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Abstract. Let D C C be a convex domain of complex numbers and K > 0. We say
that the function f : D C C — C is called K-bounded modulus convex, for the given
K > 0, if it satisfies the condition

|(1—/\)J”(l’)+/\f(y)—f((l—/\)l’ﬂ‘/\y)lS%K/\(l—/\)ll’—yl2

for any =, y € D and A € [0,1]. In this paper we establish some new Hermite-
Hadamard type inequalities for the complex integral on -, a smooth path from C, and
K-bounded modulus convex functions. Some examples for integrals on segments and
circular paths are also given.
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1 Introduction

Let (X; || x) and (Y5]-ly-) be two normed linear spaces over the complex num-
ber field C. Let C be a convex set in X. In the recent paper [1] we introduced the
following class of functions:

Definition 1. A mapping f : C C X — Y is called K-bounded norm convez, for
some given K > 0, if it satisfies the condition

1
1T =2) f (@) +Af(y) = F(A =Nz + )y < GEAL =) [la — vlx ()
for any x, y € C and X € [0,1]. For simplicity, we denote this by f € BNk (C).

We have from (1) for A = 1 the Jensen’s inequality

Hf@ﬁ;f@)_f<w;y>

1 2
< <Ko -yl

Y

for any z, y € C.

We observe that BN i (C) is a convex subset in the linear space of all functions
defined on C' and with values in Y.

In the same paper [1], we obtained the following result which provides a large
class of examples of such functions.
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12 S.S. DRAGOMIR

Theorem 1. Let (X,|||x) and (Y,||-|ly-) be two normed linear spaces, C'" an open
convex subset of X and f : C — Y a twice-differentiable mapping on C. Then for
any x, y € C and X € [0,1] we have

(A =X f(x) +Af(y) = fF (A=A z+Ay)lly < %KA(l My —zlk, (2

where

Ky = s 1 (Z)Hc(xz;Y) )

is assumed to be finite, namely f € BNKf,, (C).

We have the following inequalities of Hermite-Hadamard type [1]:

Theorem 2. Let (X;|||y) and (Y;|-|ly) be two normed linear spaces over the
complex number field C with Y complete. Assume that the mapping f : C C X —Y
is continuous on the convex set C' in the norm topology. If f € BNk (C) for some
K > 0, then we have

H¢ /f (1= )z + Ay) dX

=< —KHSC—ZJHX (4)
Y

and
T4y

/f (1 =N x4+ Ay)d\ — f(

forany z, y € C.
The constants 1—12 and ﬁ are best possible.

)| <gEle-ak

For a monograph devoted to Hermite-Hadamard type inequalities see [3] and the
recent survey paper [2].

Let D C C be a convex domain of complex numbers and K > 0. Following
Definition 1, we say that the function f : D C C — C is called K-bounded modulus
convex, for the given K > 0, if it satisfies the condition

A= F @) +AF ()~ F (0= N+ M)l < SKAQ-N]e -y (6)

for any x, y € D and X € [0, 1] . For simplicity, we denote this by f € BMg (D).

All the above results can be translated for complex functions defined on convex
subsets D C C.

In the following, in order to obtain several inequalities for the complex integral,
we need the following facts.

Suppose 7 is a smooth path from C parametrized by z(t), t € [a,b] and f is
a complex function which is continuous on 7. Put z (a) = v and 2 (b) = w with wu,
w € C. We define the integral of f on v, ,, =7 as

b
2)dz = 2)dz = z 2 () d
Lf() f(2) /af<<t>> 1) di

Yu,w
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We observe that the actual choice of parametrization of v does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose
~ is parametrized by z (t), t € [a, b], which is differentiable on the intervals [a, ¢| and
[c, b], then assuming that f is continuous on v we define

(2)dz := (z)dz + f(z)dz
Yu,w Yu,v Yv,w

where v := 2z (s) for some s € (a,b). This can be extended for a finite number of
intervals.
We also define the integral with respect to arc-length

b
FEdel = [ )] o) d

Yu,w

and the length of the curve ~ is then
b
((y) = / dz| = / 1 (1)] dt.
Yu,w a

Let f and g be holomorphic in D, an open domain and suppose v C D is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
by parts formula

f(2)g () dz = f(w) g (w) — f(u)g(u) - f'(2)g(2) dz. (7)

Yu,w Yu,w

We recall also the triangle inequality for the complex integral, namely

Lf(z) dz

where ”f”'y,oo = Susz'y ’f (Z)’ .
We also define the p-norm with p > 1 by

191 = [uer |dz|)1/p.

1l = / £ ().
Y

< / FONd2] < 11l o0 () (8)

For p =1 we have

If p, ¢ > 1 with % + % = 1, then by Holder’s inequality we have

11,0 < ML, -

Motivated by the above results, in this paper we establish some new Hermite-
Hadamard type inequalities for the complex integral on ~, a smooth path from C,
and K-bounded modulus convex functions. Some examples for integrals on segments
and circular paths are also given.
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2 Integral Inequalities

We have:

Theorem 3. Let D C C be a convexr domain of complexr numbers and K > 0.
Assume that f is holomorphic on D and f € BMy (D). If v C D parametrized by
z(t), t € [a,b] is a piecewise smooth path from z(a) = u to z(b) = w and v € D,
then

[1@a= e ro (S =) w-u

; _ wt
In particular, we have for v = <3+ that

[ 1= () =)

Proof. Let z, y € D. Since f € BMf (D), then we have

f((L=Na+Xy) = f(@)+A[f (@) - f@)] < %KA(l —\) |z —yf?
that implies that

fla+A(y—x)—f(x)
A

K(1=A\)|e -yl

N =

+f(2) = fy)| <

for A € (0,1).
Since f is holomorphic on D, then by letting A — 0+, we get

@) o)+ @)~ F )] < 5Kl — o

that is equivalent to

F) ~F @)~ ' @)y~ )| < 3K by~ o (1)
for all z, y € D.
We have
/ [/ (2)— F(0) = ' (v) (= — v)] d2 (12)
= 2)dz — f (v dz — ' (v zdz —v | dz
Lf() f()A f()(A / )
~ [1@d - -0 - 70 | ) - o)
Y

:/yf(z)dz— [f(v)+f’(v) <“’;“—v>] (w — u)
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for any v € D.
By using (11) we get

[r@a= e ro (S =) w-u

i 1 2
< [11E—F@ £ 0) =l < 5K [ 1o ja

for any v € D, which proves the inequality (9). O

If the path ~ is a segment [u, w] C G connecting two distinct points u and w in
G then we write [ f (z) dz as [0 f(2)dz.

Corollary 4. With the assumptions of Theorem 3, suppose [u,w| C D is a segment
connecting two distinct points u and w in D and v € [u,w]. Then forv= (1 —s)u+
sw with s € [0,1], we have

/wf(z)dz—f((l—s)u+sw)(w—u)

~F (= sutsw) (3-5) w-
< -Klw

| —uﬁﬁ1—sﬁ+ﬂ3. (13)

[N

In particular, we have, see also (5),

[ s (M) w-w

Proof. Tt follows by Theorem 3 by observing that

1
gﬁKm—m? (14)

w 1
/ ]2—@\2\d2]:\w—u\/ (1 —t)u+tw— (1 —s)u—sw|*dt
U 0
1
:\w—u\/ (1 —t)u+tw— (1 —s)u—sw|*dt
0
TSy LR S ST DO S
= |w — ul (t—s) dt—3|w ul” (1 —9)"+s
0

for s € 0,1]. O

Theorem 5. Let D C C be a convex domain of complex numbers and K > 0.
Assume that f is holomorphic on D and f € BMg (D). If v C D parametrized by
z(t), t € la,b] is a piecewise smooth path from z(a) = u to z(b) = w and v € D,
then

1
5[f(w)(w—v)+f(U)(v—U)+f(v)(w—U)]—/f(Z)dZ

v




16 S.S. DRAGOMIR

In particular, we have for v = “’TJ”L that

S () @~ [r@a:

2
1 w+ul?
<-K — .
<3 /{z U el (16)
Proof. By using (11) we get
/|f 2) (v —2)|dz] < K/\v—z\ dz| (17)

for v € D.
By the complex integral properties, we have

[r@-i@ - e

v

g/\f(v)—f(z)—f’(z)(v—z)!|dz| (18)
Y

for v € D.
Using integration by parts, we get

[Fw-r0-rE 0=
=f<v>/dz—/f<z>dz—/f’<z><v—z>dz

= w— u) /f dz—[ ) (v —2), +/f dz}
=f()(w—u —/fzdz— w) (v—w)+ f(u) (v—u) —/fzdz
8!

= F(w) (w—v) + f () (0 — )+ f (v —u—2/f

which implies that

N —

[f(w)(w—v)+f(U)(U—U)+f(v)(w—U)]—/f(Z)dZ
v
1
2

/ [F(0) = F(2)— £ (2) (w—2)]dz (19)
Y

forve D.
By utilising (17)-(19) we get the desired result (15). O
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We have:

Corollary 6. With the assumptions of Theorem 3, suppose [u,w| C D is a segment
connecting two distinct points u and w in D and v € [u,w]. Then forv= (1 —s)u+
sw with s € [0,1], we have

S0 =8) @+ sf )+ F (st sw]w-w - [ f)a

< 1—12K w—uf* [(1 -5 +5].(20)

; _ wt
In particular, we have for v = %3+ that

5| P () e [ e
_48

We observe that, if f is holomorphic on D and K = sup,cp |f” (z)] is finite, then
by (9) and (10) we have

[r@a= {6+ 5o (5= =) w-u

< gsun|f )] [ o= ol iasl (22

zeD ~y

K\w —u®. (21)

for all v € D. In particular,

z)dz—f(“";“)w—u)

w+u

|dz|. (23)

1
<zl @)l [ |

From (15) and (16) we get

U ) =)+ £ ) 0w+ £ 0) =)= [ 7 (2
< goplf @ [ 1ol il 20

for all v € D. In particular,

B )

2
—Lf(Z)dz _—jgg\f” !/

w+u

z —

|dz|. (25)
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The inequalities (22)-(25) provide many examples of interest as follows.

If we consider the function f (z) = exp z, z € C and v C C parametrized by z (t),
t € [a,b] is a piecewise smooth path from z (a) = u to z (b) = w then by (22)-(25)
we have by the inequalities

w+ U
2

expw—expu—<1—|— —v> (w—u)expv

1
< Lsup lexp 2] / z— o2 |dz| (26)
z€D 5y

for all v € C. In particular,

w+u
expw—expu—exp< 5 >(w—u)

2

WU gL (en)

z —

1
< —sup !epo!/
2 z€D 5

We also have

‘5[(w—v)expw—i—(U—u)expu+(w—u)expv]—expw+expu
1 2
< —suplexpz| [ |z —v|"|dz|. (28)
4ZED ~

for all v € C. In particular,

1 [expw +expu w+ U
3 f—l-exp 5 (w—u)

1
—expw + expu| < — sup |exp z|
4zeD

w+u

2
S| Izl (29)

z —

Consider the function F (z) = Log(z) where Log(z) = In|z| + i Arg(z) and
Arg(z) is such that —m < Arg(z) < 7. Log is called the ”principal branch” of the
complex logarithmic function. F is analytic on all of C\ {z + iy : x <0, y = 0} and
F’(z) =1 on this set.

If we consider f: D — C, f(z) =1 where D € C\{z +iy:2 <0, y =0}, then
F is a primitive of f on D and if v C D parametrized by z (t), t € [a, b] is a piecewise
smooth path from z (a) = u to z (b) = w, then

/ f(2)dz = Log (w) — Log (u) .
¥

For D ¢ C\{z+iy:2 <0, y=0}, define d := inf,cp|z| and assume that
d € (0,00) . By the inequalities (22)-(25) we then have
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Log (w) - Log (1) — |+ = 5 (U5 —o) | w0

v v?

1
SEA%WWHW

for all v € D. In particular,

Log (w) — Log (1) - <“’§“>_1 (w—u)

dz| . (31)

We also have

l/w—v v—u w-—u
B +

w u v
1
gjﬁ%Ww.m
vy

for all v € D. In particular,

o+ (37) e

~Log () + Lo () < 515 [

1
2

3 Examples for Circular Paths

Let [a,b] C [0,27] and the circular path v, r be centered at 0 and with radius
R>0
z(t) = Rexp (it) = R(cost +isint), t € [a,b].

If [a, b] = [0, 7] then we get a half circle while for [a, b] = [0, 27] we get the full circle.
Since

‘eis _ eit‘2 _ |eis|2 — 9Re (ei(s—t)> 1 |eit|2

—1
=2 —2cos (s —t) = 4sin? <ST>
sin st

2
sin st
2

for any t, s € R, then

r
) o
s ezt| —or

e

for any t, s € R and r > 0. In particular,

|ezs_ezt‘ =9
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for any t, s € R.
For s = a and s = b we have

. a—1
1n —_—
> 2

If w = Rexp (ia) and w = Rexp (ib) then

‘ei“—eit|:2 and [e®® — e =2

. [b—t
sin | —— |-

w —u = Rexp (ib) — exp (ia)] = R[cosb+ isinb — cosa — isinal

= R[cosb—cosa+i(sinb—sina)].

Since
. a+b\ . b—a
cosb — cosa = —2sin sin
2 2
and
. ) . b—a a+b
sinb — sina = 2sin CoS ,
2 2
hence

. a+b\ . b—a . b—a a+b
w—u—R[—2sm<T>sm<T>—|—2@Sln< 5 )cos( 5 )}
. (b—a . (a+b . a+b

= 2R sin <T> [— sin T) + 7 cos <T>]

= 2Risin <b—a> [cos <a—|—b> + 2 sin <a+b>]
2 2

o b—a a+b\ .

—2stm< 5 >exp K 5 >z}

We also have

2 (t) = Riexp (it) and |2/ (t)| =R

for ¢t € [a,b].

In what follows we assume that f is defined on a domain containing the circular
path 7y, 4 g and that f is holomorphic on that domain.

Consider the circular path 7}, ;) r and assume that v = Rexp (is) € V[, g With
s € [a,b]. Then by using the inequality (9) we get

‘Ri /abf (Rexp (it)) exp (it) dt

- [f (Rexp (is)) + f' (Rexp (is)) (ReXp (ib) ! Rexp (ia)

.. [b—a a+b\ .
x2st1n<T>exp K 5 )z}

1 b
< 5 sup | /" (Rexp (it))] R/ |Rexp (it) — Rexp (is)|* dt
te(a,b] a

- Rew (o))
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1 b s—t
= sup |f” (Rexp (it))‘R?’/ 4 sin? (T) dt

2 te(a,b]

b
=2 sup ‘f” (Rexp (it))!R?’/a sin? <S;t> dt,

tela,b]

which is equivalent to

b
/ f (Rexp (it)) exp (it) dt

~ 2R (Rexp i) + 1 (Resp (i) (2221

(5w (25

<2 sup ‘f” (Rexp (zt))‘ R?

tela,b]
for s € [a,b].
Since . ) ( 9
.o 8— 1 —cos(s—
sin < 5 > = 5 ,
hence

b
.o fs—t
/asm <—2 >dt

b1— — 1
:/ Wdtzi[b—a—sin(b—s)

1 . b—a a—+b
5[b—a—2s1n< 5 >COS< 5 —sﬂ
—b_a—in b—a a+b_

=3 S 5 CoS 5 s

for s € [a,b].
Therefore by (35) we get

b
/ f (Rexp (it)) exp (it) dt

exp (ib) + exp (ia) exp (is))]

/a ’ sin? (%) dt (35)

— sin (s — a)]

—2R [ f(Rexp (is)) + f' (Rexp (is)) < 5

s b—a a+b\ .
sin { —5— | exp 5 i

exp (ib) + exp (ia) exp (i3)>]

< 2R* sup |f" (Rexp (it))] [b 3 ¢ sin (b — a) cos (a L sﬂ (36)

t€[a,b] 2

2
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for s € [a,b].
a+b

In particular, for s = %32, we obtain from (36) the best possible inequality

/a ’ £ (Rexp (it)) exp (it) dt

_9R [f <Rex? <a;bz>> +f <Rexp <Q;Lbz>>

" <exp (ib) —i2—exp (ia) exp <a;rbz>>}
con(752) oo (229)]

< 2R? sup |f” (Rexp (it))] [b_?a — sin <b_—“ﬂ . (37)

te(a,b) 2

By utilising the inequality (24) for the circular path vy, ; p and v = Rexp (is) €
Viap),r With s € [a,b] , we also get

F (Rexp (ib)) sin <b—TS> exp Ks—;—b) Z]
+ f (Rexp (ia)) sin (%) exp Ka ;L s> Z]

+ f (Rexp (is)) sin <b—?a> exp [(a -; b) Z]

- /a bf (Rexp (it)) exp (it) dt
w05 (-] o

te(a,b]

In particular, for s = “TH’, we get from (38) best possible inequality

 (Rexp (bi)) sin <bjTa> exp [(a Z%) z]
+ f (Rexp (ia)) sin <bjTa> exp [(3“: b> z]
+f (Rexp <a+ bz>> sin (Z)_Ta> exp Ka;rb) z}

[ e oy esp i i

< R? sup |f" (Rexp (it))] [b;“ — sin <b_“>} . (39)

t€[a,b] 2
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