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and Jun Zhang , Fellow, IEEE

Abstract—Data-driven evolutionary algorithms (DDEAs) aim
to utilize data and surrogates to drive optimization, which
is useful and efficient when the objective function of the
optimization problem is expensive or difficult to access. However,
the performance of DDEAs relies on their surrogate quality and
often deteriorates if the amount of available data decreases. To
solve these problems, this article proposes a new DDEA frame-
work with perturbation-based ensemble surrogates (DDEA-PES),
which contain two efficient mechanisms. The first is a diverse sur-
rogate generation method that can generate diverse surrogates
through performing data perturbations on the available data.
The second is a selective ensemble method that selects some of
the prebuilt surrogates to form a final ensemble surrogate model.
By combining these two mechanisms, the proposed DDEA-PES
framework has three advantages, including larger data quan-
tity, better data utilization, and higher surrogate accuracy. To
validate the effectiveness of the proposed framework, this arti-
cle provides both theoretical and experimental analyses. For the
experimental comparisons, a specific DDEA-PES algorithm is
developed as an instance by adopting a genetic algorithm as
the optimizer and radial basis function neural networks as the
base models. The experimental results on widely used bench-
marks and an aerodynamic airfoil design real-world optimization
problem show that the proposed DDEA-PES algorithm outper-
forms some state-of-the-art DDEAs. Moreover, when compared
with traditional nondata-driven methods, the proposed DDEA-
PES algorithm only requires about 2% computational budgets
to produce competitive results.

Index Terms—Data-driven evolutionary algorithm (DDEA),
ensemble surrogates, genetic algorithm (GA).
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I. INTRODUCTION

IN RECENT years, data-driven evolutionary algo-
rithms (DDEAs) have received increasing attention in

solving many real-world optimization problems, such as
trauma system optimization [1], air ventilation system
design [2], blast furnace optimization [3], and many
others [4]. This is mainly due to two reasons. First,
evolutionary algorithms (EAs) are efficient tools for
tackling optimization problems with different properties
and challenges, such as large scale [5]–[7], dynamic
[8], multimodal [9]–[11], multiobjective [12]–[14], and
many objective [15]. Second, there is an increasing
number of real-world optimizations requiring distributed
approaches [16], [17] and data-driven approaches [18],
because their objective functions (and/or constraints func-
tions) are always expensive, computationally intensive, or
time consuming to perform. That is, evaluating the fitness
(i.e., quality) of candidate solutions can be unaffordable in
such real-world application problems [19]. For example, one
evaluation of a high-fidelity crashworthiness analysis in the
automotive industry can take several days and, therefore,
finishing 104 times of evaluations for a crashworthiness
design can take more than 100 years [20], which is unrealistic
for engineering productions. Instead of using expensive
fitness evaluations (FEs) and/or constraints evaluations,
data-driven methods can provide cheaper and more effi-
cient ways to carry out the evolutionary optimizations.
Specifically, based on some evaluated data (e.g., candidate
solutions evaluated by real FEs), data-driven methods can
build surrogate models to approximate or replace the real
FEs to drive the evolutions, which can reduce the needs on
expensive FEs in the optimization procedures. Therefore, by
combining EAs and data-driven methods, DDEAs can be
more potential and efficient than traditional methods including
traditional EAs because DDEAs can drive the optimizations
through data and surrogates instead of performing expensive
FEs [21], [22].

Generally speaking, existing research for improving DDEAs
can be roughly classified into two categories. The first cate-
gory mainly aims to improve data quality and data quantity,
because data with higher quality and of larger amounts are
useful for building more accurate surrogates [4]. Therefore,
many data processing and data generation methods have been
proposed, such as local smooth methods [3], data mining
techniques [18], and artificial data generation [23]. The second
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category is to improve surrogate quality, for example, the
accuracy and robustness of surrogates. To obtain better sur-
rogates, the users can select appropriate methods to build
suitable surrogates, such as polynomial fitting [24], Kriging
model [25], neural networks [26], and many others [27], [28].
In addition, when given a set of prebuilt homogeneous
or heterogeneous surrogates, better models can be gener-
ated through managing and combining prebuilt surrogates
properly [29], [30]. However, some studies also show that
ensemble surrogates that are more efficient than a single
surrogate in theoretical (mathematical functions) problems
may not always work better in real-world application prob-
lems because the nature of each optimization problem may
favor different surrogates [31]–[34]. Therefore, further and
more intelligent surrogate ensemble methods are needed to
be researched and studied. Moreover, as DDEAs rely heavily
on surrogate predictions to evolve candidate solutions, their
optimization accuracy may greatly deteriorate if they can-
not make full use of the limited data to generate accurate
surrogates.

To solve the above problems, this article proposes a new
DDEA framework with perturbation-based ensemble surro-
gates, called DDEA-PES. The proposed framework contains
two efficient mechanisms. First, it employs a diverse surro-
gate generation (DSG) method to generate a set of diverse
surrogates. This is achieved by first performing data pertur-
bations on the given dataset to obtain diverse datasets and
second training surrogates on each new dataset independently.
Second, it adopts a selective ensemble (SE) method to select
some of the prebuilt surrogates to form a final ensemble surro-
gate model. By combining the DSG and the SE, the proposed
framework can have the following three advantages. First, if
the given data are insufficient for building accurate surrogates,
data perturbations can increase the data quantity for building
better surrogates. Second, the algorithm can make full use
of the given data by using DSG to generate a large number
of diverse datasets from a given dataset and to obtain a set of
diverse surrogates. Third, the SE can obtain a final surrogate
model with higher effectiveness and efficiency by selecting
and combining the better surrogates from prebuilt surrogates.
To validate the proposed framework, this article provides
theoretical analyses to study the effectiveness of data perturba-
tions. Furthermore, experimental comparisons are performed
on benchmark functions and a real-world aerodynamic airfoil
design optimization problem to investigate the DDEA-PES. To
conduct the experimental comparisons, a specific algorithm is
developed based on the proposed framework, which employs
genetic algorithm (GA) as the optimizer and radial basis
function neural networks (RBFNNs) as the base models,
respectively. In addition, state-of-the-art algorithms and tradi-
tional methods are adopted as contenders in the experimental
comparisons.

The remainder of this article is organized as follows.
Section II provides background knowledge and related work,
while Section III introduces the DDEA-PES and gives the-
oretical analyses. Section VI is for the experiments and
comparisons. Finally, Section V gives the conclusion and
future work.

II. BACKGROUND AND RELATED WORK

A. Data-Driven Evolutionary Algorithm

As the complexity and scale of optimization problems
increase rapidly, FEs are increasingly expensive and diffi-
cult to access. In such cases, the performance of EAs often
deteriorates due to the lack of enough FEs for evolving indi-
viduals, which poses great challenges to EAs in real-world
applications [35]–[37]. Therefore, many EAs have been incor-
porated with data-driven methods such as surrogate models to
improve their performance [38].

Usually, DDEAs mainly aim to drive the evolutionary search
based on candidate solutions that have been evaluated by
real FEs [39]. Such processes can be achieved by using sur-
rogates to approximate and replace the real FEs as much
as possible [18], [21]. In other words, by using evaluated
data (i.e., the evaluated solutions) to build suitable surrogates,
DDEAs can utilize these surrogates for driving the evolution
search. As the data-driven mechanism can reduce the needs
of conducting expensive FEs, DDEAs can easily outperform
many traditional EAs when solving computationally intensive,
time consuming, and expensive optimizations [22].

According to whether new candidate solutions can be
evaluated by exact FEs, DDEAs can be divided into two
categories [4]: 1) online DDEAs and 2) offline DDEAs. In
online DDEAs, some candidate solutions will be still eval-
uated by real FEs during the optimization procedure. These
newly evaluated solutions can be utilized as the new train-
ing data to refine and improve the existing surrogate models,
which can further increase the surrogate accuracy and search
efficiency [39]. Therefore, online DDEAs can be suitable for
the problems that few FEs are still available from physical
experiments or expensive calculations [40]. Differently, offline
DDEAs build surrogate models only based on the historical
evaluated data and no new solutions are evaluated by real
FEs during the optimization procedure [19]. Although online
and offline DDEAs are different in their data collection, they
have similar ways of processing collected data and building
surrogates. Therefore, methods proposed for processing data
and managing surrogates in offline algorithms can be used in
online algorithms as well. Based on this, without loss of gen-
erality, this article mainly details the proposed framework for
offline DDEAs.

B. Related Work

This part reviews some relevant research and discusses the
differences between them and our DDEA-PES. As briefly
introduced in Section I, research for enhancing DDEAs can
be generally classified into two categories as on data and as
on surrogate [41].

The first category aims to improve the quality and quantity
of evaluated data [23], [41]. As the evaluated data are cru-
cial for obtaining accurate surrogates, both the quality and
quantity of evaluated data can have very significant influences
on the optimization accuracy of DDEAs [4]. Consequently,
many research have been conducted to solve these prob-
lems. For poor-quality data, including data with imbalanced
distribution [42], incomplete information [43], and noisy [44],
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preprocessing methods can be helpful [45]. For example, on
a blast furnace optimization application, Chugh et al. [3]
smoothed the noisy data through a local regression and then
built Kriging models as surrogates based on processed data.
As for big data applications [46], data mining and some
related methods have been adopted to reduce data redun-
dancy for building surrogates and the long calculation time
for accessing big data. For instance, Wang et al. [18] used
data mining techniques to recognize useful patterns in bid data,
which could save about 90% of running time when optimiz-
ing a trauma system. In general, the above methods aim to
improve data quality rather than the data quantity. Therefore,
they may not work well if the amount of available data is
insufficient in obtaining high-quality surrogates. Differently,
the proposed DDEA-PES can make better use of the lim-
ited data through data perturbations, which can alleviate the
data shortage problems.

As data shortage is often the largest challenge for approx-
imating fitness functions, some research attempt to solve this
problem by generating additional data [4], [12]. For instance,
Guo et al. [23] generated artificial data through a low-
order polynomial model. Although this method has obtained
promising results, the drawback of this method is that the
reliability of the generated data may depend heavily on the
low-order model. Differently, Wang et al. [19] proposed an SE
method, which generated diverse datasets through a boot-
strap method. In this way, a number of different surrogates
can be trained on these datasets, respectively, and then com-
bined for predictions. The difference between this method
and the DDEA-PES is that the bootstrap method obtains
datasets by randomly resampling the evaluated data while the
DDEA-PES generates datasets by data perturbations. Besides,
transfer learning techniques are also likely to be effective for
alleviating the data shortage. For instance, Ding et al. [47]
transferred knowledge from computationally cheap problems
to expensive problems, which can improve surrogate accuracy.
However, such knowledge transfers require the shared charac-
teristics or features between the source and target problems.
In other words, transfer learning methods are problem depen-
dent. In contrast, the proposed DDEA-PES does not require
such assumptions and therefore can be suitable for a wider
range of problems.

The second category aims to obtain better surrogates based
on given data. So far, many methods have been studied for
choosing more suitable methods and models to build sur-
rogates. These models can be polynomial regression [24],
Kriging models [25], traditional interpolation methods [48],
and many others [49]. Also, machine-learning techniques
are popular for building surrogates, which include artifi-
cial neural networks [26] and RBFNNs [27], [28]. Moreover,
Sun et al. [48] proposed a novel fitness approximation strategy
based on PSO, which could estimate fitness according to the
positional relationship between particles in a PSO.

However, the above research have shown that each model
has its own advantages and no surrogate model can be the
best for all problems [4]. Therefore, many methods of model
management are proposed to combine the advantages of dif-
ferent surrogates. For example, Wang et al. [29] made a better

balance between global and local searches by combining
global and local surrogates. Similarly, Sun et al. [30] designed
a two-layer surrogate-assisted PSO (TLSAPSO) that adopted
local surrogates to locate global optimum and employed global
surrogates to smooth out local optimum. Also, the surrogate-
assisted cooperative swarm optimization algorithm (SA-
COSO) was proposed with an estimation method and RBFNNs
for solving high-dimensional problems [28]. Furthermore,
based on a set of surrogates, committee-based active learn-
ing for the surrogate-assisted PSO algorithm (CAL-SAPSO)
employed the committee-based decision for predictions [39].
As online DDEAs are able to evaluate new data through real
FEs and employ them to update surrogates, many methods
have been studied for selecting the most suitable individuals
for FEs. Based on the mechanism for selecting individu-
als, related methods can be classified into generation- and
individual-based strategies [4]. The generation-based strate-
gies are to evaluate all solutions based on generations, accord-
ing to the adaptive or predefined settings of the frequency for
conducting evaluations [26]. Differently, only some individu-
als will be evaluated in individual-based strategies. In these
strategies, the selections of individuals are often based on
two factors: 1) the promising and 2) uncertain individuals [4].
The promising individuals, namely, the individuals with better-
predicted fitness, may provide more useful information to
capture the exact optimum position [26], while uncertain
individuals, individuals with uncertainty predictions, can pro-
vide information to increase surrogate accuracy on uncertain
areas [50]. However, how to measure uncertainty is not an
easy problem. Hence, some methods are frequently used
in many model management strategies to provide uncer-
tainty measurements of predictions, such as the Gaussian
process-assisted EA designed for the medium-scale expen-
sive problem (GPEME) [40]. Also, some research mea-
sure the uncertainty based on the variance of surrogate
outputs [39], [50]. In addition, a branch of strategies called
infill criteria is researched to consider both the prediction
fitness and uncertainty together to combine their advan-
tages, including expected lower confidence bound (LCB) [40],
probability of improvement (PoI) [51], and expected improve-
ment (ExI) [52]. Furthermore, based on this, multiobjective
infill criteria have also shown effectiveness when minimizing
fitness and uncertainty together [21]. In summary, the above
methods mainly consider how to manage and update surro-
gate models based on given data by employing techniques in
data analysis and knowledge discovery. Different from these
existing methods, the DDEA-PES provides a novel and effi-
cient way for model building and management, which can
adaptively select the proper surrogate ensemble according to
the problem at hand.

III. PROPOSED DDEA-PES ALGORITHM

A. Overall Framework

The overall framework of DDEA-PES is shown in Fig. 1. As
mentioned before that the model management methods for
offline algorithms can also be used in online algorithms [19],
for simplicity, Fig. 1 is the version of offline DDEA-PES,
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Fig. 1. Diagram of the overall DDEA-PES framework.

which denotes all data evaluated by real fitness functions as
original data.

In general, the DDEA-PES can be divided into two parts:
1) the employed EA and 2) the employed surrogate model.
The employed EA in DDEA-PES is the same as traditional
EAs, which includes initialization, variation, FE, and selection.
Hence, DDEA-PES can use different EAs as the optimizers,
such as PSO and GA.

The surrogate model employed in DDEA-PES is the
perturbation-based ensemble surrogates (PES) proposed in
this article. Given the original data, PES first performs the
DSG based on data perturbations to generate a set of surro-
gate models. Then, it employs the SE to select some of the
existing surrogates to form the final ensemble model. This
ensemble model will be used to replace the real FEs in the
selection part of the employed EA. Driven by the ensemble
model, the employed EA iteratively evolves its individuals and
finally outputs the solutions when the stop criteria are met.
The data perturbation, DSG, and SE will be detailed in the
following contents one by one.

B. Data Perturbation

The data perturbation aims to generate diverse datasets
by perturbating the original data in order to build differ-
ent surrogates for ensemble selections. To better describe the
data perturbations, we use a similar method as in [41] and
the notations used in the following contents are introduced
herein. First, this article denotes the data evaluated by real
FEs and the data generated by data perturbations as “original
data” and “generated data,” respectively. Second, we denote
the training dataset (TS) containing all the original data with
the corresponding fitness as TS = {xi, F(xi)}N

i=1, where N is
the total number of the original data and F(x) is the fitness
value of x. Third, a subset of TS is denoted as S that contains
the selected data for data perturbations. Based on these nota-
tions, the generated dataset K generated by data perturbations
can be represented as follows:

K = {(
xgen, F

(
xgen

))∣∣xgen = xs + �x, |�x| ≤ l, xs ∈ S
}

(1)

l =
√∑D

i=1(UBi − LBi)
2

D
× 10−6 (2)

where �x is a random vector, l is the maximum length of �x,
D is the problem dimension, and UBi and LBi are the upper
bound and lower bound of the ith dimension, respectively.
Then, the diverse training set (DTS) can be represented as the
union of K and TS

DTS = TS ∪ K. (3)

Notice that if we have sufficient small l in (1), the fitness
of xgen and xs can be nearly the same for continuous fitness
functions. Therefore, we set the fitness value of xgen the same
as xs, that is, F(xgen) = F(xs), where F(xgen) and F(xs) will
be referred as the exact fitness and the approximated fitness of
xgen, respectively, in the rest of this article. In this way, we can
obtain the additional data (i.e., xgen) without consuming FEs.

Now, we analyze the effect of such data perturbations.
Considering a surrogate model M and denoting its prediction
on data x as M(x), its prediction error can be defined as

Err(M, F, x) = L(F(x), M(x)) (4)

where L is a loss function. For simplicity, we consider the
absolute loss function in this part, that is, L(a, b) = |a−b| with
a and b as real numbers. Then, given xgen, which is generated
by perturbating xs, and its approximate fitness F(xs), we have

Errappr
(
M, F, xgen

) = L
(
F(xs), M

(
xgen

))

= ∣∣F(xs) − M
(
xgen

)∣∣

= ∣∣F(xs) − F
(
xgen

) + F
(
xgen

) − M
(
xgen

)∣∣

≤ ∣∣F(xs) − F
(
xgen

)∣∣

+ ∣∣F
(
xgen

) − M
(
xgen

)∣∣

= ∣∣F(xs) − F
(
xgen

)∣∣

+ Errexact
(
M, F, xgen

)
(5)

where Errappr and Errexact represent the prediction error when
the fitness of data is approximated and is exact, respectively.
For clarity, the following contents simply denote xgen as x
when it belongs to K. Then, given a dataset K which is gen-
erated through (1) with the data xs in S, the expected error
produced by M on K can be defined as

Eappr(M, F, K) =
∑

x∈K

p(x) · Errgen(M, F, x) (6)

where Eappr(M, F, K) represents the expected prediction error
of M on K when the fitness of all data x in K is approximated,
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and p(x) is the distribution of data x. Combining (5) and (6),
we can have

Eappr(M, F, K) =
∑

x∈K

p(x) · Errgen(M, F, x)

≤
∑

x∈K

p(x)

× (Errexact(M, F, x) + |F(xs) − F(x)|)
=

∑

x∈K

p(x) · Errexact(M, F, x)

+
∑

x∈K

p(x) · |F(xs) − F(x)|

= Eexact(M, F, K) +
∑

x∈K

p(x) · |F(xs) − F(x)|

(7)

where Eexact(M, F, K) represents the expected prediction error
of M on K when the fitness of all data x in K is exact. As the
data in TS rarely will be the same with others, we can simply
assume that the value of p(x) for all data is the same on a set
K. That is, data are uniformly distributed on K. Then, (6) can
be rewritten as

Eappr(M, F, K) ≤ Eexact(M, F, K) + 1

|K|
∑

x∈K

|F(xs) − F(x)|

(8)

where |K| is the size of dataset K.
Furthermore, according to (1), as the data in S are finite,

we can always find a constant Q that can satisfy (9) for any
data xs in S and for the corresponding x = xs + �x in K

|F(xs) − F(x)| ≤ Q · |x − xs| = Q · |�x| ≤ Q · l. (9)

Combining (8) and (9), we can have

Eappr(M, F, K) ≤ Eexact(M, F, K) +
∑

x∈K Ql

|K|
= Eexact(M, F, K) + Ql. (10)

The inequation given in (10) can provide two implications.
First, when approximating continuous objective functions
[which can have a small Q to satisfy (9)], data perturba-
tions can help obtain high accuracy surrogates within less FEs
because the training error of surrogates based on data with
approximated fitness can be similar to those based on exact
fitness. For an extreme example, when the approximated func-
tions are constant functions (Q can be zero), the surrogates
trained on data with approximated fitness will be the same
as those on exact fitness. Second, by properly controlling l,
the training error obtained by surrogates based on data with
approximated fitness can be similar to those based on exact fit-
ness. This provides a cost-effective way of building surrogates.
Therefore, the surrogate trained on datasets after perturbations
can be similar to those on datasets with real fitness, where the
former requires less FEs than the latter.

C. Diverse Surrogate Generation

Based on the data perturbations, diverse surrogates can be
generated independently, as shown in Fig. 2. Algorithm 1 is

Fig. 2. Diagram of DSG.

Algorithm 1: DSG
Input: TS-the original training data set;

T-the number of surrogates to be obtained.
Output: SMS-the surrogate model set containing T surrogates.

1 Begin
2 Build a surrogate model M1 on TS.
3 // Compute diffi of each data (for guiding later data selection)
4 For each xi in TS Do
5 Use M1 to predict the fitness of xi, stored as Ypre,i;
6 Calculate the difference diffi = Ypre,i − F(xi); //F(xi) is fitness

of xi
7 End For
8 Sort the data in TS according to their diff with descending order;
9 Set S as the first 50% data of the sorted TS;

10 Initialize SMS as {M1};
11 For j = 2 to T Do
12 Set K as an empty set;
13 For each xi in S Do
14 Generate xnew through xi by using Eq. (1);
15 F(xnew) = F(xi);
16 K = K ∪ (xnew, F(xnew));
17 End For
18 DTSj = TS ∪ K; // refer to Eq. (3)
19 Build surrogate model Mj on DTSj;
20 SMS = SMS ∪ {Mj};
21 End For
22 End

the pseudocode of DSG. As minimization problems can be
easily transformed into maximization problems, Algorithm 1
is for minimization problems without loss of generality. The
inputs of DSG include a set of original data, TS, and the
total surrogate number to be obtained, T , while the output is
a surrogate model set (SMS) with T diverse surrogates. In the
implementation, T surrogates are all RBFNNs [19] so that the
algorithms can simply receive their parameters (i.e., the num-
ber and weights of neurons) and rebuild the same RBFNNs if
needed. Furthermore, many research have shown that in both
theory and practice, the linear combination of highly nonlinear
models can dramatically decrease the variance of generation
error [53], and RBFNNs are also nonlinear models.

In DSG, there are two main procedures. In the first proce-
dure, some data of TS will be selected as S in (1). To obtain
S, DSG builds the first surrogate M1 on TS and then predicts
the fitness of all data in TS as Ypre. After this, it computes the
prediction error, diff = Ypre −F(x), for all the data. The larger
the diff is, the large the prediction error is. Thus, data with
larger diff will be selected to construct S for data generation.
Herein, DSG will add the first half of data with larger diff
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Algorithm 2: SE
Input: xbest-the best solution in the evaluated data set;

F(xbest)-the fitness value of the xbest;
T-the number of surrogate models to be selected;
OSMS-the original surrogate model set containing more than T

surrogates.
Output: SMS-the surrogate model set containing T surrogates.

1 Begin
2 For each surrogate Mi in OSMS Do
3 Use Mi to predict the fitness of xbest , denoted as Yi;
4 Calculate prediction error as Erri = (F(xbest) − Yi)

2;
5 End For
6 Sort the surrogates in OSMS in ascending order according to Erri;
7 Select the first T surrogates in OSMS to construct SMS;
8 End

into S. The reason for using “a half” lies in that too much will
make the algorithm time consuming while too few data may be
insufficient, and hence “a half” makes the balance. The second
procedure of DSG is to generate DTS through data perturba-
tions and then build surrogates based on DTS. For building
each surrogate, DSG first sets K as an empty set. Then, it
generates data by performing perturbations on each data in S
and adds the generated data into K. After this, the DSG obtains
a new dataset DST as the union of K and TS and employs the
DST to build a new surrogate model. Finally, the built surro-
gate model will be added to SMS. The above processes will
be performed iteratively until T surrogates are generated. Last
but not least, as the first surrogate built only on TS is also
added into the SMS, the total number of new surrogates built
on different DSTs is T − 1.

D. Selective Ensemble

In the literature, the ensembles of surrogate models or
ensemble learning methods have shown effectiveness in
improving DDEAs [19], [50]. Therefore, this work also con-
siders further enhancing the approximation accuracy through
the combination of different surrogates. In this article,
a straightforward SE method is proposed. That is, from a set
of surrogates, the algorithm just selects some of them for use.
The pseudocode of SE is shown as Algorithm 2. The inputs of
SE include the best solution in the current generation (xbest),
the number of surrogates to be selected (T), and the origi-
nal model set containing more than T surrogates, while its
output is an SMS with T surrogates. The idea of SE is to
select the surrogates with better accuracy. As DDEAs care
about the surrogate accuracy on promising area rather than
the unpromising area, the SE employs the best solution to
measure the accuracy of different surrogates. Therefore, SE
first computes the prediction value given by each surrogate
in OSMS on the best solution and then selects the surrogates
with smaller prediction error. Although the algorithm can per-
form SE and reselect the surrogates during optimizations, how
to design the frequency for performing SE can be problem
dependent. Therefore, the SE used in this article is performed
before the optimizations and its selection of surrogates is fixed
during the whole optimization procedure. That is, we use the
best solution in historical data to preselect the surrogate before

TABLE I
BENCHMARK PROBLEMS

the evolutionary search starts. When evaluating a new candi-
date solution, the average of prediction results given by all the
selected surrogates will be calculated as the predicted fitness
of that candidate solution.

IV. EXPERIMENTAL STUDIES

A. Algorithm Settings

To test the proposed framework, we develop a specific
algorithm for the experiments and companions, which adopt
the GA with simulated binary crossover (GA-SBX) [54] and
RBFNNs as the employed EA and the base models in the
DDEA-PES framework, respectively. For configurations, all
the RBFNNs are configured with D neurons, where D is the
problem dimension. In addition, the maximum generation for
performing GA-SBX is set as 500 and the number of surro-
gates built by DSG and the surrogates selected by SE is set
as 200 and 100, respectively.

For comparisons, state-of-the-art algorithms are adopted
as competitors: CAL-SAPSO [39], SA-COSO [28],
GPEME [40], DDEA-SE [19], and MGP-SLPSO [21].
These algorithms have different characteristics. First, CAL-
SAPSO that employs surrogates to make committee-based
decisions shares some similar characteristics with DDEA-PES
in the model combination. Second, GPEME is an efficient
online DDEAs using Kriging models. Third, different from
CAL-SAPSO and GPEME that are designed for small- and
medium-scale optimizations, SA-COSO and MGP-SLPSO are
online DDEAs for high-dimensional problems [28]. Fourth,
DDEA-SE is a powerful offline DDEA, which can help to
show the effectiveness of our DDEA-PES. All configurations
of these DDEAs are set according to their corresponding
references. In addition, the GA-SBX used in DDEA-PES is
configured as the same with that used in DDEA-SE [19],
which can provide more fair comparisons. Specifically, the
crossover parameter, mutation parameter, and population size
of GA-SBX are 1.0 and 1/D, and 100, respectively, with D
as the dimension of corresponding problems.

B. Experimental Setup

The experiments first employ commonly used benchmark
functions [19] to test the proposed algorithm, where the bench-
marks are presented in Table I. Although these benchmark
problems seem to be simple, they cover a wide range of
problem characteristics (e.g., multimodal and nonseparable)
for observing the features of different optimization algorithms.
Furthermore, these problems can be extremely difficult to
optimize when the number of available FEs is limited. As
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TABLE II
COMPARISONS ON OPTIMIZATION RESULTS AMONG DDEA-PES AND TRADITIONAL METHODS

for the experiments, 11 × D is the maximum number of avail-
able FEs for each algorithm, where D is the corresponding
problem dimension. Especially for offline DDEAs, 11 × D
data are sampled by Latin hypercube sampling (LHS) [55]
before their evolution and after this, no real FEs will be per-
formed. In order to reduce the statistical errors, the average
results over 25 independent runs are used for comparisons. For
the purpose of clearer comparisons, both the average and stan-
dard deviation of the optimization error are presented. Besides,
Wilcoxon’s rank-sum tests with a significant level α = 0.05
are performed to make the comparisons statistically sound, the
proposed algorithm performs significantly better than, similar
to, and significantly worse than the DDEA-PES which are
represented by the symbols “+,” “≈,” and “−,” respectively.

C. Effectiveness of DDEA-PES

This part accesses the effectiveness of data-driven meth-
ods in DDEA-PES. In the experiments, the proposed methods
are compared with GA-SBX (without surrogates) and random
sample method (11·D data sampled by LHS). The GA-SBX
and DDEA-PES are only different in that GA-SBX only uses
real FEs for evolution while DDEA-PES only employs sur-
rogates. In addition, the random sample method is actually
the offline data utilized in DDEA-PES. This can serve as
a baseline to compare the DDEA-PES. Besides, to observe
the strength of DDEA-PES, the GA-SBX using 110 × D and
550 × D FEs is also employed for comparisons, where the
DDEA-PES only consumes 11×D FEs to obtain offline data.

The comparison results are provided in Table II, with the
best results marked in bold. Table II suggests the effective-
ness of DDEA-PES. Based on Wilcoxon’s rank-sum tests, the
DDEA-PES outperforms both the random sample method and
the GA-SBX (with 11D Fes) on all the problems. Furthermore,

TABLE III
COMPARISONS BETWEEN OFFLINE DATA-DRIVEN ALGORITHMS

the DDEA-PES can perform generally better than and simi-
larly to the GA-SBX with 110D FEs and 550D FEs, respec-
tively. That is, it can use about 10% or 2% budgets of FEs
to generate better or similar results when compared with GA-
SBX without surrogates. This has shown the effectiveness of
DDEA-PES.

D. Comparisons With Offline DDEAs

This part compares the DDEA-PES with DDEA-SE on all
the benchmark problems, of which results are provided in
Table III. It can be seen that although DDEA-SE is a state-
of-the-art offline DDEA, the DDEA-PES can perform better
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TABLE IV
COMPARISONS BETWEEN THE DDEA-PES AND ONLINE DATA-DRIVEN

ALGORITHMS ON LOW- AND MEDIUM-DIMENSIONAL PROBLEMS

than and similar to DDEA-SE on 7 and 4 of the 20 problems,
respectively. Furthermore, the DDEA-SE builds 2000 sur-
rogates for model management and the DDEA-PES only
builds 200 surrogates, which suggests the efficiency of the
DDEA-PES.

E. Comparisons With Online DDEAs

In this part, DDEA-PES is compared with state-of-the-
art online DDEAs. Considering that online algorithms are
proposed for different problems, that is, CAL-SAPSO and
GPEME for low- and medium-dimensional problems while
SA-COSO and MGP-SLPSO for high-dimensional problems,
we divided the comparisons into two parts, problems with 10
and 30 dimensions and problems with 50 and 100 dimen-
sions. Hence, the CAL-SAPSO and GPEME are adopted in
10- and 30-D problems while the SA-COSO and MGP-SLPSO
are employed in 50- and 100-D problems.

Table IV presents the comparison results on low and
medium problems. When compared with GPEME, the DDEA-
PES shows its strengths by significantly outperforming
GPEME on all the ten benchmark problems. When compared
with CAL-SAPSO, the DDEA-PES can still obtain the best
results (in bold) on five of the ten problems. As the DDEA-
PES is implemented in an offline version, it can have better
performance when implemented in an online version which
can evaluate candidate solutions to update surrogate models
during the optimization process. In short, the comparisons with
CAL-SAPSO and GPEME have shown the potential of the
DDEA-PES.

Table V presents the comparison results on high-
dimensional problems. The results show that the DDEA-PES
significantly outperforms SA-COSO on nine compared prob-
lems and is only significantly worse on one problem, which
suggests the good performance of DDEA-PES on high-
dimensional problems. When compared with MGP-SLPSO,

TABLE V
COMPARISONS BETWEEN THE DDEA-PES AND ONLINE DATA-DRIVEN

ALGORITHMS ON HIGH-DIMENSIONAL PROBLEMS

the DDEA-PES performs significantly better on five and sig-
nificantly worse on five problems, showing that DDEA-PES, in
general, is competitive with MGP-SLPSO. Moreover, DDEA-
PES obtains better results on Rosenbrock and Ackley functions
while MGP-SLPSO on Ellipsoid and Griewank functions,
suggesting that they are efficient for different problems. In
a word, the above experiments have shown the strengths
of DDEA-PES when compared with online data-driven
algorithms.

F. Contribution Analysis of Different Components

This part further studies the contributions and influences
of the proposed DSG and SE individually. For this, DDEA-
PES is compared with its variants without DSG, SE, or both
of them. According to their components, these variants are
denoted as DDEA-PES without DSG (DDEA-PES-without-
DSG), DDEA-PES without SE (DDEA-PES-without-SE), and
DDEA-PES without both DSG and PES (DDEA-PES-without-
DSG-SE). All these variants use the same optimizer as that
used in DDEA-PES.

The comparison results are provided in Table VI. Based
on Wilcoxon’s rank-sum test, the original DDEA-PES signif-
icantly outperforms DDEA-PES-without-DSG, DDEA-PES-
without-SE, and DDEA-PES-without-DSG-SE on 13, 16, and
20 problems of the 20 tested problems, respectively. Moreover,
over the 20 problems, DDEA-PES can obtain the best results
(as marked in bold) on 13 problems. These results show that
both the DSG and SE have their contributions to the great
performance of DDEA-PES and removing any of them will
decrease the algorithm performance.

G. Effects of Different Area Sizes for Data Perturbation

To further study the effect of different area sizes for
data perturbations, DDEA-PES is compared with its vari-
ants with different l for perturbations, where the original l is
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TABLE VI
COMPARISONS BETWEEN ALGORITHM VARIANTS WITH OR WITHOUT DSG AND SE

TABLE VII
COMPARISON AMONG DDEA-PES VARIANTS WITH DIFFERENT MAXIMUM LENGTHS FOR DATA PERTURBATION

denoted as l0 [refer to (1)]. The comparison results provided
in Table VII show that different l can be suitable for different
problems and different dimensions. For example, DDEA-PES
with l = 102 ·l0 outperforms l = 10−2 ·l0 on the 10-D Ellipsoid
problem while it performs worse than l = 10−2 · l0 on the
100-D Ellipsoid problem. Also, l = 102 · l0 performs better
and worse than l = 104 · l0 on the 10-D Ellipsoid problem
and 100-D Rosenbrock problem, respectively. Furthermore, as
l = l0 can, in general, outperform other l values, l is rec-
ommended to be configured according to (2). In summary,
the proposed data perturbation can improve the optimization
accuracy of DDEAs.

H. Effects of Different Criteria for Constructing Dataset

This part considers the effects of different criteria for con-
structing the dataset S (refer to Algorithm 1). As the employed
criterion of the original DDEA-PES is diff = Ypre − F(x),
its variants with diff = ‖Ypre − F(x)‖2, diff = F(x), and
diff = −F(x) are employed for comparisons. The results pro-
vided in Table VIII show that the original diff outperforms
others. Based on Wilcoxon’s rank-sum tests on the 20 prob-
lems, the original diff can perform significantly better than
diff = ‖Ypre − F(x)‖2, diff = F(x), and diff = −F(x) on 17,
14, and 20 problems, respectively. Furthermore, the original
diff obtains the best average results (marked in bold) on 11 of
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TABLE VIII
COMPARISON AMONG DDEA-PES VARIANTS WITH DIFFERENT CRITERIA FOR DATA PERTURBATION

the 20 problems. This indicates that selecting which data to
perform perturbations can be crucial to the surrogate accuracy,
and in general, the selection criterion employed in this article
is effective and efficient.

I. Effects of Selected Surrogate Number

This part studies the effects of the selected surrogate number
for building the final ensemble model. For this, we compared
the performance of DDEA-PES with different numbers of
selected surrogates, including 5, 10, 15, 20, 50, 100 (the origi-
nal setting), and 150, on 10- and 100-D Ellipsoid, Ackley, and
Rastrigin problems, respectively. The comparison results are
provided in Fig. 3, which indicates that the influence of the
selected surrogate number has a strong relationship with the
problem dimension. For example, 150 surrogates have simi-
lar average results with ten surrogates on the 10-D Ellipsoid
problem, while 150 surrogates can outperform ten surrogates
on the 100-D Ellipsoid problem. Similarly, on the Ackley
problem, selecting ten surrogates is better for the 10-D case
while selecting 100 surrogates is recommended for the 100-D
case. These results may be due to the reason that the problem
complexity increases rapidly as the dimension increases. In
such circumstances, the number of selected surrogates enough
for problems of low dimensions may be insufficient for prob-
lems of high dimensions. Therefore, it is suggested to use more
surrogates when approximating higher dimensional and more
complex problems.

J. Aerodynamic Airfoil Design Optimization

This part employs an aerodynamic airfoil design
optimization problem to test the performance of DDEA-PES
in real-world applications [56]. As predicting the performance
of a candidate airfoil shape design requires time-consuming
computational fluid dynamics simulations, it is ideal to

employ DDEAs to solve the aerodynamic airfoil design
optimization problem.

The objective of the problem is to optimize the geometry
of the airfoil to maximize the lift-over-drag ratio at predefined
transonic flow situations. The airfoil geometry can be defined
by the base airfoil case and ten additional controlling variables
of the Hicks–Henne bump functions [57], [58]. Therefore, the
problem can be simply formulated as

max
θ1,θ2,...,θ10

CL/D(M, Re, AoA, Hicks(θ1, θ2, . . . , θ10)) (11)

s.t. −0.001 ≤ θi ≤ 0.001, i = 1, 7 (12)

−0.006 ≤ θi ≤ 0.006, i = 2, 5 (13)

−0.009 ≤ θi ≤ 0.009, i = 3, 4 (14)

−0.002 ≤ θi ≤ 0.002, i = 6, 10 (15)

−0.007 ≤ θi ≤ 0.007, i = 8, 9 (16)

where CL/D is the fitness to denote the lift-over-drag ratio,
θ1, θ2, . . . , θ10 are the ten decision variables, Hicks() repre-
sents the Hicks–Henne bump function set, and the predefined
parameters M, Re, and AoA are the Mach number, Reynolds
number, and the Angle of Attack, respectively [57], [58].

In the experiments, the NACA 0012 airfoil [59] is adopted
as the base case and the parameters M, Re, and AoA are set
as 0.5, 5 × 106, and 4◦, respectively, in (11). The fitness
value CL/D of each airfoil design is obtained by the simu-
lation in the software Xfoil [60]. For this 10-D problem, the
maximum number of evaluations is 110 (i.e., 11 × D) for all
algorithms, where offline DDEAs will sample 110 data before
the optimization while online DDEAs spend 50 evaluations
(i.e., 5 × D) for initial sampling if their algorithms do
not have specific settings. All algorithms are run 25 times
and the average results are provided for comparisons. In
addition, as SA-COSO and MGP-SLPSO are developed for
high-dimensional problems, they are not adopted in this part.
Instead, in this comparison, we additionally add three online
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(a) (b) (c)

(f)(e)(d)

Fig. 3. Optimization error obtained by DDEA-PES variants with different numbers of selected surrogates. (a) Ellipsoid problem at 10 dimensions. (b) Ackley
problem at 10 dimensions. (c) Rastrigin problem of 10 dimensions. (d) Ellipsoid problem at 100 dimensions. (e) Ackley problem at 100 dimensions. (f) Rastrigin
problem of 100 dimensions.

TABLE IX
RESULTS OF LIFT OVER DRAG RATIO ON THE AERODYNAMIC

AIRFOIL DESIGN PROBLEM AFTER 25 RUNS

DDEAs that have been examined on real-world problems.
They are EAS-SM3, EAS-SM5, and EAS-SM12, which are
the best three algorithms among 12 algorithms on a real-
world application optimization [32]. Both the EAS-SM3 and
EAS-SM5 employ a single surrogate, respectively, based on
a cubic RBFNN and a Kriging model with Gaussian correla-
tion and first-order polynomial, while the EAS-SM12 adopts
the ensemble surrogates with optimal weights.

The experimental results are provided in Table IX. Among
the tested algorithms, the proposed DDEA-PES produced the
best CL/D as 105.03 and obtained the best performance in
terms of the median and mean results, showing the effec-
tiveness of DDEA-PES. Moreover, the geometry and pressure
coefficient of the original NACA 0012 and the best-optimized
airfoil obtained by DDEA-PES are plotted in Fig. 4 for
visualizations. It can be seen that our optimized airfoil can
have a smoother change of pressure coefficient (e.g., when

(a)

(b)

Fig. 4. Geometry and pressure coefficients of the original NACA 0012 and
the best-optimized airfoils. (a) Geometry of the airfoil. (b) Pressure coefficient
of the airfoil.

x = 0.05) than the original airfoil, which can lead to a consid-
erable improvement of airfoil performance. Overall, the above
results have verified the effectiveness of DDEA-PES in the
real-world airfoil design application problem.
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V. CONCLUSION

In this article, a novel and efficient framework called
DDEA-PES is proposed with two efficient mechanisms. The
first is the DSG that can generate diverse surrogates based
on a limited dataset, which can make better use of the lim-
ited data and improve surrogate qualities. The second is the
SE that selects some of the prebuilt surrogates to form the
final ensemble model in order to further improve the model’s
effectiveness and efficiency.

For future work, the proposed algorithm will be extended to
more complicated real-world application problems. Moreover,
other types of surrogates will be attempted as the base model
to further improve the algorithm accuracy and efficiency. In
addition, other methods such as semisupervised regression will
be studied to better deal with the data shortage problems when
building surrogates.
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