross domestic product, 

airfares, own price and trade openness. Own price and trade openness are derived 

from the gross domestic product, the consumer price indices, imports, exports and 

forward exchange rates.  

 

Time series data of total tourist arrivals from the top ten largest source markets to 

Japan are used in this study to develop the forecasting models. The top ten inbound 

source markets to Japan are: Australia, Canada, China, France, Germany, Korea, 

Singapore, Taiwan, UK, and USA. This study develops forecasting models for total 

arrivals to Japan from these ten countries and for total arrivals to Japan from all 

countries. The total volume and multi-directional nature of these flows provide a data 
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set sufficient in variety, depth and breadth, for a comparison of alternative forecasting 

tools.  

 

1.3 Aims and Objectives 

 

The aim of this study is to develop a model to forecast inbound tourism to Japan, 

using a combination of artificial neural networks and fuzzy logic and to compare the 

performance of this forecasting model with forecasts from other quantitative 

forecasting models namely, the multi-layer perceptron neural network model, the 

error correction model, the basic structural model, the autoregressive integrated 

moving average model and the naïve model.  

 

The objective of the study is to determine whether a hybrid neuro-fuzzy model is a 

viable alternative to traditional quantitative methods of forecasting tourist arrivals. In 

attempting to achieve this objective the study determines whether the use of fuzzy 

data improves forecasting performance. 

 

 

 

 

 

 

 

 

 



Chapter 1 Introduction 9

 

1.4 Research Methodology 

 

This research uses the multi-layer perceptron artificial neural network model, the 

Box-Jenkins ARIMA model, the basic structural model, the error correction model, 

the hybrid neuro-fuzzy model and the naïve model to forecast inbound tourist arrivals 

to Japan. Quantitative forecasting methods fundamentally use historical data to 

forecast future values assuming historical data patterns will have systematic 

progression into the future.  

 

The data used in this study are monthly time series of tourist arrivals to Japan from 

January 1978 to December 2003. The time series from January 1978 to December 

2001 is used as the within sample data, to develop the forecasting models. The 

remainder of the series is used as an out of sample data set with which the forecasting 

performance of the models developed is then tested for forecast accuracy.  

 

The forecasting performance is measured only by the forecasting accuracy of a model. 

Quantitative forecasting models are evaluated by comparing the forecasting 

performance of alternative models when identical data are being used. As the 

accuracy of a forecasting model depends on how close the forecast arrival number is 

to the actual arrival number, the forecasting model that has the least difference (or 

error) between the actual and forecast values in the out of sample test period is 

adjudged the best forecast model.  

 

For the entire out of sample period the forecasting performance or accuracy is 

measured using two standard error measurements, the root mean squared error 



Chapter 1 Introduction 10

(RMSE) and the mean absolute percentage error (MAPE) (Hanke and Reitsch 1992). 

The root mean squared error measures the square of both positive and negative errors, 

as the square root of the average, over the out of sample period. 

( ) ,ActualForecast
N
1RMSE 2

tt −∑=

 

where, N is the number of observations and t is the time period. The mean absolute 

percentage error, 

,
Actual

ActualForecast
N

100MAPE
t

tt −∑=

 

and expresses the absolute error as a percentage of the actual arrival number. When 

comparisons are made between models using different data series such as tourist 

arrivals from different countries, the mean absolute percentage error is a better 

measure of comparative accuracy as it provides an indication of the error, relative to 

the actual value and independent of the volume of arrivals. MAPE is used in this 

thesis as the main criterion for evaluating forecasting performance of the various 

models developed, and RMSE is used as a secondary indicator of forecasting 

performance. 

 

In comparing the alternative forecasting models, each model is applied to each data 

series from each of the ten countries. The model that generates the largest number of 

lowest MAPE values is adjudged the best model. This measure is referred to in 

subsequent analysis as the "Lowest MAPE count". A second criterion for evaluating 

forecasting performance is where a MAPE value less than 10% is considered good, 

while values between 10% and 20% are considered moderately good and values more 
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than 20% are considered poor.  A third criterion is the model with the lowest mean 

MAPE for the forecast data series. The lowest mean MAPE is given less importance 

because a few very large (or small) MAPE figures could distort the overall mean 

MAPE. In such an analysis these large (or small) MAPE figures cannot be considered 

outliers, as the aim of the exercise is to compare several models that use the same 

input data series. 

 

In order to improve the statistical validity of the results, total tourist arrival time series 

from eleven different sources to Japan are used with each forecasting method. Further, 

to test the effectiveness of the forecasting models over varying horizons, forecasts are 

made one-month-ahead, 12-months-ahead and 24-months-ahead for each forecasting 

method and each data series. These forecasts are made for both one-year and two-year 

lead periods. The focus is upon the short to medium term because this is the currently 

favoured approach in industry forecasting and this in turn reflects the current unstable 

nature of tourist arrivals due to continuing short-term shocks (terrorism, health scares 

and political upheaval), and also the increasingly short-term investment cycles and 

horizons for tourism business operators. 

 

The forecasts are calculated for the 24-month out of sample test period from January 

2002 to December 2003. However, error measures are calculated separately for the 

12- month lead period from January 2002 to December 2002, and for the 24-month 

lead period from January 2002 to December 2003. This is to ascertain whether the 

forecasting accuracy varies with the length of the out of sample forecasting period. 

The data structure described above is summarized in Table 1.1. 
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Table 1.1   Data Structure    
     
  One month ahead horizon   

Within sample period Jan-78 Jan-78 -- Jan-78 -- Jan-78 
  to to  to  To 

  Dec-01 Jan-02 -- Nov-02 -- Nov-03 
Out of sample period Jan-02 Feb-02 -- Dec-02 -- Dec-03 
         

   One year lead   
     Two year lead   
    
  12 months ahead horizon 24 months ahead horizon 

Within sample period Jan-78 Jan-78  Jan-78 Jan-78  
   to to to To  

  Dec-01 Dec-02  Dec-01 Dec-01  
Out of sample period      
Two year One year Jan-02 Jan-03  Jan-02 Jan-02  

lead lead to to  to To  
  Dec-02 : Dec-02 :  
   :   :  
   :  :  
   Dec-03  Dec-03  

 

For the one-month-ahead horizon, the within sample period is taken as January 1978 

to December 2001, to forecast one-month-ahead for January 2002. The within sample 

period is taken as January 1978 to January 2002, to forecast one-month-ahead for 

February 2002 and so on. In this manner, 24 such forecasts are made to obtain 

forecasts for the out of sample period January 2002 to December 2003, one month at a 

time. 

 

For the 12-months-ahead horizon, the within sample period is taken as January 1978 

to December 2001, to forecast 12-months-ahead from January 2002 to December 

2002. The within sample period is taken as January 1978 to December 2002, to 

forecast 12 months ahead from January 2003 to December 2003. These 2 sets of 12-

month forecasts cover the 2-year out of sample period from January 2002 to 

December 2003, one year at a time. 
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For the 24 months ahead horizon, the within sample period is taken as January 1978 

to December 2001, to forecast 24-months ahead from January 2002 to December 

2003. This forecast covers the 2-year out of sample period from January 2002 to 

December 2003. 

 

The naïve model assumes the data will remain unchanged from the previous period 

(or for seasonal data the corresponding period from the previous year), to the next. 

Therefore, the naïve forecast for the current period is the actual of the previous period 

(or for seasonal series the actual of the corresponding period of the previous year). 

Since the naïve model is the most basic of forecasting methods (essentially being 

representative of guessing the forecast number), it is important that any alternative 

model must provide better forecasting accuracy than the naïve model. This study 

requires naïve forecasts to be the minimum benchmark that all models in this study 

must meet. Basic naïve forecasts must be improved upon by a forecasting method for 

the method to be considered adequate for forecasting tourist arrivals. Therefore, it is 

expected that the MAPE and RMSE values of all forecast models will be better than 

the MAPE and RMSE values of the naïve model. 

 

The above paradigm is applied first to the univariate artificial neural network model. 

The neural network model used is the multi-layer perceptron (MLP) with a linear 

input layer, two hidden layers containing sigmoid and tanh nodes and an output layer. 

Kon and Turner (2005) adjudge this model superior among the standard neural 

models. The within sample time series data are used as training data for developing 

the network parameters and the out of sample data are used as test data. Three 

different models of input data patterns are evaluated to determine the most suitable for 
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tourism forecasting. The first model is a non-periodic model that uses the previous 12 

months arrivals as input data to forecast for the next month. The previous 12 months 

data are used as the inputs because tourist data is seasonal and monthly data are used 

in this study. The second model is a partial periodic model, which uses data lagged by 

12, 24 and 36 months as input data. For example, this model uses the January arrivals 

of the three previous years to forecast the following year's January arrivals. The third 

model is the periodic model, which uses data only from a specific month of each year. 

For example, all January arrivals data of the within sample period are used to forecast 

the January arrivals in the out of sample period. This process is repeated for each 

month separately. 

 

To test the effect of differencing on MLP forecasts, a partial periodic model is 

developed for undiferrenced and first differenced data and compared with a non-

periodic model with first and twelfth differences. First differenced data are used for 

the partial periodic model as the use of three seasonally lagged series removes the 

effects of seasonality, leaving trend as the predominant component in the data. In the 

non-periodic model both first and twelfth differences are taken to remove the effects 

of both trend and seasonality. All neural network forecasts are obtained using the 

DataEngine software.  

 

 The Box-Jenkins ARIMA model and the basic structural model (BSM) are proven 

modern univariate time series forecasting methods. They are applied in this research 

with Japanese tourist arrivals data mainly as a comparative tool in evaluating the 

performance of newer models. The ARIMA forecasts are obtained using the SAS 
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software and forecasts from the basic structural model are obtained using the STAMP 

software.  

 

Tourist arrival forecasts are next made using the error correction model (ECM) with 

national economic indicators as predictors. The independent variables used are: own 

price, trade openness of the source country, Japan's trade openness, per capita gross 

domestic product and airfares, together with the arrivals data used as the dependent 

measure. Firstly, all data series are checked for unit roots, and then the error term is 

developed, after which an ordinary least squares regression model with seasonal 

dummy variables is created to generate forecasts. Microfit software is used to obtain 

the error correction models and the regression parameters that are then used on a 

Microsoft Excel spreadsheet for forecasting. 

 

 Forecasts from the ECM model are compared with those of a multivariate neural 

network model. The neural network model chosen is a multi-layer perceptron (MLP) 

with a linear input layer, two hidden layers containing sigmoid and tanh nodes and an 

output layer. The within sample time series data are used as training data for 

developing the network parameters and the out of sample data are used as test data. 

The input layer of the network consists of partial periodic tourist arrivals data that are 

lagged by 12, 24 and 36 months and the five national economic indicators own price, 

trade openness of the source country, Japan's trade openness, per capita gross 

domestic product and airfares. The software used is DataEngine. 

 

The main purpose of this research is to test whether fuzzy logic can be used to 

forecast time series tourism data. Traditionally econometric and time series 
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forecasting methods use crisp historical data. The justification for using fuzzy logic is 

that crisp data rarely represents reality accurately, due to the inherent data variations 

that are often hidden and deemed insignificant. Fuzzy representation of a cluster of 

data seems more meaningful from a practical perspective in describing what the data 

really represents.  

 

Preliminary models developed by the author for forecasting time series using simple 

fuzzy logic on univariate time series data did not achieve the levels of forecasting 

accuracy traditionally achieved by standard time series forecasting methods. 

However, a combination of fuzzy logic with neural networks (the neuro-fuzzy model) 

provided levels of forecasting accuracy that justified further testing of the model for 

time series forecasting of tourist arrivals.  
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1.5 Data Content and Sources 

 

Japan is a significant travel destination for business and pleasure travellers, has well 

documented reliable tourism data and has no previous work published using tourist 

arrivals data and the neuro-fuzzy forecasting model. Nor has a comparative study of 

the models used in this research been done before for Japan. In order to test the 

models on a sufficiently large number of time series data sets, inbound tourist arrivals 

to Japan from the ten most popular tourism source counties are used. Inbound tourist 

data studied in this research are total arrivals to Japan including all purposes of travel, 

(holiday, business, visiting friends and relations and other) from Australia, Canada, 

China, France, Germany, Korea, Singapore, Taiwan, the United Kingdom and the 

United States of America.  

 

Inbound tourist arrivals into Japan were obtained from the Japan National Tourist 

Organisation. Monthly data from January 1978 to December 2003 are used in this 

study. Monthly data were collected in preference to quarterly data because a larger 

array of within sample data allows for greater flexibility in building artificial neural 

network models. 

 

As an example of a typical arrival series, total arrivals to Japan from all countries, is 

shown in Figure 1.1. The series is obviously seasonal and non-stationary. The first 

difference makes the series stationary as shown by the plot of the first difference in 

Figure 1.1. The first and twelfth difference removes the effects of seasonal variation 

as shown by the plot of the first and twelfth difference. 
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Data Source: Japan National Tourist Organisation 

Figure 1.1      Total Monthly Arrivals from all Countries to Japan, 
1st difference and 1st & 12th difference 

-200,000

-100,000

0

100,000

200,000

300,000

400,000

500,000

600,000

Ja
n-

78

Ja
n-

80

Ja
n-

82

Ja
n-

84

Ja
n-

86

Ja
n-

88

Ja
n-

90

Ja
n-

92

Ja
n-

94

Ja
n-

96

Ja
n-

98

Ja
n-

00

Ja
n-

02

Ja
n-

04

Time

A
rr

iv
al

s

Arrivals
diff(1)
diff(1,12)

  

The economic indicators used in the multivariate error correction model are the source 

country's own price, the destination country Japan's trade openness, the source 

country's trade openness, the per capita gross national income of the source country 

and airfares from the source country to Japan. Own price and trade openness have 

been calculated using the consumer price index, exchange rates, gross domestic 

product, imports and the exports of source countries obtained from the EconData 

database. The airfares data were obtained from data manually collected by Dr. Sarath 

Divisekera of Victoria University from the National Library in Canberra. 
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1.6 Tourism in Japan 

 

Japan is situated in the Pacific Ocean northeast of Asia, and has a land area of 

377,873 square kilometers. Japan consists of four main islands, Hokkaido (north), 

Honshu (main island), Shikoku (south of main island) and Kyushu (south), 

surrounded by more than 4,000 very small islands. Japan's geographical features 

include scenic coastlines, mountains (some volcanic) and valleys. Japan's population 

in the year 2003 was over 128 million, the 9th largest in the world with most Japanese 

residing in densely populated urban areas. Japan's population density of 341 per 

square kilometer is the 4th highest for countries with a population of 10 million or 

more. Japan's capital city is Tokyo and of Japan's population 44% live in the three 

metropolitan zones demarcated by a 50 kilometer radius from the three metropolitan 

centres: Tokyo, Osaka and Nagoya. Of Japan's 47 prefectures Tokyo (12 million), 

Osaka (8.8 million), Kanagawa (8.5 million), Aichi (7 million) and Saitama (7 

million) account for 34% of the population. The population densities of these 

prefectures are as high as 5,517 for Tokyo, 4,652 for Osaka, 3,515 for Kanagawa, 

1,366 for Aichi and 1,827 for Saitama, per square kilometer (Statistical Handbook of 

Japan, 2004). Japanese is the official language in Japan but many Japanese understand 

basic English as it is taught as a compulsory subject at school. Japan has 4 seasons: 

Winter (December - February) when the temperature could drop to 0°C, Spring 

(March - May), Summer (June - August) with a few weeks of rain in June and 

Autumn (September - November). 

  

Japan has a rich cultural heritage that is of value and interest to the global traveller. 

There are historic sites, places of scenic beauty and national monuments that are 
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unique. Ancient tombs, castle ruins, ancient residences, remains and artifacts, gardens, 

bridges, ravines, coasts, mountains and traditional techniques in Japan are of historical 

as well as scientific value. Some unique environments surround and add value to the 

historic structures. The main cities that maintain historical environments are Kyoto, 

Nara and Kamakura. Asuka in the Nara prefecture has relics dating back to the 7th 

century, giving an insight into the life and traditions of the people at that time 

(Tourism in Japan, 2000-2001). 

 

Japan also has natural resources in the form of national parks, wildlife, marine parks 

and hot springs. There are 391 parks in Japan of which 28 are national parks with a 

typical Japanese appearance and beauty, administered by the Environment Agency; 55 

are quasi-national parks also of great beauty but administered by the prefectures; and 

the rest are natural parks and scenic areas in the prefectures (Tourism in Japan, 2002). 

 

The waters around Japan have a variety of marine life including fish, coral gardens 

and underwater plants. There are 64 marine parks, within 11 national and 14 quasi-

national parks. Japan also has natural hot springs with bathing in hot springs dating 

back to the first century. There are over 26,000 hot spring sources in Japan. Many 

tourist resorts feature hot springs and some still follow traditional bathing customs 

(Tourism in Japan, 2002). 

 

There are two types of accommodation in Japan. Western-style hotels and Japanese 

style inns called ryokan. Even at the beginning of the 20th century western style hotels 

were used mainly by foreign visitors. The locals preferred to stay in ryokan. Ryokan 

are tatami guest rooms with communal hot spring baths, where guests are provided 
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with traditional food, lifestyle and futon for sleeping. By the year 2001 Japan had over 

8200 hotels and over 64,000 ryokan of which 1090 hotels and 2010 ryokan were 

registered with the government. Minshuku are Japanese family run guesthouses, 

where guests live with the family. The western style minshuku are the pensions that 

provide affordable western style board and lodging. The growth in availability of 

accommodation in Japan has been driven mainly by local travellers, who far out 

number overseas visitors. Therefore, the system has sufficient accommodation to cope 

with the steady growth in overseas visitor arrivals (Tourism in Japan, 2002). 

 

Japan has an extensive rail network that transports 22 billion passengers per year. 

Japan's road network, which includes expressways, accounts for over 955 billion 

passenger-kilometers of road travel by 65 billion passengers. Japan's 11 domestic 

airlines transport over 96 million passengers who travel 84 billion passenger-

kilometers per year. Domestic ships transport 110 million passengers who travel 4 

billion passenger-kilometers per year.  There are 1860 international flights to and 

from Japan each week, with 580 of them operated by Japanese airlines. Japanese 

operators of international airlines service over 14 million passengers who travel 73 

billion passenger-kilometers per year (Statistical Handbook of Japan, 2004). 
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1.7 Visitor Arrivals to Japan 

 

Japan has experienced a steady growth in international visitor arrivals over the years. 

Tourism in Japan received a major boost in 1970 during the World EXPO, which was 

held in Osaka. Though Japan's tourist potential has received considerable exposure, 

the EXPO did not have a major impact on the long-term growth of international 

arrivals. Any beneficial effects that could have been expected in the 70's as a result of 

the EXPO were offset by the rise in airfares that resulted from the international oil 

crisis at that time. Although the oil crisis and the consequent rise in airfares had a 

detrimental effect on arrivals from western countries, the number of arrivals from 

Asian countries increased. This increased influx of Asian tourists can be attributed to 

the improving economic conditions in the Asian region generally. In 1979 Taiwan 

lifted travel restrictions on overseas travel and the resulting increase in Taiwanese 

visitors to Japan marked the start of an increased growth in total overseas arrivals to 

Japan that continued up to the mid 80's. Tourism received a further boost when Korea 

lifted restrictions on overseas travel in 1989. However, from 1992 to 1995 there was a 

reduction in arrivals due to the global recession that followed the Gulf war in 1991, 

and Japan's increased cost of living at that time resulting from a positive balance of 

trade that kept the yen highly valued. This trend reversed as Japan's exchange rate 

reduced during its 1995 recession resulting in an up turn in arrivals in 1996 and 1997. 

However, arrivals again dropped in 1998 due to the Southeast Asian economic crisis 

but this decline was countered by an increase in western travellers in 1999. Due to the 

fast recovery of the Southeast Asian economies post 1998 and consequent increase in 

arrivals to Japan from these countries, and a continued increase in arrivals from 

western countries; total arrivals to Japan further increased in the year 2000. A total of 
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5.24 million overseas visitors arrived in Japan in 2002, an increase of 9.8 percent on 

arrivals in 2001. This number decreased to 5.21 million in 2003, due mainly to the 

outbreak of SARS and the war in Iraq. However, as a result of policies inaugurated in 

2003 to encourage inbound tourism and achieve 8 million arrivals in 2007, overseas 

arrivals in 2004 increased to 6.1 million. Total visitor arrivals to Japan from 1964 to 

the year 2004 are shown in Figure 1.2 with significant events indicated on the figure 

against the relevant time periods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2        Total Visitor Arrivals to Japan from 1964 to 2004 
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  Source: Japan National Tourist Organisation. 

 

The average length of stay of visitors is 8.5 days. In 1990 the average stay was 13.2 

days but since the mid 90s this figure has been 8.5 days on average, indicating a 
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significant change in the attitude and life style of visitors to Japan, and also the shorter 

distance travel growth from neighbouring countries.  

 

Arrivals to Japan can be classified as tourists, business arrivals and others such as 

students from other countries arriving in Japan for studies, and Japanese residents 

abroad, visiting friends and relations. The total arrivals include, in addition to the 

above, shore excursionists who arrive without visas and are granted entry permits at 

the port of arrival. Figure 1.3 shows a steadily increasing trend in all three categories 

of overseas visitors. 

  
Figure 1.3        Total, Tourist, Business and Other Arrivals to 

Japan from 1978 to 2003
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    Data Source: Japan National Tourist Organisation. 

The age and gender breakdown for visitor arrivals in the year 2003 is shown in Table 

1.2. These figures show 54.7% were male and 45.3% were female visitors. The age 

group with the largest number of male visitors (15.5%) was the 30 to 39 year 
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category, the next largest (13.5%) being the 40 to 49 year category. The age group 

with the largest number of female visitors (12.0%) was the 20 to 29 year category, the 

next largest (10.9%) being the 30 to 39 year category.  

 

Table 1.2 Visitor Arrivals to Japan in 2003 by Gender and Age 

Age Category Males  Females  
0 to 9 99,519 (1.7 %) 95,918 (1.7 %) 
10 to 19 153,875 (2.7 %) 172,668 (3.0 %) 
20 to 29 497,958 (8.7 %) 689,969 (12.0 %) 
30 to 39 886,872 (15.5 %) 626,723 (10.9 %) 
40 to 49 772,150 (13.5 %) 442,288 (7.7 %) 
50 to 59 438,403 (7.7 %) 307,091 (5.4 %) 
60 and over 285,892 (5.0 %) 257,914 (4.5 %) 
Total 2,727,240 (54.7%) 2,592,571 (45.3 %) 

   Source: Japan National Tourist Organisation. 

 

The number of international conventions held in Japan from 1994 to 2003, and the 

number of international participants is shown in Table 1.3. Japan ranks 11th among 

countries worldwide that hold international conventions and meetings in terms of the 

number of conventions held. Year 2001 recorded the highest number of conventions 

held but there has been a decline since. October and November were the most popular 

months for these meetings. In 2003 Japan hosted 219 large international conventions, 

each with delegates from at least five countries (Source: Japan National Tourist 

Organisation). 
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Table 1.3     Number of International Conventions and Participants 
Year Conventions Participants 
1994 1769   73315 
1995 1820   76313 
1996 1917   66045 
1997 2163   77036 
1998 2415   78862 
1999 2475   73874 
2000 2689   91340 
2001 2737   99719 
2002 2683 110791 
2003 2554 106308 
Source: Japan National Tourist Organisation 

 

The number of Japanese traveling overseas each year is much larger than the number 

of overseas visitors to Japan. As a result, receipts from international visitors to Japan 

are much lower than the payments from Japanese overseas travellers. The number of 

Japanese overseas travellers in 2003 was 13.2 million, down from 16.5 million in 

2002. In the year 2003 receipts from inbound visitors were US$ 8,848 million while 

payments from outbound Japanese travellers were US$ 28,959 million. Per traveller, 

in 2003 this amounted to receipts of US$ 1,701 per visitor and payments of US$ 

1,755 per Japanese outbound traveller (World Tourism Organisation Travel 

Compendium, 2005). 

 

The main visitor source countries, in decreasing order of total arrivals to Japan, for the 

years 1995 to 2003 are shown in Table 1.4. Though the rankings change marginally 

from year to year the countries within the top 12 have remained fairly consistent over 

the nine year period from 1995 to 2003 and unchanged from 1999. The rankings of 

the top three countries, Korea, Taiwan and USA have not changed since 1995. 
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Table 1.4 Top 12 Countries of Visitor Origin from 1995 to 2003 

Ran 1995 1996 1997 1998 1999 2000-2003 

1 Korea Korea Korea Korea Korea Korea 

2 Taiwan Taiwan Taiwan Taiwan Taiwan Taiwan 

3 USA USA USA USA USA USA 

4 China  China  Hong Hong China  China  

5 UK Hong China China Hong Hong Kong 

6 Hong UK UK UK UK UK 

7 Australia Australia Australia Australia Australia Australia 

8 Philippines Canada Canada Canada Canada Canada 

9 Canada Germany Germany Germany Philippines Philippines 

10 Germany Philippines Philippines Philippines Germany Germany 

11 France Thailand France France France France 

12 Thailand France Singapore Singapore Singapore Singapore 

Source: Japan National Tourist Organisation. 

 

 

 

 

 

 

 

 

 

 



Chapter 1 Introduction 28

 

1.8 Japan's Economy 

 

Japan is the third largest economy after the USA and China. The reasons for Japan's 

economic success are its low defense budget, the achievements and strides made in 

high technology and commerce, the ability of industry to work closely with the 

government and the nationalistic approach of the workforce, which is supportive of 

productivity improvements. Japan's manufacturers, suppliers, and distributors have 

always worked together and supported each other's success. The comparatively non-

unionised and non-confrontational nature of the workforce has largely been based 

upon the traditional assurance of lifetime employment. However, many of the 

traditional characteristics of the Japanese economy are changing as a result of the 

impact of current global trends. Japan's labor force in 2003 consisted of some 66 

million workers, 40% of whom are women. Labor union membership was about 12 

million. The largest sector of the Japanese economy is the service sector, which 

accounts for 73% of GDP. Japanese industry, accounts for 25% of GDP and stands 

among the world's most technologically advanced producers of motor vehicles, 

electronic equipment, machine tools, steel and nonferrous metals, ships, chemicals, 

textiles and processed foods. Robotics is one of Japan's technological strengths, with 

Japan possessing more than 50% of the world's 720,000 robots. However, Japanese 

industry is heavily dependent on imported raw materials and fuels. The agricultural 

sector accounts for 2% of GDP and is a protected sector. Japan imports 50% of its 

grain requirements. Japan's fishing industry accounts for about 15% of world 

production (World Trade Organisation: Japan Trade Policy Review 2000 and 

Wikipedia 2003). 
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 Figure 1.4 Japan's Economic Growth Rates 

 (Source: Chart extracted from Japan Statistical Handbook, 2004) 

 

Figure 1.4 shows the reducing growth rates for Japan's economy from 1956 to 2003. 

In the 1960s economic growth averaged over 10%. This high growth was due to high 

personal savings that increased investment in the private sector, the availability of 

quality labour, high population growth and the adoption of foreign technology. In fact 

during this period the USA and Europe protested about Japan's increased exports as 

they resulted in trade deficits with Japan. The main policy issues that were addressed 

during this period of growth were high pollution levels owing to increased industrial 

production, increased population density in urban areas and increased need for 

nursing facilities for the elderly.  
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In the 1970s economic growth slowed down and averaged 5%. In 1971 Japan 

revalued its fixed US dollar exchange rate of 22 years from 360 yen to 308 yen, which 

made exports less affordable in the US market. In 1973 Japan moved to a floating 

exchange rate. The 1973 Middle East war and the first oil crisis lead to high inflation 

and a negative growth of 1%. Japan recovered from this slump and ended the decade 

with a growth rate of 5%. 

 

Economic growth slowed again at the start of the 1980s due to trade surpluses with 

industrial nations that resulted in appreciation of the yen. In the 1980s railway and 

telecommunication companies were privatised, economic policies and currency 

adjustments were established to control the overvaluation of the yen and economic 

growth was achieved through domestic demand. High-technology industries grew in 

the 1980's and as a result domestic demand for high-technology products increased. 

The domestic demand for higher standards of living, housing, healthcare and leisure 

activities boosted the economy. During the 1980s, the Japanese economy shifted its 

emphasis away from agriculture and manufacturing to telecommunications and 

computers. The information economy was led by highly advanced computer 

technology. Tokyo became a major world financial center with the Tokyo Securities 

and Stock Exchange becoming the world's largest stock exchange. Rapid economic 

growth from 1987 to 1989 helped revive the steel industry and other subsidiary 

manufactures that had been performing poorly in the mid 80's. In the late 1980s Japan 

had a sound economy with low inflation, low unemployment and high profits. The 

economic growth in the 1980s averaged 4%. High investments in the stock market 

and in real estate lead to further industrial growth and urban development. 
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However, in the early 1990's due to excessive speculative investments in stocks and 

real estate, prices commenced a corrective downward trend. This trend and low 

domestic consumption resulted in low economic growth. Economic growth reduced to 

zero in 1992. The domestic market and the US market for Japanese cars declined. The 

demand for Japanese electronics also declined. The main reason for the slow growth 

from 1992 to 1995 was excessive capitalisation in the 1980s. Due to the fall in real 

estate prices government intervention was necessary to support the banking sector that 

had obtained loans based on equity in real estate. In 1995 an earthquake hit Kobe and 

the increased demand for the recovery effort and the new market for mobile phones 

increased economic growth. Through the 1980's bad debt in financial institutions 

remained an obstacle to economic recovery. Economic growth increased to 4% in 

1996 as a result of low rates of inflation. However, in 1997 and 1998 Japan 

experienced a severe recession, brought about by reduced business investment and 

private consumption and financial problems in the banking sector and the real estate 

market. In 1997 the government funded large banks to prevent them from bankruptcy, 

but reduced lending forced many companies to close down, resulting in a negative 

growth of 1.5% in 1998 making Japan the only industrialised country to be in 

recession. Capital, financed largely by debt, prompted firms to restrain further 

investment. The drop in private consumption was due to reduced household 

disposable income and uncertainty about the future of the social security system. 

Government outlays on public works were a positive growth factor in 1998 and 1999 

as were net exports. In 1999 output started to increase as business confidence 

gradually improved. Japan's economy started to recover in 1999 due to demand for 

information technology and electronic components in the US and it started the new 
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millenium with a growth of 2.5% in the year 2000 (World Trade Organisation: Japan 

Trade Policy Review 2000 and Statistical Handbook of Japan, 2004). 

 

 In 2000 when the IT bubble collapsed growth in Japan dropped again, resulting in 

negative growth in 2001. The 9/11 terrorist attack in the US also had an adverse effect 

on the Japanese economy with over 20,000 bankruptcies in 2001. In 2002 the world 

economy including Japan's slowed due to the war in Iraq and in 2003 the SARS 

(Severe Acute Respiratory Syndrome) epidemic affected Japan's economy as it did 

other Asian economies. However, in 2004 exports increased and the economy 

improved as a result of investments in plant and equipment (Statistical Handbook of 

Japan, 2004). 
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1.9 Japan's International Trade  

 

Japanese government policy recognized that Japan needed to import raw materials to 

develop its economy, and that it needed exports to balance imports, after World War 

II. Japan had difficulty exporting enough to pay for its imports therefore export 

promotion programs and import restrictions were introduced. The tariff was Japan's 

principal trade policy instrument. However, more recently the government of Japan 

has been committed to maintaining a free and non-discriminatory multilateral trading 

system through the World Trade Organisation (WTO). Additionally, Japan has begun 

to place more emphasis than before on the possibilities of free trade agreements 

(FTAs) with regional and bilateral trade policies, because it regards FTAs as a way of 

complementing the multilateral system (World Trade Organisation: Japan Trade 

Policy Review, 2002). 

 

Due to trade deficits in the years following World War II, all imported products were 

subject to government quotas and tariffs. Japan developed world-class industries that 

could export their products through competing in international markets. It also 

provided incentives for firms to export. By the late 50's Japan's international trade 

position had improved, and its favourable balance of payments indicated that import 

restrictions were not essential. Japan under pressure from the International Monetary 

Fund (IMF) and GATT, reluctantly adopted a policy of trade liberalisation, reducing 

import quotas and tariffs. In the 60's, export incentives took the form of tax relief but 

when Japan's balance of payments improved in the mid 60's, the need for export 

promotion incentives diminished and in 1964 Japan had to remove the tax relief on 

export income, to comply with requirements from the International Monetary Fund. 
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However, it did provide a special tax benefit to the export industry for market 

development and export promotion costs, but in the 70's all export tax incentives were 

eliminated. 

 

In the 60's and 70's exports played a key role in Japan's economic growth. However, 

from the mid 80's the growth in domestic demand shifted the economy from being 

export oriented to being driven by domestic demand, resulting in imports growing 

faster than exports. By the end of the 80's, the domestic market was influencing 

Japan's import policy. As a result of GATT agreements, Japan had the lowest average 

tariff level of 2.5%, compared with 4.2% in the USA and 4.6% in the European 

Union. Japan's quotas also dropped from 490 items under quota in 1962, to 22 items 

under quota by the late 80's. Despite Japan's rather good record on tariffs and quotas, 

it continued to be the target of complaints and pressure from its trading partners 

during the 80's. Many complaints revolved around non-tariff barriers other than 

quotas such as technical standards, testing procedures, government procurement, and 

other policy that could be used to restrain imports. These barriers, by their very 

nature, were often difficult to document, but complaints were frequent. 

 

In the 1980's, voluntary export restraints were requested of Japan by many countries, 

which were reluctant to impose quotas on Japan in the spirit of GATT. Of the exports 

to the United States, steel, color televisions, and automobiles were subject to such 

export restraint.  

 

The rapid appreciation of the yen after 1985, which made imports more attractive, 

stimulated domestic opposition to measures that restricted imports. External pressure 
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for change also increased when the United States named Japan an unfair trading 

nation in 1989, and sought negotiations on forest products, supercomputers, and 

telecommunications satellites. Other issues raised by the USA in 1989 were, the 

distribution system that was able to inhibit foreign newcomers to the market, because 

manufacturers had strong control over wholesalers handling their products, and 

investment restrictions that made it very difficult for foreign firms to acquire Japanese 

firms. Japan was always resilient to foreign pressures but as a consequence of 

domestic pressure, Japan started the 90's with a more liberal import policy. Japan 

introduced import promotion programs that provided substantial government 

incentives, but they did not fully address all the relevant issues. These programs often 

excluded important sectors of interest to trading partners, in the agriculture and 

services industries, that are subject to extensive government regulation (Stern, 1994). 

Japan's tariff structure has not changed much since 1995 with 60% of tariff lines rated 

at 5% or below and high tariffs in agriculture, food manufacturing, textiles, footwear 

and processed items in food manufacturing and the petroleum industries. In 2000, the 

simple average tariff rate was 6.5% (World Trade Organisation: Japan Trade Policy 

Review 2000). 

 

In the 1990's economic policy aimed at structural reform, deregulation and greater 

reliance on domestic, rather than export demand. The deregulation program of 1995 

reduced the scope of government regulations, in financial services, 

telecommunications and domestic transport. However, agriculture, construction and 

international transport have been exempt from deregulation. Trade statistics indicate 

that Japan's trade surplus declined from 1992 to 1996 but the trend reversed in 1997 
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with the trade surplus expanding to its highest level in 1998 (World Trade 

Organisation: Japan Trade Policy Review, 1998). 

 

Exports decreased in 1998 and 1999, due to the economic crisis in Southeast Asian 

countries. Imports decreased in 1998 and 1999, due mainly to the slump of the 

Japanese economy and the appreciation of the Yen. In 2001 the total value of exports 

from Japan decreased, mainly due to the weaker world economy. The total value of 

exports from Japan in 2001 was 5.2 percent less than that in 2000. In 2001, the total 

value of imports into Japan increased over the past two straight years, although the 

rate of increase had slowed down due to the domestic recession. The total value of 

imports in 2001 amounted to an increase of 3.6 percent from 2000.  As a result, 

Japan's total trade surplus in 2001 decreased to create three straight years of decline. 

 

 In 2003, the total value of exports increased due to good economic conditions in 

Asia, Europe, and the United States.  Japan's main export partners are the USA (25%), 

China (12%), South Korea (7%), Taiwan (7%) and Hong Kong (6%). The main 

export commodities are motor vehicles, semiconductors, office machinery and 

chemicals. Japan's main import partners are China 20%, USA 16%, South Korea 5% 

and Indonesia 4%. The main import commodities are fuels, foodstuffs, chemicals, 

textiles, raw materials, machinery and equipment (Wikipedia, 2003 and World Trade 

Organisation: Japan Trade Policy Review, 2000). Movements in Japan's import and 

export trend from 1978 to 2003 are shown in Figure 1.5. 
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Figure 1.5        Japan's International Trade from 1978 to 2003

0

10

20

30

40

50

60

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04

Time

Tr
ad

e 
(T

ri
lli

on
 Y

en
)

Imports
Exports

 

 

 

 

 

 

 

 

 

 

 

     Data Source: OECD Main Economic Indicators. 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 2 
Literature Review 

                                                                                                                                            

 

2.1 Introduction 

 

A forecast is a statement made in the present about expectations of the future. 

Forecasting could be based on speculation, intuition, surveyed opinions, expert 

opinion, analogies or quantitative analysis of historical patterns. Forecasts in this 

thesis are based on the latter, and use quantitative forecasting methods to predict 

future tourism flows. Quantitative forecasting methods estimate future behaviour of a 

system based on historical patterns or relationships in past activity. If patterns can be 

established for historical quantitative data series, future values of the series can be 

forecast (within limits), assuming the historical patterns will hold true into the future. 

In reality historical patterns do not flow into the future undistorted, due to random 

variations in the data that might occur for no known reason, variations triggered by 

unforeseen incidents, systemic economic and social changes in the future or due to a 

combination of these reasons. These uncertainties make it difficult to forecast data 

series to a high level of accuracy and for large horizons. However, traditional 

quantitative methods have been successful in providing useful forecasts to industry 

and government for strategy and policy formulations. The two types of models 

traditionally used in quantitative forecasting are, time series models and econometric 

models. These methods extrapolate historical patterns into the future by identifying 

the structure of the data and analysing the variations of the data from common data 

structures. There have been numerous literature reviews of tourism forecasting 
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through to 2003, including Crouch (1994), Lim (1997), Witt and Witt (1995) and Li, 

Song and Witt (2005). 

 

More recently soft computing methods such as artificial neural networks, fuzzy logic 

and the neuro-fuzzy hybrid have been used in forecasting and have proved to be a 

viable alternative to the traditional time series and econometric models. These 

methods do not establish traditional time series or econometric structures; instead they 

develop input-output relationships based on data mining. 

 

To determine which methods provide the most accurate forecasts of tourism demand, 

and most definite explanations of demand fluctuations, the different quantitative 

forecasting procedures must be examined, tested and compared. Early studies on 

tourism forecasting did not evaluate the performance of different methodologies 

(Archer 1980, Vanhove 1980, Van Doorn 1982, Bar On 1984) but focussed upon 

presenting the nature of the various methodologies available. Subsequent studies have 

increasingly discussed performance in terms of the accuracy of the forecasts (Sheldon 

and Var 1985, Uysal and Crompton 1985, Calantone, Di Benedetto and Bojanic 1987, 

Witt and Witt 1989). In the 1990’s some studies used traditional demand modelling 

(Smeral et al. 1992, Syriopoulous and Sinclair 1993), while other studies showed that 

autoregressive integrated moving average time series models can perform better than 

traditional demand modelling in tourism forecasting (Witt and Witt 1992, Kulendran 

and King 1997). Subsequent studies have used modern econometric models 

(Kulendran and King 1997; Smeral and Weber 2000; Kulendran and Witt 2001; Song 

et al. 2003b) and the non-traditional neural network model (Law 2000). Recently, 

Burger et al. (2001) stated that neural networks performed best in comparison with the 
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naïve, moving average, decomposition, single exponential smoothing, ARIMA, 

multiple regression and genetic regression models. 

 

The simplest time series forecast uses the naïve method where the actual value (At) of 

the current period (t) is the forecast (Ft+1) for the next period (t+1). For seasonal data, 

the actual value (At+1-s) of the corresponding period of the previous year (t+1-s) is the 

forecast (Ft+1) for the period (t+1) where s is the number of seasons (Hanke and 

Reitch, 1992 and Turner and Witt, 2001b). If the data are not stationary a trend 

component could be introduced as follows for non-seasonal data: 

 Ft+1 = At + (At - At-1) . 

For seasonal data, the trend adjustment could be as follows: 

Ft+1 = At+1-s + (At+1-s - At+1-2s) . 

Martin and Witt (1989a and b) and Witt and Witt (1992) suggested that econometric 

tourism forecasting models do not perform as well as the naïve model. However, Witt 

and Witt (1995) state that no single forecasting model performs consistently best 

across different situations, but autoregression, exponential smoothing and 

econometrics are worthy of consideration as alternatives to the naïve model. 

Kulendran and Witt (2001) found that cointegration and error correction methods 

performed better than least squares regression but failed to out perform the "no 

change" naïve model. Song et al. (2003a) confirm the findings of previous studies that 

the naive no change model is superior to the error correction model and the ARIMA 

model. Therefore, in recent publications the naïve forecasting model has become a 

benchmark minimum performance measure when comparing tourism forecasting 

models. 
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2.2 Univariate Time Series Models 

 

Time series models predict the future from past values of the same series, whereby the 

methodology attempts to discern the historical pattern in the time series, so that the 

pattern can be extrapolated into the future. A relatively small amount of research has 

examined time series methodology (Geurts and Ibrahim 1975, Wandner and Van 

Erden 1980, Geurts 1982, Martin and Witt 1989a, Sheldon 1993, Turner, Kulendran 

and Pergat 1995, Witt, Dartus and Sykes 1992, Di Benedetto, Anthony and Bojanic 

1993, Turner, Kulendran and Fernando 1997a and b, Kulendran and King 1997, 

Turner, Reisinger and Witt 1998, Chu 1998a). Time series models are disadvantaged 

by their inherent assumption that changes in particular patterns are slow rather than 

rapid and develop from past events rather than occur independently. 

 

Univariate time series modeling has been receiving more attention primarily because 

it is based on single data series. Initially researchers used the more sophisticated Box 

Jenkins methodology (Geurts and Ibrahim 1975, Canadian Government Office of 

Tourism 1977) and decomposition methods such as Census XII (Bar On 1972, 1973, 

1975). More recent research broadened the examination to include assessment of less 

sophisticated methods such as exponential smoothing. Moreover, comparison of 

performance has included assessment of forecast accuracy against naïve processes 

(Martin and Witt 1989b, Witt and Witt 1989a and b, Witt, Brooke and Buckley 1991, 

Witt 1991a,b, Witt 1992, and Witt, Dartus and Sykes 1992). These studies lead to the 

suggestion by Witt that within sample naïve forecasts were actually more accurate 

than formal forecasting methodologies. 
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 Subsequent studies have re-examined the performance of various time series 

methods, including the Box Jenkins approach (Turner, Kulendran and Pergat 1995) 

and introduced structural models (Turner, Kulendran and Fernando 1997b) as 

alternatives. In so doing the need to decompose the tourism series has also been 

questioned (Turner, Kulendran and Fernando 1997a). Though a single method has not 

emerged as the most suitable forecasting technique for all situations, it is clear from 

these later studies that sophisticated time series forecasting methodology are at least 

as accurate as naïve processes.  

 

2.2.1 Autoregressive Models 

 

Autoregressive models were originally developed by Yule in 1926 and presented in 

the form of Autoregressive (AR) and Moving Average (MA) models by Slutsky in 

1937 ( Makridakis and Hibon, 1997). They were combined into the ARMA model by 

Wold in 1938 but it was Box and Jenkins (1970) who introduced the ARIMA model, 

which uses differencing to make a series stationary. The Box-Jenkins autoregressive 

integrated moving average (ARIMA) model is the most widely used univariate 

forecasting model. It is a combination of autoregressive component and the moving 

average component. The ARIMA approach is an empirical method for identifying, 

estimating and forecasting a time series. It does not assume any particular pattern in 

historical data but uses an iterative method for selecting an appropriate model by 

investigating the shapes of the distributions of autocorrelation coefficients and partial 

autocorrelation coefficients of the time series without making assumptions about the 

number of terms in the model or the relative weights assigned to the terms.  
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Makridakis and Hibon (1997) question the use of differencing in the ARIMA model 

to make data stationary and show that more accurate forecasts can be obtained by the 

ARMA(1,1) model. Turner, Kulendran and Fernando (1997a) found that the AR 

model with periodic data produced better forecasts than the ARIMA with non-

periodic seasonal data. They also found the ARIMA forecasts superior to the naive 

forecast. Chu (1998b) compared a combined ARIMA and sine wave nonlinear 

regression model with the ARIMA model and concluded that the combined model had 

lower forecast errors. Lim and McAleer (2002) found that ARIMA forecast arrivals 

from Malaysia and Hong Kong were not as accurate as the forecasts for arrivals from 

Singapore to Australia. Chu (2004) compared ARIMA forecasts with a cubic 

polynomial model and found the ARIMA forecast had lower errors. These studies 

show that ARIMA may not necessarily be the most accurate forecasting method even 

though it might have the best fitting model. Dharmaratne (2000) obtains good 

forecasts using ARIMA but concludes that customised model building may be highly 

rewarding in terms of accurate forecasts compared to standard or simple methods. 

Kulendran and Witt (2003b) found that the leading indicator model does not 

outperform the univariate ARIMA model and that there is no advantage in moving 

from a univariate ARIMA model to a more complex leading indicator model. 

However, Turner, Kulendran and Fernando (1997b) showed that the leading indicator 

transfer function model with and without a composite indicator, outperforms the 

ARIMA model for some source countries and particularly for disaggregated business 

travel. 
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2.2.2 Basic Structural Time Series Model 

 

The basic structural time series model introduced by Harvey and Todd (1983), deals 

with univariate time varying data with trend and seasonal components. The theory of 

structural time series modelling is explained in Harvey (1990). The model 

decomposes the data into its components and uses the Kalman filter in evaluating the 

function. Since the components of a time series are often not fixed but stochastic in 

nature, the basic structural model is formulated as consisting of a stochastic trend 

component, a seasonal component and an error term. The trend component changes 

from the previous period by the amount of the slope, where the slope is also stochastic 

and changes from period to period. The seasonal component is additive and totals to 

zero over the seasons in the year. Non-stationarity is handled directly without the need 

for explicit differencing.  

 

In the Box-Jenkins methodology the main identification tools are the autocorrelation 

function and the partial auto correlation function. Harvey and Todd (1983) explain 

that these correlograms are not always very informative particularly with small 

samples. Moreover, difficulties with interpretation are compounded for a series that 

has been differenced. They claim the alternative is to formulate models directly in 

terms of trend, seasonal, and irregular components.   

 

Turner, Reisinger, and Witt (1998) used structural modelling for tourist flows 

disaggregated into holiday, business and visits to friends and relatives. The study 

reiterates the importance of using different but appropriate explanatory variables for 
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different destinations. Turner and Witt (2001b) found that univariate structural time 

series models are capable of providing reasonably accurate forecasts. While the 

structural model out performs naïve forecasts the Turner and Witt (2001b) study could 

not show improvement in the accuracy of the structural model by including 

explanatory variables. In fact they concluded that practitioners who are simply 

interested in producing accurate forecasts of international tourism demand, would be 

well advised to concentrate solely on univariate structural models. 

 

2.3 Econometric Models 

 

Econometric models search for cause and effect relationships between tourism 

demand and one or more variables such as price or income, with a hypothesis that 

these variables cause that demand. In this case tourism demand is the dependent 

variable and the causes are the independent variables. Causal methodology is focused 

upon penetrating the structure of the cause and effect relationship in order to 

reproduce that structure in the future to forecast tourism flows, once the independent 

measures have been identified. 

 

Recent research has questioned the validity of the assumption underlying regression 

analysis based on ordinary least squares (OLS), (Granger and Newbould 1974, Skene 

1996, Morley 1997). In particular, the suggestion has been made that the time series 

used in ordinary least squares regression analysis may be non-stationary, and 

therefore, the validity of standard statistical tests may be in doubt. In consequence, 

more recent analysis has been done using co-integration methodology (Kulendran 

1996, Kulendran and King 1997, Song and Witt 2003). This concept introduced by 
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Granger and Weiss, 1983, requires economic series to converge to a common trend 

over time to establish a long-term relationship, which then allows for the use of the 

error correction model (Engle and Granger 1987) for short term deviations from the 

trend, which avoids the problems of spurious regression that are possible using the 

ordinary least squares method. 

 

Most research has examined causal modelling: Gray 1966, Smith and Toms 1967, 

Artus 1970, Blackwell 1970, Oliver 1971, Artus 1972, Barry and O’Hagen 1972, 

Bond and Ladman 1972, Kwack 1972, Jud 1974, Jud and Joseph 1974, Cline 1975, 

Gapinski and Tuckman 1976, Paraskevopulos 1977, Little 1980, Witt 1980a,b, Fujii 

and Mak 1981, Kliman 1981, Loeb 1982, Quayson and Var 1982, Witt 1983, 

O’Hagen and Harrison 1984a and b, Uysal and Crompton 1985, White 1985, 

Papadopoulos and Witt 1985, Edwards 1985, Gunadhi and Boey 1986, Chadee and 

Mieczkowski 1987, Summary 1987, Witt and Martin 1987, Brady and Widdows 

1988, Martin and Witt 1987 and 1988, Rosenweig 1988, Darnell, Johnson and 

Thomas 1990, Witt 1990, Crouch 1992, Witt, Newbould and Watkins 1992, Smeral, 

Witt and Witt 1992, Di Benedetto, Anthony and Bojanic 1993, Morris, Wilson and 

Bakalis 1995, Jorgensen and Solvoll 1996, Kulendran 1996, Kulendran and King 

1997, Lim and McAleer 1999 and 2001, Preez and Witt 2003, Song and Witt. 2003, 

Song, Wong and Chon 2003b. 

 

It is difficult in most cases, to use a causal model to forecast a demand figure for the 

future, simply because it requires the future values of the causes of travel demand (for 

example, price, income or advertising) to be known. The causal literature has 

determined that particular variables are more reliable than others, with income in the 
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tourist’s country of origin, cost of living in the destination country, travel cost, 

exchange rates, substitute prices for alternative destinations, special events and 

marketing expenditure featuring as the most used and versatile causes of tourism 

demand fluctuations. Although, the most recent finding by Li, Song and Witt (2005) 

is that no single model outperforms others for all series. This may well reflect a 

fundamental flaw in the current practice of assuming that all series can be forecast 

using the same generic independent variables, when in fact some series have different 

causal influences. 

 

Song and Witt (2000) explain the demand function for tourism as a function of its 

determinants as follows: 

,),A,T,Y,P,P(fQ ijijjjsiij ε=

 

where, Qij is the quantity of tourism product demanded in destination i by tourists 

from country j; Pi the price of tourism for destination i; Ps the price of tourism for 

substitute destinations; Yj the level of income in country of origin j; Tj the consumer 

tastes in country of origin j; Aij the advertising expenditure on tourism by destination i 

in country of origin j and εij the disturbance term that captures other factors which 

may influence Qij. 

 

 

Witt, Brooke, and Buckley (1991) suggest as explanatory variables per capita real 

income, as measured by personal disposable income; costs at the destination as 

measured by the consumer price index specified in real terms in the currency of the 

country of origin and referred to as own price; costs of transport as measured by 

airfares; substitute prices as measured by cost of transport and cost of living in 
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alternative destinations; trend to represent steady changes in popularity of the 

destination and in tastes as measured by time; promotional activity as measured by 

real promotional expenditure for the destination in country of origin currency; and 

habit persistence as measured by lagged tourist arrivals.  

 

Turner, Kulendran and Fernando (1997b), identified leading indicators from among  

national variables: income, unemployment, forward exchange rate, money supply, 

price ratio, industrial production, imports and exports. 

 

Kulendran and Wilson (2000b) use openness to trade as an important determinant of 

business travel and show that trade openness elasticity of the four countries studied 

were all positive. Their previous study (2000a) identified the existence of a causal 

relationship between trade and international travel indicating that tourism demand in a 

destination country is influenced by the trade openness of that country. Kulendran and 

Witt (2003a) extended the research of Kulendran and Wilson (2000b) to provide a 

more comprehensive comparison of the accuracy of modern forecasting methods in 

the context of forecasting the demand for business tourism. This study which used 

trade openness as one of its explanatory variables found that adding explanatory 

variables to a univariate structural model does not improve forecasting performance. 

However, they found that the error correction model using the same explanatory 

variables generates more accurate forecasts than the causal structural model. Other 

explanatory variables used in this study are income, price and real gross domestic 

product. Airfare had not been considered an explanatory variable in this study as Kim 

and Song (1998) found it did not influence business travel.  

 



Chapter 2  Literature Review 49

 

Turner and Witt (2001a) considered the following as possible explanatory variables: 

destination living costs, airfare, retail sales, new car registrations, gross domestic 

product, survey of future manufacturing, survey of consumer confidence, survey of 

overall prospects, trade openness, exports, imports, domestic loans and number of 

working days lost. Lagging of independent variables was also tested though the 

number of lags was difficult to hypothesize, but there was little difference to the 

empirical results. The explanatory variables that were found to be significant in some 

of the tests but not necessarily all of them are: destination living costs, retail sales, 

new car registrations, gross domestic product, trade openness, exports, and domestic 

loans. 

 

Gonzalez and Moral (1995) considered the consumer price index as a proxy for the 

price of tourism, and used the ratio of the consumer price index of the destination 

country to that of the tourist's source country adjusted by the exchange rate as the 

explanatory variable that represents price of tourism relative to its substitute, domestic 

tourism. They also used a weighted average of the industrial production index of each 

of the tourist source countries as a proxy for the personal disposable income of a 

tourist. 

 

2.4 Artificial Neural Networks (ANNs) 

 

The concept of ANNs is an imitation of the structure and operation of the human brain 

by means of mathematical models. The ANN concept is used in forecasting, by 

considering historical data to be the input to a black box, which contains hidden layers 

of neurons. These neurons compare and structure the inputs and known outputs by 
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non-linear weightings, which are determined by a continuous learning process (back-

propagation). The learning process continues until forecast outputs are reasonably 

close to known actual outputs. The structure of the black box is then used for 

forecasting actual future outputs.  

 

ANNs have a powerful pattern recognition capability. They learn from experience 

through a process of back-propagation and have been used as a forecasting technique 

(Sharda 1994). ANNs are data driven self-adaptive methods that capture the 

functional relationships within the data (Zhang, Patuwo and Hu 1998) and can be 

described as multivariate, non-linear and non-parametric (White 1989, Ripley 1993, 

Cheng and Titterington 1994). The ANN approach, which has the ability to learn from 

experience, is very powerful in solving practical problems if large amounts of data are 

available.  

 

One type of ANN is the Multi-layer Perceptron (MLP). It has several levels of nodes, 

each node being called a neuron and each level being referred to as a layer. A typical 

MLP would have an input layer, an output layer and one or more hidden layers in 

between the input and the output layers. Figure 2.1 shows a neural network with an 

input layer with two inputs x1 and x2, one hidden layer with three hidden nodes and 

one output Y in the output layer. 

 

Each node has inputs and outputs. Nodes receive a weighted sum of inputs from 

connected units. Nodes perform a unique function that converts the inputs into an 

appropriate output. This function could be to generate a 1 or a 0 depending on 
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whether the weighted sum reached a threshold. Alternatively, a node can be 

programmed to perform a sigmoid, hyperbolic, or other linear or non-linear function. 

 

Figure 2.1 Basic Structure of an Artificial Neural Network 
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Warner and Misra (1996), express the output yi of neuron i, at a threshold of μi, as,   

 yi = 1  if  ( Σ aij xj  - μi )    ≥  0 ,  

and yi = 0  if  ( Σ aij xj  - μi )    <  0 , 

where aij are the weights from neuron j to neuron i and xj are the intputs for neuron j. 

Klimasauskas (1991) presents a hyperbolic function for the neurons of figure 2.1 as 

follows, where pi are the outputs, xj the inputs and aij the weights: 

p1  =   tanh  (a10  + a11 x1 + a12 x2 ) , 

p2  =   tanh  (a20  + a21 x1 + a22 x2 ) , 

p3  =   tanh  (a30  + a31 x1 + a32 x2 ) , 
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and a sigmoid function as follows, for output Y where pi are the inputs and bi are the 

weights: 

    Y  =   1  /  ( 1 +  e-(  b0  +  b1 p1  +  b2 p2  +  b3 p3 )) .  

 

Most authors use only one hidden layer (Hornik, Stinchcombe and White 1989) and a 

large number of hidden nodes. Some use two hidden layers (Sirinivasan, Liew and 

Chang 1994) to achieve a higher efficiency in the training process but this requires 

additional processing power.  

 

For time series forecasting the inputs are the past observations of the data series and 

the output is the future value. The connectionist method presented by Gallant (1988) 

and Kasabov (1996a) is the most appropriate for time series forecasting where past 

observations are used to forecast future values. The network in Figure 2.2 illustrates 

how time series data y(t) are used in a univariate connectionist method.  

 

Figure 2.2 MLP Neural Network for Univariate Forecasting 
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Figure 2.3 illustrates the use of ANNs for multivariate time series forecasting, where 

y(t) is the primary series and x(t) is a secondary series such as an economic indicator. 

 

 

Figure 2.3 MLP Neural Network for Multivariate Forecasting 
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The concept of ANNs dates back to 1962 (Warner and Misra 1996). However, due to 

the non-availability of a training algorithm at that time for multi-layer networks, 

ANNs did not develop as a forecasting tool (Rumelhart 1986). By 1986 the back-

propagation method had been developed giving ANNs a boost as a useful forecasting 

technique. By 1988 ANNs with back-propagation out performed regression and Box-

Jenkins methods (Werbos, 1988). A further advantage of ANNs is that they do not 

limit the model to linearity. Lapedes and Farber (1987) concluded that ANNs can be 

used in forecasting non-linear time series. The traditional Box-Jenkins method 

assumes that the time series modeled by it are generated from linear processes (Box-

Jenkins 1976, Pankratz 1983). The importance of non-linearity is recognised in the 

ARCH model (Engle 1982), but here too, a specific non-linear mathematical function 
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has to be assumed at the outset without knowing whether it fits the data. ANNs on the 

other hand select a non-linear form by allowing the data to pass through its neurons, 

back-propagating until through a learning process a non-linear function is selected 

that fits the data. The superiority of ANNs is therefore noteworthy as they “have more 

general and flexible functional forms than traditional statistical methods” (Zhang, 

Patuwo and Hu, 1998). Zhang, Patuwo and Hu (1998) have made a comprehensive 

review of the ANN literature. 

 

Several comparisons have been made of statistical and ANN methods (Hruschka 

1993). ANNs can be used for modeling and forecasting non-linear time series with 

very high accuracy (Lapedes and Farber 1987). There are many financial applications 

where ANNs have been used in forecasting. Forecasting bankruptcy and business 

failure (Odom and Sharda 1990, Coleman, Graettinger and Lawrence 1991, 

Salchenkerger, Cinar and Lash 1992, Tam and Kiang 1992, Fletcher and Goss 1993, 

Wilson and Sharda 1994), foreign exchange rate (Weigend, Huberman and Rumelhart 

1992, Refenes 1993, Borisov and Pavlov 1995, Kuan and Liu 1995, Wu 1995, Hann 

and Steurer 1996), stock prices (White 1988, Kimoto, Asakawa, Yoda and Takeoka 

1990, Schoneburg 1990, Bergerson and Wunsch 1991, Yoon and Swales 1991, 

Grudnitski and Osburn 1993) and others (Dutta and Shekhar 1988, Sen, Oliver and 

Sen 1992, Wong, Wang, Goh and Quek 1992, Kryzanowski, Galler and Wright 1993, 

Chen 1994, Refenes, Zapranis and Francis 1994, Kaastra and Boyd 1995, Wong and 

Long 1995, Chiang, Urban and Baldridge 1996) are some of the financial applications 

of ANNs. Scott (2000) demonstrates that ANNs can enhance the predictive 

capabilities of  the moving average cross-over technique employed by technical 

analysts when deciding on long or short trading strategy. 
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Other forecasting applications of ANNs include, commodity prices (Kohzadi, Boyd, 

Kermanshahi and Kaastra 1996), environmental temperature (Balestrino, Bini Verona 

and Santanche 1994), international airline passenger traffic (Nam and Schaefer 1995), 

macroeconomic indices (Maasoumi, Khotanzad and Abaye 1994), personnel 

inventory (Huntley 1991), rainfall (Chang, Rapiraju, Whiteside and Hwang 1991), 

student grade point averages (Gorr, Nagin and Szczypula 1994) and total industrial 

production (Aiken, Krosp, Vanjani and Govindarajulu 1995). 

 

ANNs have been used in the field of tourism to classify tourist markets (Mazanec 

1992), to forecast visitor behaviour (Pattie and Snyder 1996) and to forecast Japanese 

demand for travel to Hong Kong (Law and Au 1999). Fernando, Turner and Reznik 

(1999a) used ANNs successfully to forecast tourist flows to Japan from the USA.  

Uysal and El Roubi (1999) compared ANNs with regression analysis in tourism 

demand modelling. Law (2000) concluded that back-propagation ANNs out 

performed regression models and time series models in predicting Taiwanese demand 

for travel to Hong Kong. Burger et al. (2001) compared neural networks with several 

time series techniques to predict tourism demand from the US to Durban and 

concluded that the neural network method performed the best. They also found that 

the 12 months ahead forecast performed better than the 3 and 6 months ahead 

forecasts due to seasonal bias. Cho (2003) found neural network models better than 

ARIMA and exponential smoothing in forecasting visitor arrivals to Hong Kong from 

USA, Japan, Taiwan, Korea, UK and Singapore. 

 

 



Chapter 2  Literature Review 56

 

2.4.1 Periodic and Non-Periodic Models 

 

In a periodic model the data of a particular season are isolated from data of other 

seasons to build a model for that season and forecast for that season only. While 

periodic models would have less data available for modeling and testing (one fourth 

the data for quarterly series and one 12th the data for monthly series), there is a case 

for periodic forecasting as seasonal patterns can be isolated by a periodic model. 

Fernando, Reznik and Turner (1998), successfully used a periodic neuro-fuzzy model 

to forecast tourist arrivals to Australia. The Turner, Kulendran and Fernando (1997a) 

results show that the AR model with periodic data produced better forecasts than the 

ARIMA model with non-periodic seasonal data.  

 

However, when models other than the AR and ARIMA were considered Turner, 

Kulendran and Fernando (1997a) concluded that periodic models do not increase the 

accuracy of forecasts. The Turner, Kulendran and Fernando (1997a) study was 

comparing the Holt-Winters, ARIMA and the basic structural models. It may well be 

that seasonal flows are not independent of the season. Consequently, this research 

does not use periodic models in general, however, periodic data have been used with 

the neural network model to test whether periodic data will make a difference to the 

accuracy of neural network forecasts. 
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2.5 Fuzzy Logic 

 

The most recent non-traditional method that has been used in forecasting is fuzzy 

logic, which develops mathematical rules to deal with vagueness inherent in historical 

data.  One way in which fuzzy logic can be applied to time series forecasting is by 

applying a set of fuzzy rules to describe the relationship between data clusters within 

and between time series. For example, one such rule could be, “If the Gross Domestic 

Product of Japan is high, the number of tourist departures from Japan to other 

countries is high”. Fuzzy rules can be derived by the study of historical time series 

data using data mining methods and used to forecast future values.  

 

Lotfi Zadeh first developed the mathematical framework that supports fuzzy logic and 

fuzzy set theory in 1965. It may be regarded as a generalisation of conventional set 

theory (Bezdek 1993). Fuzzy sets describe the vagueness, partial truths and grayness 

inherent in reality. Zadeh (1973) introduced the concept of linguistic variables for the 

classification of values using words rather than crisp numbers. Fuzzy sets offer a more 

realistic classification of data by allowing partial membership of a set. In fuzzy 

systems, crisp measurements are converted to fuzzy membership functions, and then 

fuzzy logic operations are performed on these fuzzy values which are then defuzzified 

into crisp values again for use in real situations.  

 

An important question that needs to be addressed is “why use fuzzy logic when crisp 

measurements can be used”? The answer to this question is that often, crisp precise 

measurements are not significant in describing reality and a precise answer does not 

necessarily provide the optimal solution (Zimmermann 1991). Albert Einstein's view 
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of crisp mathematics was, "so far as the laws of mathematics refer to reality, they are 

not certain. And so far as they are certain, they do not refer to reality" (Reznik 1997). 

When the complexity of a system being analysed increases, precise and yet significant 

statements about its behaviour are more difficult to make. Real-world problems are so 

complex, the solutions are not precise, they are fuzzy (Zadeh 1973). Furthermore, in 

time series forecasting the factors that influence the series are so many, that it could 

hardly be called precise data. It is more realistic to convert the series into fuzzy 

clusters and use fuzzy set theory in the prediction process than to use crisp data.   

 

In a crisp classification, for a given set A, the function μA(x) assumes the Boolean 

value 1, if x belongs to set A or the value 0 if  x does not belong to A, for every 

element x in the universal set. The value 1 indicates that x belongs to set A. In a fuzzy 

set, μA(x) can assume the value 0.8, a value on the scale 0 to 1, to indicate that x has a 

high degree of belonging to set A, μB(x) can assume the value 0.3 to indicate that x 

has a low degree of belonging to set B. This means that x can belong to both sets A 

and B but to a higher degree in A. μA(x) and μB(x) are the membership values of x and 

the distributions of μA(x) and μB(x) for all values of x are the membership functions of 

x. The value of the membership function for a given value of element x indicates 

whether the element belongs to the fuzzy set and to what degree. The development of 

a membership function is the fuzzification of crisp measurements. The membership 

function for tourist arrivals may be developed for example as shown in Figure 2.4. 

 

Figure 2.4 shows that some might consider 80,000 arrivals to be high demand while 

others might consider it to be medium demand. Fuzzy logic recognises the 

inappropriateness of using the same numerical figure to describe different levels of 
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demand for tourism perceived by different people. Therefore, a degree of vagueness 

or membership is assigned to linguistic clusters such as medium and high demand. 

 

Figure 2.4 Membership Functions of a Tourist Arrival System 
 
 Degree of 
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For example, 100,000 arrivals in the high demand category may be assigned the 

degree of membership 1 on the membership scale that spans from 0 to 1, where as 

80,000 arrivals in the high demand category may be assigned the membership degree 

0.4. On the other hand, in the medium demand category, 80,000 arrivals may be given 

a membership degree of 0.4 and 60,000 arrivals may be given a degree of membership 

1. This means that 100,000 arrivals belong to the high demand category only, and 

60,000 arrivals belong to the medium demand category only, but that 80,000 arrivals 

belong to both high and medium demand categories with a not very strong 

membership (0.4) in either. The measurement together with the degree of membership 

specifies the fuzziness. The distribution of the membership degrees is called the 

membership function. Trapezoidal membership functions of the above example are 

illustrated in Figure 2.4. 

 

Once membership functions are defined for input and output data of a system, rules 

can be developed to establish their relationship. Rules of the form "If A then B" are 
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the Mamdani type rules, where A could be for example "Price is high and population 

is low" and B could be "Arrivals are low" (Reznik 1997). Sugeno type rules (Takagi 

and Sugeno 1985) are of the form "If A then f(p,t)", where f is a weighted function of 

p and t, the inputs, for example price and trade. 

 

Outputs derived using fuzzy rules and fuzzy logic operations can then be defuzzified 

to a crisp form to maintain commonly understood representations of the output. This 

process is similar to logarithmic transformation in regression analysis and the 

subsequent re-conversion to the original units of measure. Many different methods 

can be used for defuzzification. Saade (1996) uses the center of gravity method where 

the center of gravity of the area of the membership function, is used as the defuzzified 

value of the element. 

 

Many researchers have investigated time series forecasting using fuzzy logic. Wang 

and Mendel (1992), and Khedkar and Keshav (1992) suggest methods of generating 

fuzzy rules, which are then used for forecasting. Jang and Sun (1993), present a 

method of predicting chaotic time series with fuzzy IF-THEN rules. Ye and Gu 

(1994) have developed a fuzzy system for trading at the Shanghai stock market. 

Benachenhou (1994) has developed a fuzzy rule extracting method for smart trading. 

Hybrid ANN and fuzzy systems have also been developed (McCluskey 1993, Wong 

and Tan 1994, Wan 1994, Bakirtzis, Theocharis, Kiartzis, and Satsios 1995, Dash, 

Ramakrishna, Liew, and Rahman 1995, Kim, Park, Hwang, and Kim 1995, Bataineh, 

Al-Anbuky, and Al-Aqtash 1996). Fiordaliso (1998) used first order Takagi_Sugeno 

fuzzy systems to build a nonlinear forecasting method that combined a set of 

individual forecasts. 
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2.6 Neuro-Fuzzy Models 

 

Neuro-fuzzy models are hybrids of artificial neural networks and fuzzy logic. Fuzzy 

systems can be expressed in the form of an artificial neural network, and designed 

using the learning capability of the neural network which becomes a component of the 

whole neuro-fuzzy system (Reznik 1997). 

 

The neuro-fuzzy approach combines the merits of connectionist neural networks and 

fuzzy approaches as a soft computing component, and rule generation from artificial 

neural networks has become popular due to its capability of providing some insight to 

the user about the symbolic knowledge embedded within the network (Mitra and 

Hayashi 2000). Neural networks and fuzzy systems are dynamic parallel processing 

systems that estimate input-output functions by a learning experience with the data, 

without using mathematical models.  Fuzzy systems adaptively infer and modify its 

fuzzy associations from sample numerical data. They are advantageous in the logical 

field and in handling higher order processing. Neural networks can generate and 

refine fuzzy rules from training data and are suitable for data driven processing due to 

their higher flexibility. The combination of neural and fuzzy computing is an 

integration of the merits of neural and fuzzy approaches such as the parallel 

processing, robustness and learning capability of artificial neural networks and the 

ability of fuzzy systems to handle imprecise data (Pal and Mitra 1999). Neuro-fuzzy 

systems are designed to achieve the process of fuzzy reasoning, where the connection 

weights of the network correspond to the parameters of fuzzy reasoning (Takagi et al. 

1992). Using the back-propagation learning algorithms neuro-fuzzy systems can 

identify fuzzy rules and learn membership functions. Neuro-fuzzy systems can be 
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black-box type multi-layer networks used to determine input-output relations 

represented by a fuzzy system. According to Nauck et al. (1997) neuro-fuzzy systems 

should be able to learn linguistic rules and/or membership functions. Neuro-fuzzy 

techniques involve designing neural networks to implement fuzzy logic and fuzzy 

decision making, and to realise membership functions representing fuzzy sets, with an 

architecture that has nodes for antecedent clauses, conjunction operators and 

consequent clauses. Mitra and Hayashi (2000) identify five categories of neuro-fuzzy 

concepts: 

1) Incorporating fuzziness to the neural network with fuzzy input data labels and 

fuzzy outputs,  

2) neural networks that implement fuzzy logic and realize membership functions, 

3) designing neurons to perform fuzzy operations such as unions and intersections,  

4) measuring error with the degree of fuzziness, and 

5) making individual input and output neurons fuzzy. 

 

Castro, Mantas, and Benitez. (2002) developed a procedure to represent the action of 

an ANN in terms of fuzzy rules. They in fact extract from an ANN the fuzzy rules 

that express the behavior of the ANN.  

 

There are other neuro-fuzzy hybrids where the inputs and/or outputs are fuzzy subsets 

with linguistic values. Here the technique would be to fuzzify the input data, assign 

fuzzy labels to training samples, fuzzify the learning procedure and obtain fuzzy 

outputs from the neural network (Mitra and Pal, 1995). In systems where the neural 

network has fuzzy neurons the input and output of the neurons are fuzzy sets and the 
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activity would relate to a fuzzy process (Lee and Lee, 1975). Buckley and Hayashi 

(1994) classify neuro-fuzzy networks as: 

1) networks with real number inputs, fuzzy outputs and fuzzy weights, 

2) fuzzy inputs, fuzzy outputs and real number weights, and 

3) fuzzy inputs, fuzzy outputs and fuzzy weights.  

 

The design of neuro-fuzzy models is application specific and the literature has a wide 

range of successful neuro-fuzzy modelling examples. An MLP based approach to 

fuzzy reasoning is used by Keller and Tahani (1992), where possibility distributions 

of antecedent clauses are received at the input, a hidden layer is used to generate 

internal representations of the relationship and the resulting possibility distributions 

are produced at the output. Trapezoidal possibility distributions sampled at discrete 

points are used to represent fuzzy linguistic terms. 

 

Ishibuchi, Tanaka, and Okada (1994) represent fuzzy input and output in an MLP with 

interval vectors. A back-propagation algorithm is used on a cost function defined by 

actual and target data. Takagi and Hayashi (1991) developed a neuro-fuzzy model that 

learns the membership function of the "if" statement and determines the amount of 

control in the "then" statement of the fuzzy rules. A systematic approach for 

constructing a multivariable fuzzy model from numerical data using a self organising 

supervised counter-propagation network, has been developed by Nie (1995). 

Knowledge is extracted from the data in the form of a set of rules and this rule base is 

then utilised by a fast learning fuzzy reasoning model with good accuracy. Cai and 

Kwan (1998) have also developed a fuzzy network in which the fuzzy rules and 

membership functions are automatically determined during training.  



Chapter 2  Literature Review 64

 

Jang (1993) has used the Adaptive Network-based Fuzzy Inference System (ANFIS), 

with a five-layer network architecture to process Sugeno type fuzzy rules of the form: 

 

If x1 is A1 and x2 is A2 then y1 = f1(x1,x2) , 

If x1 is BB1 and x2 is B2B  then y2 = f2(x1,x2) .  

 

The first is the membership layer. The output of the nodes of this first layer gives the 

membership degree of the input. The second layer is a multiplication layer where the 

nodes multiply the input or membership degrees from the first layer and produce the 

firing strength of the rule, or the degree in which the corresponding rule is fired. The 

third layer is the normalising layer, which calculates the ratio of the rule firing degree 

to the sum of all rule degrees. The fourth layer calculates the outputs W f1(x1,x2) and 

V f2(x1,x2) where W and V are the outputs from the third layer and the functions f1 and 

f2 are the functions of the Sugeno type fuzzy rules. The fifth layer sums up the outputs 

from the nodes of the fourth layer and gives the final output. Back-propagation is used 

to learn the antecedent membership functions, and the least mean squares algorithm 

determines the coefficients of the linear combinations of the resulting output from the 

rule. The rule base must be known in advance as ANFIS adjusts only the membership 

functions of the antecedent and consequent parameters. 

 

Chak, Feng, and Ma (1998) have developed a neuro-fuzzy network that can locate its 

rules and optimise their membership functions by competitive learning and the use of 

the Kalman filter to have fewer rules. Berenji and Khedkar (1992) use a supervised 

learning procedure that has a soft minimum function that can be differentiated to 

design a neuro-fuzzy controller that is suitable for applications where interpretation is 
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not as important as performance (Mitra and Hayashi 2000). Rutkowski and Cpalka 

(2003) have designed a flexible neuro-fuzzy system where the parameters or the 

membership function and the type of system can be identified. Azeem, Hanmandlu, 

and Ahmad (2000) extends the ANFIS model to a generalized ANFIS encompassing 

the Takagi-Sugeno model and the fuzzy rule base. Paul and Kumar (2002) have 

developed a fuzzy neural inference system that has the flexibility to handle both 

numeric and linguistic inputs. 

 

Yupu, Xiaoming and Wengyuan (1998) use a genetic algorithm to search for optimal 

fuzzy rules and membership functions. The design combines prior knowledge about 

the system with the learning ability to obtain optimal results. Farag, Quintana and 

Lambert-Torres (1998) first find the initial parameters of the membership function 

Kohenen's classification algorithm and then extract linguistic fuzzy rules. 

 

Knowledge-based networks that use the connectionist model first introduced by 

Gallant (1988), are data dependent. The number of nodes to be used depends on the 

amount of training data. Embedding initial knowledge in the network topology is one 

method of obtaining optimal results. Knowledge based networks require fewer sets of 

training data. In neuro-fuzzy models the fuzzy sets enhance the artificial neural 

networks, making knowledge-based networks more efficient. Knowledge extracted 

from experts in the form of membership functions and fuzzy rules can be used to pre 

weight the neural structure. Kasabov (1996b) used a five layered feed forward 

architecture with the second layer calculating fuzzy input membership functions, the 

third layer representing fuzzy rules, the fourth layer calculating output membership 

functions and the fifth layer calculating output defuzzification. 
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2.7 Neuro-Fuzzy Modelling of Time Series 

 

The connectionist network presented by Gallant (1988), and Kasabov (1996b) is the 

most suitable artificial neural network model for forecasting time series. The 

connectionist model can be combined with fuzzy logic to design a neuro-fuzzy model. 

Time series data are always crisp values. These crisp values are first fuzzified by 

creating membership functions and then fed into the connectionist neural network. At 

the last layer of the network the fuzzy output is defuzzified. The model is similar to 

that used by Nie (1995) and Cai and Kwan (1998). 

 

Abraham, Chowdhury and Petrovic-Lazarevic (2001) used a Takagi-Sugeno type 

ANFIS model to predict the Australian foreign exchange market. Sonja, Coghill and 

Abraham (2001) used ANFIS to monitor cigarette smoking by minors. Abraham 

(2002) used the Evolving Fuzzy Neural Network (EfuNN) to implement a Mamdani 

model and the Adaptive Neuro Fuzzy Inference System (ANFIS) to implement a 

Takagi-Sugeno model, to forecast rainfall over a 10 year test period. Based on 

historical data of four previous years the fifth year's monthly rainfall was forecast. 

Castillo and Melin (2002) use neural network, fuzzy logic and fractal theory to predict 

time series of exchange rates, and concluded that the method was superior to classical 

regression models. However, no work has yet been published on tourism demand 

forecasting using fuzzy logic or a hybrid system, although Fernando, Reznik and 

Turner (1998 and 1999b), successfully used multivariate national indicators in 

forecasting tourist arrivals to Australia using a neuro-fuzzy system.  



 

Chapter 3 
Neural Network Multi-layer Perceptron Models 

 

 

3.1 Introduction 

 

Artificial neural networks have been used extensively as a forecasting tool and more 

recently for forecasting tourism flows. Fernando, Turner and Reznik (1999a), Law 

and Au (1999), Law (2000), Cho (2003) and Kon and Turner (2005) used artificial 

neural network models to forecast tourism demand. The multi-layer perceptron is a 

category of neural networks that uses feed forward back propagation to establish the 

relationship between inputs and outputs by training the network using a supervised 

learning method to model linear and non linear data. Neural networks can model 

univariate as well as multivariate data but this study aims to explore its univariate 

forecasting performance. Neural networks do not have any pre-conditions or 

assumptions for the pattern or variations in historical data but through an iterative 

process develop a model that fits the data. However, too close a fit may not be 

desirable, as it would not allow for random variations in the future. 

 

This chapter consists of a comparison of three, univariate artificial neural network 

(ANN) multi-layer perceptron (MLP) forecasting models. The three models compared 

are a non-periodic model, a partial periodic model and a periodic model. The 

forecasting performance of the neural network models is compared with that of the 

naïve model, which is considered in this study as the minimum benchmark for 

forecasting performance. The non-periodic model and the partial periodic model are 
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run with differenced data and with undifferenced data, to test, which provides better 

forecasts using MLP networks.  

 

The variable being forecast is tourist arrivals to Japan. Monthly tourist arrivals from 

Australia, China, France, Germany, Korea, Singapore, Taiwan, UK, the USA and total 

arrivals from all countries, from January 1978 to December 2001, to forecast arrivals 

for the 24 month period from January 2002 to December 2003. Forecasts are made for 

tourist arrivals from each of the above countries, one month ahead, 12 months ahead, 

and 24 months ahead, to test whether the forecasting accuracy is consistent for 

arrivals to Japan from different countries and for different forecasting horizons. The 

criterion for comparing models is the forecasting accuracy as measured by the MAPE 

of the 24 month out of sample period from January 2002 to December 2003, which is 

divided into one and two year lead periods. The aim of this study is to determine 

which empirical neural network model would provide the best forecast for tourist 

arrivals data.  

 

3.2 The Multi-Layer Perceptron Model 

 

In this study, the artificial neural network (ANN) multi-layer perceptron (MLP) model 

with two hidden layers containing sigmoid and tanh nodes is used in a connectionist 

neural network. Figure 3.1 shows the univariate connectionist model used to forecast 

m periods ahead using the time series y(t) with k+1 periods of data. Tourist arrivals to 

Japan from January 1978 to December 2001 are taken as the input series. The number 

of input nodes represents the number of input variables in the model. In a univariate 

model lags of the series or differenced series can be used as variables. 
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Figure 3.1 Connectionist MLP Model for Univariate Forecasting 
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Input nodes have a linear transformation to the nodes of the next layer, as follows: 

,xwz jijj Σ=  

 

where x is the input signal for input node j, z is the output to the next node i and w is 

the connecting weight between node j and node i. This transformation is applied to 

every node of the network including the output layer. 

 

Given limitations in data size and processing capacity a MLP network will not 

normally have more than two layers. Most researchers use only one hidden layer 

(refer to Kon and Turner, 2005). However, as monthly data of a 20-year period are 

used in this study, it is important to capture the linear and non-linear patterns of 

within sample data by providing the network with transfer functions that could 

transform input data to match output data patterns. Two hidden layers are used in this 

study with tanh functions at each node of the first layer and sigmoid functions at each 

node of the second layer. The tanh function is of the form: 
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.)ee/()ee()ztanh()z(f zzzz −− +−==  

 

The sigmoid function is of the form: 

 

.)e1/(1)z(f z−+=  

 

The number of nodes in a hidden layer depend on the volume of input data, as the 

total number of node-to-node connections must be at most less than the number of 

within sample data points. As monthly tourist arrivals are known to be seasonal 12 

nodes are used in each hidden layer as far as data numbers permit. In 12 and 24 

months ahead forecast horizons, when the within sample has fewer data points, the 

number of nodes in the hidden layers is reduced but kept, as far as possible, to 

multiples of 4 nodes to facilitate capture of seasonality.   

 

The MLP models were run using DataEngine software. The data were prepared on 

MS Excel and imported by DataEngine where it was scaled within the range 0.4 to 0.6 

in the 0 to 1 domain and separated into training, test and recall files. The network 

architecture was set, specifying the number of nodes, the transfer functions, the input 

and output files and the initial weights and learning rates. 

 

The MLP model used is a feed forward model, where the outputs from the nodes in 

the input layer are fed forward to the nodes of the first hidden layer, the outputs from 

the nodes of the first hidden layer are input to the nodes of the second hidden layer 
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and the outputs from the nodes of the second hidden layer are input to the output 

node. 

 

The back-propagation feature of the model is used where the difference between the 

output and the expected output is fed back to the nodes of the network, and the 

weights adjusted in an iterative process, until the difference is reduced to a preset 

level. Back-propagation with momentum is used to quicken the training phase while 

still maintaining a small learning rate, which would otherwise require a high 

processing time. However, a flat root mean square error curve would be an indication 

that the learning error has been set too low. 

 

The network configuration used in the MLP models is as follows: 

Input layer transfer function: linear 

1st Hidden layer transfer function: tanh 

2nd Hidden layer transfer function: sigmoid 

Output layer transfer function: linear 

Learning Method: Back propagation, single step 

Learning parameters for all layers: Learning rate 0.1, Momentum 0.1 

Weight initialization –0.1 to 0.1 

Stop condition 1000 epochs. 

 

In neural network modelling trend and seasonality in a time series can be dealt with 

by taking the 1st and 12th difference of the data to remove trend and seasonal effects, 

respectively, prior to analysis. Alternatively, the neural network could be allowed to 

model and capture the trend and seasonality. Nelson, Hill, Remus et al. (1999) 

addressed this issue by deseasonalising the data and concluded from their study that 

when there was seasonality in a time series, forecasts from neural networks estimated 

on deseasonalised data were significantly more accurate than the forecasts produced 
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by neural networks that used data that were not deseasonalised. One possible 

explanation they present for their results is that neural networks that use 

deseasonalised time series do not have to focus on learning the seasonal components 

and can therefore pick-up other residual patterns. 

 

Three MLP models are compared in this study. The first is the non-periodic model 

used by Fernando, Turner and Reznik (1999a) based on Freisleben (1992). The inputs 

to this model are the 12 previous monthly arrivals. The output is the arrivals figure of 

the following month for a one-month ahead forecast horizon, or of the corresponding 

month of the following years for 12 and 24 months ahead forecasts. The non-periodic 

model for a k period horizon is of the form: 

 

.)x,x,x,x,x,x,x,x,x,x,x,x(fx 11t10t9t8t7t6t5t4t3t2t1ttkt −−−−−−−−−−−+ =  

 

 As long term trend and seasonality can be presumed inherent in most tourist arrivals 

series, the 1st and 12th differenced data are used in an alternative non-periodic model. 

Removing trend by taking the 1st difference and seasonal variations by taking the 12th 

difference would leave the network only the task of capturing some of the residual 

variation. The non-periodic model using first differenced (∇1) and twelfth differenced 

(∇12) data for a k period horizon is of the form: 

 

.)x,....,x,x,x(fx 11t1212t1211t121t121kt121 −−−+ ∇∇∇∇∇∇∇∇=∇∇  

 

The second MLP model used in this study is a partial periodic model that uses tourist 

arrivals data lagged by 12, 24 and 36 months as inputs. In this model each month's 
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arrivals are matched against the three previous years' (lagged) arrivals of the same 

calendar month. Since only the three previous years' arrivals in a calendar month are 

taken at a time, as inputs, the model is partial periodic. No attempt was made to test 

for autocorrelation, as tourist arrivals are mostly seasonal. Subsequent ARIMA 

estimation has proved this to be the case.  In an MLP partial periodic model arrivals 

from all calendar months may influence the output, unlike in a full periodic model 

where only data of a specific calendar month would be modelled at a time. However, 

the use of lagged series relieves the model of having to capture much of the seasonal 

component. The partial periodic model is as follows: 

 

.)x,x,x(fx 36t24t12tt −−−=  

 

An alternative partial periodic model would uses 1st differenced data. The tourist 

arrivals series are observed from graphical patterns to be non-stationary. Subsequent 

unit root testing (refer Chapter 5) confirmed the non-stationary nature of the data. The 

series are made stationary by taking the first difference so that the MLP model would 

be required to capture only some of the residual variations in the series. Further, 

forecasts of a stationary series will remain within the data domain of the within 

sample series, without crossing the domain boundaries defined at the outset, making 

the neural network more efficient. This model which uses the 1st difference of the 

tourist arrivals time series  lagged by 12, 24 and 36 months as the inputs is of 

the form: 

t1 x∇

. )x,x,x(fx 36t124t112t1t1 −−− ∇∇∇=∇
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The third MLP model used is the periodic model. The inputs to this model are the 

tourist arrivals series of a specific month lagged by 12, 24 and 36 months. The output 

is the arrivals figure of that month in the forecast horizon, for example, for 

January of year t.  As differenced data used in the previous MLP models produced 

poor forecasting results no attempt was made to difference the data for this model. 

The periodic model for a 12 period horizon is of the form: 

txjan

 

,)xjan,xjan,xjan(fxjan 36t24t12tt −−−=  

,)xfeb,xfeb,xfeb(fxfeb 36t24t12tt −−−=  

: 

: 

.)xdec,xdec,xdec(fxdec 36t24t12tt −−−=  
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3.3 The Naïve Model 

 

The basic concept of the naïve model is the use of the current period's actual as the 

next period's forecast. This simple forecast does not involve any mathematical 

modelling or elaborate computations. Therefore, it forms the benchmark when testing 

the adequacy of forecasting models. Any forecasting model that does not perform at 

least as well as the naïve model should not be considered adequate. 

 

For seasonal data, the actual value (At+1-s) of the corresponding season of the previous 

year (t+1-s) is the forecast (Ft+1) for the period (t+1) where s is the number of seasons 

(Hanke and Reitch 1992 and Turner and Witt 2001):  

Ft+1 = At+1-s  . 

 

Since monthly data are used in this study, s = 12, naïve forecasts for the one month 

ahead forecasting horizon are made as follows: 

     Ft+1 = At-11  . 

Naïve forecasts for the 12 months ahead forecasting horizon are made as follows 

Ft+12 = At.  . 

For horizons greater than 12 months, the actual value of a particular month of the 

penultimate year of the horizon is used as the forecast for the corresponding month. 

The naïve forecast for the 24 months ahead horizon is as follows: 

 

 Ft+24  = At  . 

 

 



Chapter 4 ARIMA and BSM Forecasting 76

 

3.4 MLP Non-Periodic Forecasts   

 

3.4.1 Non-periodic forecast of arrivals from all countries 

Table 3.4.1 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from all countries. For the one year lead period the forecasting performance is 

good (MAPE less than 10%), for the one month ahead, 12 months ahead and 24 

months ahead forecasting horizons. For the two year lead period the forecasting 

performance is good (MAPE less than 10%) for the one month ahead forecasting 

horizon, but is fair (MAPE between 10% and 20%) for the 12 months ahead and 24 

months ahead forecasting horizons. The RMSE figures are consistent with the MAPE 

figures. Overall, the forecasting error increases with an increase in the lead period and 

the model forecasts best over the 24 months-ahead forecasting horizon. 

 

Table 3.4.1 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from All Countries  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 30599 5.50 38932 7.86 24071 4.43 
2 year  53203 9.79 59098 11.23 55423 10.19 

 

 

3.4.2 Non-periodic forecast of arrivals from Australia 

Table 3.4.2 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Australia. For the one year lead period the forecasting performance is 

good (MAPE less than 10%), for the one month ahead, 12 months ahead and 24 

months ahead forecasting horizons. For the two year lead period, the forecasting 

performance is also good (MAPE less than 10%) for all three forecasting horizons. 

The RMSE figures are fairly consistent with the MAPE figures. Overall, the 
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forecasting error increases with an increase in the lead period, and the model forecasts 

are most accurate over the one-month ahead forecasting horizon. 

 

Table 3.4.2 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Australia  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 895 5.06 1026 5.71 905 5.81 
2 year  1184 6.62 1170 6.80 1234 6.98 

 

 

3.4.3 Non-periodic forecast of arrivals from Canada 

Table 3.4.3 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Canada. For the one year lead period the forecasting performance is good 

(MAPE less than 10%), for the one month ahead, 12 months ahead and 24 months 

ahead forecasting horizons. For the two year lead period the forecasting performance 

is good (MAPE less than 10%) for the 12 months ahead forecasting horizon, but is 

fair (MAPE between 10% and 20%) for the one month ahead and 24 months ahead 

forecasting horizons. The RMSE figures are fairly consistent with the MAPE figures. 

Overall, the forecasting error increases with an increase in the lead period, and the 

model forecasts are most accurate over the 12 months ahead forecasting horizon. 

  

Table 3.4.3 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Canada  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 908 6.81 897 6.75 907 6.21 
2 year  1308 10.02 1323 9.94 1555 10.99 
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3.4.4 Non-periodic forecast of arrivals from China 

Table 3.4.4 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from China. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%), for the one month ahead, 12 months ahead and 24 

months ahead forecasting horizons. For the two year lead period the forecasting 

performance is poor (MAPE 20% or more) for all three horizons. The RMSE figures 

are consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the 12 

months ahead forecasting horizon. 

 

Table 3.4.4 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from China  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 5905 14.58 4750 11.31 7510 17.50 
2 year  9214 27.95 8749 27.45 10039 32.29 

 

 

3.4.5 Non-periodic forecast of arrivals from France 

Table 3.4.5 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from France. For the one year lead period the forecasting performance is good 

(MAPE less than 10%), for the one month ahead, 12 months ahead and 24 months 

ahead forecasting horizons. For the two year lead period, the forecasting performance 

is also good (MAPE less than 10%) for all three forecasting horizons. The RMSE 

figures are consistent with the MAPE figures. Overall, the forecasting error increases 

with an increase in the lead period, and the model forecasts are most accurate over the 

24 months ahead forecasting horizon. 
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Table 3.4.5 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from France  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 538 6.05 547 6.47 407 4.36 
2 year  816 8.67 850 9.53 811 9.12 

 

 

3.4.6 Non-periodic forecast of arrivals from Germany 

Table 3.4.6 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Germany. For the one year lead period the forecasting performance is 

good (MAPE less than 10%), for the one month ahead, 12 months ahead and 24 

months ahead forecasting horizons. For the two year lead period, the forecasting 

performance is fair (MAPE between 10% and 20%) for all three forecasting horizons. 

The RMSE figures are fairly consistent with the MAPE figures. Overall, the 

forecasting error increases with an increase in the lead period, and the model forecasts 

are most accurate over the one-month ahead forecasting horizon. 

 

Table 3.4.6 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Germany  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1021 7.08 1003 7.17 1037 9.47 
2 year  1216 10.16 1174 10.48 1328 12.83 

 

 

3.4.7 Non-periodic forecast of arrivals from Korea 

Table 3.4.7 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Korea. For the one year lead period the forecasting performance is good 

(MAPE less than 10%), for the one month ahead forecasting horizon and fair (MAPE 

between 10% and 20%), for the 12 months ahead and 24 months ahead forecasting 
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horizons. For the two year lead period, the forecasting performance is fair (MAPE 

between 10% and 20%) for the one month ahead and 12 months ahead forecasting 

horizons and poor (MAPE 20% or less) for the 24 months ahead horizon. The RMSE 

figures are fairly consistent with the MAPE figures. Overall, the forecasting error 

increases with an increase in the lead period, and the model forecasts are most 

accurate over the one-month ahead forecasting horizon. 

 

Table 3.4.7 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Korea  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 16326 9.64 18874 12.73 26949 19.32 
2 year  22754 12.32 24806 15.02 37127 23.02 

 

 

3.4.8 Non-periodic forecast of arrivals from Singapore 

Table 3.4.8 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Singapore. For the one year lead period the forecasting performance is 

poor (MAPE 20% or less), for the one month ahead and 12 months ahead forecasting 

horizons and fair (MAPE between 10% and 20%), for the and 24 months ahead 

forecasting horizon. For the two year lead period, the forecasting performance is poor 

(MAPE 20% or less) for all three horizons. The RMSE figures are fairly consistent 

with the MAPE figures. Overall, the forecasting error increases with an increase in the 

lead period and the model forecasts are poor. 

 

Table 3.4.8 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Singapore  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1934 22.22 1797 21.56 1323 13.08 
2 year  2128 30.17 1992 28.11 2049 26.49 
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3.4.9 Non-periodic forecast of arrivals from Taiwan 

Table 3.4.9 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Taiwan. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%), for the one month ahead and 12 months ahead 

forecasting horizons and good (MAPE less than 10%), for the 24 months ahead 

forecasting horizon. For the two year lead period, the forecasting performance is poor 

(MAPE 20% or less) for all three horizons. The RMSE figures are consistent with the 

MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 24 months ahead 

forecasting horizon. 

 

Table 3.4.9 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Taiwan  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 10908 10.41 11827 12.65 6325 7.52 
2 year  18132 29.35 19603 33.99 19217 32.62 

 

 

3.4.10 Non-periodic forecast of arrivals from the UK 

Table 3.4.10 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from the UK. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%), for the one month ahead and 12 months ahead 

horizons and poor (MAPE 20% or less), for the 24 months ahead horizon. For the two 

year lead period, the performance is fair (MAPE between 10% and 20%), for the one 

month ahead and 12 months ahead horizons and poor (MAPE 20% or less), for the 24 

months ahead horizon. The RMSE figures are fairly consistent with the MAPE 

figures. Overall, the forecasting error increases with an increase in the lead period, 
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and the model forecasts are most accurate over the one-month-ahead forecasting 

horizon. 

 

Table 3.4.10 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from the UK  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 3167 13.48 3545 16.65 7675 40.78 
2 year  2868 13.61 3838 19.29 6106 31.98 

 

 

3.4.11 Non-periodic forecast of arrivals from the USA 

Table 3.4.11 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from the USA. For the one year lead period the forecasting performance is good 

(MAPE less than 10%), for the one month ahead, 12 months ahead and 24 months 

ahead forecasting horizons. For the two year lead period the forecasting performance 

is good (MAPE less than 10%) for the one month ahead and the 24 months ahead 

forecasting horizons, but is fair (MAPE between 10% and 20%) for the 12 months 

ahead forecasting horizon. The RMSE figures are consistent with the MAPE figures. 

Overall, the forecasting error increases with an increase in the lead period, and the 

model forecasts are most accurate over the 24 months-ahead forecasting horizon. 

 

Table 3.4.11 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from the USA  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 5766 6.44 6256 7.55 3184 3.75 
2 year  7354 9.39 7930 10.60 7189 9.35 
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3.5 MLP Non-Periodic Forecast with first and twelfth differences (∇1 ∇12) 

 

3.5.1 ∇1 ∇12 Non-periodic forecast of arrivals from all countries 

Table 3.5.1 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from all countries. For the one year lead period the forecasting performance is 

fair (MAPE between 10% and 20%), for the one month ahead, 12 months ahead and 

24 months ahead forecasting horizons. For the two year lead period, the forecasting 

performance is also fair (MAPE between 10% and 20%) for all three forecasting 

horizons. The RMSE figures are fairly consistent with the MAPE figures. Overall, the 

forecasting error increases with an increase in the lead period, and the model forecasts 

are most accurate over the 12 months ahead forecasting horizon. 

 

Table 3.5.1 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from All Countries  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 68204 13.45 50320 11.27 73072 16.14 
2 year  84950 17.62 64189 13.25 72604 16.22 

 

 

3.5.2 ∇1 ∇12 Non-periodic forecast of arrivals from Australia 

Table 3.5.2 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Australia. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%) for the one month ahead forecasting horizon, poor 

(MAPE 20% or less) for the 12 months ahead horizon and good (MAPE less than 

10%), for the 24 months ahead horizon. For the two year lead period, the forecasting 

performance is also fair (MAPE between 10% and 20%) for the one month ahead 

horizon, poor (MAPE 20% or less) for the 12 months ahead horizon and good (MAPE 
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less than 10%), for the 24 months ahead horizon. The RMSE figures are fairly 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the one-

month ahead forecasting horizon. 

 

Table 3.5.2 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Australia  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1917 11.82 4849 34.20 1369 8.47 
2 year  1982 11.56 3910 24.82 1711 9.84 

 

 

3.5.3 ∇1 ∇12 Non-periodic forecast of arrivals from Canada 

Table 3.5.3 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Canada. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%), for the one month ahead and 24 months ahead 

forecasting horizons and poor (MAPE 20% or less) for the 12 months ahead horizon. 

For the two year lead period, the forecasting performance is fair (MAPE between 10% 

and 20%), for the one month ahead horizon and poor (MAPE 20% or less) for the 12 

months ahead and 24 months ahead horizons. The RMSE figures are consistent with 

the MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 24 months-ahead 

forecasting horizon. 

 

Table 3.5.3 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Canada  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 2390 17.27 3118 27.08 1773 11.00 
2 year  2656 19.74 2912 24.49 2724 21.59 
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3.5.4 ∇1 ∇12 Non-periodic forecast of arrivals from China 

Table 3.5.4 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from China. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%), for the one month ahead forecasting horizon and 

poor (MAPE 20% or less) for the 12 months ahead and 24 months ahead horizons. 

For the two year lead period, the forecasting performance is poor (MAPE 20% or less) 

for all three horizons. The RMSE figures are consistent with the MAPE figures. 

Overall, the forecasting error increases with an increase in the lead period and the 

model forecasts are poor. 

 

Table 3.5.4 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from China  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 6249 12.29 9413 20.87 16658 41.67 
2 year  9468 28.98 10473 32.29 18640 46.75 

 

 

3.5.5 ∇1 ∇12 Non-periodic forecast of arrivals from France 

Table 3.5.5 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from France. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%), for the one month ahead, 12 months ahead and 24 

months ahead horizons. For the two year lead period, the forecasting performance is 

also fair (MAPE between 10% and 20%), for all three horizons. The RMSE figures 

are fairly consistent with the MAPE figures. Overall, the forecasting error increases 

with an increase in the lead period, and the model forecasts are most accurate over the 

12 months ahead forecasting horizon. 
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Table 3.5.5 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from France  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1558 17.58 1167 13.51 1549 19.49 
2 year  1786 19.88 1150 13.75 1382 16.28 

 

 

3.5.6 ∇1 ∇12 Non-periodic forecast of arrivals from Germany 

Table 3.5.6 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Germany. For the one year lead period the forecasting performance is 

good (MAPE less than 10%) for the one month ahead forecasting horizon and fair 

(MAPE between 10% and 20%), for the 12 months ahead and 24 months ahead 

horizons. For the two year lead period, the forecasting performance is fair (MAPE 

between 10% and 20%), for all three horizons. The RMSE figures are fairly consistent 

with the MAPE figures. Overall, the forecasting error increases as the lead period 

increases, and the model forecasts are most accurate over the 12 months-ahead 

forecasting horizon. 

 

Table 3.5.6 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Germany  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1151 8.91 1375 11.37 1430 14.21 
2 year  2223 17.88 1494 13.00 1352 13.51 

 

 

3.5.7 ∇1 ∇12 Non-periodic forecast of arrivals from Korea 

Table 3.5.7 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Korea. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%), for the one month ahead and 12 months ahead 

forecasting horizons and poor (MAPE 20% or less) for the 24 months ahead horizon. 
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For the two year lead period, the forecasting performance is also fair (MAPE between 

10% and 20%) for the one month ahead and 12 months ahead forecasting horizons, 

and poor (MAPE 20% or less) for the 24 months ahead horizon.  The RMSE figures 

are fairly consistent with the MAPE figures. Overall, the forecasting error increases 

with an increase in the lead period, and the model forecasts are most accurate over the 

one-month-ahead forecasting horizon. 

 

Table 3.5.7 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Korea  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 12082 10.23 17108 13.23 34840 29.28 
2 year  21695 12.48 22791 15.12 37311 26.23 

 

 

3.5.8 ∇1 ∇12 Non-periodic forecast of arrivals from Singapore 

Table 3.5.8 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Singapore. For the one year lead period the forecasting performance is 

poor (MAPE 20% or less) for the one month ahead and 24 months ahead forecasting 

horizons and fair (MAPE between 10% and 20%) for the 12 months ahead horizon. 

For the two year lead period, the forecasting performance is poor (MAPE 20% or less) 

for all three horizons.  The RMSE figures are fairly consistent with the MAPE figures. 

Overall, the forecasting error increases with an increase in the lead period and the 

model forecasts are poor. 

 

Table 3.5.8 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Singapore  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 3431 34.71 1488 13.91 2563 32.22 
2 year  3441 49.53 2164 28.52 3052 36.89 
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3.5.9 ∇1 ∇12 Non-periodic forecast of arrivals from Taiwan 

Table 3.5.9 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Taiwan. For the one year lead period the forecasting performance is poor 

(MAPE 20% or less) for the one month ahead forecasting horizon and fair (MAPE 

between 10% and 20%) for the 12 months ahead and 24 months ahead horizons. For 

the two year lead period, the forecasting performance is poor (MAPE 20% or less) for 

all three horizons.  The RMSE figures are fairly consistent with the MAPE figures. 

Overall, the forecasting error increases with an increase in the lead period, and the 

model forecasts are poor. 

 

Table 3.5.9 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Taiwan  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 49044 38.68 11840 13.30 10510 12.06 
2 year  47713 67.58 26937 43.84 22029 36.82 

 

 

3.5.10 ∇1 ∇12 Non-periodic forecast of arrivals from the UK 

Table 3.5.10 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from the UK. For the one year lead period the forecasting performance is poor 

(MAPE 20% or less) for the one month ahead, 12 months ahead and 24 months ahead  

forecasting horizons. For the two year lead period, the forecasting performance is also 

poor (MAPE 20% or less) for all three horizons.  The RMSE figures are fairly 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are poor. 
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Table 3.5.10 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from the UK  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 8454 33.51 10209 49.57 14159 70.67 
2 year  11116 37.17 17043 89.55 11367 55.75 

 

 

3.5.11 ∇1 ∇12 Non-periodic forecast of arrivals from the USA 

Table 3.5.11 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from the USA. For the one year lead period the forecasting performance is good 

(MAPE less than 10%), for the one month ahead, 12 months ahead and 24 months 

ahead forecasting horizons. For the two year lead period the forecasting performance 

is fair (MAPE between 10% and 20%) for all three horizons. The RMSE figures are 

fairly consistent with the MAPE figures. Overall, the forecasting error increases with 

an increase in the lead period, and the model forecasts are most accurate over the 24 

months ahead forecasting horizon. 

 

Table 3.5.11 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from the USA  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 6731 8.10 6124 8.69 4368 5.76 
2 year  10772 13.27 12175 17.38 10308 14.60 
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3.6 MLP Partial Periodic Forecast  

 

3.6.1 Partial Periodic forecast of arrivals from all countries 

Table 3.6.1 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from all countries. For the one year lead period the forecasting performance is 

good (MAPE less than 10%) for the one month ahead, 12 months ahead and 24 

months ahead forecasting horizons. For the two year lead period the forecasting 

performance is fair (MAPE between 10% and 20%) for all three horizons horizons. 

The RMSE figures are fairly consistent with the MAPE figures. Overall, the 

forecasting error increases with an increase in the lead period, and the model forecasts 

are most accurate over the one-month-ahead forecasting horizon. 

 

Table 3.6.1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from All Countries  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 24943 4.87 31537 6.46 35722 7.14 
2 year  55528 10.24 55720 10.38 55688 11.38 

 

 

3.6.2 Partial periodic forecast of arrivals from Australia 

Table 3.6.2 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Australia. For the one year lead period the forecasting performance is 

good (MAPE less than 10%) for the one month ahead, 12 months ahead and 24 

months ahead forecasting horizons. For the two year lead period the forecasting 

performance is also good (MAPE less than 10%) for all three horizons. The RMSE 

figures are fairly consistent with the MAPE figures. Overall, the forecasting error 
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increases with an increase in the lead period, and the model forecasts are most 

accurate over the 12 months-ahead forecasting horizon. 

 

Table 3.6.2 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Australia  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 598 3.68 465 2.98 886 5.56 
2 year  992 5.38 923 4.92 1245 7.39 

 

 

3.6.3 Partial Periodic forecast of arrivals from Canada 

Table 3.6.3 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Canada. For the one year lead period the forecasting performance is good 

(MAPE less than 10%) for the one month ahead, 12 months ahead and 24 months 

ahead forecasting horizons. For the two year lead period the forecasting performance 

is also mostly good (MAPE less than 10%) for all three horizons. The RMSE figures 

are fairly consistent with the MAPE figures. Overall, the forecasting error increases 

with an increase in the lead period, and the model forecasts are most accurate over the 

12 months-ahead forecasting horizon. 

 

Table 3.6.3 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Canada  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 758 5.36 730 5.10 1047 7.79 
2 year  1305 9.00 1339 8.85 1359 10.01 
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3.6.4 Partial Periodic forecast of arrivals from China 

Table 3.6.4 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Taiwan. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%) for the one month ahead and the 12 months ahead 

forecasting horizons and poor (MAPE 20% or less) for and 24 months ahead horizon. 

For the two year lead period, the forecasting performance is poor (MAPE 20% or less) 

for all three horizons.  The RMSE figures are fairly consistent with the MAPE figures. 

Overall, the forecasting error increases with an increase in the lead period, and the 

model forecasts are most accurate over the 12 months-ahead forecasting horizon. 

 

Table 3.6.4 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from China  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 4709 10.13 5483 11.72 9405 20.75 
2 year  9099 28.34 8339 26.05 11230 32.83 

 

 

3.6.5 Partial Periodic forecast of arrivals from France 

Table 3.6.5 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from France. For the one year lead period the forecasting performance is good 

(MAPE less than 10%) for the one month ahead, 12 months ahead and 24 months 

ahead forecasting horizons. For the two year lead period the forecasting performance 

is also good (MAPE less than 10%) for all three horizons. The RMSE figures are 

fairly consistent with the MAPE figures. Overall, the forecasting error increases with 

an increase in the lead period, and the model forecasts are most accurate over the 12 

months-ahead forecasting horizon. 
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Table 3.6.5 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from France  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 411 4.49 408 4.07 734 8.46 
2 year  786 8.00 810 7.87 767 8.79 

 

 

3.6.6 Partial Periodic forecast of arrivals from Germany 

Table 3.6.6 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Germany. For the one year lead period the forecasting performance is 

good (MAPE less than 10%) for the one month ahead, 12 months ahead and 24 

months ahead forecasting horizons. For the two year lead period the forecasting 

performance is also good (MAPE less than 10%) for all three horizons. The RMSE 

figures are fairly consistent with the MAPE figures. Overall, the forecasting error 

increases with an increase in the lead period, and the model forecasts are most 

accurate over the 12 months-ahead forecasting horizon. 

 

Table 3.6.6 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Germany  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1015 7.60 1019 7.34 1053 8.07 
2 year  1076 9.73 1077 9.48 990 8.60 

 

 

3.6.7 Partial Periodic forecast of arrivals from Korea 

Table 3.6.7 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Korea. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%) for the one month ahead and the 12 months ahead 

forecasting horizons and poor (MAPE 20% or less) for and 24 months ahead horizon. 
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For the two year lead period, the forecasting performance is also fair (MAPE between 

10% and 20%) for the one month ahead and the 12 months ahead forecasting 

horizons, and poor (MAPE 20% or less) for and 24 months ahead horizon.  The 

RMSE figures are fairly consistent with the MAPE figures. Overall, the forecasting 

error increases with an increase in the lead period, and the model forecasts are most 

accurate over the one-month ahead forecasting horizon. 

 

Table 3.6.7 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Korea  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 17910 11.48 18324 12.74 27127 21.60 
2 year  21062 12.74 25700 15.43 35624 24.07 

 

 

3.6.8 Partial Periodic forecast of arrivals from Singapore 

Table 3.6.8 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Singapore. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%) for the one month ahead and the 12 months ahead 

and 24 months ahead horizons. For the two year lead period, the forecasting 

performance is also poor (MAPE 20% or less) for all three horizons. The RMSE 

figures are fairly consistent with the MAPE figures. Overall, the forecasting error 

increases with an increase in the lead period, and the model forecasts are most 

accurate over the 24 months ahead forecasting horizon. 

 

Table 3.6.8 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Singapore  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1480 16.33 1455 16.70 1319 13.92 
2 year  1893 25.94 1765 25.22 1934 25.47 
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3.6.9 Partial Periodic forecast of arrivals from Taiwan 

Table 3.6.9 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Taiwan. For the one year lead period the forecasting performance is good 

(MAPE less than 10%) for the one month ahead and the 12 months ahead and 24 

months ahead horizons. For the two year lead period, the forecasting performance is 

also poor (MAPE 20% or less) for all three horizons. The RMSE figures are fairly 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the one-

month-ahead forecasting horizon. 

 

Table 3.6.9 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Taiwan  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 6383 7.15 6522 7.46 8291 8.74 
2 year  18696 31.55 18532 31.63 21118 35.15 

 

 

3.6.10 Partial Periodic forecast of arrivals from the UK 

Table 3.6.10 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from the UK. For the one year lead period the forecasting performance is poor 

(MAPE 20% or less) for the one month ahead, the 12 months ahead and 24 months 

ahead forecasting horizons. For the two year lead period, the forecasting performance 

is fair (MAPE between 10% and 20%) for the one month ahead horizon, and poor 

(MAPE 20% or less) for the 12 months ahead and 24 months ahead forecasting 

horizons. The RMSE figures are fairly consistent with the MAPE figures. Overall, the 

forecasting error is inconsistent and the model forecasts are poor. 
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Table 3.6.10 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from the UK  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 3967 20.00 3969 20.96 17523 97.44 
2 year  3654 17.95 3828 20.06 14564 81.55 

 

 

3.6.11 Partial Periodic forecast of arrivals from the USA 

Table 3.6.11 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from the USA. For the one year lead period the forecasting performance is good 

(MAPE less than 10%) for the one month ahead, 12 months ahead and 24 months 

ahead forecasting horizons. For the two year lead period the forecasting performance 

is also good (MAPE less than 10%) for all three horizons. The RMSE figures are 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the one-

month-ahead forecasting horizon. 

 

Table 3.6.11 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from the USA  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 4375 5.24 4769 6.07 2926 4.13 
2 year  6644 8.57 7367 9.81 7628 9.85 
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3.7 MLP First Differenced (∇1 ) Partial Periodic Forecast  

 

3.7.1 ∇1 Partial Periodic forecast of arrivals from all countries 

Table 3.7.1 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from all countries. For the one year lead period the forecasting 

performance is fair (MAPE between 10% and 20%) for the one month ahead and the 

12 months ahead forecasting horizons and poor (MAPE 20% or less) for and 24 

months ahead horizon. For the two year lead period, the forecasting performance is 

also fair (MAPE between 10% and 20%) for the one month ahead and the 12 months 

ahead forecasting horizons and poor (MAPE 20% or less) for and 24 months ahead 

horizon.  The RMSE figures are fairly consistent with the MAPE figures. Overall, the 

forecasting error increases with an increase in the lead period, and the model forecasts 

are most accurate over the one-month-ahead forecasting horizon. 

 

Table 3.7.1 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from All Countries  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 71005 15.71 85400 19.38 98663 22.37 
2 year  74336 16.45 87939 19.40 100756 21.65 

 

 

3.7.2 ∇1 Partial Periodic forecast of arrivals from Australia 

Table 3.7.2 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from Australia. For the one year lead period the forecasting 

performance is fair (MAPE between 10% and 20%) for the one month ahead and the 

12 months ahead forecasting horizons and poor (MAPE 20% or less) for and 24 

months ahead horizon. For the two year lead period, the forecasting performance is 
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also fair (MAPE between 10% and 20%) for the one month ahead and the 12 months 

ahead forecasting horizons and poor (MAPE 20% or less) for and 24 months ahead 

horizon.  The RMSE figures are fairly consistent with the MAPE figures. Overall, the 

forecasting error increases with an increase in the lead period, and the model forecasts 

are most accurate over the 12 months ahead forecasting horizon. 

 

Table 3.7.2 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Australia  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 2415 15.74 1494 10.17 3554 25.33 
2 year  2480 15.45 2829 16.98 3527 23.66 

 

 

3.7.3 ∇1 Partial Periodic forecast of arrivals from Canada 

Table 3.7.3 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from Canada. For the one year lead period the forecasting 

performance is poor (MAPE 20% or less) for the one month ahead forecasting 

horizon, good (MAPE less than 10%) for the 12 months ahead forecasting horizon 

and fair (MAPE between 10% and 20%) for the 24 months ahead horizon. For the two 

year lead period, the forecasting performance is fair (MAPE between 10% and 20%), 

for all three horizons.  The RMSE figures are fairly consistent with the MAPE figures. 

Overall, the forecasting error increases with an increase in the lead period, and the 

model forecasts are most accurate over the 12 months ahead forecasting horizon. 

 

Table 3.7.3 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Canada  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 2796 20.96 1153 8.12 2156 17.26 
2 year  2253 17.04 1910 14.57 1981 16.52 
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3.7.4 ∇1 Partial Periodic forecast of arrivals from China 

Table 3.7.4 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from China. For the one year lead period the forecasting performance 

is poor (MAPE 20% or less) for the one month ahead, the 12 months ahead and the 24 

months ahead horizons. For the two year lead period, the forecasting performance is 

also poor (MAPE 20% or less) for all three horizons.  The RMSE figures are 

consistent with the MAPE figures. Overall, the model forecasts are poor. 

 

Table 3.7.4 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from China  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 14198 34.06 21044 51.62 20663 50.89 
2 year  14205 38.44 20474 51.56 21828 52.61 

 

 

3.7.5 ∇1 Partial Periodic forecast of arrivals from France 

Table 3.7.5 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from France. For the one year lead period the forecasting 

performance is fair (MAPE between 10% and 20%) for the one month ahead and the 

12 months ahead forecasting horizons and poor (MAPE 20% or less) for the 24 

months ahead horizon. For the two year lead period, the forecasting performance is 

fair (MAPE between 10% and 20%) for all three horizons.  The RMSE figures are 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the 12 

months ahead forecasting horizon. 
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Table 3.7.5 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from France  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1545 19.30 1154 14.67 1743 23.20 
2 year  1368 15.94 1429 16.98 1496 18.46 

 

 

3.7.6 ∇1 Partial Periodic forecast of arrivals from Germany 

Table 3.7.6 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from Germany. For the one year lead period the forecasting 

performance is fair (MAPE between 10% and 20%) for the one month ahead, the 12 

months ahead and the 24 months ahead forecasting horizons. For the two year lead 

period, the forecasting performance is fair (MAPE between 10% and 20%) for all 

three horizons.  The RMSE figures are fairly consistent with the MAPE figures. 

Overall, the forecasting error increases with an increase in the lead period, and the 

model forecasts are most accurate over the 24 months ahead forecasting horizon. 

 

Table 3.7.6 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Germany  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1448 14.12 1394 11.95 1255 10.37 
2 year  1365 13.49 1443 12.55 1239 10.53 

 

 

3.7.7 ∇1 Partial Periodic forecast of arrivals from Korea 

Table 3.7.7 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from Korea. For the one year lead period the forecasting 

performance is poor (MAPE 20% or less) for the one month ahead, the 12 months 

ahead and the 24 months ahead horizons. For the two year lead period, the forecasting 
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performance is also poor (MAPE 20% or less) for all three horizons.  The RMSE 

figures are fairly consistent with the MAPE figures. Overall, the model forecasts are 

poor. 

 

Table 3.7.7 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Korea  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 29241 25.42 31518 28.17 41872 37.07 
2 year  33792 25.34 36208 28.08 41522 32.46 

 

 

3.7.8 ∇1 Partial Periodic forecast of arrivals from Singapore 

Table 3.7.8 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from Singapore. For the one year lead period the forecasting 

performance is fair (MAPE between 10% and 20%) for the one month ahead 

forecasting horizon and the 24 months ahead and poor (MAPE 20% or less) for and 

12 months ahead horizon. For the two year lead period, the forecasting performance is 

also poor (MAPE 20% or less) for all three horizons.  The RMSE figures are fairly 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the one-

month-ahead forecasting horizon. 

 

Table 3.7.8 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Singapore  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1362 14.29 1867 20.43 1616 16.35 
2 year  1788 24.02 1923 26.52 2044 26.01 
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3.7.9 ∇1 Partial Periodic forecast of arrivals from Taiwan 

Table 3.7.9 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from Taiwan. For the one year lead period the forecasting 

performance is fair (MAPE between 10% and 20%) for the one month ahead and the 

24 months ahead forecasting horizons and good (MAPE less than 10%) for the 12 

months ahead horizon. For the two year lead period, the forecasting performance is 

poor (MAPE 20% or less) for all three horizons.  The RMSE figures are consistent 

with the MAPE figures. Overall, the forecasting error increases with an increase in the 

lead period, and the model forecasts are most accurate over the 12 months ahead 

forecasting horizon, for a one-year lead period. 

 

Table 3.7.9 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Taiwan  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 9523 10.39 7607 8.69 13754 17.72 
2 year  19992 35.48 18934 33.04 21444 35.18 

 

 

3.7.10 ∇1 Partial Periodic forecast of arrivals from the UK 

Table 3.7.10 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from the UK. For the one year lead period the forecasting 

performance is poor (MAPE 20% or less) for the one month ahead, the 12 months 

ahead and the 24 months ahead horizons. For the two year lead period, the forecasting 

performance is also poor (MAPE 20% or less) for all three horizons.  The RMSE 

figures are consistent with the MAPE figures. Overall, the model forecasts are poor. 
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Table 3.7.10 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from the UK  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 14745 76.71 9762 51.56 19815 108.73 
2 year  14878 83.22 9157 51.32 15778 85.04 

 

 

3.7.11 ∇1 Partial Periodic forecast of arrivals from the USA 

Table 3.7.11 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from the USA. For the one year lead period the forecasting 

performance is good (MAPE less than 10%) for the one month ahead, the 12 months 

ahead and the 24 months ahead forecasting horizons. For the two year lead period, the 

forecasting performance is good (MAPE less than 10%) for the one month ahead and 

the 12 months ahead forecasting horizons and fair (MAPE between 10% and 20%) for 

the 24 months ahead horizon.  The RMSE figures are consistent with the MAPE 

figures. Overall, the forecasting error increases with an increase in the lead period, 

and the model forecasts are most accurate over the 12 months ahead forecasting 

horizon. 

 

Table 3.7.11 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from the USA  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 5597 7.58 5026 6.89 6713 9.73 
2 year  7074 9.82 6151 9.05 7639 11.34 
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3.8 MLP Periodic Forecast  

 

3.8.1 Periodic forecast of arrivals from all countries 

Table 3.8.1 shows the periodic forecasting performance for tourist arrivals to Japan 

from all countries. For the one year lead period the forecasting performance is good 

(MAPE less than 10%) for the 12 months ahead and the 24 months ahead forecasting 

horizons. For the two year lead period, the forecasting performance is fair (MAPE 

between 10% and 20%) for both horizons.  The RMSE figures are fairly consistent 

with the MAPE figures. Overall, the forecasting error increases with an increase in the 

lead period, and the model forecasts are most accurate over the 12 months ahead 

forecasting horizon. 

 

Table 3.8.1 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from All Countries  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 35420 6.85 33861 7.04 
2 year  n/a n/a 57341 10.73 54170 10.87 

 

 

3.8.2 Periodic forecast of arrivals from Australia 

Table 3.8.2 shows the periodic forecasting performance for tourist arrivals to Japan 

from Australia. For the one year lead period the forecasting performance is good 

(MAPE less than 10%) for the 12 months ahead forecasting horizon and fair (MAPE 

between 10% and 20%) for the 24 months ahead horizon. For the two year lead 

period, the forecasting performance is also good (MAPE less than 10%) for the 12 

months ahead forecasting horizon and fair (MAPE between 10% and 20%) for the 24 

months ahead horizon. The RMSE figures are fairly consistent with the MAPE 



Chapter 4 ARIMA and BSM Forecasting 105

 

figures. Overall, the forecasting error increases with an increase in the lead period, 

and the model forecasts are most accurate over the 12 months ahead forecasting 

horizon. 

 

Table 3.8.2 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Australia  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 732 3.59 2054 11.58 
2 year  n/a n/a 2282 6.82 2325 13.38 

 

 

3.8.3 Periodic forecast of arrivals from Canada 

Table 3.8.3 shows the periodic forecasting performance for tourist arrivals to Japan 

from Canada. For the one year lead period the forecasting performance is good 

(MAPE less than 10%) for the 12 months ahead and the 24 months ahead forecasting 

horizons. For the two year lead period, the forecasting performance is fair (MAPE 

between 10% and 20%) for both horizons.  The RMSE figures are fairly consistent 

with the MAPE figures. Overall, the forecasting error increases with an increase in the 

lead period, and the model forecasts are most accurate over the 12 months ahead 

forecasting horizon. 

 

Table 3.8.3 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Canada  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 1084 7.44 970 6.61 
2 year  n/a n/a 1751 12.58 2200 14.29 
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3.8.4 Periodic forecast of arrivals from China 

Table 3.8.4 shows the periodic forecasting performance for tourist arrivals to Japan 

from China. For the one year lead period the forecasting performance fair (MAPE 

between 10% and 20%) for the 12 months ahead and the 24 months ahead forecasting 

horizons. For the two year lead period, the forecasting performance is poor (MAPE 

20% or more) for both horizons.  The RMSE figures are consistent with the MAPE 

figures. Overall, the forecasting error increases with an increase in the lead period, 

and the model forecasts are most accurate over the 12 months ahead forecasting 

horizon. 

 

Table 3.8.4 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from China  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 5419 12.32 7877 17.91 
2 year  n/a n/a 8584 26.83 10007 30.37 

 

 

3.8.5 Periodic forecast of arrivals from France 

Table 3.8.5 shows the periodic forecasting performance for tourist arrivals to Japan 

from France. For the one year lead period the forecasting performance is good 

(MAPE less than 10%) for the 12 months ahead and the 24 months ahead forecasting 

horizons. For the two year lead period, the forecasting performance is also good 

(MAPE less than 10%) for both horizons.  The RMSE figures are consistent with the 

MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 12 months ahead 

forecasting horizon. 
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Table 3.8.5 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from France  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 338 3.32 491 5.33 
2 year  n/a n/a 990 9.46 799 8.03 

 

 

3.8.6 Periodic forecast of arrivals from Germany 

Table 3.8.6 shows the periodic forecasting performance for tourist arrivals to Japan 

from Germany. For the one year lead period the forecasting performance is good 

(MAPE less than 10%) for the 12 months ahead forecasting horizon and fair (MAPE 

between 10% and 20%) for the 24 months ahead horizon. For the two year lead 

period, the forecasting performance is fair (MAPE between 10% and 20%) for both 

horizons.  The RMSE figures are consistent with the MAPE figures. Overall, the 

forecasting error increases with an increase in the lead period, and the model forecasts 

are most accurate over the 12 months-ahead forecasting horizon. 

 

Table 3.8.6 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Germany  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 1115 8.37 1218 10.20 
2 year  n/a n/a 1299 12.14 1239 11.75 

 

 

3.8.7 Periodic forecast of arrivals from Korea 

Table 3.8.6 shows the periodic forecasting performance for tourist arrivals to Japan 

from Korea. For the one year lead period the forecasting performance is good (MAPE 

less than 10%) for the 12 months ahead forecasting horizon and fair (MAPE between 

10% and 20%) for the 24 months ahead horizon. For the two year lead period, the 



Chapter 4 ARIMA and BSM Forecasting 108

 

forecasting performance is fair (MAPE between 10% and 20%) for both horizons.  

The RMSE figures are consistent with the MAPE figures. Overall, the forecasting 

error increases with an increase in the lead period, and the model forecasts are most 

accurate over the 12 months ahead forecasting horizon. 

 

Table 3.8.7 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Korea  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 11924 9.18 19900 15.58 
2 year  n/a n/a 16603 11.56 26709 17.59 

 

 

3.8.8 Periodic forecast of arrivals from Singapore 

Table 3.8.8 shows the periodic forecasting performance for tourist arrivals to Japan 

from Singapore. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%) for the 12 months ahead and the 24 months ahead 

forecasting horizons. For the two year lead period, the forecasting performance is 

poor (MAPE 20% or more) for both horizons.  The RMSE figures are fairly consistent 

with the MAPE figures. Overall, the forecasting error increases with an increase in the 

lead period, and the model forecasts are most accurate over the 24 months ahead 

forecasting horizon. 

 

Table 3.8.8 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Singapore  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 1326 15.01 1107 12.59 
2 year  n/a n/a 1646 24.18 1722 21.95 
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3.8.9 Periodic forecast of arrivals from Taiwan 

Table 3.8.9 shows the periodic forecasting performance for tourist arrivals to Japan 

from Taiwan. For the one-year lead period the forecasting performance good (MAPE 

less than 10%) for the 12 months ahead and the 24 months-ahead forecasting 

horizons. For the two year lead period, the forecasting performance is poor (MAPE 

20% or more) for both horizons.  The RMSE figures are fairly consistent with the 

MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 12 months-ahead 

forecasting horizon. 

 

Table 3.8.9 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Taiwan  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 7429 9.13 8684 8.47 
2 year  n/a n/a 19077 33.65 22397 37.05 

 

 

3.8.10 Periodic forecast of arrivals from the UK 

Table 3.8.10 shows the periodic forecasting performance for tourist arrivals to Japan 

from the UK. For the one year lead period the forecasting performance is poor 

(MAPE 20% or more) for the 12 months ahead and the 24 months ahead forecasting 

horizons. For the two year lead period, the forecasting performance is also poor 

(MAPE 20% or more) for both horizons.  The RMSE figures are consistent with the 

MAPE figures. Overall, the model forecasts are poor. 
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Table 3.8.10 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from the UK  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 5672 22.21 11019 58.10 
2 year  n/a n/a 4844 21.47 8721 45.17 

 

 

3.8.11 Periodic forecast of arrivals from the USA 

Table 3.8.11 shows the periodic forecasting performance for tourist arrivals to Japan 

from the USA. For the one-year lead period the forecasting performance is good 

(MAPE less than 10%) for the 12 months ahead and the 24 months ahead forecasting 

horizons. For the two-year lead period, the forecasting performance is fair (MAPE 

between 10% and 20%) for both horizons.  The RMSE figures are consistent with the 

MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 24 months ahead 

forecasting horizon. 

 

Table 3.8.11 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from the USA  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 5411 7.05 3042 4.32 
2 year  n/a n/a 7960 10.72 7905 10.21 
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3.9 Naïve Forecasts 

 

Forecast for the one month ahead horizon is the same as that for the 12 months ahead 

horizon as the data are seasonal. 

 

3.9.1 Naïve forecast of arrivals from all countries 

Table 3.9.1 shows the naive forecasting performance for tourist arrivals to Japan from 

all countries. For the one-year lead period the forecasting performance is good 

(MAPE less than 10%) for the 12 months ahead and 24 months ahead forecasting 

horizons. For the two-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for both horizons. The RMSE figures are consistent with the 

MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 12 months ahead 

forecasting horizon. 

 

Table 3.9.1 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from All Countries  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 47084 9.92 47084 9.92 43323 9.26 
2 year  59512 12.30 59512 12.30 66744 13.93 

 

 

3.9.2 Naïve forecast of arrivals from Australia 

Table 3.9.2 shows the naive forecasting performance for tourist arrivals to Japan from 

Australia. For the one-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for the 12 months ahead and 24 months ahead forecasting 

horizons. For the two-year lead period the forecasting performance is good (MAPE 
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less than 10%) for the 12 months ahead horizon and fair (MAPE between 10% and 

20%) for the 24 months ahead horizon. The RMSE figures are consistent with the 

MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 12 months ahead 

forecasting horizon. 

 

Table 3.9.2 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from Australia  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1455 10.07 1455 10.07 1748 10.80 
2 year  1351 8.62 1351 8.62 2087 13.02 

 

 

3.9.3 Naïve forecast of arrivals from Canada 

Table 3.9.3 shows the naive forecasting performance for tourist arrivals to Japan from 

Canada. For the one-year lead period the forecasting performance is good (MAPE less 

than 10%) for the 12 months ahead horizon and fair (MAPE between 10% and 20%) 

for the 24 months ahead horizon.  For the two-year lead period the forecasting 

performance is fair (MAPE between 10% and 20%) for the 12 months ahead and 24 

months ahead forecasting horizons. The RMSE figures are consistent with the MAPE 

figures. Overall, the forecasting error increases with an increase in the lead period, 

and the model forecasts are most accurate over the 12 months ahead forecasting 

horizon. 

 

Table 3.9.3 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from Canada  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1120 8.60 1120 8.60 1372 10.37 
2 year  1280 10.19 1280 10.19 1583 12.41 
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3.9.4 Naïve forecast of arrivals from China 

Table 3.9.4 shows the naive forecasting performance for tourist arrivals to Japan from 

China. For the one-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for the 12 months ahead horizon and poor (MAPE 20% or 

more) for the 24 months ahead horizon.  For the two-year lead period the forecasting 

performance is poor (MAPE 20% or more) for both horizons. The RMSE figures are 

fairly consistent with the MAPE figures. Overall, the forecasting error increases with 

an increase in the lead period, and the model forecasts are poor. 

 

Table 3.9.4 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from China  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 5887 14.21 5887 14.21 9318 21.00 
2 year  8476 27.30 8476 27.30 10954 32.48 

 

 

3.9.5 Naïve forecast of arrivals from France 

Table 3.9.5 shows the naive forecasting performance for tourist arrivals to Japan from 

Canada. For the one-year lead period the forecasting performance is good (MAPE less 

than 10%) for the 12 months ahead horizon and fair (MAPE between 10% and 20%) 

for the 24 months ahead horizon.  For the two-year lead period, the forecasting 

performance is also good (MAPE less than 10%) for the 12 months ahead horizon and 

fair (MAPE between 10% and 20%) for the 24 months ahead horizon. The RMSE 

figures are consistent with the MAPE figures. Overall, the forecasting error increases 

with an increase in the lead period, and the model forecasts are most accurate over the 

12 months ahead forecasting horizon. 
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Table 3.9.5 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from France  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 585 6.34 585 6.34 940 11.93 
2 year  852 9.40 852 9.40 889 10.65 

 

 

3.9.6 Naïve forecast of arrivals from Germany 

Table 3.9.6 shows the naive forecasting performance for tourist arrivals to Japan from 

Germany. For the one-year lead period the forecasting performance is good (MAPE 

less than 10%) for the 12 months-ahead horizon and fair (MAPE between 10% and 

20%) for the 24 months ahead horizon.  For the two-year lead period the forecasting 

performance is fair (MAPE between 10% and 20%) for both horizons. The RMSE 

figures are fairly consistent with the MAPE figures. Overall, the forecasting error 

increases with an increase in the lead period, and the model forecasts are most 

accurate over the 12 months ahead forecasting horizon. 

 

Table 3.9.6 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from Germany  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1092 7.87 1092 7.87 1317 10.30 
2 year  1247 11.20 1247 11.20 1268 10.97 

 

 

3.9.7 Naïve forecast of arrivals from Korea 

Table 3.9.7 shows the naive forecasting performance for tourist arrivals to Japan from 

Korea. For the one-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for the 12 months ahead and 24 months ahead forecasting 

horizons. For the two-year lead period, the forecasting performance is also fair 

(MAPE between 10% and 20%) for both horizons. The RMSE figures are consistent 
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with the MAPE figures. Overall, the forecasting error increases with an increase in the 

lead period, and the model forecasts are most accurate over the 12 months ahead 

forecasting horizon. 

 

Table 3.9.7 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from Korea  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 13113 10.51 13113 10.51 18600 15.90 
2 year  17606 12.75 17606 12.75 26280 18.34 

 

 

3.9.8 Naïve forecast of arrivals from Singapore 

Table 3.9.8 shows the naive forecasting performance for tourist arrivals to Japan from 

Singapore. For the one-year lead period the forecasting performance is poor (MAPE 

20% or more) for the 12 months-ahead horizon and good (MAPE less than 10%) for 

the 24 months ahead horizon.  For the two-year lead period the forecasting 

performance is poor (MAPE 20% or more) for both horizons. The RMSE figures are 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are poor. 

 

Table 3.9.8 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from Singapore  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1644 21.34 1644 21.34 993 9.09 
2 year  1794 27.70 1794 27.70 1968 25.86 
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3.9.9 Naïve forecast of arrivals from Taiwan 

Table 3.9.9 shows the naive forecasting performance for tourist arrivals to Japan from 

Taiwan. For the one-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for the 12 months ahead and 24 months ahead forecasting 

horizons. For the two-year lead period, the forecasting performance is also poor 

(MAPE 20% or more) for both horizons. The RMSE figures are fairly consistent with 

the MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 24 months ahead 

forecasting horizon but poor for the 2-year lead period. 

 

Table 3.9.9 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from Taiwan  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 12620 14.17 12620 14.17 9149 10.55 
2 year  19842 35.43 19842 35.43 20045 34.39 

 

 

3.9.10 Naïve forecast of arrivals from the UK 

Table 3.9.10 shows the naive forecasting performance for tourist arrivals to Japan 

from the UK. For the one-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for the 12 months-ahead horizon and poor (MAPE 20% or 

more) for the 24 months ahead horizon.  For the two-year lead period, the forecasting 

performance is also fair (MAPE between 10% and 20%) for the 12 months ahead 

horizon and poor (MAPE 20% or more) for the 24 months ahead horizon. The RMSE 

figures are fairly consistent with the MAPE figures. Overall, the forecasting error 

increases with an increase in the lead period, and the model forecasts are most 

accurate over the 12 months ahead forecasting horizon. 
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Table 3.9.10 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from the UK  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 3815 12.72 3815 12.72 14877 79.46 
2 year  3817 13.50 3817 13.50 10569 43.31 

 

 

3.9.11 Naïve forecast of arrivals from the USA 

Table 3.9.11 shows the naive forecasting performance for tourist arrivals to Japan 

from the USA. For the one-year lead period the forecasting performance is good 

(MAPE less than 10%) for the 12 months ahead and 24 months ahead forecasting 

horizons. For the two-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for the 12 months-ahead horizon and good (MAPE less than 

10%) for the 24 months ahead horizon. The RMSE figures are fairly consistent with 

the MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 24 months ahead 

forecasting horizon. 

 

Table 3.9.11 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from the USA  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 6382 7.97 6382 7.97 2586 2.89 
2 year  8072 10.38 8072 10.38 8352 9.88 
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3.10 Differenced and Undifferenced MLP Model Comparison 

 

Table 3.10.1 shows a comparison of the one-month ahead forecasting performance of 

the differenced and undifferenced non-periodic MLP models and a comparison of the 

differenced and undifferenced partial periodic MLP models. Of the non-periodic 

models the undifferenced model is better than the differenced model as it has the 

lower MAPE in 8 (36%) of 22 forecasts while the differenced model has the lower 

MAPE in none (0%) of the forecasts. The 22 forecasts were obtained for 1 and 2 year 

lead periods using 11 data series. Of the partial periodic models the undifferenced 

model is better than the differenced model as it has the lower MAPE in 12 (55%) of 

22 forecasts, while the differenced model has the lower MAPE in 2 (9%) of the 

forecasts. 

 

 The undifferenced non-periodic model also has a mean MAPE of 12.5%, the mean 

MAPE of the differenced non-periodic model being 22.8%. The paired sample p-

value of 0.01 indicates that the mean difference in MAPE of the undifferenced non-

periodic model and the differenced model is significant. The undifferenced partial 

periodic model also has a mean MAPE of 12.0%, the mean MAPE of the differenced 

partial periodic model being 25.0%. The paired sample p-value of 0.01 indicates that 

the mean difference in MAPE of the undifferenced partial periodic model and the 

differenced model is significant. On the level of accuracy achieved, the undifferenced 

non-periodic model has 10 (50%) forecasts with MAPE figures less than 10%, while 

the differenced non-periodic model has 2 (9%) forecasts with MAPE less than 10%. 

The undifferenced partial periodic model has 12 (55%) forecasts with MAPE figures 
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less than 10%, while the differenced partial periodic model has 2 (9%) forecasts with 

MAPE less than 10%. 

 

Table 3.10.2 shows a comparison of the 12-months-ahead forecasting performance of 

the differenced and undifferenced non-periodic MLP models and a comparison of the 

differenced and undifferenced partial periodic MLP models. Of the non-periodic 

models the undifferenced model is better than the differenced model as it has the 

lower MAPE in 6 (27%) of 22 forecasts while the differenced model has the lower 

MAPE in 1 (5%) of the forecasts. Of the partial periodic models the undifferenced 

model is better than the differenced model as it has the lower MAPE in 14 (64%) of 

22 forecasts while the differenced model has the lower MAPE in 1 (5%) of the 

forecasts. 

 

 The undifferenced non-periodic model also has a mean MAPE of 13.6%, the mean 

MAPE of the differenced non-periodic model being 24.2%. The paired sample p-

value of 0.01 indicates that the mean difference in MAPE of the undifferenced non-

periodic model and the differenced model is significant. The undifferenced partial 

periodic model also has a mean MAPE of 12.3%, the mean MAPE of the differenced 

partial periodic model being 23.3%. The paired sample p-value of 0.01 indicates that 

the mean difference in MAPE of the undifferenced partial periodic model and the 

differenced model is significant.  On the level of accuracy achieved, the undifferenced 

non-periodic model has made 9 (41%) forecasts with MAPE figures less than 10%, 

while the differenced non-periodic model has 1 (5%) forecast with MAPE less than 

10%. The undifferenced partial periodic model has 12 (55%) forecasts with MAPE 



Chapter 4 ARIMA and BSM Forecasting 120

 

figures less than 10%, while the differenced partial periodic model has 4 (18%) 

forecasts with MAPE less than 10%. 

 

Table 3.10.3 shows a comparison of the 24 months ahead forecasting performance of 

the differenced and undifferenced non-periodic MLP models and a comparison of the 

differenced and undifferenced partial periodic MLP models. Of the non-periodic 

models the undifferenced model is better than the differenced model, as it has the 

lower MAPE in 16 (73%) of 22 forecasts while the differenced model has the lower 

MAPE in none (0%) of the forecasts. Of the partial periodic models the undifferenced 

model is better than the differenced model as it has the lower MAPE in 6 (27%) of 22 

forecasts while the differenced model has the lower MAPE in none (0%) of the 

forecasts. 

 

The undifferenced non-periodic model also has a mean MAPE of 15.4%, the mean 

MAPE of the differenced non-periodic model being 25.2%. The paired sample p-

value of 0.01 indicates that the mean difference in MAPE of the undifferenced non-

periodic model and the differenced model is significant.  The undifferenced partial 

periodic model also has a mean MAPE of 20.8%, the mean MAPE of the differenced 

partial periodic model being 30.6%. The paired sample p-value of 0.01 indicates that 

the mean difference in MAPE of the undifferenced partial periodic model and the 

differenced model is significant.  On the level of accuracy achieved, the undifferenced 

non-periodic model has 10 (45%) forecasts with MAPE figures less than 10%, while 

the differenced non-periodic model has 3 (14%) forecasts with MAPE less than 10%. 

The undifferenced partial periodic model has 11 (50%) forecasts with MAPE figures 
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less than 10%, while the differenced partial periodic model has 1 (5%) forecast with 

MAPE less than 10%. 

 

Table 3.10.1 Univariate one month ahead Forecasting Performance 
  of differenced and undifferenced Neural Network models 
    

Country Forecast Non-Periodic NP Differenced Partial Periodic PP Differenced 
 Lead RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

All 1 year 30599 5.5 68204 13.4 24943 4.9 71005 15.7
 2 year 53203 9.8 84950 17.6 55528 10.2 74336 16.5

Australia 1 year 895 5.1 1917 11.8 598 3.7 2415 15.7
 2 year 1184 6.6 1982 11.6 992 5.4 2480 15.5

Canada 1 year 908 6.8 2390 17.3 758 5.4 2796 21.0
 2 year 1308 10.0 2656 19.7 1305 9.0 2253 17.0

China 1 year 5905 14.6 6249 12.3 4709 10.1 14198 34.1
 2 year 9214 28.0 9468 29.0 9099 28.3 14205 38.4

France 1 year 538 6.1 1558 17.6 411 4.5 1545 19.3
 2 year 816 8.7 1786 19.9 786 8.0 1368 15.9

Germany 1 year 1021 7.1 1151 8.9 1015 7.6 1448 14.1
 2 year 1216 10.2 2223 17.9 1076 9.7 1365 13.5

Korea 1 year 16326 9.6 12082 10.2 17910 11.5 29241 25.4
 2 year 22754 12.3 21695 12.5 21062 12.7 33792 25.3

Singapore 1 year 1934 22.2 3431 34.7 1480 16.3 1362 14.3
 2 year 2128 30.2 3441 49.5 1893 25.9 1788 24.0

Taiwan 1 year 10908 10.4 49044 38.7 6383 7.2 9523 10.4
 2 year 18132 29.3 47713 67.6 18696 31.5 19992 35.5

UK 1 year 3167 13.5 8454 33.5 3967 20.0 14745 76.7
 2 year 2868 13.6 11116 37.2 3654 17.9 14878 83.2

USA 1 year 5766 6.4 6731 8.1 4375 5.2 5597 7.6
 2 year 7354 9.4 10772 13.3 6644 8.6 7074 9.8
    

Summary Measures   
Mean  9007 12.5 16319 22.8 8513 12.0 14882 25.0
Standard Deviation 12829 7.8 23754 15.1 12865 8.1 20867 19.6
MAPE p-values:   
  c/w Differenced NP model -0.01  
  c/w Differenced PP model -0.01 

    
Lowest MAPE Count Count % Count % Count % Count %
of 22 forecasts 8 36% 0 0% 12 55% 2 9%

    
MAPE <= 10% 11 50% 2 9% 12 55% 2 9%
10% <MAPE< 20% 7 32% 13 59% 7 32% 11 50%
MAPE >= 20% 4 18% 7 32% 3 14% 9 41%

    
MAPE <= 10%   
  for 1 year lead 7 64% 2 100% 7 58% 1 50%
  for 2 year lead 4 36% 0 0% 5 42% 1 50%
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Table 3.10.2 Univariate 12 months ahead Forecasting Performance  
  of differenced and undifferenced Neural Network models  
    

Country Forecast Non-Periodic NP Differenced Partial Periodic PP Differenced 
 Lead RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

All 1 year 38932 7.9 50320 11.3 31537 6.5 85400 19.4
 2 year 59098 11.2 64189 13.3 55720 10.4 87939 19.4

Australia 1 year 1026 5.7 4849 34.2 465 3.0 1494 10.2
 2 year 1170 6.8 3910 24.8 923 4.9 2829 17.0

Canada 1 year 897 6.8 3118 27.1 730 5.1 1153 8.1
 2 year 1323 9.9 2912 24.5 1339 8.8 1910 14.6

China 1 year 4750 11.3 9413 20.9 5483 11.7 21044 51.6
 2 year 8749 27.4 10473 32.3 8339 26.1 20474 51.6

France 1 year 547 6.5 1167 13.5 408 4.1 1154 14.7
 2 year 850 9.5 1150 13.7 810 7.9 1429 17.0

Germany 1 year 1003 7.2 1375 11.4 1019 7.3 1394 11.9
 2 year 1174 10.5 1494 13.0 1077 9.5 1443 12.6

Korea 1 year 18874 12.7 17108 13.2 18324 12.7 31518 28.2
 2 year 24806 15.0 22791 15.1 25700 15.4 36208 28.1

Singapore 1 year 1797 21.6 1488 13.9 1455 16.7 1867 20.4
 2 year 1992 28.1 2164 28.5 1765 25.2 1923 26.5

Taiwan 1 year 11827 12.6 11840 13.3 6522 7.5 7607 8.7
 2 year 19603 34.0 26937 43.8 18532 31.6 18934 33.0

UK 1 year 3545 16.6 10209 49.6 3969 21.0 9762 51.6
 2 year 3838 19.3 17043 89.5 3828 20.1 9157 51.3

USA 1 year 6256 7.6 6124 8.7 4769 6.1 5026 6.9
 2 year 7930 10.6 12175 17.4 7367 9.8 6151 9.1
    

Summary Measures   
Mean  9999 13.6 12830 24.2 9095 12.3 16174 23.3
Standard Deviation 14717 7.9 16269 18.3 13594 7.9 25001 15.3
MAPE p-values:   
  c/w NP Differenced model -0.01  
  c/w PP Differenced model -0.01 

    
Lowest MAPE Count Count % Count % Count % Count %
of 22 forecasts 6 27% 1 5% 14 64% 1 5%

    
MAPE <= 10% 9 41% 1 5% 12 55% 4 18%
10% <MAPE< 20% 9 41% 11 50% 5 23% 9 41%
MAPE >= 20% 4 18% 10 45% 5 23% 9 41%

    
MAPE <= 10%   
  for 1 year lead 6 67% 1 100% 7 58% 3 75%
  for 2 year lead 3 33% 0 0% 5 42% 1 25%
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Table 3.10.3 Univariate 24 months ahead Forecasting Performance 
  of differenced and undifferenced Neural Network models  
    

Country Forecast Non-Periodic NP Differenced Partial Periodic PP Differenced 
 Lead RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

All 1 year 24071 4.4 73072 16.1 35722 7.1 98663 22.4
 2 year 55423 10.2 72604 16.2 55688 11.4 100756 21.7

Australia 1 year 905 5.8 1369 8.5 886 5.6 3554 25.3
 2 year 1234 7.0 1711 9.8 1245 7.4 3527 23.7

Canada 1 year 907 6.2 1773 11.0 1047 7.8 2156 17.3
 2 year 1555 11.0 2724 21.6 1359 10.0 1981 16.5

China 1 year 7510 17.5 16658 41.7 9405 20.7 20663 50.9
 2 year 10039 32.3 18640 46.7 11230 32.8 21828 52.6

France 1 year 407 4.4 1549 19.5 734 8.5 1743 23.2
 2 year 811 9.1 1382 16.3 767 8.8 1496 18.5

Germany 1 year 1037 9.5 1430 14.2 1053 8.1 1255 10.4
 2 year 1328 12.8 1352 13.5 990 8.6 1239 10.5

Korea 1 year 26949 19.3 34840 29.3 27127 21.6 41872 37.1
 2 year 37127 23.0 37311 26.2 35624 24.1 41522 32.5

Singapore 1 year 1323 13.1 2563 32.2 1319 13.9 1616 16.4
 2 year 2049 26.5 3052 36.9 1934 25.5 2044 26.0

Taiwan 1 year 6325 7.5 10510 12.1 8291 8.7 13754 17.7
 2 year 19217 32.6 22029 36.8 21118 35.1 21444 35.2

UK 1 year 7675 40.8 14159 70.7 17523 97.4 19815 108.7
 2 year 6106 32.0 11367 55.7 14564 81.6 15778 85.0

USA 1 year 3184 3.8 4368 5.8 2926 4.1 6713 9.7
 2 year 7189 9.3 10308 14.6 7628 9.8 7639 11.3
    

Summary Measures   
Mean  10108 15.4 15671 25.2 11735 20.8 19594 30.6
Standard Deviation 14222 11.0 21302 16.9 14931 24.0 28672 24.7
MAPE p-values:   
  c/w NP Differenced model -0.01  
  c/w PP Differenced model -0.01 

    
Lowest MAPE Count Count % Count % Count % Count %
of 22 forecasts 16 73% 0 0% 6 27% 0 0%

    
MAPE <= 10% 10 45% 3 14% 11 50% 1 5%
10% <MAPE< 20% 6 27% 9 41% 3 14% 8 36%
MAPE >= 20% 6 27% 10 45% 8 36% 13 59%

    
MAPE <= 10%   
  for 1 year lead 7 70% 2 67% 7 64% 1 100%
  for 2 year lead 3 30% 1 33% 4 36% 0 0%
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Table 3.10.4 Forecasting Performance Comparison Summary 
  of differenced and undifferenced Neural Network models  
    
  Non-Periodic NP Differenced Partial Periodic PP Differenced 
  RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

Mean  9705 13.8 14940 24.1 9781 15.1 16883 26.3
Standard Deviation 13738 9.0 20414 16.6 13682 15.6 24743 20.2
MAPE p-values:   
  c/w NP Differenced model -0.01  
  c/w PP Differenced model -0.01 

    
Lowest MAPE Count Count % Count % Count % Count %
of 66 forecasts 30 45% 1 2% 32 48% 3 5%

    
MAPE <= 10% 30 45% 6 9% 35 53% 7 11%
10% <MAPE< 20% 22 33% 33 50% 15 23% 28 42%
MAPE >= 20% 14 21% 27 41% 16 24% 31 47%

    
MAPE <= 10%   
  for 1 year lead 20 67% 5 83% 21 60% 5 71%
  for 2 year lead 10 33% 1 17% 14 40% 2 29%

 

 

Table 3.10.4 shows a summary comparison of the forecasting performance of the 

differenced and undifferenced non-periodic MLP models, and a comparison of the 

differenced and undifferenced partial periodic MLP models. Of the non-periodic 

models the undifferenced model is better than the differenced model as it has the 

lower MAPE in 30 (45%) of 66 forecasts, while the differenced model has the lower 

MAPE in 1 (2%) of the forecasts. Of the partial periodic models the undifferenced 

model is better than the differenced model as it has a lower MAPE in 32 (48%) of 66 

forecasts, while the differenced model has the lower MAPE in 3 (5%) of the forecasts. 

 

 The undifferenced non-periodic model has a mean MAPE of 13.8%, while that of the 

differenced model is 24.1%. The paired sample p-value of 0.01 indicates that the 

mean difference in MAPE of the undifferenced non-periodic model and the 

differenced model is significant. The undifferenced partial periodic model has a mean 
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MAPE of 15.1%, while that of the differenced model is 26.3%. The paired sample p-

value of 0.01 indicates that the mean difference in MAPE of the undifferenced partial 

periodic model and the differenced model is significant. On the level of accuracy, the 

undifferenced non-periodic model has 30 (45%) forecasts with MAPE figures less 

than 10%, while the differenced model achieved only 6 (9%) such forecasts. The 

undifferenced partial periodic model has 35 (53%) forecasts with MAPE figures less 

than 10%, while the differenced model has only 7 (11%) such forecasts. 

 

3.11 MLP Model Comparison with the Naïve model 

 

Table 3.11.1 shows a comparison of the forecasting performance of the Non-periodic, 

Partial periodic, Periodic and Naïve models for the one month ahead forecasting 

horizon. For the one month ahead forecasting horizon, the partial periodic model is 

the best model as it has the lowest MAPE in 14 (64%) of 22 forecasts. Twelve (55%) 

partial periodic forecasts have MAPE figures less than 10%. Seven (58%) and 5 

(42%) of these 12 forecasts were for the 1 and 2 year lead periods respectively, 

indicating the model works better for the 1 year lead period. 

 

 The partial periodic model also has the smallest mean MAPE of 12.0%. The non-

periodic model has a mean MAPE of 12.5%. Both models have significant mean 

differences from the MAPE of the naïve model with the paired sample p-value for the 

mean difference being less than 0.01. The non-periodic model has the lowest MAPE 

figures in 5 (23%) forecasts. The naïve model has the lowest MAPE in 3 (14%) 

forecasts. The periodic model is not applicable to one-month ahead forecasts as it 

forecasts 12 months ahead.  
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Table 3.11.2 shows a comparison of the forecasting performance of the Non-periodic, 

Partial periodic, Periodic and Naïve models for the 12 months ahead forecasting 

horizon. Using the lowest MAPE as the forecasting performance evaluation criterion, 

for the 12 months ahead forecasting horizon, the partial periodic model is the best 

model as it has the lowest MAPE in 13 (59%) of 22 forecasts. Twelve (55%) of the 22 

partial periodic forecasts have MAPE figures less than 10%. Seven (58%) and 5 

(42%) of these 12 forecasts were for the 1 year and 2 year lead periods respectively, 

indicating the model works better for the 1 year lead period. 

 

 The partial periodic model has the lowest mean MAPE of 12.3%, the paired sample 

p-values indicating significant mean differences at the 5% level for MAPE values 

between the partial periodic model and the non-periodic and naïve models. The 

periodic model has a mean MAPE of 12.9% while the non-periodic model has a mean 

MAPE of 13.6. The periodic model has the lowest MAPE figures in 5 (23%) forecasts 

followed by the non-periodic model with the lowest MAPE figures in 2 (9%) 

forecasts. The naïve model also has the lowest MAPE in 2 (9%) forecasts.  

 

Table 3.11.3 shows a comparison of the forecasting performance of the Non-periodic, 

Partial periodic, Periodic and Naïve models for the 24-months-ahead forecasting 

horizon. Using the lowest MAPE as the forecasting performance evaluation criterion, 

for the 24 months ahead forecasting horizon, the non-periodic model is the best model 

as it has the lowest MAPE in 11 (50%) of 22 forecasts. Ten (45%) of the 22 partial 

periodic forecasts have MAPE figures less than 10%. Seven (70%) and 3 (30%) of 

these 10 forecasts were for the 1 year and 2 year lead periods respectively, indicating 

the model works better for the 1 year lead period. 
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 The non-periodic model also has the smallest mean MAPE of 15.4% while the 

periodic model has a mean MAPE of 17.2%. The paired sample p-values do not show 

significant mean differences in the MAPE values of the models at the 5% level, 

except between the non-periodic and naïve models. The next best model is the 

periodic model with the lowest MAPE figures in 5 (23%) forecasts followed by the 

partial periodic model with the lowest MAPE figures in 4 (18%) forecasts. The naïve 

model has the lowest MAPE in 2 (9%) forecasts.  

 

Table 3.11.4 shows a comparison summary of the forecasting performance of the 

Non-periodic, Partial periodic, Periodic and Naïve models. The partial periodic model 

is the best model as it has the lowest MAPE in 31 (47%) of 66 forecasts. Thirty five 

(53%) of the 66 partial periodic forecasts have MAPE figures less than 10%. Twenty 

one (60%) and 14 (40%) of these 21 forecasts were for the 1 year and 2 year lead 

periods respectively, indicating the model works better for the 1 year lead period. The 

next best model is the non-periodic model with the lowest MAPE figures in 18 (27%) 

forecasts followed by the periodic model with the lowest MAPE figures in 10 (23%) 

forecasts. The naïve model has the lowest MAPE in 7 (11%) forecasts.  

 

However, paired sample p-values of the mean differences of the MAPE figures of the 

partial periodic model are not significant at the 5% level. This is because the variance 

of the MAPE of this model is high due to the very good performance of some of the 

66 forecasts and the very poor performance of others. The non-periodic model has the 

smallest mean MAPE of 13.8%. The partial periodic model has a mean MAPE of 

15.1%, The periodic model also has a mean MAPE of 15.1%. 
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Table 3.11.1 Univariate one month ahead Forecasting Performance  
  of Neural Network and Naïve Forecasts  
    

Country Forecast Non-Periodic Partial Periodic Periodic  Naïve 
 Lead RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

All 1 year 30599 5.5 24943 4.9 N/a n/a 47084 9.9
 2 year 53203 9.8 55528 10.2 N/a n/a 59512 12.3

Australia 1 year 895 5.1 598 3.7 N/a n/a 1455 10.1
 2 year 1184 6.6 992 5.4 N/a n/a 1351 8.6

Canada 1 year 908 6.8 758 5.4 N/a n/a 1120 8.6
 2 year 1308 10.0 1305 9.0 N/a n/a 1280 10.2

China 1 year 5905 14.6 4709 10.1 N/a n/a 5887 14.2
 2 year 9214 28.0 9099 28.3 N/a n/a 8476 27.3

France 1 year 538 6.1 411 4.5 N/a n/a 585 6.3
 2 year 816 8.7 786 8.0 N/a n/a 852 9.4

Germany 1 year 1021 7.1 1015 7.6 N/a n/a 1092 7.9
 2 year 1216 10.2 1076 9.7 N/a n/a 1247 11.2

Korea 1 year 16326 9.6 17910 11.5 N/a n/a 13113 10.5
 2 year 22754 12.3 21062 12.7 N/a n/a 17606 12.8

Singapore 1 year 1934 22.2 1480 16.3 N/a n/a 1644 21.3
 2 year 2128 30.2 1893 25.9 N/a n/a 1794 27.7

Taiwan 1 year 10908 10.4 6383 7.2 N/a n/a 12620 14.2
 2 year 18132 29.3 18696 31.5 N/a n/a 19842 35.4

UK 1 year 3167 13.5 3967 20.0 N/a n/a 3815 12.7
 2 year 2868 13.6 3654 17.9 N/a n/a 3817 13.5

USA 1 year 5766 6.4 4375 5.2 N/a n/a 6382 8.0
 2 year 7354 9.4 6644 8.6 N/a n/a 8072 10.4
    

Summary Measures   
Mean  9007 12.5 8513 12.0  9938 13.7
Standard Deviation 12829 7.8 12865 8.1  15242 7.5
MAPE p-values:   
  c/w Naïve model  -0.01 -0.01  
  c/w Periodic model   
  c/w Partial Periodic model 0.19  0.01
  c/w Non-Periodic model -0.19  0.01

    
Lowest MAPE Count Count % Count % Count % Count %
of 22 forecasts 5 23% 14 64% 0 0% 3 14%

    
MAPE <= 10% 11 50% 12 55% 0 0% 7 32%
10% <MAPE< 20% 7 32% 7 32% 0 0% 11 50%
MAPE >= 20% 4 18% 3 14% 0 0% 4 18%

    
MAPE <= 10%   
  for 1 year lead 7 64% 7 58% 0 0% 5 71%
  for 2 year lead 4 36% 5 42% 0 0% 2 29%
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Table 3.11.2 Univariate 12 months ahead Forecasting Performance 
  of Neural Network and Naïve Forecasts  
    

Country Forecast Non-Periodic Partial Periodic Periodic  Naïve 
 Lead RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

All 1 year 38932 7.9 31537 6.5 35420 6.9 47084 9.9
 2 year 59098 11.2 55720 10.4 57341 10.7 59512 12.3

Australia 1 year 1026 5.7 465 3.0 732 3.6 1455 10.1
 2 year 1170 6.8 923 4.9 2282 6.8 1351 8.6

Canada 1 year 897 6.8 730 5.1 1084 7.4 1120 8.6
 2 year 1323 9.9 1339 8.8 1751 12.6 1280 10.2

China 1 year 4750 11.3 5483 11.7 5419 12.3 5887 14.2
 2 year 8749 27.4 8339 26.1 8584 26.8 8476 27.3

France 1 year 547 6.5 408 4.1 338 3.3 585 6.3
 2 year 850 9.5 810 7.9 990 9.5 852 9.4

Germany 1 year 1003 7.2 1019 7.3 1115 8.4 1092 7.9
 2 year 1174 10.5 1077 9.5 1299 12.1 1247 11.2

Korea 1 year 18874 12.7 18324 12.7 11924 9.2 13113 10.5
 2 year 24806 15.0 25700 15.4 16603 11.6 17606 12.8

Singapore 1 year 1797 21.6 1455 16.7 1326 15.0 1644 21.3
 2 year 1992 28.1 1765 25.2 1646 24.2 1794 27.7

Taiwan 1 year 11827 12.6 6522 7.5 7429 9.1 12620 14.2
 2 year 19603 34.0 18532 31.6 19077 33.6 19842 35.4

UK 1 year 3545 16.6 3969 21.0 5672 22.2 3815 12.7
 2 year 3838 19.3 3828 20.1 4844 21.5 3817 13.5

USA 1 year 6256 7.6 4769 6.1 5411 7.0 6382 8.0
 2 year 7930 10.6 7367 9.8 7960 10.7 8072 10.4
    

Summary Measures   
Mean  9999 13.6 9095 12.3 9011 12.9 9938 13.7
Standard Deviation 14717 7.9 13594 7.9 13563 7.9 15242 7.5
MAPE p-values:   
  c/w Naïve model  -0.37 -0.04 -0.16 
  c/w Periodic model  0.14 -0.07  0.16
  c/w Partial Periodic model 0.01 0.07 0.04
  c/w Non-Periodic model -0.01 -0.14 0.37

    
Lowest MAPE Count Count % Count % Count % Count %
of 22 forecasts 2 9% 13 59% 5 23% 2 9%

    
MAPE <= 10% 9 41% 12 55% 10 45% 7 32%
10% <MAPE< 20% 9 41% 5 23% 7 32% 11 50%
MAPE >= 20% 4 18% 5 23% 5 23% 4 18%

    
MAPE <= 10%   
  for 1 year lead 6 67% 7 58% 8 80% 5 71%
  for 2 year lead 3 33% 5 42% 2 20% 2 29%
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Table 3.11.3 Univariate 24 months ahead Forecasting Performance 
  of Neural Network and Naïve Forecasts  
    

Country Forecast Non-Periodic Partial Periodic Periodic  Naïve 
 Lead RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

All 1 year 24071 4.4 35722 7.1 33861 7.0 43323 9.3
 2 year 55423 10.2 55688 11.4 54170 10.9 66744 13.9

Australia 1 year 905 5.8 886 5.6 2054 11.6 1748 10.8
 2 year 1234 7.0 1245 7.4 2325 13.4 2087 13.0

Canada 1 year 907 6.2 1047 7.8 970 6.6 1372 10.4
 2 year 1555 11.0 1359 10.0 2200 14.3 1583 12.4

China 1 year 7510 17.5 9405 20.7 7877 17.9 9318 21.0
 2 year 10039 32.3 11230 32.8 10007 30.4 10954 32.5

France 1 year 407 4.4 734 8.5 491 5.3 940 11.9
 2 year 811 9.1 767 8.8 799 8.0 889 10.6

Germany 1 year 1037 9.5 1053 8.1 1218 10.2 1317 10.3
 2 year 1328 12.8 990 8.6 1239 11.8 1268 11.0

Korea 1 year 26949 19.3 27127 21.6 19900 15.6 18600 15.9
 2 year 37127 23.0 35624 24.1 26709 17.6 26280 18.3

Singapore 1 year 1323 13.1 1319 13.9 1107 12.6 993 9.1
 2 year 2049 26.5 1934 25.5 1722 22.0 1968 25.9

Taiwan 1 year 6325 7.5 8291 8.7 8684 8.5 9149 10.5
 2 year 19217 32.6 21118 35.1 22397 37.1 20045 34.4

UK 1 year 7675 40.8 17523 97.4 11019 58.1 14877 79.5
 2 year 6106 32.0 14564 81.6 8721 45.2 10569 43.3

USA 1 year 3184 3.8 2926 4.1 3042 4.3 2586 2.9
 2 year 7189 9.3 7628 9.8 7905 10.2 8352 9.9
    

Summary Measures   
Mean  10108 15.4 11735 20.8 10383 17.2 11589 18.9
Standard Deviation 14222 11.0 14931 24.0 13541 13.8 16238 16.7
MAPE p-values:   
  c/w Naïve model  -0.03 0.18 -0.06 
  c/w Periodic model  -0.06 0.08  0.06
  c/w Partial Periodic model -0.06 -0.08 -0.18
  c/w Non-Periodic model 0.06 0.06 0.03

    
Lowest MAPE Count Count % Count % Count % Count %
of 22 forecasts 11 50% 4 18% 5 23% 2 9%

    
MAPE <= 10% 10 45% 11 50% 6 27% 4 18%
10% <MAPE< 20% 6 27% 3 14% 11 50% 12 55%
MAPE >= 20% 6 27% 8 36% 5 23% 6 27%

    
MAPE <= 10%   
  for 1 year lead 7 70% 7 64% 5 83% 3 75%
  for 2 year lead 3 30% 4 36% 1 17% 1 25%
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Table 3.11.4 Forecasting Performance Comparison Summary 
  of Neural Network and Naïve Forecasts  
    
  Non-Periodic Partial Periodic Periodic  Naïve 
  RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

Mean  9705 13.8 9781 15.1 9697 15.1 10489 15.5
Standard Deviation 13738 9.0 13682 15.6 13411 11.3 15359 11.5
MAPE p-values:   
  c/w Naïve model  -0.01 -0.29 -0.03 
  c/w Periodic model  -0.18 0.12  0.03
  c/w Partial Periodic model -0.15 -0.12 0.29
  c/w Non-Periodic model 0.15 0.18 0.01

    
Lowest MAPE Count Count % Count % Count % Count %
of 66 forecasts 18 27% 31 47% 10 23% 7 11%

    
MAPE <= 10% 30 45% 35 53% 16 36% 18 27%
10% <MAPE< 20% 22 33% 15 23% 18 41% 34 52%
MAPE >= 20% 14 21% 16 24% 10 23% 14 21%

    
MAPE <= 10%   
  for 1 year lead 20 67% 21 60% 13 81% 13 72%
  for 2 year lead 10 33% 14 40% 3 19% 5 28%

 

 

3.12 Conclusion 

 

Overall for both the non-periodic and the partial periodic models the forecasting 

performance was better with data that was not differenced. Data was differenced to 

remove seasonality. Nelson et al. (1999) used deseasonalised data and concluded that 

neural networks performed better with deseasonalised data. Differencing was used in 

this research as the objective was not so much to remove seasonality but to help the 

neural process. This contradictory result may even be due to varying strengths in the 

irregular component rather than the difference in the methods used. Current results 

indicate that it is better to let neural networks model data as a whole rather than in 

separate components. 
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The partial periodic model is superior to the non-periodic model, which in turn is 

better than the periodic model when forecasting tourism to Japan. All three models 

performed better than the naïve model making them all adequate models for 

forecasting. The mean MAPE for the three models were not significantly different and 

the non-periodic model had the lowest mean MAPE making it almost as good as the 

partial periodic model. The partial periodic model was the best for the one-month 

ahead and the 12 months ahead forecasting horizons, while the non-periodic model 

was better for the 24 months ahead horizon. 

 

The partial periodic model captures the seasonal trend of the past three years on a 

month-by-month basis, which is its strength. The model's poor performance for the 24 

months-ahead horizon is due to the tourist arrivals series changing dramatically in 

2003 due to the SARS crisis. The models poor performance was mainly for arrivals 

from the SARS affected countries. It would be reasonable to expect a network that has 

been modelled on the basis of the past year's data to respond better to sudden changes 

in a data series, than a network that had been modelled on the basis of the past three 

years data. This could well be the reason the non-periodic model performed better for 

the 24 months ahead horizon. 

 

The performance of the periodic model, though not significantly different from the 

partial periodic and the non-periodic models, is not more accurate. Because of the 

seasonal nature of tourist arrivals, the periodic model was expected to out perform the 

other models, as it models the data for each season (month) separately. The poor 

performance of the periodic model compared to the partial periodic models shows that 

data for each season are not totally independent.                                                    .



 

Chapter 3 
Neural Network Multi-layer Perceptron Models 

 

 

3.1 Introduction 

 

Artificial neural networks have been used extensively as a forecasting tool and more 

recently for forecasting tourism flows. Fernando, Turner and Reznik (1999a), Law 

and Au (1999), Law (2000), Cho (2003) and Kon and Turner (2005) used artificial 

neural network models to forecast tourism demand. The multi-layer perceptron is a 

category of neural networks that uses feed forward back propagation to establish the 

relationship between inputs and outputs by training the network using a supervised 

learning method to model linear and non linear data. Neural networks can model 

univariate as well as multivariate data but this study aims to explore its univariate 

forecasting performance. Neural networks do not have any pre-conditions or 

assumptions for the pattern or variations in historical data but through an iterative 

process develop a model that fits the data. However, too close a fit may not be 

desirable, as it would not allow for random variations in the future. 

 

This chapter consists of a comparison of three, univariate artificial neural network 

(ANN) multi-layer perceptron (MLP) forecasting models. The three models compared 

are a non-periodic model, a partial periodic model and a periodic model. The 

forecasting performance of the neural network models is compared with that of the 

naïve model, which is considered in this study as the minimum benchmark for 

forecasting performance. The non-periodic model and the partial periodic model are 
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run with differenced data and with undifferenced data, to test, which provides better 

forecasts using MLP networks.  

 

The variable being forecast is tourist arrivals to Japan. Monthly tourist arrivals from 

Australia, China, France, Germany, Korea, Singapore, Taiwan, UK, the USA and total 

arrivals from all countries, from January 1978 to December 2001, to forecast arrivals 

for the 24 month period from January 2002 to December 2003. Forecasts are made for 

tourist arrivals from each of the above countries, one month ahead, 12 months ahead, 

and 24 months ahead, to test whether the forecasting accuracy is consistent for 

arrivals to Japan from different countries and for different forecasting horizons. The 

criterion for comparing models is the forecasting accuracy as measured by the MAPE 

of the 24 month out of sample period from January 2002 to December 2003, which is 

divided into one and two year lead periods. The aim of this study is to determine 

which empirical neural network model would provide the best forecast for tourist 

arrivals data.  

 

3.2 The Multi-Layer Perceptron Model 

 

In this study, the artificial neural network (ANN) multi-layer perceptron (MLP) model 

with two hidden layers containing sigmoid and tanh nodes is used in a connectionist 

neural network. Figure 3.1 shows the univariate connectionist model used to forecast 

m periods ahead using the time series y(t) with k+1 periods of data. Tourist arrivals to 

Japan from January 1978 to December 2001 are taken as the input series. The number 

of input nodes represents the number of input variables in the model. In a univariate 

model lags of the series or differenced series can be used as variables. 
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Figure 3.1 Connectionist MLP Model for Univariate Forecasting 

 

      Input Layer    Hidden Layers       Output Layer 

        

       y(t)     

   :       
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        :       

  y(t-k)    

 

 

Input nodes have a linear transformation to the nodes of the next layer, as follows: 

,xwz jijj Σ=  

 

where x is the input signal for input node j, z is the output to the next node i and w is 

the connecting weight between node j and node i. This transformation is applied to 

every node of the network including the output layer. 

 

Given limitations in data size and processing capacity a MLP network will not 

normally have more than two layers. Most researchers use only one hidden layer 

(refer to Kon and Turner, 2005). However, as monthly data of a 20-year period are 

used in this study, it is important to capture the linear and non-linear patterns of 

within sample data by providing the network with transfer functions that could 

transform input data to match output data patterns. Two hidden layers are used in this 

study with tanh functions at each node of the first layer and sigmoid functions at each 

node of the second layer. The tanh function is of the form: 
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.)ee/()ee()ztanh()z(f zzzz −− +−==  

 

The sigmoid function is of the form: 

 

.)e1/(1)z(f z−+=  

 

The number of nodes in a hidden layer depend on the volume of input data, as the 

total number of node-to-node connections must be at most less than the number of 

within sample data points. As monthly tourist arrivals are known to be seasonal 12 

nodes are used in each hidden layer as far as data numbers permit. In 12 and 24 

months ahead forecast horizons, when the within sample has fewer data points, the 

number of nodes in the hidden layers is reduced but kept, as far as possible, to 

multiples of 4 nodes to facilitate capture of seasonality.   

 

The MLP models were run using DataEngine software. The data were prepared on 

MS Excel and imported by DataEngine where it was scaled within the range 0.4 to 0.6 

in the 0 to 1 domain and separated into training, test and recall files. The network 

architecture was set, specifying the number of nodes, the transfer functions, the input 

and output files and the initial weights and learning rates. 

 

The MLP model used is a feed forward model, where the outputs from the nodes in 

the input layer are fed forward to the nodes of the first hidden layer, the outputs from 

the nodes of the first hidden layer are input to the nodes of the second hidden layer 
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and the outputs from the nodes of the second hidden layer are input to the output 

node. 

 

The back-propagation feature of the model is used where the difference between the 

output and the expected output is fed back to the nodes of the network, and the 

weights adjusted in an iterative process, until the difference is reduced to a preset 

level. Back-propagation with momentum is used to quicken the training phase while 

still maintaining a small learning rate, which would otherwise require a high 

processing time. However, a flat root mean square error curve would be an indication 

that the learning error has been set too low. 

 

The network configuration used in the MLP models is as follows: 

Input layer transfer function: linear 

1st Hidden layer transfer function: tanh 

2nd Hidden layer transfer function: sigmoid 

Output layer transfer function: linear 

Learning Method: Back propagation, single step 

Learning parameters for all layers: Learning rate 0.1, Momentum 0.1 

Weight initialization –0.1 to 0.1 

Stop condition 1000 epochs. 

 

In neural network modelling trend and seasonality in a time series can be dealt with 

by taking the 1st and 12th difference of the data to remove trend and seasonal effects, 

respectively, prior to analysis. Alternatively, the neural network could be allowed to 

model and capture the trend and seasonality. Nelson, Hill, Remus et al. (1999) 

addressed this issue by deseasonalising the data and concluded from their study that 

when there was seasonality in a time series, forecasts from neural networks estimated 

on deseasonalised data were significantly more accurate than the forecasts produced 
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by neural networks that used data that were not deseasonalised. One possible 

explanation they present for their results is that neural networks that use 

deseasonalised time series do not have to focus on learning the seasonal components 

and can therefore pick-up other residual patterns. 

 

Three MLP models are compared in this study. The first is the non-periodic model 

used by Fernando, Turner and Reznik (1999a) based on Freisleben (1992). The inputs 

to this model are the 12 previous monthly arrivals. The output is the arrivals figure of 

the following month for a one-month ahead forecast horizon, or of the corresponding 

month of the following years for 12 and 24 months ahead forecasts. The non-periodic 

model for a k period horizon is of the form: 

 

.)x,x,x,x,x,x,x,x,x,x,x,x(fx 11t10t9t8t7t6t5t4t3t2t1ttkt −−−−−−−−−−−+ =  

 

 As long term trend and seasonality can be presumed inherent in most tourist arrivals 

series, the 1st and 12th differenced data are used in an alternative non-periodic model. 

Removing trend by taking the 1st difference and seasonal variations by taking the 12th 

difference would leave the network only the task of capturing some of the residual 

variation. The non-periodic model using first differenced (∇1) and twelfth differenced 

(∇12) data for a k period horizon is of the form: 

 

.)x,....,x,x,x(fx 11t1212t1211t121t121kt121 −−−+ ∇∇∇∇∇∇∇∇=∇∇  

 

The second MLP model used in this study is a partial periodic model that uses tourist 

arrivals data lagged by 12, 24 and 36 months as inputs. In this model each month's 
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arrivals are matched against the three previous years' (lagged) arrivals of the same 

calendar month. Since only the three previous years' arrivals in a calendar month are 

taken at a time, as inputs, the model is partial periodic. No attempt was made to test 

for autocorrelation, as tourist arrivals are mostly seasonal. Subsequent ARIMA 

estimation has proved this to be the case.  In an MLP partial periodic model arrivals 

from all calendar months may influence the output, unlike in a full periodic model 

where only data of a specific calendar month would be modelled at a time. However, 

the use of lagged series relieves the model of having to capture much of the seasonal 

component. The partial periodic model is as follows: 

 

.)x,x,x(fx 36t24t12tt −−−=  

 

An alternative partial periodic model would uses 1st differenced data. The tourist 

arrivals series are observed from graphical patterns to be non-stationary. Subsequent 

unit root testing (refer Chapter 5) confirmed the non-stationary nature of the data. The 

series are made stationary by taking the first difference so that the MLP model would 

be required to capture only some of the residual variations in the series. Further, 

forecasts of a stationary series will remain within the data domain of the within 

sample series, without crossing the domain boundaries defined at the outset, making 

the neural network more efficient. This model which uses the 1st difference of the 

tourist arrivals time series  lagged by 12, 24 and 36 months as the inputs is of 

the form: 

t1 x∇

. )x,x,x(fx 36t124t112t1t1 −−− ∇∇∇=∇
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The third MLP model used is the periodic model. The inputs to this model are the 

tourist arrivals series of a specific month lagged by 12, 24 and 36 months. The output 

is the arrivals figure of that month in the forecast horizon, for example, for 

January of year t.  As differenced data used in the previous MLP models produced 

poor forecasting results no attempt was made to difference the data for this model. 

The periodic model for a 12 period horizon is of the form: 

txjan

 

,)xjan,xjan,xjan(fxjan 36t24t12tt −−−=  

,)xfeb,xfeb,xfeb(fxfeb 36t24t12tt −−−=  

: 

: 

.)xdec,xdec,xdec(fxdec 36t24t12tt −−−=  
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3.3 The Naïve Model 

 

The basic concept of the naïve model is the use of the current period's actual as the 

next period's forecast. This simple forecast does not involve any mathematical 

modelling or elaborate computations. Therefore, it forms the benchmark when testing 

the adequacy of forecasting models. Any forecasting model that does not perform at 

least as well as the naïve model should not be considered adequate. 

 

For seasonal data, the actual value (At+1-s) of the corresponding season of the previous 

year (t+1-s) is the forecast (Ft+1) for the period (t+1) where s is the number of seasons 

(Hanke and Reitch 1992 and Turner and Witt 2001):  

Ft+1 = At+1-s  . 

 

Since monthly data are used in this study, s = 12, naïve forecasts for the one month 

ahead forecasting horizon are made as follows: 

     Ft+1 = At-11  . 

Naïve forecasts for the 12 months ahead forecasting horizon are made as follows 

Ft+12 = At.  . 

For horizons greater than 12 months, the actual value of a particular month of the 

penultimate year of the horizon is used as the forecast for the corresponding month. 

The naïve forecast for the 24 months ahead horizon is as follows: 

 

 Ft+24  = At  . 
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3.4 MLP Non-Periodic Forecasts   

 

3.4.1 Non-periodic forecast of arrivals from all countries 

Table 3.4.1 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from all countries. For the one year lead period the forecasting performance is 

good (MAPE less than 10%), for the one month ahead, 12 months ahead and 24 

months ahead forecasting horizons. For the two year lead period the forecasting 

performance is good (MAPE less than 10%) for the one month ahead forecasting 

horizon, but is fair (MAPE between 10% and 20%) for the 12 months ahead and 24 

months ahead forecasting horizons. The RMSE figures are consistent with the MAPE 

figures. Overall, the forecasting error increases with an increase in the lead period and 

the model forecasts best over the 24 months-ahead forecasting horizon. 

 

Table 3.4.1 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from All Countries  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 30599 5.50 38932 7.86 24071 4.43 
2 year  53203 9.79 59098 11.23 55423 10.19 

 

 

3.4.2 Non-periodic forecast of arrivals from Australia 

Table 3.4.2 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Australia. For the one year lead period the forecasting performance is 

good (MAPE less than 10%), for the one month ahead, 12 months ahead and 24 

months ahead forecasting horizons. For the two year lead period, the forecasting 

performance is also good (MAPE less than 10%) for all three forecasting horizons. 

The RMSE figures are fairly consistent with the MAPE figures. Overall, the 
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forecasting error increases with an increase in the lead period, and the model forecasts 

are most accurate over the one-month ahead forecasting horizon. 

 

Table 3.4.2 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Australia  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 895 5.06 1026 5.71 905 5.81 
2 year  1184 6.62 1170 6.80 1234 6.98 

 

 

3.4.3 Non-periodic forecast of arrivals from Canada 

Table 3.4.3 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Canada. For the one year lead period the forecasting performance is good 

(MAPE less than 10%), for the one month ahead, 12 months ahead and 24 months 

ahead forecasting horizons. For the two year lead period the forecasting performance 

is good (MAPE less than 10%) for the 12 months ahead forecasting horizon, but is 

fair (MAPE between 10% and 20%) for the one month ahead and 24 months ahead 

forecasting horizons. The RMSE figures are fairly consistent with the MAPE figures. 

Overall, the forecasting error increases with an increase in the lead period, and the 

model forecasts are most accurate over the 12 months ahead forecasting horizon. 

  

Table 3.4.3 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Canada  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 908 6.81 897 6.75 907 6.21 
2 year  1308 10.02 1323 9.94 1555 10.99 
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3.4.4 Non-periodic forecast of arrivals from China 

Table 3.4.4 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from China. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%), for the one month ahead, 12 months ahead and 24 

months ahead forecasting horizons. For the two year lead period the forecasting 

performance is poor (MAPE 20% or more) for all three horizons. The RMSE figures 

are consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the 12 

months ahead forecasting horizon. 

 

Table 3.4.4 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from China  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 5905 14.58 4750 11.31 7510 17.50 
2 year  9214 27.95 8749 27.45 10039 32.29 

 

 

3.4.5 Non-periodic forecast of arrivals from France 

Table 3.4.5 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from France. For the one year lead period the forecasting performance is good 

(MAPE less than 10%), for the one month ahead, 12 months ahead and 24 months 

ahead forecasting horizons. For the two year lead period, the forecasting performance 

is also good (MAPE less than 10%) for all three forecasting horizons. The RMSE 

figures are consistent with the MAPE figures. Overall, the forecasting error increases 

with an increase in the lead period, and the model forecasts are most accurate over the 

24 months ahead forecasting horizon. 
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Table 3.4.5 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from France  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 538 6.05 547 6.47 407 4.36 
2 year  816 8.67 850 9.53 811 9.12 

 

 

3.4.6 Non-periodic forecast of arrivals from Germany 

Table 3.4.6 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Germany. For the one year lead period the forecasting performance is 

good (MAPE less than 10%), for the one month ahead, 12 months ahead and 24 

months ahead forecasting horizons. For the two year lead period, the forecasting 

performance is fair (MAPE between 10% and 20%) for all three forecasting horizons. 

The RMSE figures are fairly consistent with the MAPE figures. Overall, the 

forecasting error increases with an increase in the lead period, and the model forecasts 

are most accurate over the one-month ahead forecasting horizon. 

 

Table 3.4.6 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Germany  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1021 7.08 1003 7.17 1037 9.47 
2 year  1216 10.16 1174 10.48 1328 12.83 

 

 

3.4.7 Non-periodic forecast of arrivals from Korea 

Table 3.4.7 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Korea. For the one year lead period the forecasting performance is good 

(MAPE less than 10%), for the one month ahead forecasting horizon and fair (MAPE 

between 10% and 20%), for the 12 months ahead and 24 months ahead forecasting 
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horizons. For the two year lead period, the forecasting performance is fair (MAPE 

between 10% and 20%) for the one month ahead and 12 months ahead forecasting 

horizons and poor (MAPE 20% or less) for the 24 months ahead horizon. The RMSE 

figures are fairly consistent with the MAPE figures. Overall, the forecasting error 

increases with an increase in the lead period, and the model forecasts are most 

accurate over the one-month ahead forecasting horizon. 

 

Table 3.4.7 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Korea  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 16326 9.64 18874 12.73 26949 19.32 
2 year  22754 12.32 24806 15.02 37127 23.02 

 

 

3.4.8 Non-periodic forecast of arrivals from Singapore 

Table 3.4.8 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Singapore. For the one year lead period the forecasting performance is 

poor (MAPE 20% or less), for the one month ahead and 12 months ahead forecasting 

horizons and fair (MAPE between 10% and 20%), for the and 24 months ahead 

forecasting horizon. For the two year lead period, the forecasting performance is poor 

(MAPE 20% or less) for all three horizons. The RMSE figures are fairly consistent 

with the MAPE figures. Overall, the forecasting error increases with an increase in the 

lead period and the model forecasts are poor. 

 

Table 3.4.8 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Singapore  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1934 22.22 1797 21.56 1323 13.08 
2 year  2128 30.17 1992 28.11 2049 26.49 
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3.4.9 Non-periodic forecast of arrivals from Taiwan 

Table 3.4.9 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Taiwan. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%), for the one month ahead and 12 months ahead 

forecasting horizons and good (MAPE less than 10%), for the 24 months ahead 

forecasting horizon. For the two year lead period, the forecasting performance is poor 

(MAPE 20% or less) for all three horizons. The RMSE figures are consistent with the 

MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 24 months ahead 

forecasting horizon. 

 

Table 3.4.9 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Taiwan  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 10908 10.41 11827 12.65 6325 7.52 
2 year  18132 29.35 19603 33.99 19217 32.62 

 

 

3.4.10 Non-periodic forecast of arrivals from the UK 

Table 3.4.10 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from the UK. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%), for the one month ahead and 12 months ahead 

horizons and poor (MAPE 20% or less), for the 24 months ahead horizon. For the two 

year lead period, the performance is fair (MAPE between 10% and 20%), for the one 

month ahead and 12 months ahead horizons and poor (MAPE 20% or less), for the 24 

months ahead horizon. The RMSE figures are fairly consistent with the MAPE 

figures. Overall, the forecasting error increases with an increase in the lead period, 
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and the model forecasts are most accurate over the one-month-ahead forecasting 

horizon. 

 

Table 3.4.10 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from the UK  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 3167 13.48 3545 16.65 7675 40.78 
2 year  2868 13.61 3838 19.29 6106 31.98 

 

 

3.4.11 Non-periodic forecast of arrivals from the USA 

Table 3.4.11 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from the USA. For the one year lead period the forecasting performance is good 

(MAPE less than 10%), for the one month ahead, 12 months ahead and 24 months 

ahead forecasting horizons. For the two year lead period the forecasting performance 

is good (MAPE less than 10%) for the one month ahead and the 24 months ahead 

forecasting horizons, but is fair (MAPE between 10% and 20%) for the 12 months 

ahead forecasting horizon. The RMSE figures are consistent with the MAPE figures. 

Overall, the forecasting error increases with an increase in the lead period, and the 

model forecasts are most accurate over the 24 months-ahead forecasting horizon. 

 

Table 3.4.11 ANN Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from the USA  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 5766 6.44 6256 7.55 3184 3.75 
2 year  7354 9.39 7930 10.60 7189 9.35 
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3.5 MLP Non-Periodic Forecast with first and twelfth differences (∇1 ∇12) 

 

3.5.1 ∇1 ∇12 Non-periodic forecast of arrivals from all countries 

Table 3.5.1 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from all countries. For the one year lead period the forecasting performance is 

fair (MAPE between 10% and 20%), for the one month ahead, 12 months ahead and 

24 months ahead forecasting horizons. For the two year lead period, the forecasting 

performance is also fair (MAPE between 10% and 20%) for all three forecasting 

horizons. The RMSE figures are fairly consistent with the MAPE figures. Overall, the 

forecasting error increases with an increase in the lead period, and the model forecasts 

are most accurate over the 12 months ahead forecasting horizon. 

 

Table 3.5.1 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from All Countries  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 68204 13.45 50320 11.27 73072 16.14 
2 year  84950 17.62 64189 13.25 72604 16.22 

 

 

3.5.2 ∇1 ∇12 Non-periodic forecast of arrivals from Australia 

Table 3.5.2 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Australia. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%) for the one month ahead forecasting horizon, poor 

(MAPE 20% or less) for the 12 months ahead horizon and good (MAPE less than 

10%), for the 24 months ahead horizon. For the two year lead period, the forecasting 

performance is also fair (MAPE between 10% and 20%) for the one month ahead 

horizon, poor (MAPE 20% or less) for the 12 months ahead horizon and good (MAPE 
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less than 10%), for the 24 months ahead horizon. The RMSE figures are fairly 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the one-

month ahead forecasting horizon. 

 

Table 3.5.2 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Australia  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1917 11.82 4849 34.20 1369 8.47 
2 year  1982 11.56 3910 24.82 1711 9.84 

 

 

3.5.3 ∇1 ∇12 Non-periodic forecast of arrivals from Canada 

Table 3.5.3 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Canada. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%), for the one month ahead and 24 months ahead 

forecasting horizons and poor (MAPE 20% or less) for the 12 months ahead horizon. 

For the two year lead period, the forecasting performance is fair (MAPE between 10% 

and 20%), for the one month ahead horizon and poor (MAPE 20% or less) for the 12 

months ahead and 24 months ahead horizons. The RMSE figures are consistent with 

the MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 24 months-ahead 

forecasting horizon. 

 

Table 3.5.3 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Canada  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 2390 17.27 3118 27.08 1773 11.00 
2 year  2656 19.74 2912 24.49 2724 21.59 
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3.5.4 ∇1 ∇12 Non-periodic forecast of arrivals from China 

Table 3.5.4 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from China. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%), for the one month ahead forecasting horizon and 

poor (MAPE 20% or less) for the 12 months ahead and 24 months ahead horizons. 

For the two year lead period, the forecasting performance is poor (MAPE 20% or less) 

for all three horizons. The RMSE figures are consistent with the MAPE figures. 

Overall, the forecasting error increases with an increase in the lead period and the 

model forecasts are poor. 

 

Table 3.5.4 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from China  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 6249 12.29 9413 20.87 16658 41.67 
2 year  9468 28.98 10473 32.29 18640 46.75 

 

 

3.5.5 ∇1 ∇12 Non-periodic forecast of arrivals from France 

Table 3.5.5 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from France. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%), for the one month ahead, 12 months ahead and 24 

months ahead horizons. For the two year lead period, the forecasting performance is 

also fair (MAPE between 10% and 20%), for all three horizons. The RMSE figures 

are fairly consistent with the MAPE figures. Overall, the forecasting error increases 

with an increase in the lead period, and the model forecasts are most accurate over the 

12 months ahead forecasting horizon. 
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Table 3.5.5 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from France  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1558 17.58 1167 13.51 1549 19.49 
2 year  1786 19.88 1150 13.75 1382 16.28 

 

 

3.5.6 ∇1 ∇12 Non-periodic forecast of arrivals from Germany 

Table 3.5.6 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Germany. For the one year lead period the forecasting performance is 

good (MAPE less than 10%) for the one month ahead forecasting horizon and fair 

(MAPE between 10% and 20%), for the 12 months ahead and 24 months ahead 

horizons. For the two year lead period, the forecasting performance is fair (MAPE 

between 10% and 20%), for all three horizons. The RMSE figures are fairly consistent 

with the MAPE figures. Overall, the forecasting error increases as the lead period 

increases, and the model forecasts are most accurate over the 12 months-ahead 

forecasting horizon. 

 

Table 3.5.6 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Germany  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1151 8.91 1375 11.37 1430 14.21 
2 year  2223 17.88 1494 13.00 1352 13.51 

 

 

3.5.7 ∇1 ∇12 Non-periodic forecast of arrivals from Korea 

Table 3.5.7 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Korea. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%), for the one month ahead and 12 months ahead 

forecasting horizons and poor (MAPE 20% or less) for the 24 months ahead horizon. 
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For the two year lead period, the forecasting performance is also fair (MAPE between 

10% and 20%) for the one month ahead and 12 months ahead forecasting horizons, 

and poor (MAPE 20% or less) for the 24 months ahead horizon.  The RMSE figures 

are fairly consistent with the MAPE figures. Overall, the forecasting error increases 

with an increase in the lead period, and the model forecasts are most accurate over the 

one-month-ahead forecasting horizon. 

 

Table 3.5.7 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Korea  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 12082 10.23 17108 13.23 34840 29.28 
2 year  21695 12.48 22791 15.12 37311 26.23 

 

 

3.5.8 ∇1 ∇12 Non-periodic forecast of arrivals from Singapore 

Table 3.5.8 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Singapore. For the one year lead period the forecasting performance is 

poor (MAPE 20% or less) for the one month ahead and 24 months ahead forecasting 

horizons and fair (MAPE between 10% and 20%) for the 12 months ahead horizon. 

For the two year lead period, the forecasting performance is poor (MAPE 20% or less) 

for all three horizons.  The RMSE figures are fairly consistent with the MAPE figures. 

Overall, the forecasting error increases with an increase in the lead period and the 

model forecasts are poor. 

 

Table 3.5.8 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Singapore  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 3431 34.71 1488 13.91 2563 32.22 
2 year  3441 49.53 2164 28.52 3052 36.89 
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3.5.9 ∇1 ∇12 Non-periodic forecast of arrivals from Taiwan 

Table 3.5.9 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Taiwan. For the one year lead period the forecasting performance is poor 

(MAPE 20% or less) for the one month ahead forecasting horizon and fair (MAPE 

between 10% and 20%) for the 12 months ahead and 24 months ahead horizons. For 

the two year lead period, the forecasting performance is poor (MAPE 20% or less) for 

all three horizons.  The RMSE figures are fairly consistent with the MAPE figures. 

Overall, the forecasting error increases with an increase in the lead period, and the 

model forecasts are poor. 

 

Table 3.5.9 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Taiwan  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 49044 38.68 11840 13.30 10510 12.06 
2 year  47713 67.58 26937 43.84 22029 36.82 

 

 

3.5.10 ∇1 ∇12 Non-periodic forecast of arrivals from the UK 

Table 3.5.10 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from the UK. For the one year lead period the forecasting performance is poor 

(MAPE 20% or less) for the one month ahead, 12 months ahead and 24 months ahead  

forecasting horizons. For the two year lead period, the forecasting performance is also 

poor (MAPE 20% or less) for all three horizons.  The RMSE figures are fairly 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are poor. 
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Table 3.5.10 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from the UK  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 8454 33.51 10209 49.57 14159 70.67 
2 year  11116 37.17 17043 89.55 11367 55.75 

 

 

3.5.11 ∇1 ∇12 Non-periodic forecast of arrivals from the USA 

Table 3.5.11 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from the USA. For the one year lead period the forecasting performance is good 

(MAPE less than 10%), for the one month ahead, 12 months ahead and 24 months 

ahead forecasting horizons. For the two year lead period the forecasting performance 

is fair (MAPE between 10% and 20%) for all three horizons. The RMSE figures are 

fairly consistent with the MAPE figures. Overall, the forecasting error increases with 

an increase in the lead period, and the model forecasts are most accurate over the 24 

months ahead forecasting horizon. 

 

Table 3.5.11 ANN Differenced Non-Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from the USA  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 6731 8.10 6124 8.69 4368 5.76 
2 year  10772 13.27 12175 17.38 10308 14.60 
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3.6 MLP Partial Periodic Forecast  

 

3.6.1 Partial Periodic forecast of arrivals from all countries 

Table 3.6.1 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from all countries. For the one year lead period the forecasting performance is 

good (MAPE less than 10%) for the one month ahead, 12 months ahead and 24 

months ahead forecasting horizons. For the two year lead period the forecasting 

performance is fair (MAPE between 10% and 20%) for all three horizons horizons. 

The RMSE figures are fairly consistent with the MAPE figures. Overall, the 

forecasting error increases with an increase in the lead period, and the model forecasts 

are most accurate over the one-month-ahead forecasting horizon. 

 

Table 3.6.1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from All Countries  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 24943 4.87 31537 6.46 35722 7.14 
2 year  55528 10.24 55720 10.38 55688 11.38 

 

 

3.6.2 Partial periodic forecast of arrivals from Australia 

Table 3.6.2 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Australia. For the one year lead period the forecasting performance is 

good (MAPE less than 10%) for the one month ahead, 12 months ahead and 24 

months ahead forecasting horizons. For the two year lead period the forecasting 

performance is also good (MAPE less than 10%) for all three horizons. The RMSE 

figures are fairly consistent with the MAPE figures. Overall, the forecasting error 
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increases with an increase in the lead period, and the model forecasts are most 

accurate over the 12 months-ahead forecasting horizon. 

 

Table 3.6.2 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Australia  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 598 3.68 465 2.98 886 5.56 
2 year  992 5.38 923 4.92 1245 7.39 

 

 

3.6.3 Partial Periodic forecast of arrivals from Canada 

Table 3.6.3 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Canada. For the one year lead period the forecasting performance is good 

(MAPE less than 10%) for the one month ahead, 12 months ahead and 24 months 

ahead forecasting horizons. For the two year lead period the forecasting performance 

is also mostly good (MAPE less than 10%) for all three horizons. The RMSE figures 

are fairly consistent with the MAPE figures. Overall, the forecasting error increases 

with an increase in the lead period, and the model forecasts are most accurate over the 

12 months-ahead forecasting horizon. 

 

Table 3.6.3 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Canada  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 758 5.36 730 5.10 1047 7.79 
2 year  1305 9.00 1339 8.85 1359 10.01 
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3.6.4 Partial Periodic forecast of arrivals from China 

Table 3.6.4 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Taiwan. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%) for the one month ahead and the 12 months ahead 

forecasting horizons and poor (MAPE 20% or less) for and 24 months ahead horizon. 

For the two year lead period, the forecasting performance is poor (MAPE 20% or less) 

for all three horizons.  The RMSE figures are fairly consistent with the MAPE figures. 

Overall, the forecasting error increases with an increase in the lead period, and the 

model forecasts are most accurate over the 12 months-ahead forecasting horizon. 

 

Table 3.6.4 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from China  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 4709 10.13 5483 11.72 9405 20.75 
2 year  9099 28.34 8339 26.05 11230 32.83 

 

 

3.6.5 Partial Periodic forecast of arrivals from France 

Table 3.6.5 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from France. For the one year lead period the forecasting performance is good 

(MAPE less than 10%) for the one month ahead, 12 months ahead and 24 months 

ahead forecasting horizons. For the two year lead period the forecasting performance 

is also good (MAPE less than 10%) for all three horizons. The RMSE figures are 

fairly consistent with the MAPE figures. Overall, the forecasting error increases with 

an increase in the lead period, and the model forecasts are most accurate over the 12 

months-ahead forecasting horizon. 
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Table 3.6.5 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from France  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 411 4.49 408 4.07 734 8.46 
2 year  786 8.00 810 7.87 767 8.79 

 

 

3.6.6 Partial Periodic forecast of arrivals from Germany 

Table 3.6.6 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Germany. For the one year lead period the forecasting performance is 

good (MAPE less than 10%) for the one month ahead, 12 months ahead and 24 

months ahead forecasting horizons. For the two year lead period the forecasting 

performance is also good (MAPE less than 10%) for all three horizons. The RMSE 

figures are fairly consistent with the MAPE figures. Overall, the forecasting error 

increases with an increase in the lead period, and the model forecasts are most 

accurate over the 12 months-ahead forecasting horizon. 

 

Table 3.6.6 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Germany  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1015 7.60 1019 7.34 1053 8.07 
2 year  1076 9.73 1077 9.48 990 8.60 

 

 

3.6.7 Partial Periodic forecast of arrivals from Korea 

Table 3.6.7 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Korea. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%) for the one month ahead and the 12 months ahead 

forecasting horizons and poor (MAPE 20% or less) for and 24 months ahead horizon. 
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For the two year lead period, the forecasting performance is also fair (MAPE between 

10% and 20%) for the one month ahead and the 12 months ahead forecasting 

horizons, and poor (MAPE 20% or less) for and 24 months ahead horizon.  The 

RMSE figures are fairly consistent with the MAPE figures. Overall, the forecasting 

error increases with an increase in the lead period, and the model forecasts are most 

accurate over the one-month ahead forecasting horizon. 

 

Table 3.6.7 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Korea  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 17910 11.48 18324 12.74 27127 21.60 
2 year  21062 12.74 25700 15.43 35624 24.07 

 

 

3.6.8 Partial Periodic forecast of arrivals from Singapore 

Table 3.6.8 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Singapore. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%) for the one month ahead and the 12 months ahead 

and 24 months ahead horizons. For the two year lead period, the forecasting 

performance is also poor (MAPE 20% or less) for all three horizons. The RMSE 

figures are fairly consistent with the MAPE figures. Overall, the forecasting error 

increases with an increase in the lead period, and the model forecasts are most 

accurate over the 24 months ahead forecasting horizon. 

 

Table 3.6.8 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Singapore  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1480 16.33 1455 16.70 1319 13.92 
2 year  1893 25.94 1765 25.22 1934 25.47 
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3.6.9 Partial Periodic forecast of arrivals from Taiwan 

Table 3.6.9 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from Taiwan. For the one year lead period the forecasting performance is good 

(MAPE less than 10%) for the one month ahead and the 12 months ahead and 24 

months ahead horizons. For the two year lead period, the forecasting performance is 

also poor (MAPE 20% or less) for all three horizons. The RMSE figures are fairly 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the one-

month-ahead forecasting horizon. 

 

Table 3.6.9 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Taiwan  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 6383 7.15 6522 7.46 8291 8.74 
2 year  18696 31.55 18532 31.63 21118 35.15 

 

 

3.6.10 Partial Periodic forecast of arrivals from the UK 

Table 3.6.10 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from the UK. For the one year lead period the forecasting performance is poor 

(MAPE 20% or less) for the one month ahead, the 12 months ahead and 24 months 

ahead forecasting horizons. For the two year lead period, the forecasting performance 

is fair (MAPE between 10% and 20%) for the one month ahead horizon, and poor 

(MAPE 20% or less) for the 12 months ahead and 24 months ahead forecasting 

horizons. The RMSE figures are fairly consistent with the MAPE figures. Overall, the 

forecasting error is inconsistent and the model forecasts are poor. 
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Table 3.6.10 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from the UK  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 3967 20.00 3969 20.96 17523 97.44 
2 year  3654 17.95 3828 20.06 14564 81.55 

 

 

3.6.11 Partial Periodic forecast of arrivals from the USA 

Table 3.6.11 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from the USA. For the one year lead period the forecasting performance is good 

(MAPE less than 10%) for the one month ahead, 12 months ahead and 24 months 

ahead forecasting horizons. For the two year lead period the forecasting performance 

is also good (MAPE less than 10%) for all three horizons. The RMSE figures are 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the one-

month-ahead forecasting horizon. 

 

Table 3.6.11 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from the USA  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 4375 5.24 4769 6.07 2926 4.13 
2 year  6644 8.57 7367 9.81 7628 9.85 
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3.7 MLP First Differenced (∇1 ) Partial Periodic Forecast  

 

3.7.1 ∇1 Partial Periodic forecast of arrivals from all countries 

Table 3.7.1 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from all countries. For the one year lead period the forecasting 

performance is fair (MAPE between 10% and 20%) for the one month ahead and the 

12 months ahead forecasting horizons and poor (MAPE 20% or less) for and 24 

months ahead horizon. For the two year lead period, the forecasting performance is 

also fair (MAPE between 10% and 20%) for the one month ahead and the 12 months 

ahead forecasting horizons and poor (MAPE 20% or less) for and 24 months ahead 

horizon.  The RMSE figures are fairly consistent with the MAPE figures. Overall, the 

forecasting error increases with an increase in the lead period, and the model forecasts 

are most accurate over the one-month-ahead forecasting horizon. 

 

Table 3.7.1 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from All Countries  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 71005 15.71 85400 19.38 98663 22.37 
2 year  74336 16.45 87939 19.40 100756 21.65 

 

 

3.7.2 ∇1 Partial Periodic forecast of arrivals from Australia 

Table 3.7.2 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from Australia. For the one year lead period the forecasting 

performance is fair (MAPE between 10% and 20%) for the one month ahead and the 

12 months ahead forecasting horizons and poor (MAPE 20% or less) for and 24 

months ahead horizon. For the two year lead period, the forecasting performance is 
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also fair (MAPE between 10% and 20%) for the one month ahead and the 12 months 

ahead forecasting horizons and poor (MAPE 20% or less) for and 24 months ahead 

horizon.  The RMSE figures are fairly consistent with the MAPE figures. Overall, the 

forecasting error increases with an increase in the lead period, and the model forecasts 

are most accurate over the 12 months ahead forecasting horizon. 

 

Table 3.7.2 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Australia  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 2415 15.74 1494 10.17 3554 25.33 
2 year  2480 15.45 2829 16.98 3527 23.66 

 

 

3.7.3 ∇1 Partial Periodic forecast of arrivals from Canada 

Table 3.7.3 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from Canada. For the one year lead period the forecasting 

performance is poor (MAPE 20% or less) for the one month ahead forecasting 

horizon, good (MAPE less than 10%) for the 12 months ahead forecasting horizon 

and fair (MAPE between 10% and 20%) for the 24 months ahead horizon. For the two 

year lead period, the forecasting performance is fair (MAPE between 10% and 20%), 

for all three horizons.  The RMSE figures are fairly consistent with the MAPE figures. 

Overall, the forecasting error increases with an increase in the lead period, and the 

model forecasts are most accurate over the 12 months ahead forecasting horizon. 

 

Table 3.7.3 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Canada  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 2796 20.96 1153 8.12 2156 17.26 
2 year  2253 17.04 1910 14.57 1981 16.52 
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3.7.4 ∇1 Partial Periodic forecast of arrivals from China 

Table 3.7.4 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from China. For the one year lead period the forecasting performance 

is poor (MAPE 20% or less) for the one month ahead, the 12 months ahead and the 24 

months ahead horizons. For the two year lead period, the forecasting performance is 

also poor (MAPE 20% or less) for all three horizons.  The RMSE figures are 

consistent with the MAPE figures. Overall, the model forecasts are poor. 

 

Table 3.7.4 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from China  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 14198 34.06 21044 51.62 20663 50.89 
2 year  14205 38.44 20474 51.56 21828 52.61 

 

 

3.7.5 ∇1 Partial Periodic forecast of arrivals from France 

Table 3.7.5 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from France. For the one year lead period the forecasting 

performance is fair (MAPE between 10% and 20%) for the one month ahead and the 

12 months ahead forecasting horizons and poor (MAPE 20% or less) for the 24 

months ahead horizon. For the two year lead period, the forecasting performance is 

fair (MAPE between 10% and 20%) for all three horizons.  The RMSE figures are 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the 12 

months ahead forecasting horizon. 
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Table 3.7.5 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from France  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1545 19.30 1154 14.67 1743 23.20 
2 year  1368 15.94 1429 16.98 1496 18.46 

 

 

3.7.6 ∇1 Partial Periodic forecast of arrivals from Germany 

Table 3.7.6 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from Germany. For the one year lead period the forecasting 

performance is fair (MAPE between 10% and 20%) for the one month ahead, the 12 

months ahead and the 24 months ahead forecasting horizons. For the two year lead 

period, the forecasting performance is fair (MAPE between 10% and 20%) for all 

three horizons.  The RMSE figures are fairly consistent with the MAPE figures. 

Overall, the forecasting error increases with an increase in the lead period, and the 

model forecasts are most accurate over the 24 months ahead forecasting horizon. 

 

Table 3.7.6 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Germany  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1448 14.12 1394 11.95 1255 10.37 
2 year  1365 13.49 1443 12.55 1239 10.53 

 

 

3.7.7 ∇1 Partial Periodic forecast of arrivals from Korea 

Table 3.7.7 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from Korea. For the one year lead period the forecasting 

performance is poor (MAPE 20% or less) for the one month ahead, the 12 months 

ahead and the 24 months ahead horizons. For the two year lead period, the forecasting 
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performance is also poor (MAPE 20% or less) for all three horizons.  The RMSE 

figures are fairly consistent with the MAPE figures. Overall, the model forecasts are 

poor. 

 

Table 3.7.7 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Korea  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 29241 25.42 31518 28.17 41872 37.07 
2 year  33792 25.34 36208 28.08 41522 32.46 

 

 

3.7.8 ∇1 Partial Periodic forecast of arrivals from Singapore 

Table 3.7.8 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from Singapore. For the one year lead period the forecasting 

performance is fair (MAPE between 10% and 20%) for the one month ahead 

forecasting horizon and the 24 months ahead and poor (MAPE 20% or less) for and 

12 months ahead horizon. For the two year lead period, the forecasting performance is 

also poor (MAPE 20% or less) for all three horizons.  The RMSE figures are fairly 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the one-

month-ahead forecasting horizon. 

 

Table 3.7.8 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Singapore  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1362 14.29 1867 20.43 1616 16.35 
2 year  1788 24.02 1923 26.52 2044 26.01 
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3.7.9 ∇1 Partial Periodic forecast of arrivals from Taiwan 

Table 3.7.9 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from Taiwan. For the one year lead period the forecasting 

performance is fair (MAPE between 10% and 20%) for the one month ahead and the 

24 months ahead forecasting horizons and good (MAPE less than 10%) for the 12 

months ahead horizon. For the two year lead period, the forecasting performance is 

poor (MAPE 20% or less) for all three horizons.  The RMSE figures are consistent 

with the MAPE figures. Overall, the forecasting error increases with an increase in the 

lead period, and the model forecasts are most accurate over the 12 months ahead 

forecasting horizon, for a one-year lead period. 

 

Table 3.7.9 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from Taiwan  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 9523 10.39 7607 8.69 13754 17.72 
2 year  19992 35.48 18934 33.04 21444 35.18 

 

 

3.7.10 ∇1 Partial Periodic forecast of arrivals from the UK 

Table 3.7.10 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from the UK. For the one year lead period the forecasting 

performance is poor (MAPE 20% or less) for the one month ahead, the 12 months 

ahead and the 24 months ahead horizons. For the two year lead period, the forecasting 

performance is also poor (MAPE 20% or less) for all three horizons.  The RMSE 

figures are consistent with the MAPE figures. Overall, the model forecasts are poor. 
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Table 3.7.10 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from the UK  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 14745 76.71 9762 51.56 19815 108.73 
2 year  14878 83.22 9157 51.32 15778 85.04 

 

 

3.7.11 ∇1 Partial Periodic forecast of arrivals from the USA 

Table 3.7.11 shows the differenced non-periodic forecasting performance for tourist 

arrivals to Japan from the USA. For the one year lead period the forecasting 

performance is good (MAPE less than 10%) for the one month ahead, the 12 months 

ahead and the 24 months ahead forecasting horizons. For the two year lead period, the 

forecasting performance is good (MAPE less than 10%) for the one month ahead and 

the 12 months ahead forecasting horizons and fair (MAPE between 10% and 20%) for 

the 24 months ahead horizon.  The RMSE figures are consistent with the MAPE 

figures. Overall, the forecasting error increases with an increase in the lead period, 

and the model forecasts are most accurate over the 12 months ahead forecasting 

horizon. 

 

Table 3.7.11 ∇1 Partial Periodic Model Forecasting Performance  
 for Tourist Arrivals to Japan from the USA  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 5597 7.58 5026 6.89 6713 9.73 
2 year  7074 9.82 6151 9.05 7639 11.34 
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3.8 MLP Periodic Forecast  

 

3.8.1 Periodic forecast of arrivals from all countries 

Table 3.8.1 shows the periodic forecasting performance for tourist arrivals to Japan 

from all countries. For the one year lead period the forecasting performance is good 

(MAPE less than 10%) for the 12 months ahead and the 24 months ahead forecasting 

horizons. For the two year lead period, the forecasting performance is fair (MAPE 

between 10% and 20%) for both horizons.  The RMSE figures are fairly consistent 

with the MAPE figures. Overall, the forecasting error increases with an increase in the 

lead period, and the model forecasts are most accurate over the 12 months ahead 

forecasting horizon. 

 

Table 3.8.1 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from All Countries  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 35420 6.85 33861 7.04 
2 year  n/a n/a 57341 10.73 54170 10.87 

 

 

3.8.2 Periodic forecast of arrivals from Australia 

Table 3.8.2 shows the periodic forecasting performance for tourist arrivals to Japan 

from Australia. For the one year lead period the forecasting performance is good 

(MAPE less than 10%) for the 12 months ahead forecasting horizon and fair (MAPE 

between 10% and 20%) for the 24 months ahead horizon. For the two year lead 

period, the forecasting performance is also good (MAPE less than 10%) for the 12 

months ahead forecasting horizon and fair (MAPE between 10% and 20%) for the 24 

months ahead horizon. The RMSE figures are fairly consistent with the MAPE 
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figures. Overall, the forecasting error increases with an increase in the lead period, 

and the model forecasts are most accurate over the 12 months ahead forecasting 

horizon. 

 

Table 3.8.2 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Australia  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 732 3.59 2054 11.58 
2 year  n/a n/a 2282 6.82 2325 13.38 

 

 

3.8.3 Periodic forecast of arrivals from Canada 

Table 3.8.3 shows the periodic forecasting performance for tourist arrivals to Japan 

from Canada. For the one year lead period the forecasting performance is good 

(MAPE less than 10%) for the 12 months ahead and the 24 months ahead forecasting 

horizons. For the two year lead period, the forecasting performance is fair (MAPE 

between 10% and 20%) for both horizons.  The RMSE figures are fairly consistent 

with the MAPE figures. Overall, the forecasting error increases with an increase in the 

lead period, and the model forecasts are most accurate over the 12 months ahead 

forecasting horizon. 

 

Table 3.8.3 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Canada  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 1084 7.44 970 6.61 
2 year  n/a n/a 1751 12.58 2200 14.29 
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3.8.4 Periodic forecast of arrivals from China 

Table 3.8.4 shows the periodic forecasting performance for tourist arrivals to Japan 

from China. For the one year lead period the forecasting performance fair (MAPE 

between 10% and 20%) for the 12 months ahead and the 24 months ahead forecasting 

horizons. For the two year lead period, the forecasting performance is poor (MAPE 

20% or more) for both horizons.  The RMSE figures are consistent with the MAPE 

figures. Overall, the forecasting error increases with an increase in the lead period, 

and the model forecasts are most accurate over the 12 months ahead forecasting 

horizon. 

 

Table 3.8.4 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from China  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 5419 12.32 7877 17.91 
2 year  n/a n/a 8584 26.83 10007 30.37 

 

 

3.8.5 Periodic forecast of arrivals from France 

Table 3.8.5 shows the periodic forecasting performance for tourist arrivals to Japan 

from France. For the one year lead period the forecasting performance is good 

(MAPE less than 10%) for the 12 months ahead and the 24 months ahead forecasting 

horizons. For the two year lead period, the forecasting performance is also good 

(MAPE less than 10%) for both horizons.  The RMSE figures are consistent with the 

MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 12 months ahead 

forecasting horizon. 
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Table 3.8.5 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from France  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 338 3.32 491 5.33 
2 year  n/a n/a 990 9.46 799 8.03 

 

 

3.8.6 Periodic forecast of arrivals from Germany 

Table 3.8.6 shows the periodic forecasting performance for tourist arrivals to Japan 

from Germany. For the one year lead period the forecasting performance is good 

(MAPE less than 10%) for the 12 months ahead forecasting horizon and fair (MAPE 

between 10% and 20%) for the 24 months ahead horizon. For the two year lead 

period, the forecasting performance is fair (MAPE between 10% and 20%) for both 

horizons.  The RMSE figures are consistent with the MAPE figures. Overall, the 

forecasting error increases with an increase in the lead period, and the model forecasts 

are most accurate over the 12 months-ahead forecasting horizon. 

 

Table 3.8.6 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Germany  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 1115 8.37 1218 10.20 
2 year  n/a n/a 1299 12.14 1239 11.75 

 

 

3.8.7 Periodic forecast of arrivals from Korea 

Table 3.8.6 shows the periodic forecasting performance for tourist arrivals to Japan 

from Korea. For the one year lead period the forecasting performance is good (MAPE 

less than 10%) for the 12 months ahead forecasting horizon and fair (MAPE between 

10% and 20%) for the 24 months ahead horizon. For the two year lead period, the 
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forecasting performance is fair (MAPE between 10% and 20%) for both horizons.  

The RMSE figures are consistent with the MAPE figures. Overall, the forecasting 

error increases with an increase in the lead period, and the model forecasts are most 

accurate over the 12 months ahead forecasting horizon. 

 

Table 3.8.7 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Korea  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 11924 9.18 19900 15.58 
2 year  n/a n/a 16603 11.56 26709 17.59 

 

 

3.8.8 Periodic forecast of arrivals from Singapore 

Table 3.8.8 shows the periodic forecasting performance for tourist arrivals to Japan 

from Singapore. For the one year lead period the forecasting performance is fair 

(MAPE between 10% and 20%) for the 12 months ahead and the 24 months ahead 

forecasting horizons. For the two year lead period, the forecasting performance is 

poor (MAPE 20% or more) for both horizons.  The RMSE figures are fairly consistent 

with the MAPE figures. Overall, the forecasting error increases with an increase in the 

lead period, and the model forecasts are most accurate over the 24 months ahead 

forecasting horizon. 

 

Table 3.8.8 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Singapore  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 1326 15.01 1107 12.59 
2 year  n/a n/a 1646 24.18 1722 21.95 
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3.8.9 Periodic forecast of arrivals from Taiwan 

Table 3.8.9 shows the periodic forecasting performance for tourist arrivals to Japan 

from Taiwan. For the one-year lead period the forecasting performance good (MAPE 

less than 10%) for the 12 months ahead and the 24 months-ahead forecasting 

horizons. For the two year lead period, the forecasting performance is poor (MAPE 

20% or more) for both horizons.  The RMSE figures are fairly consistent with the 

MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 12 months-ahead 

forecasting horizon. 

 

Table 3.8.9 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from Taiwan  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 7429 9.13 8684 8.47 
2 year  n/a n/a 19077 33.65 22397 37.05 

 

 

3.8.10 Periodic forecast of arrivals from the UK 

Table 3.8.10 shows the periodic forecasting performance for tourist arrivals to Japan 

from the UK. For the one year lead period the forecasting performance is poor 

(MAPE 20% or more) for the 12 months ahead and the 24 months ahead forecasting 

horizons. For the two year lead period, the forecasting performance is also poor 

(MAPE 20% or more) for both horizons.  The RMSE figures are consistent with the 

MAPE figures. Overall, the model forecasts are poor. 
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Table 3.8.10 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from the UK  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 5672 22.21 11019 58.10 
2 year  n/a n/a 4844 21.47 8721 45.17 

 

 

3.8.11 Periodic forecast of arrivals from the USA 

Table 3.8.11 shows the periodic forecasting performance for tourist arrivals to Japan 

from the USA. For the one-year lead period the forecasting performance is good 

(MAPE less than 10%) for the 12 months ahead and the 24 months ahead forecasting 

horizons. For the two-year lead period, the forecasting performance is fair (MAPE 

between 10% and 20%) for both horizons.  The RMSE figures are consistent with the 

MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 24 months ahead 

forecasting horizon. 

 

Table 3.8.11 ANN Periodic Forecasting Performance  
 for Tourist Arrivals to Japan from the USA  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year n/a n/a 5411 7.05 3042 4.32 
2 year  n/a n/a 7960 10.72 7905 10.21 
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3.9 Naïve Forecasts 

 

Forecast for the one month ahead horizon is the same as that for the 12 months ahead 

horizon as the data are seasonal. 

 

3.9.1 Naïve forecast of arrivals from all countries 

Table 3.9.1 shows the naive forecasting performance for tourist arrivals to Japan from 

all countries. For the one-year lead period the forecasting performance is good 

(MAPE less than 10%) for the 12 months ahead and 24 months ahead forecasting 

horizons. For the two-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for both horizons. The RMSE figures are consistent with the 

MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 12 months ahead 

forecasting horizon. 

 

Table 3.9.1 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from All Countries  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 47084 9.92 47084 9.92 43323 9.26 
2 year  59512 12.30 59512 12.30 66744 13.93 

 

 

3.9.2 Naïve forecast of arrivals from Australia 

Table 3.9.2 shows the naive forecasting performance for tourist arrivals to Japan from 

Australia. For the one-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for the 12 months ahead and 24 months ahead forecasting 

horizons. For the two-year lead period the forecasting performance is good (MAPE 
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less than 10%) for the 12 months ahead horizon and fair (MAPE between 10% and 

20%) for the 24 months ahead horizon. The RMSE figures are consistent with the 

MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 12 months ahead 

forecasting horizon. 

 

Table 3.9.2 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from Australia  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1455 10.07 1455 10.07 1748 10.80 
2 year  1351 8.62 1351 8.62 2087 13.02 

 

 

3.9.3 Naïve forecast of arrivals from Canada 

Table 3.9.3 shows the naive forecasting performance for tourist arrivals to Japan from 

Canada. For the one-year lead period the forecasting performance is good (MAPE less 

than 10%) for the 12 months ahead horizon and fair (MAPE between 10% and 20%) 

for the 24 months ahead horizon.  For the two-year lead period the forecasting 

performance is fair (MAPE between 10% and 20%) for the 12 months ahead and 24 

months ahead forecasting horizons. The RMSE figures are consistent with the MAPE 

figures. Overall, the forecasting error increases with an increase in the lead period, 

and the model forecasts are most accurate over the 12 months ahead forecasting 

horizon. 

 

Table 3.9.3 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from Canada  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1120 8.60 1120 8.60 1372 10.37 
2 year  1280 10.19 1280 10.19 1583 12.41 
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3.9.4 Naïve forecast of arrivals from China 

Table 3.9.4 shows the naive forecasting performance for tourist arrivals to Japan from 

China. For the one-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for the 12 months ahead horizon and poor (MAPE 20% or 

more) for the 24 months ahead horizon.  For the two-year lead period the forecasting 

performance is poor (MAPE 20% or more) for both horizons. The RMSE figures are 

fairly consistent with the MAPE figures. Overall, the forecasting error increases with 

an increase in the lead period, and the model forecasts are poor. 

 

Table 3.9.4 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from China  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 5887 14.21 5887 14.21 9318 21.00 
2 year  8476 27.30 8476 27.30 10954 32.48 

 

 

3.9.5 Naïve forecast of arrivals from France 

Table 3.9.5 shows the naive forecasting performance for tourist arrivals to Japan from 

Canada. For the one-year lead period the forecasting performance is good (MAPE less 

than 10%) for the 12 months ahead horizon and fair (MAPE between 10% and 20%) 

for the 24 months ahead horizon.  For the two-year lead period, the forecasting 

performance is also good (MAPE less than 10%) for the 12 months ahead horizon and 

fair (MAPE between 10% and 20%) for the 24 months ahead horizon. The RMSE 

figures are consistent with the MAPE figures. Overall, the forecasting error increases 

with an increase in the lead period, and the model forecasts are most accurate over the 

12 months ahead forecasting horizon. 
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Table 3.9.5 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from France  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 585 6.34 585 6.34 940 11.93 
2 year  852 9.40 852 9.40 889 10.65 

 

 

3.9.6 Naïve forecast of arrivals from Germany 

Table 3.9.6 shows the naive forecasting performance for tourist arrivals to Japan from 

Germany. For the one-year lead period the forecasting performance is good (MAPE 

less than 10%) for the 12 months-ahead horizon and fair (MAPE between 10% and 

20%) for the 24 months ahead horizon.  For the two-year lead period the forecasting 

performance is fair (MAPE between 10% and 20%) for both horizons. The RMSE 

figures are fairly consistent with the MAPE figures. Overall, the forecasting error 

increases with an increase in the lead period, and the model forecasts are most 

accurate over the 12 months ahead forecasting horizon. 

 

Table 3.9.6 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from Germany  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1092 7.87 1092 7.87 1317 10.30 
2 year  1247 11.20 1247 11.20 1268 10.97 

 

 

3.9.7 Naïve forecast of arrivals from Korea 

Table 3.9.7 shows the naive forecasting performance for tourist arrivals to Japan from 

Korea. For the one-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for the 12 months ahead and 24 months ahead forecasting 

horizons. For the two-year lead period, the forecasting performance is also fair 

(MAPE between 10% and 20%) for both horizons. The RMSE figures are consistent 
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with the MAPE figures. Overall, the forecasting error increases with an increase in the 

lead period, and the model forecasts are most accurate over the 12 months ahead 

forecasting horizon. 

 

Table 3.9.7 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from Korea  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 13113 10.51 13113 10.51 18600 15.90 
2 year  17606 12.75 17606 12.75 26280 18.34 

 

 

3.9.8 Naïve forecast of arrivals from Singapore 

Table 3.9.8 shows the naive forecasting performance for tourist arrivals to Japan from 

Singapore. For the one-year lead period the forecasting performance is poor (MAPE 

20% or more) for the 12 months-ahead horizon and good (MAPE less than 10%) for 

the 24 months ahead horizon.  For the two-year lead period the forecasting 

performance is poor (MAPE 20% or more) for both horizons. The RMSE figures are 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are poor. 

 

Table 3.9.8 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from Singapore  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1644 21.34 1644 21.34 993 9.09 
2 year  1794 27.70 1794 27.70 1968 25.86 
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3.9.9 Naïve forecast of arrivals from Taiwan 

Table 3.9.9 shows the naive forecasting performance for tourist arrivals to Japan from 

Taiwan. For the one-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for the 12 months ahead and 24 months ahead forecasting 

horizons. For the two-year lead period, the forecasting performance is also poor 

(MAPE 20% or more) for both horizons. The RMSE figures are fairly consistent with 

the MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 24 months ahead 

forecasting horizon but poor for the 2-year lead period. 

 

Table 3.9.9 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from Taiwan  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 12620 14.17 12620 14.17 9149 10.55 
2 year  19842 35.43 19842 35.43 20045 34.39 

 

 

3.9.10 Naïve forecast of arrivals from the UK 

Table 3.9.10 shows the naive forecasting performance for tourist arrivals to Japan 

from the UK. For the one-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for the 12 months-ahead horizon and poor (MAPE 20% or 

more) for the 24 months ahead horizon.  For the two-year lead period, the forecasting 

performance is also fair (MAPE between 10% and 20%) for the 12 months ahead 

horizon and poor (MAPE 20% or more) for the 24 months ahead horizon. The RMSE 

figures are fairly consistent with the MAPE figures. Overall, the forecasting error 

increases with an increase in the lead period, and the model forecasts are most 

accurate over the 12 months ahead forecasting horizon. 
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Table 3.9.10 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from the UK  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 3815 12.72 3815 12.72 14877 79.46 
2 year  3817 13.50 3817 13.50 10569 43.31 

 

 

3.9.11 Naïve forecast of arrivals from the USA 

Table 3.9.11 shows the naive forecasting performance for tourist arrivals to Japan 

from the USA. For the one-year lead period the forecasting performance is good 

(MAPE less than 10%) for the 12 months ahead and 24 months ahead forecasting 

horizons. For the two-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for the 12 months-ahead horizon and good (MAPE less than 

10%) for the 24 months ahead horizon. The RMSE figures are fairly consistent with 

the MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 24 months ahead 

forecasting horizon. 

 

Table 3.9.11 Naive Forecasting Performance  
 for Tourist Arrivals to Japan from the USA  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 6382 7.97 6382 7.97 2586 2.89 
2 year  8072 10.38 8072 10.38 8352 9.88 
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3.10 Differenced and Undifferenced MLP Model Comparison 

 

Table 3.10.1 shows a comparison of the one-month ahead forecasting performance of 

the differenced and undifferenced non-periodic MLP models and a comparison of the 

differenced and undifferenced partial periodic MLP models. Of the non-periodic 

models the undifferenced model is better than the differenced model as it has the 

lower MAPE in 8 (36%) of 22 forecasts while the differenced model has the lower 

MAPE in none (0%) of the forecasts. The 22 forecasts were obtained for 1 and 2 year 

lead periods using 11 data series. Of the partial periodic models the undifferenced 

model is better than the differenced model as it has the lower MAPE in 12 (55%) of 

22 forecasts, while the differenced model has the lower MAPE in 2 (9%) of the 

forecasts. 

 

 The undifferenced non-periodic model also has a mean MAPE of 12.5%, the mean 

MAPE of the differenced non-periodic model being 22.8%. The paired sample p-

value of 0.01 indicates that the mean difference in MAPE of the undifferenced non-

periodic model and the differenced model is significant. The undifferenced partial 

periodic model also has a mean MAPE of 12.0%, the mean MAPE of the differenced 

partial periodic model being 25.0%. The paired sample p-value of 0.01 indicates that 

the mean difference in MAPE of the undifferenced partial periodic model and the 

differenced model is significant. On the level of accuracy achieved, the undifferenced 

non-periodic model has 10 (50%) forecasts with MAPE figures less than 10%, while 

the differenced non-periodic model has 2 (9%) forecasts with MAPE less than 10%. 

The undifferenced partial periodic model has 12 (55%) forecasts with MAPE figures 
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less than 10%, while the differenced partial periodic model has 2 (9%) forecasts with 

MAPE less than 10%. 

 

Table 3.10.2 shows a comparison of the 12-months-ahead forecasting performance of 

the differenced and undifferenced non-periodic MLP models and a comparison of the 

differenced and undifferenced partial periodic MLP models. Of the non-periodic 

models the undifferenced model is better than the differenced model as it has the 

lower MAPE in 6 (27%) of 22 forecasts while the differenced model has the lower 

MAPE in 1 (5%) of the forecasts. Of the partial periodic models the undifferenced 

model is better than the differenced model as it has the lower MAPE in 14 (64%) of 

22 forecasts while the differenced model has the lower MAPE in 1 (5%) of the 

forecasts. 

 

 The undifferenced non-periodic model also has a mean MAPE of 13.6%, the mean 

MAPE of the differenced non-periodic model being 24.2%. The paired sample p-

value of 0.01 indicates that the mean difference in MAPE of the undifferenced non-

periodic model and the differenced model is significant. The undifferenced partial 

periodic model also has a mean MAPE of 12.3%, the mean MAPE of the differenced 

partial periodic model being 23.3%. The paired sample p-value of 0.01 indicates that 

the mean difference in MAPE of the undifferenced partial periodic model and the 

differenced model is significant.  On the level of accuracy achieved, the undifferenced 

non-periodic model has made 9 (41%) forecasts with MAPE figures less than 10%, 

while the differenced non-periodic model has 1 (5%) forecast with MAPE less than 

10%. The undifferenced partial periodic model has 12 (55%) forecasts with MAPE 
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figures less than 10%, while the differenced partial periodic model has 4 (18%) 

forecasts with MAPE less than 10%. 

 

Table 3.10.3 shows a comparison of the 24 months ahead forecasting performance of 

the differenced and undifferenced non-periodic MLP models and a comparison of the 

differenced and undifferenced partial periodic MLP models. Of the non-periodic 

models the undifferenced model is better than the differenced model, as it has the 

lower MAPE in 16 (73%) of 22 forecasts while the differenced model has the lower 

MAPE in none (0%) of the forecasts. Of the partial periodic models the undifferenced 

model is better than the differenced model as it has the lower MAPE in 6 (27%) of 22 

forecasts while the differenced model has the lower MAPE in none (0%) of the 

forecasts. 

 

The undifferenced non-periodic model also has a mean MAPE of 15.4%, the mean 

MAPE of the differenced non-periodic model being 25.2%. The paired sample p-

value of 0.01 indicates that the mean difference in MAPE of the undifferenced non-

periodic model and the differenced model is significant.  The undifferenced partial 

periodic model also has a mean MAPE of 20.8%, the mean MAPE of the differenced 

partial periodic model being 30.6%. The paired sample p-value of 0.01 indicates that 

the mean difference in MAPE of the undifferenced partial periodic model and the 

differenced model is significant.  On the level of accuracy achieved, the undifferenced 

non-periodic model has 10 (45%) forecasts with MAPE figures less than 10%, while 

the differenced non-periodic model has 3 (14%) forecasts with MAPE less than 10%. 

The undifferenced partial periodic model has 11 (50%) forecasts with MAPE figures 
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less than 10%, while the differenced partial periodic model has 1 (5%) forecast with 

MAPE less than 10%. 

 

Table 3.10.1 Univariate one month ahead Forecasting Performance 
  of differenced and undifferenced Neural Network models 
    

Country Forecast Non-Periodic NP Differenced Partial Periodic PP Differenced 
 Lead RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

All 1 year 30599 5.5 68204 13.4 24943 4.9 71005 15.7
 2 year 53203 9.8 84950 17.6 55528 10.2 74336 16.5

Australia 1 year 895 5.1 1917 11.8 598 3.7 2415 15.7
 2 year 1184 6.6 1982 11.6 992 5.4 2480 15.5

Canada 1 year 908 6.8 2390 17.3 758 5.4 2796 21.0
 2 year 1308 10.0 2656 19.7 1305 9.0 2253 17.0

China 1 year 5905 14.6 6249 12.3 4709 10.1 14198 34.1
 2 year 9214 28.0 9468 29.0 9099 28.3 14205 38.4

France 1 year 538 6.1 1558 17.6 411 4.5 1545 19.3
 2 year 816 8.7 1786 19.9 786 8.0 1368 15.9

Germany 1 year 1021 7.1 1151 8.9 1015 7.6 1448 14.1
 2 year 1216 10.2 2223 17.9 1076 9.7 1365 13.5

Korea 1 year 16326 9.6 12082 10.2 17910 11.5 29241 25.4
 2 year 22754 12.3 21695 12.5 21062 12.7 33792 25.3

Singapore 1 year 1934 22.2 3431 34.7 1480 16.3 1362 14.3
 2 year 2128 30.2 3441 49.5 1893 25.9 1788 24.0

Taiwan 1 year 10908 10.4 49044 38.7 6383 7.2 9523 10.4
 2 year 18132 29.3 47713 67.6 18696 31.5 19992 35.5

UK 1 year 3167 13.5 8454 33.5 3967 20.0 14745 76.7
 2 year 2868 13.6 11116 37.2 3654 17.9 14878 83.2

USA 1 year 5766 6.4 6731 8.1 4375 5.2 5597 7.6
 2 year 7354 9.4 10772 13.3 6644 8.6 7074 9.8
    

Summary Measures   
Mean  9007 12.5 16319 22.8 8513 12.0 14882 25.0
Standard Deviation 12829 7.8 23754 15.1 12865 8.1 20867 19.6
MAPE p-values:   
  c/w Differenced NP model -0.01  
  c/w Differenced PP model -0.01 

    
Lowest MAPE Count Count % Count % Count % Count %
of 22 forecasts 8 36% 0 0% 12 55% 2 9%

    
MAPE <= 10% 11 50% 2 9% 12 55% 2 9%
10% <MAPE< 20% 7 32% 13 59% 7 32% 11 50%
MAPE >= 20% 4 18% 7 32% 3 14% 9 41%

    
MAPE <= 10%   
  for 1 year lead 7 64% 2 100% 7 58% 1 50%
  for 2 year lead 4 36% 0 0% 5 42% 1 50%
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Table 3.10.2 Univariate 12 months ahead Forecasting Performance  
  of differenced and undifferenced Neural Network models  
    

Country Forecast Non-Periodic NP Differenced Partial Periodic PP Differenced 
 Lead RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

All 1 year 38932 7.9 50320 11.3 31537 6.5 85400 19.4
 2 year 59098 11.2 64189 13.3 55720 10.4 87939 19.4

Australia 1 year 1026 5.7 4849 34.2 465 3.0 1494 10.2
 2 year 1170 6.8 3910 24.8 923 4.9 2829 17.0

Canada 1 year 897 6.8 3118 27.1 730 5.1 1153 8.1
 2 year 1323 9.9 2912 24.5 1339 8.8 1910 14.6

China 1 year 4750 11.3 9413 20.9 5483 11.7 21044 51.6
 2 year 8749 27.4 10473 32.3 8339 26.1 20474 51.6

France 1 year 547 6.5 1167 13.5 408 4.1 1154 14.7
 2 year 850 9.5 1150 13.7 810 7.9 1429 17.0

Germany 1 year 1003 7.2 1375 11.4 1019 7.3 1394 11.9
 2 year 1174 10.5 1494 13.0 1077 9.5 1443 12.6

Korea 1 year 18874 12.7 17108 13.2 18324 12.7 31518 28.2
 2 year 24806 15.0 22791 15.1 25700 15.4 36208 28.1

Singapore 1 year 1797 21.6 1488 13.9 1455 16.7 1867 20.4
 2 year 1992 28.1 2164 28.5 1765 25.2 1923 26.5

Taiwan 1 year 11827 12.6 11840 13.3 6522 7.5 7607 8.7
 2 year 19603 34.0 26937 43.8 18532 31.6 18934 33.0

UK 1 year 3545 16.6 10209 49.6 3969 21.0 9762 51.6
 2 year 3838 19.3 17043 89.5 3828 20.1 9157 51.3

USA 1 year 6256 7.6 6124 8.7 4769 6.1 5026 6.9
 2 year 7930 10.6 12175 17.4 7367 9.8 6151 9.1
    

Summary Measures   
Mean  9999 13.6 12830 24.2 9095 12.3 16174 23.3
Standard Deviation 14717 7.9 16269 18.3 13594 7.9 25001 15.3
MAPE p-values:   
  c/w NP Differenced model -0.01  
  c/w PP Differenced model -0.01 

    
Lowest MAPE Count Count % Count % Count % Count %
of 22 forecasts 6 27% 1 5% 14 64% 1 5%

    
MAPE <= 10% 9 41% 1 5% 12 55% 4 18%
10% <MAPE< 20% 9 41% 11 50% 5 23% 9 41%
MAPE >= 20% 4 18% 10 45% 5 23% 9 41%

    
MAPE <= 10%   
  for 1 year lead 6 67% 1 100% 7 58% 3 75%
  for 2 year lead 3 33% 0 0% 5 42% 1 25%
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Table 3.10.3 Univariate 24 months ahead Forecasting Performance 
  of differenced and undifferenced Neural Network models  
    

Country Forecast Non-Periodic NP Differenced Partial Periodic PP Differenced 
 Lead RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

All 1 year 24071 4.4 73072 16.1 35722 7.1 98663 22.4
 2 year 55423 10.2 72604 16.2 55688 11.4 100756 21.7

Australia 1 year 905 5.8 1369 8.5 886 5.6 3554 25.3
 2 year 1234 7.0 1711 9.8 1245 7.4 3527 23.7

Canada 1 year 907 6.2 1773 11.0 1047 7.8 2156 17.3
 2 year 1555 11.0 2724 21.6 1359 10.0 1981 16.5

China 1 year 7510 17.5 16658 41.7 9405 20.7 20663 50.9
 2 year 10039 32.3 18640 46.7 11230 32.8 21828 52.6

France 1 year 407 4.4 1549 19.5 734 8.5 1743 23.2
 2 year 811 9.1 1382 16.3 767 8.8 1496 18.5

Germany 1 year 1037 9.5 1430 14.2 1053 8.1 1255 10.4
 2 year 1328 12.8 1352 13.5 990 8.6 1239 10.5

Korea 1 year 26949 19.3 34840 29.3 27127 21.6 41872 37.1
 2 year 37127 23.0 37311 26.2 35624 24.1 41522 32.5

Singapore 1 year 1323 13.1 2563 32.2 1319 13.9 1616 16.4
 2 year 2049 26.5 3052 36.9 1934 25.5 2044 26.0

Taiwan 1 year 6325 7.5 10510 12.1 8291 8.7 13754 17.7
 2 year 19217 32.6 22029 36.8 21118 35.1 21444 35.2

UK 1 year 7675 40.8 14159 70.7 17523 97.4 19815 108.7
 2 year 6106 32.0 11367 55.7 14564 81.6 15778 85.0

USA 1 year 3184 3.8 4368 5.8 2926 4.1 6713 9.7
 2 year 7189 9.3 10308 14.6 7628 9.8 7639 11.3
    

Summary Measures   
Mean  10108 15.4 15671 25.2 11735 20.8 19594 30.6
Standard Deviation 14222 11.0 21302 16.9 14931 24.0 28672 24.7
MAPE p-values:   
  c/w NP Differenced model -0.01  
  c/w PP Differenced model -0.01 

    
Lowest MAPE Count Count % Count % Count % Count %
of 22 forecasts 16 73% 0 0% 6 27% 0 0%

    
MAPE <= 10% 10 45% 3 14% 11 50% 1 5%
10% <MAPE< 20% 6 27% 9 41% 3 14% 8 36%
MAPE >= 20% 6 27% 10 45% 8 36% 13 59%

    
MAPE <= 10%   
  for 1 year lead 7 70% 2 67% 7 64% 1 100%
  for 2 year lead 3 30% 1 33% 4 36% 0 0%
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Table 3.10.4 Forecasting Performance Comparison Summary 
  of differenced and undifferenced Neural Network models  
    
  Non-Periodic NP Differenced Partial Periodic PP Differenced 
  RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

Mean  9705 13.8 14940 24.1 9781 15.1 16883 26.3
Standard Deviation 13738 9.0 20414 16.6 13682 15.6 24743 20.2
MAPE p-values:   
  c/w NP Differenced model -0.01  
  c/w PP Differenced model -0.01 

    
Lowest MAPE Count Count % Count % Count % Count %
of 66 forecasts 30 45% 1 2% 32 48% 3 5%

    
MAPE <= 10% 30 45% 6 9% 35 53% 7 11%
10% <MAPE< 20% 22 33% 33 50% 15 23% 28 42%
MAPE >= 20% 14 21% 27 41% 16 24% 31 47%

    
MAPE <= 10%   
  for 1 year lead 20 67% 5 83% 21 60% 5 71%
  for 2 year lead 10 33% 1 17% 14 40% 2 29%

 

 

Table 3.10.4 shows a summary comparison of the forecasting performance of the 

differenced and undifferenced non-periodic MLP models, and a comparison of the 

differenced and undifferenced partial periodic MLP models. Of the non-periodic 

models the undifferenced model is better than the differenced model as it has the 

lower MAPE in 30 (45%) of 66 forecasts, while the differenced model has the lower 

MAPE in 1 (2%) of the forecasts. Of the partial periodic models the undifferenced 

model is better than the differenced model as it has a lower MAPE in 32 (48%) of 66 

forecasts, while the differenced model has the lower MAPE in 3 (5%) of the forecasts. 

 

 The undifferenced non-periodic model has a mean MAPE of 13.8%, while that of the 

differenced model is 24.1%. The paired sample p-value of 0.01 indicates that the 

mean difference in MAPE of the undifferenced non-periodic model and the 

differenced model is significant. The undifferenced partial periodic model has a mean 
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MAPE of 15.1%, while that of the differenced model is 26.3%. The paired sample p-

value of 0.01 indicates that the mean difference in MAPE of the undifferenced partial 

periodic model and the differenced model is significant. On the level of accuracy, the 

undifferenced non-periodic model has 30 (45%) forecasts with MAPE figures less 

than 10%, while the differenced model achieved only 6 (9%) such forecasts. The 

undifferenced partial periodic model has 35 (53%) forecasts with MAPE figures less 

than 10%, while the differenced model has only 7 (11%) such forecasts. 

 

3.11 MLP Model Comparison with the Naïve model 

 

Table 3.11.1 shows a comparison of the forecasting performance of the Non-periodic, 

Partial periodic, Periodic and Naïve models for the one month ahead forecasting 

horizon. For the one month ahead forecasting horizon, the partial periodic model is 

the best model as it has the lowest MAPE in 14 (64%) of 22 forecasts. Twelve (55%) 

partial periodic forecasts have MAPE figures less than 10%. Seven (58%) and 5 

(42%) of these 12 forecasts were for the 1 and 2 year lead periods respectively, 

indicating the model works better for the 1 year lead period. 

 

 The partial periodic model also has the smallest mean MAPE of 12.0%. The non-

periodic model has a mean MAPE of 12.5%. Both models have significant mean 

differences from the MAPE of the naïve model with the paired sample p-value for the 

mean difference being less than 0.01. The non-periodic model has the lowest MAPE 

figures in 5 (23%) forecasts. The naïve model has the lowest MAPE in 3 (14%) 

forecasts. The periodic model is not applicable to one-month ahead forecasts as it 

forecasts 12 months ahead.  
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Table 3.11.2 shows a comparison of the forecasting performance of the Non-periodic, 

Partial periodic, Periodic and Naïve models for the 12 months ahead forecasting 

horizon. Using the lowest MAPE as the forecasting performance evaluation criterion, 

for the 12 months ahead forecasting horizon, the partial periodic model is the best 

model as it has the lowest MAPE in 13 (59%) of 22 forecasts. Twelve (55%) of the 22 

partial periodic forecasts have MAPE figures less than 10%. Seven (58%) and 5 

(42%) of these 12 forecasts were for the 1 year and 2 year lead periods respectively, 

indicating the model works better for the 1 year lead period. 

 

 The partial periodic model has the lowest mean MAPE of 12.3%, the paired sample 

p-values indicating significant mean differences at the 5% level for MAPE values 

between the partial periodic model and the non-periodic and naïve models. The 

periodic model has a mean MAPE of 12.9% while the non-periodic model has a mean 

MAPE of 13.6. The periodic model has the lowest MAPE figures in 5 (23%) forecasts 

followed by the non-periodic model with the lowest MAPE figures in 2 (9%) 

forecasts. The naïve model also has the lowest MAPE in 2 (9%) forecasts.  

 

Table 3.11.3 shows a comparison of the forecasting performance of the Non-periodic, 

Partial periodic, Periodic and Naïve models for the 24-months-ahead forecasting 

horizon. Using the lowest MAPE as the forecasting performance evaluation criterion, 

for the 24 months ahead forecasting horizon, the non-periodic model is the best model 

as it has the lowest MAPE in 11 (50%) of 22 forecasts. Ten (45%) of the 22 partial 

periodic forecasts have MAPE figures less than 10%. Seven (70%) and 3 (30%) of 

these 10 forecasts were for the 1 year and 2 year lead periods respectively, indicating 

the model works better for the 1 year lead period. 
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 The non-periodic model also has the smallest mean MAPE of 15.4% while the 

periodic model has a mean MAPE of 17.2%. The paired sample p-values do not show 

significant mean differences in the MAPE values of the models at the 5% level, 

except between the non-periodic and naïve models. The next best model is the 

periodic model with the lowest MAPE figures in 5 (23%) forecasts followed by the 

partial periodic model with the lowest MAPE figures in 4 (18%) forecasts. The naïve 

model has the lowest MAPE in 2 (9%) forecasts.  

 

Table 3.11.4 shows a comparison summary of the forecasting performance of the 

Non-periodic, Partial periodic, Periodic and Naïve models. The partial periodic model 

is the best model as it has the lowest MAPE in 31 (47%) of 66 forecasts. Thirty five 

(53%) of the 66 partial periodic forecasts have MAPE figures less than 10%. Twenty 

one (60%) and 14 (40%) of these 21 forecasts were for the 1 year and 2 year lead 

periods respectively, indicating the model works better for the 1 year lead period. The 

next best model is the non-periodic model with the lowest MAPE figures in 18 (27%) 

forecasts followed by the periodic model with the lowest MAPE figures in 10 (23%) 

forecasts. The naïve model has the lowest MAPE in 7 (11%) forecasts.  

 

However, paired sample p-values of the mean differences of the MAPE figures of the 

partial periodic model are not significant at the 5% level. This is because the variance 

of the MAPE of this model is high due to the very good performance of some of the 

66 forecasts and the very poor performance of others. The non-periodic model has the 

smallest mean MAPE of 13.8%. The partial periodic model has a mean MAPE of 

15.1%, The periodic model also has a mean MAPE of 15.1%. 
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Table 3.11.1 Univariate one month ahead Forecasting Performance  
  of Neural Network and Naïve Forecasts  
    

Country Forecast Non-Periodic Partial Periodic Periodic  Naïve 
 Lead RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

All 1 year 30599 5.5 24943 4.9 N/a n/a 47084 9.9
 2 year 53203 9.8 55528 10.2 N/a n/a 59512 12.3

Australia 1 year 895 5.1 598 3.7 N/a n/a 1455 10.1
 2 year 1184 6.6 992 5.4 N/a n/a 1351 8.6

Canada 1 year 908 6.8 758 5.4 N/a n/a 1120 8.6
 2 year 1308 10.0 1305 9.0 N/a n/a 1280 10.2

China 1 year 5905 14.6 4709 10.1 N/a n/a 5887 14.2
 2 year 9214 28.0 9099 28.3 N/a n/a 8476 27.3

France 1 year 538 6.1 411 4.5 N/a n/a 585 6.3
 2 year 816 8.7 786 8.0 N/a n/a 852 9.4

Germany 1 year 1021 7.1 1015 7.6 N/a n/a 1092 7.9
 2 year 1216 10.2 1076 9.7 N/a n/a 1247 11.2

Korea 1 year 16326 9.6 17910 11.5 N/a n/a 13113 10.5
 2 year 22754 12.3 21062 12.7 N/a n/a 17606 12.8

Singapore 1 year 1934 22.2 1480 16.3 N/a n/a 1644 21.3
 2 year 2128 30.2 1893 25.9 N/a n/a 1794 27.7

Taiwan 1 year 10908 10.4 6383 7.2 N/a n/a 12620 14.2
 2 year 18132 29.3 18696 31.5 N/a n/a 19842 35.4

UK 1 year 3167 13.5 3967 20.0 N/a n/a 3815 12.7
 2 year 2868 13.6 3654 17.9 N/a n/a 3817 13.5

USA 1 year 5766 6.4 4375 5.2 N/a n/a 6382 8.0
 2 year 7354 9.4 6644 8.6 N/a n/a 8072 10.4
    

Summary Measures   
Mean  9007 12.5 8513 12.0  9938 13.7
Standard Deviation 12829 7.8 12865 8.1  15242 7.5
MAPE p-values:   
  c/w Naïve model  -0.01 -0.01  
  c/w Periodic model   
  c/w Partial Periodic model 0.19  0.01
  c/w Non-Periodic model -0.19  0.01

    
Lowest MAPE Count Count % Count % Count % Count %
of 22 forecasts 5 23% 14 64% 0 0% 3 14%

    
MAPE <= 10% 11 50% 12 55% 0 0% 7 32%
10% <MAPE< 20% 7 32% 7 32% 0 0% 11 50%
MAPE >= 20% 4 18% 3 14% 0 0% 4 18%

    
MAPE <= 10%   
  for 1 year lead 7 64% 7 58% 0 0% 5 71%
  for 2 year lead 4 36% 5 42% 0 0% 2 29%
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Table 3.11.2 Univariate 12 months ahead Forecasting Performance 
  of Neural Network and Naïve Forecasts  
    

Country Forecast Non-Periodic Partial Periodic Periodic  Naïve 
 Lead RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

All 1 year 38932 7.9 31537 6.5 35420 6.9 47084 9.9
 2 year 59098 11.2 55720 10.4 57341 10.7 59512 12.3

Australia 1 year 1026 5.7 465 3.0 732 3.6 1455 10.1
 2 year 1170 6.8 923 4.9 2282 6.8 1351 8.6

Canada 1 year 897 6.8 730 5.1 1084 7.4 1120 8.6
 2 year 1323 9.9 1339 8.8 1751 12.6 1280 10.2

China 1 year 4750 11.3 5483 11.7 5419 12.3 5887 14.2
 2 year 8749 27.4 8339 26.1 8584 26.8 8476 27.3

France 1 year 547 6.5 408 4.1 338 3.3 585 6.3
 2 year 850 9.5 810 7.9 990 9.5 852 9.4

Germany 1 year 1003 7.2 1019 7.3 1115 8.4 1092 7.9
 2 year 1174 10.5 1077 9.5 1299 12.1 1247 11.2

Korea 1 year 18874 12.7 18324 12.7 11924 9.2 13113 10.5
 2 year 24806 15.0 25700 15.4 16603 11.6 17606 12.8

Singapore 1 year 1797 21.6 1455 16.7 1326 15.0 1644 21.3
 2 year 1992 28.1 1765 25.2 1646 24.2 1794 27.7

Taiwan 1 year 11827 12.6 6522 7.5 7429 9.1 12620 14.2
 2 year 19603 34.0 18532 31.6 19077 33.6 19842 35.4

UK 1 year 3545 16.6 3969 21.0 5672 22.2 3815 12.7
 2 year 3838 19.3 3828 20.1 4844 21.5 3817 13.5

USA 1 year 6256 7.6 4769 6.1 5411 7.0 6382 8.0
 2 year 7930 10.6 7367 9.8 7960 10.7 8072 10.4
    

Summary Measures   
Mean  9999 13.6 9095 12.3 9011 12.9 9938 13.7
Standard Deviation 14717 7.9 13594 7.9 13563 7.9 15242 7.5
MAPE p-values:   
  c/w Naïve model  -0.37 -0.04 -0.16 
  c/w Periodic model  0.14 -0.07  0.16
  c/w Partial Periodic model 0.01 0.07 0.04
  c/w Non-Periodic model -0.01 -0.14 0.37

    
Lowest MAPE Count Count % Count % Count % Count %
of 22 forecasts 2 9% 13 59% 5 23% 2 9%

    
MAPE <= 10% 9 41% 12 55% 10 45% 7 32%
10% <MAPE< 20% 9 41% 5 23% 7 32% 11 50%
MAPE >= 20% 4 18% 5 23% 5 23% 4 18%

    
MAPE <= 10%   
  for 1 year lead 6 67% 7 58% 8 80% 5 71%
  for 2 year lead 3 33% 5 42% 2 20% 2 29%
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Table 3.11.3 Univariate 24 months ahead Forecasting Performance 
  of Neural Network and Naïve Forecasts  
    

Country Forecast Non-Periodic Partial Periodic Periodic  Naïve 
 Lead RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

All 1 year 24071 4.4 35722 7.1 33861 7.0 43323 9.3
 2 year 55423 10.2 55688 11.4 54170 10.9 66744 13.9

Australia 1 year 905 5.8 886 5.6 2054 11.6 1748 10.8
 2 year 1234 7.0 1245 7.4 2325 13.4 2087 13.0

Canada 1 year 907 6.2 1047 7.8 970 6.6 1372 10.4
 2 year 1555 11.0 1359 10.0 2200 14.3 1583 12.4

China 1 year 7510 17.5 9405 20.7 7877 17.9 9318 21.0
 2 year 10039 32.3 11230 32.8 10007 30.4 10954 32.5

France 1 year 407 4.4 734 8.5 491 5.3 940 11.9
 2 year 811 9.1 767 8.8 799 8.0 889 10.6

Germany 1 year 1037 9.5 1053 8.1 1218 10.2 1317 10.3
 2 year 1328 12.8 990 8.6 1239 11.8 1268 11.0

Korea 1 year 26949 19.3 27127 21.6 19900 15.6 18600 15.9
 2 year 37127 23.0 35624 24.1 26709 17.6 26280 18.3

Singapore 1 year 1323 13.1 1319 13.9 1107 12.6 993 9.1
 2 year 2049 26.5 1934 25.5 1722 22.0 1968 25.9

Taiwan 1 year 6325 7.5 8291 8.7 8684 8.5 9149 10.5
 2 year 19217 32.6 21118 35.1 22397 37.1 20045 34.4

UK 1 year 7675 40.8 17523 97.4 11019 58.1 14877 79.5
 2 year 6106 32.0 14564 81.6 8721 45.2 10569 43.3

USA 1 year 3184 3.8 2926 4.1 3042 4.3 2586 2.9
 2 year 7189 9.3 7628 9.8 7905 10.2 8352 9.9
    

Summary Measures   
Mean  10108 15.4 11735 20.8 10383 17.2 11589 18.9
Standard Deviation 14222 11.0 14931 24.0 13541 13.8 16238 16.7
MAPE p-values:   
  c/w Naïve model  -0.03 0.18 -0.06 
  c/w Periodic model  -0.06 0.08  0.06
  c/w Partial Periodic model -0.06 -0.08 -0.18
  c/w Non-Periodic model 0.06 0.06 0.03

    
Lowest MAPE Count Count % Count % Count % Count %
of 22 forecasts 11 50% 4 18% 5 23% 2 9%

    
MAPE <= 10% 10 45% 11 50% 6 27% 4 18%
10% <MAPE< 20% 6 27% 3 14% 11 50% 12 55%
MAPE >= 20% 6 27% 8 36% 5 23% 6 27%

    
MAPE <= 10%   
  for 1 year lead 7 70% 7 64% 5 83% 3 75%
  for 2 year lead 3 30% 4 36% 1 17% 1 25%
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Table 3.11.4 Forecasting Performance Comparison Summary 
  of Neural Network and Naïve Forecasts  
    
  Non-Periodic Partial Periodic Periodic  Naïve 
  RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

Mean  9705 13.8 9781 15.1 9697 15.1 10489 15.5
Standard Deviation 13738 9.0 13682 15.6 13411 11.3 15359 11.5
MAPE p-values:   
  c/w Naïve model  -0.01 -0.29 -0.03 
  c/w Periodic model  -0.18 0.12  0.03
  c/w Partial Periodic model -0.15 -0.12 0.29
  c/w Non-Periodic model 0.15 0.18 0.01

    
Lowest MAPE Count Count % Count % Count % Count %
of 66 forecasts 18 27% 31 47% 10 23% 7 11%

    
MAPE <= 10% 30 45% 35 53% 16 36% 18 27%
10% <MAPE< 20% 22 33% 15 23% 18 41% 34 52%
MAPE >= 20% 14 21% 16 24% 10 23% 14 21%

    
MAPE <= 10%   
  for 1 year lead 20 67% 21 60% 13 81% 13 72%
  for 2 year lead 10 33% 14 40% 3 19% 5 28%

 

 

3.12 Conclusion 

 

Overall for both the non-periodic and the partial periodic models the forecasting 

performance was better with data that was not differenced. Data was differenced to 

remove seasonality. Nelson et al. (1999) used deseasonalised data and concluded that 

neural networks performed better with deseasonalised data. Differencing was used in 

this research as the objective was not so much to remove seasonality but to help the 

neural process. This contradictory result may even be due to varying strengths in the 

irregular component rather than the difference in the methods used. Current results 

indicate that it is better to let neural networks model data as a whole rather than in 

separate components. 
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The partial periodic model is superior to the non-periodic model, which in turn is 

better than the periodic model when forecasting tourism to Japan. All three models 

performed better than the naïve model making them all adequate models for 

forecasting. The mean MAPE for the three models were not significantly different and 

the non-periodic model had the lowest mean MAPE making it almost as good as the 

partial periodic model. The partial periodic model was the best for the one-month 

ahead and the 12 months ahead forecasting horizons, while the non-periodic model 

was better for the 24 months ahead horizon. 

 

The partial periodic model captures the seasonal trend of the past three years on a 

month-by-month basis, which is its strength. The model's poor performance for the 24 

months-ahead horizon is due to the tourist arrivals series changing dramatically in 

2003 due to the SARS crisis. The models poor performance was mainly for arrivals 

from the SARS affected countries. It would be reasonable to expect a network that has 

been modelled on the basis of the past year's data to respond better to sudden changes 

in a data series, than a network that had been modelled on the basis of the past three 

years data. This could well be the reason the non-periodic model performed better for 

the 24 months ahead horizon. 

 

The performance of the periodic model, though not significantly different from the 

partial periodic and the non-periodic models, is not more accurate. Because of the 

seasonal nature of tourist arrivals, the periodic model was expected to out perform the 

other models, as it models the data for each season (month) separately. The poor 

performance of the periodic model compared to the partial periodic models shows that 

data for each season are not totally independent.                                                    .
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5.4 Results of ECM forecasts 

 

5.4.1 ECM forecast of arrivals from all countries 

Table 5.4.1 shows the ECM forecasting performance for tourist arrivals to Japan from 

all countries. For the one-year lead period the forecasting performance is good 

(MAPE less than 10%) for all forecast horizons, one month ahead, 12 months ahead 

and 24 months ahead. For the two-year lead period the forecasting performance is 

good (MAPE less than 10%) for the one-month ahead horizon and is fair (MAPE 

between 10% and 20%) for the 12 months ahead and 24 months-ahead horizons. The 

RMSE figures are consistent with the MAPE figures. Overall, the forecasting error 

increases with an increase in the lead period, and the model forecasts are most 

accurate over the one-month ahead forecasting horizon. 

 

Table 5.4.1 Error Correction Model Forecasting Performance  
 for Tourist Arrivals to Japan from all countries.  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 26746 5.04 28292 5.27 28292 5.27 
2 year  53172 9.32 67601 11.23 60165 10.25 
 

The Microfit outputs of the cointegrating long-run relationships and the short run 

error correction model, with diagnostics, are given in Tables 5.4.1a, b and c of 

Appendix II for one month, 12 months and 24 months-ahead forecasts respectively.  

 

The independent variables used in this study, namely, own price, trade openness of 

the tourist’s country of origin, per capita gross national income of the tourist country 

of origin and air fare cannot be used when forecasting tourism from all countries as 

the values of these independent variables are specific to a single country of origin. 
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Therefore, in this model which deals with tourism from all countries, the independent 

variables used were those that related to Japan only; it’s consumer price index, gross 

domestic product, trade openness, imports and exports. However, results show that the 

only significant variable was imports.  

 

For the one-month-ahead model, there is only one cointegrating vector and the 

maximum likelihood long-run estimate is as follows: 

 

(arr) = 1.5746 * (impjap) + ut   . 

 

This model shows that the relationship between total tourist arrivals from all countries 

and Japan’s imports are elastic and that a 1% increase in imports would result in a 

1.57% increase in the number of arrivals to Japan from all countries due to the travel 

associated with imports and trade. 

 

The short-run, one month ahead, error correction model is as follows:  

 

∇(arr)t = 0.037614 - 0.059397 * m2 + 0.10881 * m3 + 0.10332 * m4 - 0.071246 * m5 

- 0.10586 * m6 + 0.11529 * m7 - 0.075927 * m8 - 0.10337 * m9  + 0.11746 * m10  - 

0.21747 * m11 - 0.20169 * m12 - 0.033191 * ut-1    . 

 

The error term is negative, satisfying ECM requirements and is significant at 5%.     

R2 = 0.71, indicates good fit and appropriateness of the independent terms.  
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For the 12 months ahead model, there is only one cointegrating vector and the 

maximum likelihood long-run estimate is as follows:  

 

(arr) = 1.5746 * (impjap) + ut . 

 

This model shows that the relationship between total tourist arrivals from all countries 

and Japan’s imports are elastic and that a 1% increase in imports would result in a 

1.57% increase in the number of arrivals to Japan from all countries due to the travel 

associated with imports and trade. 

 

The short-run, 12 months ahead, error correction model is as follows: 

 

∇(arr)t = 0.037317 - 0.057647 * m2 + 0.10628 * m3 + 0.10059 * m4 - 0.071210 * m5 

- 0.10248 * m6 + 0.11605 * m7 - 0.076004 * m8 - 0.10754 * m9  + 0.11802 * m10  - 

0.21573 * m11 - 0.19605 * m12 - 0.034489 * ut-1      .

 

The error term is negative satisfying ECM requirements and is significant at 5%. 

R2 = 0.71, indicates good fit and appropriateness of the independent terms.  

 

For the 24 months ahead model, there is only one cointegrating vector and the 

maximum likelihood long-run estimate is as follows: 

 

(arr) = 1.5745 * (impjap) + ut   . 
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This model shows that the relationship between total tourist arrivals from all countries 

and Japan’s imports are elastic and that a 1% increase in imports would result in a 

1.57% increase in the number of arrivals to Japan from all countries due to the travel 

associated with imports and trade. 

 

The short-run, 24 months ahead, error correction model is as follows: 

∇(arr)t = 0.036429 - 0.058232 * m2 + 0.10996 * m3 + 0.10451 * m4 - 0.070017 * m5 

- 0.10465 * m6 + 0.11649 * m7 - 0.074688 * m8 - 0.10215 * m9  + 0.11867 * m10  - 

0.21623 * m11 - 0.20049 * m12 - 0.033426 * ut-1      . 

 

The error term is negative satisfying ECM requirements and is significant at 5%. 

R2 = 0.71, indicates good fit and appropriateness of the independent terms.  

 

5.4.2 ECM forecast of arrivals from Australia  

Table 5.4.2 shows the ECM forecasting performance for tourist arrivals to Japan from 

Australia. For the one-year lead period the forecasting performance is good (MAPE 

less than 10%) for the one month ahead forecasting horizon but is poor (MAPE 20% 

or more) for the 12 months ahead and 24 months ahead horizons. For the two year 

lead period the forecasting performance is fair (MAPE between 10% and 20%) for the 

one month ahead and the 12 months ahead horizons and poor (MAPE 20% or more) 

for the 24 months ahead horizon. The RMSE figures are fairly consistent with the 

MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 12 months ahead 

forecasting horizon. 
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Table 5.4.2 Error Correction Model Forecasting Performance  
 for Tourist Arrivals to Japan from Australia  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1430 9.28 3602 23.49 3602 23.49 
2 year  1866 11.27 3203 19.48 4415 27.63 
 

The Microfit outputs of the cointegrating long-run relationships and the short run 

error correction model, with diagnostics, are given in Tables 5.4.2a, b and c of 

Appendix II for one month, 12 months and 24 months ahead, forecasts respectively.  

 

For the one-month ahead model, vector 3 of the three possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = -2.7571*(opr) +6.4304*(tro) +2.713*(jtro) +3.1145*(gni) –7.1520*(air) + ut  . 

 

This model shows that the relationships between tourist arrivals from Australia and 

the variables, own price, Australia’s trade openness, Japan’s trade openness, the per 

capita GNI of Australia and the airfare from Australia to Japan are all elastic. A 1% 

increase in own price would result in a 2.75% decrease in arrivals from Australia. A 

1% increase in Australia’s trade openness would result in a 6.43% increase in arrivals. 

A 1% increase in Japan’s trade openness would result in a 2.71% increase in arrivals. 

A 1% increase in Australia’s per capita GNI would result in a 3.11% increase in 

arrivals. A 1% increase in airfare costs would result in a 7.15% decrease in arrivals. 
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The short-run, one month ahead, error correction model is as follows: 

∇(arr)t = 0.0005752 - 0.57376 * ∇(opr)t + 1.4792 * ∇(gni)t -4 + 1.3772 * ∇(gni)t -9 – 

1.4097 * ∇(gni)t -11 – 1.0954 * ∇(air)t -3 - 0.36972 * m2 + 0.40772 * m3 + 0.19569 * 

m4 - 0.050412 * m5 - 0.023083 * m6 - 0.017458 * m7 - 0.053385 * m8 + 0.31032 * 

m9 - 0.12644 * m10 - 0.24846 * m11 + 0.16375 * m12 - 0.0066844 * ut-1  . 

 

The error term is negative satisfying ECM requirements but is not significant.          

R2 = 0.67, indicates good fit and appropriateness of the independent terms.  

 

For the 12 months-ahead model, vector 3 of the three possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

 (arr) = -1.8151*(opr)+9.3332*(tro)+3.0072*(jtro)+1.8096*(gni) –8.6251*(air)+ ut  . 

 

This model shows that the relationships between tourist arrivals from Australia and 

the variables, own price, Australia’s trade openness, Japan’s trade openness, the per 

capita GNI of Australia and the airfare from Australia to Japan are all elastic. A 1% 

increase in own price would result in a 1.81% decrease in arrivals from Australia. A 

1% increase in Australia’s trade openness would result in a 9.33% increase in arrivals. 

A 1% increase in Japan’s trade openness would result in a 3.01% increase in arrivals. 

A 1% increase in Australia’s per capita GNI would result in a 1.81% increase in 

arrivals. A 1% increase in airfare costs would result in a 8.63% decrease in arrivals. 

 
 
 
 
 



Chapter 5 ECM and Multivariate neural Network Forecasting 213

 

The short-run, 12 months ahead, error correction model is as follows: 

∇(arr)t = - 0.00001024 - 0.56634 * ∇(opr)t + 1.3741 * ∇(gni)t -4 + 1.3842 * ∇(gni)t -9 - 

1.5165 * ∇(gni)t -11 - 1.1039 * ∇(air)t -3 - 0.36783 * m2 + 0.40234 * m3 + 0.19027 * 

m4 - 0.041651 * m5 - 0.020926 * m6 - 0.012777 * m7 - 0.056912 * m8 + 0.30818 * 

m9 - 0.12914 * m10 - 0.24679 * m11 + 0.17316 * m12 - 0.0044226 * ut-1  . 

 

The error term is negative satisfying ECM requirements but is not significant.          

R2 = 0.67, indicates good fit and appropriateness of the independent terms.  

 

For the 24 months ahead model, vector 3 of the three possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = -2.8735*(opr)+6.1984*(tro)+2.6839*(jtro)+3.1911*(gni) –6.9947*(air) + ut  . 

 

This model shows that the relationships between tourist arrivals from Australia and 

the variables, own price, Australia’s trade openness, Japan’s trade openness, the per 

capita GNI of Australia and the airfare from Australia to Japan are all elastic. A 1% 

increase in own price would result in a 2.87% decrease in arrivals from Australia. A 

1% increase in Australia’s trade openness would result in a 6.20% increase in arrivals. 

A 1% increase in Japan’s trade openness would result in a 2.68% increase in arrivals. 

A 1% increase in Australia’s per capita GNI would result in a 3.19% increase in 

arrivals. A 1% increase in airfare costs would result in a 6.99% decrease in arrivals. 
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The short-run, 24 months ahead, error correction model is as follows: 

 

∇(arr)t = 0.0054227 - 0.57480 * ∇(opr)t + 1.4878 * ∇(gni)t -4 + 1.3862 * ∇(gni)t -9 – 

1.4004 * ∇(gni)t -11 – 1.0915 * ∇(air)t -3 - 0.37352 * m2 + 0.40364 * m3 + 0.19184 * 

m4 - 0.054425 * m5 - 0.026881 * m6 - 0.021269 * m7 - 0.057260 * m8 + 0.30640 * 

m9 - 0.13045 * m10 - 0.25222 * m11 + 0.15949 * m12 - 0.0072919 * ut-1   . 

 

The error term is negative satisfying ECM requirements but is not significant.          

R2 = 0.67, indicates good fit and appropriateness of the independent terms.  

 

5.4.3 ECM forecast of arrivals from Canada 

Table 5.4.3 shows the ECM forecasting performance for tourist arrivals to Japan from 

Canada. For the one-year lead period the forecasting performance is good (MAPE less 

than 10%) for the one-month ahead forecasting horizon and fair (MAPE between 10% 

and 20%) for the 12 months ahead and 24 months ahead forecasting horizons. For the 

two-year lead period the forecasting performance is also fair (MAPE between 10% 

and 20%) for all three horizons. The RMSE figures are consistent with the MAPE 

figures. Overall, the forecasting error increases with an increase in the lead period, 

and the model forecasts are most accurate over the one-month ahead forecasting 

horizon. 

 

Table 5.4.3 Error Correction Model Forecasting Performance  
 for Tourist Arrivals to Japan from Canada  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1248 9.66 1797 13.58 1797 13.58 
2 year  1574 12.30 2016 16.06 2171 17.42 
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The Microfit outputs of the cointegrating long-run relationships and the short run 

error correction model, with diagnostics, are given in Tables 5.4.3a, b and c of 

Appendix II for one month, 12 months and 24 months-ahead forecasts respectively.  

 

For the one month ahead model, vector 1 of the three possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = -0.1459*(opr) +1.0365*(tro)+0.3545*(jtro) +0.6925*(gni) –0.3474*(air)+ ut . 

 

This model shows that the relationships between tourist arrivals from Canada and the 

variables, own price, Japan’s trade openness, the per capita GNI of Canada and the 

airfare from Canada to Japan are all inelastic but that Canada’s trade openness is 

elastic. A 1% increase in own price would result in a 0.15% decrease in arrivals from 

Canada. A 1% increase in Canada’s trade openness would result in a 1.04% increase 

in arrivals. A 1% increase in Japan’s trade openness would result in a 0.35% increase 

in arrivals. A 1% increase in Canada’s per capita GNI would result in a 0.69% 

increase in arrivals. A 1% increase in airfare costs would result in a 0.35% decrease in 

arrivals. 

 

The short-run, one month ahead, error correction model is as follows: 

∇(arr)t  = 0.12038 - 0.33537 * ∇(opr)t -12 + 0.44242 * ∇(tro)t + 0.32761 * ∇(jtro)t -5 – 

0.38353 * ∇(jtro)t -11 - 1.3840 * ∇(gni)t - 1.7645 * ∇(gni)t -7 + 1.1295 * ∇(gni)t -8 - 

0.36802 * m2 + 0.065435 * m3 - 0.083251 * m4 - 0.14078 * m5 - 0.32155 * m6 + 
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0.041483 * m7 - 0.12226 * m8 - 0.21411 * m9 + 0.11072 * m10 - 0.20449 * m11 - 

0.20096 * m12 - 0.51083 * ut-1  . 

 

The error term is negative, satisfying ECM requirements and is significant at 1%.      

R2 = 0.83, indicates good fit and appropriateness of the independent terms.  

 

For the 12 months ahead model, vector 1 of the three possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = -0.2106*(opr) +1.0093*(tro) +0.3279*(jtro)+0.7222*(gni) –0.3277*(air)+ ut . 

 

This model shows that the relationships between tourist arrivals from Canada and the 

variables, own price, Japan’s trade openness, the per capita GNI of Canada and the 

airfare from Canada to Japan are all inelastic but that Canada’s trade openness is 

elastic. A 1% increase in own price would result in a 0.21% decrease in arrivals from 

Canada. A 1% increase in Canada’s trade openness would result in a 1.01% increase 

in arrivals. A 1% increase in Japan’s trade openness would result in a 0.33% increase 

in arrivals. A 1% increase in Canada’s per capita GNI would result in a 0.72% 

increase in arrivals. A 1% increase in airfare costs would result in a 0.33% decrease in 

arrivals. 
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The short-run, 12 months ahead, error correction model is as follows: 

∇(arr)t  = 0.12805 + 0.45801 * ∇(tro)t - 1.4818 * ∇(gni)t - 1.8192 * ∇(gni)t -7 + 1.3066 

* ∇(gni)t -8 - 0.36559 * m2 + 0.068892 * m3 - 0.10701 * m4 - 0.14744 * m5 - 0.32245 

* m6 + 0.044036 * m7 - 0.12890 * m8 - 0.24120 * m9 + 0.10479 * m10 - 0.20924 * 

m11 - 0.19938 * m12 - 0.48070 *  ut-1  . 

 

The error term is negative, satisfying ECM requirements and is significant at 1%.     

R2 = 0.82, indicates good fit and appropriateness of the independent terms.  

 

For the 24 months-ahead model, vector 1 of the three possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = -0.1265*(opr )+1.052*(tro) +0.3628*(jtro) +0.6818*(gni) –0.3567*(air)+ ut  . 

 

This model shows that the relationships between tourist arrivals from Canada and the 

variables, own price, Japan’s trade openness, the per capita GNI of Canada and the 

airfare from Canada to Japan are all inelastic but that Canada’s trade openness is 

elastic. A 1% increase in own price would result in a 0.13% decrease in arrivals from 

Canada. A 1% increase in Canada’s trade openness would result in a 1.05% increase 

in arrivals. A 1% increase in Japan’s trade openness would result in a 0.36% increase 

in arrivals. A 1% increase in Canada’s per capita GNI would result in a 0.68% 

increase in arrivals. A 1% increase in airfare costs would result in a 0.36% decrease in 

arrivals. 
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The short-run, 24 months ahead, error correction model is as follows: 

∇(arr)t  = 0.11806 - 0.34228 * ∇(opr)t -12 + 0.44167 * ∇(tro)t  + 0.32718 * ∇(jtro)t -5 - 

0.38825 * ∇(jtro)t -11  - 1.3728 * ∇(gni)t - 1.7727 * ∇(gni)t -7 + 1.1260 * ∇(gni)t -8 – 

0.36552 * m2 + 0.068991 * m3 - 0.080532 * m4 - 0.13845 * m5 - 0.31901 * m6 + 

0.045014 * m7 - 0.11932 * m8 - 0.21095 * m9 + 0.11369 * m10 - 0.20281 * m11 - 

0.19841 * m12 - 0.50682 * ut-1  . 

 

The error term is negative, satisfying ECM requirements and is significant at 1%.     

R2 = 0.83, indicates good fit and appropriateness of the independent terms.  

 

5.4.4 ECM forecast of arrivals from China 

Table 5.4.4 shows the ECM forecasting performance for tourist arrivals to Japan from 

China. For the one-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for all forecast horizons, one month ahead, 12 months ahead 

and 24 months ahead. For the two-year lead period, the forecasting performance is 

poor (MAPE 20% or less) for all three horizons.  The RMSE figures are consistent 

with the MAPE figures. Overall, the forecasting error increases with an increase in the 

lead period, and the model forecasts are most accurate over the one-month ahead 

forecasting horizon. 

 
Table 5.4.4 Error Correction Model Forecasting Performance  

 for Tourist Arrivals to Japan from China  
Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 5970 14.44 6067 14.89 6067 14.89 
2 year  9253 26.83 9887 31.17 12857 41.29 
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The Microfit outputs of the cointegrating long-run relationships and the short run 

error correction model, with diagnostics, are given in Tables 5.4.4a, b and c of 

Appendix II for one month, 12 months and 24 months ahead forecasts respectively.  

 

For the one month ahead model, vector 3 of the three possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = -2.3304 * (opr) + 1.3023 * (tro) + 8.2671 * (gni) – 2.9022 * (air) + ut  . 

 

This model shows that the relationships between tourist arrivals from China and the 

variables, own price, China’s trade openness, the per capita GNI of China and the 

airfare from China to Japan are all elastic. Japan’s trade openness was found to be not 

significant. A 1% increase in own price would result in a 2.33% decrease in arrivals 

from China. A 1% increase in China’s trade openness would result in a 1.30% 

increase in arrivals. A 1% increase in China’s per capita GNI would result in a 8.27% 

increase in arrivals. A 1% increase in airfare costs would result in a 2.90% decrease in 

arrivals. 

 
The short-run, one month ahead, error correction model is as follows: 

∇(arr)t  =  0.29412 + 1.2287 * ∇(gni)t -11 – 0.50501 * m2 + 0.015701 * m3 - 0.20012 

* m4 - 0.25318 * m5 - 0.42132 * m6 - 0.20771 * m7 - 0.10452 * m8 - 0.21410 * m9 - 

0.23068 * m10 - 0.35617 * m11 - 0.68190 * m12 - 0.0041337 * ut-1  . 
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The error term is negative satisfying ECM requirements but is not significant.          

R2 = 0.64, indicates good fit and appropriateness of the independent terms.  

 

For the 12 months ahead model, vector 3 of the three possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = -2.2763 * (opr) + 2.1987 * (tro) + 16.9711 * (gni) – 7.9458 * (air) + ut   . 

 

This model shows that the relationships between tourist arrivals from China and the 

variables, own price, China’s trade openness, the per capita GNI of China and the 

airfare from China to Japan are all elastic. Japan’s trade openness was found not to be 

significant. A 1% increase in own price would result in a 2.28% decrease in arrivals 

from China. A 1% increase in China’s trade openness would result in a 2.20% 

increase in arrivals. A 1% increase in China’s per capita GNI would result in a 

16.97% increase in arrivals. A 1% increase in airfare costs would result in a 7.94% 

decrease in arrivals. 

 

The short-run, 12 months ahead, error correction model is as follows: 

∇(arr)t  =  0.28815 + 1.2014 * ∇(gni)t -11 – 0.49875 * m2 + 0.013022 * m3 - 0.19789 

* m4 - 0.26322 * m5 - 0.43177 * m6 - 0.19228 * m7 - 0.10669 * m8 - 0.21639 * m9 - 

0.23369 * m10 - 0.36544 * m11 - 0.67518 * m12 - 0.0017095 * ut-1  . 

 

The error term is negative satisfying ECM requirements but is not significant.          

R2 = 0.63, indicates good fit and appropriateness of the independent terms.  
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For the 24 months ahead model, vector 2 of the two possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = -2.4480 * (opr) + 0.40684 * (tro) + 4.0988 * (gni) + ut   . 

 

This model shows that the relationships between tourist arrivals from China and the 

variables, own price and the per capita GNI of China are elastic but that China’s trade 

openness is inelastic. Japan’s trade openness and the airfare from China to Japan were 

found not to be significant. A 1% increase in own price would result in a 2.45% 

decrease in arrivals from China. A 1% increase in China’s trade openness would 

result in a 0.41% increase in arrivals. A 1% increase in China’s per capita GNI would 

result in a 4.10% increase in arrivals.  

 
The short-run, 24 months ahead, error correction model is as follows: 

∇(arr)t  =  0.29761 + 1.2768 * ∇(gni)t -11 – 0.49773 * m2 + 0.019688 * m3 - 0.19282 

* m4 - 0.24400 * m5 - 0.41204 * m6 - 0.20090 * m7 - 0.096838 * m8 - 0.20412 * m9 

- 0.22011 * m10 - 0.34473 * m11 - 0.67491 * m12 - 0.017502 * ut-1   . 

 

The error term is negative satisfying ECM requirements and is significant at 10%.    

R2 = 0.64, indicates good fit and appropriateness of the independent terms.  
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5.4.5 ECM forecast of arrivals from France 

Table 5.4.5 shows the non-periodic forecasting performance for tourist arrivals to 

Japan from France. For the one-year lead period the forecasting performance is fair 

(MAPE between 10% and 20%) for all forecast horizons, one month ahead, 12 

months ahead and 24 months ahead. For the two-year lead period the forecasting 

performance is fair (MAPE between 10% and 20%) for all three horizons. The RMSE 

figures are consistent with the MAPE figures. Overall, the forecasting error increases 

with an increase in the lead period, and the model forecasts are most accurate over the 

one-month ahead forecasting horizon. 

 

Table 5.4.5 Error Correction Model Forecasting Performance  
 for Tourist Arrivals to Japan from France  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1038 10.65 1318 15.45 1318 15.45 
2 year  1173 13.57 1402 16.82 1566 18.94 
 

The Microfit outputs of the cointegrating long-run relationships and the short run 

error correction model, with diagnostics, are given in Tables 5.4.5a, b and c of 

Appendix II for one month, 12 months and 24 months-ahead forecasts respectively.  

 

For the one-month ahead model, vector 1 of the two possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = -0.15393 * (opr) + 0.70151 * (tro) + 0.62107 * (gni) + ut  . 

 

This model shows that the relationships between tourist arrivals from France and the 

variables, own price, France’s trade openness and the per capita GNI of France are 
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inelastic. Japan’s trade openness and the airfare from France to Japan were found to 

be not significant. A 1% increase in own price would result in a 0.15% decrease in 

arrivals from France. A 1% increase in France’s trade openness would result in a 

0.70% increase in arrivals. A 1% increase in France’s per capita GNI would result in a 

0.62% increase in arrivals.  

 

The short-run, one month ahead, error correction model is as follows: 

∇(arr)t  = -0.051453 - 0.49074 * ∇(gni)t -5 - 0.12022 *  m2 + 0.21746 * m3 + 0.18609 

* m4 + 0.11404 * m5 - 0.12701 * m6 + 0.18408 * m7 + 0.017845 * m8 + 0.14810 * 

m9 + 0.34284 * m10 + 0.024944 * m11 - 0.34198 *  m12 - 0.48854 * ut-1  . 

 

The error term is negative, satisfying ECM requirements and is significant at 1%.     

R2 = 0.81, indicates good fit and appropriateness of the independent terms.  

 

For the 12 months ahead model, vector 1 of the two possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = -0.13423 * (opr) + 0.74893 * (tro) + 0.57938 * (gni) + ut  . 

 

This model shows that the relationships between tourist arrivals from France and the 

variables, own price, France’s trade openness and the per capita GNI of France are 

inelastic. Japan’s trade openness and the airfare from France to Japan were found not 

to be significant. A 1% increase in own price would result in a 0.13% decrease in 

arrivals from France. A 1% increase in France’s trade openness would result in a 
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0.74% increase in arrivals. A 1% increase in France’s per capita GNI would result in a 

0.58% increase in arrivals.  

 
 
The short-run, 12 months ahead, error correction model is as follows: 

∇(arr)t  = -0.050639 - 0.59197 * ∇(gni)t -5 - 0.11320 * m2 + 0.21803 * m3 + 0.18826 

* m4 + 0.10251 * m5 - 0.11364 * m6 + 0.18337 * m7 + 0.012859 * m8 + 0.14353 * 

m9 + 0.33613 * m10 + 0.017440 * m11 - 0.33709 * m12 - 0.47310 * ut-1  . 

 

The error term is negative, satisfying ECM requirements and is significant at 1%.     

R2 = 0.79, indicates good fit and appropriateness of the independent terms.  

 

For the 24 months ahead model, vector 1 of the two possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = -0.15581 * (opr) + 0.69499 * (tro) + 0.62656 * (gni) + ut  . 

 

This model shows that the relationships between tourist arrivals from France and the 

variables, own price, France’s trade openness and the per capita GNI of France are 

inelastic. Japan’s trade openness and the airfare from France to Japan were found not 

to be significant. A 1% increase in own price would result in a 0.16% decrease in 

arrivals from France. A 1% increase in France’s trade openness would result in a 

0.69% increase in arrivals. A 1% increase in France’s per capita GNI would result in a 

0.63% increase in arrivals. 
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The short-run, 24 months ahead, error correction model is as follows: 

∇(arr)t  = -0.061400 - 0.48721 * ∇(gni)t -5 - 0.11281 * m2 + 0.22428 * m3 + 0.19654 

* m4 + 0.12609 * m5 - 0.11522 * m6 + 0.19304 * m7 + 0.029134 * m8 + 0.15856 * 

m9 + 0.35451 * m10 + 0.039440 * m11 - 0.32976 * m12 - 0.50023 * ut-1  . 

 

The error term is negative, satisfying the ECM requirements and is significant at 1%. 

R2 = 0.81, indicates good fit and appropriateness of the independent terms.  

 

5.4.6 ECM forecast of arrivals from Germany 

Table 5.4.6 shows the ECM forecasting performance for tourist arrivals to Japan from 

Germany. For the one-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for all forecast horizons, one month ahead, 12 months ahead 

and 24 months ahead. For the two-year lead period also, the forecasting performance 

is fair (MAPE between 10% and 20%) for all three horizons. The RMSE figures are 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the one-

month ahead forecasting horizon. 

 

Table 5.4.6 Error Correction Model Forecasting Performance  
 for Tourist Arrivals to Japan from Germany  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1417 12.68 1661 16.60 1661 16.60 
2 year  1278 12.53 1616 16.72 1778 18.66 
 

The Microfit outputs of the cointegrating long-run relationships and the short run 

error correction model, with diagnostics, are given in Tables 5.4.6a, b and c of 

Appendix II for one month, 12 months and 24 months-ahead forecasts respectively.  
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For the one month ahead model, vector 1 of the three possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = -0.14641 * (opr) + 0.74424 * (tro) + 0.56364 * (gni) – 0.033500 * (air) + ut  . 

 

This model shows that the relationships between tourist arrivals from Germany and 

the variables, own price, Germany’s trade openness, the per capita GNI of Germany 

and the airfare from Germany to Japan are all inelastic. Japan’s trade openness was 

found not to be significant. A 1% increase in own price would result in a 0.15% 

decrease in arrivals from Germany. A 1% increase in Germany’s trade openness 

would result in a 0.74% increase in arrivals. A 1% increase in Germany’s per capita 

GNI would result in a 0.56% increase in arrivals. A 1% increase in airfare costs would 

result in a 0.03% decrease in arrivals. 

 

The short-run, one month ahead, error correction model is as follows: 

∇(arr)t  = 0.0075045 + 0.19938 * ∇(opr)t -2  - 0.12862 * m2 + 0.31141 *  m3 + 

0.10933 * m4 - 0.022697 * m5 - 0.32375 * m6 + 0.089396 * m7 - 0.086688 * m8 +  

0.12049 * m9 + 0.34267 * m10 - 0.095090 * m11 - 0.58568 * m12 - 0.39112 * ut-1  . 

 

The error term is negative, satisfying ECM requirements and is significant at 1%.     

R2 = 0.89, indicates good fit and appropriateness of the independent terms.  
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For the 12 months ahead model, vector 1 of the four possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = -0.14791 * (opr) + 0.78149 * (tro) + 0.51026 * (gni) – 0.011917 * (air) + ut  . 

 

This model shows that the relationships between tourist arrivals from Germany and 

the variables, own price, Germany’s trade openness, the per capita GNI of Germany 

and the airfare from Germany to Japan are all inelastic. Japan’s trade openness was 

found not to be significant. A 1% increase in own price would result in a 0.15% 

decrease in arrivals from Germany. A 1% increase in Germany’s trade openness 

would result in a 0.78% increase in arrivals. A 1% increase in Germany’s per capita 

GNI would result in a 0.51% increase in arrivals. A 1% increase in airfare costs would 

result in a 0.01% decrease in arrivals. 

 
 
The short-run, 12 months ahead, error correction model is as follows: 

∇(arr)t  = -0.010816  - 0.30677 * ∇(air)t -9  - 0.11675 * m2 + 0.31959 *  m3 + 0.13446 

* m4 - 0.0010701 * m5 - 0.27202 * m6 + 0.090949 * m7 - 0.077903 * m8 +  0.13120 

* m9 + 0.36527 * m10 - 0.053299 * m11 - 0.54411 * m12 - 0.42908 * ut-1  . 

 

The error term is negative, satisfying ECM requirements and is significant at 1%.     

R2 = 0.89, indicates good fit and appropriateness of the independent terms.  
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For the 24 months ahead model, vector 1 of the three possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = -0.14881 * (opr) + 0.73855 * (tro) + 0.57166 * (gni) – 0.035467 * (air) + ut  . 

 

This model shows that the relationships between tourist arrivals from Germany and 

the variables, own price, Germany’s trade openness, the per capita GNI of Germany 

and the airfare from Germany to Japan are all inelastic. Japan’s trade openness was 

found not to be significant. A 1% increase in own price would result in a 0.15% 

decrease in arrivals from Germany. A 1% increase in Germany’s trade openness 

would result in a 0.74% increase in arrivals. A 1% increase in Germany’s per capita 

GNI would result in a 0.57% increase in arrivals. A 1% increase in airfare costs would 

result in a 0.04% decrease in arrivals. 

 

The short-run, 24 months ahead, error correction model is as follows: 

∇(arr)t  = -0.0031311 + 0.20459 * ∇(opr)t -2  - 0.12139 * m2 + 0.31894 *  m3 + 

0.11957 * m4 - 0.011941 * m5 - 0.31373 * m6 + 0.097283 * m7 - 0.077566 * m8 +  

0.12924 * m9 + 0.35257 * m10 - 0.083126 * m11 - 0.57516 * m12 - 0.39755 * ut-1  . 

 

The error term is negative, satisfying ECM requirements and is significant at 1%.     

R2 = 0.89, indicates good fit and appropriateness of the independent terms.  
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5.4.7 ECM forecast of arrivals from Korea 

Table 5.4.7 shows the ECM forecasting performance for tourist arrivals to Japan from 

Korea. For the one-year lead period the forecasting performance is good (MAPE less 

than 10%) for all forecast horizons, one month ahead, 12 months ahead and the 24 

months ahead. For the two-year lead period, the forecasting performance is fair 

(MAPE between 10% and 20%) for all three horizons.  The RMSE figures are 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the 24 

months ahead forecasting horizon. 

 

Table 5.4.7 Error Correction Model Forecasting Performance  
 for Tourist Arrivals to Japan from Korea  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 11880 8.55 10158 7.98 10158 7.98 
2 year  16978 11.37 19611 11.70 19595 11.49 
 

The Microfit outputs of the cointegrating long-run relationships and the short run 

error correction model, with diagnostics, are given in Tables 5.4.7a, b and c of 

Appendix II for one month, 12 months and 24 months ahead, forecasts respectively.  

 

For the one-month ahead model, vector 1 of the two possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = -0.5996*(opr) +0.4389*(tro) +0.979*(jtro)+1.3177*(gni) -0.36657*(air)+ ut  . 
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This model shows that the relationships between tourist arrivals from Korea and the 

variables, own price, Korea's trade openness, Japan’s trade openness and the airfare 

from Korea to Japan are inelastic and that the per capita GNI of Korea is elastic. A 

1% increase in own price would result in a 0.60% decrease in arrivals from Korea. A 

1% increase in Korea’s trade openness would result in a 0.44% increase in arrivals. A 

1% increase in Japan’s trade openness would result in a 0.98% increase in arrivals. A 

1% increase in Korea’s per capita GNI would result in a 1.32% increase in arrivals. A 

1% increase in airfare costs would result in a 0.37% decrease in arrivals. 

 
The short-run, one month ahead, error correction model is as follows: 

∇(arr)t  = 0.091663 - 0.18626 * ∇(tro)t  + 0.60376 * ∇(gni)t  + 0.28097 * ∇(gni)t -8   - 

0.076414 * ∇(air)t -11  - 0.23773 * m2 + 0.012159 * m3 - 0.058762 * m4 - 0.067387 * 

m5 - 0.15605 * m6 + 0.085710 * m7 + 0.023960 * m8 -0.33392 * m9 + 0.037099 * 

m10 - 0.10449 * m11 - 0.18960 * m12 - 0.051455 * ut-1  . 

 

The error term is negative, satisfying ECM requirements and is significant at 5%.     

R2 = 0.75, indicates good fit and appropriateness of the independent terms.  

 

For the 12 months-ahead model, vector 1 of the two possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = -0.5219*(opr) +0.4532*(tro) +0.9162*(jtro) +1.283*(gni) - 0.3328*(air)+ ut  . 
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This model shows that the relationships between tourist arrivals from Korea and the 

variables, own price, Korea's trade openness, Japan’s trade openness and the airfare 

from Korea to Japan are inelastic and that the per capita GNI of Korea is elastic. A 

1% increase in own price would result in a 0.52% decrease in arrivals from Korea. A 

1% increase in Korea’s trade openness would result in a 0.45% increase in arrivals. A 

1% increase in Japan’s trade openness would result in a 0.92% increase in arrivals. A 

1% increase in Korea’s per capita GNI would result in a 1.28% increase in arrivals. A 

1% increase in airfare costs would result in a 0.33% decrease in arrivals. 

 

The short-run, 12 months ahead, error correction model is as follows: 

∇(arr)t  = 0.091150 + 0.48958 * ∇(gni)t  + 0.32924 * ∇(gni)t-8   - 0.24349 * m2 + 

0.00585 * m3 - 0.0565 * m4 - 0.07134 * m5 - 0.1573 * m6 + 0.094645 * m7 + 0.0244 

* m8 - 0.3531 * m9 +0.0388 * m10 - 0.1063 * m11 - 0.1884 * m12 - 0.061823 * ut-1  . 

 

The error term is negative, satisfying ECM requirements and is significant at 1%.     

R2 = 0.75, indicates good fit and appropriateness of the independent terms.  

 

For the 24 months-ahead model, vector 1 of the two possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows:  

 

(arr) = -0.5636*(opr) +0.4428*(tro) +0.9508*(jtro) +1.308*(gni) -0.3563*(air) + ut  . 

 

This model shows that the relationships between tourist arrivals from Korea and the 

variables, own price, Korea's trade openness, Japan’s trade openness and the airfare 
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from Korea to Japan are inelastic and that the per capita GNI of Korea is elastic. A 

1% increase in own price would result in a 0.56% decrease in arrivals from Korea. A 

1% increase in Korea’s trade openness would result in a 0.44% increase in arrivals. A 

1% increase in Japan’s trade openness would result in a 0.95% increase in arrivals. A 

1% increase in Korea’s per capita GNI would result in a 1.31% increase in arrivals. A 

1% increase in airfare costs would result in a 0.36% decrease in arrivals. 

 

The short-run, 24 months ahead, error correction model is as follows: 

∇(arr)t  = 0.0846 - 0.2096 * ∇(tro)t  + 0.6350 * ∇(gni)t  + 0.0687 * ∇(air)t -9   - 0.0750 

*∇(air)t -11  -0.2314 *m2 +0.0178*m3 -0.0529*m4 -0.0609*m5 -0.1501*m6  +0.0853 

*m7+0.0308*m8 -0.3017*m9+0.0434*m10 - .0975*m11 -0.1843*m12 -0.0536* ut-1  . 

 

The error term is negative, satisfying ECM requirements and is significant at 5%.     

R2 = 0.75, indicates good fit and appropriateness of the independent terms.  

 

5.4.8 ECM forecast of arrivals from Singapore 

Table 5.4.8 shows the ECM forecasting performance for tourist arrivals to Japan from 

Singapore. For the one-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for the one-month ahead forecasting horizon and poor 

(MAPE 20% or less) for the 12 months ahead and the 24 months ahead horizons. For 

the two-year lead period, the forecasting performance is poor (MAPE 20% or less) for 

all three horizons. The RMSE figures are consistent with the MAPE figures. Overall, 

the forecasting error increases with an increase in the lead period, but the model 

forecasts are poor. 
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Table 5.4.8 Error Correction Model Forecasting Performance  
 for Tourist Arrivals to Japan from Singapore  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1536 18.43 1649 20.76 1649 20.76 
2 year  1848 24.43 2836 40.69 2289 31.69 
 

The Microfit outputs of the cointegrating long-run relationships and the short run 

error correction model, with diagnostics, are given in Tables 5.4.8a, b and c of 

Appendix II for one month, 12 months and 24 months-ahead forecasts respectively.  

 

For the one-month ahead model, vector 2 of the two possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = 11.7366 * (jtro) + 4.9719 * (gni) – 9.8344 * (air) + ut  . 

 

This model shows that the relationships between tourist arrivals from Singapore and 

the variables, Japan’s trade openness, per capita GNI of Singapore and the airfare 

from Singapore to Japan are elastic. The variables, own price and Singapore 's trade 

openness were found not to be significant. A 1% increase in Japan’s trade openness 

would result in a 11.74% increase in arrivals from Singapore. A 1% increase in 

Singapore’s per capita GNI would result in a 4.97% increase in arrivals. A 1% 

increase in airfare costs would result in a 9.83% decrease in arrivals. 
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The short-run, one month ahead, error correction model is as follows: 

∇(arr)t  = -0.84433 - 1.4756 * ∇(gni)t -11  + 1.4114 * ∇(gni)t -12  + 0.97969 * m2 + 

1.0602 * m3 + 1.1771 * m4 + 0.83759 * m5 + 1.1911 * m6 + 0.084492 * m7 + 

0.80355 * m8 + 1.1054 * m9 + 0.95902 * m10 + 0.96240 * m11 + 1.1050 * m12 - 

0.0024109 * ut-1  . 

 

The error term is negative, satisfying ECM requirements but not significant.             

R2 = 0.78, indicates good fit and appropriateness of the independent terms.  

 

For the 12 months ahead model, vector 2 of the two possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = 11.657 * (jtro) + 4.9188 * (gni) – 9.7365 * (air) + ut  . 

 

This model shows that the relationships between tourist arrivals from Singapore and 

the variables, Japan’s trade openness, per capita GNI of Singapore and the airfare 

from Singapore to Japan are elastic. The variables, own price and Singapore's trade 

openness were found not to be significant. A 1% increase in Japan’s trade openness 

would result in a 11.66% increase in arrivals from Singapore. A 1% increase in 

Singapore’s per capita GNI would result in a 4.92% increase in arrivals. A 1% 

increase in airfare costs would result in a 9.74% decrease in arrivals. 
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The short-run, 12 months ahead, error correction model is as follows: 

∇(arr)t  = -0.84424 - 1.4576 * ∇(gni)t -11  + 1.4112 * ∇(gni)t -12  + 0.99448 * m2 + 

1.0604 * m3 + 1.1653 * m4 + 0.83532 * m5 + 1.1748 * m6 + 0.10114 * m7 + 

0.79844 * m8 + 1.1049 * m9 + 0.96370 * m10 + 0.97650 * m11 + 1.1023 * m12 - 

0.0025124 * ut-1  . 

 

The error term is negative, satisfying ECM requirements but not significant.             

R2 = 0.78, indicates good fit and appropriateness of the independent terms.  

 

For the 24 months ahead model, vector 2 of the two possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = 10.3275 * (jtro) + 4.4495 * (gni) – 8.6025 * (air) + ut  . 

 

This model shows that the relationships between tourist arrivals from Singapore and 

the variables, Japan’s trade openness, per capita GNI of Singapore and the airfare 

from Singapore to Japan are elastic. The variables, own price and Singapore 's trade 

openness were found not to be significant. A 1% increase in Japan’s trade openness 

would result in a 10.33% increase in arrivals from Singapore. A 1% increase in 

Singapore’s per capita GNI would result in a 4.45% increase in arrivals. A 1% 

increase in airfare costs would result in a 8.60% decrease in arrivals. 

 
 
 
 
 
 



Chapter 5 ECM and Multivariate neural Network Forecasting 236

 

The short-run, 24 months ahead, error correction model is as follows: 

∇(arr)t  = -0.82589 - 1.4753 * ∇(gni)t -11  + 1.2693 * ∇(gni)t -12  + 0.96178 * m2 + 

1.0423 * m3 + 1.1596 * m4 + 0.82044 * m5 + 1.1739 * m6 + 0.067543 * m7 + 

0.78604 * m8 + 1.0878 * m9 + 0.94148 * m10 + 0.94494 * m11 + 1.0876 * m12 - 

0.0031996 * ut-1  . 

 

The error term is negative, satisfying ECM requirements but not significant.             

R2 = 0.78, indicates good fit and appropriateness of the independent terms.  

 

5.4.9 ECM forecast of arrivals from Taiwan 

Table 5.4.9 shows the ECM forecasting performance for tourist arrivals to Japan from 

Taiwan. For the one-year lead period the forecasting performance is good (MAPE less 

than 10%) for all forecast horizons, one month ahead, 12 months ahead and 24 

months ahead. For the two-year lead period, the forecasting performance is poor 

(MAPE 20% or less) for all three horizons. The RMSE figures are consistent with the 

MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the one-month ahead 

forecasting horizon. 

 

Table 5.4.9 Error Correction Model Forecasting Performance  
 for Tourist Arrivals to Japan from Taiwan  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 5695 5.80 4282 5.05 4282 5.05 
2 year  15573 20.65 25078 41.79 18580 31.52 
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The Microfit outputs of the cointegrating long-run relationships and the short run 

error correction model, with diagnostics, are given in Tables 5.4.9a, b and c of 

Appendix II for one month, 12 months and 24 months-ahead forecasts respectively.  

 

For the one-month ahead model, vector 2 of the three possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = 4.759 * (cpiTai) + 1.9949 * (jtro) – 1.9159 * (air) + ut  . 

 

This model shows that the relationships between tourist arrivals from Taiwan and the 

variables, Taiwan's consumer price index, Japan’s trade openness, and airfare from 

Taiwan to Japan, are elastic. Data for the variables, own price and Taiwan 's trade 

openness were not available. A 1% increase in Taiwan’s CPI would result in a 4.76% 

increase in arrivals from Taiwan.  A 1% increase in Japan’s trade openness would 

result in a 1.99% increase in arrivals. A 1% increase in airfare costs would result in a 

1.92% decrease in arrivals. 

 
 
The short-run, one month ahead, error correction model is as follows: 

∇(arr)t  =  -0.0077217 + 3.3665 * ∇(cpiTai)t  + 0.55430 * ∇(jtro)t -1  + 0.17536 *   

∇(air)t -4  + 0.14714 * ∇(air)t -10  - 0.11974 * ∇(air)t -11 + 0.33400 * m2 - 0.12110 * m3 

+ 0.21430 * m4 – 0.14676 * m5 - 0.097342 * m6 + 0.44477 * m7 - 0.18390 * m8 - 

0.29026 * m9 + 0.13283 * m10 - 0.24058 * m11 - 0.12449 * m12 - 0.021019 * ut-1  . 
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The error term is negative, satisfying ECM requirements and is significant at 5%.     

R2 = 0.67, indicates good fit and appropriateness of the independent terms.  

 

For the 12 months ahead model, vector 2 of the three possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = 4.712 * (cpiTai) + 2.1791 * (jtro) – 2.0067 * (air) + ut  . 

 

This model shows that the relationships between tourist arrivals from Taiwan and the 

variables, Taiwan's consumer price index, Japan’s trade openness, and airfare from 

Taiwan to Japan, are elastic. Data for the variables, own price and Taiwan 's trade 

openness were not available. A 1% increase in Taiwan’s CPI would result in a 4.71% 

increase in arrivals from Taiwan.  A 1% increase in Japan’s trade openness would 

result in a 2.18% increase in arrivals. A 1% increase in airfare costs would result in a 

2.01% decrease in arrivals. 

 
 
The short-run, 12 months ahead, error correction model is as follows: 

∇(arr)t  =  0.0013485 + 3.4372 * ∇(cpiTai)t  + 0.64249 * ∇(jtro)t -1  + 0.16464 *   

∇(air)t -4  - 0.11781 * ∇(air)t -5  + 0.14236 * ∇(air)t -10  - 0.18033 * ∇(air)t -11 + 0.32362 

* m2 - 0.12578 * m3 + 0.21011 * m4 – 0.15121 * m5 - 0.10307 * m6 + 0.43998 * m7 

- 0.18166 * m8 - 0.29799 * m9 + 0.13519 * m10 - 0.24153 * m11 - 0.12721 * m12 - 

0.0098239 * ut-1  . 
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The error term is negative, satisfying ECM requirements but not significant.             

R2 = 0.68, indicates good fit and appropriateness of the independent terms.  

 

For the 24 months ahead model, vector 2 of the three possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = 4.8147 * (cpiTai) + 2.015 * (jtro) – 1.9504 * (air) + ut  . 

 

This model shows that the relationships between tourist arrivals from Taiwan and the 

variables, Taiwan's consumer price index, Japan’s trade openness, and airfare from 

Taiwan to Japan, are elastic. Data for the variables, own price and Taiwan 's trade 

openness were not available. A 1% increase in Taiwan’s CPI would result in a 4.82% 

increase in arrivals from Taiwan.  A 1% increase in Japan’s trade openness would 

result in a 2.02% increase in arrivals. A 1% increase in airfare costs would result in a 

1.95% decrease in arrivals. 

 
 
The short-run, 24 months ahead, error correction model is as follows:  

∇(arr)t  =  -0.011070 + 3.3768 * ∇(cpiTai)t  + 0.56202 * ∇(jtro)t -1  + 0.17503 *   

∇(air)t -4  + 0.14760 * ∇(air)t -10  - 0.11977 * ∇(air)t -11 + 0.33767 * m2 - 0.11771 * m3 

+ 0.21766 * m4 – 0.14344 * m5 - 0.094090 * m6 + 0.44842 * m7 - 0.18074 * m8 - 

0.28715 * m9 + 0.13635 * m10 - 0.23708 * m11 - 0.12089 * m12 - 0.020449 * ut-1  . 

 

The error term is negative, satisfying ECM requirements and is significant at 5%.     

R2 = 0.67, indicates good fit and appropriateness of the independent terms.  
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5.4.10 ECM forecast of arrivals from the UK 

Table 5.4.10 shows the ECM forecasting performance for tourist arrivals to Japan 

from the UK. For the one-year lead period the forecasting performance is poor 

(MAPE 20% or less) for all forecast horizons, one month ahead, 12 months ahead and 

24 months ahead. For the two-year lead period also, the forecasting performance is 

poor (MAPE 20% or less) for all three forecasting horizons. The RMSE figures are 

consistent with the MAPE figures. Overall, the forecasting error is inconsistent and 

the model forecasts are poor. 

 

Table 5.4.10 Error Correction Model Forecasting Performance  
 for Tourist Arrivals to Japan from the UK  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 5834 23.49 9927 49.55 9927 49.55 
2 year  4933 21.49 9161 48.60 11525 63.58 
 

The Microfit outputs of the cointegrating long-run relationships and the short run 

error correction model, with diagnostics, are given in Tables 5.4.10a, b and c of 

Appendix II for one month, 12 months and 24 months-ahead forecasts respectively.  

 

For the one month ahead model, vector 1 of the three possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = -0.0197*(opr) +0.7841*(tro) +0.5215*(jtro)+0.5517*(gni) -0.0845*(air)+ ut  . 

 

This model shows that the relationships between tourist arrivals from the UK and the 

variables, own price, UK trade openness, Japan’s trade openness, per capita GNI of 
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the UK and airfare from the UK to Japan are inelastic. A 1% increase in own price 

would result in a 0.02% decrease in arrivals from the UK. A 1% increase in UK trade 

openness would result in a 0.78% increase in arrivals. A 1% increase in Japan’s trade 

openness would result in a 0.52% increase in arrivals. A 1% increase in the UK per 

capita GNI would result in a 0.55% increase in arrivals. A 1% increase in airfare costs 

would result in a 0.09% decrease in arrivals. 

 
 
The short-run, one month ahead, error correction model is as follows: 

∇(arr)t  =  -0.038817 + 0.80650 * ∇(tro)t -1 + 0.73924 * ∇(jtro)t  - 0.90818 * ∇(gni)t -6  

+ 0.14311 * m2 + 0.017073 * m3 + 0.059463 * m4 - 0.14169 * m5 - 0.022903 * m6 + 

0.31617 * m7 + 0.10703 * m8 - 0.14211 * m9 + 0.11802 * m10 - 0.071547 * m11 + 

0.013664 * m12 - 0.31823 *  ut-1  . 

 

The error term is negative, satisfying ECM requirements and is significant at 1%.     

R2 = 0.47 indicates poor fit and/or inappropriateness of the independent terms.  

 

For the 12 months ahead model, vector 1 of the two possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = 1.0563 * (tro) + 0.45139 * (jtro) + 0.38747 * (gni) - 0.11758 * (air) + ut  . 

 

This model shows that the relationships between tourist arrivals from the UK and the 

variables, Japan’s trade openness, per capita GNI of the UK and airfare from the UK 

to Japan are inelastic and UK trade openness is elastic. The variable own price was 
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found not to be significant. A 1% increase in UK trade openness would result in a 

1.06% increase in arrivals from the UK. A 1% increase in Japan’s trade openness 

would result in a 0.45% increase in arrivals. A 1% increase in the UK per capita GNI 

would result in a 0.39% increase in arrivals. A 1% increase in airfare costs would 

result in a 0.12% decrease in arrivals. 

 
The short-run, 12 months ahead, error correction model is as follows: 

∇(arr)t  =  -0.030832 + 0.85963 * ∇(tro)t -1 + 0.71194 * ∇(jtro)t  + 0.13476 * m2 + 

0.0245 * m3 + 0.0417 * m4 - 0.1274 * m5 - 0.0216 * m6 + 0.23573 * m7 + 0.09216 * 

m8 - 0.1494 * m9 +0.11875 * m10 - 0.08281 * m11 +0.00613 * m12 - 0.2874 *  ut-1  . 

 

The error term is negative, satisfying ECM requirements and is significant at 1%.     

R2 = 0.43 indicates poor fit and/or inappropriateness of the independent terms.  

 

For the 24 months ahead model, vector 1 of the three possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = -0.0326*(opr) +0.8083*(tro)+0.5449*(jtro)+0.5144*(gni) -0.0727*(air) + ut  . 

 

This model shows that the relationships between tourist arrivals from the UK and the 

variables, own price, UK trade openness, Japan’s trade openness, per capita GNI of 

the UK and airfare from the UK to Japan are inelastic. A 1% increase in own price 

would result in a 0.03% decrease in arrivals from the UK. A 1% increase in UK trade 

openness would result in a 0.81% increase in arrivals. A 1% increase in Japan’s trade 
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openness would result in a 0.55% increase in arrivals. A 1% increase in the UK per 

capita GNI would result in a 0.51% increase in arrivals. A 1% increase in airfare costs 

would result in a 0.07% decrease in arrivals. 

 
The short-run, 24 months ahead, error correction model is as follows: 

∇(arr)t  =  -0.035203 + 0.79292 * ∇(tro)t -1 + 0.75484 * ∇(jtro)t  - 0.88855 * ∇(gni)t -6  

+ 0.14109 * m2 + 0.015737 * m3 + 0.057842 * m4 - 0.14359 * m5 - 0.025508 * m6 + 

0.31217 * m7 + 0.10539 * m8 - 0.14348 * m9 + 0.11571 * m10 - 0.073481 * m11 + 

0.011083 * m12 - 0.32266 *  ut-1  . 

 

The error term is negative, satisfying ECM requirements and is significant at 1%.     

R2 = 0.47 indicates poor fit and/or inappropriateness of the independent terms.  

 

5.4.11 ECM forecast of arrivals from the USA 

Table 5.4.11 shows the ECM forecasting performance for tourist arrivals to Japan 

from the USA. For the one-year lead period the forecasting performance is good 

(MAPE less than 10%) for all forecast horizons, one month ahead, 12 months ahead 

and 24 months ahead. For the two-year lead period, the forecasting performance is 

good (MAPE less than 10%) for the one-month ahead horizon and fair (MAPE 

between 10% and 20%) for the 12 months ahead and 24 months-ahead horizons. The 

RMSE figures are consistent with the MAPE figures. Overall, the forecasting error 

increases with an increase in the lead period, and the model forecasts are most 

accurate over the one-month ahead forecasting horizon. 
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Table 5.4.11 Error Correction Model Forecasting Performance  
 for Tourist Arrivals to Japan from the USA  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 4337 5.84 4802 6.36 4802 6.36 
2 year  6345 7.70 8596 11.10 8379 10.74 
 

The Microfit outputs of the cointegrating long-run relationships and the short run 

error correction model, with diagnostics, are given in Tables 5.4.11a, b and c of 

Appendix II for one month, 12 months and 24 months ahead forecasts respectively. 

For the one month ahead model, there is only one cointegrating vector and the 

maximum likelihood long-run estimate is as follows: 

 

(arr) = -0.19316 * (opr) + 1.4617 * (tro) + 0.85556 * (gni) – 0.19407 * (air) + ut  . 

 

This model shows that the relationships between tourist arrivals from the USA and the 

variables, own price, per capita GNI of the USA and airfare from the USA to Japan 

are not elastic and USA trade openness is elastic. Japan’s trade openness was found to 

be insignificant. A 1% increase in own price would result in a 0.19% decrease in 

arrivals. A 1% increase in USA trade openness would result in a 1.46% increase in 

arrivals. A 1% increase in the USA per capita GNI would result in a 0.86% increase in 

arrivals. A 1% increase in airfare costs would result in a 0.19% decrease in arrivals. 

 
 
The short-run, one month ahead, error correction model is as follows: 

∇(arr)t  =  -0.017359 + 1.6801 * ∇(gni)t -8  - 1.3925 * ∇(gni)t -11  - 0.19490 * m2 + 

0.29803 * m3 + 0.089481 * m4 + 0.069248 * m5 + 0.017437 * m6 + 0.019466 * m7 - 

0.088846 * m8 - 0.046530 * m9 + 0.25647 * m10 - 0.19218 * m11 - 0.15701 * m12 - 

0.20602 * ut-1  . 
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The error term is negative, satisfying ECM requirements and is significant at 1%.     

R2 = 0.87 indicates good fit and appropriateness of the independent terms.  

 

For the 12 months ahead model, vector 1 of the two possible long-run relationships 

was selected based on the expected signs of the variables. The maximum likelihood 

long-run estimate is as follows: 

 

(arr) = -0.19390 * (opr) + 1.4614 * (tro) + 0.85507 * (gni) – 0.19323 * (air) + ut  . 

 

This model shows that the relationships between tourist arrivals from the USA and the 

variables, own price, per capita GNI of the USA and airfare from the USA to Japan 

are inelastic and USA trade openness is elastic. Japan’s trade openness was found to 

be not significant. A 1% increase in own price would result in a 0.19% decrease in 

arrivals from the USA. A 1% increase in USA trade openness would result in a 1.46% 

increase in arrivals. A 1% increase in the USA per capita GNI would result in a 0.86% 

increase in arrivals. A 1% increase in airfare costs would result in a 0.19% decrease in 

arrivals. 

 

The short-run, 12 months ahead, error correction model is as follows: 

∇(arr)t  =  -0.024392 - 0.70540 * ∇(tro)t -6   + 1.7045 * ∇(gni)t -8  - 1.4621 * ∇(gni)t -11  

- 0.18251 * m2 + 0.30955 * m3 + 0.091118 * m4 + 0.071224 * m5 + 0.028960 * m6 

+ 0.028833 * m7 - 0.088105 * m8 - 0.036586 * m9 + 0.26147 * m10 - 0.17794 * m11 

- 0.13989 * m12 - 0.21355 * ut-1  . 
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The error term is negative, satisfying ECM requirements and is significant at 1%.     

R2 = 0.87 indicates good fit and appropriateness of the independent terms.  

 

For the 24 months ahead model, there is only one cointegrating vector and the 

maximum likelihood long-run estimate is as follows: 

 

(arr) = -0.18679 * (opr) + 1.4719 * (tro) + 0.84627 * (gni) – 0.19178 * (air) + ut  . 

 

This model shows that the relationships between tourist arrivals from the USA and the 

variables, own price, per capita GNI of the USA and airfare from the USA to Japan 

are inelastic and USA trade openness is elastic. Japan’s trade openness was found to 

be not significant. A 1% increase in own price would result in a 0.19% decrease in 

arrivals. A 1% increase in USA trade openness would result in a 1.47% increase in 

arrivals. A 1% increase in the USA per capita GNI would result in a 0.85% increase in 

arrivals. A 1% increase in airfares would result in a 0.19% decrease in arrivals. 

 
 
The short-run, 24 months ahead, error correction model is as follows: 

∇(arr)t  =  -0.016654 + 1.6778 * ∇(gni)t -8  - 1.3925 * ∇(gni)t -11  - 0.19503 * m2 + 

0.2981 * m3 + 0.08900 * m4 + 0.06862 * m5 + 0.01674 * m6 + 0.0188 * m7 - 0.0894 

* m8 - 0.0468 * m9 + 0.2559 * m10 - 0.1931 * m11 - 0.1574 * m12 - 0.2045 * ut-1  . 

 

The error term is negative, satisfying ECM requirements and is significant at 1%.     

R2 = 0.87 indicates good fit and appropriateness of the independent terms.  
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5.5 Results of Multivariate Multi-layer Perceptron (MMLP) Forecasts  

 

5.5.1 MMLP forecast of arrivals from all countries 

Table 5.5.1 shows the MMLP forecasting performance for tourist arrivals to Japan 

from all countries. For the one-year lead period the forecasting performance is fair 

(MAPE between 10% and 20%) for the one-month-ahead forecasting horizon and 

good (MAPE less than 10%) for the 12 months ahead and the 24 months ahead 

horizons. For the two-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for all three horizons. The RMSE figures are consistent with 

the MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 24 months ahead 

forecasting horizon. 

 

Table 5.5.1 Forecasting Performance of MLP with Indicators  
 for Tourist Arrivals to Japan from All Countries  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 162543 18.62 40649 8.78 36133 6.79 
2 year  127917 16.71 58690 11.37 55879 10.29 
 

 

5.5.2 MMLP forecast of arrivals from Australia 

Table 5.5.2 shows the MMLP forecasting performance for tourist arrivals to Japan 

from Australia. For the one-year lead period the forecasting performance is good 

(MAPE less than 10%) for all forecast horizons, one month ahead, 12 months ahead 

and 24 months ahead. For the two-year lead period also, the forecasting performance 

is good (MAPE less than 10%) for all three horizons. The RMSE figures are 

consistent with the MAPE figures. Overall, the forecasting error increases with an 
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increase in the lead period, and the model forecasts are most accurate over the 12 

months ahead forecasting horizon. 

 

Table 5.5.2 Forecasting Performance of MLP with Indicators  
 for Tourist Arrivals to Japan from Australia  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 746 4.51 653 3.70 855 5.54 
2 year  1123 5.93 940 5.01 1201 7.42 
 

 

5.5.3 MMLP forecast of arrivals from Canada 

Table 5.5.3 shows the MMLP forecasting performance for tourist arrivals to Japan 

from Canada. For the one-year lead period the forecasting performance is good 

(MAPE less than 10%) for all forecast horizons, one month ahead, 12 months ahead 

and 24 months ahead. For the two-year lead period, the forecasting performance is 

mostly good (MAPE less than 10%) for all three horizons. The RMSE figures are 

fairly consistent with the MAPE figures. Overall, the forecasting error increases with 

an increase in the lead period, and the model forecasts are most accurate over the 12 

months ahead forecasting horizon. 

 

Table 5.5.3 Forecasting Performance of MLP with Indicators  
 for Tourist Arrivals to Japan from Canada  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 794 5.62 767 5.32 895 5.80 
2 year  1268 9.15 1212 8.54 1306 8.96 
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5.5.4 MMLP forecast of arrivals from China 

Table 5.5.4 shows the MMLP forecasting performance for tourist arrivals to Japan 

from China. For the one-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for all forecast horizons, one month ahead, 12 months ahead 

and 24 months ahead. For the two-year lead period, the forecasting performance is 

poor (MAPE 20% or less) for all three horizons.  The RMSE figures are fairly 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the 12 

months ahead forecasting horizon. 

 

Table 5.5.4 Forecasting Performance of MLP with Indicators  
 for Tourist Arrivals to Japan from China  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 5248 13.18 5613 11.92 6766 13.99 
2 year  10572 30.32 9308 28.81 9649 29.64 
 

 

5.5.5 MMLP forecast of arrivals from France 

Table 5.5.5 shows the MMLP forecasting performance for tourist arrivals to Japan 

from France. For the one-year lead period the forecasting performance is good 

(MAPE less than 10%) for all forecast horizons, one month ahead, 12 months ahead 

and 24 months ahead. For the two-year lead period also, the forecasting performance 

is good (MAPE less than 10%) for all three horizons. The RMSE figures are fairly 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the 12 

months ahead forecasting horizon. 
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Table 5.5.5 Forecasting Performance of MLP with Indicators  
 for Tourist Arrivals to Japan from France  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 445 4.84 423 3.76 486 5.09 
2 year  736 8.16 694 7.10 676 7.12 
 

 

5.5.6 MMLP forecast of arrivals from Germany 

Table 5.5.6 shows the MMLP forecasting performance for tourist arrivals to Japan 

from Germany. For the one-year lead period the forecasting performance is fair 

(MAPE between 10% and 20%) for the one-month ahead forecasting horizon and 

good (MAPE less than 10%) for the 12 months ahead and the 24 months ahead 

horizons. For the two-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for the one-month ahead and the 12 months ahead horizons 

and good (MAPE less than 10%) for the 24 months ahead horizon. The RMSE figures 

are not consistent with the MAPE figures. Overall, the forecasting error increases with 

an increase in the lead period, and the model forecasts are most accurate over the 24 

months ahead forecasting horizon. 

 

Table 5.5.6 Forecasting Performance of MLP with Indicators  
 for Tourist Arrivals to Japan from Germany  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1177 10.49 1183 9.14 1171 9.51 
2 year  1196 11.35 1171 10.71 1171 9.86 
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5.5.7 MMLP forecast of arrivals from Korea 

Table 5.5.7 shows the MMLP forecasting performance for tourist arrivals to Japan 

from Korea. For the one-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for all forecast horizons, one month ahead, 12 months ahead 

and 24 months ahead. For the two-year lead period also, the forecasting performance 

is fair (MAPE between 10% and 20%) for all three forecast horizons. The RMSE 

figures are fairly consistent with the MAPE figures. Overall, the forecasting error 

increases with an increase in the lead period, and the model forecasts are most 

accurate over the 12 months ahead forecasting horizon. 

 

Table 5.5.7 Forecasting Performance of MLP with Indicators  
 for Tourist Arrivals to Japan from Korea  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 35163 16.75 16292 10.11 22318 13.86 
2 year  31772 16.89 23767 12.48 31831 17.38 
 

 

5.5.8 MMLP forecast of arrivals from Singapore 

Table 5.5.8 shows the MMLP forecasting performance for tourist arrivals to Japan 

from Singapore. For the one-year lead period the forecasting performance is fair 

(MAPE between 10% and 20%) for all forecast horizons, one month ahead, 12 

months ahead and 24 months ahead. For the two-year lead period, the forecasting 

performance is poor (MAPE 20% or less) for all three horizons. The RMSE figures 

are fairly consistent with the MAPE figures. Overall, the forecasting error increases 

with an increase in the lead period, and the model forecasts are most accurate over the 

one-month ahead forecasting horizon. 

 

 



Chapter 5 ECM and Multivariate neural Network Forecasting 252

 

Table 5.5.8 Forecasting Performance of MLP with Indicators  
 for Tourist Arrivals to Japan from Singapore  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1231 13.95 1503 15.59 1453 14.84 
2 year  1680 25.03 1935 27.28 2050 25.91 
 

 

5.5.9 MMLP forecast of arrivals from Taiwan 

Table 5.5.9 shows the MMLP forecasting performance for tourist arrivals to Japan 

from Taiwan. For the one year lead period the forecasting performance is good 

(MAPE less than 10%) for the one month ahead and the 24 months forecasting 

horizons and fair (MAPE between 10% and 20%) for the 12 months ahead horizon. 

For the two-year lead period, the forecasting performance is poor (MAPE 20% or 

less) for all three horizons. The RMSE figures are fairly consistent with the MAPE 

figures. Overall, the forecasting error increases with an increase in the lead period, 

and the model forecasts are most accurate over the one-month ahead forecasting 

horizon. 

 

Table 5.5.9 Forecasting Performance of MPL with Indicators  
 for Tourist Arrivals to Japan from Taiwan  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 7064 7.49 11997 14.34 8232 8.84 
2 year  20908 29.14 19428 34.36 18458 31.71 
 

 

5.5.10 MMLP forecast of arrivals from the UK 

Table 5.5.10 shows the MMLP forecasting performance for tourist arrivals to Japan 

from the UK. For the one-year lead period the forecasting performance is fair (MAPE 

between 10% and 20%), for all forecast horizons, one month ahead, 12 months ahead 

and 24 months ahead. For the two-year lead period also, the forecasting performance 
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is fair (MAPE between 10% and 20%) for all three horizons. The RMSE figures are 

fairly consistent with the MAPE figures. Overall, the forecasting error increases with 

an increase in the lead period, and the model forecasts are most accurate over the 12 

months ahead forecasting horizon. 

 

Table 5.5.10 Forecasting Performance of MLP with Indicators  
 for Tourist Arrivals to Japan from the UK  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 3261 15.04 3251 11.79 3852 13.98 
2 year  2941 14.30 2848 12.46 3386 13.38 
 

 

5.5.11 MMLP forecast of arrivals from the USA 

Table 3.6.11 shows the MMLP forecasting performance for tourist arrivals to Japan 

from the USA. For the one-year lead period the forecasting performance is good 

(MAPE less than 10%) for the one month ahead and 24 months ahead forecasting 

horizons and fair (MAPE between 10% and 20%) for the 12 months ahead horizon. 

For the two-year lead period, the forecasting performance is good (MAPE less than 

10%) for the one month ahead horizon and fair (MAPE between 10% and 20%) for 

the 12 months ahead and 24 months ahead horizons. The RMSE figures are consistent 

with the MAPE figures. Overall, the forecasting error increases with an increase in the 

lead period, and the model forecasts are most accurate over the one-month ahead 

forecasting horizon. 

 

Table 5.5.11 Forecasting Performance of MLP with Indicators  
 for Tourist Arrivals to Japan from the USA  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 4157 5.17 9695 14.74 7443 9.43 
2 year  5871 8.11 10679 16.01 7451 10.62 
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5.6 Model Comparison 

 

Table 5.6.1 shows a comparison of the forecasting performance of the Error 

correction Model (ECM), the Multivariate Multi-layer Perceptron (MMLP), and the 

naïve models for the one-month ahead, forecasting horizon. Using best MAPE as the 

forecasting performance evaluation criterion, for the one-month ahead forecasting 

horizon, both ECM and MMLP perform equally well as both models have the lowest 

MAPE in 9 (41%) of 22 forecasts. The 22 forecasts are made up of 1 and 2 year lead 

forecasts for 11 data series. Eight (36%) of the 22 ECM forecasts have MAPE figures 

less than 10% and 6 (75%) and 2 (25%) of these 8 forecasts were for the 1 year and 2 

year lead periods respectively, indicating the model works better for 1 year lead 

periods.  Nine (41%) of the 22 MMLP Forecasts have MAPE figures less than 10% 

while 5 (56%) and 4 (44%) of these 9 forecasts were for the 1 year and 2 year lead 

periods respectively, indicating the model works well for both 1 and 2 year lead 

periods. The naïve model had the lowest MAPE in 4 (18%) forecasts. 

 

 The MMLP model has the lowest mean MAPE of 13.2%. However, at the 5% level, 

the mean differences in the MAPE figures of the three models are not significant.  

 

Table 5.6.2 shows a comparison of the forecasting performance of the ECM, the 

MMLP, and the naïve models for the, 12 months ahead, forecasting horizon. Using 

lowest MAPE as the forecasting performance evaluation criterion, for the 12 months 

ahead, forecasting horizon, MMLP performs better than the ECM model and has the 

lowest MAPE in 13 (59%) of 22 forecasts. Eight (36%) of the 22 MMLP forecasts 

have MAPE figures less than 10% and 5 (63%) and 3 (38%) of these 8 forecasts were 
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for the 1 year and 2 year lead periods respectively, indicating the model works better 

for 1 year lead periods. The ECM model has the lowest MAPE in 6 (27%) of the 22 

forecasts while 4 (18%) of the 22 ECM forecasts have MAPE figures less than 10%. 

All 4 of these forecasts were for the 1 year lead period, indicating the model works 

better for the 1 year lead period. The naïve model had the lowest MAPE in 3 (14) 

forecasts. 

 

 The MMLP model has the lowest mean MAPE of 12.9%. The MMLP model is 

significantly better than the ECM model and the naïve model at the 5% level.  

 

Table 5.6.3 shows a comparison of the forecasting performance of the ECM, the 

MMLP, and the naïve models for the, 24 months ahead, forecasting horizon. Using 

best MAPE as the forecasting performance evaluation criterion, for the 24 months 

ahead, forecasting horizon, MMLP performs better than the ECM model and has the 

lowest MAPE in 12 (55%) of 22 forecasts. Eleven (50%) of the 22 MMLP forecasts 

have MAPE figures less than 10% while 7 (64%) and 4 (36%) of these 11 forecasts 

were for the 1 year and 2 year lead periods respectively, indicating the model works 

better for 1 year lead periods. The ECM model has the lowest MAPE in 6 (27%) of 

the 22 forecasts. Four (18%) of the 22 ECM forecasts have MAPE figures less than 

10%. All 4 of these forecasts were for the 1 year lead period, indicating the model 

works better for the 1 year lead period. The naïve model had the lowest MAPE in 4 

(18%) forecasts. 

 

 The MMLP model has the lowest mean MAPE of 12.7%. The MMLP model is 

significantly better than the ECM model and the naïve model at the 5% level. 
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Table 5.6.1 Multivariate one month ahead Forecasting Performance 
  of ECM and MMLP   
    

Country Forecast ECM  MMLP  Naïve  
 Lead RMSE MAPE RMSE MAPE RMSE MAPE 

All 1 year 26746 5.0 162543 18.6 47084 9.9 
 2 year 53172 9.3 127917 16.7 59512 12.3 

Australia 1 year 1430 9.3 746 4.5 1455 10.1 
 2 year 1866 11.3 1123 5.9 1351 8.6 

Canada 1 year 1248 9.7 794 5.6 1120 8.6 
 2 year 1574 12.3 1268 9.2 1280 10.2 

China 1 year 5970 14.4 5248 13.2 5887 14.2 
 2 year 9253 26.8 10572 30.3 8476 27.3 

France 1 year 1038 10.7 445 4.8 585 6.3 
 2 year 1173 13.6 736 8.2 852 9.4 

Germany 1 year 1417 12.7 1177 10.5 1092 7.9 
 2 year 1278 12.5 1196 11.3 1247 11.2 

Korea 1 year 11880 8.6 35163 16.8 13113 10.5 
 2 year 16978 11.4 31772 16.9 17606 12.8 

Singapore 1 year 1536 18.4 1231 13.9 1644 21.3 
 2 year 1848 24.4 1680 25.0 1794 27.7 

Taiwan 1 year 5695 5.8 7064 7.5 12620 14.2 
 2 year 15573 20.6 20908 29.1 19842 35.4 

UK 1 year 5834 23.5 3261 15.0 3815 12.7 
 2 year 4933 21.5 2941 14.3 3817 13.5 

USA 1 year 4337 5.8 4157 5.2 6382 8.0 
 2 year 6345 7.7 5871 8.1 8072 10.4 
    

Summary Measures   
Mean  8233 13.4 19446 13.2 9938 13.7 
Standard Deviation 11984 6.4 42212 7.5 15242 7.5 
MAPE p-values:   
  c/w Naïve   -0.39 -0.28  
  c/w MMLP  0.43 0.28 
  c/w ECM   -0.43 0.39 

    
Lowest MAPE Count Count % Count % Count % 
of 22 forecasts 9 41% 9 41% 4 18% 

    
MAPE <= 10% 8 36% 9 41% 7 32% 
10% <MAPE< 20% 9 41% 10 45% 11 50% 
MAPE >= 20% 5 23% 3 14% 4 18% 

    
MAPE <= 10%   
  for 1 year lead 6 75% 5 56% 5 71% 
  for 2 year lead 2 25% 4 44% 2 29% 
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Table 5.6.2 Multivariate 12 months ahead Forecasting Performance 
  of ECM and MMLP  
    

Country Forecast ECM  MMLP  Naïve  
 Lead RMSE MAPE RMSE MAPE RMSE MAPE 

All 1 year 28292 5.3 40649 8.8 47084 9.9 
 2 year 67601 11.2 58690 11.4 59512 12.3 

Australia 1 year 3602 23.5 653 3.7 1455 10.1 
 2 year 3203 19.5 940 5.0 1351 8.6 

Canada 1 year 1797 13.6 767 5.3 1120 8.6 
 2 year 2016 16.1 1212 8.5 1280 10.2 

China 1 year 6067 14.9 5613 11.9 5887 14.2 
 2 year 9887 31.2 9308 28.8 8476 27.3 

France 1 year 1318 15.4 423 3.8 585 6.3 
 2 year 1402 16.8 694 7.1 852 9.4 

Germany 1 year 1661 16.6 1183 9.1 1092 7.9 
 2 year 1616 16.7 1171 10.7 1247 11.2 

Korea 1 year 10158 8.0 16292 10.1 13113 10.5 
 2 year 19611 11.7 23767 12.5 17606 12.8 

Singapore 1 year 1649 20.8 1503 15.6 1644 21.3 
 2 year 2836 40.7 1935 27.3 1794 27.7 

Taiwan 1 year 4282 5.0 11997 14.3 12620 14.2 
 2 year 25078 41.8 19428 34.4 19842 35.4 

UK 1 year 9927 49.5 3251 11.8 3815 12.7 
 2 year 9161 48.6 2848 12.5 3817 13.5 

USA 1 year 4802 6.4 9695 14.7 6382 8.0 
 2 year 8596 11.1 10679 16.0 8072 10.4 
    

Summary Measures   
Mean  10207 20.2 10123 12.9 9938 13.7 
Standard Deviation 14924 13.6 14723 8.0 15242 7.5 
MAPE p-values:   
  c/w Naïve   0.01 -0.09  
  c/w MMLP  0.01 0.09 
  c/w ECM   -0.01 -0.01 

    
Lowest MAPE Count Count % Count % Count % 
of 22 forecasts 6 27% 13 59% 3 14% 

    
MAPE <= 10% 4 18% 8 36% 7 32% 
10% <MAPE< 20% 11 50% 11 50% 11 50% 
MAPE >= 20% 7 32% 3 14% 4 18% 

    
MAPE <= 10%   
  for 1 year lead 4 100% 5 63% 5 71% 
  for 2 year lead 0 0% 3 38% 2 29% 
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Table 5.6.3 Multivariate 24 months ahead Forecasting Performance 
  of ECM and MMLP  
    

Country Forecast ECM  MMLP  Naïve  
 Lead RMSE MAPE RMSE MAPE RMSE MAPE 

All 1 year 28292 5.3 36133 6.8 43323 9.3 
 2 year 60165 10.3 55879 10.3 66744 13.9 

Australia 1 year 3602 23.5 855 5.5 1748 10.8 
 2 year 4415 27.6 1201 7.4 2087 13.0 

Canada 1 year 1797 13.6 895 5.8 1372 10.4 
 2 year 2171 17.4 1306 9.0 1583 12.4 

China 1 year 6067 14.9 6766 14.0 9318 21.0 
 2 year 12857 41.3 9649 29.6 10954 32.5 

France 1 year 1318 15.4 486 5.1 940 11.9 
 2 year 1566 18.9 676 7.1 889 10.6 

Germany 1 year 1661 16.6 1171 9.5 1317 10.3 
 2 year 1778 18.7 1171 9.9 1268 11.0 

Korea 1 year 10158 8.0 22318 13.9 18600 15.9 
 2 year 19595 11.5 31831 17.4 26280 18.3 

Singapore 1 year 1649 20.8 1453 14.8 993 9.1 
 2 year 2289 31.7 2050 25.9 1968 25.9 

Taiwan 1 year 4282 5.0 8232 8.8 9149 10.5 
 2 year 18580 31.5 18458 31.7 20045 34.4 

UK 1 year 9927 49.5 3852 14.0 14877 79.5 
 2 year 11525 63.6 3386 13.4 10569 43.3 

USA 1 year 4802 6.4 7443 9.4 2586 2.9 
 2 year 8379 10.7 7451 10.6 8352 9.9 
    

Summary Measures   
Mean  9858 21.0 10121 12.7 11589 18.9 
Standard Deviation 13306 14.9 14450 7.5 16238 16.7 
MAPE p-values:   
  c/w Naïve   0.18 -0.03  
  c/w MMLP  0.00 0.03 
  c/w ECM   -0.00 -0.18 

    
Lowest MAPE Count Count % Count % Count % 
of 22 forecasts 6 27% 12 55% 4 18% 

    
MAPE <= 10% 4 18% 11 50% 4 18% 
10% <MAPE< 20% 10 45% 8 36% 12 55% 
MAPE >= 20% 8 36% 3 14% 6 27% 

    
MAPE <= 10%   
  for 1 year lead 4 100% 7 64% 3 75% 
  for 2 year lead 0 0% 4 36% 1 25% 
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Table 5.6.4 Forecasting Performance Comparison Summary 
  of ECM and MMLP  
    
  ECM MMLP  Naïve  
  RMSE MAPE RMSE MAPE RMSE MAPE 

Mean  9433 18.2 13230 12.9 10489 15.5 
Standard Deviation 13278 12.5 27070 7.5 15359 11.5 
MAPE p-values:   
  c/w Naïve   0.01 -0.02  
  c/w MMLP  0.01 0.02 
  c/w ECM   -0.01 -0.01 

    
Lowest MAPE Count Count % Count % Count % 
of 66 forecasts 21 32% 34 52% 11 17% 

    
MAPE <= 10% 16 24% 28 42% 18 27% 
10% <MAPE< 20% 30 45% 29 44% 34 52% 
MAPE >= 20% 20 30% 9 14% 14 21% 

    
MAPE <= 10%   
  for 1 year lead 14 88% 17 61% 13 72% 
  for 2 year lead 2 13% 11 39% 5 28% 
 

Table 5.6.4 shows a comparison summary of the forecasting performance of the ECM, 

the MMLP, and the naïve models for all three, forecasting horizons. Using lowest 

MAPE as the forecasting performance evaluation criterion, overall, MMLP performs 

better than the ECM model and has the lowest MAPE in 34 (52%) of 66 forecasts 

while 28 (42%) of the 66 MMLP forecasts have MAPE figures less than 10%. Of 

these 28 forecasts, 17 (61%) and 11 (39%) were for the 1 year and 2 year lead periods 

respectively, indicating the model works better for 1 year lead periods. The ECM 

model has the lowest MAPE in 21 (32%) of the 66 forecasts while 16 (24%) of the 66 

ECM forecasts have MAPE figures less than 10%. Of these 16 ECM forecasts, 14 

(88%) and 2 (13%) were for the 1 year and 2 year lead periods respectively, indicating 

the model works better for the 1 year lead period. The naïve model had the lowest 

MAPE in 11 (17%) forecasts.  
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 The MMLP model has the lowest mean MAPE of 12.9%. The MMLP model is 

significantly better than the ECM model and the naïve model at the 5% level. The 

naïve model is in turn significantly better than the ECM model at 5%. 

 

5.7 Conclusion 

 

Overall, the MMLP model performs better than the ECM and the naïve models with 

the lowest MAPE in 52% of 66 forecasts. The accuracy of the MMLP model was also 

high with 42% of 66 forecasts having MAPE figures less than 10%. The MMLP 

model also has the lowest mean MAPE of 12.9% which is significantly different from 

the ECM mean MAPE of 18.2% at the 5% level of significance. However, the ECM 

model performs as well as the MMLP model in the one month ahead forecasting 

horizon. 

 

The better forecasting performance of the MMLP model is consistent with the 

findings of Burger, Dohnal, Kathrada et al. (2001) that neural networks performs 

better than regression models. However, ECM models are useful in explaining the 

elasticities in relation to the independent variables.  

 

The same explanatory variables were used for both models and the result is in keeping 

with the findings of other studies that found neural network models outperform 

econometric models. However, the benefit of using the ECM model over the MLP 

model is that it produces elasticities for each explanatory variable, which is very 

useful supplementary information. 

 



Chapter 6 
Adaptive Neuro-Fuzzy Forecasting 

 

 

 

6.1 Introduction 

 

This chapter consists of the application of a hybrid combination of fuzzy logic and neural 

networks using ANFIS, an Adaptive Neuro-Fuzzy Inference System to forecast tourist 

arrivals to Japan. The ANFIS model is used to make univariate and multivariate tourist 

arrival forecasts. The forecasting performances of the univariate and multivariate ANFIS 

models are compared with those of the Multi-Layer Perceptron (MLP) neural network 

models.  

 

Historical monthly tourist arrivals from Australia, Canada, China, France, Germany, 

Korea, Singapore, Taiwan, UK, the USA and from all countries, to Japan, from January 

1978 to December 2001 are used to forecast arrivals for the 24 month period from 

January 2002 to December 2003. Forecasts are made for each of the above series, one 

month ahead, 12 months ahead, and 24 months ahead, to test whether the accuracy of the 

forecasts varies significantly. The criterion for comparison of the models is the 

forecasting accuracy as measured by the MAPE and RMSE, during the 24 month out of 

sample period from January 2001 to December 2003. The objective of this study is to 

evaluate the forecasting performance of the newly developed ANFIS models for identical 

tourism time series. 
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6.2  The ANFIS Model  

 

The univariate ANFIS model used here is that developed by Jang (1993) which is a 

connectionist neural network MLP model that uses the Sugeno type fuzzy inference 

system. In the ANFIS model crisp input series are converted to fuzzy inputs by 

developing membership functions for each input series. The membership function pattern 

used for the input series is the general bell shape. The fuzzy inputs with their associated 

membership functions form the inputs to the neural network. These fuzzy inputs are 

processed through a network of transfer functions at the nodes of the different layers of 

the network to obtain fuzzy outputs with linear membership functions that are combined 

to obtain a single crisp output, as the ANFIS method permits only one output in the 

model. Being restricted to having one output only is not a limitation as modelling 

throughout this study has been for a single output, the tourist arrivals in a single period. 

Data from January 1978 to December 2001 are used to train the network using a 

combination of the least squares method and the backpropagation gradient descent 

method, during which membership functions and parameters keep changing until the 

tourist arrivals forecast error is minimised. Then the resulting model is applied to the test 

data from January 2002 to December 2003. The use of natural logarithmic 

transformations of the data has been maintained for consistency with other forecasting 

models used in previous chapters. 

 

In this model each month's tourist arrivals (output) are matched against the three previous 

years' (lagged) arrivals (inputs) of the same calendar month. The justification for using 

arrivals lagged by multiples of 12 is the fact that tourist arrivals are seasonal.  
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The tourist arrivals series is defined as xt, and its fuzzy set as Ai, where the number of 

membership functions is i:  

,)}x(,x{A titi μ=

 

where, μi are the membership functions of Ai. If the fuzzy sets of the lagged series are  

Ai,j, where i represents the number of membership functions of the lagged series, and j  = 

1, 2, and 3, for the lagged arrivals series with 12, 24 and 36 month lags respectively and 

the corresponding membership functions are μi,j , then, the input fuzzy sets Ai,j  would be: 

,)}x(,x{A 12t1,i12t1,i −−= μ

,)}x(,x{A 24t2,i24t2,i −−= μ

.)}x(,x{A 36t3,i36t3,i −−= μ

 

To keep the computation within technical limits, the number of membership functions 

used for each variable are limited to two. As there are three lagged series used as inputs 

and two membership functions for each input series, the number of input fuzzy sets 

created in the first layer of the ANFIS architecture of this study is six, as shown in the 

architecture of Figure 6.1. 
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Figure 6.1 Connectionist ANFIS Model  
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The generalised bell membership function used in this study is defined as follows: 

,

a
cx

1

1)c,b,a;x(gbell b2
t

t
−

+

=

 

where, xt is the tourist arrivals series and a, b and c are parameters and b is positive. The 

gbell type membership function is used for the input variables.  

 

The number of nodes of the second layer represents the number of fuzzy rules. Every 

node of this layer calculates the product of all incoming signals. At two membership 

functions per variable the number of rules and therefore, the number of nodes in this 

study is 8. The outputs, wk, from the second layer nodes are the firing strengths of the 
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rules, where k is the number of rules. The firing strength from each node is the product of 

the input membership functions to that node, as shown below: 

 

,)x()x()x(w 36t3,124t2,112t1,11 −−−= μμμ

,)x()x()x(w 36t3,224t2,112t1,12 −−−= μμμ

,)x()x()x(w 36t3,124t2,212t1,13 −−−= μμμ

,)x()x()x(w 36t3,224t2,212t1,14 −−−= μμμ

,)x()x()x(w 36t3,124t2,112t1,25 −−−= μμμ

,)x()x()x(w 36t3,224t2,112t1,26 −−−= μμμ

,)x()x()x(w 36t3,124t2,212t1,27 −−−= μμμ

.)x()x()x(w 36t3,224t2,212t1,28 −−−= μμμ

 

The third layer calculates the ratio of the firing strength of each node to the total strength 

as follows: 

.
w

w
w

k

k
k Σ
=

 

The fourth layer has a linear transfer function and each of the k nodes has the following 

output with 4 linear parameters,  pk,  qk,  rk  and  sk in each:  

.)sxrxqxp(w k36tk24tk12tkk +++ −−−

 

The fifth layer has a single summation node, which sums the outputs from the fourth 

layer for all k: 
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.)sxrxqxp(w k36tk24tk12tkk

8

1k
+++∑ −−−

=

 

The parameters of the membership functions will change during the learning process. The 

parameters are adjusted to reduce the sum of squared differences between the actual and 

forecast output. ANFIS uses a combination of least squares estimation and 

backpropagation for parameter estimation. 

 

6.3 The Multivariate ANFIS Model 

 

The multivariate ANFIS model is exactly the same as the ANFIS model explained in 6.2 

above and the architecture is the same as that shown in Figure 6.1, except that additional 

independent variables are used as inputs along with the lagged variables. The economic 

indicators used as independent variables in the multivariate MLP and ECM models of 

Chapter 5 are the source country's own price, the trade openness of the tourist's country of 

origin, Japan's trade openness, per capita gross national income of the tourist's country of 

origin and airfares from the tourist's country of origin to Japan. Preliminary studies with 

the ANFIS model using these variables and the three lagged arrivals series, showed 

system limitations because there are too many variables and consequent membership 

functions. Experimental runs were then made using reduced numbers of all combinations 

of variables using arrivals data from USA only. In these runs the model worked better and 

produced the best performance when one lagged arrivals series, the per capita gross 

national income of the tourist's country of origin, and the airfares from the tourist's 

country of origin to Japan, were used as inputs. 
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6.4 Results of ANFIS forecasts 

 

6.4.1 ANFIS forecast of arrivals from all countries 

When tourist arrivals from all countries are modelled, some of the variables used for 

modelling arrivals from individual countries are not relevant. Hence, for arrivals from all 

countries the input variables used were, one lagged arrivals series, Japan's per capita 

gross domestic product and Japan's trade openness. 

 

Table 6.4.1 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

all countries. For the one year lead period the forecasting performance is good (MAPE 

less than 10%) for all forecast horizons, one month ahead, 12 months ahead and 24 

months ahead. For the two year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for all forecast horizons, one month ahead, the 12 months ahead 

and the 24 months ahead. The RMSE figures are fairly consistent with the MAPE figures. 

Overall, the forecasting error increases with an increase in the lead period, and the model 

forecasts are most accurate over the 24 months ahead, forecasting horizon. 

 

Table 6.4.1 Forecasting Performance of a Partial Periodic ANFIS  
 for Tourist Arrivals to Japan from All Countries  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 25079 4.64 29549 6.08 26574 5.32 
2 year  58703 10.62 57292 10.76 54401 10.80 
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6.4.2 ANFIS forecast of arrivals from Australia  

Table 6.4.2 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

Australia. For the one year lead period the forecasting performance is good (MAPE less 

than 10%) for all forecast horizons, one month ahead, 12 months ahead and 24 months 

ahead. For the two year lead period the forecasting performance is good (MAPE less than 

10%) for the one month ahead and the 12 months ahead horizons and fair (MAPE 

between 10% and 20%) for the 24 months ahead horizon. The RMSE figures are 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the 12 months-

ahead forecasting horizon. 

 

Table 6.4.2 Forecasting Performance of a Partial Periodic ANFIS  
 for Tourist Arrivals to Japan from Australia  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 626 3.55 640 3.49 1681 8.79 
2 year  1049 5.81 1011 5.72 2400 11.67 

 

 

6.4.3 ANFIS forecast of arrivals from Canada 

Table 6.4.3 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

Canada. For the one year lead period the forecasting performance is good (MAPE less 

than 10%) for all forecast horizons, one month ahead, 12 months ahead and 24 months 

ahead. For the two year lead period the forecasting performance is good (MAPE less than 

10%) for the one month ahead and the 12 months ahead horizons and fair (MAPE 

between 10% and 20%) for the 24 months ahead horizon. The RMSE figures are 

consistent with the MAPE figures. Overall, the forecasting error increases with an 
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increase in the lead period, and the model forecasts are most accurate over the 12 months-

ahead forecasting horizon. 

 

Table 6.4.3 Forecasting Performance of a Partial Periodic ANFIS  
 for Tourist Arrivals to Japan from Canada  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 885 6.65 868 6.52 1360 8.92 
2 year  1313 9.64 1344 9.86 1426 10.09 

 

 

6.4.4 ANFIS forecast of arrivals from China 

Table 6.4.4 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

China. For the one year lead period the forecasting performance is good (MAPE less than 

10%) for the one month ahead and 12 months ahead forecasting horizons and poor 

(MAPE 20% or more) for the 24 months ahead horizon. For the two year lead period the 

forecasting performance is poor (MAPE 20% or more) for all three horizons. The RMSE 

figures are fairly consistent with the MAPE figures. Overall, the forecasting error 

increases with an increase in the lead period, and the model forecasts are most accurate 

over the one month ahead forecasting horizon, however forecasts are poor for the 2 year 

lead period. 

 

Table 6.4.4 Forecasting Performance of a Partial Periodic ANFIS  
 for Tourist Arrivals to Japan from China  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 2865 6.08 3232 7.59 9726 21.23 
2 year  8736 25.78 8983 27.10 11303 33.17 
 
 

 

 



Chapter 6 Adaptive Neuro-Fuzzy Forecasting 270

  

6.4.5 ANFIS forecast of arrivals from France 

Table 6.4.5 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

France. For the one year lead period the forecasting performance is good (MAPE less 

than 10%) for the one month ahead, 12 months ahead and 24 months ahead forecasting 

horizons. For the two year lead period, the forecasting performance is also good (MAPE 

less than 10%) for all three horizons. The RMSE figures are fairly consistent with the 

MAPE figures. Overall, the forecasting error increases with an increase in the lead period, 

and the model forecasts are most accurate over the one-month-ahead forecasting horizon. 

 

Table 6.4.5 Forecasting Performance of a Partial Periodic ANFIS  
 for Tourist Arrivals to Japan from France  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 458 3.94 448 3.91 723 9.11 
2 year  864 8.38 868 8.52 799 9.50 

 

 

6.4.6 ANFIS forecast of arrivals from Germany 

Table 6.4.6 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

Germany. For the one year lead period the forecasting performance is good (MAPE less 

than 10%) for all forecast horizons, one month ahead, 12 months ahead and 24 months 

ahead. For the two year lead period, the forecasting performance is also good (MAPE less 

than 10%) for all three horizons. The RMSE figures are fairly consistent with the MAPE 

figures. Overall, the forecasting error increases with an increase in the lead period, and 

the model forecasts are most accurate over the one-month-ahead forecasting horizon. 
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Table 6.4.6 Forecasting Performance of a Partial Periodic ANFIS  
 for Tourist Arrivals to Japan from Germany  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1012 6.94 1019 7.21 1185 9.42 
2 year  1037 9.09 1009 8.93 1130 10.00 

 

 

6.4.7 ANFIS forecast of arrivals from Korea 

Table 6.4.7 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

Korea. For the one year lead period the forecasting performance is fair (MAPE between 

10% and 20%) for the one month ahead and 12 months ahead forecasting horizons and 

poor (MAPE 20% or more) for the 24 months ahead horizon. For the two year lead 

period, the forecasting performance is also fair (MAPE between 10% and 20%) for the 

one month ahead and 12 months ahead forecasting horizons and poor (MAPE 20% or 

more) for the 24 months ahead horizon. The RMSE figures are fairly consistent with the 

MAPE figures. Overall, the forecasting error increases with an increase in the lead period, 

and the model forecasts are most accurate over the one-month-ahead forecasting horizon.  

 

Table 6.4.7 Forecasting Performance of a Partial Periodic ANFIS  
 for Tourist Arrivals to Japan from Korea  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 18976 15.07 22834 18.11 41568 33.49 
2 year  18296 13.97 22342 16.66 47045 33.96 
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6.4.8 ANFIS forecast of arrivals from Singapore 

Table 6.4.8 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

Singapore. For the one year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for the one month ahead and 12 months ahead forecasting 

horizons, and good (MAPE less than 10%) for the 24 months ahead horizon. For the two 

year lead period, the forecasting performance is poor (MAPE 20% or more) for all three 

horizons. The RMSE figures are fairly consistent with the MAPE figures. Overall, the 

forecasting error increases with an increase in the lead period, and the model forecasts are 

most accurate over the 24 months-ahead forecasting horizon.  

 

Table 6.4.8 Forecasting Performance of a Partial Periodic ANFIS  
 for Tourist Arrivals to Japan from Singapore  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1547 17.31 1500 17.34 1035 9.51 
2 year  1883 26.57 1839 26.37 1931 24.94 

 

 

6.4.9 ANFIS forecast of arrivals from Taiwan 

Table 6.4.9 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

Taiwan. For the one year lead period the forecasting performance is fair (MAPE between 

10% and 20%) for the one month ahead and 12 months ahead forecasting horizons and 

good (MAPE less than 10%) for the 24 months ahead horizon. For the two year lead 

period, the forecasting performance is poor (MAPE 20% or more) for all three horizons. 

The RMSE figures are fairly consistent with the MAPE figures. Overall, the forecasting 

error increases with an increase in the lead period, and the model forecasts are most 

accurate over the 24 months ahead forecasting horizon but poor for the 2-year lead 

period. 
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Table 6.4.9 Forecasting Performance of a Partial Periodic ANFIS  
 for Tourist Arrivals to Japan from Taiwan  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 9735 10.34 10333 10.85 9299 9.51 
2 year  18916 32.00 19102 32.79 19263 32.59 

 

 

6.4.10 ANFIS forecast of arrivals from the UK 

Table 6.4.10 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

the UK. For the one year lead period the forecasting performance is poor (MAPE 20% or 

more) for all forecast horizons, one month ahead and 12 months ahead and 24 months 

ahead. For the two year lead period, the forecasting performance is also poor (MAPE 

20% or more) for all three horizons. The RMSE figures are fairly consistent with the 

MAPE figures. Overall the model forecasts are poor.  

 

Table 6.4.10 Forecasting Performance of a Partial Periodic ANFIS  
 for Tourist Arrivals to Japan from the UK  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 11093 39.90 53674 246.97 18887 96.00 
2 year  7990 25.86 37979 129.18 31433 154.86 
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6.4.11 ANFIS forecast of arrivals from the USA 

Table 6.4.11 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

the USA. For the one year lead period the forecasting performance is good (MAPE less 

than 10%) for all forecast horizons, one month ahead, 12 months ahead and 24 months 

ahead. For the two year lead period the forecasting performance is good (MAPE less than 

10%) for the one month ahead horizon and fair (MAPE between 10% and 20%) for the 12 

months ahead and the 24 months ahead forecasting horizons. The RMSE figures are 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the 24 months-

ahead forecasting horizon. 

 

Table 6.4.11 Forecasting Performance of a Partial Periodic ANFIS  
 for Tourist Arrivals to Japan from the USA  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 6245 7.17 6806 7.39 3260 3.97 
2 year  7558 9.37 8024 10.11 8903 10.27 
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6.5 Results of Multivariate ANFIS  Forecasts  

 

6.5.1 Multivariate ANFIS forecast of arrivals from all countries 

Table 6.5.1 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

all countries. For the one year lead period the forecasting performance is good (MAPE 

less than 10%) for the one month ahead and 24 months ahead forecasting horizons and 

fair (MAPE between 10% and 20%) for the 12 months ahead horizon. For the two year 

lead period the forecasting performance is fair (MAPE between 10% and 20%) for all 

three forecasting horizons. The RMSE figures are consistent with the MAPE figures. 

Overall, the forecasting error increases with an increase in the lead period, and the model 

forecasts are most accurate over the 24 months ahead-forecasting horizon. 

 

Table 6.5.1 Forecasting Performance of ANN Model with Indicators  
 for Tourist Arrivals to Japan from All Countries  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 41028 8.16 51718 11.01 36973 7.56 
2 year  60599 12.06 61772 12.70 66202 12.93 
 

 

6.5.2 Multivariate ANFIS forecast of arrivals from Australia 

Table 6.5.2 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

Australia. For the one year lead period the forecasting performance is good (MAPE less 

than 10%) for all forecast horizons, one month ahead, 12 months ahead and 24 months 

ahead. For the two year lead period the forecasting performance is good (MAPE less than 

10%) for the one month ahead and 12 months ahead horizons, and fair (MAPE between 

10% and 20%) for the 24 months ahead horizon. The RMSE figures are consistent with 

the MAPE figures. Overall, the forecasting error increases with an increase in the lead 
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period, and the model forecasts are most accurate over the one-month-ahead forecasting 

horizon. 

 

Table 6.5.2 Forecasting Performance of ANN Model with Indicators  
 for Tourist Arrivals to Japan from Australia  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1008 6.40 1519 9.56 1593 9.74 
2 year  1137 6.51 1378 8.05 2419 14.44 

 

 

6.5.3 Multivariate ANFIS forecast of arrivals from Canada 

Table 6.5.3 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

Canada. For the one year lead period the forecasting performance is good (MAPE less 

than 10%) for the one month ahead, 12 months ahead and 24 months ahead forecasting 

horizons. For the two year lead period the forecasting performance is good (MAPE less 

than 10%) for the one month ahead and 12 months ahead horizons and fair (MAPE 

between 10% and 20%) for the 24 months ahead horizon. The RMSE figures are fairly 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the 24 months-

ahead forecasting horizon. 

 

Table 6.5.3 Forecasting Performance of ANN Model with Indicators  
 for Tourist Arrivals to Japan from Canada  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1021 7.39 991 6.99 877 6.00 
2 year  1283 9.93 1287 9.47 1452 10.24 
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6.5.4 Multivariate ANFIS forecast of arrivals from China 

Table 6.5.4 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

China. For the one year lead period the forecasting performance is good (MAPE less than 

10%) for the one month ahead and 12 months ahead forecasting horizons and fair (MAPE 

between 10% and 20%) for the 24 months ahead horizon. For the two year lead period the 

forecasting performance is poor (MAPE 20% or more) for all three forecasting horizons. 

The RMSE figures are consistent with the MAPE figures. Overall, the forecasting error 

increases with an increase in the lead period, and the model forecasts are most accurate 

over the 12 months-ahead forecasting horizon. 

 

Table 6.5.4 Forecasting Performance of ANN with Indicators  
 for Tourist Arrivals to Japan from China  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 3194 7.62 3057 7.50 4687 11.36 
2 year  8737 26.34 8589 25.80 10356 32.29 

 

 

6.5.5 Multivariate ANFIS forecast of arrivals from France 

Table 6.5.5 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

France. For the one year lead period the forecasting performance is good (MAPE less 

than 10%) for all forecast horizons, one month ahead, 12 months ahead and 24 months 

ahead. For the two year lead period, the forecasting performance is also good (MAPE less 

than 10%) for all three horizons. The RMSE figures are fairly consistent with the MAPE 

figures. Overall, the forecasting error increases with an increase in the lead period, and 

the model forecasts are most accurate over the one-month-ahead forecasting horizon. 
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Table 6.5.5 Forecasting Performance of ANN Model with Indicators  
 for Tourist Arrivals to Japan from France  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 533 5.34 560 6.01 720 8.88 
2 year  866 9.29 861 9.35 805 9.30 

 

 

6.5.6 Multivariate ANFIS forecast of arrivals from Germany 

Table 6.5.6 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

Germany. For the one year lead period the forecasting performance is good (MAPE less 

than 10%) for the one month ahead, 12 months ahead and 24 months ahead forecasting 

horizons. For the two year lead period the forecasting performance is fair (MAPE 

between 10% and 20%) for the one month ahead and 12 months ahead horizons and good 

(MAPE less than 10%) for the 24 months ahead horizon. The RMSE figures are fairly 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, and the model forecasts are most accurate over the 24 months-

ahead forecasting horizon. 

 

Table 6.5.6 Forecasting Performance of ANN Model with Indicators  
 for Tourist Arrivals to Japan from Germany  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1056 7.94 1132 8.92 1109 8.41 
2 year  1322 11.69 1286 11.97 1235 9.66 

 

 

 

 

 

 



Chapter 6 Adaptive Neuro-Fuzzy Forecasting 279

  

6.5.7 Multivariate ANFIS forecast of arrivals from Korea 

Table 6.5.7 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

all countries. For the one year lead period the forecasting performance is good (MAPE 

less than 10%) for the one month ahead and 24 months ahead forecasting horizons and 

fair (MAPE between 10% and 20%) for the 12 months ahead horizon. For the two year 

lead period the forecasting performance is good (MAPE less than 10%) for the one month 

ahead horizon and fair (MAPE between 10% and 20%) for the 12 months ahead and 24 

months ahead horizons. The RMSE figures are consistent with the MAPE figures. The 

forecasting error increases with an increase in the lead period, and the model forecasts are 

most accurate over the one-month ahead forecasting horizon. 

 

Table 6.5.7 Forecasting Performance of ANN Model with Indicators  
 for Tourist Arrivals to Japan from Korea  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 10760 8.01 16081 14.16 8420 7.39 
2 year  11686 8.72 14303 11.98 17039 11.75 

 

 

6.5.8 Multivariate ANFIS forecast of arrivals from Singapore 

Table 6.5.8 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

Singapore. For the one year lead period the forecasting performance is poor (MAPE 20% 

or more) for the one month ahead and 12 months ahead forecasting horizons and fair 

(MAPE between 10% and 20%) for the 24 months ahead horizon. For the two year lead 

period the forecasting performance is poor (MAPE 20% or more) for all three forecasting 

horizons. The RMSE figures are fairly consistent with the MAPE figures. Overall, the 

forecasting error increases with an increase in the lead period, but the model forecasts are 

poor. 
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Table 6.5.8 Forecasting Performance of ANN Model with Indicators  
 for Tourist Arrivals to Japan from Singapore  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 1876 23.18 1964 23.82 1233 15.62 
2 year  1914 27.73 1911 27.19 1852 27.04 

 

 

6.5.9 Multivariate ANFIS forecast of arrivals from Taiwan 

Table 6.5.9 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

Taiwan. For the one year lead period the forecasting performance is fair (MAPE between 

10% and 20%) for the one month ahead and 12 months-ahead and 24 months ahead 

forecasting horizons. For the two year lead period the forecasting performance is poor 

(MAPE 20% or more) for all three forecasting horizons. The RMSE figures are fairly 

consistent with the MAPE figures. Overall, the forecasting error increases with an 

increase in the lead period, but the model forecasts are poor for the 2-year lead period. 

 

Table 6.5.9 Forecasting Performance of ANN Model with Indicators  
 for Tourist Arrivals to Japan from Taiwan  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 10757 11.44 11298 12.27 13221 13.50 
2 year  18298 31.75 18358 32.73 19231 30.49 

 

6.5.10 Multivariate ANFIS forecast of arrivals from the UK 

Table 6.5.10 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

the UK. For the one year lead period the forecasting performance is poor (MAPE 20% or 

more) for the one month ahead and 12 months ahead forecasting horizons and fair 

(MAPE between 10% and 20%) for the 24 months ahead horizon. For the two year lead 

period the forecasting performance is poor (MAPE 20% or more) for all three forecasting 
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horizons. The RMSE figures are fairly consistent with the MAPE figures. Overall, the 

forecasting error increases with an increase in the lead period, but the model forecasts are 

poor. 

 

Table 6.5.10 Forecasting Performance  
 for Tourist Arrivals to Japan from the UK  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 8738 34.29 32756 137.95 3062 11.67 
2 year  6492 24.22 23250 76.11 24810 93.79 

 

6.5.11 Multivariate ANFIS forecast of arrivals from the USA 

Table 6.5.11 shows the ANFIS forecasting performance for tourist arrivals to Japan from 

the USA. For the one year lead period the forecasting performance is good (MAPE less 

than 10%) for all forecast horizons, one month ahead, 12 months ahead and 24 months 

ahead. For the two year lead period the forecasting performance is good (MAPE less than 

10%) for the one month ahead and 12 months ahead horizons and fair (MAPE between 

10% and 20%) for the 24 months ahead horizon. The RMSE figures are consistent with 

the MAPE figures. Overall, the forecasting error increases with an increase in the lead 

period, and the model forecasts are most accurate over the 24 months ahead, forecasting 

horizon. 

 

Table 6.5.11 Forecasting Performance of ANN Model with Indicators  
 for Tourist Arrivals to Japan from the USA  

Horizon One month ahead 12 months ahead 24 months ahead 
Lead RMSE MAPE RMSE MAPE RMSE MAPE 
1 year 6231 7.51 6554 8.17 2899 3.18 
2 year  6872 9.30 7351 9.61 8257 10.02 
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6.6 Univariate and Multivariate ANFIS Model Comparison 

 

Tables 6.6.1, 6.6.2 and 6.6.3 show, for the one month ahead, 12 months ahead and 24 

months ahead, forecasting horizons respectively, a comparison of the forecasting 

performances of the univariate ANFIS (UANFIS) and the multivariate ANFIS (MANFIS) 

models. For the purpose of comparison, the performances of the partial periodic MLP 

model and the multivariate MLP (MMLP) model are also included in these tables. 

 

Using lowest MAPE as the forecasting performance evaluation criterion, for the one 

month ahead forecasting horizon (refer Table 6.6.1), both UANFIS and MMLP perform 

equally well as both models have the lowest MAPE in 7 (32%) of 22 forecasts. The 22 

forecasts are made up of 1 and 2 year lead forecasts for 11 data series. Twelve (55%) of 

the 22 UANFIS forecasts have MAPE figures less than 10% while 7 (58%) and 5 (42%) 

of these 12 forecasts were for the 1 year and 2 year lead periods respectively, indicating 

the model works better for 1 year lead periods.  Nine (41%) of the 22 MMLP forecasts 

have MAPE figures less than 10% while 5 (56%) and 4 (44%) of these 9 forecasts were 

for the 1 year and 2 year lead periods respectively, indicating the model works well for 

both 1 and 2 year lead periods. The partial periodic MLP model had the lowest MAPE in 

6 (27%) forecasts and had 12 (55%) MAPE figures less than 10%, while the MANFIS 

model had the lowest MAPE in 2 (9%) forecasts and had 13 (59%) MAPE figures less 

than 10%. 

 

The partial periodic MLP model has the lowest mean MAPE of 12.0%, followed by the 

MMLP model with 13.2%, the UANFIS model with 13.6% and the MANFIS with 

13.9%. However, the mean differences in the MAPE figures of the four models are not 
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significant at the 5% level, except that the partial periodic MLP model is significantly 

better than the MANFIS model.  

 

For the 12 months ahead, forecasting horizon, (refer Table 6.6.2) partial periodic MLP 

has the lowest MAPE in 8 (36%) of 22 forecasts. Twelve (55%) of the 22 partial periodic 

MLP forecasts have MAPE figures less than 10% while 7 (58%) and 5 (42%) of these 12 

forecasts were for the 1 year and 2 year lead periods respectively, indicating the model 

works better for 1 year lead periods. The MMLP model has the lowest MAPE in 7 (32%) 

of the 22 forecasts. Eight (36%) of the 22 MMLP forecasts have MAPE figures less than 

10% while 5 (63%) and 3 (37%) of these 8 forecasts were for the 1 year and 2 year lead 

periods respectively, indicating the model works better for 1 year lead periods. The 

UANFIS model has the lowest MAPE in 3 (14%) forecasts and has 10 (45%) MAPE 

figures less than 10%, while the MANFIS had the lowest MAPE in 4 (18%) forecasts and 

has 10 (45%) MAPE figures less than 10%. 

 

The partial periodic MLP model has the lowest mean MAPE of 12.3%, followed by the 

MMLP model with 12.9%, the MANFIS model with 21.9% and the UANFIS with 

29.1%. However, the mean differences in the MAPE figures of the four models are not 

significant at the 5% level due to high variances, except that the partial periodic MLP 

model is significantly better than the MANFIS model.  

 

For the 24 months ahead forecasting horizon, (refer Table 6.6.3) the MMLP model has 

the lowest MAPE in 7 (32%) of 22 forecasts. Eleven (50%) of the 22 MMLP forecasts 

have MAPE figures less than 10% while 7 (64%) and 4 (36%) of these 11 forecasts were 

for the 1 year and 2 year lead periods respectively, indicating the model works better for 
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1 year lead periods. The UANFIS model has the next lowest MAPE in 6 (27%) of the 22 

forecasts. Eight (36%) of the 22 UANFIS forecasts have MAPE figures less than 10% 

while 7 (88%) and 1 (13%) of these 8 forecasts were for the 1 year and 2 year lead 

periods respectively, indicating the model works better for 1 year lead periods. The 

MANFIS model had the lowest MAPE in 5 (23%) forecasts and has 9 (41%) MAPE 

figures less than 10%, while the partial periodic MLP has the lowest MAPE in 4 (18%) 

forecasts and has 11 (50%) MAPE figures less than 10%. 

 

The MMLP model has the lowest mean MAPE of 12.7%, followed by the MANFIS 

model with 16.6%, the UANFIS model with 20.6% and the partial periodic MLP model 

with 20.8%. However, the mean differences in the MAPE figures of the four models are 

not significant at the 5% level due to high variances, except that the MMLP model is 

significantly better than the partial periodic MLP model.  

 

Table 6.6.4, shows a comparison summary of the forecasting performance of the partial 

periodic MLP, the MMLP, the UANFIS and the MANFIS models for all three, 

forecasting horizons. Using lowest MAPE as the forecasting performance evaluation 

criterion, MMLP performs best and has the lowest MAPE in 21 (32%) of 66 forecasts. Of 

the MMLP forecasts 28 (42%) of the 66 forecasts have MAPE figures less than 10% 

while 17 (61%) and 11 (39%) of these 28 forecasts were for the 1 year and 2 year lead 

periods respectively, indicating the model works better for 1 year lead periods. The 

partial periodic MLP model has the lowest MAPE in 18 (27%) of the 66 forecasts. Thirty 

five (53%) of the 66 partial periodic MLP forecasts have MAPE figures less than 10% 

while 21 (60%) and 14 (40%) of these 35 partial periodic MLP forecasts were for the 1 

year and 2 year lead periods respectively, indicating the model works better for 1 year 
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lead periods. The UANFIS model has the lowest MAPE in 16 (24%) forecasts and has 30 

(45%) MAPE figures less than 10%, while the MANFIS has the lowest MAPE in 11 

(17%) forecasts and has 32 (48%) MAPE figures less than 10%. 

 

The MMLP model has the lowest mean MAPE of 12.9%, followed by the partial periodic 

MLP model with 15.1%, the MANFIS model with 17.4% and the UANFIS model with 

21.1%. The mean differences in the MAPE figures of the four models show that the 

MMLP model is significantly better than the MANFIS and UANFIS models and the 

MANFIS model is significantly better than the UANFIS model at 5%.  
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Table 6.6.1 One month ahead Forecasting Performance Comparison 
  of ANFIS and MLP Models  
    

Country Forecast MLP Partial Periodic MMLP UANFIS MANFIS 
 Lead RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

All 1 year 24943 4.9 162543 18.6 25079 4.6 41028 8.2
 2 year 55528 10.2 127917 16.7 58703 10.6 60599 12.1

Australia 1 year 598 3.7 746 4.5 626 3.6 1008 6.4
 2 year 992 5.4 1123 5.9 1049 5.8 1137 6.5

Canada 1 year 758 5.4 794 5.6 885 6.6 1021 7.4
 2 year 1305 9.0 1268 9.2 1313 9.6 1283 9.9

China 1 year 4709 10.1 5248 13.2 2865 6.1 3194 7.6
 2 year 9099 28.3 10572 30.3 8736 25.8 8737 26.3

France 1 year 411 4.5 445 4.8 458 3.9 533 5.3
 2 year 786 8.0 736 8.2 864 8.4 866 9.3

Germany 1 year 1015 7.6 1177 10.5 1012 6.9 1056 7.9
 2 year 1076 9.7 1196 11.3 1037 9.1 1322 11.7

Korea 1 year 17910 11.5 35163 16.8 18976 15.1 10760 8.0
 2 year 21062 12.7 31772 16.9 18296 14.0 11686 8.7

Singapore 1 year 1480 16.3 1231 13.9 1547 17.3 1876 23.2
 2 year 1893 25.9 1680 25.0 1883 26.6 1914 27.7

Taiwan 1 year 6383 7.2 7064 7.5 9735 10.3 10757 11.4
 2 year 18696 31.5 20908 29.1 18916 32.0 18298 31.8

UK 1 year 3967 20.0 3261 15.0 11093 39.9 8738 34.3
 2 year 3654 17.9 2941 14.3 7990 25.9 6492 24.2

USA 1 year 4375 5.2 4157 5.2 6245 7.2 6231 7.5
 2 year 6644 8.6 5871 8.1 7558 9.4 6872 9.3
    

Summary Measures   
Mean  8513 12.0 19446 13.2 9312 13.6 9337 13.9
Standard Deviation 12865 8.1 42212 7.5 13265 10.1 14553 9.2
MAPE p-values:   
  c/w MANFIS  -0.02 -0.33 -0.33 
  c/w UANFIS   -0.06 -0.41  0.33
  c/w MMLP  -0.08 0.41 0.33
  c/w UMLP  0.08 0.06 0.02

    
Lowest MAPE Count Count % Count % Count % Count %
of 22 forecasts 6 27% 7 32% 7 32% 2 9%

    
MAPE <= 10% 12 55% 9 41% 12 55% 13 59%
10% <MAPE< 20% 7 32% 10 45% 5 23% 3 14%
MAPE >= 20% 3 14% 3 14% 5 23% 6 27%

    
MAPE <= 10%   
  for 1 year lead 7 58% 5 56% 7 58% 8 62%
  for 2 year lead 5 42% 4 44% 5 42% 5 38%
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Table 6.6.2 12 months ahead Forecasting Performance Comparison 
  of ANFIS and MLP Models  
    

Country Forecast MLP Partial Periodic MMLP UANFIS MANFIS  
 Lead RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

All 1 year 31537 6.5 40649 8.8 29549 6.1 51718 11.0
 2 year 55720 10.4 58690 11.4 57292 10.8 61772 12.7

Australia 1 year 465 3.0 653 3.7 640 3.5 1519 9.6
 2 year 923 4.9 940 5.0 1011 5.7 1378 8.0

Canada 1 year 730 5.1 767 5.3 868 6.5 991 7.0
 2 year 1339 8.8 1212 8.5 1344 9.9 1287 9.5

China 1 year 5483 11.7 5613 11.9 3232 7.6 3057 7.5
 2 year 8339 26.1 9308 28.8 8983 27.1 8589 25.8

France 1 year 408 4.1 423 3.8 3232 7.6 560 6.0
 2 year 810 7.9 694 7.1 8983 27.1 861 9.3

Germany 1 year 1019 7.3 1183 9.1 448 3.9 1132 8.9
 2 year 1077 9.5 1171 10.7 868 8.5 1286 12.0

Korea 1 year 18324 12.7 16292 10.1 22834 18.1 16081 14.2
 2 year 25700 15.4 23767 12.5 22342 16.7 14303 12.0

Singapore 1 year 1455 16.7 1503 15.6 1500 17.3 1964 23.8
 2 year 1765 25.2 1935 27.3 1839 26.4 1911 27.2

Taiwan 1 year 6522 7.5 11997 14.3 10333 10.9 11298 12.3
 2 year 18532 31.6 19428 34.4 19102 32.8 18358 32.7

UK 1 year 3969 21.0 3251 11.8 53674 247.0 32756 137.9
 2 year 3828 20.1 2848 12.5 37979 129.2 23250 76.1

USA 1 year 4769 6.1 9695 14.7 6806 7.4 6554 8.2
 2 year 7367 9.8 10679 16.0 8024 10.1 7351 9.6
    

Summary Measures   
Mean  9095 12.3 10123 12.9 13676 29.1 12181 21.9
Standard Deviation 13594 7.9 14723 8.0 17126 55.2 16855 30.1
MAPE p-values:   
  c/w MANFIS  -0.05 -0.08 0.10 
  c/w UANFIS   -0.07 -0.09  0.10
  c/w MMLP  -0.27 0.09 0.08
  c/w UMLP  0.27 0.07 0.05

    
Lowest MAPE Count Count % Count % Count % Count %
of 22 forecasts 8 36% 7 32% 3 14% 4 18%

    
MAPE <= 10% 12 55% 8 36% 10 45% 10 45%
10% <MAPE< 20% 5 23% 11 50% 6 27% 6 27%
MAPE >= 20% 5 23% 3 14% 6 27% 6 27%

    
MAPE <= 10%   
  for 1 year lead 7 58% 5 63% 7 70% 6 60%
  for 2 year lead 5 42% 3 38% 3 30% 4 40%
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Table 6.6.3 24 months ahead Forecasting Performance Comparison 
  of ANFIS and MLP Models  
    

Country Forecast MLP Partial Periodic MMLP UANFIS MANFIS  
 Lead RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

All 1 year 35722 7.1 36133 6.8 26573 5.3 36973 7.6
 2 year 55688 11.4 55879 10.3 54399 10.8 66202 12.9

Australia 1 year 886 5.6 855 5.5 1681 8.8 1593 9.7
 2 year 1245 7.4 1201 7.4 2400 11.7 2419 14.4

Canada 1 year 1047 7.8 895 5.8 1668 11.7 877 6.0
 2 year 1359 10.0 1306 9.0 1862 14.5 1452 10.2

China 1 year 9405 20.7 6766 14.0 5633 11.5 4687 11.4
 2 year 11230 32.8 9649 29.6 9005 27.6 10356 32.3

France 1 year 734 8.5 486 5.1 614 7.3 720 8.9
 2 year 767 8.8 676 7.1 779 8.5 805 9.3

Germany 1 year 1053 8.1 1171 9.5 1132 8.8 1109 8.4
 2 year 990 8.6 1171 9.9 1327 10.7 1235 9.7

Korea 1 year 27127 21.6 22318 13.9 32402 26.4 8420 7.4
 2 year 35624 24.1 31831 17.4 38375 27.3 17039 11.7

Singapore 1 year 1319 13.9 1453 14.8 986 9.5 1233 15.6
 2 year 1934 25.5 2050 25.9 1964 23.7 1852 27.0

Taiwan 1 year 8291 8.7 8232 8.8 7374 8.4 13221 13.5
 2 year 21118 35.1 18458 31.7 20194 34.0 19231 30.5

UK 1 year 17523 97.4 3852 14.0 6147 29.9 3062 11.7
 2 year 14564 81.6 3386 13.4 42370 143.2 24810 93.8

USA 1 year 2926 4.1 7443 9.4 3202 3.0 2899 3.2
 2 year 7628 9.8 7451 10.6 9167 10.4 8257 10.0
    

Summary Measures   
Mean  11735 20.8 10121 12.7 12239 20.6 10384 16.6
Standard Deviation 14931 24.0 14450 7.5 16063 28.8 15636 18.8
MAPE p-values:   
  c/w MANFIS  0.15 -0.15 0.07 
  c/w UANFIS   0.48 -0.10  -0.07
  c/w MMLP  0.05 0.10 0.15
  c/w UMLP  -0.50 -0.48 -0.15

    
Lowest MAPE Count Count % Count % Count % Count %
of 22 forecasts 4 18% 7 32% 6 27% 5 23%

    
MAPE <= 10% 11 50% 11 50% 8 36% 9 41%
10% <MAPE< 20% 3 14% 8 36% 7 32% 9 41%
MAPE >= 20% 8 36% 3 14% 7 32% 4 18%

    
MAPE <= 10%   
  for 1 year lead 7 64% 7 64% 7 88% 7 78%
  for 2 year lead 4 36% 4 36% 1 13% 2 22%
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Table 6.6.4 Forecasting Performance Comparison Summary 
  of ANFIS and MLP Models  
    
  MLP Partial Periodic MMLP UANFIS  MANFIS  
  RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

Mean  9781 15.1 13230 12.9 11742 21.1 10634 17.4
Standard Deviation 13682 15.6 27070 7.5 15438 36.4 15511 21.1
MAPE p-values:   
  c/w MANFIS  -0.16 -0.04 0.04 
  c/w UANFIS   -0.07 -0.04  -0.04
  c/w MMLP  0.12 0.04 0.04
  c/w UMLP  -0.12 0.07 0.16

    
Lowest MAPE Count Count % Count % Count % Count %
of 66 forecasts 18 27% 21 32% 16 24% 11 17%

    
MAPE <= 10% 35 53% 28 42% 30 45% 32 48%
10% <MAPE< 20% 15 23% 29 44% 18 27% 18 27%
MAPE >= 20% 16 24% 9 14% 18 27% 16 24%

    
MAPE <= 10%   
  for 1 year lead 21 60% 17 61% 21 70% 21 66%
  for 2 year lead 14 40% 11 39% 9 30% 11 34%

 

 

 

6.7 Conclusion 

 

The univariate and multivariate ANFIS models together had the lowest MAPE figures in 

27 (41%) of 66 forecasts. While the MLP models are superior, with 39 (59%) of the 

lowest MAPE figures, the ANFIS models have demonstrated sufficient credibility to 

justify further research. The univariate ANFIS model on its own has performed better 

than the multivariate ANFIS model, with the lowest MAPE in 16 (59%) of the 27 best 

ANFIS forecasts. The performance of the multivariate ANFIS model was constrained by 

technical requirements that restricted the number of economic indicators used to only two 
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independent variables and one lagged variable, in contrast to the multivariate MLP 

model, that used five independent variables, plus three lagged variables. 

 

As far as the accuracy of the forecasts are concerned, the combined ANFIS models had 

MAPE figures less than 10% in 62 of 132 forecasts, which compare well with the MLP 

models that had MAPE figures less than 10% in 63 of 132 forecasts. This result is in spite 

of the out of sample period including 2003, the year of the SARS crisis. In fact 42 of the 

62 combined ANFIS forecasts with less than 10% MAPE were for the year 2002 which 

was before SARS affected tourism. 

 

The forecasting accuracy achieved by the ANFIS models gives credence to fuzzy logic 

and its application in tourism forecasting. Since the ANFIS models performed better in 

41% of forecasts, it is possible to further the argument that fuzzy measurements of reality 

are a viable alternative method of collecting and presenting data. However, further 

research is necessary to refine the model and obtain improved tourism forecasts with 

ANFIS. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 7 
Conclusion 

 
 

 

7.1 Introduction 

 

Most studies in tourism forecasting have used time series or econometric methods. While 

there have been major improvements and refinements to these methods over the past 20 

years, the basic concept used is that of regression. More recently soft computing methods 

have been tested for tourism forecasting but these studies have been mainly limited to the 

use of artificial neural networks. The purpose of this research was to explore tourism time 

series from a totally new perspective and view the variability of stochastic data as being 

fuzzy rather than crisp.  

 

From a practical point of view the use of Mamdami type labels to describe levels of 

tourism demand as very high, high, medium, low or very low relative to a recent 

historical mean. While further subdivisions such as very high 1, 2 or 3, might be more 

acceptable to a practitioner, who could plan the availability of hotel rooms or travel 

facilities based on forecast levels of tourist demand, rather than a forecast of a specific 

number of arrivals. The concern with a traditional forecast is that by aiming to achieve 

crisp accuracy the forecaster may be compromising the process of extracting valid 

information from the data series. The fuzzy approach accepts the inherent fuzziness of the 

data and forecasts tourism demand as an accurate fuzzy level of demand. However, since 

time series data are crisp to begin with, and as the requirement is still for crisp forecasts, 

the current state of art in fuzzy time series forecasting is to use Sugeno type models 
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where crisp data are converted into fuzzy membership functions using neural networks, 

and defuzzified forecasts in contemporary crisp form are presented for industry use. One 

such application is the ANFIS (Adaptive Neuro-Fuzzy Inference System) model 

developed by Jang (1993). Since neuro-fuzzy models have never been applied in tourism 

forecasting, except by Fernando, Turner and Reznik (1998 and 1999b), this research tests 

the viability of fuzzy logic in tourism forecasting, and whether it is an alternative to time 

series and econometric tourism forecasting methods. 

 

Japan was chosen as the country of study mainly due to the availability of reliable 

tourism data, and also because it is a popular travel destination for both business and 

pleasure. Visitor arrivals from the 10 most popular tourist source countries to Japan, and 

total arrivals from all countries were used to incorporate a fairly wide variety of data 

patterns in the testing process. 

 

Therefore, the aim of this study is to develop a model to forecast inbound tourism to 

Japan, using a combination of artificial neural networks and fuzzy logic and to compare 

the performance of this forecasting model with forecasts from other quantitative 

forecasting models namely, the multi-layer perceptron neural network model, the error 

correction model, the basic structural model, the autoregressive integrated moving 

average model and the naïve model.  

 

Monthly data from January 1978 to December 2001 is used as within sample data for 

model development, and data from January 2002 to December 2003 is used as out of 

sample data, for testing the forecasting accuracy of the models. For each data series 
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forecasts are made for one-month-ahead, 12-months-ahead and 24-months-ahead 

horizons, and for one-year and two-year lead periods.   

 

The forecasting accuracy of the models is measured mainly using MAPE and RMSE. In 

almost all forecasts in this study the RMSE has been consistent with the MAPE. 

Therefore, when comparing alternative forecasting methods, the model that has 

demonstrated the lowest MAPE in most forecasts is adjudged the best model. Other 

criteria used for measuring forecasting performance are the number of forecasts with less 

than 10% MAPE, and the mean MAPE for all forecasts. Though the mean MAPE is 

different for each model, t-tests do not always indicate significant differences, because 

the variances of the MAPE values are high. These high variances in the MAPE values are 

due to the differences in the data structures of the different source countries responding 

differently to the parameters of the different forecasting models. Therefore, to test the 

significance of the differences in MAPE values, paired sample t-tests are carried-out 

separately for each country. 

 

This study uses 11 sets of data and forecasts with each of them for three time horizons 

and two lead periods making a total of 22 forecasts for each time horizon and 66 forecasts 

in total using each model. The sample size 66 is considered a sufficiently large sample to 

compare the forecasting performance of the models on the basis of the number of 

forecasts with the lowest MAPE. 

 

 Since the SARS epidemic took place in 2003 and caused a sharp one off down turn in 

arrivals to Japan, during the latter part of the out of sample test period, error levels are 

expected to be high. Two other significant occurrences that affected tourist flows to Japan 
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were the 2001 September 11th terrorist attack in the United States and the Asian economic 

crisis of 1998. This study does not model these events into the forecasting method as it is 

difficult to envisage how long their effect would last, but allows the forecasting methods 

to track the change. Though forecasting errors are expected to be high, all models 

compete against each other on level ground as they all use identical data.  

 

Forecasts from the naïve model are used as the benchmark for determining the adequacy 

of the models tested in this research. If a model cannot outperform naïve forecasts in at 

least a majority of test runs, then that model would not be considered adequate for 

tourism forecasting. 

 

7.2 Comparison of all models with the Naïve model 

 

The forecasting models used in this study are the Autoregressive Integrated Moving 

Average model using first differences (ARIMA(1)), the Basic Structural Model (BSM), 

the non-periodic Multilayer-Layer Perceptron model (MLP Non-P), the partial periodic 

Multilayer-Layer Perceptron model (MLP PP), the periodic Multilayer-Layer Perceptron 

model (MLP P), the Error Correction Model (ECM), the Multivariate Multilayer-Layer 

Perceptron model (MMLP), the Multivariate Adaptive Neuro-Fuzzy Inference System 

(MANFIS) and the univariate Adaptive Neuro-Fuzzy Inference System (ANFIS).  

 

 Tables 7.2.1, 7.2.2 and 7.2.3 show for the one-month-ahead, 12-months-ahead and 24-

months-ahead, forecasting horizons respectively, a comparison of the forecasting 

performances of all the above models with those of the naïve model. For each model, the 

MAPE of the tourist arrival forecast from each source country is compared against the 
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MAPE of the corresponding naïve model. The best MAPE count (X) reflects the number 

of forecasts where the MAPE of a particular model outperforms that of the naïve model. 

Therefore, the number of forecasts where the naïve model outperforms that forecasting 

model is (22 - X) as 22 forecasts are made using each model for a particular forecasting 

time horizon.  

 

Table 7.2.1 shows that for the one-month-ahead forecasting horizon, the ARIMA(1) model 

outperforms the naïve model in almost all forecasts (20 out of 22), while the BSM is the 

second best with 19 forecasts better than the naïve, and the MLP partial periodic and the 

univariate ANFIS are equal third with 18 better forecasts. 

 

The multivariate ANFIS model and the MLP non-periodic model outperform the naïve in 

16 and 15 forecasts respectively. Though all models outperform the naïve in more than 

50% of forecasts, the multivariate MLP and the ECM are better than the naïve in only 12 

and 13 instances respectively. 

 

For the paired t-tests, at a significance level of 5%, models with p-values less than 5% are 

considered significant. In the following tables the sign of the t-value is indicated against 

the p-value, a negative sign indicating a better forecasting model with a mean MAPE less 

than that of the model it is being compared with. Paired sample t-tests show that for the 

one month ahead forecasting horizon, the mean difference between the MAPE of each 

model and that of the naïve model is significant for the ARIMA(1), BSM, non-periodic 

and partial periodic MLP and ECM models.  The mean difference is not significant for 

the multivariate MLP and the ANFIS models. 
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Table 7.2.1 One month ahead Forecasting Performance (MAPE) Comparison    
   of all models against the naïve model       
       
                        
Country Forecast ARIMA BSM MLP Non- MLP Partial MLP ECM MMLP MANFIS ANFIS Naïve 
  Lead   Periodic Periodic Periodic      
All 1 year 3.0 3.2 5.5 4.9  5.0 18.6 8.2 4.6 9.9
  2 year 8.0 8.1 9.8 10.2  9.3 16.7 12.1 10.6 12.3
Australia 1 year 4.6 4.8 5.1 3.7  9.3 4.5 6.4 3.6 10.1
  2 year 6.3 6.4 6.6 5.4  11.3 5.9 6.5 5.8 8.6
Canada 1 year 6.4 7.5 6.8 5.4  9.7 5.6 7.4 6.6 8.6
  2 year 8.3 9.8 10.0 9.0  12.3 9.2 9.9 9.6 10.2
China 1 year 12.2 11.2 14.6 10.1  14.4 13.2 7.6 6.1 14.2
  2 year 27.0 26.3 28.0 28.3  26.8 30.3 26.3 25.8 27.3
France 1 year 4.6 4.6 6.1 4.5  10.7 4.8 5.3 3.9 6.3
  2 year 8.1 7.9 8.7 8.0  13.6 8.2 9.3 8.4 9.4
Germany 1 year 8.8 10.0 7.1 7.6  12.7 10.5 7.9 6.9 7.9
  2 year 9.6 11.1 10.2 9.7  12.5 11.3 11.7 9.1 11.2
Korea 1 year 6.6 6.1 9.6 11.5  8.6 16.8 8.0 15.1 10.5
  2 year 9.3 8.8 12.3 12.7  11.4 16.9 8.7 14.0 12.8
Singapore 1 year 14.0 14.4 22.2 16.3  18.4 13.9 23.2 17.3 21.3
  2 year 25.1 26.6 30.2 25.9  24.4 25.0 27.7 26.6 27.7
Taiwan 1 year 5.8 6.9 10.4 7.2  5.8 7.5 11.4 10.3 14.2
  2 year 26.8 28.6 29.3 31.5  20.6 29.1 31.8 32.0 35.4
UK 1 year 15.8 18.0 13.5 20.0  23.5 15.0 34.3 39.9 12.7
  2 year 12.9 14.0 13.6 17.9  21.5 14.3 24.2 25.9 13.5
USA 1 year 4.6 6.0 6.4 5.2  5.8 5.2 7.5 7.2 8.0
  2 year 6.1 8.0 9.4 8.6  7.7 8.1 9.3 9.4 10.4
Mean 10.6 11.3 12.5 12.0 13.4 13.2 13.9 13.6 13.7
 t-test: p-value -0.01 -0.01 -0.01 -0.01 -0.01 -0.28 0.46 -0.46
Count of:  
       MAPE <= 10% 15 14 11 12 0 8 9 13 12 7 
Best MAPE Count   
of 22 forecasts (x)  20 19 15 18 0 12 13 16 18 ( 22-x )
 

Table 7.2.2 shows that for the 12-months-ahead forecasting horizon, the MLP partial 

periodic model outperforms the naïve model in most forecasts (18), while the multivariate 

MLP is the second best with 17 forecasts better than the naïve. The ARIMA(1), BSM and 

the univariate ANFIS are equal third with 16 better forecasts. 

The MLP periodic model and the multivariate ANFIS model outperform the naïve in 15 

and 13 forecasts respectively. However, the MLP non-periodic model and the ECM are 

better than the naïve in only 11 and 7 instances respectively. 
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Table 7.2.2 12 months ahead Forecasting Performance (MAPE) Comparison    
   of all models against the naïve model       
       
                        

Country Forecast ARIMA BSM MLP Non- MLP Partial MLP ECM MMLP MANFIS ANFIS Naïve 
  Lead   Periodic Periodic Periodic      
All 1 year 7.6 6.8 7.9 6.5 6.9 5.3 8.8 11.0 6.1 9.9
  2 year 10.7 10.2 11.2 10.4 10.7 11.2 11.4 12.7 10.8 12.3
Australia 1 year 4.2 4.6 5.7 3.0 3.6 23.5 3.7 9.6 3.5 10.1
  2 year 5.8 5.9 6.8 4.9 6.8 19.5 5.0 8.0 5.7 8.6
Canada 1 year 6.2 6.3 6.8 5.1 7.4 13.6 5.3 7.0 6.5 8.6
  2 year 10.3 9.5 9.9 8.8 12.6 16.1 8.5 9.5 9.9 10.2
China 1 year 13.8 13.3 11.3 11.7 12.3 14.9 11.9 7.5 7.6 14.2
  2 year 28.7 27.9 27.4 26.1 26.8 31.2 28.8 25.8 27.1 27.3
France 1 year 4.6 4.2 6.5 4.1 3.3 15.4 3.8 6.0 7.6 6.3
  2 year 7.6 7.5 9.5 7.9 9.5 16.8 7.1 9.3 27.1 9.4
Germany 1 year 8.3 8.3 7.2 7.3 8.4 16.6 9.1 8.9 3.9 7.9
  2 year 9.0 8.8 10.5 9.5 12.1 16.7 10.7 12.0 8.5 11.2
Korea 1 year 5.6 5.7 12.7 12.7 9.2 8.0 10.1 14.2 18.1 10.5
  2 year 10.1 9.5 15.0 15.4 11.6 11.7 12.5 12.0 16.7 12.8
Singapore 1 year 15.7 19.1 21.6 16.7 15.0 20.8 15.6 23.8 17.3 21.3
  2 year 26.3 27.5 28.1 25.2 24.2 40.7 27.3 27.2 26.4 27.7
Taiwan 1 year 9.1 11.5 12.6 7.5 9.1 5.0 14.3 12.3 10.9 14.2
  2 year 34.4 34.8 34.0 31.6 33.6 41.8 34.4 32.7 32.8 35.4
UK 1 year 13.1 29.1 16.6 21.0 22.2 49.5 11.8 137.9 247.0 12.7
  2 year 11.0 19.6 19.3 20.1 21.5 48.6 12.5 76.1 129.2 13.5
USA 1 year 8.8 8.3 7.6 6.1 7.0 6.4 14.7 8.2 7.4 8.0
  2 year 12.5 12.5 10.6 9.8 10.7 11.1 16.0 9.6 10.1 10.4
Mean 12.0 13.2 13.6 12.3 12.9 20.2 12.9 21.9 29.1 13.7
t-test: p-value -0.01 -0.29 -0.36 -0.04 -0.16 0.01 -0.09 0.10 0.10
Count of: 
      MAPE <= 10% 11 12 9 12 10 4 8 10 10 7 
Best MAPE Count 
of 22 forecasts (x) 16 16 11 18 15 7 17 13 16 ( 22-x )
 

Paired sample t-tests show that for the 12-months ahead forecasting horizon, the mean 

difference between the MAPE of each model and that of the naïve model is significant 

only for the ARIMA(1) and the partial periodic MLP models.   

 

Table 7.2.3 shows that for the 24-months-ahead forecasting horizon, the ARIMA(1) model 

outperforms the naïve model in most forecasts (19), while the multivariate MLP is the 

second best with 18 forecasts better than the naïve and the BSM is third with 17 better 

forecasts. 
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Table 7.2.3 24 months ahead Forecasting Performance (MAPE) Comparison   
   of all models against the naïve model       
       
                        

Country Forecast ARIMA BSM 
MLP 
Non- MLP Partial MLP ECM MMLP MANFIS ANFIS Naïve 

  Lead   Periodic Periodic Periodic      
All 1 year 7.6 6.8 4.4 7.1 7.0 5.3 6.8 7.6 5.3 9.3
  2 year 11.8 11.0 10.2 11.4 10.9 10.3 10.3 12.9 10.8 13.9
Australia 1 year 4.2 4.6 5.8 5.6 11.6 23.5 5.5 9.7 8.8 10.8
  2 year 6.1 6.1 7.0 7.4 13.4 27.6 7.4 14.4 11.7 13.0
Canada 1 year 6.2 6.3 6.2 7.8 6.6 13.6 5.8 6.0 11.7 10.4
  2 year 11.6 9.8 11.0 10.0 14.3 17.4 9.0 10.2 14.5 12.4
China 1 year 13.8 13.3 17.5 20.7 17.9 14.9 14.0 11.4 11.5 21.00
  2 year 29.4 28.9 32.3 32.8 30.4 41.3 29.6 32.3 27.6 32.48
France 1 year 4.6 4.2 4.4 8.5 5.3 15.4 5.1 8.9 7.3 11.9
  2 year 8.8 7.8 9.1 8.8 8.0 18.9 7.1 9.3 8.5 10.6
Germany 1 year 8.3 8.3 9.5 8.1 10.2 16.6 9.5 8.4 8.8 10.3
  2 year 8.1 7.9 12.8 8.6 11.8 18.7 9.9 9.7 10.7 11.0
Korea 1 year 5.6 5.7 19.3 21.6 15.6 8.0 13.9 7.4 26.4 15.9
  2 year 9.4 8.5 23.0 24.1 17.6 11.5 17.4 11.7 27.3 18.3
Singapore 1 year 15.7 19.1 13.1 13.9 12.6 20.8 14.8 15.6 9.5 9.1
  2 year 25.5 28.4 26.5 25.5 22.0 31.7 25.9 27.0 23.7 25.9
Taiwan 1 year 9.1 11.5 7.5 8.7 8.5 5.0 8.8 13.5 8.4 10.5
  2 year 31.3 31.1 32.6 35.1 37.1 31.5 31.7 30.5 34.0 34.4
UK 1 year 13.1 29.1 40.8 97.4 58.1 49.5 14.0 11.7 29.9 79.5
  2 year 10.9 36.3 32.0 81.6 45.2 63.6 13.4 93.8 143.2 43.3
USA 1 year 8.8 8.3 3.8 4.1 4.3 6.4 9.4 3.2 3.0 2.9
  2 year 11.4 10.9 9.3 9.8 10.2 10.7 10.6 10.0 10.4 9.9
Mean 11.9 13.8 15.4 20.8 17.2 21.0 12.7 16.6 20.6 18.9
t-test: p-value -0.02 -0.02 -0.03 0.18 -0.06 0.18 -0.03 -0.28 0.38
Count of: 
       MAPE <= 10% 12 12 10 11 6 4 11 9 8 4 
Best MAPE Count 
of 22 forecasts (x) 19 17 16 14 13 8 18 15 14 ( 22-x )
 

The MLP non-periodic model and the multivariate ANFIS model outperform the naïve in 

16 and 15 forecasts respectively. However, the MLP partial periodic model, the MLP 

periodic model and the ECM are better than the naïve in only 14, 14 and 8 instances 

respectively. 
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Paired sample t-tests show that for the 24-months ahead forecasting horizon, the mean 

difference between the MAPE of each model and that of the naïve model is significant for 

the ARIMA(1), BSM, non-periodic MLP and the multivariate MLP models. 

 

Table 7.2.4 Forecasting Performance Comparison Summary       
   of all models against the naïve model       
       
                        
   ARIMA BSM MLP Non- MLP Partial MLP ECM MMLP MANFIS ANFIS Naïve
       Periodic PeriodicPeriodic      
Mean MAPE 11.5 12.8 13.8 15.1 15.1 18.2 12.9 17.4 21.1 15.5
Standard Deviation 7.4 8.8 9.0 15.6 11.3 12.5 7.5 21.1 36.4 11.5
t-test: p-value -0.01 -0.01 -0.01 -0.29 -0.03 0.01 -0.02 0.22 0.18
Count of : 
       MAPE <= 10% 38 38 30 35 16 16 28 32 30 18 
Best MAPE Count 
of 66 forecasts (x) 55 52 42 50 28 27 48 44 48 (66-x )
 

Table 7.2.4 shows that in summary, for all three forecasting horizons, the ARIMA1 

model outperforms the naïve model in most forecasts (55 out of the total 66), while the 

BSM is the second best with 52 of 66 forecasts better than the naïve. The MLP partial 

periodic is third with 50 better forecasts. 

 

The univariate ANFIS model and the multivariate MLP model outperform the naïve in 48 

out of 66 forecasts each. The multivariate ANFIS mode and the MLP non-periodic model 

are better than the naïve in 44 and 42 instances respectively. However, the MLP periodic 

and the ECM are better than the naïve model in only 28 and 27 forecasts (which is less 

than half the total number of 66 forecasts made) and because of this they are not 

considered adequate for forecasting tourist arrivals to Japan. This is despite the p-value of 

the periodic MLP model indicating a significantly better mean difference in MAPE 

values compared with the naïve model. These findings are shown graphically in Figure 

7.1. 
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Paired sample t-tests show that for all three forecasting horizons, the mean difference 

between the MAPE of each model and that of the naïve model is significant for the 

ARIMA(1), BSM, non-periodic MLP, periodic MLP and multivariate MLP models. 

 

 
Figure 7.1            The total number of forecasts with

                   MAPE lower than in the naïve model
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Most of the other models do not show a significantly lower MAPE from that of the naïve 

even though they out-perform the naïve with lower MAPE values in a large number of 

forecasts. This is due to the high variances of the MAPE values, which are in turn due to 

differences in the arrival data structures of different countries. For example the MAPE 

values for USA are consistently low for all models while those for the UK are high for all 

models. This high MAPE variance causes t values to be low despite the MAPE in most 

forecasts being less than that of the naïve model. 
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The relatively poor performance of the regression model is supportive of previous 

findings by Martin and Witt (1989a) that the naïve model is significantly accurate relative 

to the regression methods. The findings are also supportive of Turner and Witt (2001b) in 

that the results tend to confirm the superiority of the ARIMA and BSM time series 

models over both regression and the naïve models. The neural network with and without 

fuzzy logic outperforms regression and the naïve model but falls short of the ARIMA and 

BSM time series methods. The in between position of the neural approach requires 

further investigation. 

 

There is no significant difference from the naïve comparison over all time horizons to the 

individual findings over each time frame. The sophisticated time series methods, ARIMA 

and BSM, are the more accurate forecasting models in all horizons, the regression model 

the least accurate and the neural models fall in between or in the shorter time horizons 

perform alongside the sophisticated time series models. 

 

7.3 Comparison of all models against each other 

 

Section 7.2 shows the extent to which the models out perform the naïve method. The 

model comparisons in section 7.2 were based on the number of forecasts where the 

MAPE value of a model was less than that of the naïve model. When comparing all 

models against each other, though some models had many forecasts with lower MAPE 

values than others, the corresponding mean MAPE of these models were not always 

significantly lower. This section shows, using paired sample t-tests, the number of 

forecasts in which each model significantly out performs each of the other models and 
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identifies the better models. Paired sample significance tests are made for each country 

based on 6 forecasts using identical arrivals data in all six forecasts. As each model is 

compared with 9 other models, for the 11 arrival data sets, 99 paired comparisons are 

made for each model. As there are 10 models, 90 paired comparisons are made for each 

country. For the paired t-tests, at a significance level of 5%, models with p-values less 

than 5% are considered significant. In the following tables the sign of the t-value is 

indicated against the p-value, a negative sign indicating a better forecasting model, with a 

mean MAPE less than that of the model it is being compared with. 

 

 Tables 7.3.1 to 7.3.11 show the MAPE of 6 forecasts from each of the 10 models and p-

values of a paired sample t-test of all 90 pairs of models for arrivals from all countries to 

Japan and each of the 10 source countries, respectively. The 6 forecasts represented in 

each of the 11 tables are the forecasts for each arrival data source for each of the two lead 

periods and each of the three time horizons. Each table represents the analysis of 6 MAPE 

values from one arrival data set against those from 9 other models. This method of 

analysis using data from one country at a time is undertaken because the magnitude of the 

MAPE values associated with certain countries of origin, differ widely from those for 

some other countries making statistical analysis difficult due to high MAPE variances.      

 

In Tables 7.3.1 to 7.3.11 each model represented by a column is compared against the 

models represented by the rows. The p-values indicate whether the difference in the 

MAPE values of the two models is significant. A negative sign assigned to the p-value 

indicates a negative t-value and therefore that the former model (represented in a column) 

has a lower mean MAPE than the latter (models represented in rows). The last row of the 

table shows the number of paired model comparisons where the mean difference in 
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MAPE values was significant for the model represented in each column. The total 

number of these significant mean differences in MAPE for each forecasting model is 

presented graphically in Figure 7.2. 

 

Table 7.3.1 Paired comparison of all models, to identify significant MAPE 
  differences for arrivals from all countries           

MAPE values     
Horizon Lead ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

1 1 yr 3.0 3.2 5.5 4.9 5.0 18.6 8.2 4.6 9.9
1 2 yr 8.0 8.1 9.8 10.2 9.3 16.7 12.1 10.6 12.3

12 1 yr 7.6 6.8 7.9 6.5 6.9 5.3 8.8 11.0 6.1 9.9
12 2 yr 10.7 10.2 11.2 10.4 10.7 11.2 11.4 12.7 10.8 12.3
24 1 yr 7.6 6.8 4.4 7.1 7.0 5.3 6.8 7.6 5.3 9.3
24 2 yr 11.8 11.0 10.2 11.4 10.9 10.3 10.3 12.9 10.8 13.9

p-values     
  ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

ARIMA1  -0.04 0.47 0.30 -0.04 -0.33 0.10 0.01 0.47 0.01
BSM  0.04  0.26 0.06 0.06 0.46 0.07 0.01 0.29 0.01
MLP Non-P -0.47 -0.26 0.35 0.31 -0.20 0.06 0.01 -0.39 0.01
MLP Partial P -0.30 -0.06 -0.35 0.45 -0.08 0.08 0.01 -0.15 0.01
MLP Periodic 0.04 -0.06 -0.31 -0.45 -0.10 0.25 0.03 -0.11 0.01
ECM  0.33 -0.46 0.20 0.08 0.10 0.05 0.01 0.17 0.01
MMLP  -0.10 -0.07 -0.06 -0.08 -0.25 -0.05 -0.27 -0.06 -0.34
MANFIS -0.01 -0.01 -0.01 -0.01 -0.03 -0.01 0.27  -0.01 0.16
ANFIS  0.47 -0.29 0.39 0.15 0.11 -0.17 0.06 0.01  0.01
Naïve  -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.34 -0.16 -0.01 
Significant 
comparisons 

2 3 2 2 3 3 0 0 2 0
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Table 7.3.2 Paired comparison of all models, to identify significant MAPE 
  differences for arrivals from Australia   

MAPE values     
Horizon Lead ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

1 1 yr 4.6 4.8 5.1 3.7 9.3 4.5 6.4 3.6 10.1
1 2 yr 6.3 6.4 6.6 5.4 11.3 5.9 6.5 5.8 8.6

12 1 yr 4.2 4.6 5.7 3.0 3.6 23.5 3.7 9.6 3.5 10.1
12 2 yr 5.8 5.9 6.8 4.9 6.8 19.5 5.0 8.0 5.7 8.6
24 1 yr 4.2 4.6 5.8 5.6 11.6 23.5 5.5 9.7 8.8 10.8
24 2 yr 6.1 6.1 7.0 7.4 13.4 27.6 7.4 14.4 11.7 13.0

p-values     
  ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

ARIMA1  0.02 0.01 -0.34 0.08 0.01 0.35 0.01 0.17 0.01
BSM  -0.02  0.01 -0.23 0.09 0.01 -0.47 0.01 0.20 0.01
MLP Non-P -0.01 -0.01 -0.03 0.16 0.01 -0.04 0.02 0.39 0.01
MLP Partial P 0.34 0.23 0.03 0.04 0.01 0.03 0.01 0.05 0.01
MLP Periodic -0.08 -0.09 -0.16 -0.04 0.01 -0.06 0.20 -0.04 0.18
ECM  -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
MMLP  -0.35 0.47 0.04 -0.03 0.06 0.01 0.01 0.12 0.01
MANFIS -0.01 -0.01 -0.02 -0.01 -0.20 0.01 -0.01  -0.01 0.09
ANFIS  -0.17 -0.20 -0.39 -0.05 0.04 0.01 -0.12 0.01  0.01
Naïve  -0.01 -0.01 -0.01 -0.01 -0.18 0.01 -0.01 -0.09 -0.01 
Significant 
comparisons 

5 4 3 7 1 0 4 1 4 1

 
 
Table 7.3.3 Paired comparison of all models, to identify significant MAPE 

  differences for arrivals from Canada   
MAPE values     
Horizon Lead ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

1 1 yr 6.4 7.5 6.8 5.4 9.7 5.6 7.4 6.6 8.6
1 2 yr 8.3 9.8 10.0 9.0 12.3 9.2 9.9 9.6 10.2

12 1 yr 6.2 6.3 6.8 5.1 7.4 13.6 5.3 7.0 6.5 8.6
12 2 yr 10.3 9.5 9.9 8.8 12.6 16.1 8.5 9.5 9.9 10.2
24 1 yr 6.2 6.3 6.2 7.8 6.6 13.6 5.8 6.0 11.7 10.4
24 2 yr 11.6 9.8 11.0 10.0 14.3 17.4 9.0 10.2 14.5 12.4

p-values     
  ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

ARIMA1     0.48 0.22 -0.20 0.03 0.01 -0.05 0.37 0.06 0.01
BSM  -0.48  0.18 -0.18 0.05 0.01 -0.01 0.19 0.10 0.01
MLP Non-P -0.22 -0.18 -0.08 0.05 0.01 -0.01 -0.29 0.12 0.02
MLP Partial P 0.20 0.18 0.08 0.08 0.01 -0.14 0.15 0.01 0.01
MLP Periodic -0.03 -0.05 -0.05 -0.08 0.01 -0.03 -0.05 0.41 0.46
ECM  -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
MMLP  0.05 0.01 0.01 0.14 0.03 0.01 0.01 0.02 0.01
MANFIS -0.37 -0.19 0.29 -0.15 0.05 0.01 -0.01  0.13 0.02
ANFIS  -0.06 -0.10 -0.12 -0.01 -0.41 0.01 -0.02 -0.13  0.36
Naïve  -0.01 -0.01 -0.02 -0.01 -0.46 0.01 -0.01 -0.02 -0.36 
Significant 
comparisons 

3 3 3 3 1 0 8 3 1 1
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Table 7.3.4 Paired comparison of all models, to identify significant MAPE 
  differences for arrivals from China          

MAPE values     
Horizon Lead ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

1 1 yr 12.2 11.2 14.6 10.1 14.4 13.2 7.6 6.1 14.2
1 2 yr 27.0 26.3 28.0 28.3 26.8 30.3 26.3 25.8 27.3

12 1 yr 13.8 13.3 11.3 11.7 12.3 14.9 11.9 7.5 7.6 14.2
12 2 yr 28.7 27.9 27.4 26.1 26.8 31.2 28.8 25.8 27.1 27.3
24 1 yr 13.8 13.3 17.5 20.7 17.9 14.9 14.0 11.4 11.5 21.0
24 2 yr 29.4 28.9 32.3 32.8 30.4 41.3 29.6 32.3 27.6 32.5

p-values     
  ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

ARIMA1       -0.01 0.17 0.31 0.38 0.07 0.25 -0.07 -0.01 0.09
BSM  0.01  0.07 0.18 0.25 0.04 0.08 -0.13 -0.02 0.04
MLP Non-P -0.17 -0.07 -0.42 -0.35 0.14 -0.30 -0.02 -0.01 0.14
MLP Partial P -0.31 -0.18 0.42 -0.19 0.16 -0.42 -0.04 -0.02 0.11
MLP Periodic -0.38 -0.25 0.35 0.19 0.14 -0.29 -0.13 -0.05 0.02
ECM  -0.07 -0.04 -0.14 -0.16 -0.14 -0.13 -0.01 -0.01 -0.29
MMLP  -0.25 -0.08 0.30 0.42 0.29 0.13 -0.03 -0.01 0.18
MANFIS 0.07 0.13 0.02 0.04 0.13 0.01 0.03  -0.17 0.02
ANFIS  0.01 0.02 0.01 0.02 0.05 0.01 0.01 0.17  0.01
Naïve  -0.09 -0.04 -0.14 -0.11 -0.02 0.29 -0.18 -0.02 -0.01 
Significant 
comparisons 

0 3 0 0 1 0 0 5 8 0

 
 
Table 7.3.5 Paired comparison of all models, to identify significant MAPE 

  differences for arrivals from France              
MAPE values     
Horizon Lead ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

1 1 yr 4.6 4.6 6.1 4.5 10.7 4.8 5.3 3.9 6.3
1 2 yr 8.1 7.9 8.7 8.0 13.6 8.2 9.3 8.4 9.4

12 1 yr 4.6 4.2 6.5 4.1 3.3 15.4 3.8 6.0 7.6 6.3
12 2 yr 7.6 7.5 9.5 7.9 9.5 16.8 7.1 9.3 27.1 9.4
24 1 yr 4.6 4.2 4.4 8.5 5.3 15.4 5.1 8.9 7.3 11.9
24 2 yr 8.8 7.8 9.1 8.8 8.0 18.9 7.1 9.3 8.5 10.6

p-values     
  ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

ARIMA1          -0.02 0.02 0.22 0.44 0.01 -0.15 0.02 0.13 0.02
BSM  0.02  0.01 0.12 0.21 0.01 -0.45 0.01 0.11 0.01
MLP Non-P -0.02 -0.01 -0.34 -0.21 0.01 -0.03 0.22 0.17 0.12
MLP Partial P -0.22 -0.12 0.34 -0.24 0.01 -0.08 0.01 0.16 0.01
MLP Periodic -0.44 -0.21 0.21 0.24 0.01 -0.15 0.05 0.11 0.05
ECM  -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.09 -0.01
MMLP  0.15 0.45 0.03 0.08 0.15 0.01 0.01 0.11 0.01
MANFIS -0.02 -0.01 -0.22 -0.01 -0.05 0.01 -0.01  0.23 0.04
ANFIS  -0.13 -0.11 -0.17 -0.16 -0.11 0.09 -0.11 -0.23  -0.34
Naïve  -0.02 -0.01 -0.12 -0.01 -0.05 0.01 -0.01 -0.04 0.34 
Significant 
comparisons 

4 5 1 3 3 0 4 2 0 1
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Table 7.3.6 Paired comparison of all models, to identify significant MAPE 
  differences for arrivals from Germany                

MAPE values     
Horizon Lead ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

1 1 yr 8.8 10.0 7.1 7.6 12.7 10.5 7.9 6.9 7.9
1 2 yr 9.6 11.1 10.2 9.7 12.5 11.3 11.7 9.1 11.2

12 1 yr 8.3 8.3 7.2 7.3 8.4 16.6 9.1 8.9 3.9 7.9
12 2 yr 9.0 8.8 10.5 9.5 12.1 16.7 10.7 12.0 8.5 11.2
24 1 yr 8.3 8.3 9.5 8.1 10.2 16.6 9.5 8.4 8.8 10.3
24 2 yr 8.1 7.9 12.8 8.6 11.8 18.7 9.9 9.7 10.7 11.0

p-values     
  ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

ARIMA1         0.13 0.20 -0.28 0.04 0.01 0.01 0.05 -0.26 0.05
BSM  -0.13  0.34 -0.14 0.04 0.01 0.01 0.18 -0.18 0.17
MLP Non-P -0.20 -0.34 -0.09 0.18 0.01 0.25 0.39 -0.01 0.22
MLP Partial P 0.28 0.14 0.09 0.01 0.01 0.01 0.01 -0.28 0.01
MLP Periodic -0.04 -0.04 -0.18 -0.01 0.01 -0.13 -0.13 -0.03 -0.05
ECM  -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
MMLP  -0.01 -0.01 -0.25 -0.01 0.13 0.01 -0.24 -0.03 -0.33
MANFIS -0.05 -0.18 -0.39 -0.01 0.13 0.01 0.24  -0.06 0.40
ANFIS  0.26 0.18 0.01 0.28 0.03 0.01 0.03 0.06  0.01
Naïve  -0.05 -0.17 -0.22 -0.01 0.05 0.01 0.33 -0.40 -0.01 
Significant 
comparisons 

5 3 1 5 1 0 1 1 5 1

 
 
Table 7.3.7 Paired comparison of all models, to identify significant MAPE 

  differences for arrivals from Korea                         
MAPE values     
Horizon Lead ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

1 1 yr 6.6 6.1 9.6 11.5 8.6 16.8 8.0 15.1 10.5
1 2 yr 9.3 8.8 12.3 12.7 11.4 16.9 8.7 14.0 12.8

12 1 yr 5.6 5.7 12.7 12.7 9.2 8.0 10.1 14.2 18.1 10.5
12 2 yr 10.1 9.5 15.0 15.4 11.6 11.7 12.5 12.0 16.7 12.8
24 1 yr 5.6 5.7 19.3 21.6 15.6 8.0 13.9 7.4 26.4 15.9
24 2 yr 9.4 8.5 23.0 24.1 17.6 11.5 17.4 11.7 27.3 18.3

p-values     
  ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

ARIMA1         -0.03 0.01 0.01 0.03 0.01 0.05 0.05 0.01 0.01
BSM  0.03  0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.01
MLP Non-P -0.01 -0.01 0.02 -0.01 -0.02 -0.37 -0.04 0.01 -0.04
MLP Partial P -0.01 -0.01 -0.02 -0.01 -0.01 -0.23 -0.03 0.01 -0.01
MLP Periodic -0.03 -0.03 0.01 0.01 -0.07 -0.49 -0.26 0.01 0.01
ECM  -0.01 -0.01 0.02 0.01 0.07 0.01 0.35 0.01 0.02
MMLP  -0.05 -0.01 0.37 0.23 0.49 -0.01 -0.05 0.05 -0.22
MANFIS -0.05 -0.03 0.04 0.03 0.26 -0.35 0.05  0.08 0.07
ANFIS  -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.05 -0.08  -0.01
Naïve  -0.01 -0.01 0.04 0.01 -0.01 -0.02 0.22 -0.07 0.01 
Significant 
comparisons 

8 9 2 1 4 5 1 3 0 3
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Table 7.3.8 Paired comparison of all models, to identify significant MAPE 
  differences for arrivals from Singapore                   

MAPE values     
Horizon Lead ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

1 1 yr 14.0 14.4 22.2 16.3 18.4 13.9 23.2 17.3 21.3
1 2 yr 25.1 26.6 30.2 25.9 24.4 25.0 27.7 26.6 27.7

12 1 yr 15.7 19.1 21.6 16.7 15.0 20.8 15.6 23.8 17.3 21.3
12 2 yr 26.3 27.5 28.1 25.2 24.2 40.7 27.3 27.2 26.4 27.7
24 1 yr 15.7 19.1 13.1 13.9 12.6 20.8 14.8 15.6 9.5 9.1
24 2 yr 25.5 28.4 26.5 25.5 22.0 31.7 25.9 27.0 23.7 25.9

p-values     
  ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

ARIMA1          0.01 0.05 0.37 -0.02 0.02 0.45 0.03 -0.42 0.21
BSM  -0.01  0.30 -0.05 -0.01 0.07 -0.01 0.21 -0.12 -0.44
MLP Non-P -0.05 -0.30 -0.02 -0.03 0.21 -0.05 0.28 -0.01 -0.03
MLP Partial P -0.37 0.05 0.02 -0.02 0.03 -0.40 0.01 -0.31 0.17
MLP Periodic 0.02 0.01 0.03 0.02 0.01 0.02 0.02 0.29 0.16
ECM  -0.02 -0.07 -0.21 -0.03 -0.01 -0.01 -0.26 -0.03 -0.12
MMLP  -0.45 0.01 0.05 0.40 -0.02 0.01 0.04 -0.41 0.20
MANFIS -0.03 -0.21 -0.28 -0.01 -0.02 0.26 -0.04  -0.01 -0.06
ANFIS  0.42 0.12 0.01 0.31 -0.29 0.03 0.41 0.01  0.02
Naïve  -0.21 0.44 0.03 -0.17 -0.16 0.12 -0.20 0.06 -0.02 0.00
Significant 
comparisons 

4 0 0 4 7 0 4 0 4 1

 
 
Table 7.3.9 Paired comparison of all models, to identify significant MAPE 

  differences for arrivals from Taiwan                 
MAPE values     
Horizon Lead ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

1 1 yr 5.8 6.9 10.4 7.2 5.8 7.5 11.4 10.3 14.2
1 2 yr 26.8 28.6 29.3 31.5 20.6 29.1 31.8 32.0 35.4

12 1 yr 9.1 11.5 12.6 7.5 9.1 5.0 14.3 12.3 10.9 14.2
12 2 yr 34.4 34.8 34.0 31.6 33.6 41.8 34.4 32.7 32.8 35.4
24 1 yr 9.1 11.5 7.5 8.7 8.5 5.0 8.8 13.5 8.4 10.5
24 2 yr 31.3 31.1 32.6 35.1 37.1 31.5 31.7 30.5 34.0 34.4

p-values     
  ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

ARIMA1        0.02 0.07 0.26 0.26 -0.30 0.06 0.05 0.07 0.01
BSM  -0.02  0.37 -0.38 -0.47 -0.17 0.37 0.12 0.30 0.03
MLP Non-P -0.07 -0.37 -0.28 0.42 -0.15 -0.44 0.23 0.33 0.01
MLP Partial P -0.26 0.38 0.28 0.04 -0.26 0.33 0.15 0.10 0.01
MLP Periodic -0.26 0.47 -0.42 -0.04 -0.36 0.46 0.47 -0.30 0.20
ECM  0.30 0.17 0.15 0.26 0.36 0.17 0.14 0.16 0.05
MMLP  -0.06 -0.37 0.44 -0.33 -0.46 -0.17 0.22 0.36 0.02
MANFIS -0.05 -0.12 -0.23 -0.15 -0.47 -0.14 -0.22  -0.30 0.06
ANFIS  -0.07 -0.30 -0.33 -0.10 0.30 -0.16 -0.36 0.30  0.01
Naïve  -0.01 -0.03 -0.01 -0.01 -0.20 -0.05 -0.02 -0.06 -0.01 
Significant 
comparisons 

3 1 1 2 0 1 1 0 1 0
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Table 7.3.10 Paired comparison of all models, to identify significant MAPE       
  differences for arrivals from UK           

MAPE values     
Horizon Lead ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

1 1 yr 15.8 18.0 13.5 20.0 23.5 15.0 34.3 39.9 12.7
1 2 yr 12.9 14.0 13.6 17.9 21.5 14.3 24.2 25.9 13.5

12 1 yr 13.1 29.1 16.6 21.0 22.2 49.5 11.8 137.9 247.0 12.7
12 2 yr 11.0 19.6 19.3 20.1 21.5 48.6 12.5 76.1 129.2 13.5
24 1 yr 13.1 29.1 40.8 97.4 58.1 49.5 14.0 11.7 29.9 79.5
24 2 yr 10.9 36.3 32.0 81.6 45.2 63.6 13.4 93.8 143.2 43.3

p-values     
  ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

ARIMA1          0.01 0.05 0.05 0.03 0.01 0.14 0.03 0.03 0.10
BSM  -0.01  -0.31 0.10 0.18 0.01 -0.02 0.04 0.04 0.32
MLP Non-P -0.05 0.31 0.05 0.04 0.01 -0.05 0.05 0.04 0.19
MLP Partial P -0.05 -0.10 -0.05 -0.10 -0.49 -0.05 0.25 0.10 -0.02
MLP Periodic -0.03 -0.18 -0.04 0.10 0.07 -0.03 0.14 0.07 0.47
ECM  -0.01 -0.01 -0.01 0.49 -0.07 -0.01 0.14 0.06 -0.11
MMLP  -0.14 0.02 0.05 0.05 0.03 0.01 0.03 0.03 0.11
MANFIS -0.03 -0.04 -0.05 -0.25 -0.14 -0.14 -0.03  0.03 -0.13
ANFIS  -0.03 -0.04 -0.04 -0.10 -0.07 -0.06 -0.03 -0.03  -0.06
Naïve  -0.10 -0.32 -0.19 0.02 -0.47 0.11 -0.11 0.13 0.06 
Significant 
comparisons 

7 3 5 0 0 0 7 1 0 1

 
 
Table 7.3.11 Paired comparison of all models, to identify significant MAPE  

  differences for arrivals from USA            
MAPE values     
Horizon Lead ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naïve

1 1 yr 4.6 6.0 6.4 5.2 5.8 5.2 7.5 7.2 8.0
1 2 yr 6.1 8.0 9.4 8.6 7.7 8.1 9.3 9.4 10.4

12 1 yr 8.8 8.3 7.6 6.1 7.0 6.4 14.7 8.2 7.4 8.0
12 2 yr 12.5 12.5 10.6 9.8 10.7 11.1 16.0 9.6 10.1 10.4
24 1 yr 8.8 8.3 3.8 4.1 4.3 6.4 9.4 3.2 3.0 2.9
24 2 yr 11.4 10.9 9.3 9.8 10.2 10.7 10.6 10.0 10.4 9.9

p-values     
  ARIMA1 BSM MLP Non-P MLP P P MLP P ECM MMLP MANFIS ANFIS Naive

ARIMA1          0.27 -0.26 -0.12 -0.03 -0.19 0.05 -0.31 -0.29 -0.39
BSM  -0.27  -0.12 -0.03 -0.04 -0.02 0.10 -0.19 -0.17 -0.28
MLP Non-P 0.26 0.12 -0.08 0.22 0.40 0.06 0.36 0.41 0.15
MLP Partial P 0.12 0.03 0.08 0.03 0.07 0.04 0.12 0.10 0.08
MLP Periodic 0.03 0.04 -0.22 -0.03 0.19 0.03 -0.29 -0.22 -0.29
ECM  0.19 0.02 -0.40 -0.07 -0.19 0.06 -0.47 -0.49 -0.41
MMLP  -0.05 -0.10 -0.06 -0.04 -0.03 -0.06 -0.08 -0.09 -0.11
MANFIS 0.31 0.19 -0.36 -0.12 0.29 0.47 0.08  -0.40 0.14
ANFIS  0.29 0.17 -0.41 -0.10 0.22 0.49 0.09 0.40  0.10
Naïve  0.39 0.28 -0.15 -0.08 0.29 -0.41 0.11 -0.14 -0.10 
Significant 
comparisons 

1 0 0 3 3 1 0 0 0 0
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Figure 7.2     The number of paired model comparisons 

with a significantly lower MAPE
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Figure 7.2 shows for all time horizons and all countries, the number of paired 

comparisons amongst all models with significant mean differences in MAPE values at the 

5% significance level. This is an indication of the number of instances when a model 

significantly out-performs other models. ARIMA(1) performs best with 42 significant 

mean differences in MAPE out of 99 comparisons, BSM next with 34, MLP partial 

periodic and MLP multivariate with 30 each, MLP periodic with 24 and non-periodic 

with 18, ANFIS with 25, MANFIS with 16, ECM with 10 and naïve with 9, out of 99 

comparisons each. Broadly, sophisticated time series models perform best, MLP and 

ANFIS models next while the ECM and the naïve perform poorly. The fact that no one 

model consistently out-performed all other models in all arrival source data sets indicates 

that each model has its own strengths within specific data structures. 
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Figure 7.3 shows for all time horizons, the number of forecasts (out of 66 for each model) 

with MAPE less than 10%. This is an indication of the degree of precision achieved by 

each of the forecasting models. Figure 7.3 is based on data extracted from Table 7.2.4. A 

comparison of the models for precision shows that ARIMA(1) and BSM perform best, 

each with MAPE less than 10% in 38 out of 66 forecasts. The MLP (except the periodic) 

and ANFIS models each have MAPE less than 10% in over 25 out of 66 forecasts. The 

MLP periodic model and the ECM model do not demonstrate good precision, with only 

16 out of 66 forecasts having MAPE less than 10% and performing worse than the naïve 

model.  

 

 

Figure 7.3     Number of forecasts with MAPE less than 10%
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Table 7.3.12 shows the most suitable forecasting model for each country, based on the 

analysis of Tables 7.3.1 to 7.3.11. 

Table 7.3.12 
  

The most suitable forecasting models for tourist 
arrivals to Japan from each source country 

Source  Forecasting models:  
Country 1  2 3 
Australia MLP Partial Periodic    
Canada MMLP     
China ANFIS    
France BSM    
Germany ARIMA MLP Partial Periodic ANFIS 
Korea BSM    
Singapore MLP Periodic    
Taiwan ARIMA    
UK ARIMA MMLP   
USA MLP Partial Periodic MLP Periodic   
ALL BSM MLP Periodic ECM 

 

 

7.4 Summary of conclusions 

 

7.4.1 Differenced and Undifferenced MLP Model Comparison 

 

Nelson, Hill, Remus et al. (1999) were of the view that deseasonalising the input data 

would improve the performance of MPL models as the neural process would then be able 

to focus better on variations other than those typically seasonal. This research focused on 

differencing the data rather than deseasonalising, as the objective was not to remove 

seasonality but to assist the neural process in modelling variations other than seasonal and 

trend. The MLP model was tested using raw data in the non-periodic model and 

seasonally lagged data in the partial periodic model for 1, 12 and 24-month horizons but 

in all cases found that differencing did not improve the forecasts (Refer 3.10). 
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This means that neural network parameters forecast more accurately when data are not 

differenced. This shows that when the neural model passes undifferenced data through 

nodes of the hidden layers with the aim of matching the input data to the output without 

filtering the inputs to identifiable decomposition or segmentation the neural method 

concentrates on the numeric value of the data as a whole and does not loose any 

information. However, when differenced data are used, trend and/or seasonality are 

removed and the model is mainly trying to find idiosyncratic structures within the random 

variations of the data. This method produces poor forecasting results indicating that 

variations in tourist arrival data are not totally independent of trend and seasonality. 

Therefore, neural network MLP forecasting methods must not separate time series 

components prior to applying the model but instead allow the model to deal with the data 

as a whole.  

 

7.4.2 Comparison of MLP models 

 

The partial periodic model is superior to the non-periodic model and the periodic model 

when forecasting tourism to Japan. The partial periodic and the non-periodic models 

perform better than the naïve model making them adequate models for forecasting. The 

partial periodic model is the best for the one-month ahead and the 12 months ahead 

forecasting horizons, while the non-periodic model is better for the 24 months-ahead 

horizon (Refer 3.11). 

 

The partial periodic model captures the seasonal trend of the past three years on a month-

by-month basis, which is its strength. The model's poor performance for the 24 months-
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ahead horizon is due to the tourist arrivals series changing dramatically in 2003 due to the 

SARS crisis.  

 

 Because the results of the Turner, Kulendran and Fernando (1997a) study, showed that 

the AR model with periodic data produced better forecasts than the ARIMA model with 

seasonal data, periodic data were tested on the MLP model to determine whether using 

periodic non-seasonal data would improve the performance of the MLP model. The 

performance of the periodic MLP model, though not better than the partial periodic 

model, was better for country specific data where the variance in MAPE values was not 

high. The comparatively poor performance of the periodic model compared to the partial 

periodic model could well be because data for each season are not totally independent. 

 

The superior performance of the MLP partial periodic model in tourist arrival forecasting 

means that the use of lagged series as inputs helps in modeling seasonal variations and 

recent trend. This method combines the advantages of using periodic data with non-

periodic data by having the most recent periodic data in one iteration and the most recent 

data from a different period in the next iteration. Therefore, the superior performance of 

the partial periodic model over the non-periodic and periodic models was to be expected 

and has explored an alternative perspective in periodic forecasting. 

 

 

 

 

 

 



Chapter 7 Conclusion 314

 

7.4.3 Comparison of ARIMA(1) and ARIMA(1)(12) models 

 

The ARIMA(1) model is superior to the ARIMA(1)(12) model for forecasting tourism 

arrivals to Japan (Refer 4.7). This is contrary to expectations, as tourism data are 

generally seasonal. However, ARIMA(1)(12) performs better when a series has stochastic 

seasonality (Kulendran and Wong, 2005). The better performance of the ARIMA(1) model 

is an indication of the absence of stochastic seasonality in tourist arrivals from source 

countries to Japan. It is possible for tourism data not to have stochastic seasonal 

variations when there are regular deterministic tourism flows from source countries to a 

destination such as Japan. The superior performance of the ARIMA(1) model shows that 

tourist arrivals to Japan does not have much stochastic seasonality and is more 

deterministic. This means for major tourist destinations tourist flows are deterministic due 

to steady regular flows each season, and are best modeled using ARIMA(1). 

 

7.4.4 Comparison of ARIMA(1) and BSM models 

 

Comparing the ARIMA(1) model with the BSM model, they both outperformed the naïve 

model and performed fairly well against each other. The ARIMA(1) model is adjudged the 

better of the two overall. ARIMA(1) is also the better model for a one month ahead 

forecasting horizon but both models perform well for the 12 months ahead horizon while 

the BSM model is the better model for the 24 months ahead horizon (Refer 4.8). Both 

ARIMA and BSM are powerful forecasting tools that are difficult to outperform, as 

autoregression and basic structure are the fundamentals that precede any stochastic 

variation.  
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Reference in the literature to naïve forecasts as the implied minimum standard for a 

model’s forecasting adequacy is based on its simplicity and reiterates the fact that a 

model that cannot be at least as accurate as the naïve model should not be considered for 

time series forecasting. However, due to the strong performance of the ARIMA model it 

should in fact be considered the minimum standard for model adequacy at least for 

tourism forecasting.  

 

7.4.5 Comparison of Univariate and Multivariate ANFIS models 

 

The main aim of this research was to test the viability of neuro-fuzzy logic in time series 

forecasting of tourism arrivals. Both univariate and multivariate ANFIS models 

performed better than the naïve model meeting the benchmark requirement for adequacy. 

However, comparison with equivalent MLP models showed that the MLP models 

performed better than the ANFIS models (Refer 6.6).  

 

Between the univariate and multivariate models, the univariate ANFIS performed better 

than the multivariate ANFIS for all forecasting horizons, the one-month, 12-months and 

24-months ahead. The performance of the multivariate ANFIS model was constrained by 

technical requirements that restricted the number of economic indicators. However, the 

good performance of the ANFIS models justifies further research in neuro-fuzzy 

forecasting. 

 

The power of the neural network MLP model has been demonstrated in this study and 

others. The combination of neural networks and fuzzy logic provides a platform with 

potential for movement away from crisp forecasts to fuzzy forecasts, which will better 
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represent tourist arrivals in a manner more useful to industry. This study has 

demonstrated the capability of the neuro-fuzzy forecasting model with comparable 

forecasting accuracies and precision. Refinement of this model will result in further 

improvement in accuracy.  

 

7.4.6 Comparison of all models with the Naïve 

 

All models tested in this research performed better than the naïve except, the ECM model 

and the MLP periodic model, which fell short of outperforming the naïve. The relatively 

poor performance of the regression model is supportive of previous findings by Martin 

and Witt (1989a), Witt and Witt (1992), Kulendran and Witt (2001) and Song and Witt 

(2000) who observed that that the naïve model is significantly accurate relative to the 

regression methods, and those of Turner and Witt (2001b) who showed that results 

confirm the superiority of the ARIMA and BSM time series models over both regression 

and the naïve models. (Refer 7.2). The relatively good performance of the MLP models 

that did not use periodic data shows that the poor performance of the MLP periodic 

model is due to the use of periodic data rather than poor characteristics of the MLP 

model. Each of the neural and fuzzy neural models (with the exception of the periodic 

MLP model) outperformed the naïve in more than 60% of forecasts. These results 

indicate that neural networks and the fuzzy neural combination are suitable tools that 

should be explored further for time series forecasting. However, these models must aim 

to at least perform as well as the ARIMA model if they are to be considered as a viable 

alternative forecasting tool. 
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7.4.7 Identifying the best models 

 

Three main methods are used in this study to compare the performance of forecasting 

models. The first is the number of forecasts with a lower MAPE value, a measure of the 

lower error. This method is used to compare model performances against the naïve 

model.  The second method is the number of forecasts with MAPE values less than 10%, 

a measure of precision. The third method is the number of paired comparisons with 

significant mean differences in MAPE values, a measure of significance. The results of 

these measures given earlier for all models for all three forecasting horizons in Figures 

7.1, 7.2 and 7.3 are summarised below.   

 

Table 7.4.1 Ranking the models for forecasting tourist arrivals to Japan 
   

Rank Performance measure:  
 Lower MAPE MAPE less than 10% Significant mean 
 than in Naïve model difference in MAPE 

1 ARIMA(1) ARIMA(1) ARIMA(1)  
2 BSM BSM BSM  
3 MLP Partial Periodic MLP Partial Periodic MLP Partial Periodic 
4 ANFIS MANFIS MMLP  
5 MMLP ANFIS ANFIS  
6 MANFIS MLP Non Periodic MLP Periodic 
7 MLP Non Periodic MMLP MLP Non Periodic 
8 MLP Periodic Naïve MANFIS  
9 ECM MLP Periodic ECM  
10  ECM Naïve  

 

Overall, the sophisticated univariate time series models ARIMA and BSM perform best, 

followed by neural network models with and without fuzzy logic. The performance of the 

ECM model is poor being not much better than the naïve model.  

 

The above findings are partly in keeping with the conclusions of Burger, Dohnal, 

Kathrada et al. (2001) who stated that neural networks performed best in comparison with 
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the naïve, moving average, decomposition, single exponential smoothing, ARIMA, 

multiple regression and genetic regression models and those of Kon and Turner (2005) 

which adjudged MLP models to be superior. 

 

While ARIMA(1) clearly outperforms the other models, the ECM model is shown to be 

significantly worse than most other models. This finding is in agreement with Witt and 

Witt (1992) who observed that ARIMA performs better than traditional demand 

modelling. The poor performance of the ECM model may be partly because the values of 

certain independent variables such as the gross national income were taken as a third of 

the quarterly figure because monthly data were not available. However, other multivariate 

models such as the multivariate MLP model performed better than the ECM using the 

same data. The better performance of the time series models from an industry point of 

view is a significant finding as, the use of time series models such as ARIMA would be 

less costly, quicker and requiring comparatively less technical skill. Whether ECM is 

more suitable for particular data structures needs to be further investigated. However, 

using an ECM just to obtain elasticities when accuracy is low is questionable. 

 

One of the limitations of this research is that it deals only with the ECM model while 

econometric modeling covers a broad spectrum of methodologies such as vector 

autoregressive (VAR) models, autoregressive distributed Lag models (VDLM) and time 

varying parameter (TVP) models. The scope of this study did not warrant the inclusion of 

these models. Event dummies were not specified in the ECM model, to be consistent with 

the neural network model, which did not specify event dummies. 
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The ANFIS and the MLP partial periodic models have justified their suitability as time 

series forecasting tools by performing well for each forecasting horizon and lead period. 

The MLP partial periodic model ranks 3rd while ANFIS ranks 4th and 5th out of the 10 

models in Table 7.4.1, a significant achievement for relatively new forecasting tools. 

 
 
 
 
7.5 Recommendations for future research 

 

The objective of this research has been achieved in establishing that neuro-fuzzy models 

can be used effectively in tourism forecasting with adequate comparisons with other time 

series and econometric models using real data. This research takes tourism forecasting a 

major leap forward to an entirely new approach in time series pedagogy. As previous 

tourism studies have not used hybrid combinations of neural and fuzzy logic in tourism 

forecasting this research has only touched the surface of a field that has immense 

potential not only in tourism forecasting but also in financial time series analysis, market 

research and business analysis. Fuzzy logic has so far been used extensively only in 

engineering design. Non-engineering applications are very recent. The scope for fuzzy 

applications in management is wide with clustering and segmentation being the most 

viable.  

 

A new approach to measuring tourism demand flows in levels of demand, relative to a 

mean is a possible future research project. The use of labels to describe levels of tourism 

demand as very high, high, medium, low or very low, relative to a recent historical mean, 

with further subdivisions such as very high 1, 2 or 3, might be more acceptable to a 

practitioner, who would plan the availability of hotel rooms or travel facilities based on 
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reliable forecast levels of tourist demand, rather than an average forecast of a specific 

number of arrivals. The fuzzy approach can forecast tourism demand as an accurate and 

useful fuzzy level of demand.  

 

Fuzzy classification is another area in which fuzzy logic can improve on crisp 

measurements. In the field of tourism, market segmentation according to income levels, 

alternative destinations, facilities and so forth would be another useful future research 

project. 

 

The potential of neural networks in adaptive learning where ANFIS, or similar models, 

can be designed to operate systems that make decisions is not fully utilised in business. 

Such systems can have expert opinion as an input, so that the decisions are not totally 

computer driven. A typical project would be to develop a sustainable regional tourism 

model for say Southeast Asia. 
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Table 4.4.1a 
 

ARIMA 1 results for tourist arrivals from all countries 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0058431       0.01453       0.40      0.6876       0 
MA1,1           0.59720       0.04704      12.70      <.0001       1 
MA2,1           0.64257       0.05147      12.48      <.0001      12 
AR1,1           0.98607     0.0058861     167.53      <.0001      12 

 
 

Variance Estimate       0.00414 
Std Error Estimate     0.064345 
AIC                     -733.19 
SBC                    -718.538 
Number of Residuals         288 

 
 

Autocorrelation Check of Residuals 
 
To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    5.55    3   0.1358  -0.037   0.076   0.046   0.003  -0.029   0.093 
12   18.36   9   0.0312  -0.114  -0.045  -0.044  -0.108   0.119  -0.005 
18   22.95   15  0.0853  -0.010   0.067  -0.054   0.040   0.070   0.031 
24   26.90   21  0.1741  -0.021  -0.030  -0.012   0.060   0.039  -0.077 
30   35.53   27  0.1258   0.103  -0.107  -0.059  -0.012  -0.020   0.032 
36   38.74   33  0.2265  -0.047  -0.004   0.043  -0.020   0.008   0.072 
42   43.97   39  0.2691  -0.101  -0.040  -0.029  -0.039   0.024  -0.031 
48   51.70   45  0.2287  -0.013  -0.030  -0.079  -0.011   0.018  -0.120 

 
 

Model for variable visit1 
 

Estimated Mean: 0.005843 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.98607 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.5972 B**(1) 
Factor 2:  1 - 0.64257 B**(12) 
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Table 4.4.1b 
 

ARIMA 1 results for tourist arrivals from all countries 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0065499       0.01459       0.45      0.6534       0 
MA1,1           0.59092       0.04636      12.75      <.0001       1 
MA2,1           0.65262       0.04845      13.47      <.0001      12 
AR1,1           0.98674     0.0055195     178.77      <.0001      12 

 
 

Variance Estimate      0.004057 
Std Error Estimate     0.063698 
AIC                     -768.22 
SBC                    -753.418 
Number of Residuals         299 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    5.93    3   0.1151  -0.035   0.082   0.044  -0.013  -0.038   0.089 
12   20.05   9   0.0176  -0.117  -0.050  -0.054  -0.103   0.124  -0.018 
18   25.80   15  0.0401  -0.001   0.083  -0.067   0.038   0.070   0.020 
24   29.61   21  0.1001  -0.013  -0.028  -0.020   0.063   0.041  -0.068 
30   39.22   27  0.0605   0.108  -0.109  -0.059  -0.018  -0.027   0.034 
36   43.11   33  0.1119  -0.048   0.003   0.041  -0.017   0.013   0.083 
42   48.25   39  0.1471  -0.099  -0.040  -0.030  -0.043   0.020  -0.021 
48   56.79   45  0.1118  -0.007  -0.025  -0.083  -0.010   0.014  -0.126 

 
 

Model for variable visit1 
 

Estimated Mean: 0.00655 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.98674 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.59092 B**(1) 
Factor 2:  1 - 0.65262 B**(12) 
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Table 4.4.1c 
 

ARIMA 1 results for tourist arrivals from all countries 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0056212       0.01452       0.39      0.6987       0 
MA1,1           0.59824       0.04701      12.73      <.0001       1 
MA2,1           0.64554       0.05140      12.56      <.0001      12 
AR1,1           0.98629     0.0058112     169.72      <.0001      12 

 
 

Variance Estimate      0.004147 
Std Error Estimate     0.064398 
AIC                    -729.996 
SBC                    -715.358 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    5.76    3   0.1237  -0.040   0.078   0.049   0.006  -0.027   0.094 
12   19.23   9   0.0233  -0.113  -0.044  -0.045  -0.109   0.128  -0.007 
18   23.94   15  0.0661  -0.012   0.067  -0.054   0.041   0.072   0.030 
24   27.83   21  0.1451  -0.022  -0.029  -0.015   0.062   0.037  -0.075 
30   36.32   27  0.1084   0.102  -0.107  -0.058  -0.011  -0.019   0.031 
36   39.66   33  0.1973  -0.049  -0.006   0.041  -0.020   0.005   0.075 
42   44.91   39  0.2380  -0.102  -0.039  -0.030  -0.038   0.021  -0.032 
48   52.63   45  0.2025  -0.015  -0.029  -0.079  -0.009   0.022  -0.120 

 
 

Model for variable visit1 
 

Estimated Mean: 0.005621 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.98629 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.59824 B**(1) 
Factor 2:  1 - 0.64554 B**(12) 
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 Table 4.4.2a 
 

ARIMA 1 results for tourist arrivals from Australia 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0032417       0.02143       0.15      0.8798       0 
MA1,1           0.65633       0.04439      14.78      <.0001       1 
MA2,1           0.66461       0.04973      13.37      <.0001      12 
AR1,1           0.98318     0.0064970     151.33      <.0001      12 

 
 

Variance Estimate      0.017047 
Std Error Estimate     0.130564 
AIC                    -328.466 
SBC                    -313.814 
Number of Residuals         288 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    7.53    3   0.0567   0.017  -0.093   0.099   0.047  -0.025   0.064 
12   12.14   9   0.2055  -0.012  -0.101   0.026  -0.011   0.019  -0.063 
18   20.05   15  0.1701   0.082  -0.002  -0.012   0.066  -0.032  -0.116 
24   30.79   21  0.0772   0.042  -0.016  -0.078   0.125   0.058  -0.084 
30   36.09   27  0.1133  -0.084  -0.025   0.023  -0.029  -0.084   0.023 
36   43.47   33  0.1050   0.021  -0.139   0.015  -0.020  -0.024   0.040 
42   48.96   39  0.1318  -0.092   0.062  -0.011  -0.029   0.024   0.051 
48   50.96   45  0.2506  -0.014   0.048   0.005  -0.034   0.004  -0.046 

 
 

Model for variable visit1 
 

Estimated Mean: 0.003242 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.98318 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.65633 B**(1) 
Factor 2:  1 - 0.66461 B**(12) 
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Table 4.4.2b 
 

ARIMA 1 results for tourist arrivals from Australia 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0028528       0.02110       0.14      0.8924       0 
MA1,1           0.65720       0.04347      15.12      <.0001       1 
MA2,1           0.66418       0.04845      13.71      <.0001      12 
AR1,1           0.98330     0.0063331     155.26      <.0001      12 

 
 

Variance Estimate      0.016488 
Std Error Estimate     0.128405 
AIC                    -351.907 
SBC                    -337.105 
Number of Residuals         299 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq  --------------------Autocorrelations----------- 
6    7.36    3   0.0612   0.018  -0.092   0.096   0.044  -0.022   0.063 
12   11.91   9   0.2183  -0.008  -0.100   0.023  -0.009   0.016  -0.062 
18   20.30   15  0.1608   0.086  -0.001  -0.013   0.066  -0.031  -0.116 
24   31.78   21  0.0616   0.046  -0.014  -0.081   0.127   0.054  -0.086 
30   36.84   27  0.0981  -0.075  -0.028   0.022  -0.026  -0.085   0.023 
36   44.21   33  0.0920   0.018  -0.137   0.015  -0.019  -0.020   0.042 
42   50.31   39  0.1061  -0.094   0.064  -0.012  -0.035   0.029   0.050 
48   52.44   45  0.2079  -0.012   0.051   0.002  -0.035   0.004  -0.045 

 
 

Model for variable visit1 
 

Estimated Mean: 0.002853 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.9833 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.6572 B**(1) 
Factor 2:  1 - 0.66418 B**(12) 
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Table 4.4.2c 
 

ARIMA 1 results for tourist arrivals from Australia 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0028013       0.02139       0.13      0.8958       0 
MA1,1           0.65712       0.04435      14.82      <.0001       1 
MA2,1           0.66495       0.04971      13.38      <.0001      12 
AR1,1           0.98320     0.0064917     151.46      <.0001      12 

 
 

Variance Estimate      0.017067 
Std Error Estimate     0.130641 
AIC                    -326.893 
SBC                    -312.255 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    7.45    3   0.0590   0.014  -0.091   0.101   0.049  -0.024   0.063 
12   11.90   9   0.2189  -0.010  -0.099   0.025  -0.009   0.021  -0.062 
18   20.09   15  0.1685   0.081  -0.001  -0.012   0.068  -0.031  -0.120 
24   31.20   21  0.0704   0.040  -0.015  -0.081   0.128   0.059  -0.085 
30   36.33   27  0.1083  -0.080  -0.023   0.023  -0.032  -0.083   0.024 
36   43.86   33  0.0980   0.022  -0.141   0.017  -0.020  -0.023   0.041 
42   49.68   39  0.1174  -0.097   0.064  -0.007  -0.028   0.024   0.051 
48   51.83   45  0.2249  -0.014   0.051   0.003  -0.034   0.003  -0.048 

 
 

Model for variable visit1 
 

Estimated Mean: 0.002801 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.9832 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.65712 B**(1) 
Factor 2:  1 - 0.66495 B**(12) 
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 Table 4.4.3a 
 

ARIMA 1 results for tourist arrivals from Canada 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0056643     0.0038282       1.48      0.1390       0 
MA1,1           0.92424       0.02609      35.42      <.0001       1 
MA2,1           0.58229       0.06110       9.53      <.0001      12 
AR1,1           0.29361       0.06513       4.51      <.0001       1 
AR2,1           0.96176       0.01525      63.05      <.0001      12 

 
 

Variance Estimate      0.009354 
Std Error Estimate     0.096717 
AIC                     -505.95 
SBC                    -487.636 
Number of Residuals         288 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    6.69    2   0.0352  -0.028   0.062   0.085   0.088  -0.053   0.021 
12   13.14   8   0.1073  -0.029  -0.080  -0.035  -0.078  -0.083   0.008 
18   24.71   14  0.0376  -0.040  -0.029  -0.101  -0.094   0.039   0.121 
24   31.37   20  0.0505   0.031   0.044   0.054   0.099   0.029   0.068 
30   33.47   26  0.1489   0.045   0.016  -0.030   0.047  -0.031  -0.015 
36   41.82   32  0.1147   0.056   0.035  -0.092  -0.027  -0.013  -0.108 
42   42.70   38  0.2762   0.010   0.017  -0.030  -0.011   0.035   0.002 
48   46.92   44  0.3535   0.072  -0.002   0.022   0.033  -0.046  -0.058 

 
 

Model for variable visit1 
 

Estimated Mean: 0.005664 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.29361 B**(1) 
Factor 2:  1 - 0.96176 B**(12) 

 
Moving Average Factors 

 
Factor 1:  1 - 0.92424 B**(1) 
Factor 2:  1 - 0.58229 B**(12) 
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Table 4.4.3b 
 

ARIMA 1 results for tourist arrivals from Canada 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0056060     0.0036436       1.54      0.1239       0 
MA1,1           0.92615       0.02510      36.90      <.0001       1 
MA2,1           0.57916       0.05984       9.68      <.0001      12 
AR1,1           0.29316       0.06353       4.61      <.0001       1 
AR2,1           0.96062       0.01531      62.76      <.0001      12 

 
 

Variance Estimate      0.009213 
Std Error Estimate     0.095986 
AIC                     -530.86 
SBC                    -512.358 
Number of Residuals         299 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    5.96    2   0.0508  -0.025   0.054   0.081   0.084  -0.048   0.013 
12   11.32   8   0.1843  -0.027  -0.075  -0.038  -0.070  -0.067   0.003 
18   21.84   14  0.0819  -0.042  -0.019  -0.101  -0.089   0.035   0.107 
24   28.93   20  0.0891   0.045   0.052   0.038   0.099   0.034   0.068 
30   31.43   26  0.2126   0.046  -0.001  -0.032   0.051  -0.036  -0.022 
36   40.35   32  0.1476   0.065   0.046  -0.094  -0.028  -0.011  -0.101 
42   41.75   38  0.3109   0.001   0.004  -0.026  -0.012   0.051   0.023 
48   46.48   44  0.3705   0.054  -0.008   0.044   0.037  -0.051  -0.067 

 
 

Model for variable visit1 
 

Estimated Mean: 0.005606 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.29316 B**(1) 
Factor 2:  1 - 0.96062 B**(12) 

 
Moving Average Factors 

 
Factor 1:  1 - 0.92615 B**(1) 
Factor 2:  1 - 0.57916 B**(12) 
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Table 4.4.3c 
 

ARIMA 1 results for tourist arrivals from Canada 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0058019     0.0038016       1.53      0.1270       0 
MA1,1           0.92585       0.02568      36.05      <.0001       1 
MA2,1           0.58219       0.06105       9.54      <.0001      12 
AR1,1           0.29720       0.06501       4.57      <.0001       1 
AR2,1           0.96222       0.01516      63.47      <.0001      12 

 
 

Variance Estimate      0.009353 
Std Error Estimate     0.096709 
AIC                    -504.032 
SBC                    -485.735 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    6.28    2   0.0433  -0.027   0.058   0.086   0.082  -0.052   0.022 
12   12.93   8   0.1143  -0.028  -0.082  -0.030  -0.076  -0.089   0.012 
18   24.78   14  0.0368  -0.038  -0.028  -0.099  -0.095   0.037   0.128 
24   31.41   20  0.0500   0.029   0.043   0.058   0.099   0.032   0.065 
30   33.32   26  0.1531   0.042   0.015  -0.031   0.044  -0.032  -0.008 
36   42.35   32  0.1043   0.056   0.033  -0.093  -0.028  -0.014  -0.117 
42   43.42   38  0.2515   0.013   0.015  -0.032  -0.002   0.041  -0.009 
48   47.56   44  0.3299   0.076   0.000   0.024   0.032  -0.041  -0.055 

 
 

Model for variable visit1 
 

Estimated Mean: 0.005802 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.2972 B**(1) 
Factor 2:  1 - 0.96222 B**(12) 

 
Moving Average Factors 

 
Factor 1:  1 - 0.92585 B**(1) 
Factor 2:  1 - 0.58219 B**(12) 
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Table 4.4.4a 
 

ARIMA 1 results for tourist arrivals from China 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU              0.01998       0.03011       0.66      0.5070       0 
MA1,1           0.43874       0.05174       8.48      <.0001       1 
MA2,1           0.83835       0.04794      17.49      <.0001      12 
AR1,1           0.98913     0.0065631     150.71      <.0001      12 

 
 

Variance Estimate       0.03144 
Std Error Estimate     0.177314 
AIC                    -156.741 
SBC                    -142.089 
Number of Residuals         288 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    8.98    3   0.0296   0.012  -0.001   0.016  -0.171   0.028  -0.010 
12   14.84   9   0.0954   0.074   0.099   0.058  -0.025  -0.007   0.015 
18   23.25   15  0.0790  -0.060  -0.113  -0.074   0.001   0.054   0.053 
24   26.97   21  0.1717   0.043  -0.043   0.004  -0.081   0.034  -0.023 
30   28.31   27  0.3952   0.012   0.002  -0.051   0.015  -0.034   0.001 
36   33.44   33  0.4460  -0.021  -0.117  -0.026  -0.001   0.025  -0.018 
42   38.29   39  0.5019   0.039   0.025  -0.066   0.017   0.022   0.085 
48   40.85   45  0.6484  -0.007  -0.027  -0.076   0.024   0.014   0.002 

 
 

Model for variable visit1 
 

Estimated Mean: 0.019983 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.98913 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.43874 B**(1) 
Factor 2:  1 - 0.83835 B**(12) 
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Table 4.4.4b 
 

ARIMA 1 results for tourist arrivals from China 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU              0.02038       0.03017       0.68      0.4993       0 
MA1,1           0.44257       0.05083       8.71      <.0001       1 
MA2,1           0.81991       0.04863      16.86      <.0001      12 
AR1,1           0.98714     0.0071778     137.53      <.0001      12 

 
 

Variance Estimate      0.031143 
Std Error Estimate     0.176475 
AIC                    -166.946 
SBC                    -152.145 
Number of Residuals         299 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    10.03   3   0.0183   0.016  -0.004   0.007  -0.178   0.032  -0.003 
12   16.31   9   0.0606   0.085   0.097   0.050  -0.028  -0.015   0.016 
18   24.80   15  0.0526  -0.055  -0.117  -0.071  -0.000   0.050   0.052 
24   28.50   21  0.1264   0.048  -0.041   0.004  -0.079   0.025  -0.022 
30   29.85   27  0.3210   0.013   0.003  -0.047   0.008  -0.039   0.003 
36   34.58   33  0.3924  -0.016  -0.111  -0.024  -0.012   0.019  -0.018 
42   40.23   39  0.4155   0.045   0.026  -0.068   0.013   0.014   0.093 
48   42.49   45  0.5788  -0.004  -0.026  -0.073   0.012   0.010   0.006 

 
 

Model for variable visit1 
 

Estimated Mean: 0.020382 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.98714 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.44257 B**(1) 
Factor 2:  1 - 0.81991 B**(12) 
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Table 4.4.4c 
 

ARIMA 1 results for tourist arrivals from China 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU              0.01957       0.03014       0.65      0.5161       0 
MA1,1           0.43761       0.05186       8.44      <.0001       1 
MA2,1           0.84221       0.04799      17.55      <.0001      12 
AR1,1           0.98954     0.0064436     153.57      <.0001      12 

 
 

Variance Estimate      0.031516 
Std Error Estimate     0.177527 
AIC                    -155.298 
SBC                     -140.66 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    9.00    3   0.0293   0.012   0.000   0.017  -0.171   0.028  -0.012 
12   14.86   9   0.0949   0.074   0.100   0.057  -0.026  -0.006   0.016 
18   23.15   15  0.0810  -0.060  -0.112  -0.073   0.001   0.054   0.052 
24   26.83   21  0.1766   0.043  -0.042   0.002  -0.080   0.034  -0.023 
30   28.19   27  0.4014   0.012   0.003  -0.052   0.015  -0.034   0.001 
36   33.27   33  0.4541  -0.021  -0.116  -0.026  -0.001   0.026  -0.018 
42   38.14   39  0.5089   0.040   0.025  -0.066   0.018   0.021   0.085 
48   40.65   45  0.6567  -0.007  -0.026  -0.076   0.025   0.013   0.003 

 
 

Model for variable visit1 
 

Estimated Mean: 0.019568 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.98954 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.43761 B**(1) 
Factor 2:  1 - 0.84221 B**(12) 
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 Table 4.4.5a 
 

ARIMA 1 results for tourist arrivals from France 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0047934       0.01128       0.42      0.6709       0 
MA1,1           0.80116       0.03513      22.81      <.0001       1 
MA2,1           0.60017       0.05275      11.38      <.0001      12 
AR1,1           0.98258     0.0067690     145.16      <.0001      12 

 
 

Variance Estimate      0.010486 
Std Error Estimate     0.102403 
AIC                    -465.995 
SBC                    -451.343 
Number of Residuals         288 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    5.89    3   0.1171   0.009  -0.019  -0.049   0.091   0.095  -0.000 
12   11.13   9   0.2668  -0.004   0.066  -0.054  -0.101   0.001   0.000 
18   17.77   15  0.2750  -0.066   0.080   0.050  -0.084  -0.020  -0.030 
24   22.05   21  0.3964  -0.011  -0.037  -0.102  -0.018   0.030   0.023 
30   32.15   27  0.2264  -0.140  -0.053  -0.028   0.065  -0.042  -0.051 
36   37.91   33  0.2553   0.091  -0.042  -0.072  -0.037   0.018   0.025 
42   42.42   39  0.3259  -0.082  -0.009  -0.004  -0.074  -0.031   0.009 
48   51.29   45  0.2408   0.031  -0.044   0.049   0.106   0.044  -0.085 

 
 

Model for variable visit1 
 

Estimated Mean: 0.004793 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.98258 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.80116 B**(1) 
Factor 2:  1 - 0.60017 B**(12) 
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Table 4.4.5b 
 

ARIMA 1 results for tourist arrivals from France 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0042476       0.01116       0.38      0.7036       0 
MA1,1           0.80095       0.03462      23.14      <.0001       1 
MA2,1           0.59287       0.05184      11.44      <.0001      12 
AR1,1           0.98211     0.0067988     144.45      <.0001      12 

 
 

Variance Estimate      0.010229 
Std Error Estimate      0.10114 
AIC                    -492.383 
SBC                    -477.582 
Number of Residuals         299 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    5.68    3   0.1284   0.009  -0.019  -0.046   0.088   0.090   0.010 
12   11.18   9   0.2635  -0.009   0.062  -0.056  -0.103   0.006  -0.002 
18   17.75   15  0.2760  -0.064   0.083   0.049  -0.078  -0.008  -0.034 
24   22.57   21  0.3674  -0.011  -0.046  -0.103  -0.020   0.031   0.027 
30   32.32   27  0.2204  -0.135  -0.052  -0.027   0.058  -0.043  -0.050 
36   38.12   33  0.2479   0.089  -0.042  -0.072  -0.041   0.015   0.021 
42   42.75   39  0.3132  -0.083  -0.004   0.000  -0.074  -0.031   0.007 
48   51.75   45  0.2272   0.027  -0.038   0.051   0.107   0.040  -0.086 

 
 

Model for variable visit1 
 

Estimated Mean: 0.004248 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.98211 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.80095 B**(1) 
Factor 2:  1 - 0.59287 B**(12) 
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Table 4.4.5c 
 

ARIMA 1 results for tourist arrivals from France 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0046669       0.01130       0.41      0.6797       0 
MA1,1           0.80122       0.03517      22.78      <.0001       1 
MA2,1           0.60229       0.05282      11.40      <.0001      12 
AR1,1           0.98276     0.0067257     146.12      <.0001      12 

 
 

Variance Estimate      0.010514 
Std Error Estimate      0.10254 
AIC                    -463.464 
SBC                    -448.826 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    5.84    3   0.1197   0.007  -0.017  -0.048   0.092   0.094  -0.001 
12   11.08   9   0.2705  -0.003   0.067  -0.054  -0.101  -0.001   0.000 
18   17.60   15  0.2842  -0.065   0.079   0.051  -0.084  -0.018  -0.031 
24   21.90   21  0.4051  -0.013  -0.037  -0.103  -0.019   0.029   0.023 
30   31.96   27  0.2336  -0.140  -0.053  -0.028   0.064  -0.042  -0.050 
36   37.89   33  0.2562   0.092  -0.042  -0.074  -0.038   0.019   0.026 
42   42.34   39  0.3287  -0.082  -0.009  -0.005  -0.074  -0.031   0.009 
48   51.05   45  0.2479   0.030  -0.043   0.049   0.106   0.041  -0.085 

 
 

Model for variable visit1 
 

Estimated Mean: 0.004667 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.98276 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.80122 B**(1) 
Factor 2:  1 - 0.60229 B**(12) 
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Table 4.4.6a 
 

ARIMA 1 results for tourist arrivals from Germany 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0029841     0.0097366       0.31      0.7592       0 
MA1,1           0.86121       0.02906      29.63      <.0001       1 
MA2,1           0.70491       0.04613      15.28      <.0001      12 
AR1,1           0.99444     0.0026124     380.66      <.0001      12 

 
 

Variance Estimate      0.008789 
Std Error Estimate      0.09375 
AIC                     -507.65 
SBC                    -492.998 
Number of Residuals         288 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    8.17    3   0.0426   0.069  -0.028   0.035  -0.107   0.098  -0.003 
12   14.41   9   0.1086  -0.086  -0.070  -0.004   0.080  -0.006  -0.047 
18   24.71   15  0.0540   0.144   0.060  -0.061  -0.042  -0.063   0.001 
24   26.41   21  0.1912   0.009   0.036  -0.001   0.025   0.007   0.058 
30   30.27   27  0.3020  -0.031  -0.043   0.036  -0.075  -0.046  -0.012 
36   31.92   33  0.5209  -0.052   0.011  -0.002   0.020   0.007  -0.042 
42   39.92   39  0.4288   0.013  -0.139  -0.025  -0.004   0.020  -0.058 
48   52.40   45  0.2090  -0.072  -0.020  -0.102   0.022   0.050  -0.131 

 
 

Model for variable visit1 
 

Estimated Mean: 0.002984 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.99444 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.86121 B**(1) 
Factor 2:  1 - 0.70491 B**(12) 
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Table 4.4.6b 
 

ARIMA 1 results for tourist arrivals from Germany 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0031795     0.0087817       0.36      0.7173       0 
MA1,1           0.87135       0.02764      31.53      <.0001       1 
MA2,1           0.69074       0.04801      14.39      <.0001      12 
AR1,1           0.99317     0.0031329     317.01      <.0001      12 

 
 

Variance Estimate      0.009355 
Std Error Estimate     0.096723 
AIC                    -511.541 
SBC                    -496.739 
Number of Residuals         299 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    9.26    3   0.0260   0.069  -0.026   0.062  -0.123   0.077   0.009 
12   15.11   9   0.0878  -0.085  -0.080  -0.004   0.063   0.005  -0.035 
18   26.10   15  0.0369   0.141   0.063  -0.074  -0.048  -0.056   0.012 
24   27.90   21  0.1430   0.010   0.050  -0.002  -0.001   0.034   0.042 
30   31.68   27  0.2441  -0.032  -0.015  -0.008  -0.086  -0.043  -0.026 
36   33.39   33  0.4484  -0.036   0.031  -0.001   0.019  -0.012  -0.047 
42   41.21   39  0.3741  -0.004  -0.139  -0.004  -0.017   0.026  -0.048 
48   52.94   45  0.1946  -0.082  -0.023  -0.097  -0.001   0.030  -0.123 

 
 

Model for variable visit1 
 

Estimated Mean: 0.00318 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.99317 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.87135 B**(1) 
Factor 2:  1 - 0.69074 B**(12) 
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Table 4.4.6c 
 

ARIMA 1 results for tourist arrivals from Germany 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0028922     0.0098470       0.29      0.7690       0 
MA1,1           0.86001       0.02936      29.29      <.0001       1 
MA2,1           0.70658       0.04610      15.33      <.0001      12 
AR1,1           0.99452     0.0025857     384.62      <.0001      12 

 
 

Variance Estimate      0.008807 
Std Error Estimate     0.093847 
AIC                    -505.085 
SBC                    -490.447 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    8.26    3   0.0409   0.068  -0.029   0.037  -0.107   0.099  -0.005 
12   14.75   9   0.0981  -0.088  -0.071  -0.005   0.083  -0.005  -0.046 
18   24.82   15  0.0524   0.142   0.060  -0.062  -0.041  -0.061  -0.003 
24   26.67   21  0.1819   0.008   0.036  -0.003   0.030   0.008   0.060 
30   30.44   27  0.2946  -0.030  -0.043   0.035  -0.075  -0.046  -0.011 
36   32.07   33  0.5130  -0.051   0.012  -0.000   0.018   0.010  -0.043 
42   39.82   39  0.4336   0.014  -0.137  -0.024  -0.002   0.022  -0.056 
48   52.17   45  0.2151  -0.072  -0.017  -0.100   0.022   0.046  -0.133 

 
Model for variable visit1 

 
Estimated Mean: 0.002892 

 
Period(s) of Differencing: 1 

 
Autoregressive Factors 

 
Factor 1:  1 - 0.99452 B**(12) 

 
Moving Average Factors 

 
Factor 1:  1 - 0.86001 B**(1) 
Factor 2:  1 - 0.70658 B**(12) 
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 Table 4.4.7a 
 

ARIMA 1 results for tourist arrivals from Korea 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0091409       0.02568       0.36      0.7219       0 
MA1,1           0.15182       0.05699       2.66      0.0077       1 
MA2,1           0.66731       0.05917      11.28      <.0001      12 
AR1,1           0.97874       0.01371      71.38      <.0001      12 

 
 

Variance Estimate      0.005389 
Std Error Estimate      0.07341 
AIC                    -663.353 
SBC                    -648.701 
Number of Residuals         288 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    8.90    3   0.0306   0.012  -0.082   0.000  -0.065   0.048   0.130 
12   10.41   9   0.3183   0.051   0.016   0.007  -0.044   0.009   0.014 
18   12.30   15  0.6565  -0.040   0.015   0.016  -0.016   0.062   0.008 
24   16.18   21  0.7595  -0.080  -0.058   0.045   0.003  -0.023   0.014 
30   18.70   27  0.8805  -0.059  -0.023  -0.046  -0.014   0.002  -0.040 
36   21.32   33  0.9417  -0.038   0.054   0.012  -0.018   0.008   0.055 
42   25.21   39  0.9571  -0.069   0.007   0.050  -0.051   0.016  -0.037 
48   28.61   45  0.9729   0.015  -0.056   0.018  -0.026  -0.067   0.031 

 
 

Model for variable visit1 
 

Estimated Mean: 0.009141 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.97874 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.15182 B**(1) 
Factor 2:  1 - 0.66731 B**(12) 
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Table 4.4.7b 
 

ARIMA 1 results for tourist arrivals from Korea 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0074407       0.02671       0.28      0.7806       0 
MA1,1           0.16644       0.05558       2.99      0.0027       1 
MA2,1           0.66655       0.05685      11.72      <.0001      12 
AR1,1           0.98084       0.01292      75.91      <.0001      12 

 
 

Variance Estimate      0.005375 
Std Error Estimate     0.073312 
AIC                     -689.21 
SBC                    -674.408 
Number of Residuals         299 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    11.81   3   0.0081   0.015  -0.093   0.016  -0.077   0.039   0.149 
12   14.07   9   0.1197   0.055   0.015   0.011  -0.060   0.006   0.015 
18   15.46   15  0.4189  -0.029   0.010   0.013  -0.013   0.055   0.006 
24   18.38   21  0.6250  -0.066  -0.050   0.033  -0.002  -0.027   0.019 
30   20.69   27  0.8006  -0.052  -0.029  -0.045  -0.014  -0.008  -0.033 
36   22.63   33  0.9128  -0.025   0.050  -0.002  -0.015   0.006   0.048 
42   25.33   39  0.9554  -0.056   0.005   0.028  -0.043   0.005  -0.045 
48   27.99   45  0.9780   0.026  -0.047  -0.005  -0.020  -0.064   0.002 

 
 

Model for variable visit1 
 

Estimated Mean: 0.007441 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.98084 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.16644 B**(1) 
Factor 2:  1 - 0.66655 B**(12) 
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Table 4.4.7c 
 

ARIMA 1 results for tourist arrivals from Korea 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0080335       0.02517       0.32      0.7496       0 
MA1,1           0.15816       0.05686       2.78      0.0054       1 
MA2,1           0.66616       0.05929      11.24      <.0001      12 
AR1,1           0.97820       0.01388      70.46      <.0001      12 

 
 

Variance Estimate      0.005368 
Std Error Estimate     0.073267 
AIC                    -662.312 
SBC                    -647.674 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    8.61    3   0.0350   0.014  -0.088   0.007  -0.058   0.052   0.124 
12   10.17   9   0.3366   0.052   0.016   0.009  -0.044   0.012   0.013 
18   12.26   15  0.6594  -0.049   0.013   0.019  -0.007   0.062   0.003 
24   16.19   21  0.7591  -0.082  -0.058   0.045   0.006  -0.022   0.008 
30   19.02   27  0.8691  -0.066  -0.023  -0.043  -0.013   0.001  -0.044 
36   21.78   33  0.9324  -0.045   0.058   0.012  -0.017   0.007   0.051 
42   26.54   39  0.9356  -0.085   0.004   0.050  -0.055   0.015  -0.037 
48   31.04   45  0.9437   0.013  -0.056   0.017  -0.034  -0.075   0.052 

 
 

Model for variable visit1 
 

Estimated Mean: 0.008034 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.9782 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.15816 B**(1) 
Factor 2:  1 - 0.66616 B**(12) 
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 Table 4.4.8a 
 

ARIMA 1 results for tourist arrivals from Singapore 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0075114       0.02169       0.35      0.7291       0 
MA1,1           0.75141       0.03857      19.48      <.0001       1 
MA2,1           0.67369       0.04982      13.52      <.0001      12 
AR1,1           0.98755     0.0067452     146.41      <.0001      12 

 
 

Variance Estimate      0.025549 
Std Error Estimate     0.159841 
AIC                    -208.672 
SBC                     -194.02 
Number of Residuals         288 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    7.14    3   0.0677  -0.038   0.084  -0.021   0.016  -0.075   0.097 
12   26.32   9   0.0018   0.082  -0.169   0.092  -0.063   0.126  -0.024 
18   33.60   15  0.0039   0.123   0.032  -0.086   0.020  -0.001   0.002 
24   38.17   21  0.0123  -0.014   0.010   0.028   0.045   0.097  -0.045 
30   41.46   27  0.0372   0.044   0.051   0.045  -0.016  -0.056  -0.018 
36   54.38   33  0.0110  -0.111   0.028   0.026   0.009  -0.017   0.159 
42   59.11   39  0.0204  -0.028   0.007  -0.005   0.041  -0.095  -0.050 
48   64.82   45  0.0280  -0.090  -0.051  -0.014  -0.004   0.049  -0.057 

 
 

Model for variable visit1 
 

Estimated Mean: 0.007511 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.98755 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.75141 B**(1) 
Factor 2:  1 - 0.67369 B**(12) 

 
 



 376

 

Table 4.4.8b 
 

ARIMA 1 results for tourist arrivals from Singapore 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU              0.01012       0.02110       0.48      0.6315       0 
MA1,1           0.75650       0.03762      20.11      <.0001       1 
MA2,1           0.67313       0.04936      13.64      <.0001      12 
AR1,1           0.98728     0.0068256     144.64      <.0001      12 

 
 

Variance Estimate      0.025819 
Std Error Estimate     0.160684 
AIC                    -214.847 
SBC                    -200.045 
Number of Residuals         299 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    6.52    3   0.0890  -0.022   0.085  -0.026  -0.008  -0.087   0.073 
12   23.10   9   0.0060   0.080  -0.139   0.103  -0.057   0.112  -0.037 
18   29.41   15  0.0142   0.099   0.034  -0.085   0.037  -0.016  -0.019 
24   34.86   21  0.0292  -0.022  -0.003   0.010   0.056   0.111  -0.026 
30   37.78   27  0.0814   0.047   0.039   0.037  -0.028  -0.049  -0.023 
36   51.82   33  0.0197  -0.106   0.040   0.032   0.005  -0.014   0.165 
42   55.66   39  0.0407  -0.025   0.010  -0.011   0.021  -0.081  -0.056 
48   62.01   45  0.0470  -0.082  -0.041   0.008  -0.015   0.041  -0.086 

 
Model for variable visit1 

 
Estimated Mean: 0.010118 

 
Period(s) of Differencing: 1 

 
Autoregressive Factors 

 
Factor 1:  1 - 0.98728 B**(12) 

 
Moving Average Factors 

 
Factor 1:  1 - 0.7565 B**(1) 
Factor 2:  1 - 0.67313 B**(12) 
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Table 4.4.8c 
 

ARIMA 1 results for tourist arrivals from Singapore 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0081199       0.02125       0.38      0.7024       0 
MA1,1           0.75476       0.03825      19.73      <.0001       1 
MA2,1           0.66839       0.05053      13.23      <.0001      12 
AR1,1           0.98703     0.0069885     141.24      <.0001      12 

 
 

Variance Estimate      0.025522 
Std Error Estimate     0.159758 
AIC                    -208.376 
SBC                    -193.739 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    7.44    3   0.0592  -0.034   0.085  -0.028   0.013  -0.078   0.100 
12   25.71   9   0.0023   0.081  -0.169   0.092  -0.065   0.115  -0.019 
18   33.36   15  0.0042   0.129   0.031  -0.084   0.020  -0.005   0.003 
24   38.48   21  0.0113  -0.015   0.008   0.031   0.046   0.101  -0.052 
30   41.79   27  0.0345   0.045   0.053   0.043  -0.015  -0.056  -0.017 
36   53.59   33  0.0132  -0.106   0.029   0.022   0.014  -0.010   0.152 
42   58.08   39  0.0252  -0.025   0.003  -0.006   0.036  -0.093  -0.052 
48   63.05   45  0.0390  -0.088  -0.053  -0.017  -0.010   0.032  -0.050 

 
 

Model for variable visit1 
 

Estimated Mean: 0.00812 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.98703 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.75476 B**(1) 
Factor 2:  1 - 0.66839 B**(12) 
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 Table 4.4.9a 
 

ARIMA 1 results for tourist arrivals from Taiwan 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0096383       0.01701       0.57      0.5709       0 
MA1,1           0.67497       0.04302      15.69      <.0001       1 
MA2,1           0.72685       0.05564      13.06      <.0001      12 
AR1,1           0.97768       0.01229      79.53      <.0001      12 

 
 

Variance Estimate      0.024372 
Std Error Estimate     0.156114 
AIC                    -231.142 
SBC                     -216.49 
Number of Residuals         288 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    2.86    3   0.4130  -0.012   0.040   0.050  -0.054  -0.050   0.012 
12   10.47   9   0.3136   0.032  -0.092  -0.034  -0.015   0.120   0.007 
18   16.49   15  0.3501   0.074  -0.029  -0.063  -0.012   0.012   0.095 
24   21.07   21  0.4544   0.057   0.072  -0.036   0.037   0.053  -0.027 
30   32.05   27  0.2302   0.097  -0.079  -0.042  -0.121   0.019   0.044 
36   45.77   33  0.0688   0.054  -0.019   0.098  -0.055  -0.010   0.160 
42   59.23   39  0.0199  -0.171  -0.069  -0.051   0.023  -0.025   0.050 
48   68.69   45  0.0130   0.030  -0.083  -0.043  -0.060  -0.015  -0.118 

 
 

Model for variable visit1 
 

Estimated Mean: 0.009638 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.97768 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.67497 B**(1) 
Factor 2:  1 - 0.72685 B**(12) 
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Table 4.4.9b 
 

ARIMA 1 results for tourist arrivals from Taiwan 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU              0.01047       0.01698       0.62      0.5374       0 
MA1,1           0.67455       0.04223      15.97      <.0001       1 
MA2,1           0.74162       0.05164      14.36      <.0001      12 
AR1,1           0.98028       0.01085      90.34      <.0001      12 

 
 

Variance Estimate      0.023597 
Std Error Estimate     0.153614 
AIC                    -249.797 
SBC                    -234.996 
Number of Residuals         299 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    3.00    3   0.3921  -0.011   0.039   0.050  -0.057  -0.048   0.014 
12   10.90   9   0.2827   0.032  -0.091  -0.034  -0.015   0.121   0.003 
18   18.06   15  0.2593   0.084  -0.031  -0.079  -0.004   0.009   0.091 
24   22.94   21  0.3470   0.067   0.063  -0.043   0.042   0.052  -0.019 
30   35.10   27  0.1363   0.093  -0.083  -0.038  -0.130   0.021   0.049 
36   49.44   33  0.0329   0.052  -0.011   0.095  -0.057  -0.009   0.164 
42   64.24   39  0.0066  -0.175  -0.074  -0.047   0.018  -0.022   0.062 
48   74.00   45  0.0042   0.032  -0.077  -0.040  -0.068  -0.019  -0.118 

 
 

Model for variable visit1 
 

Estimated Mean: 0.01047 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.98028 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.67455 B**(1) 
Factor 2:  1 - 0.74162 B**(12) 
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Table 4.4.9c 
 

ARIMA 1 results for tourist arrivals from Taiwan 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0094180       0.01708       0.55      0.5812       0 
MA1,1           0.67507       0.04307      15.68      <.0001       1 
MA2,1           0.72890       0.05568      13.09      <.0001      12 
AR1,1           0.97805       0.01221      80.10      <.0001      12 

 
 

Variance Estimate      0.024434 
Std Error Estimate     0.156315 
AIC                    -229.443 
SBC                    -214.805 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    2.78    3   0.4265  -0.012   0.040   0.050  -0.052  -0.049   0.014 
12   10.81   9   0.2891   0.032  -0.092  -0.035  -0.015   0.126   0.005 
18   16.81   15  0.3304   0.074  -0.028  -0.063  -0.013   0.014   0.095 
24   21.32   21  0.4395   0.057   0.072  -0.037   0.038   0.052  -0.024 
30   32.23   27  0.2238   0.097  -0.080  -0.039  -0.120   0.021   0.044 
36   46.04   33  0.0652   0.053  -0.020   0.096  -0.055  -0.011   0.162 
42   59.54   39  0.0186  -0.171  -0.070  -0.052   0.024  -0.027   0.049 
48   69.03   45  0.0121   0.027  -0.083  -0.043  -0.058  -0.012  -0.121 

 
 

Model for variable visit1 
 

Estimated Mean: 0.009418 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.97805 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.67507 B**(1) 
Factor 2:  1 - 0.7289 B**(12) 
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 Table 4.4.10a 
 

ARIMA 1 results for tourist arrivals from the UK 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0034701       0.01119       0.31      0.7564       0 
MA1,1           0.64237       0.04461      14.40      <.0001       1 
MA2,1           0.91111       0.06808      13.38      <.0001      12 
AR1,1           0.99047       0.01465      67.59      <.0001      12 

 
 

Variance Estimate      0.028099 
Std Error Estimate     0.167628 
AIC                    -194.016 
SBC                    -179.365 
Number of Residuals         288 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    2.82    3   0.4196  -0.031   0.004   0.004   0.065   0.030   0.059 
12   7.79    9   0.5552  -0.029   0.031  -0.056   0.004   0.093  -0.053 
18   12.04   15  0.6763   0.082   0.039  -0.035  -0.003   0.063   0.021 
24   15.31   21  0.8072   0.013  -0.079  -0.012   0.011   0.036   0.050 
30   22.68   27  0.7022   0.102   0.028   0.062   0.086  -0.022  -0.009 
36   43.15   33  0.1111  -0.093   0.005  -0.050  -0.104  -0.070   0.187 
42   56.36   39  0.0355  -0.160  -0.109   0.037  -0.001  -0.016  -0.021 
48   81.51   45  0.0007  -0.017  -0.054  -0.040   0.069  -0.023  -0.250 

 
 

Model for variable visit1 
 

Estimated Mean: 0.00347 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.99047 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.64237 B**(1) 
Factor 2:  1 - 0.91111 B**(12) 
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Table 4.4.10b 
 

ARIMA 1 results for tourist arrivals from the UK 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0037371       0.01049       0.36      0.7218       0 
MA1,1           0.64534       0.04390      14.70      <.0001       1 
MA2,1           0.89658       0.06530      13.73      <.0001      12 
AR1,1           0.98572       0.01801      54.74      <.0001      12 

 
 

Variance Estimate      0.028746 
Std Error Estimate     0.169545 
AIC                    -197.577 
SBC                    -182.775 
Number of Residuals         299 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    2.21    3   0.5295  -0.018  -0.007  -0.006   0.063   0.036   0.040 
12   7.93    9   0.5415  -0.028   0.029  -0.077  -0.009   0.087  -0.057 
18   14.16   15  0.5134   0.064   0.027  -0.051  -0.046   0.070   0.073 
24   18.70   21  0.6041   0.035  -0.076  -0.025   0.012   0.063   0.048 
30   25.85   27  0.5269   0.099   0.026   0.052   0.080  -0.042  -0.014 
36   42.65   33  0.1212  -0.085   0.012  -0.040  -0.090  -0.053   0.171 
42   58.43   39  0.0235  -0.164  -0.122   0.035  -0.010  -0.040  -0.033 
48   82.85   45  0.0005  -0.018  -0.019  -0.018   0.081  -0.011  -0.246 

 
 

Model for variable visit1 
 

Estimated Mean: 0.003737 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.98572 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.64534 B**(1) 
Factor 2:  1 - 0.89658 B**(12) 
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Table 4.4.10c 

 
ARIMA 1 results for tourist arrivals from the UK 

two years ahead forecast 
 

The ARIMA Procedure 
 

Maximum Likelihood Estimation 
 

                     Standard                 Approx 
Parameter      Estimate         Error    t Value    Pr > |t|     Lag 

 
MU            0.0032536       0.01128       0.29      0.7730       0 
MA1,1           0.64164       0.04483      14.31      <.0001       1 
MA2,1           0.90318       0.06896      13.10      <.0001      12 
AR1,1           0.98892       0.01592      62.13      <.0001      12 

 
 

Variance Estimate      0.028205 
Std Error Estimate     0.167945 
AIC                    -192.769 
SBC                    -178.131 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    2.97    3   0.3961  -0.031   0.003   0.002   0.068   0.032   0.059 
12   8.52    9   0.4827  -0.025   0.034  -0.057   0.005   0.105  -0.049 
18   12.89   15  0.6105   0.082   0.039  -0.036  -0.003   0.066   0.020 
24   16.05   21  0.7667   0.013  -0.077  -0.015   0.012   0.034   0.050 
30   23.82   27  0.6403   0.105   0.030   0.064   0.088  -0.023  -0.012 
36   44.88   33  0.0813  -0.095   0.007  -0.049  -0.102  -0.072   0.192 
42   57.47   39  0.0285  -0.158  -0.103   0.039   0.000  -0.019  -0.025 
48   83.63   45  0.0004  -0.017  -0.052  -0.042   0.068  -0.017  -0.257 

 
 

Model for variable visit1 
 

Estimated Mean: 0.003254 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.98892 B**(12) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.64164 B**(1) 
Factor 2:  1 - 0.90318 B**(12) 
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Table 4.4.11a 
 

ARIMA 1 results for tourist arrivals from the USA 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0008926       0.01116      -0.08      0.9362       0 
MA1,1           0.86549       0.04672      18.53      <.0001       1 
MA2,1           0.22370       0.06456       3.47      0.0005      12 
AR1,1           0.49348       0.07911       6.24      <.0001       1 
AR2,1           0.96836       0.01166      83.05      <.0001      12 

 
 

Variance Estimate      0.003216 
Std Error Estimate     0.056712 
AIC                    -802.404 
SBC                    -784.089 
Number of Residuals         288 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    11.07   2   0.0039  -0.050   0.092   0.087  -0.116   0.048   0.060 
12   15.96   8   0.0429  -0.108  -0.018  -0.019  -0.061   0.018  -0.006 
18   30.21   14  0.0071  -0.074   0.153   0.002  -0.042   0.112   0.057 
24   46.36   20  0.0007  -0.022   0.122   0.031  -0.072   0.172  -0.015 
30   55.97   26  0.0006   0.042   0.034  -0.158   0.005   0.040  -0.026 
36   74.16   32  <.0001   0.022   0.171  -0.074   0.033   0.056  -0.127 
42   85.99   38  <.0001   0.072  -0.031  -0.132   0.029  -0.104  -0.009 
48   90.03   44  <.0001  -0.016  -0.047  -0.039   0.080   0.036   0.002 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00089 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.49348 B**(1) 
Factor 2:  1 - 0.96836 B**(12) 

 
Moving Average Factors 

 
Factor 1:  1 - 0.86549 B**(1) 
Factor 2:  1 - 0.2237 B**(12) 
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Table 4.4.11b 
 

ARIMA 1 results for tourist arrivals from the USA 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0016035       0.01082       0.15      0.8821       0 
MA1,1           0.86980       0.04368      19.91      <.0001       1 
MA2,1           0.33717       0.05814       5.80      <.0001      12 
AR1,1           0.50278       0.07517       6.69      <.0001       1 
AR2,1           0.97439     0.0096951     100.50      <.0001      12 

 
 

Variance Estimate      0.003301 
Std Error Estimate     0.057459 
AIC                    -826.832 
SBC                     -808.33 
Number of Residuals         299 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    11.63   2   0.0030  -0.056   0.112   0.075  -0.118   0.020   0.051 
12   16.16   8   0.0401  -0.068  -0.030   0.025  -0.090   0.019   0.006 
18   30.76   14  0.0060  -0.081   0.142   0.015  -0.063   0.115   0.046 
24   47.91   20  0.0004  -0.041   0.125   0.035  -0.073   0.169  -0.015 
30   56.66   26  0.0005   0.029   0.041  -0.151   0.007   0.029  -0.018 
36   75.36   32  <.0001   0.006   0.159  -0.084   0.015   0.076  -0.129 
42   86.02   38  <.0001   0.072  -0.034  -0.121   0.030  -0.094  -0.012 
48   89.31   44  <.0001  -0.012  -0.052  -0.027   0.060   0.034  -0.031 

 
 

Model for variable visit1 
 

Estimated Mean: 0.001604 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.50278 B**(1) 
Factor 2:  1 - 0.97439 B**(12) 

 
Moving Average Factors 

 
Factor 1:  1 - 0.8698 B**(1) 
Factor 2:  1 - 0.33717 B**(12) 
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Table 4.4.11c 
 

ARIMA 1 results for tourist arrivals from the USA 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0008624       0.01114      -0.08      0.9383       0 
MA1,1           0.86612       0.04790      18.08      <.0001       1 
MA2,1           0.22356       0.06469       3.46      0.0005      12 
AR1,1           0.49444       0.08095       6.11      <.0001       1 
AR2,1           0.96827       0.01170      82.77      <.0001      12 

 
 

Variance Estimate      0.003228 
Std Error Estimate     0.056815 
AIC                    -798.488 
SBC                    -780.191 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    11.07   2   0.0039  -0.050   0.092   0.087  -0.116   0.048   0.060 
12   15.92   8   0.0436  -0.108  -0.018  -0.018  -0.061   0.018  -0.006 
18   30.10   14  0.0074  -0.074   0.153   0.002  -0.042   0.112   0.058 
24   46.21   20  0.0008  -0.022   0.122   0.031  -0.072   0.172  -0.015 
30   55.79   26  0.0006   0.042   0.034  -0.158   0.005   0.040  -0.026 
36   73.93   32  <.0001   0.022   0.171  -0.074   0.033   0.056  -0.127 
42   85.71   38  <.0001   0.072  -0.031  -0.132   0.029  -0.104  -0.009 
48   89.71   44  <.0001  -0.016  -0.047  -0.039   0.079   0.037   0.002 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00086 
 

Period(s) of Differencing: 1 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.49444 B**(1) 
Factor 2:  1 - 0.96827 B**(12) 

 
Moving Average Factors 

 
Factor 1:  1 - 0.86612 B**(1) 
Factor 2:  1 - 0.22356 B**(12) 

 
 



 387

 

 
 

Table 4.5.1a 
 

ARIMA 1&12 results for tourist arrivals from all countries 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0002935     0.0005839      -0.50      0.6151       0 
MA1,1           0.60261       0.04814      12.52      <.0001       1 
MA2,1           0.65105       0.05182      12.56      <.0001      12 

 
Variance Estimate       0.00415 
Std Error Estimate     0.064424 
AIC                    -720.421 
SBC                     -709.56 
Number of Residuals         276 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq    --------------------Autocorrelations--------- 
6    5.72    4   0.2207  -0.053   0.071   0.030   0.004  -0.033   0.102 
12   17.72   10  0.0599  -0.078  -0.014  -0.051  -0.104   0.146   0.022 
18   23.52   16  0.1004   0.003   0.078  -0.097   0.010   0.057   0.032 
24   27.01   22  0.2110  -0.018  -0.030  -0.056   0.044   0.050  -0.052 
30   38.66   28  0.0865   0.127  -0.104  -0.095  -0.019  -0.008   0.037 
36   42.93   34  0.1402  -0.043  -0.011  -0.007  -0.042   0.011   0.098 
42   50.85   40  0.1168  -0.064  -0.074  -0.098  -0.061   0.040  -0.007 
48   61.33   46  0.0647   0.013  -0.063  -0.125  -0.014   0.051  -0.095 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00029 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.60261 B**(1) 
Factor 2:  1 - 0.65105 B**(12) 
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Table 4.5.1b 
 

ARIMA 1&12 results for tourist arrivals from all countries 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0002047     0.0005619      -0.36      0.7157       0 
MA1,1           0.59588       0.04733      12.59      <.0001       1 
MA2,1           0.66048       0.04878      13.54      <.0001      12 

 
 

Variance Estimate      0.004069 
Std Error Estimate     0.063786 
AIC                    -754.997 
SBC                    -744.019 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    6.20    4   0.1846  -0.050   0.078   0.028  -0.014  -0.042   0.099 
12   19.24   10  0.0373  -0.083  -0.019  -0.060  -0.098   0.152   0.008 
18   26.98   16  0.0417   0.013   0.096  -0.109   0.007   0.060   0.021 
24   30.66   22  0.1034  -0.011  -0.026  -0.065   0.047   0.053  -0.041 
30   43.37   28  0.0321   0.133  -0.104  -0.094  -0.027  -0.014   0.041 
36   48.62   34  0.0498  -0.044  -0.003  -0.008  -0.038   0.016   0.111 
42   56.69   40  0.0420  -0.063  -0.072  -0.098  -0.064   0.037   0.005 
48   67.85   46  0.0197   0.019  -0.058  -0.128  -0.014   0.046  -0.101 

 
 

Model for variable visit1 
 

Estimated Mean: -0.0002 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.59588 B**(1) 
Factor 2:  1 - 0.66048 B**(12) 
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Table 4.5.1c 
 

ARIMA 1&12 results for tourist arrivals from all countries 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0003232     0.0005787      -0.56      0.5765       0 
MA1,1           0.60402       0.04807      12.57      <.0001       1 
MA2,1           0.65430       0.05176      12.64      <.0001      12 

 
 

Variance Estimate      0.004156 
Std Error Estimate     0.064467 
AIC                    -717.322 
SBC                    -706.471 
Number of Residuals         275 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations----------6    
5.96    4   0.2021  -0.056   0.073   0.033   0.007  -0.031   0.103 
12   18.83   10  0.0425  -0.078  -0.013  -0.052  -0.105   0.156   0.020 
18   24.69   16  0.0754   0.001   0.077  -0.097   0.010   0.060   0.031 
24   28.22   22  0.1686  -0.019  -0.029  -0.061   0.046   0.047  -0.050 
30   39.67   28  0.0707   0.126  -0.105  -0.094  -0.019  -0.007   0.037 
36   44.18   34  0.1134  -0.046  -0.013  -0.009  -0.041   0.007   0.101 
42   52.08   40  0.0956  -0.066  -0.073  -0.099  -0.059   0.037  -0.009 
48   62.55   46  0.0525   0.010  -0.062  -0.124  -0.012   0.055  -0.094 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00032 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.60402 B**(1) 
Factor 2:  1 - 0.6543 B**(12) 
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 Table 4.5.2a 
 

ARIMA 1&12 results for tourist arrivals from Australia 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0004997     0.0010004       0.50      0.6175       0 
MA1,1           0.65375       0.04576      14.29      <.0001       1 
MA2,1           0.66445       0.05001      13.29      <.0001      12 

 
 

Variance Estimate      0.017131 
Std Error Estimate     0.130884 
AIC                    -328.666 
SBC                    -317.805 
Number of Residuals         276 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq    --------------------Autocorrelations--------- 
6    7.86    4   0.0968   0.001  -0.089   0.113   0.038  -0.048   0.059 
12   10.60   10  0.3897   0.034  -0.074   0.012  -0.030   0.040   0.015 
18   19.98   16  0.2212   0.110  -0.024  -0.037   0.051  -0.033  -0.119 
24   28.10   22  0.1724   0.077   0.017  -0.099   0.070   0.077   0.011 
30   33.39   28  0.2217  -0.060  -0.052  -0.013  -0.030  -0.098   0.009 
36   40.91   34  0.1932  -0.004  -0.127   0.024  -0.018  -0.019   0.080 
42   44.60   40  0.2846  -0.072   0.053  -0.008  -0.050   0.010   0.028 
48   45.72   46  0.4839   0.026   0.011  -0.030  -0.034   0.021   0.006 

 
 

Model for variable visit1 
 

Estimated Mean: 0.0005 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.65375 B**(1) 
Factor 2:  1 - 0.66445 B**(12) 
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Table 4.5.2b 
 

ARIMA 1&12 results for tourist arrivals from Australia 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0004273     0.0009575       0.45      0.6554       0 
MA1,1           0.65465       0.04475      14.63      <.0001       1 
MA2,1           0.66498       0.04851      13.71      <.0001      12 

 
 

Variance Estimate      0.016571 
Std Error Estimate     0.128729 
AIC                    -351.699 
SBC                     -340.72 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq    --------------------Autocorrelations--------- 
6    7.65    4   0.1052   0.002  -0.087   0.110   0.033  -0.045   0.058 
12   10.44   10  0.4029   0.038  -0.074   0.008  -0.027   0.037   0.016 
18   20.35   16  0.2048   0.114  -0.023  -0.037   0.051  -0.032  -0.118 
24   29.12   22  0.1415   0.082   0.018  -0.103   0.073   0.072   0.009 
30   34.41   28  0.1878  -0.051  -0.056  -0.014  -0.025  -0.099   0.010 
36   42.17   34  0.1586  -0.006  -0.126   0.024  -0.018  -0.016   0.083 
42   46.48   40  0.2228  -0.074   0.056  -0.009  -0.057   0.015   0.028 
48   47.76   46  0.4013   0.027   0.014  -0.033  -0.034   0.021   0.007 

 
 

Model for variable visit1 
 

Estimated Mean: 0.000427 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.65465 B**(1) 
Factor 2:  1 - 0.66498 B**(12) 
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Table 4.5.2c 
 

ARIMA 1&12 results for tourist arrivals from Australia 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0004461     0.0010009       0.45      0.6558       0 
MA1,1           0.65439       0.04573      14.31      <.0001       1 
MA2,1           0.66469       0.05002      13.29      <.0001      12 

 
 

Variance Estimate      0.017154 
Std Error Estimate     0.130974 
AIC                    -327.052 
SBC                    -316.202 
Number of Residuals         275 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    7.84    4   0.0977  -0.002  -0.087   0.115   0.039  -0.048   0.058 
12   10.59   10  0.3904   0.037  -0.073   0.011  -0.028   0.042   0.016 
18   20.21   16  0.2108   0.109  -0.023  -0.037   0.053  -0.032  -0.123 
24   28.59   22  0.1571   0.075   0.019  -0.102   0.074   0.077   0.011 
30   33.72   28  0.2101  -0.057  -0.050  -0.014  -0.032  -0.098   0.010 
36   41.40   34  0.1791  -0.004  -0.128   0.026  -0.018  -0.019   0.080 
42   45.31   40  0.2602  -0.076   0.055  -0.005  -0.049   0.010   0.028 
48   46.46   46  0.4534   0.027   0.014  -0.032  -0.034   0.020   0.004 

 
 

Model for variable visit1 
 

Estimated Mean: 0.000446 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.65439 B**(1) 
Factor 2:  1 - 0.66469 B**(12) 
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Table 4.5.3a 
 

ARIMA 1&12 results for tourist arrivals from Canada 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0000556     0.0003004      -0.19      0.8531       0 
MA1,1           0.91502       0.03111      29.41      <.0001       1 
MA2,1           0.61975       0.05363      11.56      <.0001      12 
AR1,1           0.29653       0.06856       4.32      <.0001       1 

 
 

Variance Estimate      0.009538 
Std Error Estimate     0.097663 
AIC                    -491.098 
SBC                    -476.602 
Number of Residuals         277 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    5.51    3   0.1382  -0.029   0.065   0.057   0.084  -0.061   0.022 
12   12.05   9   0.2106  -0.020  -0.067  -0.076  -0.052  -0.080   0.053 
18   25.76   15  0.0406  -0.021   0.005  -0.141  -0.104   0.039   0.116 
24   33.42   21  0.0418   0.025   0.036  -0.009   0.088   0.006   0.124 
30   39.56   27  0.0563   0.033   0.056  -0.097   0.062  -0.046   0.017 
36   50.62   33  0.0256   0.066   0.057  -0.132  -0.019  -0.022  -0.094 
42   54.28   39  0.0528   0.017   0.053  -0.085  -0.005   0.024   0.016 
48   58.37   45  0.0871   0.044   0.024   0.002   0.033  -0.031  -0.087 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00006 
 

Period(s) of Differencing: 1,12 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.29653 B**(1) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.91502 B**(1) 
Factor 2:  1 - 0.61975 B**(12) 

 
 



 394

 

Table 4.5.3b 
 

ARIMA 1&12 results for tourist arrivals from Canada 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0000855     0.0002890      -0.30      0.7673       0 
MA1,1           0.91633       0.03024      30.30      <.0001       1 
MA2,1           0.61797       0.05198      11.89      <.0001      12 
AR1,1           0.29905       0.06676       4.48      <.0001       1 

 
 

Variance Estimate      0.009361 
Std Error Estimate     0.096754 
AIC                     -514.64 
SBC                    -500.002 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    4.56    3   0.2069  -0.025   0.049   0.059   0.080  -0.049   0.018 
12   10.56   9   0.3068  -0.021  -0.065  -0.074  -0.051  -0.065   0.056 
18   24.42   15  0.0583  -0.026   0.012  -0.143  -0.104   0.038   0.108 
24   32.04   21  0.0580   0.030   0.047  -0.024   0.081   0.013   0.118 
30   38.56   27  0.0695   0.040   0.045  -0.098   0.069  -0.047   0.011 
36   49.72   33  0.0310   0.067   0.066  -0.130  -0.019  -0.016  -0.089 
42   52.99   39  0.0668   0.019   0.036  -0.079  -0.004   0.030   0.030 
48   58.10   45  0.0910   0.039   0.012   0.026   0.032  -0.037  -0.100 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00009 
 

Period(s) of Differencing: 1,12 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.29905 B**(1) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.91633 B**(1) 
Factor 2:  1 - 0.61797 B**(12) 
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Table 4.5.3c 
 

ARIMA 1&12 results for tourist arrivals from Canada 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0000651     0.0003038      -0.21      0.8303       0 
MA1,1           0.91580       0.03119      29.36      <.0001       1 
MA2,1           0.61660       0.05369      11.48      <.0001      12 
AR1,1           0.30403       0.06857       4.43      <.0001       1 

 
 

Variance Estimate      0.009495 
Std Error Estimate     0.097444 
AIC                    -488.781 
SBC                    -474.314 
Number of Residuals         275 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    4.76    3   0.1906  -0.027   0.053   0.065   0.078  -0.051   0.023 
12   12.04   9   0.2111  -0.019  -0.073  -0.065  -0.057  -0.089   0.066 
18   26.83   15  0.0302  -0.024   0.003  -0.140  -0.109   0.038   0.129 
24   33.20   21  0.0441   0.013   0.036  -0.003   0.081   0.011   0.114 
30   39.61   27  0.0557   0.035   0.061  -0.098   0.062  -0.043   0.025 
36   50.68   33  0.0253   0.058   0.054  -0.131  -0.019  -0.017  -0.105 
42   54.20   39  0.0535   0.034   0.046  -0.085   0.009   0.018  -0.008 
48   59.32   45  0.0746   0.070   0.019   0.001   0.028  -0.020  -0.095 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00007 
 

Period(s) of Differencing: 1,12 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.30403 B**(1) 
 

Moving Average Factors 
 

Factor 1:  1 - 0.9158 B**(1) 
Factor 2:  1 - 0.6166 B**(12) 
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 Table 4.5.4a 
 

ARIMA 1&12 results for tourist arrivals from China 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0017290     0.0013028      -1.33      0.1845       0 
MA1,1           0.44751       0.05364       8.34      <.0001       1 
MA2,1           0.82644       0.04926      16.78      <.0001      12 

 
 

Variance Estimate      0.031557 
Std Error Estimate     0.177642 
AIC                    -153.601 
SBC                     -142.74 
Number of Residuals         276 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations--------- 
6    13.23   4   0.0102   0.003   0.037   0.024  -0.154   0.051  -0.136 
12   42.27   10  <.0001   0.080   0.001   0.069   0.006  -0.046   0.294 
18   53.67   16  <.0001  -0.083  -0.099  -0.021  -0.084   0.055  -0.108 
24   61.55   22  <.0001   0.044  -0.063   0.070  -0.035  -0.001   0.118 
30   67.97   28  <.0001  -0.054  -0.001  -0.070  -0.023  -0.003  -0.111 
36   78.83   34  <.0001   0.018  -0.124   0.092   0.015  -0.014   0.098 
42   82.89   40  <.0001   0.000   0.045  -0.091   0.001   0.030  -0.036 
48   87.39   46  0.0002   0.020  -0.064   0.003   0.016  -0.021   0.091 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00173 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.44751 B**(1) 
Factor 2:  1 - 0.82644 B**(12) 
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Table 4.5.4b 
 

ARIMA 1&12 results for tourist arrivals from China 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0016447     0.0013388      -1.23      0.2193       0 
MA1,1           0.44975       0.05265       8.54      <.0001       1 
MA2,1           0.80886       0.04979      16.25      <.0001      12 

 
 

Variance Estimate       0.03128 
Std Error Estimate      0.17686 
AIC                     -163.97 
SBC                    -152.992 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    13.66   4   0.0085   0.006   0.034   0.015  -0.161   0.055  -0.127 
12   42.86   10  <.0001   0.090   0.004   0.061   0.005  -0.053   0.287 
18   54.08   16  <.0001  -0.076  -0.101  -0.018  -0.082   0.052  -0.104 
24   61.72   22  <.0001   0.048  -0.059   0.068  -0.034  -0.009   0.113 
30   67.58   28  <.0001  -0.050   0.002  -0.065  -0.028  -0.009  -0.104 
36   77.63   34  <.0001   0.022  -0.116   0.090   0.005  -0.018   0.091 
42   81.51   40  0.0001   0.009   0.046  -0.091  -0.001   0.022  -0.023 
48   85.83   46  0.0003   0.022  -0.060   0.002   0.004  -0.023   0.089 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00164 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.44975 B**(1) 
Factor 2:  1 - 0.80886 B**(12) 
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Table 4.5.4c 
 

ARIMA 1&12 results for tourist arrivals from China 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0017723     0.0012910      -1.37      0.1698       0 
MA1,1           0.44709       0.05371       8.32      <.0001       1 
MA2,1           0.83020       0.04969      16.71      <.0001      12 

 
 

Variance Estimate      0.031619 
Std Error Estimate     0.177818 
AIC                    -152.202 
SBC                    -141.352 
Number of Residuals         275 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    13.40   4   0.0095   0.002   0.038   0.024  -0.155   0.051  -0.138 
12   42.56   10  <.0001   0.080   0.002   0.068   0.006  -0.046   0.296 
18   54.05   16  <.0001  -0.083  -0.098  -0.020  -0.085   0.056  -0.109 
24   61.93   22  <.0001   0.044  -0.063   0.069  -0.035  -0.002   0.119 
30   68.46   28  <.0001  -0.055  -0.000  -0.070  -0.023  -0.004  -0.113 
36   79.30   34  <.0001   0.018  -0.124   0.093   0.015  -0.014   0.098 
42   83.40   40  <.0001   0.000   0.045  -0.091   0.002   0.030  -0.038 
48   88.03   46  0.0002   0.020  -0.064   0.004   0.017  -0.023   0.093 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00177 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.44709 B**(1) 
Factor 2:  1 - 0.8302 B**(12) 
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 Table 4.5.5a 
 

ARIMA 1&12 results for tourist arrivals from France 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0001224     0.0005256       0.23      0.8158       0 
MA1,1           0.79635       0.03708      21.48      <.0001       1 
MA2,1           0.61443       0.05287      11.62      <.0001      12 

 
 

Variance Estimate      0.010548 
Std Error Estimate     0.102705 
AIC                     -463.28 
SBC                    -452.419 
Number of Residuals         276 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    6.10    4   0.1919  -0.010  -0.045  -0.036   0.087   0.088  -0.054 
12   13.10   10  0.2183   0.021   0.097  -0.023  -0.096   0.002   0.069 
18   21.52   16  0.1593  -0.063   0.084   0.049  -0.078  -0.022  -0.093 
24   27.95   22  0.1772  -0.014  -0.032  -0.119  -0.043   0.000   0.064 
30   40.47   28  0.0601  -0.147  -0.070  -0.048   0.043  -0.040  -0.092 
36   48.25   34  0.0536   0.109  -0.044  -0.080  -0.046   0.013   0.048 
42   52.84   40  0.0840  -0.070   0.003  -0.002  -0.075  -0.059  -0.007 
48   62.70   46  0.0511   0.051  -0.069   0.028   0.117   0.056  -0.069 

 
 

Model for variable visit1 
 

Estimated Mean: 0.000122 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.79635 B**(1) 
Factor 2:  1 - 0.61443 B**(12) 
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Table 4.5.5b 
 

ARIMA 1&12 results for tourist arrivals from France 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           0.00005719     0.0005169       0.11      0.9119       0 
MA1,1           0.79623       0.03646      21.84      <.0001       1 
MA2,1           0.60659       0.05194      11.68      <.0001      12 

 
 

Variance Estimate      0.010295 
Std Error Estimate     0.101463 
AIC                    -489.304 
SBC                    -478.326 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    5.58    4   0.2325  -0.009  -0.045  -0.034   0.084   0.084  -0.041 
12   12.70   10  0.2410   0.016   0.092  -0.027  -0.099   0.007   0.067 
18   21.03   16  0.1774  -0.061   0.085   0.046  -0.070  -0.010  -0.096 
24   28.23   22  0.1682  -0.013  -0.043  -0.121  -0.044   0.002   0.067 
30   40.36   28  0.0615  -0.142  -0.069  -0.047   0.036  -0.041  -0.089 
36   48.17   34  0.0544   0.106  -0.044  -0.080  -0.050   0.011   0.042 
42   52.87   40  0.0836  -0.072   0.008   0.003  -0.073  -0.059  -0.009 
48   62.63   46  0.0518   0.047  -0.062   0.031   0.117   0.051  -0.070 

 
 

Model for variable visit1 
 

Estimated Mean: 0.000057 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.79623 B**(1) 
Factor 2:  1 - 0.60659 B**(12) 
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Table 4.5.5c 
 

ARIMA 1&12 results for tourist arrivals from France 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU            0.0001044     0.0005247       0.20      0.8422       0 
MA1,1           0.79644       0.03713      21.45      <.0001       1 
MA2,1           0.61647       0.05296      11.64      <.0001      12 

 
 

Variance Estimate      0.010576 
Std Error Estimate     0.102839 
AIC                    -460.798 
SBC                    -449.948 
Number of Residuals         275 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    6.08    4   0.1933  -0.013  -0.043  -0.034   0.088   0.087  -0.054 
12   13.10   10  0.2181   0.022   0.098  -0.023  -0.095  -0.001   0.068 
18   21.44   16  0.1623  -0.061   0.083   0.050  -0.078  -0.021  -0.094 
24   27.89   22  0.1794  -0.016  -0.032  -0.119  -0.044  -0.000   0.064 
30   40.36   28  0.0614  -0.148  -0.069  -0.048   0.042  -0.040  -0.091 
36   48.36   34  0.0524   0.110  -0.044  -0.082  -0.047   0.014   0.049 
42   52.90   40  0.0832  -0.070   0.003  -0.003  -0.074  -0.059  -0.007 
48   62.54   46  0.0526   0.051  -0.067   0.028   0.117   0.053  -0.068 

 
 

Model for variable visit1 
 

Estimated Mean: 0.000104 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.79644 B**(1) 
Factor 2:  1 - 0.61647 B**(12) 
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 Table 4.5.6a 
 

ARIMA 1&12 results for tourist arrivals from Germany 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0000804     0.0002713      -0.30      0.7670       0 
MA1,1           0.85318       0.03174      26.88      <.0001       1 
MA2,1           0.71289       0.04754      14.99      <.0001      12 

 
 

Variance Estimate      0.008777 
Std Error Estimate     0.093688 
AIC                     -510.74 
SBC                    -499.878 
Number of Residuals         276 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    8.41    4   0.0776   0.061  -0.030   0.021  -0.119   0.103  -0.011 
12   16.48   10  0.0866  -0.087  -0.091  -0.033   0.100   0.024  -0.026 
18   27.80   16  0.0334   0.156   0.027  -0.077  -0.049  -0.067   0.030 
24   31.12   22  0.0936   0.006   0.023  -0.021   0.014   0.031   0.094 
30   33.93   28  0.2033  -0.003  -0.057   0.004  -0.067  -0.031  -0.017 
36   35.60   34  0.3930  -0.048  -0.007  -0.020   0.026   0.025  -0.036 
42   42.67   40  0.3572   0.033  -0.131  -0.035  -0.009   0.021  -0.045 
48   55.56   46  0.1578  -0.065  -0.011  -0.108   0.049   0.076  -0.120 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00008 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.85318 B**(1) 
Factor 2:  1 - 0.71289 B**(12) 
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Table 4.5.6b 
 

ARIMA 1&12 results for tourist arrivals from Germany 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0000585     0.0002645      -0.22      0.8249       0 
MA1,1           0.86317       0.03024      28.54      <.0001       1 
MA2,1           0.70043       0.04928      14.21      <.0001      12 

 
 

Variance Estimate      0.009352 
Std Error Estimate     0.096707 
AIC                    -513.731 
SBC                    -502.752 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    9.41    4   0.0516   0.061  -0.028   0.050  -0.137   0.081   0.004 
12   17.36   10  0.0667  -0.087  -0.102  -0.031   0.080   0.034  -0.014 
18   29.69   16  0.0197   0.153   0.030  -0.090  -0.056  -0.058   0.041 
24   33.24   22  0.0586   0.008   0.037  -0.022  -0.012   0.058   0.076 
30   36.53   28  0.1297  -0.005  -0.027  -0.040  -0.079  -0.027  -0.031 
36   37.79   34  0.3002  -0.031   0.014  -0.018   0.025   0.004  -0.041 
42   44.47   40  0.2892   0.014  -0.132  -0.012  -0.021   0.028  -0.032 
48   55.68   46  0.1553  -0.077  -0.017  -0.103   0.024   0.054  -0.111 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00006 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.86317 B**(1) 
Factor 2:  1 - 0.70043 B**(12) 
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Table 4.5.6c 
 

ARIMA 1&12 results for tourist arrivals from Germany 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0000930     0.0002737      -0.34      0.7340       0 
MA1,1           0.85190       0.03206      26.58      <.0001       1 
MA2,1           0.71478       0.04756      15.03      <.0001      12 

 
 

Variance Estimate      0.008794 
Std Error Estimate     0.093775 
AIC                    -508.273 
SBC                    -497.423 
Number of Residuals         275 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    8.51    4   0.0747   0.060  -0.031   0.024  -0.119   0.104  -0.013 
12   17.01   10  0.0742  -0.089  -0.093  -0.034   0.104   0.026  -0.025 
18   27.95   16  0.0320   0.154   0.027  -0.077  -0.048  -0.064   0.026 
24   31.52   22  0.0860   0.005   0.022  -0.024   0.020   0.033   0.096 
30   34.27   28  0.1921  -0.002  -0.057   0.003  -0.067  -0.031  -0.016 
36   35.93   34  0.3781  -0.047  -0.006  -0.017   0.024   0.028  -0.037 
42   42.74   40  0.3544   0.034  -0.128  -0.035  -0.007   0.023  -0.042 
48   55.43   46  0.1606  -0.065  -0.008  -0.106   0.050   0.071  -0.123 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00009 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.8519 B**(1) 
Factor 2:  1 - 0.71478 B**(12) 
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 Table 4.5.7a 
 

ARIMA 1&12 results for tourist arrivals from Korea 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0000895     0.0013388      -0.07      0.9467       0 
MA1,1           0.13268       0.05946       2.23      0.0256       1 
MA2,1           0.68266       0.05054      13.51      <.0001      12 

 
 

Variance Estimate       0.00543 
Std Error Estimate     0.073691 
AIC                    -645.761 
SBC                      -634.9 
Number of Residuals         276 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    8.47    4   0.0758   0.010  -0.078  -0.011  -0.055   0.047   0.136 
12   10.06   10  0.4351   0.052   0.023  -0.009  -0.040   0.025  -0.004 
18   11.84   16  0.7550  -0.030   0.024  -0.004  -0.008   0.066   0.013 
24   14.59   22  0.8791  -0.077  -0.051   0.024   0.006  -0.005  -0.001 
30   17.45   28  0.9392  -0.050  -0.013  -0.078   0.002   0.002  -0.024 
36   19.92   34  0.9738  -0.016   0.064  -0.019  -0.033   0.021   0.039 
42   21.40   40  0.9930  -0.041   0.004   0.015  -0.047   0.011  -0.018 
48   23.58   46  0.9975   0.012  -0.063   0.006  -0.020  -0.045  -0.003 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00009 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.13268 B**(1) 
Factor 2:  1 - 0.68266 B**(12) 
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Table 4.5.7b 
 

ARIMA 1&12 results for tourist arrivals from Korea 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0002649     0.0013019      -0.20      0.8388       0 
MA1,1           0.14726       0.05803       2.54      0.0112       1 
MA2,1           0.67725       0.04933      13.73      <.0001      12 

 
 

Variance Estimate      0.005408 
Std Error Estimate      0.07354 
AIC                    -673.255 
SBC                    -662.277 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    10.90   4   0.0277   0.012  -0.088   0.005  -0.070   0.040   0.151 
12   13.03   10  0.2219   0.056   0.021  -0.003  -0.055   0.021  -0.005 
18   14.49   16  0.5622  -0.022   0.022  -0.005  -0.007   0.060   0.009 
24   16.50   22  0.7901  -0.066  -0.043   0.014   0.002  -0.010   0.002 
30   19.21   28  0.8914  -0.045  -0.019  -0.075   0.000  -0.006  -0.021 
36   21.50   34  0.9527  -0.006   0.062  -0.031  -0.029   0.018   0.031 
42   22.74   40  0.9872  -0.031   0.005  -0.006  -0.042   0.003  -0.030 
48   24.85   46  0.9954   0.022  -0.051  -0.016  -0.014  -0.042  -0.028 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00026 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.14726 B**(1) 
Factor 2:  1 - 0.67725 B**(12) 
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Table 4.5.7c 
 

ARIMA 1&12 results for tourist arrivals from Korea 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0002183     0.0013269      -0.16      0.8693       0 
MA1,1           0.13871       0.05936       2.34      0.0194       1 
MA2,1           0.68292       0.05041      13.55      <.0001      12 

 
 

Variance Estimate       0.00541 
Std Error Estimate     0.073552 
AIC                    -644.412 
SBC                    -633.562 
Number of Residuals         275 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    8.32    4   0.0805   0.011  -0.085  -0.005  -0.049   0.052   0.131 
12   9.96    10  0.4438   0.054   0.022  -0.007  -0.040   0.027  -0.004 
18   11.88   16  0.7521  -0.039   0.022  -0.001  -0.001   0.067   0.010 
24   14.76   22  0.8725  -0.080  -0.051   0.024   0.010  -0.004  -0.006 
30   17.79   28  0.9314  -0.058  -0.014  -0.075   0.003   0.002  -0.027 
36   20.34   34  0.9691  -0.022   0.068  -0.019  -0.032   0.020   0.035 
42   22.45   40  0.9887  -0.056   0.000   0.014  -0.053   0.010  -0.016 
48   25.08   46  0.9949   0.009  -0.063   0.005  -0.027  -0.054   0.017 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00022 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.13871 B**(1) 
Factor 2:  1 - 0.68292 B**(12) 
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 Table 4.5.8a 
 

ARIMA 1&12 results for tourist arrivals from Singapore 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0007641     0.0008376      -0.91      0.3617       0 
MA1,1           0.74818       0.04046      18.49      <.0001       1 
MA2,1           0.68807       0.04797      14.34      <.0001      12 

 
 

Variance Estimate      0.025516 
Std Error Estimate     0.159736 
AIC                    -217.699 
SBC                    -206.838 
Number of Residuals         276 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    6.83    4   0.1453  -0.059   0.082  -0.018   0.019  -0.088   0.075 
12   27.58   10  0.0021   0.075  -0.174   0.111  -0.047   0.144  -0.031 
18   34.86   16  0.0041   0.126   0.036  -0.076   0.032  -0.004  -0.029 
24   40.72   22  0.0089  -0.028  -0.001   0.041   0.057   0.092  -0.071 
30   43.86   28  0.0287   0.024   0.041   0.036  -0.017  -0.066  -0.043 
36   56.22   34  0.0096  -0.128   0.026   0.031   0.017  -0.004   0.144 
42   61.79   40  0.0151  -0.039  -0.001  -0.011   0.039  -0.094  -0.071 
48   68.98   46  0.0157  -0.106  -0.050  -0.014   0.004   0.063  -0.060 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00076 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.74818 B**(1) 
Factor 2:  1 - 0.68807 B**(12) 
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Table 4.5.8b 
 

ARIMA 1&12 results for tourist arrivals from Singapore 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0004437     0.0008151      -0.54      0.5862       0 
MA1,1           0.75190       0.03968      18.95      <.0001       1 
MA2,1           0.68637       0.04752      14.44      <.0001      12 

 
 

Variance Estimate      0.025848 
Std Error Estimate     0.160774 
AIC                    -223.153 
SBC                    -212.175 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    6.40    4   0.1711  -0.043   0.083  -0.023  -0.006  -0.099   0.053 
12   24.42   10  0.0066   0.076  -0.141   0.121  -0.043   0.127  -0.046 
18   31.41   16  0.0119   0.102   0.041  -0.074   0.051  -0.020  -0.048 
24   37.74   22  0.0196  -0.033  -0.011   0.022   0.069   0.105  -0.051 
30   40.60   28  0.0584   0.029   0.029   0.030  -0.029  -0.058  -0.046 
36   53.99   34  0.0160  -0.121   0.040   0.038   0.012  -0.002   0.152 
42   58.67   40  0.0286  -0.034   0.005  -0.017   0.019  -0.080  -0.075 
48   66.24   46  0.0269  -0.095  -0.039   0.009  -0.009   0.053  -0.092 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00044 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.7519 B**(1) 
Factor 2:  1 - 0.68637 B**(12) 
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Table 4.5.8c 
 

ARIMA 1&12 results for tourist arrivals from Singapore 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0007050     0.0008382      -0.84      0.4003       0 
MA1,1           0.75063       0.04023      18.66      <.0001       1 
MA2,1           0.68498       0.04839      14.15      <.0001      12 

 
 

Variance Estimate      0.025514 
Std Error Estimate     0.159732 
AIC                    -216.969 
SBC                    -206.119 
Number of Residuals         275 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    6.99    4   0.1365  -0.056   0.083  -0.024   0.016  -0.090   0.077 
12   26.79   10  0.0028   0.074  -0.174   0.111  -0.048   0.135  -0.026 
18   34.39   16  0.0048   0.132   0.036  -0.074   0.032  -0.007  -0.028 
24   40.85   22  0.0086  -0.030  -0.002   0.043   0.059   0.096  -0.077 
30   43.97   28  0.0280   0.025   0.042   0.035  -0.016  -0.066  -0.042 
36   55.53   34  0.0113  -0.125   0.026   0.028   0.021   0.003   0.138 
42   60.91   40  0.0181  -0.036  -0.004  -0.012   0.035  -0.093  -0.073 
48   67.26   46  0.0221  -0.105  -0.052  -0.017  -0.001   0.049  -0.053 

 
 

Model for variable visit1 
 

Estimated Mean: -0.0007 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.75063 B**(1) 
Factor 2:  1 - 0.68498 B**(12) 
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 Table 4.5.9a 
 

ARIMA 1&12 results for tourist arrivals from Taiwan 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0010912     0.0008063      -1.35      0.1759       0 
MA1,1           0.68922       0.04303      16.02      <.0001       1 
MA2,1           0.76412       0.04723      16.18      <.0001      12 

 
 

Variance Estimate      0.024352 
Std Error Estimate     0.156051 
AIC                    -227.959 
SBC                    -217.097 
Number of Residuals         276 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    2.00    4   0.7356  -0.014   0.038   0.037  -0.050  -0.030   0.026 
12   9.10    10  0.5224   0.061  -0.081  -0.049  -0.029   0.105  -0.005 
18   16.76   16  0.4015   0.070  -0.044  -0.095  -0.026   0.013   0.097 
24   22.42   22  0.4348   0.077   0.074  -0.052   0.031   0.058  -0.023 
30   35.16   28  0.1653   0.118  -0.072  -0.054  -0.124   0.030   0.055 
36   49.98   34  0.0379   0.075  -0.025   0.067  -0.074  -0.009   0.174 
42   62.20   40  0.0138  -0.151  -0.064  -0.078  -0.002  -0.022   0.068 
48   72.08   46  0.0083   0.063  -0.082  -0.067  -0.067  -0.003  -0.100 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00109 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.68922 B**(1) 
Factor 2:  1 - 0.76412 B**(12) 
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Table 4.5.9b 
 

ARIMA 1&12 results for tourist arrivals from Taiwan 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0009152     0.0007510      -1.22      0.2230       0 
MA1,1           0.68587       0.04236      16.19      <.0001       1 
MA2,1           0.77604       0.04456      17.42      <.0001      12 

 
 

Variance Estimate      0.023583 
Std Error Estimate     0.153566 
AIC                    -246.289 
SBC                    -235.311 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    2.10    4   0.7168  -0.013   0.036   0.037  -0.053  -0.028   0.028 
12   9.63    10  0.4737   0.061  -0.081  -0.048  -0.027   0.109  -0.007 
18   18.68   16  0.2856   0.078  -0.045  -0.114  -0.020   0.011   0.090 
24   24.82   22  0.3057   0.081   0.065  -0.062   0.033   0.061  -0.015 
30   38.76   28  0.0848   0.113  -0.076  -0.051  -0.134   0.031   0.059 
36   54.47   34  0.0144   0.070  -0.017   0.065  -0.077  -0.008   0.180 
42   68.15   40  0.0036  -0.154  -0.069  -0.074  -0.006  -0.018   0.082 
48   78.09   46  0.0022   0.066  -0.076  -0.062  -0.073  -0.004  -0.098 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00092 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.68587 B**(1) 
Factor 2:  1 - 0.77604 B**(12) 
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Table 4.5.9c 
 

ARIMA 1&12 results for tourist arrivals from Taiwan 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0011263     0.0007997      -1.41      0.1590       0 
MA1,1           0.69004       0.04299      16.05      <.0001       1 
MA2,1           0.76680       0.04719      16.25      <.0001      12 

 
 

Variance Estimate      0.024392 
Std Error Estimate     0.156178 
AIC                    -226.512 
SBC                    -215.662 
Number of Residuals         275 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    1.95    4   0.7455  -0.016   0.038   0.037  -0.048  -0.028   0.028 
12   9.67    10  0.4700   0.061  -0.081  -0.050  -0.030   0.114  -0.009 
18   17.29   16  0.3669   0.069  -0.043  -0.095  -0.026   0.015   0.097 
24   22.86   22  0.4095   0.076   0.074  -0.054   0.032   0.055  -0.018 
30   35.50   28  0.1558   0.117  -0.074  -0.051  -0.124   0.032   0.055 
36   50.52   34  0.0339   0.073  -0.026   0.065  -0.073  -0.012   0.178 
42   62.85   40  0.0120  -0.151  -0.065  -0.079  -0.001  -0.025   0.068 
48   72.65   46  0.0074   0.059  -0.082  -0.066  -0.064   0.003  -0.104 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00113 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.69004 B**(1) 
Factor 2:  1 - 0.7668 B**(12) 

 



 414

 

 Table 4.5.10a 
 

ARIMA 1&12 results for tourist arrivals from the UK 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0009670     0.0005315      -1.82      0.0688       0 
MA1,1           0.64830       0.04442      14.60      <.0001       1 
MA2,1           0.93552       0.06442      14.52      <.0001      12 

 
 

Variance Estimate      0.027587 
Std Error Estimate     0.166093 
AIC                    -179.688 
SBC                    -168.827 
Number of Residuals         276 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    1.91    4   0.7514  -0.020   0.009   0.001   0.065   0.016   0.043 
12   6.24    10  0.7948  -0.040   0.012  -0.061   0.013   0.075  -0.061 
18   9.82    16  0.8759   0.063   0.070  -0.039  -0.007   0.040   0.013 
24   11.89   22  0.9597   0.006  -0.065  -0.027   0.031   0.020   0.021 
30   20.49   28  0.8458   0.105   0.055   0.063   0.088  -0.043  -0.018 
36   40.01   34  0.2207  -0.093   0.005  -0.060  -0.103  -0.096   0.171 
42   50.72   40  0.1193  -0.132  -0.110   0.043   0.000  -0.035  -0.026 
48   72.71   46  0.0073  -0.002  -0.062  -0.037   0.070  -0.046  -0.231 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00097 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.6483 B**(1) 
Factor 2:  1 - 0.93552 B**(12) 
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Table 4.5.10b 
 

ARIMA 1&12 results for tourist arrivals from the UK 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0008727     0.0005308      -1.64      0.1001       0 
MA1,1           0.64893       0.04361      14.88      <.0001       1 
MA2,1           0.92362       0.05496      16.80      <.0001      12 

 
 

Variance Estimate      0.028409 
Std Error Estimate     0.168548 
AIC                     -181.23 
SBC                    -170.252 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    1.64    4   0.8019  -0.007  -0.003  -0.009   0.062   0.028   0.028 
12   6.88    10  0.7368  -0.037   0.011  -0.082  -0.001   0.069  -0.067 
18   12.54   16  0.7059   0.041   0.051  -0.065  -0.059   0.045   0.066 
24   15.88   22  0.8218   0.024  -0.069  -0.043   0.027   0.049   0.020 
30   24.29   28  0.6663   0.101   0.052   0.051   0.080  -0.062  -0.024 
36   39.54   34  0.2362  -0.086   0.010  -0.047  -0.087  -0.075   0.153 
42   53.39   40  0.0765  -0.139  -0.123   0.039  -0.011  -0.060  -0.042 
48   74.70   46  0.0047  -0.007  -0.028  -0.013   0.083  -0.033  -0.229 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00087 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.64893 B**(1) 
Factor 2:  1 - 0.92362 B**(12) 
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Table 4.5.10c 
 

ARIMA 1&12 results for tourist arrivals from the UK 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0010183     0.0005520      -1.84      0.0651       0 
MA1,1           0.64764       0.04463      14.51      <.0001       1 
MA2,1           0.92892       0.06159      15.08      <.0001      12 

 
 

Variance Estimate       0.02771 
Std Error Estimate     0.166465 
AIC                    -178.696 
SBC                    -167.845 
Number of Residuals         275 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    2.06    4   0.7245  -0.020   0.008  -0.002   0.067   0.020   0.044 
12   6.83    10  0.7412  -0.036   0.016  -0.062   0.015   0.090  -0.054 
18   10.50   16  0.8393   0.063   0.070  -0.040  -0.006   0.044   0.011 
24   12.56   22  0.9446   0.005  -0.063  -0.032   0.032   0.018   0.022 
30   21.65   28  0.7971   0.108   0.057   0.065   0.090  -0.044  -0.021 
36   41.89   34  0.1659  -0.097   0.006  -0.059  -0.101  -0.097   0.177 
42   51.99   40  0.0969  -0.130  -0.102   0.044   0.002  -0.037  -0.031 
48   74.88   46  0.0045  -0.002  -0.060  -0.039   0.068  -0.037  -0.239 

 
 

Model for variable visit1 
 

Estimated Mean: -0.00102 
 

Period(s) of Differencing: 1,12 
 

Moving Average Factors 
 

Factor 1:  1 - 0.64764 B**(1) 
Factor 2:  1 - 0.92892 B**(12) 
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Table 4.5.11a 
 

ARIMA 1&12 results for tourist arrivals from the USA 
one month ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0001034     0.0005211      -0.20      0.8426       0 
MA1,1           0.86917       0.05233      16.61      <.0001       1 
MA2,1           0.75667       0.13207       5.73      <.0001      12 
AR1,1           0.51642       0.08533       6.05      <.0001       1 
AR2,1           0.51555       0.15808       3.26      0.0011      12 

 
 

Variance Estimate      0.003188 
Std Error Estimate      0.05646 
AIC                    -795.697 
SBC                    -777.595 
Number of Residuals         276 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    9.59    2   0.0083  -0.047   0.090   0.047  -0.116   0.034   0.083 
12   13.58   8   0.0934  -0.098   0.014  -0.043  -0.038   0.028  -0.000 
18   23.25   14  0.0564  -0.044   0.140  -0.037  -0.051   0.066   0.054 
24   36.56   20  0.0132  -0.034   0.086   0.021  -0.059   0.166   0.063 
30   46.04   26  0.0090   0.042   0.053  -0.156   0.011   0.035  -0.025 
36   60.90   32  0.0015  -0.003   0.159  -0.080   0.034   0.057  -0.105 
42   71.52   38  0.0008   0.065  -0.015  -0.129   0.022  -0.105   0.006 
48   77.37   44  0.0014  -0.038  -0.045  -0.078   0.067   0.058   0.016 

 
 

Model for variable visit1 
 

Estimated Mean: -0.0001 
 

Period(s) of Differencing: 1,12 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.51642 B**(1) 
Factor 2:  1 - 0.51555 B**(12) 

 
Moving Average Factors 

 
Factor 1:  1 - 0.86917 B**(1) 
Factor 2:  1 - 0.75667 B**(12) 
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Table 4.5.11b 
 

ARIMA 1&12 results for tourist arrivals from the USA 
one year ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           0.00004960     0.0004326       0.11      0.9087       0 
MA1,1           0.88081       0.04720      18.66      <.0001       1 
MA2,1           0.75398       0.10192       7.40      <.0001      12 
AR1,1           0.53734       0.07909       6.79      <.0001       1 
AR2,1           0.43644       0.13016       3.35      0.0008      12 

 
 

Variance Estimate      0.003258 
Std Error Estimate     0.057075 
AIC                    -820.402 
SBC                    -802.104 
Number of Residuals         287 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    10.34   2   0.0057  -0.054   0.109   0.037  -0.115   0.001   0.077 
12   12.73   8   0.1213  -0.051   0.004  -0.003  -0.067   0.030  -0.005 
18   21.67   14  0.0856  -0.038   0.126  -0.019  -0.072   0.068   0.043 
24   35.49   20  0.0177  -0.041   0.086   0.030  -0.060   0.158   0.074 
30   43.55   26  0.0169   0.038   0.054  -0.141   0.010   0.023  -0.018 
36   57.57   32  0.0037  -0.010   0.145  -0.089   0.019   0.072  -0.090 
42   66.14   38  0.0031   0.064  -0.015  -0.109   0.019  -0.095   0.008 
48   70.28   44  0.0071  -0.033  -0.048  -0.059   0.045   0.056  -0.003 

 
 

Model for variable visit1 
 

Estimated Mean: 0.00005 
 

Period(s) of Differencing: 1,12 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.53734 B**(1) 
Factor 2:  1 - 0.43644 B**(12) 

 
Moving Average Factors 

 
Factor 1:  1 - 0.88081 B**(1) 
Factor 2:  1 - 0.75398 B**(12) 
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Table 4.5.11c 
 

ARIMA 1&12 results for tourist arrivals from the USA 
two years ahead forecast 

 
The ARIMA Procedure 

 
Maximum Likelihood Estimation 

 
                     Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 
 

MU           -0.0000987     0.0005189      -0.19      0.8491       0 
MA1,1           0.87091       0.05341      16.31      <.0001       1 
MA2,1           0.75735       0.13179       5.75      <.0001      12 
AR1,1           0.51911       0.08720       5.95      <.0001       1 
AR2,1           0.51610       0.15794       3.27      0.0011      12 

 
 

Variance Estimate      0.003199 
Std Error Estimate     0.056561 
AIC                    -791.791 
SBC                    -773.707 
Number of Residuals         275 

 
 

Autocorrelation Check of Residuals 
 

To    Chi-        Pr > 
Lag  Square  DF  ChiSq   --------------------Autocorrelations---------- 
6    9.69    2   0.0079  -0.046   0.090   0.047  -0.119   0.035   0.083 
12   13.58   8   0.0933  -0.097   0.014  -0.042  -0.038   0.028  -0.000 
18   23.20   14  0.0571  -0.043   0.141  -0.037  -0.051   0.066   0.054 
24   36.51   20  0.0134  -0.033   0.086   0.021  -0.059   0.166   0.063 
30   46.01   26  0.0091   0.042   0.053  -0.156   0.011   0.035  -0.025 
36   60.84   32  0.0016  -0.002   0.159  -0.080   0.035   0.056  -0.105 
42   71.41   38  0.0008   0.065  -0.015  -0.129   0.022  -0.106   0.007 
48   77.22   44  0.0015  -0.038  -0.044  -0.078   0.066   0.059   0.016 

 
 

Model for variable visit1 
 

Estimated Mean: -0.0001 
 

Period(s) of Differencing: 1,12 
 

Autoregressive Factors 
 

Factor 1:  1 - 0.51911 B**(1) 
Factor 2:  1 - 0.5161 B**(12) 

 
Moving Average Factors 

 
Factor 1:  1 - 0.87091 B**(1) 
Factor 2:  1 - 0.75735 B**(12) 
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Table 4.6.1a 
 

BSM results for tourist arrivals from all countries 
one month ahead forecast 

 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 23 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 1 restrictions). 
Parameter estimation sample is 1978. 1 - 2002. 1. (T =  289). 
Log-likelihood kernel is 2.561141. 
Very strong convergence in   7 iterations. 
( likelihood cvg 4.662593e-013 
  gradient cvg   1.489179e-008 
  parameter cvg  1.683058e-006 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002. 1. (T =  289, n =  276). 
Log-Likelihood is 740.17 (-2 LogL = -1480.34). 
Prediction error variance is 0.00393811 
 
 
Summary statistics 
 
                    Larr 
 Std.Error      0.062754 
 Normality        24.194 
 H( 92)          0.55737 
 r( 1)         -0.026883 
 r(16)         0.0032611 
 DW               2.0414 
 Q(16,13)         22.622 
 Rs^2            0.31582 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr           0.0015021 ( 1.0000)  
Lvl          0.00048142 ( 0.3205)  
Slp         7.7695e-008 ( 0.0001)  
Sea         5.7824e-006 ( 0.0038)  
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Table 4.6.1b 
 

BSM results for tourist arrivals from all countries 
one year ahead forecast 

 
 
Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 12 forecasts 
 
 
Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2002.12. (T =  300). 
Log-likelihood kernel is 2.575637. 
Very strong convergence in   9 iterations. 
( likelihood cvg 1.245039e-012 
  gradient cvg   2.426948e-008 
  parameter cvg  2.982662e-006 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002.12. (T =  300, n =  287). 
Log-Likelihood is 772.691 (-2 LogL = -1545.38). 
Prediction error variance is 0.00385487 
 
 
Summary statistics 
 
                    Larr 
 Std.Error      0.062088 
 Normality        26.605 
 H( 95)          0.59653 
 r( 1)         -0.024028 
 r(16)         0.0010471 
 DW               2.0318 
 Q(16,13)         26.816 
 Rs^2            0.32562 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr           0.0014886 ( 1.0000)  
Lvl          0.00050585 ( 0.3398)  
Slp             0.00000 ( 0.0000)  
Sea         5.3090e-006 ( 0.0036)  
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Table 4.6.1c 
 

BSM results for tourist arrivals from all countries 
two years ahead forecast 

 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 24 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 1 restrictions). 
Parameter estimation sample is 1978. 1 - 2001.12. (T =  288). 
Log-likelihood kernel is 2.559537. 
Very strong convergence in   7 iterations. 
( likelihood cvg 6.003229e-013 
  gradient cvg   2.104983e-008 
  parameter cvg  1.833074e-006 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2001.12. (T =  288, n =  275). 
Log-Likelihood is 737.147 (-2 LogL = -1474.29). 
Prediction error variance is 0.00394499 
 
 
Summary statistics 
 
                    Larr 
 Std.Error      0.062809 
 Normality        23.681 
 H( 91)          0.55533 
 r( 1)         -0.030037 
 r(15)         -0.080110 
 DW               2.0351 
 Q(15,12)         23.716 
 Rs^2            0.31689 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr           0.0015181 ( 1.0000)  
Lvl          0.00047929 ( 0.3157)  
Slp         8.6752e-008 ( 0.0001)  
Sea         5.6841e-006 ( 0.0037)  
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Table 4.6.2a 
 

BSM results for tourist arrivals from Australia 
one month ahead forecast 

 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 23 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2002. 1. (T =  289). 
Log-likelihood kernel is 1.883547. 
Very strong convergence in   7 iterations. 
( likelihood cvg 7.073184e-016 
  gradient cvg   3.993139e-007 
  parameter cvg  2.66798e-010 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002. 1. (T =  289, n =  276). 
Log-Likelihood is 544.345 (-2 LogL = -1088.69). 
Prediction error variance is 0.0161302 
 
 
Summary statistics 
 
                    Larr 
 Std.Error       0.12700 
 Normality        31.926 
 H( 92)          0.22760 
 r( 1)         0.0090518 
 r(16)          0.046302 
 DW               1.9613 
 Q(16,13)         17.148 
 Rs^2            0.42994 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr           0.0071505 ( 1.0000)  
Lvl           0.0015803 ( 0.2210)  
Slp             0.00000 ( 0.0000)  
Sea         2.0716e-005 ( 0.0029)  
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Table 4.6.2b 
 

BSM results for tourist arrivals from Australia 
one year ahead forecast 

 
 
Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 12 forecasts 
 
 
Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2002.12. (T =  300). 
Log-likelihood kernel is 1.905065. 
Very strong convergence in   8 iterations. 
( likelihood cvg 3.496647e-015 
  gradient cvg   1.40632e-007 
  parameter cvg  3.436338e-011 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002.12. (T =  300, n =  287). 
Log-Likelihood is 571.519 (-2 LogL = -1143.04). 
Prediction error variance is 0.0156307 
 
 
Summary statistics 
 
                    Larr 
 Std.Error       0.12502 
 Normality        35.708 
 H( 95)          0.22797 
 r( 1)          0.010459 
 r(16)          0.047020 
 DW               1.9620 
 Q(16,13)         17.532 
 Rs^2            0.43736 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr           0.0069409 ( 1.0000)  
Lvl           0.0015212 ( 0.2192)  
Slp             0.00000 ( 0.0000)  
Sea         1.9928e-005 ( 0.0029)  
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Table 4.6.2c 
 

BSM results for tourist arrivals from Australia 
two years ahead forecast 

 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 24 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2001.12. (T =  288). 
Log-likelihood kernel is 1.882663. 
Very strong convergence in   8 iterations. 
( likelihood cvg 9.175988e-012 
  gradient cvg   2.83118e-007 
  parameter cvg  5.191441e-006 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2001.12. (T =  288, n =  275). 
Log-Likelihood is 542.207 (-2 LogL = -1084.41). 
Prediction error variance is 0.016138 
 
 
Summary statistics 
 
                    Larr 
 Std.Error       0.12704 
 Normality        31.731 
 H( 91)          0.22761 
 r( 1)         0.0063616 
 r(15)         -0.036342 
 DW               1.9648 
 Q(15,12)         16.382 
 Rs^2            0.43136 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr           0.0071741 ( 1.0000)  
Lvl           0.0015751 ( 0.2196)  
Slp             0.00000 ( 0.0000)  
Sea         2.0641e-005 ( 0.0029)  
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Table 4.6.3a 
 

BSM results for tourist arrivals from Canada 
one month ahead forecast 

 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 23 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2002. 1. (T =  289). 
Log-likelihood kernel is 2.162498. 
Very strong convergence in   8 iterations. 
( likelihood cvg 1.437516e-015 
  gradient cvg   2.300826e-007 
  parameter cvg  5.223337e-012 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002. 1. (T =  289, n =  276). 
Log-Likelihood is 624.962 (-2 LogL = -1249.92). 
Prediction error variance is 0.00904529 
 
 
Summary statistics 
 
                    Larr 
 Std.Error      0.095107 
 Normality        13.498 
 H( 92)          0.75907 
 r( 1)          0.080651 
 r(16)          -0.15162 
 DW               1.8363 
 Q(16,13)         28.900 
 Rs^2            0.32771 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr           0.0035979 ( 1.0000)  
Lvl          0.00078363 ( 0.2178)  
Slp             0.00000 ( 0.0000)  
Sea         1.7359e-005 ( 0.0048)  
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Table 4.6.3b 
 

BSM results for tourist arrivals from Canada 
one year ahead forecast 

 
 
Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 12 forecasts 
 
 
Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2002.12. (T =  300). 
Log-likelihood kernel is 2.171997. 
Very strong convergence in   8 iterations. 
( likelihood cvg 3.291826e-013 
  gradient cvg   6.972201e-009 
  parameter cvg  3.349056e-007 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002.12. (T =  300, n =  287). 
Log-Likelihood is 651.599 (-2 LogL = -1303.2). 
Prediction error variance is 0.00899141 
 
 
Summary statistics 
 
                    Larr 
 Std.Error      0.094823 
 Normality        12.775 
 H( 95)          0.80854 
 r( 1)          0.091644 
 r(16)          -0.14706 
 DW               1.8138 
 Q(16,13)         29.867 
 Rs^2            0.33723 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr           0.0036891 ( 1.0000)  
Lvl          0.00072636 ( 0.1969)  
Slp             0.00000 ( 0.0000)  
Sea         1.6823e-005 ( 0.0046)  
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Table 4.6.3c 
 

BSM results for tourist arrivals from Canada 
two years ahead forecast 

 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 24 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2001.12. (T =  288). 
Log-likelihood kernel is 2.160645. 
Very strong convergence in   8 iterations. 
( likelihood cvg 1.849819e-015 
  gradient cvg   3.537171e-008 
  parameter cvg  7.039957e-009 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2001.12. (T =  288, n =  275). 
Log-Likelihood is 622.266 (-2 LogL = -1244.53). 
Prediction error variance is 0.00906811 
 
 
Summary statistics 
 
                    Larr 
 Std.Error      0.095227 
 Normality        13.303 
 H( 91)          0.75701 
 r( 1)          0.082787 
 r(15)          -0.15525 
 DW               1.8289 
 Q(15,12)         22.313 
 Rs^2            0.32767 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr           0.0036081 ( 1.0000)  
Lvl          0.00078474 ( 0.2175)  
Slp             0.00000 ( 0.0000)  
Sea         1.7416e-005 ( 0.0048)  
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Table 4.6.4a 

 
BSM results for tourist arrivals from China 

one month ahead forecast 
 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 23 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 1 restrictions). 
Parameter estimation sample is 1978. 1 - 2002. 1. (T =  289). 
Log-likelihood kernel is 1.573883. 
Very strong convergence in   6 iterations. 
( likelihood cvg 4.919486e-013 
  gradient cvg   3.251473e-008 
  parameter cvg  4.170549e-006 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002. 1. (T =  289, n =  276). 
Log-Likelihood is 454.852 (-2 LogL = -909.704). 
Prediction error variance is 0.0305326 
 
 
Summary statistics 
 
                    Larr 
 Std.Error       0.17474 
 Normality        143.57 
 H( 92)         0.098132 
 r( 1)       -0.00048033 
 r(16)         -0.092322 
 DW               1.9026 
 Q(16,13)         49.172 
 Rs^2           0.084193 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr            0.010916 ( 1.0000)  
Lvl           0.0083517 ( 0.7651)  
Slp         1.8363e-006 ( 0.0002)  
Sea         1.1727e-005 ( 0.0011)  
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Table 4.6.4b 
 

BSM results for tourist arrivals from China 
one year ahead forecast 

 
 
Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 12 forecasts 
 
 
Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 1 restrictions). 
Parameter estimation sample is 1978. 1 - 2002.12. (T =  300). 
Log-likelihood kernel is 1.585868. 
Very strong convergence in   5 iterations. 
( likelihood cvg 9.157093e-012 
  gradient cvg   1.714776e-007 
  parameter cvg  7.571981e-006 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002.12. (T =  300, n =  287). 
Log-Likelihood is 475.76 (-2 LogL = -951.521). 
Prediction error variance is 0.030291 
 
 
Summary statistics 
 
                    Larr 
 Std.Error       0.17404 
 Normality        154.09 
 H( 95)          0.12025 
 r( 1)         0.0022841 
 r(16)         -0.088404 
 DW               1.8988 
 Q(16,13)         48.478 
 Rs^2           0.091767 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr            0.010373 ( 1.0000)  
Lvl           0.0081064 ( 0.7815)  
Slp         1.6632e-006 ( 0.0002)  
Sea         1.5099e-005 ( 0.0015)  
 
 
 



 431

 

Table 4.6.4c 
 

BSM results for tourist arrivals from China 
two years ahead forecast 

 
 
Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 24 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 1 restrictions). 
Parameter estimation sample is 1978. 1 - 2001.12. (T =  288). 
Log-likelihood kernel is 1.571913. 
Very strong convergence in   5 iterations. 
( likelihood cvg 5.455369e-013 
  gradient cvg   1.814104e-008 
  parameter cvg  3.251677e-006 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2001.12. (T =  288, n =  275). 
Log-Likelihood is 452.711 (-2 LogL = -905.422). 
Prediction error variance is 0.0305936 
 
 
Summary statistics 
 
                    Larr 
 Std.Error       0.17491 
 Normality        142.46 
 H( 91)         0.098663 
 r( 1)        -0.0012679 
 r(15)         -0.025896 
 DW               1.9045 
 Q(15,12)         47.030 
 Rs^2           0.083430 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr            0.010997 ( 1.0000)  
Lvl           0.0084072 ( 0.7645)  
Slp         1.8961e-006 ( 0.0002)  
Sea         1.1261e-005 ( 0.0010)  
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Table 4.6.5a 

 
BSM results for tourist arrivals from France 

one month ahead forecast 
 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 23 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2002. 1. (T =  289). 
Log-likelihood kernel is 2.125364. 
Very strong convergence in   7 iterations. 
( likelihood cvg 6.563038e-013 
  gradient cvg   2.34035e-008 
  parameter cvg  8.216921e-007 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002. 1. (T =  289, n =  276). 
Log-Likelihood is 614.23 (-2 LogL = -1228.46). 
Prediction error variance is 0.00975187 
 
 
Summary statistics 
 
                    Larr 
 Std.Error      0.098752 
 Normality        23.073 
 H( 92)          0.26009 
 r( 1)         0.0024338 
 r(16)         -0.080700 
 DW               1.9568 
 Q(16,13)         19.430 
 Rs^2            0.49818 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr           0.0048214 ( 1.0000)  
Lvl          0.00033659 ( 0.0698)  
Slp             0.00000 ( 0.0000)  
Sea         1.9276e-005 ( 0.0040)  
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Table 4.6.5b 
 

BSM results for tourist arrivals from France 
one year ahead forecast 

 
 
Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 12 forecasts 
 
 
Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2002.12. (T =  300). 
Log-likelihood kernel is 2.143671. 
Very strong convergence in   7 iterations. 
( likelihood cvg 5.187982e-012 
  gradient cvg   7.891465e-008 
  parameter cvg  3.881713e-006 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002.12. (T =  300, n =  287). 
Log-Likelihood is 643.101 (-2 LogL = -1286.2). 
Prediction error variance is 0.00952656 
 
 
Summary statistics 
 
                    Larr 
 Std.Error      0.097604 
 Normality        24.817 
 H( 95)          0.24415 
 r( 1)         0.0034057 
 r(16)         -0.072705 
 DW               1.9569 
 Q(16,13)         18.777 
 Rs^2            0.52197 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr           0.0046397 ( 1.0000)  
Lvl          0.00032672 ( 0.0704)  
Slp             0.00000 ( 0.0000)  
Sea         1.9528e-005 ( 0.0042)  
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Table 4.6.5c 
 

BSM results for tourist arrivals from France 
two years ahead forecast 

 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 24 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2001.12. (T =  288). 
Log-likelihood kernel is 2.123663. 
Very strong convergence in   7 iterations. 
( likelihood cvg 9.520783e-012 
  gradient cvg   1.462608e-007 
  parameter cvg  5.752388e-006 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2001.12. (T =  288, n =  275). 
Log-Likelihood is 611.615 (-2 LogL = -1223.23). 
Prediction error variance is 0.00977148 
 
 
Summary statistics 
 
                    Larr 
 Std.Error      0.098851 
 Normality        23.086 
 H( 91)          0.25834 
 r( 1)        -0.0015101 
 r(15)          0.066484 
 DW               1.9517 
 Q(15,12)         17.355 
 Rs^2            0.49881 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr           0.0048549 ( 1.0000)  
Lvl          0.00033699 ( 0.0694)  
Slp             0.00000 ( 0.0000)  
Sea         1.9077e-005 ( 0.0039)  
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Table 4.6.6a 

 
BSM results for tourist arrivals from Germany 

one month ahead forecast 
 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 23 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2002. 1. (T =  289). 
Log-likelihood kernel is 2.200785. 
Very strong convergence in   7 iterations. 
( likelihood cvg 4.565062e-011 
  gradient cvg   7.802647e-008 
  parameter cvg  9.924311e-006 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002. 1. (T =  289, n =  276). 
Log-Likelihood is 636.027 (-2 LogL = -1272.05). 
Prediction error variance is 0.00822995 
 
 
Summary statistics 
 
                    Larr 
 Std.Error      0.090719 
 Normality        3.7124 
 H( 92)          0.69719 
 r( 1)          0.065806 
 r(16)         -0.048491 
 DW               1.8652 
 Q(16,13)         27.544 
 Rs^2            0.35816 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr           0.0052348 ( 1.0000)  
Lvl          0.00015776 ( 0.0301)  
Slp             0.00000 ( 0.0000)  
Sea         8.8400e-006 ( 0.0017)  
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Table 4.6.6b 
 

BSM results for tourist arrivals from Germany 
one year ahead forecast 

 
 
Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 12 forecasts 
 
 
Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2002.12. (T =  300). 
Log-likelihood kernel is 2.177506. 
Very strong convergence in   6 iterations. 
( likelihood cvg 2.661469e-013 
  gradient cvg   1.99174e-008 
  parameter cvg  1.682629e-006 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002.12. (T =  300, n =  287). 
Log-Likelihood is 653.252 (-2 LogL = -1306.5). 
Prediction error variance is 0.00877998 
 
 
Summary statistics 
 
                    Larr 
 Std.Error      0.093702 
 Normality        15.285 
 H( 95)          0.88260 
 r( 1)          0.064571 
 r(16)         -0.054729 
 DW               1.8690 
 Q(16,13)         29.454 
 Rs^2            0.37900 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr           0.0055403 ( 1.0000)  
Lvl          0.00014799 ( 0.0267)  
Slp             0.00000 ( 0.0000)  
Sea         1.0302e-005 ( 0.0019)  
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Table 4.6.6c 
 

BSM results for tourist arrivals from Germany 
two years ahead forecast 

 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 24 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2001.12. (T =  288). 
Log-likelihood kernel is 2.199009. 
Very strong convergence in   7 iterations. 
( likelihood cvg 2.383006e-014 
  gradient cvg   1.747047e-007 
  parameter cvg  1.181047e-009 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2001.12. (T =  288, n =  275). 
Log-Likelihood is 633.315 (-2 LogL = -1266.63). 
Prediction error variance is 0.00824717 
 
 
Summary statistics 
 
                    Larr 
 Std.Error      0.090814 
 Normality        3.7578 
 H( 91)          0.69613 
 r( 1)          0.065110 
 r(15)         -0.072487 
 DW               1.8676 
 Q(15,12)         27.170 
 Rs^2            0.35865 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr           0.0052548 ( 1.0000)  
Lvl          0.00016075 ( 0.0306)  
Slp             0.00000 ( 0.0000)  
Sea         8.7203e-006 ( 0.0017)  
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Table 4.6.7a 

 
BSM results for tourist arrivals from Korea 

one month ahead forecast 
 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 23 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2002. 1. (T =  289). 
Log-likelihood kernel is 2.434848. 
Very strong convergence in  10 iterations. 
( likelihood cvg 1.120524e-011 
  gradient cvg   3.264056e-009 
  parameter cvg  6.539006e-006 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002. 1. (T =  289, n =  276). 
Log-Likelihood is 703.671 (-2 LogL = -1407.34). 
Prediction error variance is 0.00506513 
 
 
Summary statistics 
 
                    Larr 
 Std.Error      0.071170 
 Normality        77.832 
 H( 92)           1.0215 
 r( 1)          0.027235 
 r(16)         -0.012295 
 DW               1.9366 
 Q(16,13)         14.281 
 Rs^2            0.13374 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr          0.00021717 ( 0.0659)  
Lvl           0.0032940 ( 1.0000)  
Slp             0.00000 ( 0.0000)  
Sea         3.8976e-006 ( 0.0012)  
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Table 4.6.7b 
 

BSM results for tourist arrivals from Korea 
one year ahead forecast 

 
 
Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 12 forecasts 
 
 
Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2002.12. (T =  300). 
Log-likelihood kernel is 2.442366. 
Very strong convergence in  14 iterations. 
( likelihood cvg 7.109454e-014 
  gradient cvg   3.996803e-010 
  parameter cvg  7.845198e-007 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002.12. (T =  300, n =  287). 
Log-Likelihood is 732.71 (-2 LogL = -1465.42). 
Prediction error variance is 0.00507022 
 
 
Summary statistics 
 
                    Larr 
 Std.Error      0.071205 
 Normality        81.063 
 H( 95)           1.0753 
 r( 1)          0.031947 
 r(16)         -0.012606 
 DW               1.9331 
 Q(16,13)         17.888 
 Rs^2            0.16845 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr          0.00027324 ( 0.0869)  
Lvl           0.0031435 ( 1.0000)  
Slp             0.00000 ( 0.0000)  
Sea         4.1597e-006 ( 0.0013)  
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Table 4.6.7c 
 

BSM results for tourist arrivals from Korea 
two years ahead forecast 

 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 24 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2001.12. (T =  288). 
Log-likelihood kernel is 2.436333. 
Very strong convergence in  16 iterations. 
( likelihood cvg 1.697006e-013 
  gradient cvg   5.107026e-010 
  parameter cvg  1.603622e-006 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2001.12. (T =  288, n =  275). 
Log-Likelihood is 701.664 (-2 LogL = -1403.33). 
Prediction error variance is 0.00504162 
 
 
Summary statistics 
 
                    Larr 
 Std.Error      0.071004 
 Normality        80.406 
 H( 91)           1.0075 
 r( 1)          0.026686 
 r(15)         -0.010995 
 DW               1.9427 
 Q(15,12)         14.071 
 Rs^2            0.13760 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr          0.00023606 ( 0.0727)  
Lvl           0.0032466 ( 1.0000)  
Slp             0.00000 ( 0.0000)  
Sea         3.8711e-006 ( 0.0012)  
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Table 4.6.8a 

 
BSM results for tourist arrivals from Singapore 

one month ahead forecast 
 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 23 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 1 restrictions). 
Parameter estimation sample is 1978. 1 - 2002. 1. (T =  289). 
Log-likelihood kernel is 1.689465. 
Very strong convergence in   6 iterations. 
( likelihood cvg 1.843949e-013 
  gradient cvg   1.102822e-009 
  parameter cvg  6.582105e-007 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002. 1. (T =  289, n =  276). 
Log-Likelihood is 488.255 (-2 LogL = -976.511). 
Prediction error variance is 0.0244165 
 
 
Summary statistics 
 
                    Larr 
 Std.Error       0.15626 
 Normality        11.666 
 H( 92)           1.0515 
 r( 1)         -0.013790 
 r(16)         0.0072498 
 DW               2.0223 
 Q(16,13)         32.520 
 Rs^2            0.32327 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr            0.013526 ( 1.0000)  
Lvl          0.00043356 ( 0.0321)  
Slp         5.7478e-006 ( 0.0004)  
Sea         2.9288e-005 ( 0.0022)  
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Table 4.6.8b 
 

BSM results for tourist arrivals from Singapore 
one year ahead forecast 

 
 
Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 12 forecasts 
 
 
Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 1 restrictions). 
Parameter estimation sample is 1978. 1 - 2002.12. (T =  300). 
Log-likelihood kernel is 1.687628. 
Very strong convergence in   7 iterations. 
( likelihood cvg 7.016733e-013 
  gradient cvg   6.757557e-009 
  parameter cvg  6.203056e-007 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002.12. (T =  300, n =  287). 
Log-Likelihood is 506.289 (-2 LogL = -1012.58). 
Prediction error variance is 0.0248105 
 
 
Summary statistics 
 
                    Larr 
 Std.Error       0.15751 
 Normality        9.5371 
 H( 95)           1.0890 
 r( 1)        -0.0051355 
 r(16)          0.034637 
 DW               2.0062 
 Q(16,13)         29.621 
 Rs^2            0.32823 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr            0.013512 ( 1.0000)  
Lvl          0.00068651 ( 0.0508)  
Slp         3.1152e-006 ( 0.0002)  
Sea         3.0004e-005 ( 0.0022)  
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Table 4.6.8c 
 

BSM results for tourist arrivals from Singapore 
two years ahead forecast 

 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 24 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 1 restrictions). 
Parameter estimation sample is 1978. 1 - 2001.12. (T =  288). 
Log-likelihood kernel is 1.689142. 
Very strong convergence in   7 iterations. 
( likelihood cvg 2.366173e-015 
  gradient cvg   2.594221e-008 
  parameter cvg  5.274326e-010 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2001.12. (T =  288, n =  275). 
Log-Likelihood is 486.473 (-2 LogL = -972.946). 
Prediction error variance is 0.0244092 
 
 
Summary statistics 
 
                    Larr 
 Std.Error       0.15623 
 Normality        11.723 
 H( 91)           1.0349 
 r( 1)         -0.010884 
 r(15)         -0.088786 
 DW               2.0193 
 Q(15,12)         32.061 
 Rs^2            0.31798 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr            0.013477 ( 1.0000)  
Lvl          0.00044407 ( 0.0329)  
Slp         5.3089e-006 ( 0.0004)  
Sea         2.9971e-005 ( 0.0022)  
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Table 4.6.9a 

 
BSM results for tourist arrivals from Taiwan 

one month ahead forecast 
 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 23 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2002. 1. (T =  289). 
Log-likelihood kernel is 1.684258. 
Very strong convergence in   9 iterations. 
( likelihood cvg 9.604199e-013 
  gradient cvg   4.074519e-009 
  parameter cvg  3.958752e-006 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002. 1. (T =  289, n =  276). 
Log-Likelihood is 486.751 (-2 LogL = -973.501). 
Prediction error variance is 0.0224342 
 
 
Summary statistics 
 
                    Larr 
 Std.Error       0.14978 
 Normality        12.930 
 H( 92)          0.86767 
 r( 1)          0.023855 
 r(16)         -0.035201 
 DW               1.9422 
 Q(16,13)         24.668 
 Rs^2            0.31243 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr            0.016636 ( 1.0000)  
Lvl           0.0014753 ( 0.0887)  
Slp         2.7912e-006 ( 0.0002)  
Sea             0.00000 ( 0.0000)  
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Table 4.6.9b 
 

BSM results for tourist arrivals from Taiwan 
one year ahead forecast 

 
 
Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 12 forecasts 
 
 
Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2002.12. (T =  300). 
Log-likelihood kernel is 1.704772. 
Very strong convergence in  10 iterations. 
( likelihood cvg 1.953732e-015 
  gradient cvg   1.154632e-008 
  parameter cvg  2.169434e-009 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002.12. (T =  300, n =  287). 
Log-Likelihood is 511.432 (-2 LogL = -1022.86). 
Prediction error variance is 0.0218124 
 
 
Summary statistics 
 
                    Larr 
 Std.Error       0.14769 
 Normality        14.505 
 H( 95)          0.85477 
 r( 1)          0.024548 
 r(16)         -0.039268 
 DW               1.9447 
 Q(16,13)         27.562 
 Rs^2            0.31056 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr            0.016044 ( 1.0000)  
Lvl           0.0015297 ( 0.0953)  
Slp         2.2887e-006 ( 0.0001)  
Sea             0.00000 ( 0.0000)  
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Table 4.6.9c 
 

BSM results for tourist arrivals from Taiwan 
two years ahead forecast 

 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 24 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2001.12. (T =  288). 
Log-likelihood kernel is 1.683422. 
Very strong convergence in   7 iterations. 
( likelihood cvg 1.631612e-012 
  gradient cvg   1.280087e-008 
  parameter cvg  3.260192e-006 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2001.12. (T =  288, n =  275). 
Log-Likelihood is 484.825 (-2 LogL = -969.651). 
Prediction error variance is 0.0224458 
 
 
Summary statistics 
 
                    Larr 
 Std.Error       0.14982 
 Normality        13.075 
 H( 91)          0.86223 
 r( 1)          0.023706 
 r(15)          -0.13040 
 DW               1.9435 
 Q(15,12)         23.915 
 Rs^2            0.31427 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr            0.016715 ( 1.0000)  
Lvl           0.0014107 ( 0.0844)  
Slp         3.1278e-006 ( 0.0002)  
Sea             0.00000 ( 0.0000)  
 
 
 

 



 447

 

 
Table 4.6.10a 

 
BSM results for tourist arrivals from the UK 

one month ahead forecast 
 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 23 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2002. 1. (T =  289). 
Log-likelihood kernel is 1.624104. 
Very strong convergence in  10 iterations. 
( likelihood cvg 6.499586e-013 
  gradient cvg   8.881784e-010 
  parameter cvg  3.327675e-006 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002. 1. (T =  289, n =  276). 
Log-Likelihood is 469.366 (-2 LogL = -938.732). 
Prediction error variance is 0.025462 
 
 
Summary statistics 
 
                    Larr 
 Std.Error       0.15957 
 Normality        37.537 
 H( 92)           1.1287 
 r( 1)        -0.0090781 
 r(16)         -0.014219 
 DW               1.9742 
 Q(16,13)         8.0366 
 Rs^2            0.30440 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr            0.017381 ( 1.0000)  
Lvl           0.0025113 ( 0.1445)  
Slp         5.0142e-006 ( 0.0003)  
Sea             0.00000 ( 0.0000)  
 
 



 448

 

Table 4.6.10b 
 

BSM results for tourist arrivals from the UK 
one year ahead forecast 

 
 
Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 12 forecasts 
 
 
Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 3 restrictions). 
Parameter estimation sample is 1978. 1 - 2002.12. (T =  300). 
Log-likelihood kernel is 1.616424. 
Very strong convergence in  11 iterations. 
( likelihood cvg 2.828541e-012 
  gradient cvg   6.883383e-010 
  parameter cvg  5.566104e-006 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002.12. (T =  300, n =  287). 
Log-Likelihood is 484.927 (-2 LogL = -969.854). 
Prediction error variance is 0.0260202 
 
 
Summary statistics 
 
                    Larr 
 Std.Error       0.16131 
 Normality        37.675 
 H( 95)           1.2615 
 r( 1)         -0.017403 
 r(16)         -0.061289 
 DW               1.9846 
 Q(16,13)         9.0585 
 Rs^2            0.30025 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr            0.017115 ( 1.0000)  
Lvl           0.0036079 ( 0.2108)  
Slp             0.00000 ( 0.0000)  
Sea             0.00000 ( 0.0000)  
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Table 4.6.10c 
 

BSM results for tourist arrivals from the UK 
two years ahead forecast 

 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 24 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 1 restrictions). 
Parameter estimation sample is 1978. 1 - 2001.12. (T =  288). 
Log-likelihood kernel is 1.624557. 
Very strong convergence in  16 iterations. 
( likelihood cvg 3.265479e-011 
  gradient cvg   7.921293e-007 
  parameter cvg  8.526342e-006 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2001.12. (T =  288, n =  275). 
Log-Likelihood is 467.872 (-2 LogL = -935.745). 
Prediction error variance is 0.0264995 
 
 
Summary statistics 
 
                    Larr 
 Std.Error       0.16279 
 Normality        37.464 
 H( 91)           1.1010 
 r( 1)       -0.00044528 
 r(15)         -0.048138 
 DW               1.9607 
 Q(15,12)         9.4618 
 Rs^2            0.27698 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr            0.017247 ( 1.0000)  
Lvl           0.0021346 ( 0.1238)  
Slp         7.8325e-006 ( 0.0005)  
Sea         1.4314e-006 ( 0.0001)  
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Table 4.6.11a 

 
BSM results for tourist arrivals from the USA 

one month ahead forecast 
 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 23 forecasts 

 
 

Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 3 restrictions). 
Parameter estimation sample is 1978. 1 - 2002. 1. (T =  289). 
Log-likelihood kernel is 2.664939. 
Very strong convergence in  21 iterations. 
( likelihood cvg 2.085955e-008 
  gradient cvg   3.748113e-008 
  parameter cvg  1.625864e-007 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002. 1. (T =  289, n =  276). 
Log-Likelihood is 770.167 (-2 LogL = -1540.33). 
Prediction error variance is 0.00320611 
 
 
Summary statistics 
 
                    Larr 
 Std.Error      0.056623 
 Normality        26.269 
 H( 92)          0.88300 
 r( 1)           0.11336 
 r(16)         -0.096691 
 DW               1.7662 
 Q(16,13)         40.064 
 Rs^2            0.44257 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr             0.00000 ( 0.0000)  
Lvl          0.00065621 ( 1.0000)  
Slp             0.00000 ( 0.0000)  
Sea         1.9579e-005 ( 0.0298)  
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Table 4.6.11b 
 

BSM results for tourist arrivals from the USA 
one year ahead forecast 

 
 
Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 12 forecasts 
 
 
Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 2 restrictions). 
Parameter estimation sample is 1978. 1 - 2002.12. (T =  300). 
Log-likelihood kernel is 2.659517. 
Very strong convergence in  10 iterations. 
( likelihood cvg 1.41266e-013 
  gradient cvg   7.580603e-008 
  parameter cvg  2.687685e-006 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2002.12. (T =  300, n =  287). 
Log-Likelihood is 797.855 (-2 LogL = -1595.71). 
Prediction error variance is 0.00328983 
 
 
Summary statistics 
 
                    Larr 
 Std.Error      0.057357 
 Normality        26.188 
 H( 95)           1.0180 
 r( 1)          0.096593 
 r(16)          -0.11905 
 DW               1.8046 
 Q(16,13)         42.753 
 Rs^2            0.44246 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr          0.00011524 ( 0.1578)  
Lvl          0.00073036 ( 1.0000)  
Slp             0.00000 ( 0.0000)  
Sea         1.6681e-005 ( 0.0228)  
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Table 4.6.11c 
 

BSM results for tourist arrivals from the USA 
two years ahead forecast 

 
 

Method of estimation is Maximum likelihood 
The present sample is: 1978 (1) to 2003 (12) less 24 forecasts 
 
 
Equation 
 
Larr = Trend + Trigo seasonal + Irregular 
 
 
Estimation report 
 
Model with  4 parameters ( 3 restrictions). 
Parameter estimation sample is 1978. 1 - 2001.12. (T =  288). 
Log-likelihood kernel is 2.665304. 
Very strong convergence in  21 iterations. 
( likelihood cvg 1.811709e-008 
  gradient cvg   1.290967e-007 
  parameter cvg  5.823335e-007 ) 
 
 
Diagnostic summary report. 
 
Estimation sample is 1978. 1 - 2001.12. (T =  288, n =  275). 
Log-Likelihood is 767.607 (-2 LogL = -1535.21). 
Prediction error variance is 0.00319915 
 
 
Summary statistics 
 
                    Larr 
 Std.Error      0.056561 
 Normality        26.907 
 H( 91)          0.87062 
 r( 1)           0.10542 
 r(15)         -0.022380 
 DW               1.7580 
 Q(15,12)         34.113 
 Rs^2            0.44532 
 
 
Estimated variances of disturbances. 
 
Component          Larr (q-ratio)   
Irr             0.00000 ( 0.0000)  
Lvl          0.00063938 ( 1.0000)  
Slp             0.00000 ( 0.0000)  
Sea         1.9827e-005 ( 0.0310)  
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Table 5.4.1a Microfit output for ECM 
 Arrivals from All Countries, one month ahead model 
 
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR 
****************************************************************************** 
288 observations from 1978M2  to 2002M1 . Order of VAR = 1, chosen r =1. 
List of variables included in the cointegrating vector: 
ARR             IMPJAP 
****************************************************************************** 
                 Vector  1 
ARR                 -.15796 
                 (  -1.0000) 
 
IMPJAP               .24872 
                 (   1.5746) 
 
****************************************************************************** 
 
Ordinary Least Squares Estimation 
****************************************************************************** 
Dependent variable is DARR 
288 observations used for estimation from 1978M2  to 2002M1 
****************************************************************************** 
Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
CONST                     .037614            .015937             2.3602[.019] 
S2                       -.059397            .022152            -2.6814[.008] 
S3                         .10881            .022148             4.9127[.000] 
S4                         .10332            .022234             4.6469[.000] 
S5                       -.071246            .022495            -3.1672[.002] 
S6                        -.10586            .022368            -4.7326[.000] 
S7                         .11529            .022278             5.1749[.000] 
S8                       -.075927            .022595            -3.3603[.001] 
S9                        -.10337            .022451            -4.6043[.000] 
S10                        .11746            .022335             5.2587[.000] 
S11                       -.21747            .022639            -9.6060[.000] 
S12                       -.20169            .022256            -9.0623[.000] 
UT(-1)                   -.033191            .012901            -2.5727[.011] 
****************************************************************************** 
R-Squared                     .71389   R-Bar-Squared                   .70140 
S.E. of Regression           .076723   F-stat.    F( 12, 275)   57.1801[.000] 
Mean of Dependent Variable  .0063225   S.D. of Dependent Variable      .14040 
Residual Sum of Squares       1.6188   Equation Log-likelihood       337.4534 
Akaike Info. Criterion      324.4534   Schwarz Bayesian Criterion    300.6442 
DW-statistic                  2.6006 
****************************************************************************** 
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Table 5.4.1b Microfit output for ECM 
 Arrivals from All Countries, 12 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 299 observations from 1978M2  to 2002M12. Order of VAR = 1, chosen r =1.      
 List of variables included in the cointegrating vector:                       
 ARR             IMPJAP                                                        
****************************************************************************** 
                  Vector  1                                                    
 ARR                 -.15720                                                   
                  (  -1.0000)                                                  
                                                                               
 IMPJAP               .24753                                                   
                  (   1.5746)                                                  
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 299 observations used for estimation from 1978M2  to 2002M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                     .037317            .015853             2.3539[.019] 
 S2                       -.057647            .021821            -2.6418[.009] 
 S3                         .10628            .021815             4.8719[.000] 
 S4                         .10059            .021916             4.5899[.000] 
 S5                       -.071210            .022168            -3.2123[.001] 
 S6                        -.10248            .022038            -4.6499[.000] 
 S7                         .11605            .021961             5.2841[.000] 
 S8                       -.076004            .022280            -3.4114[.001] 
 S9                        -.10754            .022135            -4.8584[.000] 
 S10                        .11802            .022002             5.3642[.000] 
 S11                       -.21573            .022306            -9.6715[.000] 
 S12                       -.19605            .021923            -8.9428[.000] 
 UT(-1)                   -.034489            .012759            -2.7030[.007] 
****************************************************************************** 
 R-Squared                     .71195   R-Bar-Squared                   .69986 
 S.E. of Regression           .076335   F-stat.    F( 12, 286)   58.9070[.000] 
 Mean of Dependent Variable  .0060992   S.D. of Dependent Variable      .13934 
 Residual Sum of Squares       1.6665   Equation Log-likelihood       351.5957 
 Akaike Info. Criterion      338.5957   Schwarz Bayesian Criterion    314.5429 
 DW-statistic                  2.5597                                          
****************************************************************************** 
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Table 5.4.1c Microfit output for ECM 
 Arrivals from All Countries, 24 months ahead model 
                                                                              
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 287 observations from 1978M2  to 2001M12. Order of VAR = 1, chosen r =1.      
 List of variables included in the cointegrating vector:                       
 ARR             IMPJAP                                                        
****************************************************************************** 
                  Vector  1                                                    
 ARR                 -.15799                                                   
                  (  -1.0000)                                                  
                                                                               
 IMPJAP               .24876                                                   
                  (   1.5745)                                                  
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 287 observations used for estimation from 1978M2  to 2001M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                     .036429            .016324             2.2316[.026] 
 S2                       -.058232            .022431            -2.5961[.010] 
 S3                         .10996            .022424             4.9039[.000] 
 S4                         .10451            .022524             4.6401[.000] 
 S5                       -.070017            .022797            -3.0713[.002] 
 S6                        -.10465            .022666            -4.6169[.000] 
 S7                         .11649            .022571             5.1610[.000] 
 S8                       -.074688            .022901            -3.2613[.001] 
 S9                        -.10215            .022752            -4.4896[.000] 
 S10                        .11867            .022631             5.2434[.000] 
 S11                       -.21623            .022947            -9.4232[.000] 
 S12                       -.20049            .022547            -8.8920[.000] 
 UT(-1)                   -.033426            .012939            -2.5834[.010] 
****************************************************************************** 
 R-Squared                     .71386   R-Bar-Squared                   .70133 
 S.E. of Regression           .076845   F-stat.    F( 12, 274)   56.9650[.000] 
 Mean of Dependent Variable  .0061291   S.D. of Dependent Variable      .14061 
 Residual Sum of Squares       1.6180   Equation Log-likelihood       335.8480 
 Akaike Info. Criterion      322.8480   Schwarz Bayesian Criterion    299.0614 
 DW-statistic                  2.5820                                          
****************************************************************************** 
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Table 5.4.2a Microfit output for ECM 
 Arrivals from Australia, one month ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 288 observations from 1978M2  to 2002M1 . Order of VAR = 1, chosen r =3.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             JTRO            GNI           
 AIR                                                                           
****************************************************************************** 
                  Vector  1      Vector  2      Vector  3                      
 ARR                 -.19243       -.058941       -.021248                     
                  (  -1.0000)    (  -1.0000)    (  -1.0000)                    
 OPR                 .079322        -.36429       -.058584                     
                  (   .41222)    (  -6.1806)    (  -2.7571)                    
 TRO                  .33690        -.53578         .13664                     
                  (   1.7508)    (  -9.0900)    (   6.4304)                    
 JTRO                 .16045        -.26093        .057647                     
                  (   .83381)    (  -4.4270)    (   2.7130)                    
 GNI                -.086615         .88748        .066179                     
                  (  -.45012)    (  15.0570)    (   3.1145)                    
 AIR                -.045491        -.14103        -.15197                     
                  (  -.23640)    (  -2.3926)    (  -7.1520)                                      
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 277 observations used for estimation from 1979M1  to 2002M1                   
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                    .5752E-3            .033837            .016999[.986] 
 DOPR                      -.57376             .18739            -3.0618[.002] 
 DGNI(-4)                   1.4792             .56295             2.6276[.009] 
 DGNI(-9)                   1.3772             .56319             2.4454[.015] 
 DGNI(-11)                 -1.4097             .56275            -2.5050[.013] 
 DAIR(-3)                  -1.0954             .45928            -2.3850[.018] 
 S2                        -.36972            .044718            -8.2678[.000] 
 S3                         .40772            .044860             9.0889[.000] 
 S4                         .19569            .044998             4.3488[.000] 
 S5                       -.050412            .048666            -1.0359[.301] 
 S6                       -.023083            .044951            -.51352[.608] 
 S7                       -.017458            .044714            -.39044[.697] 
 S8                       -.053385            .045064            -1.1846[.237] 
 S9                         .31032            .045298             6.8506[.000] 
 S10                       -.12644            .048738            -2.5943[.010] 
 S11                       -.24846            .044922            -5.5310[.000] 
 S12                        .16375            .049345             3.3185[.001] 
 UT(-1)                  -.0066844           .0062212            -1.0745[.284] 
****************************************************************************** 
 R-Squared                     .67273   R-Bar-Squared                   .65124 
 S.E. of Regression            .15320   F-stat.    F( 17, 259)   31.3168[.000] 
 Mean of Dependent Variable  .0071719   S.D. of Dependent Variable      .25942 
 Residual Sum of Squares       6.0791   Equation Log-likelihood       135.9086 
 Akaike Info. Criterion      117.9086   Schwarz Bayesian Criterion     85.2925 
 DW-statistic                  2.7157                                          
****************************************************************************** 
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Table 5.4.2b Microfit output for ECM 
 Arrivals from Australia, 12 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 299 observations from 1978M2  to 2002M12. Order of VAR = 1, chosen r =3.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             JTRO            GNI           
 AIR                                                                           
****************************************************************************** 
                  Vector  1      Vector  2      Vector  3                      
 ARR                 -.18614        .065769        .016019                     
                  (  -1.0000)    (  -1.0000)    (  -1.0000)                    
 OPR                 .090517         .37026        .029076                     
                  (   .48628)    (  -5.6297)    (  -1.8151)                    
 TRO                  .36688         .49677        -.14951                     
                  (   1.9710)    (  -7.5533)    (   9.3332)                    
 JTRO                 .17962         .23068       -.048172                     
                  (   .96494)    (  -3.5074)    (   3.0072)                    
 GNI                 -.13381        -.86624       -.028988                     
                  (  -.71884)    (  13.1709)    (   1.8096)                    
 AIR                -.042043         .15313         .13817                     
                  (  -.22587)    (  -2.3284)    (  -8.6251)                    
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 288 observations used for estimation from 1979M1  to 2002M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                   -.1024E-4            .033968          -.3015E-3[1.00] 
 DOPR                      -.56634             .18252            -3.1028[.002] 
 DGNI(-4)                   1.3741             .54711             2.5115[.013] 
 DGNI(-9)                   1.3842             .54761             2.5278[.012] 
 DGNI(-11)                 -1.5165             .54708            -2.7719[.006] 
 DAIR(-3)                  -1.1039             .45445            -2.4291[.016] 
 S2                        -.36783            .043737            -8.4100[.000] 
 S3                         .40234            .043874             9.1704[.000] 
 S4                         .19027            .044046             4.3198[.000] 
 S5                       -.041651            .047195            -.88254[.378] 
 S6                       -.020926            .043979            -.47582[.635] 
 S7                       -.012777            .043737            -.29213[.770] 
 S8                       -.056912            .044090            -1.2908[.198] 
 S9                         .30818            .044237             6.9666[.000] 
 S10                       -.12914            .047234            -2.7341[.007] 
 S11                       -.24679            .043945            -5.6160[.000] 
 S12                        .17316            .047810             3.6219[.000] 
 UT(-1)                  -.0044226           .0048099            -.91948[.359] 
****************************************************************************** 
 R-Squared                     .67467   R-Bar-Squared                   .65419 
 S.E. of Regression            .15144   F-stat.    F( 17, 270)   32.9367[.000] 
 Mean of Dependent Variable  .0071482   S.D. of Dependent Variable      .25753 
 Residual Sum of Squares       6.1922   Equation Log-likelihood       144.2577 
 Akaike Info. Criterion      126.2577   Schwarz Bayesian Criterion     93.2910 
 DW-statistic                  2.7044                                          
****************************************************************************** 
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Table 5.4.2c Microfit output for ECM 
 Arrivals from Australia, 24 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 287 observations from 1978M2  to 2001M12. Order of VAR = 1, chosen r =3.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             JTRO            GNI           
 AIR                                                                           
****************************************************************************** 
                  Vector  1      Vector  2      Vector  3                      
 ARR                 -.19372       -.057234        .021415                     
                  (  -1.0000)    (  -1.0000)    (  -1.0000)                    
 OPR                 .079376        -.36445        .061534                     
                  (   .40974)    (  -6.3677)    (  -2.8735)                    
 TRO                  .33556        -.54089        -.13274                     
                  (   1.7322)    (  -9.4506)    (   6.1984)                    
 JTRO                 .15813        -.26265       -.057475                     
                  (   .81625)    (  -4.5891)    (   2.6839)                    
 GNI                -.079619         .88681       -.068336                     
                  (  -.41099)    (  15.4945)    (   3.1911)                    
 AIR                -.048814        -.13774         .14979                     
                  (  -.25198)    (  -2.4067)    (  -6.9947)                    
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 276 observations used for estimation from 1979M1  to 2001M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                    .0054227            .034863             .15554[.877] 
 DOPR                      -.57480             .18762            -3.0636[.002] 
 DGNI(-4)                   1.4878             .56393             2.6382[.009] 
 DGNI(-9)                   1.3862             .56418             2.4571[.015] 
 DGNI(-11)                 -1.4004             .56378            -2.4839[.014] 
 DAIR(-3)                  -1.0915             .45978            -2.3740[.018] 
 S2                        -.37352            .045260            -8.2527[.000] 
 S3                         .40364            .045462             8.8786[.000] 
 S4                         .19184            .045548             4.2119[.000] 
 S5                       -.054425            .049216            -1.1059[.270] 
 S6                       -.026881            .045497            -.59082[.555] 
 S7                       -.021269            .045260            -.46994[.639] 
 S8                       -.057260            .045622            -1.2551[.211] 
 S9                         .30640            .045865             6.6806[.000] 
 S10                       -.13045            .049290            -2.6466[.009] 
 S11                       -.25222            .045459            -5.5483[.000] 
 S12                        .15949            .049945             3.1933[.002] 
 UT(-1)                  -.0072919           .0063451            -1.1492[.252] 
****************************************************************************** 
 R-Squared                     .67308   R-Bar-Squared                   .65154 
 S.E. of Regression            .15340   F-stat.    F( 17, 258)   31.2463[.000] 
 Mean of Dependent Variable  .0074300   S.D. of Dependent Variable      .25986 
 Residual Sum of Squares       6.0708   Equation Log-likelihood       135.1066 
 Akaike Info. Criterion      117.1066   Schwarz Bayesian Criterion     84.5230 
 DW-statistic                  2.7053                                          
****************************************************************************** 
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Table 5.4.3a Microfit output for ECM 
 Arrivals from Canada, one month ahead model 
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 288 observations from 1978M2  to 2002M1 . Order of VAR = 1, chosen r =3.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             JTRO            GNI           
 AIR                                                                           
****************************************************************************** 
                  Vector  1      Vector  2      Vector  3                      
 ARR                  .33774        .055851      -.0027564                     
                  (  -1.0000)    (  -1.0000)    (  -1.0000)                    
 OPR                 .049296       -.047543       -.073901                     
                  (  -.14596)    (   .85124)    ( -26.8104)                    
 TRO                 -.35007         .75365        .026944                     
                  (   1.0365)    ( -13.4939)    (   9.7751)                    
 JTRO                -.11974        -.23657       -.011813                     
                  (   .35453)    (   4.2357)    (  -4.2855)                    
 GNI                 -.23389        .061156       -.031229                     
                  (   .69251)    (  -1.0950)    ( -11.3295)                    
 AIR                  .11735        -.53283        .038323                     
                  (  -.34747)    (   9.5402)    (  13.9032)                    
****************************************************************************** 
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 276 observations used for estimation from 1979M2  to 2002M1                   
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                      .12038            .025490             4.7229[.000] 
 DOPR(-12)                 -.33537             .15713            -2.1344[.034] 
 DTRO                       .44242             .16112             2.7459[.006] 
 DJTRO(-5)                  .32761             .15057             2.1757[.030] 
 DJTRO(-11)                -.38353             .16122            -2.3789[.018] 
 DGNI                      -1.3840             .46722            -2.9623[.003] 
 DGNI(-7)                  -1.7645             .45001            -3.9210[.000] 
 DGNI(-8)                   1.1295             .46170             2.4464[.015] 
 S2                        -.36802            .031849           -11.5553[.000] 
 S3                        .065435            .032737             1.9988[.047] 
 S4                       -.083251            .033060            -2.5182[.012] 
 S5                        -.14078            .032506            -4.3308[.000] 
 S6                        -.32155            .032112           -10.0134[.000] 
 S7                        .041483            .031831             1.3032[.194] 
 S8                        -.12226            .036763            -3.3256[.001] 
 S9                        -.21411            .036473            -5.8705[.000] 
 S10                        .11072            .031571             3.5069[.001] 
 S11                       -.20449            .034721            -5.8896[.000] 
 S12                       -.20096            .032184            -6.2441[.000] 
 UT(-1)                    -.51083            .051866            -9.8491[.000] 
****************************************************************************** 
 R-Squared                     .83494   R-Bar-Squared                   .82269 
 S.E. of Regression           .091524   F-stat.    F( 19, 256)   68.1537[.000] 
 Mean of Dependent Variable  .0052030   S.D. of Dependent Variable      .21735 
 Residual Sum of Squares       2.1444   Equation Log-likelihood       278.7118 
 Akaike Info. Criterion      258.7118   Schwarz Bayesian Criterion    222.5078 
 DW-statistic                  2.1430                                          
****************************************************************************** 
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Table 5.4.3b Microfit output for ECM 
 Arrivals from Canada, 12 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 299 observations from 1978M2  to 2002M12. Order of VAR = 1, chosen r =3.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             JTRO            GNI           
 AIR                                                                           
****************************************************************************** 
                  Vector  1      Vector  2      Vector  3                      
 ARR                  .33094        .054050      -.0014914                     
                  (  -1.0000)    (  -1.0000)    (  -1.0000)                    
 OPR                 .069717       -.046504       -.058987                     
                  (  -.21066)    (   .86039)    ( -39.5521)                    
 TRO                 -.33401         .75509        .030773                     
                  (   1.0093)    ( -13.9702)    (  20.6341)                    
 JTRO                -.10852        -.23418      -.0037240                     
                  (   .32790)    (   4.3326)    (  -2.4970)                    
 GNI                 -.23902        .060353       -.042285                     
                  (   .72224)    (  -1.1166)    ( -28.3530)                    
 AIR                  .10846        -.53220        .037471                     
                  (  -.32772)    (   9.8465)    (  25.1247)                    
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 291 observations used for estimation from 1978M10 to 2002M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                      .12805            .025816             4.9599[.000] 
 DTRO                       .45801             .16331             2.8046[.005] 
 DGNI                      -1.4818             .46240            -3.2045[.002] 
 DGNI(-7)                  -1.8192             .45857            -3.9671[.000] 
 DGNI(-8)                   1.3066             .46889             2.7865[.006] 
 S2                        -.36559            .032248           -11.3371[.000] 
 S3                        .068892            .032615             2.1123[.036] 
 S4                        -.10701            .032970            -3.2458[.001] 
 S5                        -.14744            .032867            -4.4859[.000] 
 S6                        -.32245            .032223           -10.0068[.000] 
 S7                        .044036            .032083             1.3726[.171] 
 S8                        -.12890            .037071            -3.4772[.001] 
 S9                        -.24120            .036490            -6.6100[.000] 
 S10                        .10479            .031552             3.3212[.001] 
 S11                       -.20924            .034810            -6.0109[.000] 
 S12                       -.19938            .032058            -6.2193[.000] 
 UT(-1)                    -.48070            .049112            -9.7878[.000] 
****************************************************************************** 
 R-Squared                     .82046   R-Bar-Squared                   .80997 
 S.E. of Regression           .093729   F-stat.    F( 16, 274)   78.2567[.000] 
 Mean of Dependent Variable  .0046053   S.D. of Dependent Variable      .21501 
 Residual Sum of Squares       2.4071   Equation Log-likelihood       284.7468 
 Akaike Info. Criterion      267.7468   Schwarz Bayesian Criterion    236.5235 
 DW-statistic                  2.1465                                          
****************************************************************************** 
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Table 5.4.3c Microfit output for ECM 
 Arrivals from Canada, 24 months ahead model 
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 287 observations from 1978M2  to 2001M12. Order of VAR = 1, chosen r =3.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             JTRO            GNI           
 AIR                                                                           
****************************************************************************** 
                  Vector  1      Vector  2      Vector  3                      
 ARR                  .33801        .057337      -.0036617                     
                  (  -1.0000)    (  -1.0000)    (  -1.0000)                    
 OPR                 .042780       -.035093       -.096290                     
                  (  -.12656)    (   .61206)    ( -26.2963)                    
 TRO                 -.35560         .75518        .033435                     
                  (   1.0520)    ( -13.1709)    (   9.1309)                    
 JTRO                -.12265        -.22996       -.028841                     
                  (   .36286)    (   4.0107)    (  -7.8762)                    
 GNI                 -.23046        .052543       -.012427                     
                  (   .68181)    (  -.91639)    (  -3.3938)                    
 AIR                  .12057        -.53341        .029855                     
                  (  -.35672)    (   9.3030)    (   8.1534)                    
****************************************************************************** 
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 275 observations used for estimation from 1979M2  to 2001M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                      .11806            .026298             4.4895[.000] 
 DOPR(-12)                 -.34228             .15780            -2.1690[.031] 
 DTRO                       .44167             .16187             2.7286[.007] 
 DJTRO(-5)                  .32718             .15134             2.1618[.032] 
 DJTRO(-11)                -.38825             .16196            -2.3972[.017] 
 DGNI                      -1.3728             .47075            -2.9163[.004] 
 DGNI(-7)                  -1.7727             .45210            -3.9209[.000] 
 DGNI(-8)                   1.1260             .46415             2.4260[.016] 
 S2                        -.36552            .032562           -11.2254[.000] 
 S3                        .068991            .033129             2.0825[.038] 
 S4                       -.080532            .033869            -2.3778[.018] 
 S5                        -.13845            .033284            -4.1598[.000] 
 S6                        -.31901            .032828            -9.7174[.000] 
 S7                        .045014            .032281             1.3944[.164] 
 S8                        -.11932            .037530            -3.1792[.002] 
 S9                        -.21095            .037191            -5.6721[.000] 
 S10                        .11369            .032168             3.5341[.000] 
 S11                       -.20281            .035627            -5.6925[.000] 
 S12                       -.19841            .032899            -6.0309[.000] 
 UT(-1)                    -.50682            .052259            -9.6983[.000] 
****************************************************************************** 
 R-Squared                     .83407   R-Bar-Squared                   .82171 
 S.E. of Regression           .091937   F-stat.    F( 19, 255)   67.4639[.000] 
 Mean of Dependent Variable  .0050468   S.D. of Dependent Variable      .21773 
 Residual Sum of Squares       2.1554   Equation Log-likelihood       276.5043 
 Akaike Info. Criterion      256.5043   Schwarz Bayesian Criterion    220.3366 
 DW-statistic                  2.1313                                          
****************************************************************************** 
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Table 5.4.4a Microfit output for ECM 
 Arrivals from China, one month ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 288 observations from 1978M2  to 2002M1 . Order of VAR = 1, chosen r =3.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             GNI             AIR           
****************************************************************************** 
                  Vector  1      Vector  2      Vector  3                      
 ARR                 -.17350      -.0031254       -.010104                     
                  (  -1.0000)    (  -1.0000)    (  -1.0000)                    
                                                                               
 OPR                 -.17761        -.17800       -.023547                     
                  (  -1.0237)    ( -56.9540)    (  -2.3304)                    
                                                                               
 TRO                .0046900       -.038512        .013159                     
                  (  .027031)    ( -12.3223)    (   1.3023)                    
                                                                               
 GNI                 .031801        -.17349        .083534                     
                  (   .18329)    ( -55.5096)    (   8.2671)                    
                                                                               
 AIR                  .27461         .18784       -.029325                     
                  (   1.5827)    (  60.1014)    (  -2.9022)                    
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 277 observations used for estimation from 1979M1  to 2002M1                   
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                      .29412            .036466             8.0656[.000] 
 DGNI(-11)                  1.2287             .51594             2.3815[.018] 
 S2                        -.50501            .040924           -12.3402[.000] 
 S3                        .015701            .041032             .38265[.702] 
 S4                        -.20012            .040902            -4.8925[.000] 
 S5                        -.25318            .040815            -6.2031[.000] 
 S6                        -.42132            .040814           -10.3229[.000] 
 S7                        -.20771            .040833            -5.0868[.000] 
 S8                        -.10452            .040804            -2.5615[.011] 
 S9                        -.21410            .040794            -5.2483[.000] 
 S10                       -.23068            .040799            -5.6540[.000] 
 S11                       -.35617            .040820            -8.7253[.000] 
 S12                       -.68190            .053457           -12.7560[.000] 
 UT(-1)                  -.0041337           .0039654            -1.0424[.298] 
****************************************************************************** 
 R-Squared                     .64035   R-Bar-Squared                   .62257 
 S.E. of Regression            .13980   F-stat.    F( 13, 263)   36.0204[.000] 
 Mean of Dependent Variable   .016134   S.D. of Dependent Variable      .22756 
 Residual Sum of Squares       5.1401   Equation Log-likelihood       159.1455 
 Akaike Info. Criterion      145.1455   Schwarz Bayesian Criterion    119.7774 
 DW-statistic                  2.5767                                          
****************************************************************************** 
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Table 5.4.4b Microfit output for ECM 
 Arrivals from China, 12 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 299 observations from 1978M2  to 2002M12. Order of VAR = 1, chosen r =3.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             GNI             AIR           
****************************************************************************** 
                  Vector  1      Vector  2      Vector  3                      
 ARR                 -.17148      -.0037989      -.0056839                     
                  (  -1.0000)    (  -1.0000)    (  -1.0000)                    
                                                                               
 OPR                 -.17190        -.17707       -.012938                     
                  (  -1.0025)    ( -46.6092)    (  -2.2763)                    
                                                                               
 TRO                .0062483       -.037938        .012498                     
                  (  .036438)    (  -9.9865)    (   2.1987)                    
                                                                               
 GNI                 .014102        -.17711        .096463                     
                  (  .082237)    ( -46.6215)    (  16.9711)                    
                                                                               
 AIR                  .27651         .18932       -.045164                     
                  (   1.6125)    (  49.8354)    (  -7.9458)                    
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 288 observations used for estimation from 1979M1  to 2002M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                      .28815            .037272             7.7310[.000] 
 DGNI(-11)                  1.2014             .52103             2.3058[.022] 
 S2                        -.49875            .041047           -12.1506[.000] 
 S3                        .013022            .041127             .31662[.752] 
 S4                        -.19789            .041006            -4.8258[.000] 
 S5                        -.26322            .040888            -6.4375[.000] 
 S6                        -.43177            .040889           -10.5595[.000] 
 S7                        -.19228            .040895            -4.7018[.000] 
 S8                        -.10669            .040853            -2.6115[.010] 
 S9                        -.21639            .040841            -5.2985[.000] 
 S10                       -.23369            .040824            -5.7244[.000] 
 S11                       -.36544            .040829            -8.9505[.000] 
 S12                       -.67518            .053710           -12.5709[.000] 
 UT(-1)                  -.0017095           .0022777            -.75053[.454] 
****************************************************************************** 
 R-Squared                     .63196   R-Bar-Squared                   .61450 
 S.E. of Regression            .14142   F-stat.    F( 13, 274)   36.1913[.000] 
 Mean of Dependent Variable   .014519   S.D. of Dependent Variable      .22777 
 Residual Sum of Squares       5.4796   Equation Log-likelihood       161.8621 
 Akaike Info. Criterion      147.8621   Schwarz Bayesian Criterion    122.2214 
 DW-statistic                  2.5655                                          
****************************************************************************** 
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Table 5.4.4c Microfit output for ECM 
 Arrivals from China, 24 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 287 observations from 1978M2  to 2001M12. Order of VAR = 1, chosen r =2.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             GNI                           
****************************************************************************** 
                  Vector  1      Vector  2                                     
 ARR                 -.10203       -.026990                                    
                  (  -1.0000)    (  -1.0000)                                   
                                                                               
 OPR                 .025762       -.066071                                    
                  (   .25250)    (  -2.4480)                                   
                                                                               
 TRO                 .032179        .010980                                    
                  (   .31539)    (   .40684)                                   
                                                                               
 GNI                  .20282         .11063                                    
                  (   1.9879)    (   4.0988)                                   
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 276 observations used for estimation from 1979M1  to 2001M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                      .29761            .034228             8.6949[.000] 
 DGNI(-11)                  1.2768             .51365             2.4858[.014] 
 S2                        -.49773            .041056           -12.1233[.000] 
 S3                        .019688            .041207             .47777[.633] 
 S4                        -.19282            .041051            -4.6971[.000] 
 S5                        -.24400            .041042            -5.9451[.000] 
 S6                        -.41204            .041043           -10.0392[.000] 
 S7                        -.20090            .041041            -4.8951[.000] 
 S8                       -.096838            .041034            -2.3599[.019] 
 S9                        -.20412            .041074            -4.9695[.000] 
 S10                       -.22011            .041122            -5.3525[.000] 
 S11                       -.34473            .041192            -8.3688[.000] 
 S12                       -.67491            .053478           -12.6203[.000] 
 UT(-1)                   -.017502           .0094867            -1.8449[.066] 
****************************************************************************** 
 R-Squared                     .64099   R-Bar-Squared                   .62318 
 S.E. of Regression            .13915   F-stat.    F( 13, 262)   35.9836[.000] 
 Mean of Dependent Variable   .014684   S.D. of Dependent Variable      .22669 
 Residual Sum of Squares       5.0732   Equation Log-likelihood       159.8790 
 Akaike Info. Criterion      145.8790   Schwarz Bayesian Criterion    120.5362 
 DW-statistic                  2.5770                                          
****************************************************************************** 
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Table 5.4.5a Microfit output for ECM 
 Arrivals from France, one month ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 287 observations from 1978M3  to 2002M1 . Order of VAR = 2, chosen r =2.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             GNI                           
****************************************************************************** 
                  Vector  1      Vector  2                                     
 ARR                 -.29372       -.010795                                    
                  (  -1.0000)    (  -1.0000)                                   
                                                                               
 OPR                -.045211         .10592                                    
                  (  -.15393)    (   9.8119)                                   
                                                                               
 TRO                  .20605         .25887                                    
                  (   .70151)    (  23.9800)                                   
                                                                               
 GNI                  .18242        -.22672                                    
                  (   .62107)    ( -21.0017)                                   
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 283 observations used for estimation from 1978M7  to 2002M1                   
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                    -.051453            .028703            -1.7926[.074] 
 DGNI(-5)                  -.49074             .23367            -2.1001[.037] 
 S2                        -.12022            .033519            -3.5867[.000] 
 S3                         .21746            .033354             6.5199[.000] 
 S4                         .18609            .037304             4.9884[.000] 
 S5                         .11404            .040940             2.7855[.006] 
 S6                        -.12701            .041279            -3.0769[.002] 
 S7                         .18408            .034498             5.3360[.000] 
 S8                        .017845            .038778             .46018[.646] 
 S9                         .14810            .036918             4.0116[.000] 
 S10                        .34284            .039543             8.6700[.000] 
 S11                       .024944            .047495             .52518[.600] 
 S12                       -.34198            .040840            -8.3735[.000] 
 UT(-1)                    -.48854            .051664            -9.4561[.000] 
****************************************************************************** 
 R-Squared                     .80610   R-Bar-Squared                   .79673 
 S.E. of Regression            .11428   F-stat.    F( 13, 269)   86.0252[.000] 
 Mean of Dependent Variable  .0048420   S.D. of Dependent Variable      .25348 
 Residual Sum of Squares       3.5132   Equation Log-likelihood       219.4739 
 Akaike Info. Criterion      205.4739   Schwarz Bayesian Criterion    179.9557 
 DW-statistic                  2.1987                                          
****************************************************************************** 
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Table 5.4.5b Microfit output for ECM 
 Arrivals from France, 12 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 298 observations from 1978M3  to 2002M12. Order of VAR = 2, chosen r =2.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             GNI                           
****************************************************************************** 
                  Vector  1      Vector  2                                     
 ARR                 -.28814       -.012931                                    
                  (  -1.0000)    (  -1.0000)                                   
                                                                               
 OPR                -.038675         .10632                                    
                  (  -.13423)    (   8.2220)                                   
                                                                               
 TRO                  .21579         .25751                                    
                  (   .74893)    (  19.9150)                                   
                                                                               
 GNI                  .16694        -.22339                                    
                  (   .57938)    ( -17.2756)                                   
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 294 observations used for estimation from 1978M7  to 2002M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                    -.050639            .028930            -1.7504[.081] 
 DGNI(-5)                  -.59197             .23517            -2.5172[.012] 
 S2                        -.11320            .033804            -3.3488[.001] 
 S3                         .21803            .033581             6.4926[.000] 
 S4                         .18826            .037448             5.0272[.000] 
 S5                         .10251            .040960             2.5027[.013] 
 S6                        -.11364            .040968            -2.7738[.006] 
 S7                         .18337            .034894             5.2551[.000] 
 S8                        .012859            .038873             .33080[.741] 
 S9                         .14353            .037005             3.8787[.000] 
 S10                        .33613            .039399             8.5315[.000] 
 S11                       .017440            .046835             .37236[.710] 
 S12                       -.33709            .040612            -8.3002[.000] 
 UT(-1)                    -.47310            .049804            -9.4993[.000] 
****************************************************************************** 
 R-Squared                     .79438   R-Bar-Squared                   .78483 
 S.E. of Regression            .11621   F-stat.    F( 13, 280)   83.2111[.000] 
 Mean of Dependent Variable  .0042494   S.D. of Dependent Variable      .25052 
 Residual Sum of Squares       3.7812   Equation Log-likelihood       222.8038 
 Akaike Info. Criterion      208.8038   Schwarz Bayesian Criterion    183.0187 
 DW-statistic                  2.2095                                          
****************************************************************************** 
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Table 5.4.5c Microfit output for ECM 
 Arrivals from France, 24 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 286 observations from 1978M3  to 2001M12. Order of VAR = 2, chosen r =2.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             GNI                           
****************************************************************************** 
                  Vector  1      Vector  2                                     
 ARR                 -.29388       -.010987                                    
                  (  -1.0000)    (  -1.0000)                                   
                                                                               
 OPR                -.045789         .10625                                    
                  (  -.15581)    (   9.6700)                                   
                                                                               
 TRO                  .20424         .26106                                    
                  (   .69499)    (  23.7603)                                   
                                                                               
 GNI                  .18413        -.22828                                    
                  (   .62656)    ( -20.7769)                                   
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 282 observations used for estimation from 1978M7  to 2001M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                    -.061400            .029681            -2.0687[.040] 
 DGNI(-5)                  -.48721             .23336            -2.0878[.038] 
 S2                        -.11281            .033925            -3.3254[.001] 
 S3                         .22428            .033689             6.6576[.000] 
 S4                         .19654            .038066             5.1632[.000] 
 S5                         .12609            .041871             3.0114[.003] 
 S6                        -.11522            .042152            -2.7335[.007] 
 S7                         .19304            .035092             5.5010[.000] 
 S8                        .029134            .039638             .73500[.463] 
 S9                         .15856            .037685             4.2075[.000] 
 S10                        .35451            .040440             8.7662[.000] 
 S11                       .039440            .048658             .81056[.418] 
 S12                       -.32976            .041792            -7.8905[.000] 
 UT(-1)                    -.50023            .052346            -9.5562[.000] 
****************************************************************************** 
 R-Squared                     .80731   R-Bar-Squared                   .79796 
 S.E. of Regression            .11412   F-stat.    F( 13, 268)   86.3692[.000] 
 Mean of Dependent Variable  .0045983   S.D. of Dependent Variable      .25389 
 Residual Sum of Squares       3.4905   Equation Log-likelihood       219.1137 
 Akaike Info. Criterion      205.1137   Schwarz Bayesian Criterion    179.6204 
 DW-statistic                  2.1736                                          
****************************************************************************** 
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Table 5.4.6a Microfit output for ECM 
 Arrivals from Germany, one month ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 288 observations from 1978M2  to 2002M1 . Order of VAR = 1, chosen r =3.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             GNI             AIR           
****************************************************************************** 
                  Vector  1      Vector  2      Vector  3                      
 ARR                 -.20815       -.041008        .020014                     
                  (  -1.0000)    (  -1.0000)    (  -1.0000)                    
                                                                               
 OPR                -.030475        .040025         .17743                     
                  (  -.14641)    (   .97603)    (  -8.8653)                    
                                                                               
 TRO                  .15491         .18634         .14366                     
                  (   .74424)    (   4.5440)    (  -7.1778)                    
                                                                               
 GNI                  .11732        -.18211        -.17594                     
                  (   .56364)    (  -4.4409)    (   8.7910)                    
                                                                               
 AIR               -.0069730        .046896       -.022766                     
                  ( -.033500)    (   1.1436)    (   1.1375)                    
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 286 observations used for estimation from 1978M4  to 2002M1                   
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                    .0075045            .030995             .24212[.809] 
 DOPR(-2)                   .19938             .10277             1.9401[.053] 
 S2                        -.12862            .031041            -4.1435[.000] 
 S3                         .31141            .031125            10.0052[.000] 
 S4                         .10933            .041412             2.6400[.009] 
 S5                       -.022697            .043685            -.51956[.604] 
 S6                        -.32375            .040410            -8.0118[.000] 
 S7                        .089396            .031637             2.8257[.005] 
 S8                       -.086688            .035764            -2.4239[.016] 
 S9                         .12049            .034424             3.5000[.001] 
 S10                        .34267            .039283             8.7230[.000] 
 S11                      -.095090            .050898            -1.8682[.063] 
 S12                       -.58568            .042274           -13.8542[.000] 
 UT(-1)                    -.39112            .047293            -8.2703[.000] 
****************************************************************************** 
 R-Squared                     .89514   R-Bar-Squared                   .89013 
 S.E. of Regression            .10317   F-stat.    F( 13, 272)  178.6154[.000] 
 Mean of Dependent Variable  .0019746   S.D. of Dependent Variable      .31125 
 Residual Sum of Squares       2.8950   Equation Log-likelihood       250.9815 
 Akaike Info. Criterion      236.9815   Schwarz Bayesian Criterion    211.3895 
 DW-statistic                  2.2273                                          
****************************************************************************** 
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Table 5.4.6b Microfit output for ECM 
 Arrivals from Germany, 12 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 299 observations from 1978M2  to 2002M12. Order of VAR = 1, chosen r =4.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             GNI             AIR           
****************************************************************************** 
                  Vector  1      Vector  2      Vector  3      Vector  4       
 ARR                 -.20585        .036968        .018525       .0080093      
                  (  -1.0000)    (  -1.0000)    (  -1.0000)    (  -1.0000)     
                                                                               
 OPR                -.030447       -.039043         .17769      -.0089466      
                  (  -.14791)    (   1.0561)    (  -9.5918)    (   1.1170)     
                                                                               
 TRO                  .16087        -.17619         .14259        -.27952      
                  (   .78149)    (   4.7661)    (  -7.6970)    (  34.8990)     
                                                                               
 GNI                  .10504         .17427        -.17237         .25894      
                  (   .51026)    (  -4.7140)    (   9.3045)    ( -32.3302)     
                                                                               
 AIR               -.0024530       -.043308       -.023968       -.013787      
                  ( -.011917)    (   1.1715)    (   1.2938)    (   1.7214)     
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 290 observations used for estimation from 1978M11 to 2002M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                    -.010816            .032210            -.33580[.737] 
 DAIR(-9)                  -.30677             .13700            -2.2392[.026] 
 S2                        -.11675            .031888            -3.6613[.000] 
 S3                         .31959            .031912            10.0146[.000] 
 S4                         .13446            .043053             3.1231[.002] 
 S5                      -.0010701            .044956           -.023802[.981] 
 S6                        -.27202            .041600            -6.5390[.000] 
 S7                        .090949            .033107             2.7471[.006] 
 S8                       -.077903            .037199            -2.0942[.037] 
 S9                         .13120            .035502             3.6957[.000] 
 S10                        .36527            .040395             9.0424[.000] 
 S11                      -.053299            .052489            -1.0154[.311] 
 S12                       -.54411            .043626           -12.4722[.000] 
 UT(-1)                    -.42908            .048984            -8.7596[.000] 
****************************************************************************** 
 R-Squared                     .88682   R-Bar-Squared                   .88149 
 S.E. of Regression            .10668   F-stat.    F( 13, 276)  166.3606[.000] 
 Mean of Dependent Variable  .0010631   S.D. of Dependent Variable      .30990 
 Residual Sum of Squares       3.1412   Equation Log-likelihood       244.6746 
 Akaike Info. Criterion      230.6746   Schwarz Bayesian Criterion    204.9854 
 DW-statistic                  2.2109                                          
****************************************************************************** 
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Table 5.4.6c Microfit output for ECM 
 Arrivals from Germany, 24 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 287 observations from 1978M2  to 2001M12. Order of VAR = 1, chosen r =3.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             GNI             AIR           
****************************************************************************** 
                  Vector  1      Vector  2      Vector  3                      
 ARR                 -.20795       -.043026        .021016                     
                  (  -1.0000)    (  -1.0000)    (  -1.0000)                    
                                                                               
 OPR                -.030945        .042183         .17700                     
                  (  -.14881)    (   .98041)    (  -8.4222)                    
                                                                               
 TRO                  .15358         .18646         .13986                     
                  (   .73855)    (   4.3337)    (  -6.6552)                    
                                                                               
 GNI                  .11888        -.17852        -.17316                     
                  (   .57166)    (  -4.1491)    (   8.2394)                    
                                                                               
 AIR               -.0073754        .044791       -.023091                     
                  ( -.035467)    (   1.0410)    (   1.0988)                    
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 285 observations used for estimation from 1978M4  to 2001M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                   -.0031311            .031784           -.098513[.922] 
 DOPR(-2)                   .20459             .10265             1.9931[.047] 
 S2                        -.12139            .031407            -3.8651[.000] 
 S3                         .31894            .031522            10.1180[.000] 
 S4                         .11957            .041997             2.8472[.005] 
 S5                       -.011941            .044295            -.26958[.788] 
 S6                        -.31373            .040982            -7.6554[.000] 
 S7                        .097283            .032074             3.0331[.003] 
 S8                       -.077566            .036294            -2.1371[.033] 
 S9                         .12924            .034927             3.7002[.000] 
 S10                        .35257            .039854             8.8467[.000] 
 S11                      -.083126            .051538            -1.6129[.108] 
 S12                       -.57516            .042872           -13.4155[.000] 
 UT(-1)                    -.39755            .047422            -8.3834[.000] 
****************************************************************************** 
 R-Squared                     .89566   R-Bar-Squared                   .89066 
 S.E. of Regression            .10299   F-stat.    F( 13, 271)  178.9511[.000] 
 Mean of Dependent Variable  .0011336   S.D. of Dependent Variable      .31147 
 Residual Sum of Squares       2.8746   Equation Log-likelihood       250.6123 
 Akaike Info. Criterion      236.6123   Schwarz Bayesian Criterion    211.0448 
 DW-statistic                  2.2265                                          
****************************************************************************** 
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Table 5.4.7a Microfit output for ECM 
 Arrivals from Korea, one month ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 288 observations from 1978M2  to 2002M1 . Order of VAR = 1, chosen r =2.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             JTRO            GNI           
 AIR                                                                           
****************************************************************************** 
                  Vector  1      Vector  2                                     
 ARR                  .20156        -.15965                                    
                  (  -1.0000)    (  -1.0000)                                   
 OPR                  .12086        .060669                                    
                  (  -.59960)    (   .38002)                                   
 TRO                -.088474         .11520                                    
                  (   .43895)    (   .72158)                                   
 JTRO                -.19733        .021971                                    
                  (   .97900)    (   .13762)                                   
 GNI                 -.26560         .15402                                    
                  (   1.3177)    (   .96472)                                   
 AIR                 .073886       -.016778                                    
                  (  -.36657)    (  -.10509)                                   
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 277 observations used for estimation from 1979M1  to 2002M1                   
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                     .091663            .019720             4.6481[.000] 
 DTRO                      -.18626            .088078            -2.1147[.035] 
 DGNI                       .60376             .16137             3.7414[.000] 
 DGNI(-8)                   .28097             .14230             1.9745[.049] 
 DAIR(-11)                -.076414            .035267            -2.1668[.031] 
 S2                        -.23773            .025301            -9.3958[.000] 
 S3                        .012159            .024828             .48971[.625] 
 S4                       -.058762            .024988            -2.3516[.019] 
 S5                       -.067387            .025189            -2.6752[.008] 
 S6                        -.15605            .025178            -6.1979[.000] 
 S7                        .085710            .024970             3.4326[.001] 
 S8                        .023960            .025823             .92786[.354] 
 S9                        -.33392            .029172           -11.4463[.000] 
 S10                       .037099            .025109             1.4775[.141] 
 S11                       -.10449            .025927            -4.0302[.000] 
 S12                       -.18960            .025729            -7.3690[.000] 
 UT(-1)                   -.051455            .022134            -2.3246[.021] 
****************************************************************************** 
 R-Squared                     .75906   R-Bar-Squared                   .74423 
 S.E. of Regression           .073691   F-stat.    F( 16, 260)   51.1930[.000] 
 Mean of Dependent Variable  .0099610   S.D. of Dependent Variable      .14571 
 Residual Sum of Squares       1.4119   Equation Log-likelihood       338.1058 
 Akaike Info. Criterion      321.1058   Schwarz Bayesian Criterion    290.3016 
 DW-statistic                  2.2125                                          
****************************************************************************** 
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Table 5.4.7b Microfit output for ECM 
 Arrivals from Korea, 12 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 299 observations from 1978M2  to 2002M12. Order of VAR = 1, chosen r =2.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             JTRO            GNI           
 AIR                                                                           
****************************************************************************** 
                  Vector  1      Vector  2                                     
 ARR                  .21522         .13552                                    
                  (  -1.0000)    (  -1.0000)                                   
 OPR                  .11233       -.079422                                    
                  (  -.52195)    (   .58607)                                   
 TRO                -.097554       -.094967                                    
                  (   .45328)    (   .70079)                                   
 JTRO                -.19720      -.0016385                                    
                  (   .91628)    (  .012091)                                   
 GNI                 -.27613        -.12580                                    
                  (   1.2830)    (   .92831)                                   
 AIR                 .071633       .0061791                                    
                  (  -.33284)    ( -.045597)                                   
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 291 observations used for estimation from 1978M10 to 2002M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                     .091150            .020187             4.5152[.000] 
 DGNI                       .48958             .15125             3.2369[.001] 
 DGNI(-8)                   .32924             .14443             2.2795[.023] 
 S2                        -.24349            .025510            -9.5445[.000] 
 S3                       .0058579            .025201             .23244[.816] 
 S4                       -.056585            .025333            -2.2336[.026] 
 S5                       -.071340            .025479            -2.8000[.005] 
 S6                        -.15738            .025489            -6.1743[.000] 
 S7                        .094645            .025328             3.7368[.000] 
 S8                        .024413            .026087             .93585[.350] 
 S9                        -.35308            .029305           -12.0483[.000] 
 S10                       .038845            .025337             1.5331[.126] 
 S11                       -.10639            .026101            -4.0761[.000] 
 S12                       -.18840            .025866            -7.2836[.000] 
 UT(-1)                   -.061823            .021304            -2.9019[.004] 
****************************************************************************** 
 R-Squared                     .75381   R-Bar-Squared                   .74133 
 S.E. of Regression           .075404   F-stat.    F( 14, 276)   60.3642[.000] 
 Mean of Dependent Variable  .0083589   S.D. of Dependent Variable      .14826 
 Residual Sum of Squares       1.5693   Equation Log-likelihood       346.9918 
 Akaike Info. Criterion      331.9918   Schwarz Bayesian Criterion    304.4418 
 DW-statistic                  2.1855                                          
****************************************************************************** 
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Table 5.4.7c Microfit output for ECM 
 Arrivals from Korea, 24 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 287 observations from 1978M2  to 2001M12. Order of VAR = 1, chosen r =2.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             JTRO            GNI           
 AIR                                                                           
****************************************************************************** 
                  Vector  1      Vector  2                                     
 ARR                  .20865         .15406                                    
                  (  -1.0000)    (  -1.0000)                                   
 OPR                  .11760       -.071297                                    
                  (  -.56361)    (   .46278)                                   
 TRO                -.092397        -.10230                                    
                  (   .44283)    (   .66404)                                   
 JTRO                -.19839       -.017707                                    
                  (   .95081)    (   .11493)                                   
 GNI                 -.27302        -.15095                                    
                  (   1.3085)    (   .97982)                                   
 AIR                 .074344        .012760                                    
                  (  -.35631)    ( -.082822)                                   
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 276 observations used for estimation from 1979M1  to 2001M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                     .084651            .020161             4.1988[.000] 
 DTRO                      -.20966            .087689            -2.3910[.018] 
 DGNI                       .63502             .16147             3.9327[.000] 
 DAIR(-9)                  .068791            .034985             1.9663[.050] 
 DAIR(-11)                -.075092            .035146            -2.1366[.034] 
 S2                        -.23144            .025612            -9.0366[.000] 
 S3                        .017811            .025110             .70933[.479] 
 S4                       -.052919            .025281            -2.0932[.037] 
 S5                       -.060997            .025495            -2.3925[.017] 
 S6                        -.15016            .025484            -5.8924[.000] 
 S7                        .085388            .025465             3.3531[.001] 
 S8                        .030849            .026152             1.1796[.239] 
 S9                        -.30179            .026889           -11.2235[.000] 
 S10                       .043433            .025414             1.7091[.089] 
 S11                      -.097575            .026254            -3.7165[.000] 
 S12                       -.18435            .026060            -7.0739[.000] 
 UT(-1)                   -.053679            .022348            -2.4020[.017] 
****************************************************************************** 
 R-Squared                     .75968   R-Bar-Squared                   .74483 
 S.E. of Regression           .073490   F-stat.    F( 16, 259)   51.1692[.000] 
 Mean of Dependent Variable  .0092421   S.D. of Dependent Variable      .14548 
 Residual Sum of Squares       1.3988   Equation Log-likelihood       337.6750 
 Akaike Info. Criterion      320.6750   Schwarz Bayesian Criterion    289.9016 
 DW-statistic                  2.2175                                          
****************************************************************************** 
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Table 5.4.8a Microfit output for ECM 
 Arrivals from Singapore, one month ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 288 observations from 1978M2  to 2002M1 . Order of VAR = 1, chosen r =2.      
 List of variables included in the cointegrating vector:                       
 ARR             JTRO            GNI             AIR                           
****************************************************************************** 
                  Vector  1      Vector  2                                     
 ARR                 -.15484       -.017927                                    
                  (  -1.0000)    (  -1.0000)                                   
                                                                               
 JTRO                .099051         .21040                                    
                  (   .63972)    (  11.7366)                                   
                                                                               
 GNI                 .074505        .089131                                    
                  (   .48118)    (   4.9719)                                   
                                                                               
 AIR                 .051157        -.17630                                    
                  (   .33039)    (  -9.8344)                                   
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 276 observations used for estimation from 1979M2  to 2002M1                   
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                     -.84433            .056761           -14.8753[.000] 
 DGNI(-11)                 -1.4756             .49217            -2.9983[.003] 
 DGNI(-12)                  1.4114             .49215             2.8679[.004] 
 S2                         .97969            .068862            14.2269[.000] 
 S3                         1.0602            .068857            15.3968[.000] 
 S4                         1.1771            .068731            17.1258[.000] 
 S5                         .83759            .068748            12.1833[.000] 
 S6                         1.1911            .068735            17.3293[.000] 
 S7                        .084492            .068771             1.2286[.220] 
 S8                         .80355            .068733            11.6908[.000] 
 S9                         1.1054            .068744            16.0806[.000] 
 S10                        .95902            .068761            13.9472[.000] 
 S11                        .96240            .068748            13.9989[.000] 
 S12                        1.1050            .079195            13.9525[.000] 
 UT(-1)                  -.0024109           .0045834            -.52601[.599] 
****************************************************************************** 
 R-Squared                     .78953   R-Bar-Squared                   .77824 
 S.E. of Regression            .19119   F-stat.    F( 14, 261)   69.9354[.000] 
 Mean of Dependent Variable  .0062739   S.D. of Dependent Variable      .40601 
 Residual Sum of Squares       9.5410   Equation Log-likelihood        72.7161 
 Akaike Info. Criterion       57.7161   Schwarz Bayesian Criterion     30.5631 
 DW-statistic                  2.8975                                          
****************************************************************************** 
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Table 5.4.8b Microfit output for ECM 
 Arrivals from Singapore, 12 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 299 observations from 1978M2  to 2002M12. Order of VAR = 1, chosen r =2.      
 List of variables included in the cointegrating vector:                       
 ARR             JTRO            GNI             AIR                           
****************************************************************************** 
                  Vector  1      Vector  2                                     
 ARR                 -.15220       -.018203                                    
                  (  -1.0000)    (  -1.0000)                                   
                                                                               
 JTRO                 .10106         .21220                                    
                  (   .66400)    (  11.6570)                                   
                                                                               
 GNI                 .076551        .089539                                    
                  (   .50295)    (   4.9188)                                   
                                                                               
 AIR                 .045627        -.17724                                    
                  (   .29977)    (  -9.7365)                                   
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 287 observations used for estimation from 1979M2  to 2002M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                     -.84424            .057405           -14.7067[.000] 
 DGNI(-11)                 -1.4576             .48312            -3.0171[.003] 
 DGNI(-12)                  1.4112             .49797             2.8339[.005] 
 S2                         .99448            .069201            14.3710[.000] 
 S3                         1.0604            .069192            15.3252[.000] 
 S4                         1.1653            .069056            16.8746[.000] 
 S5                         .83532            .069066            12.0944[.000] 
 S6                         1.1748            .069056            17.0122[.000] 
 S7                         .10114            .069087             1.4639[.144] 
 S8                         .79844            .069061            11.5614[.000] 
 S9                         1.1049            .069074            15.9955[.000] 
 S10                        .96370            .069094            13.9476[.000] 
 S11                        .97650            .069078            14.1361[.000] 
 S12                        1.1023            .078174            14.1007[.000] 
 UT(-1)                  -.0025124           .0046630            -.53880[.590] 
****************************************************************************** 
 R-Squared                     .77945   R-Bar-Squared                   .76810 
 S.E. of Regression            .19346   F-stat.    F( 14, 272)   68.6642[.000] 
 Mean of Dependent Variable   .010609   S.D. of Dependent Variable      .40173 
 Residual Sum of Squares      10.1799   Equation Log-likelihood        71.9213 
 Akaike Info. Criterion       56.9213   Schwarz Bayesian Criterion     29.4752 
 DW-statistic                  2.8754                                          
****************************************************************************** 
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Table 5.4.8c Microfit output for ECM 
 Arrivals from Singapore, 24 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 287 observations from 1978M2  to 2001M12. Order of VAR = 1, chosen r =2.      
 List of variables included in the cointegrating vector:                       
 ARR             JTRO            GNI             AIR                           
****************************************************************************** 
                  Vector  1      Vector  2                                     
 ARR                 -.15563       -.020025                                    
                  (  -1.0000)    (  -1.0000)                                   
                                                                               
 JTRO                .098351         .20681                                    
                  (   .63195)    (  10.3275)                                   
                                                                               
 GNI                 .075523        .089103                                    
                  (   .48527)    (   4.4495)                                   
                                                                               
 AIR                 .051548        -.17227                                    
                  (   .33122)    (  -8.6025)                                   
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 275 observations used for estimation from 1979M2  to 2001M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                     -.82589            .063083           -13.0920[.000] 
 DGNI(-11)                 -1.4753             .49263            -2.9946[.003] 
 DGNI(-12)                  1.2693             .54062             2.3478[.020] 
 S2                         .96178            .074113            12.9772[.000] 
 S3                         1.0423            .074103            14.0660[.000] 
 S4                         1.1596            .073953            15.6808[.000] 
 S5                         .82044            .073960            11.0930[.000] 
 S6                         1.1739            .073951            15.8742[.000] 
 S7                        .067543            .073985             .91293[.362] 
 S8                         .78604            .073959            10.6281[.000] 
 S9                         1.0878            .073974            14.7058[.000] 
 S10                        .94148            .073990            12.7244[.000] 
 S11                        .94494            .073973            12.7740[.000] 
 S12                        1.0876            .083787            12.9801[.000] 
 UT(-1)                  -.0031996           .0052127            -.61381[.540] 
****************************************************************************** 
 R-Squared                     .78446   R-Bar-Squared                   .77285 
 S.E. of Regression            .19138   F-stat.    F( 14, 260)   67.5895[.000] 
 Mean of Dependent Variable   .010170   S.D. of Dependent Variable      .40155 
 Residual Sum of Squares       9.5227   Equation Log-likelihood        72.2171 
 Akaike Info. Criterion       57.2171   Schwarz Bayesian Criterion     30.0913 
 DW-statistic                  2.9009                                          
****************************************************************************** 
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Table 5.4.9a Microfit output for ECM 
 Arrivals from Taiwan, one month ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 287 observations from 1978M3  to 2002M1 . Order of VAR = 2, chosen r =3.      
 List of variables included in the cointegrating vector:                       
 ARR             CPITAI          JTRO            AIR                           
****************************************************************************** 
                  Vector  1      Vector  2      Vector  3                      
 ARR                 -.27304       -.053080        .052080                     
                  (  -1.0000)    (  -1.0000)    (  -1.0000)                    
                                                                               
 CPITAI               .62189         .25261        .096016                     
                  (   2.2777)    (   4.7590)    (  -1.8436)                    
                                                                               
 JTRO               -.017924         .10589        -.12929                     
                  ( -.065646)    (   1.9949)    (   2.4826)                    
                                                                               
 AIR                 .021594        -.10169       -.059169                     
                  (  .079089)    (  -1.9159)    (   1.1361)                    
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 277 observations used for estimation from 1979M1  to 2002M1                   
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                   -.0077217            .036625            -.21083[.833] 
 DCPITAI                    3.3665             1.1334             2.9704[.003] 
 DJTRO(-1)                  .55430             .27046             2.0494[.041] 
 DAIR(-4)                   .17536            .041246             4.2516[.000] 
 DAIR(-10)                  .14714            .039708             3.7056[.000] 
 DAIR(-11)                 -.11974            .033533            -3.5708[.000] 
 S2                         .33400            .050661             6.5929[.000] 
 S3                        -.12110            .050706            -2.3882[.018] 
 S4                         .21430            .050441             4.2485[.000] 
 S5                        -.14676            .050658            -2.8971[.004] 
 S6                       -.097342            .050477            -1.9284[.055] 
 S7                         .44477            .051960             8.5599[.000] 
 S8                        -.18390            .051510            -3.5701[.000] 
 S9                        -.29026            .051257            -5.6629[.000] 
 S10                        .13283            .050548             2.6277[.009] 
 S11                       -.24058            .051644            -4.6584[.000] 
 S12                       -.12449            .051218            -2.4306[.016] 
 UT(-1)                   -.021019            .010137            -2.0735[.039] 
****************************************************************************** 
 R-Squared                     .66678   R-Bar-Squared                   .64491 
 S.E. of Regression            .17026   F-stat.    F( 17, 259)   30.4858[.000] 
 Mean of Dependent Variable  .0069363   S.D. of Dependent Variable      .28572 
 Residual Sum of Squares       7.5081   Equation Log-likelihood       106.6662 
 Akaike Info. Criterion       88.6662   Schwarz Bayesian Criterion     56.0501 
 DW-statistic                  2.7848                                          
****************************************************************************** 
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Table 5.4.9b Microfit output for ECM 
 Arrivals from Taiwan, 12 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 298 observations from 1978M3  to 2002M12. Order of VAR = 2, chosen r =3.      
 List of variables included in the cointegrating vector:                       
 ARR             CPITAI          JTRO            AIR                           
****************************************************************************** 
                  Vector  1      Vector  2      Vector  3                      
 ARR                 -.27140       -.050521        .051052                     
                  (  -1.0000)    (  -1.0000)    (  -1.0000)                    
                                                                               
 CPITAI               .62088         .24206        .098350                     
                  (   2.2877)    (   4.7912)    (  -1.9265)                    
                                                                               
 JTRO               -.018477         .11009        -.12889                     
                  ( -.068082)    (   2.1791)    (   2.5246)                    
                                                                               
 AIR                 .020505        -.10138       -.059270                     
                  (  .075553)    (  -2.0067)    (   1.1610)                    
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 288 observations used for estimation from 1979M1  to 2002M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                    .0013485            .035529            .037955[.970] 
 DCPITAI                    3.4372             1.0830             3.1739[.002] 
 DJTRO(-1)                  .64249             .25832             2.4872[.013] 
 DAIR(-4)                   .16464            .040090             4.1067[.000] 
 DAIR(-5)                  -.11781            .040512            -2.9079[.004] 
 DAIR(-10)                  .14236            .038506             3.6969[.000] 
 DAIR(-11)                 -.18033            .038715            -4.6580[.000] 
 S2                         .32362            .048553             6.6652[.000] 
 S3                        -.12578            .048736            -2.5808[.010] 
 S4                         .21011            .048387             4.3424[.000] 
 S5                        -.15121            .048587            -3.1122[.002] 
 S6                        -.10307            .048450            -2.1273[.034] 
 S7                         .43998            .049815             8.8323[.000] 
 S8                        -.18166            .049281            -3.6862[.000] 
 S9                        -.29799            .049070            -6.0727[.000] 
 S10                        .13519            .048445             2.7906[.006] 
 S11                       -.24153            .049473            -4.8820[.000] 
 S12                       -.12721            .049130            -2.5893[.010] 
 UT(-1)                  -.0098239           .0098676            -.99557[.320] 
****************************************************************************** 
 R-Squared                     .68334   R-Bar-Squared                   .66215 
 S.E. of Regression            .16505   F-stat.    F( 18, 269)   32.2493[.000] 
 Mean of Dependent Variable  .0066863   S.D. of Dependent Variable      .28396 
 Residual Sum of Squares       7.3280   Equation Log-likelihood       120.0061 
 Akaike Info. Criterion      101.0061   Schwarz Bayesian Criterion     66.2079 
 DW-statistic                  2.8014                                          
****************************************************************************** 
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Table 5.4.9c Microfit output for ECM 
 Arrivals from Taiwan, 24 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 286 observations from 1978M3  to 2001M12. Order of VAR = 2, chosen r =3.      
 List of variables included in the cointegrating vector:                       
 ARR             CPITAI          JTRO            AIR                           
****************************************************************************** 
                  Vector  1      Vector  2      Vector  3                      
 ARR                 -.27366       -.052382        .052474                     
                  (  -1.0000)    (  -1.0000)    (  -1.0000)                    
                                                                               
 CPITAI               .62449         .25220        .095659                     
                  (   2.2820)    (   4.8147)    (  -1.8230)                    
                                                                               
 JTRO               -.017950         .10555        -.13119                     
                  ( -.065593)    (   2.0150)    (   2.5002)                    
                                                                               
 AIR                 .021095        -.10217       -.058666                     
                  (  .077084)    (  -1.9504)    (   1.1180)                    
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 276 observations used for estimation from 1979M1  to 2001M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                    -.011070            .037456            -.29553[.768] 
 DCPITAI                    3.3768             1.1353             2.9745[.003] 
 DJTRO(-1)                  .56202             .27137             2.0710[.039] 
 DAIR(-4)                   .17503            .041324             4.2356[.000] 
 DAIR(-10)                  .14760            .039792             3.7093[.000] 
 DAIR(-11)                 -.11977            .033589            -3.5657[.000] 
 S2                         .33767            .051333             6.5780[.000] 
 S3                        -.11771            .051337            -2.2928[.023] 
 S4                         .21766            .051075             4.2616[.000] 
 S5                        -.14344            .051307            -2.7956[.006] 
 S6                       -.094090            .051085            -1.8418[.067] 
 S7                         .44842            .052648             8.5172[.000] 
 S8                        -.18074            .052132            -3.4669[.001] 
 S9                        -.28715            .051848            -5.5384[.000] 
 S10                        .13635            .051204             2.6629[.008] 
 S11                       -.23708            .052298            -4.5333[.000] 
 S12                       -.12089            .051872            -2.3305[.021] 
 UT(-1)                   -.020449           .0099883            -2.0473[.042] 
****************************************************************************** 
 R-Squared                     .66687   R-Bar-Squared                   .64492 
 S.E. of Regression            .17055   F-stat.    F( 17, 258)   30.3807[.000] 
 Mean of Dependent Variable  .0066591   S.D. of Dependent Variable      .28620 
 Residual Sum of Squares       7.5041   Equation Log-likelihood       105.8563 
 Akaike Info. Criterion       87.8563   Schwarz Bayesian Criterion     55.2727 
 DW-statistic                  2.7883                                          
****************************************************************************** 
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Table 5.4.10a Microfit output for ECM 
 Arrivals from the UK, one month ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 288 observations from 1978M2  to 2002M1 . Order of VAR = 1, chosen r =3.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             JTRO            GNI           
 AIR                                                                           
****************************************************************************** 
                  Vector  1      Vector  2      Vector  3                      
 ARR                 -.23289        .034797        .031281                     
                  (  -1.0000)    (  -1.0000)    (  -1.0000)                    
 OPR               -.0045970       -.029684         .19150                     
                  ( -.019739)    (   .85306)    (  -6.1217)                    
 TRO                  .18262        -.29361         .37529                     
                  (   .78414)    (   8.4377)    ( -11.9973)                    
 JTRO                 .12146        -.18832       -.043197                     
                  (   .52155)    (   5.4120)    (   1.3809)                    
 GNI                  .12850         .37484        -.40541                     
                  (   .55178)    ( -10.7721)    (  12.9601)                    
 AIR                -.019686       -.088104        .022108                     
                  ( -.084528)    (   2.5319)    (  -.70674)                    
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 282 observations used for estimation from 1978M8  to 2002M1                   
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                    -.038817            .035537            -1.0923[.276] 
 DTRO(-1)                   .80650             .32471             2.4837[.014] 
 DJTRO                      .73924             .27304             2.7075[.007] 
 DGNI(-6)                  -.90818             .41568            -2.1848[.030] 
 S2                         .14311            .050699             2.8227[.005] 
 S3                        .017073            .050822             .33594[.737] 
 S4                        .059463            .050723             1.1723[.242] 
 S5                        -.14169            .051008            -2.7778[.006] 
 S6                       -.022903            .050534            -.45323[.651] 
 S7                         .31617            .057944             5.4565[.000] 
 S8                         .10703            .050840             2.1052[.036] 
 S9                        -.14211            .050935            -2.7899[.006] 
 S10                        .11802            .049958             2.3624[.019] 
 S11                      -.071547            .050220            -1.4247[.155] 
 S12                       .013664            .049929             .27367[.785] 
 UT(-1)                    -.31823            .045052            -7.0636[.000] 
****************************************************************************** 
 R-Squared                     .47000   R-Bar-Squared                   .44011 
 S.E. of Regression            .17275   F-stat.    F( 15, 266)   15.7258[.000] 
 Mean of Dependent Variable  .0040341   S.D. of Dependent Variable      .23087 
 Residual Sum of Squares       7.9378   Equation Log-likelihood       103.2672 
 Akaike Info. Criterion       87.2672   Schwarz Bayesian Criterion     58.1319 
 DW-statistic                  2.5536                                          
****************************************************************************** 
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Table 5.4.10b Microfit output for ECM 
 Arrivals from the UK, 12 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 299 observations from 1978M2  to 2002M12. Order of VAR = 1, chosen r =2.      
 List of variables included in the cointegrating vector:                       
 ARR             TRO             JTRO            GNI             AIR           
****************************************************************************** 
                  Vector  1      Vector  2                                     
 ARR                 -.22047        .021742                                    
                  (  -1.0000)    (  -1.0000)                                   
                                                                               
 TRO                  .23288        -.22648                                    
                  (   1.0563)    (  10.4165)                                   
                                                                               
 JTRO                .099518        -.19083                                    
                  (   .45139)    (   8.7768)                                   
                                                                               
 GNI                 .085424         .32914                                    
                  (   .38747)    ( -15.1386)                                   
                                                                               
 AIR                -.025924       -.087425                                    
                  (  -.11758)    (   4.0210)                                   
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 298 observations used for estimation from 1978M3  to 2002M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                    -.030832            .036320            -.84891[.397] 
 DTRO(-1)                   .85963             .31987             2.6874[.008] 
 DJTRO                      .71194             .27367             2.6014[.010] 
 S2                         .13476            .051380             2.6228[.009] 
 S3                        .024556            .050954             .48191[.630] 
 S4                        .041768            .050925             .82019[.413] 
 S5                        -.12741            .051212            -2.4879[.013] 
 S6                       -.021621            .050739            -.42613[.670] 
 S7                         .23573            .050758             4.6442[.000] 
 S8                        .092165            .051353             1.7947[.074] 
 S9                        -.14941            .051436            -2.9048[.004] 
 S10                        .11875            .050706             2.3420[.020] 
 S11                      -.082813            .050910            -1.6267[.105] 
 S12                      .0061314            .050671             .12100[.904] 
 UT(-1)                    -.28745            .042591            -6.7489[.000] 
****************************************************************************** 
 R-Squared                     .42946   R-Bar-Squared                   .40124 
 S.E. of Regression            .17710   F-stat.    F( 14, 283)   15.2159[.000] 
 Mean of Dependent Variable  .0028364   S.D. of Dependent Variable      .22887 
 Residual Sum of Squares       8.8760   Equation Log-likelihood       100.7037 
 Akaike Info. Criterion       85.7037   Schwarz Bayesian Criterion     57.9755 
 DW-statistic                  2.5504                                          
****************************************************************************** 
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Table 5.4.10c Microfit output for ECM 
 Arrivals from the UK, 24 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 287 observations from 1978M2  to 2001M12. Order of VAR = 1, chosen r =3.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             JTRO            GNI           
 AIR                                                                           
****************************************************************************** 
                  Vector  1      Vector  2      Vector  3                      
 ARR                 -.23713        .025947        .032129                     
                  (  -1.0000)    (  -1.0000)    (  -1.0000)                    
 OPR               -.0077521       -.024069         .19807                     
                  ( -.032691)    (   .92762)    (  -6.1649)                    
 TRO                  .19167        -.27655         .37876                     
                  (   .80831)    (  10.6583)    ( -11.7888)                    
 JTRO                 .12922        -.18529       -.034424                     
                  (   .54496)    (   7.1410)    (   1.0714)                    
 GNI                  .12198         .37057        -.42016                     
                  (   .51442)    ( -14.2818)    (  13.0774)                    
 AIR                -.017259       -.089088        .026393                     
                  ( -.072782)    (   3.4335)    (  -.82146)                    
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 281 observations used for estimation from 1978M8  to 2001M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                    -.035203            .036278            -.97038[.333] 
 DTRO(-1)                   .79292             .32664             2.4275[.016] 
 DJTRO                      .75484             .27474             2.7474[.006] 
 DGNI(-6)                  -.88855             .41603            -2.1358[.034] 
 S2                         .14109            .051455             2.7420[.007] 
 S3                        .015737            .051346             .30648[.759] 
 S4                        .057842            .051219             1.1293[.260] 
 S5                        -.14359            .051603            -2.7826[.006] 
 S6                       -.025508            .051223            -.49798[.619] 
 S7                         .31217            .058471             5.3389[.000] 
 S8                         .10539            .051380             2.0511[.041] 
 S9                        -.14348            .051386            -2.7922[.006] 
 S10                        .11571            .050578             2.2878[.023] 
 S11                      -.073481            .050759            -1.4476[.149] 
 S12                       .011083            .050590             .21908[.827] 
 UT(-1)                    -.32266            .045833            -7.0400[.000] 
****************************************************************************** 
 R-Squared                     .47010   R-Bar-Squared                   .44010 
 S.E. of Regression            .17296   F-stat.    F( 15, 265)   15.6729[.000] 
 Mean of Dependent Variable  .0035679   S.D. of Dependent Variable      .23114 
 Residual Sum of Squares       7.9272   Equation Log-likelihood       102.5897 
 Akaike Info. Criterion       86.5897   Schwarz Bayesian Criterion     57.4828 
 DW-statistic                  2.5402                                          
****************************************************************************** 
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Table 5.4.11a Microfit output for ECM 
 Arrivals from the USA, one month ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 288 observations from 1978M2  to 2002M1 . Order of VAR = 1, chosen r =1.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             GNI             AIR           
****************************************************************************** 
                  Vector  1                                                    
 ARR                 -.26631                                                   
                  (  -1.0000)                                                  
                                                                               
 OPR                -.051441                                                   
                  (  -.19316)                                                  
                                                                               
 TRO                  .38927                                                   
                  (   1.4617)                                                  
                                                                               
 GNI                  .22785                                                   
                  (   .85556)                                                  
                                                                               
 AIR                -.051685                                                   
                  (  -.19407)                                                  
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 277 observations used for estimation from 1979M1  to 2002M1                   
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                    -.017359            .016919            -1.0260[.306] 
 DGNI(-8)                   1.6801             .37560             4.4733[.000] 
 DGNI(-11)                 -1.3925             .37627            -3.7009[.000] 
 S2                        -.19490            .020224            -9.6370[.000] 
 S3                         .29803            .020934            14.2367[.000] 
 S4                        .089481            .021383             4.1847[.000] 
 S5                        .069248            .022617             3.0618[.002] 
 S6                        .017437            .023219             .75099[.453] 
 S7                        .019466            .022979             .84710[.398] 
 S8                       -.088846            .023027            -3.8583[.000] 
 S9                       -.046530            .028861            -1.6122[.108] 
 S10                        .25647            .021710            11.8137[.000] 
 S11                       -.19218            .026111            -7.3600[.000] 
 S12                       -.15701            .028973            -5.4192[.000] 
 UT(-1)                    -.20602            .034306            -6.0054[.000] 
****************************************************************************** 
 R-Squared                     .87525   R-Bar-Squared                   .86858 
 S.E. of Regression           .069285   F-stat.    F( 14, 262)  131.2978[.000] 
 Mean of Dependent Variable  .0037159   S.D. of Dependent Variable      .19112 
 Residual Sum of Squares       1.2577   Equation Log-likelihood       354.1234 
 Akaike Info. Criterion      339.1234   Schwarz Bayesian Criterion    311.9433 
 DW-statistic                  1.9553                                          
****************************************************************************** 
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Table 5.4.11b Microfit output for ECM 
 Arrivals from the USA, 12 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 299 observations from 1978M2  to 2002M12. Order of VAR = 1, chosen r =2.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             GNI             AIR           
****************************************************************************** 
                  Vector  1      Vector  2                                     
 ARR                 -.26472       -.080699                                    
                  (  -1.0000)    (  -1.0000)                                   
                                                                               
 OPR                -.051329        -.11472                                    
                  (  -.19390)    (  -1.4216)                                   
                                                                               
 TRO                  .38686       .0090065                                    
                  (   1.4614)    (   .11161)                                   
                                                                               
 GNI                  .22635         .12214                                    
                  (   .85507)    (   1.5135)                                   
                                                                               
 AIR                -.051152        .013830                                    
                  (  -.19323)    (   .17138)                                   
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 288 observations used for estimation from 1979M1  to 2002M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                    -.024392            .017029            -1.4324[.153] 
 DTRO(-6)                  -.70540             .31948            -2.2080[.028] 
 DGNI(-8)                   1.7045             .37017             4.6047[.000] 
 DGNI(-11)                 -1.4621             .37153            -3.9352[.000] 
 S2                        -.18251            .020312            -8.9850[.000] 
 S3                         .30955            .021039            14.7131[.000] 
 S4                        .091118            .021311             4.2757[.000] 
 S5                        .071224            .022377             3.1829[.002] 
 S6                        .028960            .023011             1.2585[.209] 
 S7                        .028833            .023018             1.2526[.211] 
 S8                       -.088105            .022798            -3.8646[.000] 
 S9                       -.036586            .028875            -1.2670[.206] 
 S10                        .26147            .021520            12.1503[.000] 
 S11                       -.17794            .026209            -6.7893[.000] 
 S12                       -.13989            .028262            -4.9498[.000] 
 UT(-1)                    -.21355            .033758            -6.3259[.000] 
****************************************************************************** 
 R-Squared                     .87502   R-Bar-Squared                   .86813 
 S.E. of Regression           .069150   F-stat.    F( 15, 272)  126.9602[.000] 
 Mean of Dependent Variable  .0037654   S.D. of Dependent Variable      .19042 
 Residual Sum of Squares       1.3006   Equation Log-likelihood       368.9601 
 Akaike Info. Criterion      352.9601   Schwarz Bayesian Criterion    323.6564 
 DW-statistic                  1.9390                                          
****************************************************************************** 
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Table 5.4.11c Microfit output for ECM 
 Arrivals from the USA, 24 months ahead model 
                                                                               
Estimated Cointegrated Vectors in Johansen Estimation (Normalized in Brackets) 
Cointegration with no intercepts or trends in the VAR             
****************************************************************************** 
 287 observations from 1978M2  to 2001M12. Order of VAR = 1, chosen r =1.      
 List of variables included in the cointegrating vector:                       
 ARR             OPR             TRO             GNI             AIR           
****************************************************************************** 
                  Vector  1                                                    
 ARR                 -.26656                                                   
                  (  -1.0000)                                                  
                                                                               
 OPR                -.049790                                                   
                  (  -.18679)                                                  
                                                                               
 TRO                  .39234                                                   
                  (   1.4719)                                                  
                                                                               
 GNI                  .22558                                                   
                  (   .84627)                                                  
                                                                               
 AIR                -.051121                                                   
                  (  -.19178)                                                  
                                                                               
****************************************************************************** 
                                                                               
Ordinary Least Squares Estimation                       
****************************************************************************** 
 Dependent variable is DARR                                                    
 276 observations used for estimation from 1979M1  to 2001M12                  
****************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 CONST                    -.016654            .017318            -.96167[.337] 
 DGNI(-8)                   1.6778             .37648             4.4567[.000] 
 DGNI(-11)                 -1.3955             .37714            -3.7004[.000] 
 S2                        -.19503            .020482            -9.5224[.000] 
 S3                         .29812            .021134            14.1060[.000] 
 S4                        .089009            .021706             4.1007[.000] 
 S5                        .068622            .022955             2.9894[.003] 
 S6                        .016742            .023561             .71057[.478] 
 S7                        .018800            .023321             .80615[.421] 
 S8                       -.089492            .023371            -3.8292[.000] 
 S9                       -.046888            .029129            -1.6096[.109] 
 S10                        .25592            .022036            11.6138[.000] 
 S11                       -.19311            .026465            -7.2969[.000] 
 S12                       -.15741            .029245            -5.3825[.000] 
 UT(-1)                    -.20454            .034371            -5.9511[.000] 
****************************************************************************** 
 R-Squared                     .87514   R-Bar-Squared                   .86844 
 S.E. of Regression           .069449   F-stat.    F( 14, 261)  130.6614[.000] 
 Mean of Dependent Variable  .0037114   S.D. of Dependent Variable      .19147 
 Residual Sum of Squares       1.2588   Equation Log-likelihood       352.2209 
 Akaike Info. Criterion      337.2209   Schwarz Bayesian Criterion    310.0679 
 DW-statistic                  1.9237                                          
****************************************************************************** 
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