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1 1. Introduction

2 Pain is a significant indicator of human discomfort and an indicator of the need for medical diagnosis 

3 of a possible disease and its related treatments in patients. It is usually measured by clinicians, albeit, 

4 employing largely a manual approach such as using a self-reported pain detection system. Various pain 

5 measurement scales have been designed to describe a patient’s self-report of pain intensity, including 

6 but not limited to the Visual Analogue Scale (VAS)1, Verbal Rating Scale (VRS), Faces Pain Scale-

7 Revised (FPSR), and the Numerical Rating Scale (NRS) [1]. However, self-reported pain level 

8 assessment may not always be the appropriate method for different disease contexts and patients’ 

9 scenarios [1, 2]. Moreover, in doing so, this task may require greater intellectual and dialectal abilities 

10 that makes the self-reporting impractical for populations such infants and elderly patients lacking 

11 effective communication skills [3, 4]. An automated decision support system for pain assessment that 

12 utilises facial image processing can provide an effective alternative medium to the self-reporting 

13 method to more accurately evaluate the severity of pain. Two examples of such systems include the 

14 Facial Action Coding System (FACS) [5] and the Prkachin and Solomon Pain Intensity (PSPI) scale 

15 [6]. However, automatically assessing the pain level from facial images or video recordings can be a 

16 challenging task because of the presence of several external and complicating factors (e.g., phenomenon 

17 of human smiles in spite of pain and the gender related pain tolerating abilities [7]). This means that we 

18 are likely to face a major challenge in terms of accurate facial expression recognition and interpretation 

19 due to the relatively large visual features with considerable variation caused by person-to-person 

20 characteristics, their expressions and the variations in face appearance caused by many extrinsic 

21 conditions such as illumination and the point of view [8]. Another key challenge in facial expression 

22 recognition arises from the need to develop effective representation that balance the complex 

23 distribution of intra- and inter- class variations [9]. Effective methods that demarcate true facial features 

24 associated with a pain level and the causal factor (i.e. medical condition) are highly warranted to support 

25 rapidly evolving medical informatics capabilities. 

List of acronyms

AAM (Active Appearance Models) MAE (Mean Absolute Error)
ARC (Australian Research Council) MIntPAIN (Multimodal Intensity Pain) 
ASM (Active Shape Model) MSE (Mean Squared Error)
AUC (Area under Curve) NRS (Numerical Rating Scale)
BiLSTM (Bidirectional Long Short Memory) PCA (Principal Components Analysis)
CNN (Convolutional Neural Network) RNN (Recurrent Neural Network)
D (Depth) PSPI (Prkachin and Solomon Pain Intensity)
EDLM (Ensemble Deep Learning Model) ROC (Receiver Operating Characteristics)
FACS (Facial Action Coding Systems) SVM (Support Vector Machine)
FN (False Negative) TN (True Negative)
FP (False Positive) TP (True Positive)
FPR (False Positive Rate) TPR (True Positive Rate)
FPSR (Faces Pain Scale-Revised) T (Thermal)
LBP (Local Binary Pattern) VRS (Verbal Rating Scale)
LSTM (Long Short-Term Memory) VAS (Visual Analogue Scale)
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26 Artificial intelligence (AI) algorithms in an automatic pain detection system that analyse concealed 

27 features using indicators of pain (e.g., a face image) can potentially provide medical practitioners a 

28 more intelligent approach to investigate the actual pain level prior to treating the relevant disease. 

29 Recently, deep learning methods employing multiple hidden layer neuronal systems for feature 

30 extraction have gained importance as a mainstream automated technique for this purpose, with its 

31 increasing capacities to perform complex and highly nonlinear predictive modelling tasks (e.g., 

32 classification and feature extraction) from relatively complex datasets such as human face images that 

33 indicate a medical condition. Many deep learning techniques, including convolutional neural networks 

34 (CNN) [10], and recurrent neural networks (RNN) [11], have thus been explored for facial expression 

35 analysis and pain detection. 

36 In spite of many AI methods tested for feature extraction, the ensemble-based approaches where two or 

37 more algorithms are integrated to capture the merits of each for improved accuracy is being widely 

38 developed for multi-purpose classification tasks [12, 13]. The popularity of ensemble-based methods is 

39 perhaps attributable to their relatively superior performance in comparison to the other single deep 

40 learning algorithms. The study of [14] provided three important reasons to adopt this method, including 

41 their statistical, computational, and representational efficacy compared to single algorithm learning 

42 models. Indeed, increasing the number of stacked hidden layers and neuronal networks depth can 

43 improve the clarity of features learned from the CNNs and, and therefore, improving the performance 

44 of deep neural networks in image processing tasks [15]. Therefore, in this research paper we aim to 

45 build and test a new ensemble deep learning model to recognise the multi-classification level pain 

46 intensity employing the patient’s video frame images.

47 The proposed ensemble model consists of two steps including future extraction as early fusion and 

48 classification as late fusion. In the early fusion section, a newly developed feature extraction technique 

49 has been applied based on the fine-tuned VGGFace algorithm that integrates Principal Component 

50 Analysis (PCA) hieratically to extract the features embedded in human face images. Henceforth, in the 

51 late fusion section, a three-stream CNN-RNN network has been designed, and finally, the resulting 

52 facial image features are merged as the output of the ensemble classification model. The proposed 

53 algorithm is tested comprehensively by employing two unique databases. First the Multimodal Intensity 

54 Pain (MIntPAIN) database [2, 16] with labelled video sequences in terms of the VAS metric and second, 

55 the UNBC-McMaster Shoulder Pain Archive Dataset [17] with labelled video frames in terms of PSPI 

56 and FACS metrics are used.  

57 More precisely, the novelty of this research is as follows:

58 1) A new image classification approach with an early fusion section is constructed for effective 

59 feature extraction by adopting the fine-tuning VGG-Face pre-trainer, and its outputs are 
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60 integrated with PCA to extract the features more effectively and efficiency by reducing the 

61 dimensionality of image dataset.

62 2) A new image classification approach that includes a three-stream ensemble CNN-RNN 

63 classifier system, where the outputs are merged by means of the late fusion section to finally 

64 classify the pain level in five distinct levels, resulting from the extracted features from human 

65 facial images.

66 3) The overall framework denoted as Ensemble Deep Learning Model (EDLM) model is trained 

67 and tested utilising two popular face databases represented with various pain features and the 

68 obtained results are used to benchmark EDLM against state-of-the-art techniques as the 

69 baseline model.

70 The rest of the paper is organized as follows: In Section 2, the existing methods and related works are 

71 described. In Section 3, an overview of the proposed EDLM model is introduced. Next, the experiments 

72 and databases are presented in Section 4 while the results and discussions are provided in Section 5, 

73 with conclusions and future works outlined in Section 6.

74 2. Related works

75 In the following, the related studies in pain detection from facial expressions, including a general 

76 overview of deep learning techniques, existing research and ensemble neural networks are described.

77 2.1 Deep learning used in facial expressions

78 CNNs have been used to image classification and applied to identify face and objects effectively [18, 

79 19]. CNNs and their pre-trained algorithms obtained notable results especially in image classification 

80 and feature extraction [20]. In addition, recently CNNs models have achieved higher performances on 

81 the ImageNet dataset such as AlexNet [10], GoogLeNet [21]. Features extracted from pre-trained CNNs 

82 used in computer vision tasks such as emotion recognition and object detection and the achieve results 

83 indicated better performance in comparison with handcrafted features.

84 Even though deep learning methods are powerful tools for tasks estimation, however; they are not 

85 suitable for analysing sequential data such as speech or video data. Therefore, RNN was designed to 

86 represent features in capturing information from all the earlier time steps and to renew its representation 

87 through upcoming information [22]. Long short-term memory (LSTM) deep learning is based on RNN 

88 architecture and unlike feedforward neural networks it has feedback connection. Standard RNNs can 

89 learn based on long-term dependencies like LSTM but training them is difficult since the gradients tend 

90 to vanish or explode. LSTM has a cell state under control by three gates as: forget, input, and output 

91 gates. The Forget gate keeps relevant information from prior steps. The input gate adds relevant 

92 information from the current step. The output gate determines the next hidden state status [23, 24]. Fig. 

93 1 shows the architecture of an LSTM cell, in which the cell state part is calculated by:
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94 (1)𝑖𝑡 = σ(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡 ‒ 1 + 𝑊𝑐𝑖𝑐𝑡 ‒ 1 + 𝑏𝑖)

95 The output of the forget gate is calculated as:

96 (2)𝑓𝑡 = σ(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡 ‒ 1 + 𝑊𝑐𝑓𝑐𝑡 ‒ 1 + 𝑏𝑓)

97 The cell state for the current time-step is calculated as following: 

98 (3)𝑐𝑡 = 𝑓𝑡𝑐𝑡 ‒ 1 + 𝑖𝑡𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑤ℎ𝑐ℎ𝑡 ‒ 1 + 𝑏𝑐)

99 Once the forget and input gates have controlled the amount of information in the earlier cell state  𝑐𝑡 ‒ 1

100 and the new cell state   should be let through.𝑐𝑡

101 The state can expect the output of the cell as following:

102 (4)𝑜𝑡 = σ(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡 ‒ 1 + 𝑊𝑜𝑐𝑡 + 𝑏𝑜)

103 (5)ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ(𝑐𝑡)

104

105 Fig. 1. The architecture of an LSTM unit [23, 24]
106 Inputs: : Input vector, : memory from previous block, : output of previous block, b: Bias Outputs: : 𝑥𝑡 𝑐𝑡 ‒ 1 ℎ𝑡 ‒ 1 ℎ𝑡
107 the output of current block, : memory from the current block𝑐𝑡

108 Access to both past (left) and future frames is essential for sequences labelling tasks. However, the 

109 LSTM’s hidden state ht takes information only from the past frame, without having information from 

110 the future frame. Bidirectional LSTM (BiLSTM) [25] as an elegant solution presents each sequence 

111 forwards and backwards as two separate hidden states to capture past and future information, 

112 respectively.

113 2.2 Existing automate pain detection models from facial expressions 

114 Various deep learning (i.e., multiple hidden layer) and non-deep learning (i.e., single hidden layer) 

115 approaches have been proposed to detect pain from facial expressions, with significant progress made 
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116 in this research area recently. In terms of classification problems, some traditional non-deep learning 

117 algorithms such as Support Vector Machine (SVM) have been used for the classification of features in 

118 facial expressions. In terms of non-deep learning feature extraction techniques, Active Appearance 

119 Models (AAM) and Active Shape Model (ASM), Gabor wavelets, Local Binary Pattern (LBP) were 

120 applied to extract features for this task.  For example, [26, 27] used AAM based features combined with 

121 SVM classifiers for pain detection. [28, 29] applied Gabor wavelets as the main components of their 

122 filter banks and LBP features with SVMs, respectively.

123 Recently, with major progress in deep learning abilities and increasingly available large training data 

124 to work with, deep learning algorithms, which have a good ability to reveal intrinsically concealed 

125 patterns in complex datasets (e.g., images), have been applied in feature extraction and classification 

126 problems. Deep models such as convolutional networks and deep belief and are recognized to improve 

127 feature extracting process [10, 30]. For example, significantly accurate results were achieved in pain 

128 detection from facial expression by using a pre-trained CNN for features extraction in the UNBC-

129 McMaster Shoulder Pain Archive database [17]. Furthermore, [22] proposed a real-time regression 

130 framework based on the RNN to estimate pain levels from facial expressions by extracting features 

131 from pre-trained CNN and combining them with RNN as a new model. Using the same technique, [31, 

132 32] extracted facial features from pre-trained VGGFaces, and then integrated them into a LSTM to 

133 utilize the temporal relationships between video frames. In a new and different painful facial expression 

134 database MIntPAIN [2, 16], a pre-trained CNN (VGGFace) and LSTM were applied in a fusion 

135 algorithm for spatial-temporal analysis considering Depth (D), and Thermal (T) accompanied by 

136 chromatic (RGB) video data to detect pain in five classes. In [33], a three stream network with three 

137 different feature extraction techniques including the appearance Histogram of Oriented Gradients 

138 (HOG), CNN, and the shape features using handcrafted algorithms and the Relevance Vector Machines 

139 (RVM) used to estimate the pain. In [34], proposed an automated pain detection system including two 

140 machine learning systems: an Automated Facial Expression Recognition (AFER) system that computes 

141 the frame-level confidence scores for single AUs and a Multiple Instant Learning (MIL) system that 

142 performs the sequence-level pain prediction based on contributions from a pain-relevant set of AU 

143 combinations. More details about the automatic pain recognition approaches are explained in a survey 

144 paper published recently [35].

145 2.3 Ensemble neural networks

146 An ensemble model, following notion of ‘The Wisdom of Crowds’, can be described as a composition 

147 of multiple weak learners to form one single learner with expected higher predictive performance. The 

148 weak learner is defined as a learner that performs slightly better than random guessing [36]. Ensembles 

149 of learning algorithms have been effectively used in many computer vision problems to improve the 

150 classification performance [15, 37]. According to [14] ensemble learning is effective method since: “1) 



7

151 the training phase does not provide enough data to shape a single finest classifier; 2) an ensemble using 

152 separate starting points could better estimated the finest result; 3) an ensemble may expand space for a 

153 better approximation”. Also, ensemble learning algorithms improve the generalization ability. Ding and 

154 Tao (2017), used ensemble CNN for video-based face recognition [38]. Their model outperforms 

155 previous approaches such as Deep Face [18], DeepID2+ [19], and VGG Face [39]. According to [40], 

156 , a neural network ensemble can be designed by altering the initial weights, the network architecture, 

157 and the training set. The combined decision created by the ensemble method is less expected error than 

158 the decision produced by other individual networks [41]. A Horizontal and Vertical Ensemble methods 

159 proposed to enhance the classification performance of deep neural networks. Based on their results both 

160 linear Horizontal Voting and Horizontal Stacked Ensemble methods can strongly enhance the 

161 performance of deep learning classification [42].

162 3. The proposed ensemble deep learning framework

163 The novelty of this study is to propose a new ensemble deep learning model (EDLM) to classify pain 

164 intensity in multi-levels (five classes) from facial expression video frames data. The block diagram of 

165 the proposed system is shown in Fig. 2. The pre-processing and normalization are applied on dataset 

166 before feeding the images into the proposed deep learning model. The EDLM consists of two sections 

167 including the early fusion and late fusion. In the early fusion, a combination of pre-trained CNN and 

168 linear PCA is used to extract and select features. Then, the extracted features are transferred in the late 

169 fusion for classification. An ensemble three stream CNN+RNN hybrid deep learning network is used 

170 in late fusion to classify pain levels in five classes. In the following, the details of the early fusion, late 

171 fusion, and entire EDLM algorithm is explained.

172

173 Fig. 2. Block diagram of the proposed ensemble deep learning model (EDLM) to detect pain in multi-classes 
174 from facial expressions.  

175 3.1 Early fusion

176 To design the proposed EDLM model, the first step is to design early fusion feature extraction section. 

177 In addition, the pre-processed data is transferred in the early fusion algorithm to extract features. The 

178 early fusion section contains of the fine-tuned VGGFace pre-trained with Faces  [39] which its outputs 

179 combined with PCA (see Fig. 3).
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180

181

182 Fig. 3. Early fusion step of the EDLM for feature extraction and selection by integration fine-tuned VGGFace 
183 and PCA
184
185 In the computer vision field, transfer learning is usually expressed using pre-trained models such as a 

186 model trained on a large benchmark dataset to solve a problem. Several of the state-of-the-art techniques 

187 used transfer learning solution to generate results in image classification [10]. The VGGFace has five 

188 convolution blocks and three fully connected layers (fc6, fc7, and fc8). For fine-tuning it, a Dense 

189 connected model at top of the VGGFace model is created and the convolution layers are freeze, then 

190 data normally fed to the network [43]. Convolution neural networks-based methods can derive deep 

191 feature extraction from a set of training images. However, one challenge in this task is that the 

192 dimension of the extracted image features can increase dramatically with the addition of more network 

193 layers [44]. To resolve this problem, after using deep learning to extract image features, the PCA 

194 algorithm is used in this study to achieve dimension reduction. The study adopts PCA, as it is a 

195 dimensionality reduction method that is useful for diverse applications (e.g., image compression, facial 

196 feature extraction, face recognition and finding the patterns from large dimensional images) [45, 46]. 

197 This method can also help us  choose the best set of data dimensions that will make the model perform 

198 better, and to increase efficiency of the algorithm performance [47]. There is a total of 125280 features, 

199 which have been extracted from the training data set, calculated according to the input shape of the 

200 extracted features. For the training data set, these are denoted as (31320, 4) where the number 34800 

201 refers to the number of training images and so, we are able to obtain a product . 31320 × 4 = 125280

202 In addition, the 4 distinct output features (per image) extracted from the fine-tuned VGG-Face are 

203 transferred into the PCA algorithm with an aim to reduce the dimensionality of the extracted features 

204 and also to increase efficiency of the classification algorithm. It would thus be of interest to be able to 

205 discover “sparse principal components” such as sparse vectors spanning a low-dimensional space. To 
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206 achieve this, it is necessary to reduce some of the explained variance and the orthogonality of the 

207 principal components. The explained variance for each component is calculated by Python software.

208 The dimensionality reduction process is achieved through an orthogonal, linear projection operation. 

209 Without loss of generality, the PCA operation can be defined as [48]:

210                                                                          (6)𝑌 = 𝑋𝐶

211 with

212 𝑌 ∈ 𝑅𝑆 × 𝑃

213 is the projected data matrix that contains P principal components of X with,

214 .𝑃 ≤ 𝑁

215 So, the key is to find the projection matrix

216 𝐶 ∈ 𝑅𝑁 × 𝑃

217 which is equivalent to find the eigenvectors of the covariance matrix of X, or alternatively solve a singular 

218 value decomposition (SVD) problem for X.

219                                                                           (7)𝑋 = ⋃∑⋁𝑇
  

220 where

221 𝑈 ∈ 𝑅𝑠 × 𝑠

222  and

223 𝑉 ∈ 𝑅𝑁 × 𝑁

224 are the orthogonal matrices for the column and row spaces of X, and Σ is a diagonal matrix containing 

225 the singular values,

226 , for n = 0, ···, N−1λ𝑛

227 non-increasingly lying along the diagonal. It can be shown that the projection matrix C can be obtained 

228 from the first P columns of V with 

229                                                                 (8)𝑉 = [𝑣1,…, 𝑣𝑁]

230 and

231                                                                   (9)𝐶 = [𝑐1,…,𝑐𝑃]

232 where

233 𝑣𝑛 ∈  𝑅𝑁 × 1
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234 is the  right singular vector of X, and 𝑛𝑡ℎ

235 .𝑐𝑛 = 𝑣𝑛

236 In fact, the singular values contained in Σ are the standard deviations of X along the principal directions 

237 in the space spanned by the columns of C. Therefore,  becomes the variance of X projection along the λ2
𝑛

238  principal component direction. It is believed that variance can be explained as a measurement of how 𝑛𝑡ℎ

239 much information a component contributes to the data representation. One way to examine this is to look 

240 at the cumulative explained variance ratio of the principal components, given as [48]:

241                                                             (10)𝑅𝑐𝑒𝑣 =
∑𝑃

𝑛 = 1λ2
𝑛

∑𝑁
𝑛 = 1λ2

𝑛

242 Fig. 4 describes that selecting 3 components can preserve majority of the total variance of the input 

243 data. A vital part of using PCA in practice is the ability to estimate how many components are needed 

244 to describe the data. This can be determined by looking at the cumulative explained variance ratio as a 

245 function of the number of components. This graph quantifies how much of the total, 4-dimensional 

246 variance is contained within the components. For example, we see that with the first 1 component 

247 contain approximately 48% of the variance, while we need around 3 components to describe close to 

248 100% of the variance.

249

250 Fig. 4. Number of components to select from extracted features by PCA

251 3.2 Late fusion section
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252 In the late fusion part of the proposed EDLM used as the classification section, an ensemble deep 

253 learning network is designed in varying initial weights and network architecture. As discussed in the 

254 Related Works section, ensemble learning is an effective method and can improve the generalization 

255 ability of classification. Since the data is video and contains video image frames, and RNNs suited for 

256 sequential data we used temporal information to feed into RNNs. The training of RNNs act as back-

257 propagation algorithm [25].

258 The proposed algorithm was tested in a different version. The experimental results indicated that using 

259 hybrid CNN+RNN in late fusion has more accurate results than networks that only include RNN in late 

260 fusion. Therefore, three independent and hybrid CNN+RNN deep learning methods are designed and 

261 their outputs are merged. The merged output used to classify pain intensity. These three independent 

262 and hybrid deep learning networks are DNN1, DNN2, and DNN3 which are developed using different 

263 parameter, weight, and architecture. The configurations of these networks are described in Table 1. As 

264 can be seen from Table 1, DNN1 and DNN2 contain two CNNs with Conv2D architecture which their 

265 output shift in stack way to a BiLSTM. However, DNN1 and DNN2 are different in weighting. For 

266 DNN3, a different architecture of CNN+RNN is used. In addition, a CNN with Conv1D is selected and 

267 its output is transferred into a LSTM. Fig. 5 illustrates the late fusion architecture of the proposed EDLM 

268 model.

269

270 Fig. 5. Late fusion step of the EDLM based on ensemble deep neural network.
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271 Table 1. Properties of DNN1, DNN2, and DNN3 proposed in the late fusion stage.

DNN Convolution layer 1 Convolution layer 2 RNN

DNN1 type = conv2d, 

filter number = 256, 

activation = ReLU, 

input shape = (1,5)

type = conv2d 

filter number = 256, 

activation = ReLU, 

input shape = (1,5)

type = BiLSTM,

filter number = 256,

dense = 4096,

drop out = 0.5,

activation = ReLU

DNN2 type = conv2d, 

filter number = 128, 

activation = ReLU, 

input shape = (1,5)

type = conv2d 

filter number = 128, 

activation = ReLU, 

input shape = (1,5)

type = BiLSTM,

filter number = 32,

dense = 4096,

drop out = 0.5,

activation = ReLU

DNN3 type = conv1d, 

filter number = 256, 

activation = ReLU, 

input shape = (1,5)

None type = BiLSTM,

filter number = 128,

dense = 4096,

drop out = 0.5,

activation = ReLU

272 3.3 The EDLM algorithm design

273 The details of the proposed EDLM method are summarized in Algorithm 1. During experimentation 

274 optimization for the early fusion feature extraction section, the model ran by 50 epoch and 48 batches. 

275 However, in the late fusion, the model performed by 5 epoch and 48 batches. To estimate the skill of 

276 the algorithm, the cross-validation method involved by repeating 10 times.

Algorithm 1: The proposed EDLM algorithm

1: Procedure EDLM (input, n, j, batch)

2: Pre-process (input)

3: for k ← 0, n do

4: finetune (VGG-Face)

5: for epoch ← 0, j do

6: features ← train (finetune (VGG-Face))

7: end for

8: SF ← PCA (features)

9: GN ← Calculate (GN) 

10: for epoch ← 0, j do 

11: o1 ← DNN1(SF)

12: o2 ← DNN2(SF)

13: o3 ← DNN3(SF) 
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14: out ← merge (o1, o2, o3)

15: out ← GN (48)

16: train (model (SF, out))

17: end for

18: end for

19: end procedure

277 4. Experimental configuration and databases

278 In this study, the objective algorithm (EDLM) and all the other comparative algorithms are built under 

279 an Intel core i7 @ 3.3 GHz and 16 GB memory computer. Python software [49] was used for the model 

280 construction and prototyping, since it has freely available libraries suits for deep learning such as Keras 

281 [50], TensorFlow [51], Scikit-learn [52], Matplotlib [53]. Keras allows for easy and fast prototyping 

282 and supports both convolutional networks and recurrent networks. Matplotlib as a Python 2D plotting 

283 library is used for plotting and statistical analysis of modelling data. The selected database and 

284 evaluation metrics are explained as following.

285 4.1 The MIntPAIN database

286 To establish the robustness of the proposed EDLM model, we used two databases includes the 

287 MIntPAIN database [2, 16] and the UNBC-McMaster Shoulder Pain dataset [17].  The MIntPAIN 

288 database includes pain video data taken by electrical stimulation in five levels (Level 0 no pain, and to 

289 Level 4 is the highest level) to 20 subjects. Each subject includes two trials, and each trial includes 40 

290 sweeps of pain stimulation. In this research work, a dataset of all RGB images from 20 subjects is 

291 selected. The number of no pain video sequences are more than others. Therefore, based on the specific 

292 character of the database it is likely that any model gets biased towards the prediction of no-pain at the 

293 cost of missing pain frames. Using imbalance data is basically intentionally biasing data to get an 

294 interesting result. To deal with this issue, in this study the database was balanced using under 

295 resampling techniques to reduce the majority class (no-pain class). So, some no pain sequences have 

296 been removed.

297 The resampling technique was applied on the selected dataset since a few subjects were missing for 

298 some sweeps and there was not an equal proportion for each class as well. Therefore, the under-sample 

299 technique was applied to reduce the majority class, and some no painful sequences (Lable0) were 

300 removed. The total of 34800 video frames is selected for experimentation in this research. Fig. 6 shows 

301 the samples of the selected dataset. 
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302
303 Fig. 6. Samples of selected dataset of MIntPAIN database [2, 16].

304 The selected dataset was pre-processed by removing noises and backgrounds from each video frames. 

305 The pre-processing includes face detecting, cropping, and centralizing applied on the video frames. 

306 Then, the images were normalized before feeding images to the proposed model. Moreover, the 

307 OpenCV face recognition algorithm was used to detect faces from noisy pictures. Then, face detected 

308 images were cropped and centralized (see Fig. 7). Finally, the pre-processed data was reshaped to 
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309 224×224×3 dimensions to transfer into VGGFace pre-trainer. To normalize the pixel values for both 

310 train and test datasets, the data was rescaled to the range [0,1]. This includes converting the data type 

311 from integer to floats and splitting the pixel values by the highest value [54].

312               (6)𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒:𝑅→𝑅:𝑥→
𝑥
𝑑 𝑑 = max

𝑥 ∈ 𝑖𝑚𝑎𝑔𝑒
∥ 𝑥 ∥

313
314 Fig. 7. Examples of video frames per 5 level after removing backgrounds, cropping, and resizing.

315 4.2 The UNBC-McMaster Shoulder Pain database

316 To prove the generality of the proposed EDLM model, the experiment was conducted on the UNBC-

317 McMaster Shoulder Pain dataset [17] and competitive results were obtained. The database provides the 

318 image’s frames of video sequences from patients suffering shoulder pain. Each frame of the database 

319 was coded in terms of PSPI score among 0 to 15 scales. The database provides 200 sequences across 

320 25 subjects, which totals 48,398 image frames. The number of no pain images PSPI score labels are 

321 higher than the other labels and the number of images with the PSPI labels greater than 6 are only a few 

322 within this database. Therefore, based on the specific character of the database it is likely that any model 

323 can be biased towards the prediction of no-pain at the cost of missing pain frames. Using imbalance 
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324 data is basically intentionally biasing data to get an interesting result. To deal with this issue, in this 

325 study the database was balanced using under resampling techniques to reduce the majority class (no-

326 pain class). We balanced the database is by under-resampling technique to reduce the majority class 

327 (no-pain class) and 10,783 images were thus employed in this research. For classifying pain into five 

328 levels, the database was divided into five parts including (PSPI = 0), (PSPI = 1), (PSPI = 2 and 3), (PSPI 

329 = 4 and 5) and (PSPI > = 6). Fig. 8 shows samples of the UNMC-McMaster Shoulder Pain database for 

330 some classes.

331
332 Fig. 8 Image frame samples of the UNBC-McMaster Shoulder Pain Achieve database [17].

333 4.2 The evaluation metrics

334 To train, test, and evaluate the proposed EDLM ensemble model, this section provides several empirical 

335 results of the modelling experiments carried out and evaluations in comparison with other models 

336 developed during experimentation and previous researches using MIntPAIN database. To enable 

337 rigorous evaluations of the proposed EDLM model in respect to the counterpart models, several 

338 performance evaluations measures, including the Classification Mean Absolute Error (MAE), Mean 

339 Squared Error (MSE), Accuracy, AUC and F-score were utilized. Mathematically, the metrics are stated 

340 as follows where:

341   and N = number of errors:𝑒 = 𝑒𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 ‒ 𝑒𝑡𝑟𝑢𝑒

342 (11)𝑀𝐴𝐸 =
1
𝑁∑𝑁

𝑖 = 1|𝑒𝑖|

343 (12)𝑀𝑆𝐸 =
1
𝑁∑𝑁

𝑖 = 1(𝑒𝑖)2

344 We used some metrics such as accuracy f-measure to measure performance of the algorithm. The 

345 mathematical formula of them is as following.

346 (13)𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁



17

347 (14)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

348 (15)𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

349 (16)𝐹 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

350 (17)𝑇𝑃𝑅 =
𝑇𝑃

(𝐹𝑁 + 𝑇𝑃)

351 (18)𝐹𝑃𝑅 =
𝐹𝑃

(𝑇𝑁 + 𝐹𝑃)

352 Where True Positive (TP) is the cases are predicted YES, and the actual output is YES and True 

353 Negatives (TN) is the cases are predicted NO, and the actual output is NO. False Positives (FP) is the 

354 cases are predicted YES, and the actual output is NO. False Negatives (FN) is the cases are predicted 

355 NO, and the actual output is YES [55]. True Positive Rate (TPR) corresponds to the proportion of 

356 positive data points that are correctly considered as positive, with respect to all positive data points. 

357 False Positive Rate (FPR) corresponds to the proportion of negative data points that are mistakenly 

358 considered as positive, with respect to all negative data points.

359 5. Results and discussions

360 In this section we train and test our proposed framework in two different databases includes MIntPain 

361 and UNBC-McMaster Shoulder Pain databases. Next, the evaluated results compared with the baseline 

362 model and the state-of-the-art researches. 

363 5.1 The MIntPAIN database results

364 The features have been extracted and selected by early fusion finetuned VGGFace and PCA. The early 

365 fusion algorithm to reach its best performance used 50 epochs. Fig. 9 illustrates the accuracy and the 

366 loss error encountered in the early fusion in the EDLM model. This figure shows the average number 

367 of the accuracy for 10 cross validation during 50 epochs.  As it is indicated in Fig.9 the accuracy level 

368 has been reached to the its highest level by 81% in epoch = 50. It has been started from 32% in epoch 

369 1 and gradually has been increased. The red line in this figure shows the loss value average for 10 Cross 

370 validation and shows a decreasing amount in loss level by increasing epoch. The loss has been reached 

371 in the lowest level by 0.18 in epoch 50.
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372

373 Fig. 9. Accuracy and loss error during 50 epochs in the early fusion of the EDLM model in the MIntPAIN 
374 database.

375 Later, the proposed classifier which is late fusion here has been trained and tested by selected features. 

376 Fig. 10 shows the accuracy and loss level during 5 epochs in average of 10 cross validation for late 

377 fusion. At first, accuracy has been started by 81% and then from the second epoch it reaches to 92.26% 

378 in epoch 5. The red graph in Fig. 10 shows the MSE level in average. As it is shown in this graph in 

379 epoch one the MSE equal to 0.06 but by repeating testing and training in epoch 5 it reached to its lowest 

380 level by 0.028.

381
382 Fig. 10. Accuracy and MSE during 5 epochs in the late fusion of the EDLM model in the MIntPAIN database.
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383 Table 2 and Fig. 11 indicate the obtained results of the proposed EDLM on the MIntPAIN database 

384 measured by accuracy, AUC, MAE, and MSE based on 10-fold cross validation.

385 Table 2. The average performance, best result, and worst results of the proposed model (EDLM) on MIntPAIN 
386 database for 10-fold cross validation.

Results MSE MAE Accuracy AUC

Average 0.0245 0.0341 92.26% 93.67%

Best 0.02102 0.028 95% 95.2%

Worst 0.03056 0.039 89% 91.4%

387

388

389 Fig. 11. Box plots of Accuracy and AUC for the proposed EDLM model in the MIntPAIN database.

390 Fig. 11 displays the accuracy and AUC of the proposed EDLM model in the box plot. It shows the 

391 distribution of data based on minimum, first quartile, median, third quartile, and maximum. Median is 

392 shown as yellow, minimum and maximum shown as blue lines. Median is demonstrated by the middle 

393 value of the accuracy and AUC. The first quartile shows the middle number between the smallest 

394 number and the median of the dataset. Third quartile shows the middle value between the median and 

395 the highest value of the dataset.

396 Other popular evaluation metrics such as f-score and precision also have been exploited to evaluate the 

397 performance of the proposed EMDL model and the results show optimum and effective ranges of 

398 effectiveness per each class. The performance of the proposed EDLM model shows a significant 

399 correctness per five classes measured by AUC ROC (Receiver Operating Characteristics) curve metric. 
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400 Table 3 indicates the accuracy, AUC, f-score, and precision for each class with no-pain, pain level 1, 

401 pain level 2, pain level 3, and pain level 4.

402 Table 3. Average pain level per five classes based on accuracy, f-score, precision, AUC metrics in the 
403 MIntPAIN database.

Metrics No pain Pain 1 Pain 2 Pain 3 Pain 4

AUC 87.3% 84% 85% 89% 91%

Precision 85.2% 85% 83% 88% 88%

f-score 86% 82% 82.2% 86.2% 90%

Accuracy 92.4% 89% 88% 93% 92%

404 The accuracy of the proposed EDLM model is assessed by TPR and FPR analysis and results show 

405 effectiveness of it by obtaining higher values for TPR and lower values for FPR in five classes.

406 5.2 The UNBC-McMaster Shoulder Pain database results

407 To prove the generality of the proposed EDLM model, the experiment was conducted on the UNBC-

408 McMaster Shoulder Pain dataset and the obtained results indicate that the proposed EDLM framework 

409 has high performance in this database. In this database we used PSPI labels per each frame. To enable 

410 rigorous evaluations of the proposed EDLM model in respect to the counterpart models, several 

411 performance evaluations measures, including the MAE, MSE, Accuracy, and AUC were utilized. Table 

412 4 indicates the obtained results of the proposed EDLM on the UNBC-McMaster Shoulder Pain database 

413 measured by accuracy, AUC, MAE, and MSE based on 10-fold cross validation.

414 Table 4. The average performance of the proposed model (EDLM) in the UNBC-McMaster Shoulder Pain 
415 database for 10-fold cross validation.

MSE MAE Accuracy AUC

0.081 0.103 86% 90.5%

416 5.3 Discussion

417 We compared the obtained results from the EDLM with a baseline model which is designed based on a 

418 standard VGG-Face and one stream LSTM model. Table 5 shows the comparison results obtained by 

419 the EDLM proposed framework with the baseline model results. As it is indicated in this table the 

420 proposed EDLM has higher performance than the standard baseline model.

421 Table 5. The comparison of the obtained AUC and accuracy from the EDLM and the baseline model in the 
422 MIntPAIN database.

Classification models AUC Accuracy

VGGFace + 1 stream LSTM 87% 83.4%

The proposed EDLM model 93.67% 92.26%
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423 The time complexity of the proposed EDLM algorithm has also been measured in two databases and 

424 compared with two other baseline models which have been developed during experimental. Table 6 

425 shows the learning time of the EDLM for two databases in comparison with two different baseline 

426 models. As is indicated in Table 6, the total time complexity of the proposed EDLM algorithm for the 

427 UNBC-McMaster Shoulder Pain database is 5900 s and the time complexity of it for the MIntPAIN 

428 database is 41700 s.

429 As a result, the most time-consuming section of the EDLM is feature extraction section and adding 

430 more streams in the classifier has not affected the algorithm speeds and efficiency. On the other hand, 

431 the selected database and the required number of epochs are important factors which affect the 

432 complexity and learning time of the algorithm.

433 Table 6. The time complexity of the proposed EDLM in compare with other baseline algorithm in the UNBC-
434 McMaster Shoulder Pain database and MIntPAIN database.

Models Database Early fusion Time complexity 

(based on second) and 

number of applied epochs

Late fusion Time complexity 

(based on second) and 

number of applied epochs

Sum of the 

Time 

complexity

VGGFace + 1 

stream LSTM

UNBC-

McMaster

10400 / 5 560 / 5 10960

VGGFace + 1 

stream LSTM

MIntPAIN 108000 / 50 1600 / 5 109600

VGGFace + PCA + 

1 stream LSTM

UNBC-

McMaster

5300/ 5 560 / 5 5860

VGGFace + PCA + 

1 stream LSTM

MIntPAIN 40000 / 50 1600 / 5 41600

Proposed EDLM 

(VGGFace + PCA 

+ 3 stream CNN-

BiLSTM)

UNBC-

McMaster

5300 / 5 600 / 5 5900

Proposed EDLM 

(VGGFace + PCA 

+ 3 stream CNN-

BiLSTM)

MIntPAIN 40000 / 50 1700 / 5 41700
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435 The EDLM model demonstrated the highest performance in comparison with the other models and the 

436 state-of-the-art results. Table 7 indicates a comparison of the proposed EDLM method scores against 

437 other state-of-the-art procedures in pain intensity recognition. In this table the obtained results trained 

438 and tested in the both databases compared with the other research works. 

439 Table 7. Comparing the proposed EDLM with the other state-of-the-art procedures in pain intensity recognition.

Ref Pain

Level

AUC

(%)

Classifier Accuracy

(%)

MSE Database Data size

[17] 2 83.9 SVM - - UNBC-McMaster All

[27] 2 84.7 SVM - - UNBC-McMaster All

[31] 2 93.3 CNN-LSTM 83.1 0.74 UNBC-McMaster Down-up

[16] 3 - CNN-RNN 61.9 - UNBC-McMaster Down-up

[22] 2 - - - 1.54 UNBC-McMaster 16657 images

[2] 5 - CNN-LSTM 32.40 - MIntPAIN All

[56] 4 98.4 PCA-CNN-RNN 91.2 0.04 UNBC-McMaster Down-up

Proposed EDLM 5 93.67 Ensemble CNN-RNN 92.26 0.0245 MIntPAIN 34800 images

Proposed EDLM 5 90.5 Ensemble CNN-RNN 86 0.081 UNBC-McMaster 10783 images

440 By analysing the results and comparing them with the state-of-the-art results, we can conclude as 

441 follows:

442 1. The proposed new feature extraction model composing fine-tuned VGGFace pre-trained and PCA 

443 significantly increased the performance of the algorithm feature extraction in compare with the standard 

444 VGG-Face.

445 2. The proposed ensemble deep learning model (EDLM) which integrated three independent CNN-

446 RNN deep learners with vary in weights and structures has high performance in comparison with the 

447 baseline VGG-Face and one stream LSTM model.

448 3. An evaluation of the proposed model through statistical metrics and investigative plots expose that 

449 the ensemble EDLM model generates improved classification compared to the other benchmarked 

450 models in multi classes.

451 4. The proposed EDLM model is the optimum deep learning method resulting in a low qualified error 

452 compared with the other target models in this task.

453 Although the obtained results from evaluation of the newly developed EDLM model confirm its 

454 effectiveness, the feature work can use different frameworks for pain recognition such as the technique 

455 introduced in [8] which firstly recognizes the general facial expression, then if it detects pain, then use 

456 the authors' proposal to provide fine-grained pain level classification. Deep metric learning methods 

457 may also be used to achieve better performance such as Siamese networks [9]. Future work, may also 

458 consider loss functions method that perform well on imbalanced datasets [57-61].



23

459  There are some limitations in terms of the number of pain datasets from facial expressions in pain 

460 detection research. One of the challenges is that most of the research into facial expressions, especially 

461 in the area of facial pain detection, currently lacks a standard database. This makes it relatively difficult 

462 to train an accurate facial image recognition system that can act as a robust platform for recognizing the 

463 pain and modelling the subsequent pain intensity relative to any given facial image.

464 6. Conclusions and future work

465 This study was designed to support ongoing efforts in developing artificial intelligence technologies for 

466 pain detection using facial expression images, and as such, the work has proposed a newly designed, 

467 classification model with an ensemble deep learning approach. The resulting EDLM model therefore 

468 integrates the three-stream independent CNN-RNN based networks that are seen to vary in their 

469 structure and weights denoting features extracted from facial images. The proposed EDLM model then 

470 applied the fine-tuned VGGFace algorithm, integrated with the PCA approach to extract features from 

471 facial images. Finally, the ensemble deep learning model that includes three independent CNN-RNN 

472 was designed and tested for its classification accuracy.

473  The proposed EDLM model has been evaluated comprehensively through the MIntPAIN and UNBC-

474 McMaster Shoulder Pain datasets. The evaluated results indicate that the proposed ensemble deep 

475 learning model has an improved performance relative to the conventional method such as a single hybrid 

476 deep learning model adopted for this task. The extensive evaluation of the EDLM model, through 

477 statistical metrics and diagnostic plots, reveals its capability to generate superior classification of facial 

478 images and its features compared with the other benchmarked models. Therefore, the deep learning 

479 EDLM model is found to attain an optimal accuracy evidenced by a relatively lower error compared 

480 with the other benchmarked models. The promising capabilities of the deep learning EDLM model 

481 indicates that a future study may advance this algorithm in different types of pain face images and video 

482 frame databases to further accelerate the efficiency and effectiveness of feature extracting of images for 

483 more broader real-time applications in  health informatics and medical diagnosis areas.
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Fig. 1. The architecture of an LSTM unit [23, 24]
Inputs: : Input vector, : memory from previous block, : output of previous block, b: Bias Outputs: : the 𝑥𝑡 𝑐𝑡 ‒ 1 ℎ𝑡 ‒ 1 ℎ𝑡

output of current block, : memory from the current block𝑐𝑡

Fig. 2. Block diagram of the proposed ensemble deep learning model (EDLM) to detect pain in multi-classes from 
facial expressions.  



Fig. 3. Early fusion step of the EDLM for feature extraction and selection by integration fine-tuned VGGFace and 
PCA

Fig. 4. Number of components to select from extracted features by PCA



Fig. 5. Late fusion step of the EDLM based on ensemble deep neural network.



Fig. 6. Samples of selected dataset of MIntPAIN database [2, 16].



Fig. 7. Examples of video frames per 5 level after removing backgrounds, cropping, and resizing.

Fig. 8 Image frame samples of the UNBC-McMaster Shoulder Pain Achieve database [17].



Fig. 9. Accuracy and loss error during 50 epochs in the early fusion of the EDLM model in the MIntPAIN database.

Fig. 10. Accuracy and MSE during 5 epochs in the late fusion of the EDLM model in the MIntPAIN database.



Fig. 11. Box plots of Accuracy and AUC for the proposed EDLM model in the MIntPAIN database.



Table 1. Properties of DNN1, DNN2, and DNN3 proposed in the late fusion stage.

DNN Convolution layer 1 Convolution layer 2 RNN

DNN1 type = conv2d, 

filter number = 256, 

activation = ReLU, 

input shape = (1,5)

type = conv2d 

filter number = 256, 

activation = ReLU, 

input shape = (1,5)

type = BiLSTM,

filter number = 256,

dense = 4096,

drop out = 0.5,

activation = ReLU

DNN2 type = conv2d, 

filter number = 128, 

activation = ReLU, 

input shape = (1,5)

type = conv2d 

filter number = 128, 

activation = ReLU, 

input shape = (1,5)

type = BiLSTM,

filter number = 32,

dense = 4096,

drop out = 0.5,

activation = ReLU

DNN3 type = conv1d, 

filter number = 256, 

activation = ReLU, 

input shape = (1,5)

None type = BiLSTM,

filter number = 128,

dense = 4096,

drop out = 0.5,

activation = ReLU

Table 2. The average performance, best result, and worst results of the proposed model (EDLM) on MIntPAIN 
database for 10-fold cross validation.

Results MSE MAE Accuracy AUC

Average 0.0245 0.0341 92.26% 93.67%

Best 0.02102 0.028 95% 95.2%

Worst 0.03056 0.039 89% 91.4%

Table 3. Average pain level per five classes based on accuracy, f-score, precision, AUC metrics in the MIntPAIN 
database.

Metrics No pain Pain 1 Pain 2 Pain 3 Pain 4

AUC 87.3% 84% 85% 89% 91%

Precision 85.2% 85% 83% 88% 88%

f-score 86% 82% 82.2% 86.2% 90%

Accuracy 92.4% 89% 88% 93% 92%



Table 4. The average performance of the proposed model (EDLM) in the UNBC-McMaster Shoulder Pain database 
for 10-fold cross validation.

MSE MAE Accuracy AUC

0.081 0.103 86% 90.5%

Table 5. The comparison of the obtained AUC and accuracy from the EDLM and the baseline model in the 
MIntPAIN database.

Classification models AUC Accuracy

VGGFace + 1 stream LSTM 87% 83.4%

The proposed EDLM model 93.67% 92.26%

Table 6. The time complexity of the proposed EDLM in compare with other baseline algorithm in the UNBC-
McMaster Shoulder Pain database and MIntPAIN database.

Models Database Early fusion Time complexity 

(based on second) and 

number of applied epochs

Late fusion Time complexity 

(based on second) and 

number of applied epochs

Sum of the 

Time 

complexity

VGGFace + 1 

stream LSTM

UNBC-

McMaster

10400 / 5 560 / 5 10960

VGGFace + 1 

stream LSTM

MIntPAIN 108000 / 50 1600 / 5 109600

VGGFace + PCA + 

1 stream LSTM

UNBC-

McMaster

5300/ 5 560 / 5 5860

VGGFace + PCA + 

1 stream LSTM

MIntPAIN 40000 / 50 1600 / 5 41600

Proposed EDLM 

(VGGFace + PCA 

+ 3 stream CNN-

BiLSTM)

UNBC-

McMaster

5300 / 5 600 / 5 5900

Proposed EDLM 

(VGGFace + PCA 

+ 3 stream CNN-

BiLSTM)

MIntPAIN 40000 / 50 1700 / 5 41700



Table 7. Comparing the proposed EDLM with the other state-of-the-art procedures in pain intensity recognition.

Ref Pain

Level

AUC

(%)

Classifier Accuracy

(%)

MSE Database Data size

[17] 2 83.9 SVM - - UNBC-McMaster All

[27] 2 84.7 SVM - - UNBC-McMaster All

[31] 2 93.3 CNN-LSTM 83.1 0.74 UNBC-McMaster Down-up

[16] 3 - CNN-RNN 61.9 - UNBC-McMaster Down-up

[22] 2 - - - 1.54 UNBC-McMaster 16657 images

[2] 5 - CNN-LSTM 32.40 - MIntPAIN All

[56] 4 98.4 PCA-CNN-RNN 91.2 0.04 UNBC-McMaster Down-up

Proposed EDLM 5 93.67 Ensemble CNN-RNN 92.26 0.0245 MIntPAIN 34800 images

Proposed EDLM 5 90.5 Ensemble CNN-RNN 86 0.081 UNBC-McMaster 10783 images

Algorithm 1: The proposed EDLM algorithm

1: Procedure EDLM (input, n, j, batch)

2: Pre-process (input)

3: for k ← 0, n do

4: finetune (VGG-Face)

5: for epoch ← 0, j do

6: features ← train (finetune (VGG-Face))

7: end for

8: SF ← PCA (features)

9: GN ← Calculate (GN) 

10: for epoch ← 0, j do 

11: o1 ← DNN1(SF)

12: o2 ← DNN2(SF)

13: o3 ← DNN3(SF) 

14: out ← merge (o1, o2, o3)

15: out ← GN (48)

16: train (model (SF, out))

17: end for

18: end for

19: end procedure
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