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Abstract 

The impacts of climate change on water resources and agriculture, accompanied by a 

growing population, have contributed to increasing food and water scarcity. Due to the 

continuing growth in population and changes in food requirement habits, the demand 

for agricultural products is increasing continuously. It has been projected that the rise in 

food demand will increase by 50-100% between 2009 to 2050. The irrigation sector 

plays a crucial role in the agricultural food production system, utilizing about 70% of 

the world‘s total annual water consumption. About 16% of the world‘s cropland is 

irrigated, accounting for about 44% of the world‘s food production. 

Climate variability influences water availability for agriculture, crop water demand, and 

crop grain yield, rendering global food security vulnerable to climate change. Research 

has shown that South Asia will face negative impacts on agriculture due to climate 

change, and food scarcity will increase if adaptation measures are not considered. 

In this regard, there is a need to investigate existing irrigation schemes by assessing the 

impacts of climate change on both the supply and demand sides of irrigation water 

simultaneously to cope with changes in future water availability and food scarcity. This 

research aims to holistically investigate the climate change impacts on both the supply 

and demand sides of irrigation water. The methodology developed in this research 

investigated climate change impacts on the supply and demand sides of irrigation water 

in the Sunsari Morang Irrigation Scheme in the Koshi River basin of Nepal. The 

irrigation command area is 68,000 hectares. 

With this background, the objective of this research is to assess the climate change 

impacts on the supply and demand sides of irrigation water. This research is divided 

into four major components. 

1. Selection of global climate models and downscaling of global climate model 

outputs to assess climate change impacts on daily rainfall and temperature (minimum 

and maximum) in the river basin and irrigation command area. 

2. Future impacts of climate change on river water availability at the main 

irrigation canal intake. 
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3. Crop water requirements due to climate change. 

4. The irrigation canal system‘s hydraulic capacity requirements for irrigation 

water supply in the climate change context. 

Climate change is the main driver in assessing river water availability for irrigation, 

crop irrigation requirements, and canal system capacity needs for the future. In this 

study, climate change scenarios Representative Concentration Pathways (RCPs) 4.5 and 

8.5 for the short-term (2016–2045), mid-century (2036–2065), and end-of-century 

(2071–2100) periods were considered. Representative General Circulation Models 

(GCMs) were selected for the study area under each climate change scenario and study 

period. Daily precipitation and temperature data based on selected GCMs were 

downscaled to a higher resolution (10 × 10 km
2
). The downscaled daily precipitation 

and temperature data were applied to assess the climate change impacts on water 

availability in the river, and irrigation water demand in the irrigation command area. 

The irrigation canal system capacity assessment was based on water availability in the 

river, and irrigation water demand. 

The selection of global climate models for a specific geographical location, with high 

capacities to represent the past and to project the likely future climate, is a crucial step 

when assessing climate change impacts. An advanced envelope-based selection 

approach for the selection of a representative global climate model has been used in this 

research to select a representative climate model for the Koshi River basin. A total of 

105 GCM simulations and 78 GCM simulations were taken for RCP4.5 and RCP8.5 

scenarios respectively for the initial selection of GCMs. The GCMs selection process 

involved three steps: (a) initial model selection considering changes in climatic means 

(mean air temperature and annual precipitation), (b) refined model selection based on 

projected changes in climatic extremes, and (c) final model selection based on past 

performance. One GCM/ensemble was selected at each corner of four climate extremes 

(cold/dry, warm/dry, cold/wet, and warm/wet) for RCP4.5 and RCP8.5 in the short-term 

(2016-2045), mid-century (2036-2065), and end-of-century (2071-2100) periods. After 

the selection of representative GCMs/ensembles, quantile mapping was applied for bias 

correction at a finer resolution of 10 km × 10 km. 
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The Soil and Water Assessment Tool (SWAT) hydrological model was used for 

hydrological modelling, and was calibrated and validated using observed river flow data 

measured near the headworks (intake) of the Sunsari Morang Irrigation Scheme in the 

Koshi River. Impacts of climate change on the flow of the Koshi River were projected 

for the short-term, mid-century, and end-of-century periods considering climate change 

scenarios RCP4.5 and RCP8.5 using downscaled daily precipitation and temperature 

data. 

The Agricultural Production Systems Simulator (APSIM) crop model was selected for 

crop modelling, and was calibrated and validated using measured field data which 

included phenological development, biomass yield, and grain yield for the winter wheat 

crop in the Sunsari Morang Irrigation Scheme command area over two years. Impacts of 

climate change on the irrigation water demand, biomass yield, and grain yield were 

predicted for the short-term, mid-century, and end-of-century periods considering 

climate change scenarios RCP4.5 and RCP8.5, using downscaled daily precipitation and 

temperature data. In addition, the irrigation demand (mm/cropping period) required to 

reach potential wheat grain yields under current climate conditions was compared with 

observed irrigation practices and crop grain yield. 

The hydraulic capacity of the main canal networks in the Sunsari Morang Irrigation 

Scheme, in terms of water losses and flow carrying capacity, were assessed using the 

Personal Computer Stormwater Management Model (PCSWMM) hydraulic model, 

which was calibrated and validated using measured canal characteristics, discharge, 

flow velocity, and water depth data. Information on daily water availability at the 

headwork of Sunsari Morang Irrigation Scheme in the Koshi River, drawn from 

hydrological assessments, was used to estimate water intakes into the canal network 

system. Based on irrigation water availability at the headwork, and the amount of 

irrigation water required for winter wheat crops, (both present and future), the winter 

wheat crop area coverage and the water carrying capacity of the main canal were 

assessed.  

The key innovation of this research is the development of a comprehensive 

methodology to assess the climate change impacts on the supply and demand sides of 

irrigation water. The research has demonstrated its effectiveness through its successful 
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application in the Sunsari Morang Irrigation Scheme in the Koshi River of Nepal. The 

methodology and outcome of the research could be adapted to similar physical-climatic 

conditions around the world to holistically assess the climate change impacts on both 

the supply and demand sides of irrigation water. The findings of this research are 

beneficial to water practitioners, the agricultural community, policymakers, planners, 

and researchers in Nepal and internationally.  

The findings on representative General Circulation Models (GCMs) selection for the 

Koshi River basin could also be used by research and scientific communities. Findings 

on climate change impacts on precipitation and temperature, and projected Koshi River 

flows could be used by the National Planning Commission, Nepal and Water and 

Energy Commission Secretariat, Nepal, for sectoral and water resources project 

planning, and in formulating water resources policies and basin plans for the Koshi 

River basin respectively. Findings on climatic changes and their potential implications 

could be used by the relevant sectors for the development of adaptation strategies, 

including the National Planning Commission, Nepal. It could also be used by the 

Department of Water Resources and Irrigation, Nepal, for planning and management of 

irrigation projects and the expansion of the irrigation command areas. The findings on 

projected climate change impacts on water resources, irrigation water demand and 

hydraulic assessment of the irrigation canal network could be used by the Department of 

Water Resources and Irrigation, Nepal, to manage irrigation projects in the region and 

by local farmers to increase crop yield in study area. It is also hoped that the challenge 

of agricultural production for the growing population in the developing world could be 

addressed with some insights provided by this research, despite the negative impacts of 

climate change on the irrigation and water resources sector. 
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Chapter 1: Introduction 

Chapter One describes the research aims and scope of the research. This chapter also 

mentions the research significance and innovation followed by the layout of the thesis. 

1.1 Background 

The impacts of climate change on water resources and agriculture, accompanied by 

growing population, urbanization and industrialization, have contributed to increasing 

food and water scarcity. Due to continuing growth in population and change in food 

requirement habits, the demand for agricultural products is increasing continuously 

(Godfray et al., 2010, Liu and Savenije, 2008, Molden et al., 2007, Tilman et al., 2011). 

It has been predicted that the rise in food demand will increase by 50-100% between 

2009 and 2050 (Baulcombe et al., 2009).  

The irrigation sector plays a crucial role in the agricultural food production system, 

utilizing about 70% of the world‘s total annual water consumption (Moreno-Pérez and 

Roldán-Cañas, 2013, Schultz et al., 2009, FAO, 2016b). However, the overall 

performance of most of the irrigation schemes around the world is unsatisfactory due to 

inefficient water management practices (Awulachew and Ayana, 2011, Checkol and 

Alamirew, 2008, Asres, 2016, Moreno-Pérez and Roldán-Cañas, 2013, Nam et al., 

2016). In many countries that don‘t have broad-acre farming, the majority of food is 

grown in irrigation areas. Globally, about 16% of cropland is irrigated, accounting for 

about 44% of total food production (Alexandratos and Bruinsma, 2012). Hence, higher 

water use efficiency on irrigated farmland produces more food.  

One of the major issues in irrigation is ensuring the right amount of water at the right 

time in a crop field (Asres, 2016). Irrigation water management practices are still at an 

inception stage, and improved guidelines for efficient irrigation water management are 

required in many developing countries (Humphreys et al., 2005, Pundarikanthan and 

Santhi, 1996). 

Climate variability also influences changes in crop water demand and water availability 

for agriculture, which renders global food security vulnerable to climate change 

(Alcamo et al., 2007). According to Lobell et al. (2008), South Asia will face negative 

impacts on agriculture due to climate change, and food scarcity will increase if 
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adaptation measures are not considered. Studies have shown that climate change would 

reduce crop grain yields in the South Asia region (Gupta et al., 2017, Tesfaye et al., 

2017). Döll (2002) reports that the changes in precipitation and evaporative demands 

due to climate change may increase the net irrigation requirements in South Asia by 

15% in the 2070s compared to 1995. Zhang et al. (2013) assessed the impacts of climate 

change on wheat (local varieties) grain yields in North China between 1961-1990 and 

the 2080s, projecting decrease of 4-6 % (A2 climate change scenario) and 1-5 % (B2 

climate change scenario). Goodarzi et al. (2019) evaluated climate change impacts on 

irrigation water requirements for different crops in Iran between 2017 and 2046, 

considering climate change scenarios RCP4.5 and RCP8.5. They projected an increase 

in irrigation water requirements for wheat crops by 12-16% when compared to 1976-

2005 period. Hence, studies on climate change impacts on the demand side of irrigation 

water are important. 

Climate-driven changes in precipitation and temperature patterns are expected to affect 

water availability in the Himalayan region (Hock et al., 2019) and the hydrological 

regime of associated upstream basins (Immerzeel et al., 2012, Lutz et al., 2014, Nepal, 

2016). Climate change effects on the hydrological regime of these river basins will 

directly affect irrigation water availability and irrigation crop area coverage in the 

nearby regions (Elliott et al., 2014, Malek et al., 2018). Assessment of climate change 

impacts on the supply side of irrigation water is important for the planning and 

management of irrigation schemes.   

For the assessment of climate change impacts on demand and supply sides of irrigation 

water, high-resolution climate data are required as they increase the accuracy of 

hydrological predictions and hence allow for better projection of the water availability 

within a catchment. General Circulation Models (GCMs) are the main tools used to 

estimate future climate patterns at a catchment level. They represent numerous 

atmospheric processes of the global climate system. However, their outputs  are of 

limited use for hydrological prognostication because of their coarse spatial resolution 

(Willems and Vrac, 2011). GCM outputs typically have a spatial resolution of about 

100-250 km and the temporal resolutions of daily or monthly. Hence GCM outputs do 

not capture local spatial scales (Trzaska and Schnarr, 2014). However, the GCM outputs 
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can be downscaled to a finer resolution to generate climate data that represent local and 

regional climatic and topographic conditions.  

In this regard, there is a need to increase the performance of existing irrigation schemes 

to cope with changes in future water availability and food scarcity, with consideration 

given to irrigation water availability and application (Bumbudsanpharoke and 

Prajamwong, 2015, Schultz et al., 2009, Pereira, 2017, Molden et al., 2007, Malano et 

al., 2004), which is only possible by assessing supply and demand sides of irrigation 

water simultaneously using high-resolution climate data. To address these issues, an 

assessment of climate change impacts on both supply and demand sides of irrigation 

water using high-resolution climate input data is required. A methodology is developed 

in this research to holistically investigate climate change impacts on the supply and 

demand sides of irrigation water. It has been successfully applied to the Sunsari Morang 

Irrigation Scheme in the Koshi river basin of Nepal using high-resolution climate input 

data. 

1.2 Research aims 

This research is aimed at developing a comprehensive methodology for assessing 

climate change impacts on supply and demand sides of irrigation water using high-

resolution climate data, and applying the framework to Sunsari Morang Irrigation 

Scheme in the Koshi river basin of Nepal as a case study. These scientific objectives 

were realised through the following methodological approach. 

(I) Selection of global climate models and downscaling of climate data at a high 

spatial resolution (10 km x 10 km) in the river basin and irrigation command area. 

(II) Projection of climate change impacts on the river flows at the irrigation canal 

intake using high-resolution downscaled climate data. 

(III) Projection of climate change impacts on the irrigation water requirement using 

high-resolution downscaled climate data. 

(IV) Assessment of irrigation canal systems‘ hydraulic capacity requirements for 

irrigation water supply in the context of climate change. 

Through this methodological approach, the following specific research questions will be 

addressed:   
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(I) What will be the likely change on future daily rainfall and temperature patterns in 

the Koshi river basin of Nepal? 

(II) What are the present hydrological regimes of the Koshi river basin of Nepal and 

how will it change under projected climate change? 

(III) What will be the expected change on irrigation water requirement for winter 

wheat crop in the Sunsari Morang Irrigation Scheme command area? 

(IV) What is the existing hydraulic capacity of the irrigation canal systems in the 

Sunsari Morang Irrigation Scheme? What will be the likely future hydraulic 

performance? 

1.3 Scope of the study 

The main theoretical framework underpinning this research is the system-based 

approach to assessing irrigation water in a climate change context. Few studies have 

been conducted to predict the impact of climate change on crop water requirements. 

Döll (2002) and Fischer et al. (2007) have predicted the impact of atmospheric changes 

on future irrigation water requirements at a global scale. Likewise, De Silva et al. 

(2007) and Shrestha et al. (2013)  assessed the climate change impacts on crop water 

demands of rice and wheat, and predicted that irrigation water requirements will 

increase by 20% at around 2050 in Sri Lanka and Nepal. Similarly, Ojeda-Bustamante 

et al. (2017) and Rotich and Mulungu (2017) have assessed climate change impacts on 

crop water demand in Mexico and Tanzania, and reported that crop water requirements 

will increase by about 30% in coming decades. These studies show that crop irrigation 

water demand per hectare will most likely increase in the future. They mainly focused 

on crop water requirements. However, the supply side of irrigation water management 

has not been assessed simultaneously within a systems-based approach. Issues affecting 

the supply side of irrigation water management include water availability at the source 

as well as in the canal distribution system. Effective irrigation water management is 

almost impossible in the future without assessing the availability of water at a source in 

a climate change context.   

For this reason, it is important to consider a systems approach to irrigation water 

management. A systems approach in irrigation water management mainly includes the 

irrigation supply side, availability of water at source, the irrigation canal network and its 
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efficiency, and the irrigation demand side at a farm scale. This systems approach is 

shown in Figure 1.1. This research will be a milestone to holistically investigate the 

demand and supply sides of irrigation water in conjunction with the impacts of climate 

change. 

 

Figure 1.1: Framework for systems approach to assess climate change impacts on 

demand and supply sides of irrigation water. 

1.4 Research significance and innovations 

The novelty of this research is to explore irrigation water at a systems level to assess 

likely future changes in precipitation and temperature, water availability in the river, 

irrigation water requirements at farm level, and hydraulic capacity of the canal 

networks. The key innovation of this research is the development of a comprehensive 

methodology to assess the climate change impacts on the supply and demand sides of 

irrigation water. Moreover, this research has demonstrated its effectiveness through its 

successful application in Sunsari Morang Irrigation Scheme in the Koshi river basin of 

Nepal. The findings of this research are beneficial to water practitioners, the agricultural 

community, policymakers, planners, and researchers.  

The findings on representative general circulation models (GCMs) selection for the 

Koshi River basin can be used by researchers and scientific communities. Findings on 
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climate change impacts on precipitation and temperature, and projected Koshi River 

flows can be used by the National Planning Commission, Nepal, and the Water and 

Energy Commission Secretariat, Nepal for future sectoral and water resources project 

planning and in formulating water resources policies and basin plans for the whole of 

the Koshi River basin respectively. Findings on climatic changes and their potential 

implications could be used by relevant sectors for the development of adaptation 

strategies including the National Planning Commission, Nepal. It could also be used by 

the Department of Water Resources and Irrigation, Nepal, for planning and management 

of irrigation projects and expansion of irrigation command areas.  

The findings on projected climate change impacts on water resources, irrigation water 

demand and hydraulic assessment of the irrigation canal network could be used by the 

Department of Water Resources and Irrigation, Nepal, to manage irrigation projects in 

the region and by local farmers to increase crop yield in study area. The agricultural 

sector contributes around one-third of Nepal‘s gross domestic product. Since winter 

wheat crop grain yield per hectare could be doubled with adequate irrigation water 

supply, the national economy of Nepal would be increased. Local farmers could directly 

benefit from an increased grain yield resulting from proper irrigation application. 

The methodology and outcome of the research could be adopted around the world to 

holistically assess climate change impacts on both (supply and demand) sides of 

irrigation water. It is also hoped that the challenge of agricultural production for the 

growing population in the developing world could be addressed using the insights from 

this research to counteract the expected negative impacts of climate change on the 

irrigation and water resources sector. 

1.5 Thesis layout 

This thesis has nine chapters. The first chapter introduces the research detailed in the 

thesis. Chapter One describes the challenges of climate change impacts on water 

resources and agriculture, which contributes to increasing food and water scarcity and 

associated future consequences. This chapter highlights the climate change impacts on 

the supply and demand sides of irrigation water. It mentions the aims of this research. 

This chapter further summarises the scope of the research. Finally, research significance 

and innovations are emphasized. 
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In Chapter Two, the literature review is presented. Existing research work related to 

climate change impacts on supply and demand sides of irrigation water is discussed. A 

literature review on general circulation model selection and climate data downscaling is 

presented. Climate change impacts on the hydrological regime of a river basin are 

discussed, along with irrigation water requirements and grain yields within an irrigation 

scheme. Furthermore, canal water losses and a canal hydraulic capacity assessment of 

an irrigation scheme are described.  

The third chapter provides information on the study area of this research, the Koshi 

River basin and the Sunsari Morang Irrigation Scheme. It provides general information 

on catchment characteristics of the Koshi River basin, including size, elevations, 

location, land use and an average discharge of the basin. Likewise, it also mentions the 

salient features of the Sunsari Morang Irrigation Scheme such as the type of headwork, 

size of command area, and the canal network. 

Chapter Four discusses a methodology developed to assess the climate change impacts 

on the supply and demand sides of irrigation water. It includes information on data 

collection and its processing. The framework for conducting research is also mentioned 

in this section. 

The fifth chapter provides details on General Circulation Models (GCMs) and their 

downscaling. It is divided into two sections: representative GCM selection for the Koshi 

River basin, and climate data downscaling for the Koshi River basin. It starts with the 

introduction to GCMs and describes the GCMs selection approaches. This research uses 

the advanced envelope-based selection approach to select GCMs, which are then 

applied to the Koshi River basin. Representative GCMs are selected in this section, and 

then used for downscaling of climate data. The second part provides information on 

downscaling, quantile mapping, and its application to the selected GCMs for the Koshi 

River basin. It predicts climate (precipitation and temperature) in the future decades, 

short-term (2016-2045), mid-century (2036-2065), and end-of-century (2071-2100) 

time periods, considering the climate change scenarios Representative Concentration 

Pathways (RCPs) 4.5 and 8.5.  

In Chapter Six, the use of future climate data (as identified in Chapter Five) in 

hydrological modelling is presented. It describes the hydrological process considered in 
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the Soil and Water Assessment Tool (SWAT), a hydrological model. Populating the 

SWAT model with future climate data predicts the likely future water availability in the 

short-term (2016-2045), mid-century (2036-2065), and end-of-century (2071-2100) 

time periods for climate change scenarios RCP4.5 and RCP8.5. This information on 

future water availability at the headwork of Sunsari Morang Irrigation Scheme in the 

Koshi River basin is then used to estimate discharge into the main irrigation canal. 

In Chapter Seven, crop modelling is used to quantify the effects of climate change 

impacts on irrigation water requirements at a field level. A nexus of local stakeholders, 

irrigation practices, and cropping patterns in irrigation schemes is described. This 

information, along with crop types and cropping intensity, are essential in order to 

understand existing local water management practices. Calibration and validation of the 

Agricultural Production Systems Simulator (APSIM), a crop model, are described. 

Likely changes in irrigation water requirements and grain yields are predicted for the 

short-term (2016-2045), mid-century (2036-2065), and end-of-century (2071-2100) 

time periods considering climate change scenarios RCP4.5 and RCP8.5. Irrigation 

levels required to reach potential grain yields for the winter wheat crop in the Sunsari 

Morang Irrigation scheme command area under current climate conditions are also 

compared with observed irrigation application. 

Chapter Eight addresses the canal hydraulics in the irrigation scheme. The results from 

Chapter Six, which addresses water availability at the headwork of Sunsari Morang 

Irrigation Scheme, are used to estimate water discharge entering the main canal. This 

section describes the water losses in the canal network, and the calibration, and 

validation of the hydraulic model, the Personal Computer Storm Water Management 

Model (PCSWMM). Hydraulic assessment in terms of canal discharge capacity of the 

irrigation network is carried out considering present and future water availability in the 

canal system. Based on water availability, potential area coverage by future winter 

wheat crops is also projected. 

Finally, in Chapter Nine, the conclusions drawn from the overall study are presented 

together with some possible future works. The structure of the thesis is shown in Figure 

1.2. 
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Figure 1.2: Structure of the thesis. 
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Chapter 2: Literature review 

In this chapter, existing knowledge related to climate change impacts on supply and 

demand sides of irrigation water is reviewed. Firstly, a literature review on global 

climate model selection and downscaling is presented. Secondly, climate change 

impacts on the hydrological regime of a river basin are reviewed. Thirdly, climate 

change impacts on irrigation water requirements and crop grain yields within an 

irrigation scheme are described. Finally, canal water losses and a canal hydraulic 

capacity assessment of an irrigation scheme are reviewed. 

2.1 General circulation model selection and climate data downscaling 

General or Global Circulation Models (GCMs), representing numerous atmospheric 

processes of the global climate system, are the main tools used to estimate future 

climate patterns, and explore the implications of likely changes in precipitation and 

temperature patterns. The number of GCMs available to predict future climate changes 

is large and increasing. The number of GCM outputs applied in the Coupled Model 

Intercomparison Project Phase 3 (CMIP3) (Meehl et al., 2007) and the CMIP Phase 5 

(CMIP5) (Taylor et al., 2012) are 25 and 61  respectively. The CMIP3 outcome archives 

were used in the Fourth Assessment Report (IPCC, 2007) whilst CMIP5 outcome 

archives were used in the Fifth Assessment Report (IPCC, 2013) of the 

Intergovernmental Panel on Climate Change (IPCC). Over this period of the time, there 

were significant improvements in the way these models represent the present climate 

system and future projections. 

The capacity of climate models/ensembles to represent climatic characteristics varies 

spatially and temporally. Many models/ensembles cannot perfectly simulate climatic 

characteristics, nor can they represent local climates, which vary spatially and 

temporally (Lee et al., 2019). Gleckler et al. (2008) have reported that all climate 

models/ensembles are not equally able to represent accurately the annual cycle 

climatology and the variance of monthly anomalies. The complex topography of the 

Himalayan regions, combined with the coarse resolution of available GCMs, has 

resulted in a weak consensus amongst models for these regions (Wester et al., 2019). 

The selection of climate models can vary, depending on the objective of the model 

selection and future projections. In most cases, a single GCM is not sufficient to 
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represent the climatic characteristics of climatic extremes. These climatic extremes can 

be described as four corners of a quadrilateral representing cold and dry, cold and wet, 

warm and dry, and warm and wet conditions. For any chosen time and location, a 

specific climatic model/ensemble may demonstrate better abilities to represent climatic 

characteristics for a particular corner of a climatic extreme. Hence, selecting global 

climate models with the strongest ability to represent the past and likely future climate 

for a specific geographical location is a crucial first step in assessing climate change 

impacts. Selecting GCMs from the large set of available climate models for a given 

location of interest is a challenging task.  

The common approaches for the selection of GCMs are:  

(a) include all the models/ensembles with available data and simply take an average of 

all the predicted outcomes (Seager et al., 2007), or  

(b) use a past performance approach focusing on the model‘s capacity to simulate past 

and present climate (Biemans et al., 2013, Pierce et al., 2009). In the past performance 

approach, hindcast data of model/ensemble are compared with observed data.   

A major drawback of approach (a) is that equal weighting is given to the poor-

performing and good-performing models (Pierce et al., 2009). However, the past 

performance approach (hindcasting) may lead to an oversight of the possible futures 

(Lutz et al., 2016), as hindcasting models which perform well may not be able to 

represent future climate equally well. Another approach for the selection of climate 

models is the envelop approach, whereby GCMs are selected from a pool of available 

global models covering all possible future climates. In the envelop approach, 

GCMs/ensembles are selected at each of the four climatic extremes (cold and dry, cold 

and wet, warm and dry, and warm and wet) based on annual means. Hence, four 

GCMs/ensembles are selected for a particular future study period to predict four 

possible future climatic scenarios. However, in approach (a), all the GCM runs are 

simply averaged, and projection from only one dataset is used. This contrasts with the 

four climatic corners utilized in the envelop approach. Hence, only one possible future 

is realized in approach (a). The main limitation of the envelope-based approach is that it 

only considers changes in annual means and does not consider the model‘s capacity to 
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simulate climate process, as all the (global) model runs are considered to have equal 

plausibility (Lutz et al., 2016).  

Lutz et al. (2016) have recently developed a modified envelope-based approach for the 

selection of a representative global climate model, by combining the past-performance 

approach and the envelop approach. It focuses on simulating a workable number of 

climate model runs representing most likely future mean air temperature, annual 

precipitation and likely changes in climatic extremes. Such methods provide a range of 

possible future in terms of climate patterns.  

In addition, future pathways which may be adopted to control Green House Gaseous 

(GHG) emissions remain uncertain. This uncertainty is mainly due to: i) understanding 

of atmospheric processes which could be improved in the future, ii) socio-economic 

pathways which may be adopted by the majority of the countries as a part of the 

UNFCCC Paris Agreement, and iii) future technologies that will be used to control 

GHG emission. To address this uncertain future, we have used a three-step 

methodology in this research.  

The spatial resolution of GCMs is about 100-500 km in grid size with a temporal 

resolution of daily, monthly, or an even longer time-step. They are not able to represent 

local scales (eg 10 km x 10 km), and the results should only be adopted at continental or 

global spatial scales for ≥ monthly time periods (Trzaska and Schnarr, 2014). GCMs are 

unable to represent sub-grid (small) scale features. For instance, local topography, land 

use and clouds cover as GCM outputs are rendered at a relatively coarse spatial 

resolution [i.e. approximately 250 km x 250 km] (Tisseuil et al., 2010). Hydrological 

assessment of climate change impacts needs climate data at finer spatial scales, which 

limits the direct use of GCM outputs at catchment level (Willems and Vrac, 2011). 

However, GCM outputs can be used to generate climate data at a finer scale to represent 

local climatic conditions. The process used to reduce the scale of any information finer 

than 100 km x 100 km scales (spatially) and shorter than monthly values is called 

downscaling, and it assumes that the local climate is a combination of local conditions 

and large-scale atmospheric features (Trzaska and Schnarr, 2014). 

Shiru et al. (2020) used a multi-criteria decision-making approach in selecting the most 

suitable GCMs from 20 CMIP5 GCMs for Nigeria and reported that HadGEM2-ES, 
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CESM1-CAM5, CSIRO-Mk3.6.0, and MRI-CGCM3 were the best performing 

ensembles in replicating temperature characteristics in the region. Pickler and Mölg 

(2018) applied a two-tier approach to select the most robust GCM ensembles in 

Kilimanjaro area. Salman et al. (2018) applied a combination of the past performance 

and the envelope methods for selecting GCM ensembles from CMIP5 for the projection 

of changes in annual and seasonal temperatures in Iraq. Their study showed that 

HadGEM2-AO, HadGEM2-ES, MIROC5 and MIROC-ESM were most suitable GCM 

ensembles for projection of temperature in Iraq. 

Previous studies conducted on climate projections for the Koshi River basin are based 

on a few selected GCMs and lack multiple criteria to select GCMs. Bharati et al. (2014) 

predicted the precipitation and temperature on the Koshi river basin for 2030s and 

2050s considering IPCC Special Report on Emission Scenarios (IPCC-SRES) A2 and 

B1 climate change scenarios. The study was done by simply averaging the outputs of 4 

GCMs. Agarwal et al. (2014) conducted a study on Koshi River basin, considering 10 

GCMs available in the Long Ashton Research Station Weather Generator (LARS-WG) 

and projected precipitation for 2011-2030, 2046-2065, and 2080-2099 considering the 

IPCC-SRES B1, A1B and A2 climate change scenarios. Likewise, Agarwal et al. (2016) 

predicted the temperature patterns in the Koshi River basin considering the same 

climate change scenarios, study periods and GCMs as adapted by Agarwal et al. (2014). 

Nepal (2016) studied the Koshi River basin considering IPCC-SRES A1B climate 

change scenario, and projected precipitation and temperature for 2040-2050 and 2086-

2096. It used the Providing Regional Climates for Impact Studies (PRECIS) Regional 

Climate Model. Rajbhandari et al. (2017) also studied the Koshi River basin, and 

predicted precipitation and temperature parameters for 2011-2040, 2041-2070, and 

2071-2098 considering IPCC-SRES A1B climate change scenario. They also 

considered the PRECIS Regional Climate Model. None of the above studies used 

CMIP5 GCM outputs and current RCPs. Furthermore, these studies did not apply any 

advanced envelop approach for GCM selection. Rather, they simply selected the 

GCM(s) from a pool of available GCMs.  

Rajbhandari et al. (2016) considered Representative Concentration Pathways (RCPs) 

4.5 and 8.5 for projecting precipitation and temperature patterns in the Koshi River 

basin for 2021-2050. They selected one GCM for each corner from a pool of 43 GCMs 
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for RCP4.5 and 41 GCMs for RCP8.5, basing their selection on the changes in the mean 

precipitation and temperature. Although Rajbhandari et al. (2016) has considered the 

current CMIP5 GCM outputs and RCP scenarios, the selection of the GCMs was made 

based on the projected changes in the mean precipitation and temperature from a limited 

sets of GCM outputs. It did not consider predicted changes in climatic extremes, or the 

past performance of GCMs to simulate the annual cycle. Also, they did not downscale 

their high resolution data, but rather relied on outcomes from GCM cells which were 

about 250 km x 250 km. 

In this thesis, we explore the use of GCM outputs to estimate precipitation and 

temperature patterns against various global warming scenarios at short-term, mid-

century and end-of-century time periods. Such analysis will be useful to understand the 

impact of climate change on the hydrological regime of river systems. 

2.2 Climate change impacts on the hydrological regime of a river basin 

Hydrological models have been extensively used to assess the impact of climate change 

in hydrology. Among the many hydrological models available, a few models like 

Agricultural Non-Point Source (AGNPS), Hydrological Simulation Program-Fortran 

(HSPF), Hydrological Engineering Centre – The Hydrologic Modelling System (HEC-

HMS), MIKE SHE, and the Soil and Water Assessment Tool (SWAT), have been 

successfully verified in hydrological applications in many watersheds around the world  

(Gassman et al., 2007). Borah and Bera (2003) compared 11 different hydrological 

models and concluded that SWAT is a promising model to assess long term 

hydrological changes as well as overall river basin management. Khoi (2016) compared 

Hec-HMS and SWAT models to produce streamflow in a catchment and concluded that 

the SWAT model can be used to assess for hydrologic processes with a high accuracy. 

SWAT model has been successfully used to simulate climate changes impacts on 

hydrological regimes of rivers around the world including Australia (Saha et al., 2019, 

Shrestha et al., 2017), Europe (Kiesel et al., 2019, Piniewski et al., 2018), China (Liu et 

al., 2020a, Yan et al., 2019), and the USA (Chen and Chang, 2020). 

Changes in climatic factors such as precipitation and temperature patterns significantly 

affect water availability in the mountainous region (Hock et al., 2019). The snowmelt is 

linked to the hydrological regime of the rivers originating from Himalayan regions. 
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Climate change impacts on precipitation and temperature are expected to affect the 

hydrological regime of the upstream basins in the Himalayan regions due to changes in 

snowfall and snowmelt patterns (Immerzeel et al., 2012, Lutz et al., 2014, Nepal, 2016). 

As climate change in the Himalayan regions is expected to have profound future 

implications on downstream water availability and dependent sectors (Eriksson et al., 

2009, Hock et al., 2019, Nepal, 2016, Nie et al., 2021), it is of great concern to global 

scientific communities as well. Given these linkages, studies on climate change impacts 

on the hydrological regime of the Himalayan rivers are important.  

Immerzeel et al. (2012) and Lutz et al. (2014) have reported that river flow in 

Himalayan river basins is projected to increase due to increased precipitation and 

temperature. Temperature increases have resulted in the rapid decline of the glacier area 

in Nepal (Shrestha and Aryal, 2011) and is likely to continue into the future, which in 

turn will contribute to increase in river flows. Similar studies have shown that river 

flows in most of the rivers in Nepal are likely to increase in future. For example  

Shrestha et al. (2016), Dahal et al. (2016),  Bajracharya et al. (2018), Mishra et al. 

(2018), Pandey et al. (2019), and Dahal et al. (2020) assessed climate change impacts on 

hydrology of Indrawati, Bagmati, Kaligandaki, Bheri, Chamelia, and  Karnali river 

basins in Nepal respectively and reported that annual river flows are projected to 

increase in future. 

The hydrological assessment of climate change impacts needs climate input data at a 

finer spatial scale, which limits direct use of General Circulation Models (GCMs) 

outputs at a catchment level due to their coarse resolution (Willems and Vrac, 2011). 

Hence GCM outputs are less representative to local scales (Trzaska and Schnarr, 2014) 

and need conversion to a finer resolution to generate climate data that represent local 

and regional climatic and topographic conditions.  

Previous studies conducted on climate change impacts on the hydrology of the Koshi 

River basin were based on low-resolution spatial data and lacked high-resolution 

precipitation and temperature data. Bharati et al. (2014) projected water availability in 

the Koshi River basin for 2030s and 2050s. Their study was conducted by using weather 

data at a spatial resolution of 0.5° x 0.5° (~50 km x 50 km) and considering the IPCC 

Special Report on Emission Scenarios (IPCC-SRES) A2 and B1 climate change 
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scenarios. Agarwal et al. (2015) used downscaled data for 60 precipitation and 10 

temperature stations in the Koshi river basin to estimate climate change impacts. 

Similarly, Nepal (2016) projected the hydrological regime of the Dudh Koshi River 

basin using the A1B climate change scenario from regional climate models, with 

precipitation and temperature data dynamically downscaled to a spatial resolution of 50 

km x 50 km. However, impacts of climate change on the hydrological regime of the 

Koshi River basin have not been studied with high resolution daily precipitation and 

temperature data, such as 10 km x 10 km spatial resolution. 

2.3 Climate change impacts on irrigation water requirement and crop grain 

yield within an irrigation scheme 

Crop models have been extensively used to assess crop growth, development, water 

uptake, stresses due to various factors (water, nitrogen, and temperature) and crop grain 

yield. Among many crop models available, a few models like the Agricultural 

Production Systems Simulator (APSIM), the Decision Support System for 

Agrotechnology Transfer (DSSAT), CROPWAT, AquaCrop, ORYZA, CERES, 

Dynamic Computable General Equilibrium (DCGE), CropSyst, and Simple Simulation 

Models (SSM) have been successfully verified in crop modelling in many farmlands 

around the world (Kabir et al., 2018, Soltani and Sinclair, 2015).  

Cropping system models including DSSAT, CROPWAT, AquaCrop, ORYZA, CERES, 

and DCGE, cannot identically represent actual farm practices and farm-specific contexts 

due to the complexity and dynamic nature of real farm systems. The resulting crop 

modelling is insensitive to adaptation options (Harrison et al., 2017, Harrison et al., 

2011, Kabir et al., 2018). Soltani and Sinclair (2015) compared simpler crop models 

(CropSyst and SSM) with complex models (APSIM and DSSAT). They reported that 

(a) APSIM, CropSyst and DSSAT can simulate crop management effects like tillage 

and straw mulch while SSM cannot, and (b) access to the model codes is free for 

APSIM and SSM, while CropSyst and DSSAT provide limited access to the codes after 

permission. 

There is a gap between crop irrigation water requirements and actual irrigation water 

application in many irrigation schemes around the world, especially in developing 

countries (Asres, 2016, Checkol and Alamirew, 2008, Moreno-Pérez and Roldán-Cañas, 
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2013, Nam et al., 2016). Knowing how to apply the correct amount of water at right 

time ensures that plant grain yield is not adversely affected by water stress. This is 

called irrigation scheduling, and is crucial for managing irrigation water. Fixing 

quantities and timings of irrigation water to meet the crop‘s water requirements also 

help water conserve. Although a small number of irrigation scheduling techniques and 

research findings are available, it is still at an inception stage in many developing 

countries (Pundarikanthan and Santhi, 1996). Improved guidelines for optimum 

irrigation scheduling are required in Asia for effective irrigation water management 

(Humphreys et al., 2005).  

Farmers in most of the irrigation scheme command areas in the developing world 

generally do not have knowledge of the irrigation water required for crops. They apply 

either more or less than the required irrigation demand. Farmers often apply in excess of 

2000 mm of water to paddy fields, although the seasonal water requirement is about 600 

mm to 1400 mm in Punjab and Sindh Provinces of Pakistan respectively. This excess 

irrigation results in water loss (via deep drainage) and lower crop grain yield (Hossain et 

al., 2017).  

Likewise, Chandran and Joseph (2015) based on their research in the Kerala state of 

India, found that more than 80% of farmers applied irrigation water that was either < 

50% or > 100% of the required irrigation demand. Idnani and Kumar (2013) conducted 

a field experiment in New Delhi, which found that both wheat grain yield and water use 

efficiency could be increased by adopting optimal irrigation scheduling.  

Estimation of optimal irrigation water requirements helps to increase grain yield whilst 

applying less water. However, it has not been widely utilized in developing countries 

due to inadequate knowledge about the practice. Paudel (2010) found that the main 

canal distribution system in Sunsari Morang Irrigation Scheme in Nepal followed no 

specific irrigation schedule protocol, but rather was being operated more or less 

randomly. Research on careful evaluation of soil moisture characteristics and optimal 

irrigation scheduling is still required as they are complex processes (Krupnik et al., 

2015). In the climate change context, all irrigation schemes must practice optimal 

irrigation scheduling to cope with future water scarcity. 
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Farmers are not able to achieve their potential crop grain yield in agricultural farms. 

Khaliq et al. (2019) reported that farmers are harvesting about 50% of potential wheat 

grain yields at present. Li et al. (2014) assessed the grain yield of winter wheat in the 

North China Plain, and stated that regional average grain yield was around 55% of the 

potential grain yields in 1981-2010. Deihimfard et al. (2015) reported that average 

wheat grain yield was around 80-98% of the potential grain yields in the Khorasan 

province of Iran. 

Mirgol et al. (2020) modelled climate change impacts on grain yields of winter wheat 

crops in the 2030s, 2050s and 2080s using a single GCM, The Canadian Earth System 

Model (CanESM2), and applying IPCC climate change scenarios RCPs 2.6, 4.5, and 8.5 

in the Qazvin Plateau, Iran. Their study predicted that the grain yields of future winter 

wheat crops would decrease by 60-100% for all climate change scenarios. They also 

reported an increase in future irrigation water requirements by 40-80%, compared to the 

1986-2015 period. Bouras et al. (2019) assessed climate change impacts on irrigation 

water requirements and grain yields of wheat crops in the Tensift region of Morocco for 

2050s and 2090s using climate change scenarios RCP4.5 and RCP8.5. Their study 

reported that both future irrigation water demands and wheat grain yields would 

decrease by 13-42% and 7-30% respectively. Likewise, Goodarzi et al. (2019) evaluated 

climate change impacts on irrigation water requirements for different crops in Iran for 

the 2017-2046 period considering climate change scenarios RCPs 4.5 and 8.5. They 

used the CROPWAT model.  They projected an increase in irrigation water 

requirements for wheat crops by 12-16%, compared to 1976-2005 period. Zhang et al. 

(2013) assessed climate change impacts on wheat grain yields in the 2080s compared to 

1961-1990 in the North China, and predicted that wheat grain yields would decrease by 

4-6 % and 1-5 %, considering climate change scenarios A2 and B2 respectively. They 

used the APSIM crop model in their study. 

2.4 Canal water losses and canal hydraulic capacity assessment of an irrigation 

scheme 

Seepage and operational losses in unlined irrigation canal networks are ongoing 

problems for water managers (Worstell, 1976). In most Indian irrigations systems, more 

than half of the water is lost in seepage and evaporation during delivery from the head 
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of the canal to the field (Sharma et al. cited in Swamee et al., 2002). Memon et al. 

(2013) reported water loss of 47% when water is conveyed from canal head to farm gate 

through the Dabu canal system in Pakistan.  

Seepage losses from irrigation canals mainly depend upon the permeability of the 

subsoils, sediment quantity in irrigation water, the depth of the local water table relative 

to the canal bottom, distance of drainage, bed width and side slope of the canal, and the 

water depth and velocity in the canal. In India, the seepage losses from unlined canals 

range from 0.026-0.61 m
3
/m

2
/day (Indian Standards Institution, 1980). Working in an 

experimental field channel in arid Saudi Arabia, Moghazi and Ismail (1997) reported 

average seepage rates of 2.65, 2.16, 0.464 m
3
/m

2
/day in canals with uncompacted 

earthen beds, compacted channel beds and prefabricated bitumen jute mat respectively. 

According to Wilkinson (1985), a canal having a seepage loss >0.031 m
3
/m

2
/day is 

considered to be a good candidate for lining, whilst a canal with a seepage loss <0.031 

m
3
/m

2
/day is considered to be ―tight‖. Seepage loss in unlined canals in permeable soils 

varies from 20 to 30% of the total irrigation water supply (FAO/UNESCO, 1973). 

Kilic and Tuylu (2011) investigated water losses in the conveyance system of the 

Ahmetli irrigation scheme in Turkey using the inflow-out flow method. They reported 

that average water loss in the main canal was 0.067 l/s/m
2
 with the loss varying from 

0.012 – 0.142 l/s/m
2 

at different sections of the main canal. Likewise, Eshetu and 

Alamirew (2018) evaluated water losses in irrigation canals in Ethiopia using the 

inflow-outflow method. They reported that the average water loss in main canal was 

0.0126 l/s/m
2 

with the loss varying from 0.0123 – 0.0129 l/s/m
2 

at different sections of 

the main canal lined with geo-membrane. In the earthen portion of the irrigation main 

canal, the average water loss was 0.0180 l/s/m
2
. Mohammadi et al. (2019) analysed 

water losses in irrigation channels in Iran and reported average water losses of 0.014 

l/s/m
2 

in the main canal. Water losses varied from 0.013 l/s/m
2 

to 0.016 l/s/m
2
. Akkuzu 

(2012) assessed water losses in an irrigation canal in Turkey using the inflow-outflow 

method and reported that the average water loss was 0.014 l/s/m
2 

varying from 0.002 

l/s/m
2 

to 0.036 l/s/m
2
 at different locations of the canal.  

Factors affecting irrigation canal discharge capacity include flow obstructions, siltation, 

and reduction in canal bank height. Flow obstruction in irrigation canals is represented 
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by Manning‘s roughness coefficient in hydraulic modelling. Manning‘s roughness 

coefficient values for earthen canals is 0.02 for newly constructed very smooth canal 

sections without meandering, 0.1 for  very high vegetation conditions, and 1.3 for 

severe meandering conditions (Department of Irrigation, 2014, United States Geological 

Survey, 1989). The branch irrigation channels in case study area are under  severe 

meandering conditions in few places. Manning‘s roughness coefficient values for 

designing earthen irrigation canals in Nepal is generally taken as 0.025-0.03. Bakry et 

al. (1992) investigated the Manning‘s roughness coefficient in an irrigation canal in 

Egypt, and reported a maximum Manning‘s coefficient of 0.083 in earthen canal. Salah 

Abd Elmoaty and El-Samman (2020) conducted an investigation on Manning‘s 

roughness coefficient for different weed density scenarios in channels. They reported a 

maximum value of Manning‘s roughness coefficient for high weed, medium weed and 

low weed densities were 0.12, 0.08 and 0.07 respectively. 

Storm Water Management Model (SWMM) model has been successfully used to 

simulate hydraulic characteristics of irrigation canals. Kim et al. (2016), Do et al. (2019) 

and Bang et al. (2019) assessed the hydraulic performance of irrigation canal in South 

Korea using Storm Water Management Model (SWMM) model. Schoenfelder et al. 

(2006) applied SWMM to evaluate hydraulic performance of irrigation canals in the 

USA. Banda and Kasitu (2018) used SWMM to assess the capacity of drainage system 

in South Africa.   

The Sunsari Morang Irrigation Scheme in Nepal was designed by the British 

administration in the 1960s without considering crop water requirement criteria, since 

the main focus was to increase the cropped area, and protect crops from catastrophic 

drought failure (Paudel, 2010, Adhikari, 2016, Renault and Wahaj, 2006). The Sunsari 

Morang Irrigation Scheme was designed to supplement the monsoon rainfall, which 

allows only one crop of paddy rice per year over the entire area (FAO, 2016a, Adhikari, 

2016, Renault and Wahaj, 2006).  

Based on the analysis of data from 1970 to 1993, the Nepal Department of Irrigation 

(1995) reported that the design discharge of 60 cumec can irrigate about 57,000 hectares 

(nearly 84% of the command area) with an 80% reliability of supply in the monsoon 

season. A scheme performance assessment conducted by the World Bank showed that 
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the overall efficiency of Sunsari Morang Irrigation Scheme is below expectation, and is 

rated as very low due to poor water management. Although there was an increase in 

cropping intensity, the project had little impact on paddy rice grain yields.  

A field survey by the Nepalese National Planning Commission (2012) reported that 

52% of the households in the Sunsari Morang Irrigation Scheme do not receive 

sufficient water during the cropping period. This report also notes that only about 10% 

of the farmers get irrigation water when they require it; 33% receive water, but with 

delays; 30% have difficulty getting water; and about 19% are unable to get water at all. 

Entry of silt from the river into the canal network has been a problem since the Sunsari 

Morang Irrigation Scheme began operating. It is the largest irrigation scheme in Nepal. 

There are no scheduled operations and maintenance plans. Being a large scale irrigation 

scheme with a limited yearly operation and maintenance budget, the canal system in the 

Sunsari Morang Irrigation Scheme is not well maintained. Siltation and weed are very 

common in the canal system, reducing the canal discharge. However, studies have not 

been carried out to investigate the impacts of flow obstructions on canal flow capacity.     

Overall, previous studies on irrigation water have been carried out in an isolation, 

mainly focusing on crop water requirement without considering the supply side of 

irrigation water. The supply and demand sides of irrigation water have not been 

assessed simultaneously using a systems approach. A comprehensive methodology to 

assess climate change impacts on irrigation water including both the supply and demand 

sides is still missing. 
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Chapter 3: Study area 

Chapter Three provides information on study areas including general information on the 

catchment characteristics of the Koshi River basin, and the salient features of the 

Sunsari Morang Irrigation Scheme. 

3.1 The Koshi River basin 

3.1.1 Catchment characteristics of the Koshi River basin 

The Koshi River, one of the largest tributaries of the Ganges, originates in China and 

flows through Nepal and India. The Koshi River basin is the largest river basin in 

Nepal. About 22% of Nepal‘s population (around 5.8 million people) lives within this 

basin (Dixit et al., 2009). The catchment area of the Koshi River basin near Chatara in 

Nepal (Figure 3.1) is about 54,0000 km
2
 (28,080 km

2
 in Tibet (China) and 25,920 km

2
 

in Nepal), delineated using ArcSWAT. The location of the catchment area of the Koshi 

River basin in China and Nepal is shown in Figure 3.1. The catchment areas in Nepal 

contain the High Himalaya (elevation >3000 m) and Lower Himalaya (elevation<3000 

m) with area of are 8257 km
2
 and 17669 km

2
 respectively. The altitude in the Nepalese 

part of the catchment area varies from 97 m above mean sea level (AMSL) in the 

southern part, to > 8000 m AMSL in the northern part of the High Himalayas. The 

altitude in the Tibetan part of the catchment varies from 1018 m to 8792 m AMSL. 
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Figure 3.1: The Koshi River basin down to Chatara in Nepal. All the rivers are coloured 

blue. 

3.1.2 Average discharge in the Koshi River 

There is a large spatial and temporal variation in rainfall in the Koshi River basin, with 

approximately 80 % of the annual rainfall occurring in the monsoon season between 

June and September, (Dixit et al., 2009, Water and Energy Commission Secretariate, 

2005). Increases in the severity and duration of droughts in the dry seasons, and floods 

in the monsoon season are the main climate trends in the Koshi River basin (NCVST, 

2009). The large variation in rainfall results in significant variations in river discharge. 

Daily river discharge data at Chatara for the period 1982-2010 were obtained from the 

Department of Hydrology and Meteorology, Nepal. Mean monthly discharge, based on 

river discharge data from 1982-2010, is shown in Figure 3.2. The mean monthly flow 

varies from around 340 m
3
/s in February to 4,315 m

3
/s in August. The average yearly 

discharge is about 1,515 m
3
/s. The average monthly discharge in monsoon season 

(June-September) is about 3,300 m
3
/s, which is more than 200% of the average monthly 

discharge. In contrast, during the winter season (December, January, February) average 

discharge is about 410 m
3
/s which is around 25% of average annual river discharge. 
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 Figure 3.2: Measured mean monthly discharge (m
3
/s) of the Koshi River at Chatara for 

the period 1982-2010. 

3.2 The Sunsari Morang Irrigation Scheme 

3.2.1 Development of Sunsari Morang Irrigation Scheme 

The Sunsari Morang Irrigation Scheme lies in the south-eastern region of Nepal, and 

was constructed about 50 years ago. The southern part of Nepal is called the Terai 

region, a large plain, also known as the food basket of Nepal. The location of the 

Sunsari Morang Irrigation Scheme is shown in Figure 3.3. The blue lines in Figure 3.3 

represent the Sunsari Morang irrigation canal network and the red dotted line is the 

boundary of the Koshi River basin. The irrigation canal intake is located at Chatara. In 

1954, His Majesty's Government of Nepal (HMG/N) reached an agreement with the 

Government of India (GOI) under which GOI undertook to finance and construct the 

then Chatara Canal Project in Nepal. The objective of Chatara Canal Project was to 

command 68,000 ha of land encompassing the Sunsari and Morang districts, using 

water diverted from the left bank of Koshi River by a side intake regulator. Construction 

of the system started in 1964, and it was handed over Nepal in 1975 after a trial run of 5 

years. The Chatara Canal Project was later renamed the Sunsari Morang Irrigation 

Project. When constructed in 1964, the main canal system was designed to divert 45.0 

m
3
/s (Sunsari Morang Irrigation Project, 2015).  
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Figure 3.3 Location of Sunsari Morang Irrigation Scheme in Nepal (blue lines represent 

the Sunsari Morang irrigation canal network). 

However, after only a few years of canal operation, the excessive entry of silt into the 

canals was observed. The silt reduced the discharging capacity of the system. Periodic 

removal of silt from main canal required the closure of the canal system, impairing its 

capacity to provide year-round irrigation. This reduced the usefulness of the canal 

system for food production (Sunsari Morang Irrigation Project, 2015). The problem was 

exacerbated by the continued westward advance (towards the side opposite to the canal 

intake) of the bed of the Koshi River, making it extremely difficult to divert water from 

the river into the system. 

The Sunsari Morang Headworks project was started in 1993. It mainly included 

relocating the intake structure 1300 m upstream along the Koshi River in order to 

increase the capacity of intake to 60 m
3
/s, and constructing a large capacity settling 

basin (900 m x 60 m) (Sunsari Morang Irrigation Project, 2015). The headwork project 

aimed to increase water supply from 45.0 m
3
/s to 60.0 m

3
/s, and was completed in 1996. 

The completion of the Sunsari Morang Headworks Project works and subsequent 

operation minimized the silt problem, assuring the availability of water in the system 

throughout the year. The completed components of the Sunsari Morang Headworks 

Project were put into full operation in June 1996. Different works have been 

continuously carried out at the intake, the canal network and the command area for the 

operation and maintenance of the canal system. However, the Koshi River is 
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continuously shifting westwards, which has proved challenging for the gravity flow of 

river water into the canal network.    

3.2.2 Crop water requirement considerations in the Sunsari Morang Irrigation Scheme 

Agriculture was the dominant source of revenues of colonial powers in Asia and 

irrigation systems were mainly designed to maximize crop productivity (ton/year) rather 

than land productivity (ton/ha/year) in the Colonial Era (1850 to 1950) (Barker and 

Molle, 2004). After the colonial period of the British in India, modernization of the 

irrigation system was carried out to prevent famine and to stabilize the revenues from 

irrigated land. Production and land tax from rain-fed agricultural land were low and 

heavily reliant on rainfall (Bolding et al., 1995). Jurriens et al. (1996) argue that 

protective design criteria which required spreading the available water thinly over a 

large command area (ML/ha/yr) rather than considering crop water requirements, have 

been followed in most of the irrigation schemes in India and nearby countries since 

1880, and that is still the prevailing paradigm. Under a regime employing protective 

design criteria, water is not supplied to optimise the irrigation requirements. Instead, the 

water supply is merely enough to protect the crop from failure. The irrigation deficit 

means that crop productivity (ton/ha) is sub-optimal. However, large crop areas are 

covered in protective design criteria. In India, productive irrigation, where water is 

adequately supplied to fulfil the irrigation requirement, was practised in the first half of 

the nineteenth century, but protective irrigation commenced after 1860. Under 

productive irrigation, the crop productivity (ton/ha) is high while crop area coverage is 

low in comparison to land farmed under protective design criteria. Farmers showed less 

interest in protective irrigation due to the high cost in land preparation for irrigation and 

the limited increase in grain yield due to insufficient water allocation per hectare 

(Bolding et al., 1995). Barker and Molle (2004) identified changes in the system design 

of publicly managed irrigation schemes in South and Southeast Asia over the last 170 

years. During the Colonial Era (1850 to 1950), supplemental principles prevailed. 

During the Cold War Era (1950 to 1990), irrigation schemes were supply-driven. In the 

New Era of Globalization (1990 onwards) there has been a switch to demand-driven 

design. 
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The crop water requirement estimation in the Sunsari Morang Irrigation Scheme was 

based on protective design criteria which provided only supplementary irrigation drawn 

from the monsoon rainfall, thereby guaranteeing one crop of monsoon rice per year over 

the entire command area (FAO, 2016a, Adhikari, 2016, Renault and Wahaj, 2006).  

3.2.3 Headworks and canal networks in the Sunsari Morang Irrigation Scheme 

The Sunsari Morang Irrigation Scheme has a command area of 68,000 hectares (about 

3% of the total irrigable land of Nepal) and is designed to supply a peak discharge of 60 

cubic meters per second. There is no permanent diversion structure (barrage or weir) in 

the headworks (Figure 3.4) and the water is diverted from the side intakes. The river 

water overflows into the main canal via the side intake utilizing gravity flow. The main 

irrigation development in the Colonial Era (1850 to 1950) was mainly river diversion 

and flood regulation. This shifted to storage dams and gravity irrigation during the Cold 

War Era (1950 to 1990), and is now focused on pumps and wells in the New Era of 

Globalization (1990 onwards) (Barker and Molle, 2004). Side intake headworks without 

permanent diversion structures or pumping mechanism are very common in developing 

countries, as diversion structures across the river (i.e. weirs) are costly, and normally 

beyond the financial capacity of these countries. Thus, water supply in to the canal 

system depends on the water level in the river.  
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Figure 3.4: Headwork of the Sunsari Morang Irrigation Scheme. 

There are 12 intake orifice openings with a total width of 48 m, as shown in Figure 3.4. 

The reduced level of the orifice crest (the bottom of the orifice) is 107 m above mean 

sea level (AMSL). The opening size of each of the 12 orifice bays is 4 m wide by 5 m 

high. During monsoonal flood flows (June, July, August, and September), the water 

level in the river raises. It usually contains silts as well as other debris such as trees, and 

wooden planks. Consequently, a 1 m high stop log is kept at the bottom of the orifice, as 
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well as iron trash racks, to reduce the amount of silt and floating debris entering the 

canal. However, they are not installed during the low flow periods in the river 

(November to May). 

The main canal length is 55 km. There are 25 branch (secondary) canals supplied from 

the main canal. These secondary canals then branch into distributary (sub-secondary) 

and tertiary canals. The total length of branch and distributary canals is about 425 km, 

whilst that of the tertiary canals is a further 410 km. In addition to the branch canals, a 

few direct outlets from the main canal also supply water to the command area. A 

schematic of the main canal and major branch canals network of the Sunsari Morang 

Irrigation Scheme is shown in Figure 3.5. The blue lines in Figure 3.5 represent the 

main and branch canals. 

 

Figure 3.5: Canal network of the Sunsari Morang Irrigation Scheme. 

Almost all the main and branch canals are unlined earthen canals. Parts of the canal 

sections adjacent to canal structures such as the head regulator, cross regulator, 

aqueduct, super passage, village road crossings, and escapes are lined with reinforced 
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cement concrete. Most of the structures are functioning inefficiently, as they were built 

about 50 years ago and the level of maintenance is low.  

The main canal size varies from around 23.5 m wide by 2.5-3 m high at the head 

reaches to 20 m wide by 2 m high at the middle reaches and to 3 m wide by 1 m high at 

the tail reaches. Portions of the main canal are shown in Figure 3.6.    

 
Main canal at chainage 28.5 km 

 
Main canal at chainage 40.3 km  

Figure 3.6: Main canal of the Sunsari Morang Irrigation Scheme. 

Losses such as seepage loss and loss from structures like aqueducts (a bridge over the 

natural channels constructed to carry irrigation water) are common in earthen canals, 

and the Sunsari Morang Irrigation canal is no exception.     

Operation and maintenance of the main canal is the responsibility of the Sunsari 

Morang Irrigation Project Office, under the Department of Water Resources and 

Irrigation. Due to a limited yearly operation and maintenance budget, the Project Office 

focuses on maintenance of structures to prevent failure, and the lining of the canal in 

places where the banks are prone to failure, rather than investing in silt and weed 

clearance. Farmers are not interested in removing the silt and weeds from the tail 

portion of the main canal as they do not receive water on a regular basis. These factors 

have substantially reduced the canal cross section as well as the flow capacity. 

Examples of poor maintenance and weed growth at the tail portions of the main canal 

are shown in Figure 3.7.    

Main canal 

Branch 

 canal 
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Main canal at chainage 49.8 km 

 
Main canal at chainage 52.6 km 

Figure 3.7: Reduced flow section at the tail portion of the main canal. 

From the main canal to the field level, the canal network in the Sunsari Morang 

Irrigation Scheme follows six levels of canal covering 38,000 hectares of irrigation 

command area, also called the developed area (Figure 3.8). The remaining 30,000 

hectares of command area remain undeveloped (Figure 3.9). The canals systems in the 

developed command area are the main canal, secondary canals, sub-secondary 

(distributary canals), tertiary canals, watercourses, and field channels. The Ministry of 

Water Resources (1997) has firstly defined the main, branch, and distributary canals as 

those which irrigate 30-500 ha, while minor canals irrigate 10-30 ha and watercourses 

irrigate 10 ha or less. It was mentioned in Irrigation policy 1992 (first amendment 

1996). The policy did not mention field channels, which suggests that field channels 

were not in common use at that time (1992).  
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Figure 3.8: Schematic diagram of the canal system in the developed area (38000 ha). 

 

Figure 3.9: Schematic diagram of the canal system in the undeveloped area (30,000 ha). 

The Ministry of Water Resources (2003), in Irrigation policy (2003), defined the field 

channel. It defined distributary canals (which irrigate 100-500 ha), minor canals (which 

irrigate 30-100 ha), watercourses (which irrigate 10-30 ha) and field channels (which 

irrigate agricultural plots <10 ha inside the command area). Realizing the importance of 

field channels, Ministry of Irrigation (2013), in Irrigation policy (2003),  defined 

distributary (sub-secondary) canals as those which receive water from the main or a 
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branch canal, and irrigate 100-500 ha within the command area. Minor (tertiary) canals 

receive water from the main or a branch or a distributary canal, and irrigate 30-100 ha. 

Watercourse offtakes receive water from the main or a branch or a distributary or a 

minor canal, and irrigate 4-30 ha. Field channels irrigate agricultural plots <4 ha. The 

field channels receive water from the main or a branch or a distributary or a minor canal 

or a watercourse.  

Agricultural areas receiving irrigation water supply following the canal network as 

shown in Figure 3.8 are considered as developed areas. Up to 2003, command area 

development works have been carried out on about 38000 ha of the total potentially 

commandable area of 68000 ha. The development works include construction of the 

sub-secondary canals, tertiary canals, watercourses, field outlets and field channels 

supplying up to 3-5 ha field plots. The supply system has gated or check structures 

installed from the main canal down to the field outlets. Each watercourse, having an 

average length of about 1.5 km, irrigates around 28 ha and consists of 7 field outlets. 

Each outlet supplies water to a 3-5 ha area. A field channel is needed to irrigate the 3-5 

ha of land, and water must travel through a number of fields (usually <0.4 ha) to irrigate 

the tail end field.  

In those portions of the command area without infrastructure development works, 

branch canals offtake water from the main canal, and outlets then provide water to the 

watercourses. There are no gated structures on the outlets and watercourses (unlike in 

canal systems in the developed areas). These portions of command area are locally 

known as undeveloped areas. There are no sub-secondary or tertiary canals in an 

undeveloped area. Each watercourse in the undeveloped area irrigates around 50 ha 

compared with 28 ha in the developed area. Each watercourse is 3 to 4 km long and 

contains 3 to 4 outlets. Field outlets and field channels do not have gated or check 

structures installed.  
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Chapter 4: Methodology 

In this chapter, the comprehensive methodology to assess the climate change impacts on 

supply and demand sides of irrigation water is described. This chapter also explains the 

data collection and processing component of the research. 

4.1 Methodology for investigating climate change impacts on supply and 

demand sides of irrigation water under an irrigation command area 

The conceptual methodology to assess the climate change impacts on supply and 

demand sides of irrigation water is shown in Figure 4.1. The methodological framework 

is divided into four major components. 

1. Understanding climate change impacts on daily rainfall and temperature 

(minimum and maximum) in river basins and irrigation command areas (GCMs 

selection and climate data downscaling) 

2. Future impacts on river water availability due to climate change at irrigation 

canal intakes (hydrological assessment of river basin) 

3. Crop water requirements due to climate change (irrigation water requirement 

assessment) 

4. Irrigation canal systems‘ hydraulic capacity requirements for water supply in a 

climate change context (irrigation canal hydraulic capacity assessment). 
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Figure 4.1: Flowchart of methodology for investigating climate change impacts on 

demand and supply sides of irrigation water. 

The General Circulation Model selection and climate data downscaling are used to 

project climate data (precipitation and temperature) in future periods (2016-2045, 2036-

2065, 2071-2100) considering different climate change scenarios (representative 

concentration pathways 4.5 and 8.5). These data are used in hydrological modelling to 

project future water availability at the headwork of the Sunsari Morang Irrigation 

Scheme in the Koshi River basin. These projections are used to estimate future 

discharge into the main irrigation canal. The predicted future climate data are also used 

in crop modelling to predict irrigation water requirements for crop in future time 

periods. Based on future water availability for irrigation in the river and irrigation water 

requirement for crop, the canal hydraulic capacity needs in the future are also assessed. 
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4.2 Data collection and processing 

Global Circulation Models‘ outputs along with related data required for GCM selection 

and downscaling, were downloaded from the Royal Netherlands Meteorological 

Institute (KNMI) Climate Explorer (https://climexp.knmi.nl/start.cgi), climate4impact 

(https://climate4impact.eu/impactportal/general/about.jsp), the Max-Planck Institute for 

Meteorology (https://code.mpimet.mpg.de/projects/cdo/files), the International Centre 

for Integrated Mountain Development (http://rds.icimod.org/clim) and other publicly 

available resources.  

Historic daily climate data including daily rainfall, temperature, solar radiation, wind 

speed and humidity were collected from the Department of Hydrology and 

Meteorology, Nepal. These data were used in the hydrological model. Historic runoff 

data of the Koshi River were also collected from the same source and used in the 

hydrological model. 

Input data for crop modelling include soil, crop specific, management and time series 

climate data. The measured phenology, biomass yield and yield data for winter wheat 

crops were used for the calibration and validation of the crop model. The climate data 

for the Sunsari Morang Irrigation command area, obtained from APSIM Next 

Generation (Holzworth et al., 2018) for the years 2016-2020, were used in this research. 

The management data such as irrigation and fertilizer use were measured in the field. 

The soil data used were based on laboratory results. 

Data on canal geometry (longitudinal section and cross section), canal discharge, flow 

velocity, and water depth data were measured in the field, and also obtained from the 

Sunsari Morang Irrigation Scheme office. Canal discharge, flow velocity, and water 

depth data were used for the calibration and validation of the crop model. The climate 

data were taken from APSIM Next Generation (Holzworth et al., 2018) for the years 

2016-2020. Historical data on river water levels at the irrigation canal intake were 

obtained from the Sunsari Morang Irrigation Project Office, Nepal.  

4.3 Model calibration and validation; evaluation and outcome 

The details of each component of the methodology (as depicted in Figure 4.1) are 

demonstrated with a case study application in respective chapters (Chapters 5-8). 

General Circulation Models (GCMs) selection and downscaling is described in Chapter 

https://climexp.knmi.nl/start.cgi
https://climate4impact.eu/impactportal/general/about.jsp
https://code.mpimet.mpg.de/projects/cdo/files
http://rds.icimod.org/clim
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Five. Hydrological assessment of river basin is described in Chapters Six. Irrigation 

water requirements assessment is mentioned in Chapter Seven and irrigation canal 

hydraulic capacity assessment is described in Chapter Eight. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 

 

Chapter 5: General circulation models selection and climate data 

downscaling  

This section is divided into two parts. Firstly, it focuses on the selection of 

representative General Circulation Models (GCMs) for the Koshi River basin. Then, 

downscaling of the climatic parameters (precipitation and temperature) for the Koshi 

River basin is carried out based on the selected GCMs. It predicts the future climate for 

the short-term (2016-2045), mid- century (2036-2065) and end-of-century (2071-2100) 

time periods considering climate change scenarios RCP4.5 and RCP8.5. The predicted 

downscaled climate data will be used in the hydrological modelling to estimate water 

availability at the headwork of the Sunsari Morang Irrigation Scheme in the Koshi River 

basin of Nepal. 

5.1 Representative GCM selection for the Koshi River basin 

5.1.1 General Circulation Models (GCMs) 

GCM computer models mathematically represent numerous atmospheric, oceanic and 

biotic processes of the world climate system, and are the main tools used to project 

climate changes under increased greenhouse gas concentrations (Trzaska and Schnarr, 

2014). In climate models, researchers divide the world into a three-dimensional grid 

(Figure 5.1), apply the basic principles of physics, fluid motion and chemistry, and 

evaluate the results (National Oceanic and Atmospheric Administration, 2018). These 

models calculate radiation, heat transfer, relative humidity, wind and surface hydrology 

within each grid, and assess interactions with neighbouring grids. The atmospheric and 

oceanic processes were firstly combined in the late 1960s at the Geophysical Fluid 

Dynamics Laboratory (GFDL) of the National Oceanic and Atmospheric 

Administration (National Oceanic and Atmospheric Administration, 2018). Climate 

models provide quantitative estimates of future climate changes with a considerable 

confidence. The sources for confidence in model outcomes is that they are based on 

established physical laws, such as conservation of mass, energy and momentum, along 

with observations; as well as their ability to simulate various aspects of the current 

climate (IPCC, 2007).  
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Figure 5.1: Representation of world in General Circulation Models (National Oceanic 

and Atmospheric Administration, 2018). 

The number of GCMs available to predict future climate is increasing. The numbers of 

GCMs outputs applied in the Coupled Model Intercomparison Project Phase 3 (CMIP3) 

(Meehl et al., 2007) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) 

(Taylor et al., 2012) were 25 and 61  respectively. The CMIP3 outcome archives were 

used for the Fourth Assessment Report (IPCC, 2007) and CMIP5 outcome archives 

were used for the Fifth Assessment Report (IPCC, 2013) of the Intergovernmental Panel 

on Climate Change (IPCC). Capacities of climate models/ensembles to represent 

climatic characteristics vary spatially and temporally. 
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5.1.2 Approach on GCMs selection 

In most cases, a single GCM is not adopted to represent climatic characteristics at 

various corners of climatic extremes. For a chosen time and space, a specific climatic 

model/ensemble may demonstrate better abilities to represent climatic characteristics for 

a particular corner of a climatic extreme. The climatic extreme corners are cold and dry, 

cold and wet, warm and dry, and warm and wet. Hence, the selection of global climate 

models for a specific geographical location, with high capacities to represent the past 

and likely future climate, is a crucial step in assessing climate change impacts. A GCM 

selection from the large set of available climate models for the area of interest is a 

challenging task. 

Lutz et al. (2016) have recently developed an advanced envelope-based selection 

approach for the selection of a representative global model, by combining the past-

performance approach and envelop approach. It focuses on simulating a workable 

number of climate model runs representing the most likely futures with upcoming mean 

air temperature and annual precipitation, along with future changes in climatic 

extremes. This approach, which includes a three-step methodology, is used in this 

research to select a representative climate model for the Koshi River basin. 

5.1.3 Methodology 

Selection of Representative Concentration Pathways (RCPs) 

IPCC (2014) has documented four RCPs to predict possible global future climate 

scenarios in the Fifth Assessment Report.  The RCPs are based on the level of 

greenhouse gas concentration (CO2, CH4, N2O etc), and represent the range of radiative 

forcing values by the year 2100. The RCPs and their corresponding radiative forcing, 

along with a CO2-equivalent concentration in 2100 (IPCC, 2014), are represented in 

Figure 5.2 (adapted from Van Vuuren et al., 2011a), and summarised below: 
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Figure 5.2: RCPs with (a) CO2 concentration and (b) corresponding radiative forcing. 

 RCP2.6 (Green): Peak in radiative forcing at ~3 W/m2 (430-480 ppm CO2-eq) 

and then decline to 2.6 W/m2 by 2100.  

 RCP4.5 (Red): Stabilization without overshoot to 4.5 W/m2 (580-720 ppm CO2-

eq) and then stabilized after 2100. 

 RCP6.0 (Black): Stabilization without overshoot to 6.0 W/m2 (720-1000 ppm 

CO2-eq) and then stabilized after 2100. 

 RCP8.5 (Blue): Rising radiative forcing to 8.5 W/m2 (>1000 ppm CO2-eq) by 

2100. 

The RCP2.6 represents the low end of the climate scenario in terms of emission and 

radiative forcing (Van Vuuren et al., 2011b). This pathway has been shown to be 

technically feasible, but requires the immediate and wide participation of all the 

countries in the world in deploying a large portfolio of mitigation options (Van Vuuren 

et al., 2010). As a major decline of greenhouse gas emission in the short run seems 

unrealistic (Lutz et al., 2016), it is unlikely that the RCP2.6 scenario can be accepted 

and is not considered further in this research. Among the remaining RCPs, one 

stabilization scenario, RCP4.5, and one high emission scenario, RCP8.5, are analyzed in 
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this research. Within these stabilization scenarios (RCP4.5 and RCP6.0), RCP4.5 is 

chosen as it represents the lower end of the stabilization scenarios. RCP4.5 and RCP8.5 

should cover the entire range of stabilization and high emission scenarios, and hence 

were selected for this research. 

Selection of study periods 

A total of 197 parties (196 states and 1 regional economic integration organization) 

have agreed to the United Nations Framework Convention on Climate Change 

(UNFCCC, 2018). The Government of Nepal (GoN) is also one of the signatories to the 

United Nations Framework Convention on Climate Change. At the sixteenth session of 

the Conference of the Parties to the United Nations Framework Convention on Climate 

Change, held in 2010, the parties decided to formulate and implement a National 

Adaptation Plan (UNFCCC, 2011). In this regard, the Government of Nepal has 

initiated a National Adaptation Plan formulation process, with a launching workshop in 

2015 (GoN-Climate Change Management Division, 2015). The National Adaptation 

Plan has envisioned the 2030s (2016-2045) and 2050s (2036-2065) for the adaptation 

measures (GoN-National Adaptation Plan Formulation Process, 2017). In addition, to 

the 2016-2045 (short-term) and the 2036-2065 (mid-century) scenarios considered in 

the National Adaptation Plan, GCMs were also selected to facilitate an assessment of 

climate changes impacts in the 2071-2100 (end-of-century) period. 

GCMs selection approach           

An advanced envelope-based selection approach developed by Lutz et al. (2016) was 

applied to select the representative climate models for climate change scenarios RCP4.5 

and RCP8.5 for the short-term (2016-2045), mid-century (2036-2065), and end-of-

century (2071-2100) periods. This approach included three main steps as shown in 

Figure 5.3. 
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Figure 5.3: Steps of GCM selection (based on  Lutz et al., 2016). 

5.1.4 Application of Methodology 

An advanced envelope-based selection approach developed by Lutz et al. (2016) is 

applied to select the representative climate models for the Koshi River basin, 

considering climate change scenarios RCP4.5 and RCP8.5 for the short-term (2016-

2045), mid-century (2036-2065), and end-of-century (2071-2100) periods. 
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Step 1: Initial model selection based on changes in mean air temperature and 

annual precipitation 

Firstly, area-averaged monthly mean air temperature and monthly total precipitation 

time series data for the climate change scenarios RCP4.5 and RCP8.5 model runs were 

downloaded from the Royal Netherlands Meteorological Institute (KNMI) Climate 

Explorer (https://climexp.knmi.nl/start.cgi) in July 2018. The KNMI datasets are 

available at a resolution of 2.5° x 2.5°. The Koshi River basin, down to Chatara in 

Nepal, lies within the extent of  26°50‘ to 29°8‘ N and 85°23‘ to 88°57‘ E (Agarwal et 

al., 2014, Bhattarai, 2013). So the boundary between 24° to 31°N and 84° to 91°E was 

selected in the KNMI dataset to cover the entire catchment of the study area. For 

climate change scenario RCP4.5, 105 GCMs and 108 GCMs were available for 

precipitation and temperature respectively. Likewise, 78 GCMs and 81 GCMs were 

available for climate change scenario RCP8.5, for precipitation and temperature 

respectively. The models/ensembles having both precipitation and temperature data 

were considered for the initial selection. Hence, 105 GCMs and 78 GCMs were taken 

for climate change scenarios RCP4.5 and RCP8.5 respectively. R programming 

(RStudio Team, 2016) was used to download and analyze the data. 

Secondly, the mean air temperature and annual total precipitation for each year for the 

reference period (1981-2010) and future periods (short-term, mid-century and end-of-

century) were calculated. The range of predicted changes in annual mean air 

temperature and annual total precipitation for the reference and future periods was 

calculated for the study area. The delta changes for temperature (°C), ∆T, and 

precipitation (%), ∆P, in these three study periods were calculated. Based on the ∆T and 

∆P values for all available GCMs/ensembles, the percentile rank of each 

GCM/ensemble for ∆T and ∆P was calculated separately. 

To demonstrate the delta values and percentile values, the first ten GCMs/ensembles 

with their delta (∆T and ∆P) values and corresponding percentile ranking for ∆T and ∆P 

for climate change scenario RCP4.5 are shown in Table 5.1. The ∆T values represent 

the difference in mean temperature (°C) between the future periods (short-term, mid-

century and end-of-century periods) and the reference period (1981-2010) for the 

respective future periods. The ∆P values represent the difference in annual precipitation 
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(%) between the future periods (short-term, mid-century and end-of-century periods) 

and the reference period (1981-2010) for the respective future periods. The first ten 

models are considered to demonstrate the calculation process. The same procedure was 

followed for all the ensemble members. Although only 10 GCMs/ensembles are shown 

in Table 5.1, this calculation was done for 105 GCMs and 78 GCMs for climate change 

scenarios RCP4.5 and RCP8.5 respectively. Table 5.1 shows the change in temperature 

and precipitation (∆T and ∆P) between 2016-2045 and 1981-2010. For example, the 

model ACCESS1-0_r1i1p1 predicts that the temperature will increase by 1.1°C, 1.71°C 

and 2.65°C in short-term, mid-century and end-of-century periods respectively, as 

compared to the reference period (Table 5.1). Likewise, the model ACCESS1-0_r1i1p1 

predicts that the precipitation will increase by 0.24%, 3.31% and 11.63% in short-term, 

mid-century and end-of-century periods respectively, as compared to the reference 

period (Table 5.1). The percentile rank values of ∆T and ∆P are used to calculate the 

proximity of the model run‘s percentile rank scores to each corner (Equation 1). The 

delta (∆T and ∆P) values for the first ten GCMs/ensembles, the difference between the 

future (short-term, mid-century and end-of-century) periods and the reference period 

(1981-2010), and corresponding percentile ranking for ∆T and ∆P for RCP8.5 are 

shown in Table 5.2. 
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Table 5.1:Delta (∆T and ∆P) values and percentile rank for short-term future period (2016-2045), mid-century future period (2036-2065) and 

end-of-century future period (2071-2100), of the first ten GCMs/ensembles for climate change scenario RCP4.5. 

General circulation 

models (GCMs) 

RCP4.5 

Short-term future period (2016-2045)  Mid-century future period (2036-2065)  
End-of-century future period (2071-

2100)  

∆P 

(%) 

∆T 

(°C) 

Percentile 

rank ∆P 

Percentile 

rank ∆T 

∆P 

(%) 

∆T 

(°C) 

Percentile 

rank ∆P 

Percentile 

rank ∆T 

∆P 

(%) 

∆T 

(°C) 

Percentile 

rank ∆P 

Percentile 

rank ∆T 

ACCESS1-

0_r1i1p1 
0.24 1.1 0.24 0.471 3.31 1.71 0.317 0.48 11.63 2.65 0.528 0.615 

ACCESS1-

3_r1i1p1 
2.46 0.94 0.384 0.24 8.67 1.48 0.615 0.259 16.22 2.53 0.711 0.567 

bcc-csm1-1_r1i1p1 5.17 1.04 0.673 0.384 12.74 1.47 0.74 0.221 9.81 2.05 0.48 0.403 

bcc-csm1-1-

m_r1i1p1 
-3.35 1.22 0.067 0.673 2.06 1.73 0.24 0.5 0.19 2.04 0.125 0.384 

BNU-ESM_r1i1p1 6.02 1.17 0.701 0.605 8.27 1.74 0.596 0.528 14.39 2.32 0.682 0.471 

CanESM2_r1i1p1 8.12 1.23 0.788 0.682 12.33 2.18 0.711 0.846 28.49 2.63 0.971 0.605 

CanESM2_r2i1p1 15.61 1.74 0.98 0.99 17.23 2.05 0.923 0.75 16.24 2.91 0.721 0.701 

CanESM2_r3i1p1 4.48 1.55 0.634 0.961 14.59 2.36 0.865 0.961 30.41 3.09 0.99 0.836 

CanESM2_r4i1p1 -0.05 1.52 0.23 0.942 2.24 2.03 0.25 0.711 15.8 2.79 0.701 0.663 

CanESM2_r5i1p1 11.4 1.32 0.923 0.769 13.91 2.04 0.836 0.721 26.3 2.74 0.961 0.625 
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Table 5.2: Delta (∆T and ∆P) values and percentile rank, for short-term future period (2016-2045), mid-century future period (2036-2065) and 

end-of-century future period (2071-2100), of the first ten GCMs/ensembles for climate change scenario RCP8.5. 

General circulation 

models (GCMs) 

RCP8.5 

Short-term future period (2016-2045)  Mid-century future period (2036-2065)  
End-of-century future period (2071-

2100)  

∆P 

(%) 

∆T 

(°C) 

Percentile 

rank ∆P 

Percentile 

rank ∆T 

∆P 

(%) 

∆T 

(°C) 

Percentile 

rank ∆P 

Percentile 

rank ∆T 

∆P 

(%) 

∆T 

(°C) 

Percentile 

rank ∆P 

Percentile 

rank ∆T 

ACCESS1-0_r1i1p1 2.69 1.1 0.421 0.302 4.9 2.31 0.368 0.46 12.75 4.3 0.368 0.407 

ACCESS1-3_r1i1p1 2.17 1.02 0.381 0.157 3.74 2.02 0.315 0.315 21.63 3.98 0.697 0.328 

bcc-csm1-1_r1i1p1 4.85 1.19 0.644 0.381 17.54 1.92 0.947 0.131 28.93 3.96 0.842 0.302 

BNU-ESM_r1i1p1 3.26 1.4 0.486 0.697 7.09 2.33 0.552 0.486 10.07 4.43 0.171 0.421 

CanESM2_r1i1p1 8.95 1.75 0.907 0.894 21.55 2.96 0.986 0.842 43.95 5.42 0.96 0.776 

CanESM2_r2i1p1 6.16 1.62 0.802 0.828 17.16 2.91 0.934 0.815 53.32 5.52 0.973 0.815 

CanESM2_r3i1p1 21.29 1.92 1 0.973 18.5 3.15 0.973 0.907 62.99 5.82 1 0.881 

CanESM2_r4i1p1 7.25 2.06 0.855 0.986 8.57 3.22 0.657 0.934 40.39 5.57 0.934 0.828 

CanESM2_r5i1p1 4.85 1.77 0.644 0.907 17.94 2.99 0.96 0.855 53.79 5.68 0.986 0.868 

CCSM4_r1i1p1 5.14 1.25 0.684 0.486 5.4 2.38 0.421 0.513 15.54 4.06 0.5 0.368 
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Based on the ∆T values for all the models/ensembles, the 10
th

 and 90
th

 percentile values of 

∆T were determined for climate change scenarios RCP4.5 and RCP8.5 as per standard 

practice (Lutz et al., 2016). The 10
th

 and 90
th

 percentile values of ∆T represent the cold and 

warm sides of the temperature extreme. Similarly, based on the ∆P values for all the 

models/ensembles, the 10
th

 and 90
th

 percentile values for ∆P were determined for RCP4.5 and 

RCP8.5. The 10
th

 and 90
th

 percentile values of ∆P represent the dry and wet sides of the 

precipitation extreme.  

The 10th and 90
th

 percentile values of ∆T and ∆P, considering short-term future period 

(2016-2045), mid-century future period (2036-2065) and end-of-century future period (2071-

2100), from the pool of GCM/ensemble for the climate change scenarios RCP4.5 and RCP8.5 

is shown in Table 5.3.  

Table 5.3: 10th and 90th percentile values of ∆T and ∆P for short-term (2016-2045), mid-

century (2036-2065) and end-of-century (2071-2100) periods, from the pool of 

GCM/ensemble for climate change scenarios RCP4.5 and RCP8.5. 

 

The four corners (in Figure 5.4), cold and dry, warm and dry, cold and wet, and warm and 

wet, represent the four extreme climates, which are 10
th

 and/or 90
th

 percentile values of ∆T 

and ∆P. For example, the cold and dry corner represents the 10
th

 percentile of ∆T and 10
th

 

percentile of ∆P. Likewise; warm and dry represent the 90
th

 percentile of ∆T and 10
th

 

percentile of ∆P. Similarly, cold and wet represent the 10
th

 percentile of ∆T and 90
th

 

percentile of ∆P. The warm and wet corner represent the 90
th 

percentile of ∆T and 90
th

 

percentile of ∆P. The ∆T and ∆P values, considering short-term future period (2016-2045), at 

four corners for climate change scenarios RCP4.5 and RCP8.5 are shown in Table 5.4.  

 

 

10
th 

percentile

90
th 

percentile

10
th 

percentile

90
th 

percentile

10
th 

percentile

90
th 

percentile

10
th 

percentile

90
th 

percentile

10
th 

percentile

90
th 

percentile

10
th 

percentile

90
th 

percentile

RCP4.5 -3.038 11.242 0.86 1.42 -3.45 16.214 1.34 2.262 -3.012 22.566 1.702 3.18

RCP8.5 -3.046 9.068 0.966 1.776 -1.412 16.798 1.878 3.152 -3.878 37.984 3.628 5.91

Short-term future period                 

(2016-2045) 

Mid-century future period                  

(2036-2065) 

End-of-century future period            

(2071-2100) 
Climate 

change  

scenario

∆P (%) ∆T (°C) ∆P (%) ∆T (°C) ∆P (%) ∆T (°C)
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Table 5.4: ∆T and ∆P values, based on short-term (2016-2045), mid-century (2036-2065) and 

end-of-century (2071-2100) periods at four corners for climate change scenarios RCP4.5 and 

RCP8.5. 

 

The proximity of the model run‘s percentile rank scores to each corner with respect to their 

projections for ∆T and ∆P for the entire ensemble was calculated using Equation 5.1 as:  

   
    

      
    

       
    

                                                                       Equation 5.1 

where    
    

  is the distance of a model j‘s ∆P and ∆T (  
 and   

  respectively) to the corner 

under consideration, which are 10
th

 and/or 90
th

 percentile score of ∆P and ∆T for the entire 

ensemble (  
 and   

  respectively).   
 and   

  values are 10
th

 and/or 90
th

 percentile values of 

∆P and ∆T for the entire ensemble for the particular corner.   
 and   

  are the percentile rank 

values of model j for ∆P and ∆T respectively.  

The distance of the first ten GCMs/ensembles from the four corners, considering the short-

term future period (2016-2045), is shown in Table 5.5. Following the same process, the 

proximity of first 10 models to each corner was calculated for climate change scenario 

RCP8.5 for the short term (2016-2035) and is shown in Appendix 1. Likewise, the distance of 

each of the GCMs/ensembles to the four corners, considering the mid-century period (2036-

2065) for climate change scenarios RCP4.5 and RCP8.5, are presented in Appendix 2 and 3 

respectively. The distance of each of the GCMs/ensembles to the four corners, considering 

the end-of-century period (2071-2100) for climate change scenarios RCP4.5 and RCP8.5, are 

presented in Appendix 4 and 5 respectively. 

 

 

∆P 

(%)

∆T 

(°C)

∆P 

(%)

∆T 

(°C)

∆P 

(%)

∆T 

(°C)

∆P 

(%)

∆T 

(°C)

∆P 

(%)

∆T 

(°C)

∆P 

(%)

∆T 

(°C)

Cold and dry corner -3.04 0.86 -3.05 0.966 -3.45 1.34 -1.41 1.878 -3.01 1.702 -3.88 3.628

Warm and dry corner -3.04 1.42 -3.05 1.776 -3.45 2.262 -1.41 3.152 -3.01 3.18 -3.88 5.91

Cold and wet corner 11.24 0.86 9.068 0.966 16.21 1.34 16.8 1.878 22.57 1.702 37.98 3.628

Warm and wet corner 11.24 1.42 9.068 1.776 16.21 2.262 16.8 3.152 22.57 3.18 37.98 5.91

End-of-century future period            

(2071-2100) 

RCP4.5 RCP8.5
Four corners (Four 

extreme climates)
RCP4.5 RCP8.5

Short-term future period                 

(2016-2045) 

Mid-century future period                  

(2036-2065) 

RCP4.5 RCP8.5
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Table 5.5: Distance of the first ten GCMs/ensembles from the four corners, based on the 

short-term future period (2016-2045), for climate change scenario RCP4.5. 

 

The location of the four corners and the proximity of the models/ensembles to each corner for 

climate change scenarios RCP4.5 and RCP8.5, considering changes in the short-term future 

period (2016-2045) and the reference period (1981-2010), are shown in Figure 5.4 and Figure 

5.5 respectively. 

Cold and Dry Warm and Dry Cold and Wet Warm and Wet

ACCESS1-0_r1i1p1 0.3965 0.4513 0.7571 0.7872

ACCESS1-3_r1i1p1 0.3166 0.7185 0.5347 0.8378

bcc-csm1-1_r1i1p1 0.6395 0.7711 0.3636 0.5637

bcc-csm1-1-m_r1i1p1 0.5739 0.2294 1.011 0.8634

BNU-ESM_r1i1p1 0.785 0.6695 0.5428 0.3558

CanESM2_r1i1p1 0.9011 0.7217 0.5927 0.2451

CanESM2_r2i1p1 1.2516 0.8846 0.8936 0.1204

CanESM2_r3i1p1 1.0132 0.5375 0.9012 0.2729

CanESM2_r4i1p1 0.852 0.1366 1.076 0.6713

CanESM2_r5i1p1 1.0606 0.8334 0.6694 0.133

Model
Distance from Corner
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Figure 5.4: Initial model selection based on changes in mean air temperature and annual 

precipitation, considering changes in the short-term future period (2016-2045) and the 

reference period (1981-2010), for climate change scenario RCP4.5. 
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Figure 5.5: Initial model selection based on changes in mean air temperature and annual 

precipitation, considering changes in the short-term future period (2016-2045) and the 

reference period (1981-2010), for climate change scenario RCP8.5. 

Applying a similar approach as discussed for short-term future period (2016-2045), the four 

corners and the proximity of models/ensembles to each corner for climate change scenarios 

RCP4.5 and RCP 8.5, considering changes in the mid-century future period (2036-2065) and 

the reference period (1981-2010), are shown in Figure 5.6 and Figure 5.7 respectively.  
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Figure 5.6: Initial model selection based on changes in mean air temperature and annual 

precipitation, considering changes in the mid-century future period (2036-2065) and the 

reference period (1981-2010), for climate change scenario RCP4.5. 
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Figure 5.7: Initial model selection based on changes in mean air temperature and annual 

precipitation, considering changes in the mid-century future period (2036-2065) and the 

reference period (1981-2010), for climate change scenario RCP8.5. 

Similarly, the four corners and the proximity of models/ensembles to each corner for climate 

change scenarios RCP4.5 and RCP 8.5, considering changes in the end-of-century future 

period (2071-2100) and the reference period (1981-2010), are shown in Figure 5.8 and Figure 

5.9 respectively. 
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Figure 5.8: Initial model selection based on changes in mean air temperature and annual 

precipitation, considering changes in the end-of-century future period (2071-2100) and the 

reference period (1981-2010), for climate change scenario RCP4.5. 
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Figure 5.9: Initial model selection based on changes in mean air temperature and annual 

precipitation, considering changes in the end-of-century future period (2071-2100) and the 

reference period (1981-2010), for climate change scenario RCP8.5. 

The GCMs/ensembles were then ranked based on their proximity to each corner. Data 

availability at a temporal resolution of daily time step for each model was then checked, as 

daily data is required for an empirical-statistical downscaling. In this study, daily data 

availability for parameters of interest (temperature and precipitation) for each model was 

checked from https://climate4impact.eu/impactportal/general/about.jsp. Based on the ranking 

of the models considering the proximity to the respective corner and daily data availability, 

five models at each corner were selected for the next step (Step 2). Models selected from Step 

1 are highlighted in Figures 5.4 to 5.9. 
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Figures 5.4 to 5.9 show that although some models are closer to their respective corners, they 

were not selected due to the absence of daily data. Table 5.6 shows the list of models selected 

for the next step (Figure 5.3 – Step 2), considering the short term period (2016-2045) for 

climate change scenarios RCP4.5 and RCP8.5. The circle/oval at each corner encloses the 

models selected at their respective corners. The size of the circle/oval shows the daily data 

availability status of the GCMs/ensembles that are closer to the respective corner. If the daily 

data available for the GCMs/ensembles are closer to their respective corner, the size of the 

circle/oval is small (warm and dry corner in Figure 5.6). The size of circle/oval increases if 

the daily data are not available for the GCMs/ensembles that are closer to the corner (cold 

and wet corner in Figure 5.8).  Likewise, Table 5.7 and Table 5.8 show the list of models 

selected for the next step (Figure 5.3 – Step 2), for climate change scenarios RCP4.5 and 

RCP8.5, considering the mid-century period (2036-2065) and the end-of-century period 

(2071-2100) respectively. 
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Table 5.6: Models selected for Step 2 based on changes in mean air temperature and annual precipitation considering short-term future period 

(2016-2045) and the reference period (1981-2010) for climate change scenarios RCP4.5 and RCP8.5. 

 

 

 

 

 

 

Climate 

scenario
Rank Cold and dry Warm and Dry Cold and Wet Warm and Wet

1 inmcm4_r1i1p1 CMCC-CMS_r1i1p1 NOAA_GFDL_GFDL-ESM2G_r1i1p1 IPSL-CM5A-MR_r1i1p1

2 EC-EARTH_r8i1p1 MPI-ESM-LR_r3i1p1 MRI-CGCM3_r1i1p1 CESM1-CAM5_r1i1p1

3 ACCESS1-3_r1i1p1 MIROC5_r2i1p1 GISS-E2-R_r6i1p3 CanESM2_r2i1p1

4 ACCESS1-0_r1i1p1 MIROC-ESM_r1i1p1 CCSM4_r2i1p1 CanESM2_r5i1p1

5 CMCC-CM_r1i1p1 MPI-ESM-MR_r3i1p1 EC-EARTH_r2i1p1 IPSL-CM5A-LR_r3i1p1

1 inmcm4_r1i1p1 CMCC-CMS_r1i1p1 MRI-CGCM3_r1i1p1 CanESM2_r1i1p1

2 CSIRO-Mk3-6-0_r8i1p1 MPI-ESM-LR_r3i1p1 NOAA_GFDL_GFDL-ESM2M_r1i1p1 IPSL-CM5A-LR_r4i1p1

3 CSIRO-Mk3-6-0_r3i1p1 IPSL-CM5A-LR_r2i1p1 IPSL-CM5B-LR_r1i1p1 CanESM2_r4i1p1

4 ACCESS1-3_r1i1p1 MPI-ESM-LR_r1i1p1 CMCC-CM_r1i1p1 CanESM2_r2i1p1

5 NOAA_GFDL_GFDL-ESM2G_r1i1p1 MPI-ESM-LR_r2i1p1 EC-EARTH_r8i1p1 CanESM2_r3i1p1

RCP4.5

RCP8.5
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Table 5.7: Models selected for Step 2 based on changes in mean air temperature and annual precipitation considering the mid-century future period (2036-

2065) and reference period (1981-2010) for climate change scenarios RCP4.5 and RCP8.5. 

 

   

 

 

 

 

Climate 

scenario
Rank Cold and dry Warm and Dry Cold and Wet Warm and Wet

1 EC-EARTH_r8i1p1 CMCC-CMS_r1i1p1 IPSL-CM5B-LR_r1i1p1 CanESM2_r3i1p1

2 inmcm4_r1i1p1 MIROC-ESM-CHEM_r1i1p1 MRI-CGCM3_r1i1p1 IPSL-CM5A-MR_r1i1p1

3 NOAA_GFDL_GFDL-ESM2M_r1i1p1 MIROC5_r2i1p1 bcc-csm1-1_r1i1p1 CanESM2_r2i1p1

4 EC-EARTH_r12i1p1 MPI-ESM-LR_r2i1p1 CCSM4_r2i1p1 CanESM2_r5i1p1

5 EC-EARTH_r2i1p1 CSIRO-Mk3-6-0_r6i1p1 GISS-E2-R_r6i1p3 CanESM2_r1i1p1

1 inmcm4_r1i1p1 CMCC-CMS_r1i1p1 bcc-csm1-1_r1i1p1 IPSL-CM5A-MR_r1i1p1

2 EC-EARTH_r9i1p1 MPI-ESM-LR_r3i1p1 CESM1-BGC_r1i1p1 CanESM2_r3i1p1

3 ACCESS1-3_r1i1p1 MPI-ESM-LR_r2i1p1 NOAA_GFDL_GFDL-ESM2M_r1i1p1 CanESM2_r5i1p1

4 EC-EARTH_r2i1p1 MIROC-ESM-CHEM_r1i1p1 EC-EARTH_r8i1p1 CanESM2_r2i1p1

5 CCSM4_r6i1p1 MPI-ESM-LR_r1i1p1 NOAA_GFDL_GFDL-ESM2G_r1i1p1 CanESM2_r1i1p1

RCP8.5

RCP4.5
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Table 5.8: Models selected for Step 2 based on changes in mean air temperature and annual precipitation considering the end-of-century future period (2071-

2100) and reference period (1981-2010) for climate change scenarios RCP4.5 and RCP8.5. 

 

 

 

Climate 

scenario
Rank Cold and dry Warm and Dry Cold and Wet Warm and Wet

1 GISS-E2-R_r6i1p1 CSIRO-Mk3-6-0_r1i1p1 IPSL-CM5B-LR_r1i1p1 CanESM2_r3i1p1

2 inmcm4_r1i1p1 CSIRO-Mk3-6-0_r9i1p1 NOAA_GFDL_GFDL-ESM2M_r1i1p1 CNRM-CM5_r1i1p1

3 EC-EARTH_r2i1p1 CMCC-CMS_r1i1p1 CCSM4_r2i1p1 IPSL-CM5A-MR_r1i1p1

4 EC-EARTH_r12i1p1 CSIRO-Mk3-6-0_r6i1p1 GISS-E2-R_r6i1p3 IPSL-CM5A-LR_r1i1p1

5 NOAA_GFDL_GFDL-ESM2G_r1i1p1 CSIRO-Mk3-6-0_r3i1p1 BNU-ESM_r1i1p1 HadGEM2-ES_r2i1p1

1 EC-EARTH_r9i1p1 CMCC-CMS_r1i1p1 NOAA_GFDL_GFDL-ESM2G_r1i1p1 CanESM2_r4i1p1

2 inmcm4_r1i1p1 MPI-ESM-LR_r3i1p1 IPSL-CM5B-LR_r1i1p1 CanESM2_r5i1p1

3 EC-EARTH_r8i1p1 MIROC-ESM_r1i1p1 NOAA_GFDL_GFDL-ESM2M_r1i1p1 CanESM2_r3i1p1

4 CCSM4_r6i1p1 MIROC-ESM-CHEM_r1i1p1 bcc-csm1-1_r1i1p1 NOAA_GFDL_GFDL-CM3_r1i1p1

5 EC-EARTH_r2i1p1 MPI-ESM-LR_r2i1p1 ACCESS1-3_r1i1p1 CanESM2_r2i1p1

RCP4.5

RCP8.5
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Step 2: Refined model selection based on projected changes in four indices for climatic 

extremes 

The five models at each corner for climate change scenarios RCP4.5 and RCP8.5 chosen 

from the initial selection were further refined in the selection process, based on projected 

changes in four indices for climatic extremes. Two climatic extremes from both air 

temperature and precipitation were assessed considering changes in indices based on the 

findings of the Expert Team on Climate Change Detection and Indices (ETCCDI) (Peterson, 

2005). Warm Spell Duration Index (WSDI) and Cold Spell Duration Index (CSDI) were 

evaluated for climatic extremes in air temperature. Likewise, consecutive dry days and the 

precipitation due to very wet days (R95pTOT, as abbreviated in ETCCDI indices) were 

considered for climatic extremes in precipitation. Description of the four indices is given in 

Table 5.9. 

Table 5.9: Description of ETCCDI indices used for refined model selection. 

 

Meteorological 

variable
ETCCDI index Index description

Air temperature WSDI Warm spell duration index: count of days in a span 

of at least 6 days when TXij > TXin90                           

where TXij is the daily maximum temperature on 

day i in period j, and TXin90 is the 90th percentile 

of daily maximum temperature for the base period.

Air temperature CSDI Cold spell duration index: count of days in a span of 

at least 6 days when TNij < TNin10                   

where TNij is the daily minimum temperature on 

day i in period j, and TNin10 is the 10th percentile 

of daily minimum temperature for the base period.

Precipitation CDD Consecutive dry days: maximum length of dry spell 

when Pij < 1 mm                                                   

where Pij is daily precipitation amount on day i in 

period j. 

Precipitation R95pTOT Precipitation due to very wet days: annual total 

precipitation when Pij>Pin95                                            

where Pij is the daily precipitation amount on a wet 

day (precipitation >=1 mm) i in period j, and Pin95 

is the 95th percentile of precipitation on wet days in 

the base period.
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The results of the climate models/ensembles will be used to assess the impacts on 

hydrological aspects, especially water availability for irrigation purposes, and agricultural 

water management practices. In this regard, WSDI and CSDI are considered as they affect the 

snow and ice melt/ accumulation process, which is an important factor in the upstream part of 

the Himalayan river basin, where the Koshi River basin (the case study site) is situated. The 

study area is a part of the Himalayan region. These extreme temperature indices also affect 

the evapotranspiration and water requirements for the crops. The Consecutive Dry Days 

index (CDD) is vital for measuring both precipitation extremes and dry spells affecting crop 

growth. CDD and R95pTOT are important to assess hydrological aspects for irrigation and 

agricultural purposes in the study area. Precipitation due to very wet days, estimated using 

R95pTOT (Pij>Pin95), is considered instead of precipitation due to extremely wet days, 

R99pTOT (annual total precipitation when Pij>Pin99). Precipitation due to extremely wet 

days is important for flood-related studies. The results of climate models/ensembles in this 

research will be applied for irrigation and agricultural water management purposes and not 

for flood modeling activities. Therefore, R95pTOT is used in this research.      

For the refined selection purpose, the changes in WSDI, CSDI, CDD and R95pTOT were 

calculated from the available database. These database were constructed by the Sillmann et 

al. (2013a) and Sillmann et al. (2013b), and available in Royal Netherlands Meteorological 

Institute (KNMI) Climate Explorer webpage (https://climexp.knmi.nl/start.cgi ) in July 2018. 

This database does not include all the models/ensembles. For those models/ensembles which 

were chosen from the initial selection and not included in the database, the ETCCDI indices 

were calculated using the Climate Data Operator (CDO-version 1.6.4), developed by the 

Max-Planck Institute for Meteorology (https://code.mpimet.mpg.de/projects/cdo/files). The 

Climate Data Operator (CDO) is a collection of more than 600 command line operators for 

standard processing of climate data (Max-Planck Institute for Meteorology, 2018). The 

relevant CDO command line operators were used in R programming (RStudio Team, 2016) 

applying the same procedures as Sillmann et al. (2013a) and Sillmann et al. (2013b).  

Initially, the indices were calculated from the daily model output for each individual year in 

the future periods and the reference period (1981-2010) for individual grid cell covering the 

study area. The indices were then averaged within the study area for each year. These indices 

were finally averaged over a period of 30 years for both future and reference periods. The 

percentage change was calculated with respect to the reference period (1981-2010). The 

https://code.mpimet.mpg.de/projects/cdo/files
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procedures to calculate precipitation indices, CDD and R95pTOT, are shown is shown in 

Figure 5.10 and Figure 5.11 respectively.  

 

Figure 5.10: Flowchart to calculate CDD. 

Daily GCM data

Crop the GCM data covering the study area

Calculate CDD for each grid over the study period, 

largest number of consecutive dry days within a year 

Calculate area average of CDD for each year 

over the study period
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Figure 5.11: Flowchart to calculate R95pTOT. 

The temperature indices, CSDI and WSDI, were calculated following the flowcharts shown 

in Figure 5.12 and Figure 5.13 respectively. 

GCM data: daily 

precipitation

Crop the GCM data covering the study area

Merge base period (1981-2010) daily data 

Calculate 95th percentile value of daily rainfall 

on wet days in the base period (Pin95)

Find the days within a year over the study 

period when daily rainfall > Pin95

Calculate R95pTOT for each grid over the 

study period, annual rainfall when daily rainfall 

> P95

Calculate area average of R95pTOT for each 

year over the study period
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Figure 5.12: Flowchart to calculate CSDI. 

GCM data: daily 

minimum 

temperature 

Crop the GCM data covering the study area

Merge base period (1981-2010) daily data 

Calculate 10th percentile value of daily 

minimum temperature in the base period 

(TNin10)

Calculate CSDI for each grid over the study 

period, days in a span of at least 6 days (within 

a year) when daily minimum temperature < 

TNin10

Calculate area average of CSDI for each year 

over the study period
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Figure 5.13: Flowchart to calculate WSDI. 

After calculating all the indices‘ values for the initially selected models/ensembles 

(mentioned in Table 5.6 to Table 5.8) for each climate change scenarios RCP4.5 and RCP8.5 

for the short-term, mid-century and end-of-century future periods, relevant indices were 

selected for each corner. For example, CSDI and CDD represent the cold and dry corner. 

Likewise, WSDI and CDD represent the warm and dry corner and CSDI and R95pTOT the 

cold and wet corner. Similarly, WSDI and R95pTOT represent the warm and wet corner. 

Following Lutz et al. (2016), the models/ensembles were scored, based on the percentage 

increase of the relevant indices. The largest increase scored five points, whereas the smallest 

increase scored one. 

GCM data: daily 

maximum 

temperature 

Crop the GCM data covering the study area

Merge base period (1981-2010) daily data 

Calculate 90th percentile value of daily 

maximum temperature in the base period 

(TXin90)

Calculate WSDI for each grid over the study 

period, days in a span of at least 6 days (within 

a year) when daily maximum temperature > 

Txin90

Calculate area average of WSDI for each year 

over the study period
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The ETCCDI indices, T index score, P index score and the combined score for climate change scenarios RCP4.5 and RCP8.5 for the short-term 

future period (2016-2045), are shown in Tables 5.10 and 5.11 respectively. 

 Table 5.10: GCM runs analysed during the refined selection process for climate change scenario RCP4.5 considering the short-term future 

period (2016-2045). 

 

 

 

RCP 
Projection (Climate 

extreme indices)
Model ∆_T (°C) ∆_P (%) ∆_CSDI (%) ∆_CDD (%) ∆_WSDI (%)

∆R95pTOT 

(%)

T_index 

rank

P_index 

rank

Combined 

score

inmcm4_r1i1p1 0.63 -1.4 -33.08 7.46 84.2 -2.46 5 3 4

EC-EARTH_r8i1p1 0.71 1.85 -33.82 -6.01 110.38 3 4 1 2.5

ACCESS1-3_r1i1p1 0.94 2.46 -58.4 19.12 100.31 22.17 3 5 4

ACCESS1-0_r1i1p1 1.1 0.24 -62.76 17.42 168.01 10.63 2 4 3

CMCC-CM_r1i1p1 1.11 -0.61 -67.55 0.57 296.11 12.31 1 2 1.5

CMCC-CMS_r1i1p1 1.4 -3.23 -67.76 7.28 150.58 -7.05 1 3 2

MPI-ESM-LR_r3i1p1 1.5 -1.16 -73.99 7.65 221.24 -4.72 4 4 4

MIROC5_r2i1p1 1.54 -2.91 -75.04 4.57 301.15 3.33 5 2 3.5

MIROC-ESM_r1i1p1 1.39 -3.71 -83.75 -4.34 205.49 2.07 3 1 2

MPI-ESM-MR_r3i1p1 1.4 -5.64 -75.96 8.77 163.46 -15.47 2 5 3.5

NOAA_GFDL_GFDL-ESM2G_r1i1p1 0.86 10.89 -36.96 -4.43 162.34 36.1 5 3 4

MRI-CGCM3_r1i1p1 0.78 12.67 -68.7 -7.31 82 36.54 1 5 3

GISS-E2-R_r6i1p3 0.87 16.76 -63.87 -4.04 136.08 26.36 2 2 2

CCSM4_r2i1p1 0.93 13.11 -51.77 -2.56 80.7 36.47 3 4 3.5

EC-EARTH_r2i1p1 0.96 6.91 -50.54 5.56 104.9 9.81 4 1 2.5

IPSL-CM5A-MR_r1i1p1 1.41 9.76 -49.06 5.83 110.06 21.25 3 2 2.5

CESM1-CAM5_r1i1p1 1.39 9.06 -59.18 8.3 41.28 10.06 1 1 1

CanESM2_r2i1p1 1.74 15.61 -72.28 3.11 194.4 42.9 5 5 5

CanESM2_r5i1p1 1.32 11.4 -79.17 1.23 104.75 34.77 2 4 3

IPSL-CM5A-LR_r3i1p1 1.33 7.51 -76.12 1.8 187.27 22.14 4 3 3.5

R
C

P
 4

.5

Warm and wet: WSDI, 

∆R95pTOT

Cold and dry: CSDI, 

CDD

Cold and wet: CSDI, 

∆R95pTOT

Warm and dry: WSDI, 

CDD
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Table 5.11: GCM runs analysed during the refined selection process for climate change scenario RCP8.5 considering the short-term future period 

(2016-2045). 

RCP 
Projection (Climate 

extreme indices)
Model ∆_T (°C) ∆_P (%) ∆_CSDI (%) ∆_CDD (%) ∆_WSDI (%)

∆R95pTOT 

(%)

T_index 

rank

P_index 

rank

Combined 

score

inmcm4_r1i1p1 0.81 0.99 -35.02 12.51 158.5 18.86 5 4 4.5

CSIRO-Mk3-6-0_r8i1p1 1.02 1.16 -48.79 -6.87 183.36 -5.66 3 2 2.5

CSIRO-Mk3-6-0_r3i1p1 1.1 1.49 -62.83 -0.55 303.5 -8.72 2 3 2.5

ACCESS1-3_r1i1p1 1.02 2.17 -45.4 18.69 128.58 17.92 4 5 4.5

NOAA_GFDL_GFDL-ESM2G_r1i1p1 1.09 2.07 -65.72 -8.23 174.59 5.45 1 1 1

CMCC-CMS_r1i1p1 1.8 -3.31 -78.41 8.84 231.19 2.33 2 4 3

MPI-ESM-LR_r3i1p1 1.88 -5.06 -93.37 5.87 290.66 -7.87 5 1 3

IPSL-CM5A-LR_r2i1p1 1.65 -1.18 -79.42 14.47 233.11 12.52 3 5 4

MPI-ESM-LR_r1i1p1 1.61 -1.4 -87.23 8.67 266.08 18.97 4 3 3.5

MPI-ESM-LR_r2i1p1 1.85 -8.53 -84.37 7.73 229.76 -12.64 1 2 1.5

MRI-CGCM3_r1i1p1 0.83 10.68 -69.85 -7.11 86.85 26.47 1 3 2

NOAA_GFDL_GFDL-ESM2M_r1i1p1 1.19 7.73 -62.89 8.73 183.98 29.46 4 4 4

IPSL-CM5B-LR_r1i1p1 0.98 4.35 -68.92 5.7 146.99 -0.83 2 1 1.5

CMCC-CM_r1i1p1 1.2 6 -65.89 6.08 235.16 31.16 3 5 4

EC-EARTH_r8i1p1 1.06 3.74 -50.1 -1.66 131.41 5.63 5 2 3.5

CanESM2_r1i1p1 1.75 8.95 -60.51 0.05 168.16 36.4 1 3 2

IPSL-CM5A-LR_r4i1p1 1.66 6.37 -82.91 12.27 216.32 38.56 4 4 4

CanESM2_r4i1p1 2.06 7.25 -70.13 12.31 291.11 24.35 5 2 3.5

CanESM2_r2i1p1 1.62 6.16 -72.23 -4.74 206.92 18.77 3 1 2

CanESM2_r3i1p1 1.92 21.29 -82.57 -3.65 181.93 57.91 2 5 3.5

R
C

P
 8

.5

Cold and dry: CSDI, 

CDD

Warm and dry: WSDI, 

CDD

Cold and wet: CSDI, 

∆R95pTOT

Warm and wet: WSDI, 

∆R95pTOT
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The CSDI values, at the cold and dry corner in Table 5.10 for models inmcm4_r1i1p1, EC-

EARTH_r8i1p1, ACCESS1-3_r1i1p1, ACCESS1-0_r1i1p1 and CMCC-CM_r1i1p1 are -

33.1, -33.8, -58.4, -62.8 and -67.6 respectively. The model inmcm4_r1i1p1 shows the highest 

value (the least decrease). Hence, is scored 5 in T index. In contrast, the model CMCC-

CM_r1i1p1 shows the lowest value (the highest decrease). Therefore, is scored 1 in T index. 

Similarly, CDD values at cold and dry corner in Table 5-10 for inmcm4_r1i1p1, EC-

EARTH_r8i1p1, ACCESS1-3_r1i1p1, ACCESS1-0_r1i1p1 and CMCC-CM_r1i1p1 are 7.5, -

6.0, 19.1, 17.4 and 0.6 respectively. The model ACCESS1-0_r1i1p1 has the highest value and 

the model EC-EARTH_r8i1p1 has the lowest value. Thus, they were scored as 5 and 1 

respectively in the P index.    

For all the corners, the P index and T index were calculated in the same manner. The T index 

and P index were then averaged to calculate the combined score. For instance, at cold and dry 

corner in Table 5.10, the T index and P index for the model inmcm4_r1i1p1 are 5 and 3 

respectively. Hence, the combined score is 4, which is the average of 5 and 3. 

The negative values of the Cold Spell Duration Index, or CSDI, in Tables 5.10 and 5.11 show 

that the daily minimum temperature is expected to increase in future. A negative 33.1 % 

value of CSDI, in Table 5.10, for the model inmcm4_r1i1p1 at the cold and dry corner for 

climate change scenario RCP4.5 indicates that the Cold Spell Duration Index is likely to 

decrease by 33 % in the future period (2016-2045) compared to the reference period (1981-

2010), which indicates that warmer nights are expected in future. The positive values of the 

Warm Spell Duration Index, or WSDI, in Tables 5.10 and 5.11 indicate that the daily 

maximum temperature is likely to increase in coming decades. For instance, at the warm and 

dry corner in Table 5.10, the WSDI is expected to increase by 150-301% in the future period 

(2016-2045) compared to the reference period (1981-2010). This increase in WSDI shows the 

likelihood of warmer days in the short-term future period compared to the reference period. 

Most of the models/ensembles predicted an increase in Consecutive Dry Days (CDD). It 

means dry spells with daily precipitation<1 mm are likely to increase in future, indicating an 

increase in droughts. Although the dry spells are expected to increase, precipitation due to 

very wet days, R95pTOT, is also likely to increase. Precipitation due to very wet days at the 

warm and wet corner for climate change scenario RCP4.5 (Table 5.10) is predicted to 

increase by 10-42% in the short-term future period (2016-2045) compared to the reference 

period (1981-2010). Hence, more intense rainfall during the monsoon season is expected 

when compared to the reference period.    
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The two models/ensembles with highest combined score were selected for the third step 

(Figure 5.3- Step 3). In some corners, more than two models/ensembles were selected as they 

have same second-highest combined scores. Selected models for climate change scenarios 

RCP4.5 and RCP8.5 from Step 2, are highlighted in blue colour on Tables 5.10 and 5.11 

respectively. Table 5.10 shows that for climate change scenario RCP4.5 models 

inmcm4_r1i1p1 and ACCESS1-3_r1i1p1 are selected at the cold and dry corner. Likewise, 

models MPI-ESM-LR_r3i1p1, MIROC5_r2i1p1 and MPI-ESM-MR_r3i1p1 are selected at 

the warm and dry corner. Similarly, models NOAA_GFDL_GFDL-ESM2G_r1i1p1 and 

CCSM4_r2i1p1 at the cold and wet corner; and models CanESM2_r2i1p1 and IPSL-CM5A-

LR_r3i1p1 at the warm and wet corner are selected for climate change scenario RCP4.5.  

Table 5.11 shows that for climate change scenario RCP8.5 models inmcm4_r1i1p1 and 

ACCESS1-3_r1i1p1 are selected at the cold and dry corner. Similarly, models IPSL-CM5A-

LR_r2i1p1 and MPI-ESM-LR_r1i1p1; NOAA_GFDL_GFDL-ESM2M_r1i1p1 and CMCC-

CM_r1i1p1; and IPSL-CM5A-LR_r4i1p1, CanESM2_r4i1p1 and CanESM2_r3i1p1 are 

selected at warm and dry, cold and wet, and warm and wet corners respectively.  

Likewise, the ETCCDI indices, T index score, P index score and the combined score for 

climate change scenarios RCP4.5 and RCP8.5 for the mid-century future period (2036-2065) 

are shown in Tables 5.12 and 5.13 respectively.  

The CSDI values at cold and dry corner on Table 5.12 for models EC-EARTH_r8i1p1, 

inmcm4_r1i1p1, NOAA_GFDL_GFDL-ESM2M_r1i1p1, EC-EARTH_r12i1p1 and EC-

EARTH_r2i1p1, are -55.8, -35.8, -49.8, -63.2, and -67.0 respectively. The model 

inmcm4_r1i1p1 shows the highest value (the least decrease). Hence, it is scored 5 in the T 

index. In contrast, the model EC-EARTH_r2i1p1 shows the lowest value (the highest 

decrease). Therefore, it is scored 1 in the T index. Similarly, CDD values at the cold and dry 

corner in Table 5.12 for models EC-EARTH_r8i1p1, inmcm4_r1i1p1, 

NOAA_GFDL_GFDL-ESM2M_r1i1p1, EC-EARTH_r12i1p1 and EC-EARTH_r2i1p1 are 

0.6, 9.2, 5.7, 5.9 and 2.8 respectively. The model inmcm4_r1i1p1 has the highest value, while 

the model EC-EARTH_r8i1p1 has the lowest value. Thus, they are scored as 5 and 1 

respectively in the P index.    

For all the corners, the P index and T index were calculated in the same manner. The T index 

and P index were then averaged to calculate the combined score. For instance, at the cold and 
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dry corner in Table 5.12, the T index and P index values for the model EC-EARTH_r8i1p1 

are 3 and 1 respectively. Hence, the combined score is 2, which is the average of 3 and 1.
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Table 5.12: GCM runs analysed during the refined selection process for climate change scenario RCP4.5, considering the mid-century future 

period (2036-2065). 

 

 

 

 

 

RCP 
Projection (Climate 

extreme indices)
Model ∆_T (°C) ∆_P (%) ∆_CSDI (%) ∆_CDD (%) ∆_WSDI (%)

∆R95pTOT 

(%)

T_index 

rank

P_index 

rank

Combined 

score

EC-EARTH_r8i1p1 1.34 -0.72 -55.77 0.63 213.04 0.14 3 1 2

inmcm4_r1i1p1 1 -2.51 -35.78 9.15 178.1 -2.29 5 5 5

NOAA_GFDL_GFDL-ESM2M_r1i1p1 1.35 1.6 -49.81 5.67 274.83 17.56 4 3 3.5

EC-EARTH_r12i1p1 1.44 4.22 -63.19 5.87 164.9 6.5 4 4 4

EC-EARTH_r2i1p1 1.45 5.39 -67.01 2.84 177.91 7.92 1 2 1.5

CMCC-CMS_r1i1p1 2.32 -3.72 -89.79 17.63 286.81 -1.06 1 4 2.5

MIROC-ESM-CHEM_r1i1p1 2.33 -1.49 -96.42 -7.71 739.31 -2.19 5 1 3

MIROC5_r2i1p1 2.23 -4.38 -96.69 0.64 585.54 -6.65 4 3 3.5

MPI-ESM-LR_r2i1p1 2.28 -4.75 -89.29 21.52 326.06 11.03 2 5 3.5

CSIRO-Mk3-6-0_r6i1p1 2.16 -5.03 -93.66 -3.42 468.08 -10.14 3 2 2.5

IPSL-CM5B-LR_r1i1p1 0.97 24.6 -72.92 -15.16 112.87 28.32 4 1 2.5

MRI-CGCM3_r1i1p1 1.3 12.49 -86.94 -10.39 192.77 39.58 2 5 3.5

bcc-csm1-1_r1i1p1 1.47 12.74 -74.33 -8.08 259.32 38.89 3 4 3.5

CCSM4_r2i1p1 1.39 11.13 -65.94 -0.99 180.19 36.62 5 3 4

GISS-E2-R_r6i1p3 1.58 19.55 -87.35 -2.92 314.97 29.67 1 2 1.5

CanESM2_r3i1p1 2.36 14.59 -96.32 7.19 219.78 58.72 4 5 4.5

IPSL-CM5A-MR_r1i1p1 2.24 13.34 -68.51 1.71 145.51 26.51 1 1 1

CanESM2_r2i1p1 2.05 17.23 -85.23 -3.83 227.79 45.12 5 4 4.5

CanESM2_r5i1p1 2.04 13.91 -87.19 -10.74 177.92 42.75 3 3 3

CanESM2_r1i1p1 2.18 12.33 -86.85 6.57 163.27 41.25 2 2 2

R
C

P
 4

.5

Warm and wet: WSDI, 

∆R95pTOT

Cold and dry: CSDI, 

CDD

Cold and wet: CSDI, 

∆R95pTOT

Warm and dry: WSDI, 

CDD
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Table 5.13: GCM runs analysed during the refined selection process for climate change scenario RCP8.5, considering the mid-century future 

period (2036-2065). 

RCP 
Projection (Climate 

extreme indices)
Model ∆_T (°C) ∆_P (%) ∆_CSDI (%) ∆_CDD (%) ∆_WSDI (%)

∆R95pTOT 

(%)

T_index 

rank

P_index 

rank

Combined 

score

inmcm4_r1i1p1 1.59 2.97 -61.34 4.98 326.23 27.84 5 4 4.5

EC-EARTH_r9i1p1 1.86 5.2 -80.21 0.08 240.36 7.62 1 1 1

ACCESS1-3_r1i1p1 2.02 3.74 -79.87 34.14 292.68 34.71 2 5 3.5

EC-EARTH_r2i1p1 1.96 5.42 -73.04 1.05 251.24 8.54 3 2 2.5

CCSM4_r6i1p1 2.12 4.3 -67.84 4.06 98.3 7.36 4 3 3.5

CMCC-CMS_r1i1p1 3.16 -2.74 -97.98 9.62 475.53 6.26 2 2 2

MPI-ESM-LR_r3i1p1 2.94 -3.85 -98.8 8.21 528.39 -3.6 3 1 2

MPI-ESM-LR_r2i1p1 3.07 -11.51 -97.6 12.94 467.7 -7.59 1 4 2.5

MIROC-ESM-CHEM_r1i1p1 3.33 1.93 -99.08 11.87 1240.63 19.06 5 3 4

MPI-ESM-LR_r1i1p1 2.82 -4.64 -95.3 16.3 550.58 16.01 4 5 4.5

bcc-csm1-1_r1i1p1 1.92 17.54 -90.52 -6.27 326.92 50 1 5 3

CESM1-BGC_r1i1p1 1.96 10.38 -58.22 0.28 100.34 13.43 5 2 3.5

NOAA_GFDL_GFDL-ESM2M_r1i1p1 1.86 9.96 -79.25 3.89 378 41.71 2 4 3

EC-EARTH_r8i1p1 1.9 7.97 -68.81 -0.05 268.59 9.5 4 1 2.5

NOAA_GFDL_GFDL-ESM2G_r1i1p1 1.91 7.68 -71.01 -6.75 370.29 36.97 3 3 3

IPSL-CM5A-MR_r1i1p1 3.02 14.42 -96.84 8 620.66 46.28 5 1 3

CanESM2_r3i1p1 3.15 18.5 -96.48 -6.43 383.83 56.76 3 4 3.5

CanESM2_r5i1p1 2.99 17.94 -93.6 -10.3 320.72 52.09 1 3 2

CanESM2_r2i1p1 2.91 17.16 -90.89 -6.72 442.34 49.97 4 2 3

CanESM2_r1i1p1 2.96 21.55 -88.55 -8.65 321.26 78.79 2 5 3.5

R
C

P
 8

.5

Cold and dry: CSDI, 

CDD

Warm and dry: WSDI, 

CDD

Cold and wet: CSDI, 

∆R95pTOT 

Warm and wet: WSDI, 

∆R95pTOT 
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The negative values of the Cold Spell Duration Index, or CSDI, in Tables 5.12 and 5.13 show 

that the daily minimum temperature is expected to increase in future. A negative 55.8 % 

value of CSDI for the model EC-EARTH_r8i1p1 at the cold and dry corner for RCP4.5, in 

Table 5.12, indicates that the Cold Spell Duration Index is likely to decrease by 55.8% in the 

mid-century future period (2036-2065) compared to the reference period (1981-2010), which 

indicates that warmer nights are expected in future. The positive values of the Warm Spell 

Duration Index, or WSDI, in Tables 5.12 and 5.13 indicate that the daily maximum 

temperature is likely to increase in coming decades. For instance, at the warm and dry corner 

in Table 5.12, the WSDI is expected to increase by 287-739% in the short-term future period 

(2036-2065) compared to the reference period (1981-2010). Most of the model ensembles 

predicted an increase in Consecutive Dry Days (CDD). It means dry spells with daily 

precipitation<1 mm are likely to increase in future, indicating an increase in droughts. 

Although dry spells are expected to increase, precipitation due to very wet days, R95pTOT, is 

likely to increase. Precipitation due to very wet days at the warm and wet corner for RCP4.5 

(Table 5.12) is predicted to increase by 26-59% in the mid-century future period (2036-2065) 

compared to the reference period (1981-2010). Hence, more intense rainfall during the 

monsoon season is expected compared to the reference period.    

The two models/ensembles with the highest combined score were selected for next step 

(Figure 5.3 – Step 3). In some corners, more than two models/ensembles were selected as 

they have same second-highest combined scores. Selected models for climate change 

scenarios RCP4.5 and RCP8.5 from Step 2 are highlighted in blue colour on Tables 5.12 and 

5.13 respectively. Table 5.12 shows that for climate change scenario RCP4.5, models 

inmcm4_r1i1p1 and EC-EARTH_r12i1p1 are selected at the cold and dry corner. Likewise, 

models MIROC5_r2i1p1 and MPI-ESM-LR_r2i1p1 are selected at the warm and dry corner. 

Similarly, models CCSM4_r2i1p1, MRI-CGCM3_r1i1p1 and bcc-csm1-1_r1i1p1 at the cold 

and wet corner; and CanESM2_r3i1p1 and CanESM2_r2i1p1 at the warm and wet corner are 

selected for climate change scenario RCP4.5.  

Table 5.13 shows that for climate change scenario RCP8.5, models inmcm4_r1i1p1, 

ACCESS1-3_r1i1p1, and CCSM4_r6i1p1 are selected at the cold and dry corner. Models 

MPI-ESM-LR-r1i1p1 and MIROC-ESM-CHEM_r1i1p1; CESM1-BGC_r1i1p1, bcc-csm1-

1_r1i1p1 and NOAA_GFDL_GFDL-ESM2G_r1i1p1; and CanESM2_r3i1p1 and 

CanESM2_r1i1p1 are selected at the warm and dry, cold and wet, and warm and wet corner 

respectively. 
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Similarly, the ETCCDI indices, T index score, P index score and the combined score for 

climate change scenarios RCP4.5 and RCP8.5 for the end-of-century future period (2071-

2100) are shown in Tables 5.14 and 5.15 respectively.  

The CSDI values at the cold and dry corner in Table 5.14 for models GISS-E2-R_r6i1p1, 

inmcm4_r1i1p1, EC-EARTH_r2i1p1, EC-EARTH_r12i1p1 and NOAA_GFDL_GFDL-

ESM2G_r1i1p1 are -76.9, -68.5, -68.6, -70.6 and -46.56 respectively. The model 

NOAA_GFDL_GFDL-ESM2G_r1i1p1 shows the highest value (the least decrease). Hence, 

it is scored 5 in the T index. In contrast, the model GISS-E2-R_r6i1p1 shows the lowest value 

(the highest decrease). Therefore, it is scored 1 in the T index. Similarly CDD values at the 

cold and dry corner in Table 5.14 for models GISS-E2-R_r6i1p1, inmcm4_r1i1p1, EC-

EARTH_r2i1p1, EC-EARTH_r12i1p1 and NOAA_GFDL_GFDL-ESM2G_r1i1p1 are -3.4, 

0.3, 0.3, -4.7 and 1.2 respectively. The model NOAA_GFDL_GFDL-ESM2G_r1i1p1 has the 

highest value while the model EARTH_r12i1p1 has the lowest value. Thus, they are scored 

as 5 and 1 respectively in the P index.    

For all the corners, the P index and T index were calculated in the same manner. The T index 

and P index were then averaged to calculate the combined score. For instance, at cold and dry 

corner in Table 5.14, the T index and P index values for the model GISS-E2-R_r6i1p1 are 1 

and 2 respectively. Hence, the combined score is 1.5, which is the average of 1 and 2. 
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Table 5.14: GCM runs analysed during the refined selection process for climate change scenario RCP4.5, considering the end-of-century future 

period (2071-2100). 

 

 

 

 

 

RCP 
Projection (Climate 

extreme indices)
Model ∆_T (°C) ∆_P (%) ∆_CSDI (%) ∆_CDD (%) ∆_WSDI (%)

∆R95pTOT 

(%)

T_index 

rank

P_index 

rank

Combined 

score

GISS-E2-R_r6i1p1 1.81 4.57 -76.85 -3.42 445.29 -2.71 1 2 1.5

inmcm4_r1i1p1 1.64 5.8 -68.51 0.27 307.64 20.07 4 3 3.5

EC-EARTH_r2i1p1 1.92 5.12 -68.56 0.32 248.37 8.25 3 4 3.5

EC-EARTH_r12i1p1 1.94 3.32 -70.62 -4.71 255.44 5.46 2 1 1.5

NOAA_GFDL_GFDL-ESM2G_r1i1p1 1.64 6.8 -46.56 1.22 395.91 33.28 5 5 5

CSIRO-Mk3-6-0_r1i1p1 3.15 0.36 -93.83 3.69 851.16 16.48 3 3 3

CSIRO-Mk3-6-0_r9i1p1 3.27 -4.44 -93.29 4.36 1192.68 6.04 5 4 4.5

CMCC-CMS_r1i1p1 3.3 -2.68 -96.85 10.31 475.36 6.96 1 5 3

CSIRO-Mk3-6-0_r6i1p1 3.16 5.93 -93.14 2.85 798.97 41.7 2 2 2

CSIRO-Mk3-6-0_r3i1p1 2.99 1.24 -92.17 1.16 1152.21 6.87 4 1 2.5

IPSL-CM5B-LR_r1i1p1 1.64 21.53 -84.49 -13.99 237.36 18.64 2 1 1.5

NOAA_GFDL_GFDL-ESM2M_r1i1p1 1.71 13.86 -73.79 7.71 359.22 47.09 4 3 3.5

CCSM4_r2i1p1 1.76 13.16 -73.06 -0.15 341.99 50.53 5 4 4.5

GISS-E2-R_r6i1p3 2.18 24.97 -81.79 -2.46 507.26 56.68 3 5 4

BNU-ESM_r1i1p1 2.32 14.39 -91.39 -2.28 59.58 45.2 1 2 1.5

CanESM2_r3i1p1 3.09 30.41 -96.52 -4.64 313.76 105.92 2 5 3.5

CNRM-CM5_r1i1p1 3.14 18.37 -95.27 -1.57 708.17 26.86 4 1 2.5

IPSL-CM5A-MR_r1i1p1 3.23 17.35 -94.77 3.24 249.63 33.7 1 2 1.5

IPSL-CM5A-LR_r1i1p1 3.28 13.63 -99.09 10.36 703.74 49.87 3 3 3

HadGEM2-ES_r2i1p1 3.04 13.79 -92.73 24.55 1080.29 69.54 5 4 4.5
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Warm and wet: WSDI, 
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Cold and dry: CSDI, 
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Cold and wet: CSDI, 
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Table 5.15: GCM runs analysed during the refined selection process for climate change scenario RCP8.5, considering the end-of-century future 

period (2071-2100). 

RCP 
Projection (Climate 

extreme indices)
Model ∆_T (°C) ∆_P (%) ∆_CSDI (%) ∆_CDD (%) ∆_WSDI (%)

∆R95pTOT 

(%)

T_index 

rank

P_index 

rank

Combined 

score

EC-EARTH_r9i1p1 3.85 10.23 -92.24 6.04 470.92 13.88 3 4 3.5

inmcm4_r1i1p1 3.53 10.57 -91.66 16.2 794.68 71.7 4 5 4.5

EC-EARTH_r8i1p1 3.93 9.65 -92.62 -2.32 504.24 11.28 2 2 2

CCSM4_r6i1p1 3.72 11.21 -90.18 -4.06 234.4 15.52 5 1 3

EC-EARTH_r2i1p1 3.84 11.04 -95.22 0.54 453.09 14.4 1 3 2

CMCC-CMS_r1i1p1 5.95 -3.95 -99.35 23.78 989.58 32.78 2 3 2.5

MPI-ESM-LR_r3i1p1 5.62 -5.53 -99.83 25.67 1198.85 8.79 4 4 4

MIROC-ESM_r1i1p1 5.86 10.15 -100 5.66 1149.58 48.83 3 1 2

MIROC-ESM-CHEM_r1i1p1 6.53 8.52 -100 12.36 2601.41 41.45 5 2 3.5

MPI-ESM-LR_r2i1p1 5.61 -11.02 -100 26.32 954.88 7.92 1 5 3

NOAA_GFDL_GFDL-ESM2G_r1i1p1 3.63 35.59 -96.36 -9.55 858.2 138.59 5 5 5

IPSL-CM5B-LR_r1i1p1 3.83 27.63 -99.14 0.63 750.06 36.1 2 1 1.5

NOAA_GFDL_GFDL-ESM2M_r1i1p1 3.61 25 -96.84 2.09 910.22 99.84 4 4 4

bcc-csm1-1_r1i1p1 3.96 28.93 -100 -4.55 812.87 94.41 1 3 2

ACCESS1-3_r1i1p1 3.98 21.63 -98.38 38.47 521.66 92.39 3 2 2.5

CanESM2_r4i1p1 5.57 40.39 -100 -3.07 977.93 115.67 4 1 2.5

CanESM2_r5i1p1 5.68 53.79 -100 1.2 701.29 153.11 1 3 2

CanESM2_r3i1p1 5.82 62.99 -100 -5.58 822.12 204.27 2 5 3.5

NOAA_GFDL_GFDL-CM3_r1i1p1 6.97 34.8 -100 24.49 1398.51 157.66 5 4 4.5

CanESM2_r2i1p1 5.52 53.32 -98.5 -9.68 917.65 145.57 3 2 2.5
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Cold and dry: CSDI, 

CDD

Warm and dry: WSDI, 

CDD

Cold and wet: CSDI, 

∆R95pTOT 

Warm and wet: WSDI, 

∆R95pTOT 
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The negative values of the Cold Spell Duration Index, or CSDI, in Tables 5.14 and 5.15 show 

that the daily minimum temperature is expected to increase in future. A negative 76.8 % 

value of CSDI for the model GISS-E2-R_r6i1p1, at the cold and dry corner for climate 

change scenario RCP4.5 in Table 5.14, indicates that the Cold Spell Duration Index is likely 

to decrease by 76.8% in the end-of-century future period (2071-2100) compared to the 

reference period (1981-2010), which indicates that warmer nights are expected in future. The 

positive values of the Warm Spell Duration Index, or WSDI, in Tables 5.14 and 5.15 indicate 

that the daily maximum temperature is likely to increase in coming decades. For instance, at 

the warm and dry corner in Table 5.14, WSDI is expected to increase by 475-1193% in the 

end-of-century future period (2071-2100) compared to the reference period (1981-2010). 

Most of the models/ensembles predicted an increase in Consecutive Dry Ddays (CDD). It 

means dry spells with daily precipitation<1 mm are likely to increase in future, indicating an 

increase in droughts. Although the dry spells are expected to increase, precipitation due to 

very wet days, R95pTOT, is likely to increase. Precipitation due to very wet days at the warm 

and wet corner for climate change scenario RCP4.5 (Table 5.14) is predicted to increase by 

27-102% in the end-of-century future period (2071-2100) compared to the reference period 

(1981-2010). Hence, more intense rainfall during the monsoon season is expected compared 

to the reference period.    

The two model ensembles with the highest combined score were selected for the next step 

(Figure 5.3 – Step 3). In some corners, more than two models/ensembles were selected as 

they have the same second-highest combined scores. Selected models for climate change 

scenarios RCP4.5 and RCP8.5 from Step 2 are highlighted in blue colour on Tables 5.14 and 

5.15 respectively. Table 5.14 shows that for climate change scenario RCP4.5 models 

NOAA_GFDL_GFDL-ESM2G_r1i1p1, inmcm4_r1i1p1 and EC-EARTH_r2i1p1 are 

selected at the cold and dry corner. Likewise, models CSIRO-Mk3-6-0_r9i1p1, CSIRO-Mk3-

6-0_r1i1p1 and CMCC-CMS_r1i1p1 are selected at the warm and dry corner. Similarly, 

models CCSM4_r2i1p1 and GISS-E2-R_r6i1p3 at the cold and wet corner; and 

CanESM2_r3i1p1 and HadGEM2-ES_r2i1p1 at the warm and wet corner are selected for 

climate change scenario RCP4.5.  

Table 5.15 shows that for climate change scenario RCP8.5 models inmcm4_r1i1p1 and EC-

EARTH_r9i1p1 are selected at the cold and dry corner. Models MPI-ESM-LR_r3i1p1 and 

MIROC-ESM-CHEM_r1i1p1; NOAA_GFDL_GFDL-ESM2G_r1i1p1 and 

NOAA_GFDL_GFDL-ESM2M_r1i1p1; and NOAA_GFDL_GFDL-CM3_r1i1p1 and 
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CanESM2_r3i1p1 are selected at the warm and dry, cold and wet, and warm and wet corners 

respectively.  

Step 3: Final model selection based on model capability in simulating the annual cycle 

of air temperature and precipitation (past performance) 

The models/ensembles selected from the refined selection were then assessed for their 

capability to simulate the annual cycle of air temperature and precipitation for the reference 

period (1981-2010). The Hi-AWARE reference climate dataset developed by Lutz and 

Immerzeel (2015) was downloaded from http://rds.icimod.org/clim. For air temperature, total 

bias, monsoon bias, and winter bias were considered. The biases represent the difference 

between the reference value and the GCMs/ensembles‘ runs for the same period. 

Precipitation in the study area is highly influenced by the monsoon season. Winter (dry) 

season precipitation is also crucial for irrigation purposes. So winter bias, monsoon bias and 

total bias (annual) were used to calculate biases for precipitation between the reference data 

and the GCM/ensemble data. The biases for precipitation and temperature were calculated in 

percentages and °C respectively. The precipitation bias (P bias) and temperature bias (T bias) 

values were used to evaluate the GCM/ensemble‘s ability to simulate the annual cycle of air 

temperature and precipitation.  

The bias values (P bias and T bias) were then normalized (each absolute bias value is 

expressed as a fraction of the largest absolute bias value) within the models/ensembles for 

both climate change scenarios, RCP4.5 and RCP8.5. The P bias score and T bias score were 

calculated by averaging the precipitation biases and temperature biases respectively. Then, 

the sum of the P bias score and the T bias score was calculated to find the combined score.  

The biases and the combined scores for climate change scenarios RCP4.5 and RCP8.5, 

considering the models/ensembles for the short term period (2016-2045), are shown in Table 

5.16. For a demonstration of the calculation process, the first ensemble member from Table 

5.16 (inmcm4_r1i1p1) is considered as an example. For climate change scenario RCP4.5 

(Table 5.16), the P bias winter normalized, P bias monsoon normalized and P bias total 

normalized values of the model inmcm4_r1i1p1 are 0.56, 0.16 and 0.24 respectively. The 

model inmcm4_r1i1p1 is considered for a demonstration of the calculation process as it is the 

first member in the Table 5.16. The same procedure was followed for all the ensemble 

members. The P bias score, 0.32, was calculated by averaging 0.56, 0.16 and 0.24. Similarly, 

the T bias winter normalized, T bias monsoon normalized and T bias total normalized values 

http://rds.icimod.org/clim
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of the model, cold and dry corner in Table 5.16 are 1.0, 1.0 and 1.0. The T bias score, 1.0, is 

the average of these three values. The combined score, 1.32, is the sum of the P bias score 

and the T bias score. The models/ensemble with the least combined score, representing the 

least variation in reference values and GCM runs for the reference period (1981-2010), was 

selected at each corner. 
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Table 5.16: Biases between GCM runs and the reference climate dataset (1981-2010) for climate change scenarios RCP4.5 and RCP8.5, 

considering ensembles for the short-term period (2016-2045). 

 

The biases and the combined scores for climate change scenarios RCP4.5 and RCP8.5, considering the models/ensembles for the mid-century 

(2036-2065), are shown in Table 5.17. For RCP4.5 (Table 5.17), the P bias winter normalized, P bias monsoon normalized and P bias total 

normalized values of the model inmcm4_r1i1p1 are 0.31, 0.16 and 0.24 respectively. The model inmcm4_r1i1p1 is considered for a 

demonstration of the calculation process as it is the first member in the Table 5.17. The same procedure was followed for all the ensemble 

members. The P bias score, 0.24, was calculated by averaging 0.31, 0.16 and 0.24. Similarly, the T bias winter normalized, T bias monsoon 

normalized, and T bias total normalized values of inmcm4_r1i1p1, in the cold and dry corner in Table 5.17, are 1.0, 0.72 and 1.0 respectively. 

The T bias score, 0.91, is the average of these three values. The combined score, 1.15, is the sum of the P bias score and the T bias score. The 

RCP Projection Model

P bias 

winter 

(%)

P bias 

monsoon 

(%)

P bias 

total 

(%)

T bias 

winter 

(°C)

T bias 

monsoon 

(°C)

T bias 

total 

(°C)

P bias 

winter 

normalized

P bias 

monsoon 

normalized

P bias total 

normalized

T bias 

winter 

normalized

T bias 

monsoon 

normalized

T bias total 

normalized

P bias 

score

T bias 

score

Combined 

score

inmcm4_r1i1p1 134.07 13.54 20.08 -7.76 -2.02 -4.91 0.56 0.16 0.24 1.00 1.00 1.00 0.32 1.00 1.32

ACCESS1-3_r1i1p1 241.42 19.81 32.94 -1.64 0.41 -0.95 1.00 0.24 0.39 0.21 0.20 0.19 0.54 0.20 0.74

MPI-ESM-LR_r3i1p1 75.66 66.40 56.26 -3.33 -0.67 -1.36 0.31 0.80 0.67 0.43 0.33 0.28 0.59 0.35 0.94

MIROC5_r2i1p1 91.89 83.27 83.89 -1.36 0.68 -0.10 0.38 1.00 1.00 0.18 0.34 0.02 0.79 0.18 0.97

MPI-ESM-MR_r3i1p1 69.09 61.41 53.17 -3.52 -0.18 -1.25 0.29 0.74 0.63 0.45 0.09 0.26 0.55 0.27 0.82

NOAA_GFDL_GFDL-ESM2G_r1i1p1 52.32 40.52 33.28 -1.47 -0.43 -0.87 0.22 0.49 0.40 0.19 0.22 0.18 0.37 0.19 0.56

CCSM4_r2i1p1 174.86 32.31 32.72 -3.95 0.53 -1.18 0.72 0.39 0.39 0.51 0.26 0.24 0.50 0.34 0.84

CanESM2_r2i1p1 24.66 -14.87 -16.42 -4.42 -0.62 -2.54 0.10 0.18 0.20 0.57 0.31 0.52 0.16 0.46 0.62

IPSL-CM5A-LR_r3i1p1 134.31 -36.61 -29.80 -2.45 0.16 -1.63 0.56 0.44 0.36 0.32 0.08 0.33 0.45 0.24 0.69

inmcm4_r1i1p1 116.78 12.89 18.83 -7.43 -2.01 -4.87 0.51 0.21 0.33 1.00 1.00 1.00 0.35 1.00 1.35

ACCESS1-3_r1i1p1 228.71 22.54 34.67 -1.59 0.37 -0.96 1.00 0.37 0.60 0.21 0.19 0.20 0.66 0.20 0.86

IPSL-CM5A-LR_r2i1p1 118.75 -36.01 -28.40 -2.14 0.32 -1.57 0.52 0.59 0.49 0.29 0.16 0.32 0.53 0.26 0.79

MPI-ESM-LR_r1i1p1 95.36 61.04 57.66 -3.13 -0.57 -1.24 0.42 1.00 1.00 0.42 0.28 0.25 0.81 0.32 1.13

NOAA_GFDL_GFDL-ESM2M_r1i1p1 80.54 44.31 40.49 -1.65 -0.26 -0.90 0.35 0.73 0.70 0.22 0.13 0.18 0.59 0.18 0.77

CMCC-CM_r1i1p1 184.69 29.53 25.58 -3.37 1.30 -0.50 0.81 0.48 0.44 0.45 0.65 0.10 0.58 0.40 0.98

IPSL-CM5A-LR_r4i1p1 100.89 -37.17 -31.22 -2.22 0.23 -1.63 0.44 0.61 0.54 0.30 0.12 0.33 0.53 0.25 0.78

CanESM2_r4i1p1 14.61 -7.86 -12.64 -4.02 -0.75 -2.52 0.06 0.13 0.22 0.54 0.37 0.52 0.14 0.48 0.62

CanESM2_r3i1p1 18.76 -15.76 -17.57 -4.42 -0.80 -2.72 0.08 0.26 0.30 0.60 0.40 0.56 0.21 0.52 0.73

Warm and dry

Cold and wet

Cold and dry

Warm and dry

Warm and wet

Cold and dry

R
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Cold and wet
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models/ensemble with the least combined score, representing the least variation in reference values and GCM runs for the reference period 

(1981-2010), was selected at each corner.  

Table 5.17: Biases between GCM runs and the reference climate dataset (1981-2010) for climate change scenarios RCP4.5 and RCP8.5 

considering ensembles for long term (2036-2065). 

 

Similarly, the biases and the combined scores for climate change scenarios RCP4.5 and RCP8.5, considering the models/ensembles for the end-

of-century period (2071-2100), are shown in Table 5.18. For climate change scenario RCP4.5 (Table 5.18), the P bias winter normalized, P bias 

monsoon normalized and P bias total normalized values of the model NOAA_GFDL_GFDL-ESM2G_r1i1p1 are 0.30, 0.87 and 0.73 

respectively. The model NOAA_GFDL_GFDL-ESM2G_r1i1p1 is considered for a demonstration of the calculation process as it is the first 

RCP Projection Model

P bias 

winter 

(%)

P bias 

monsoon 

(%)

P bias 

total 

(%)

T bias 

winter 

(°C)

T bias 

monsoon 

(°C)

T bias 

total 

(°C)

P bias 

winter 

normalized

P bias 

monsoon 

normalized

P bias total 

normalized

T bias 

winter 

normalized

T bias 

monsoon 

normalized

T bias total 

normalized

P bias 

score

T bias 

score

Combined 

score

inmcm4_r1i1p1 134.07 13.54 20.08 -7.76 -2.02 -4.91 0.31 0.16 0.24 1.00 0.72 1.00 0.24 0.91 1.15

EC-EARTH_r12i1p1 21.09 -10.34 -5.36 -2.57 -2.74 -2.61 0.05 0.12 0.06 0.33 0.98 0.53 0.08 0.61 0.69

MIROC5_r2i1p1 91.89 83.27 83.89 -1.36 0.68 -0.10 0.21 1.00 1.00 0.18 0.24 0.02 0.74 0.15 0.89

MPI-ESM-LR_r2i1p1 96.44 66.37 59.34 -3.26 -0.73 -1.39 0.22 0.80 0.71 0.42 0.26 0.28 0.58 0.32 0.90

CCSM4_r2i1p1 174.86 32.31 32.72 -3.95 0.53 -1.18 0.40 0.39 0.39 0.51 0.19 0.24 0.39 0.31 0.70

MRI-CGCM3_r1i1p1 85.23 -33.17 -33.09 -4.38 1.34 -1.34 0.20 0.40 0.39 0.56 0.48 0.27 0.33 0.44 0.77

bcc-csm1-1_r1i1p1 433.47 -17.46 -2.96 -2.24 2.81 1.17 1.00 0.21 0.04 0.29 1.00 0.24 0.41 0.51 0.92

CanESM2_r3i1p1 19.29 -16.31 -18.63 -4.19 -0.80 -2.59 0.04 0.20 0.22 0.54 0.28 0.53 0.15 0.45 0.60

CanESM2_r2i1p1 24.66 -14.87 -16.42 -4.42 -0.62 -2.54 0.06 0.18 0.20 0.57 0.22 0.52 0.14 0.44 0.58

inmcm4_r1i1p1 116.78 12.89 18.83 -7.43 -2.01 -4.87 0.28 0.21 0.33 1.00 0.73 1.00 0.27 0.91 1.18

ACCESS1-3_r1i1p1 228.71 22.54 34.67 -1.59 0.37 -0.96 0.56 0.37 0.60 0.21 0.14 0.20 0.51 0.18 0.69

CCSM4_r6i1p1 145.95 41.66 39.78 -3.98 0.44 -1.27 0.36 0.68 0.69 0.54 0.16 0.26 0.58 0.32 0.90

MPI-ESM-LR_r1i1p1 95.36 61.04 57.66 -3.13 -0.57 -1.24 0.23 1.00 1.00 0.42 0.21 0.25 0.74 0.29 1.03

MIROC-ESM-CHEM_r1i1p1 170.16 -6.20 16.13 -4.57 -0.48 -1.88 0.41 0.10 0.28 0.62 0.17 0.39 0.27 0.39 0.66

CESM1-BGC_r1i1p1 157.73 39.00 36.08 -3.99 0.50 -1.23 0.38 0.64 0.63 0.54 0.18 0.25 0.55 0.32 0.87

bcc-csm1-1_r1i1p1 410.65 -16.10 -2.48 -2.13 2.74 1.21 1.00 0.26 0.04 0.29 1.00 0.25 0.44 0.51 0.95

NOAA_GFDL_GFDL-ESM2M_r1i1p1 80.54 44.31 40.49 -1.65 -0.26 -0.90 0.20 0.73 0.70 0.22 0.10 0.18 0.54 0.17 0.71

NOAA_GFDL_GFDL-ESM2G_r1i1p1 37.35 40.91 34.19 -1.37 -0.47 -0.86 0.09 0.67 0.59 0.18 0.17 0.18 0.45 0.18 0.63

CanESM2_r3i1p1 18.76 -15.76 -17.57 -4.42 -0.80 -2.72 0.05 0.26 0.30 0.60 0.29 0.56 0.20 0.48 0.68

CanESM2_r1i1p1 44.17 -14.02 -16.91 -4.29 -0.61 -2.44 0.11 0.23 0.29 0.58 0.22 0.50 0.21 0.43 0.64
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member in the Table 5.18. The same procedure was followed for all the ensemble members. The P bias score, 0.64, was calculated by averaging 

0.30, 0.87 and 0.73. Similarly, the T bias winter normalized, T bias monsoon normalized, and T bias total normalized values of 

NOAA_GFDL_GFDL-ESM2G_r1i1p1, in the cold and dry corner in Table 5.18, are 0.19, 0.14 and 0.18 respectively. The T bias score, 0.17, is 

the average of these three values. The combined score, 0.81, is the sum of the P bias score and the T bias score. The models/ensemble with the 

least combined score, representing the least variation in reference values and GCM runs for the base period (1981-2010), was selected at each 

corner.  

Table 5.18: Biases between GCM runs and the reference climate dataset (1981-2010) for climate change scenarios RCP4.5 and RCP8.5 

considering ensembles for the end-of-century (2071-2100) period. 

RCP Projection Model

P bias 

winter 

(%)

P bias 

monsoon 

(%)

P bias 

total 

(%)

T bias 

winter 

(°C)

T bias 

monsoon 

(°C)

T bias 

total 

(°C)

P bias 

winter 

normalized

P bias 

monsoon 

normalized

P bias total 

normalized

T bias 

winter 

normalized

T bias 

monsoon 

normalized

T bias total 

normalized

P bias 

score

T bias 

score

Combined 

score

NOAA_GFDL_GFDL-ESM2G_r1i1p1 52.32 40.52 33.28 -1.47 -0.43 -0.87 0.30 0.87 0.73 0.19 0.14 0.18 0.64 0.17 0.81

inmcm4_r1i1p1 134.07 13.54 20.08 -7.76 -2.02 -4.91 0.77 0.29 0.44 1.00 0.67 1.00 0.50 0.89 1.39

EC-EARTH_r2i1p1 2.10 -12.19 -6.47 -2.29 -2.74 -2.56 0.01 0.26 0.14 0.29 0.91 0.52 0.14 0.58 0.72

CSIRO-Mk3-6-0_r9i1p1 37.06 -24.64 -24.74 -3.88 0.07 -1.40 0.21 0.53 0.54 0.50 0.02 0.29 0.43 0.27 0.70

CSIRO-Mk3-6-0_r1i1p1 24.05 -23.29 -26.38 -3.60 0.00 -1.26 0.14 0.50 0.58 0.46 0.00 0.26 0.41 0.24 0.65

CMCC-CMS_r1i1p1 161.83 35.02 37.44 -3.73 0.43 -0.93 0.93 0.76 0.82 0.48 0.14 0.19 0.83 0.27 1.10

CCSM4_r2i1p1 174.86 32.31 32.72 -3.95 0.53 -1.18 1.00 0.70 0.72 0.51 0.18 0.24 0.81 0.31 1.12

GISS-E2-R_r6i1p3 -39.23 -46.37 -45.45 3.77 3.01 3.12 0.22 1.00 1.00 0.49 1.00 0.64 0.74 0.71 1.45

HadGEM2-ES_r2i1p1 160.15 11.19 19.48 -3.23 0.32 -1.71 0.92 0.24 0.43 0.42 0.11 0.35 0.53 0.29 0.82

CanESM2_r3i1p1 19.29 -16.31 -18.63 -4.19 -0.80 -2.59 0.11 0.35 0.41 0.54 0.27 0.53 0.29 0.44 0.73

inmcm4_r1i1p1 116.78 12.89 18.83 -7.43 -2.01 -4.87 0.59 0.20 0.35 1.00 0.74 1.00 0.38 0.91 1.29

EC-EARTH_r9i1p1 -2.59 -11.16 -6.22 -2.49 -2.71 -2.57 0.01 0.18 0.11 0.34 1.00 0.53 0.10 0.62 0.72

MPI-ESM-LR_r3i1p1 65.30 63.75 54.19 -3.33 -0.63 -1.37 0.33 1.00 1.00 0.45 0.23 0.28 0.78 0.32 1.10

MIROC-ESM-CHEM_r1i1p1 170.16 -6.20 16.13 -4.57 -0.48 -1.88 0.87 0.10 0.30 0.62 0.18 0.39 0.42 0.39 0.81

NOAA_GFDL_GFDL-ESM2G_r1i1p1 37.35 40.91 34.19 -1.37 -0.47 -0.86 0.19 0.64 0.63 0.18 0.17 0.18 0.49 0.18 0.67

NOAA_GFDL_GFDL-ESM2M_r1i1p1 80.54 44.31 40.49 -1.65 -0.26 -0.90 0.41 0.70 0.75 0.22 0.10 0.18 0.62 0.17 0.79

NOAA_GFDL_GFDL-CM3_r1i1p1 196.33 -11.85 0.66 -6.34 -1.51 -3.59 1.00 0.19 0.01 0.85 0.56 0.74 0.40 0.72 1.12

CanESM2_r3i1p1 18.76 -15.76 -17.57 -4.42 -0.80 -2.72 0.10 0.25 0.32 0.60 0.30 0.56 0.22 0.48 0.70

R
C

P
 4

.5

Cold and dry

Warm and dry

Cold and wet

Warm and wet

R
C

P
 8

.5

Cold and dry

Cold and wet

Warm and wet

Warm and dry
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Models/ensembles selected for the short-term future period (2016-2045) for climate change 

scenarios RCP4.5 and RCP8.5 are shown in Table 5.19. Table 5.19 shows that, for climate 

change scenario RCP4.5, climate models ACCESS1-3_r1i1p1, MPI-ESM-MR_r3i1p1, 

NOAA_GFDL_GFDL-ESM2G_r1i1p1 and CanESM2_r2i1p1 were selected at the cold and 

dry, warm and dry, cold and wet, and warm and wet corners respectively. Likewise, for 

climate change scenario RCP8.5, the models ACCESS1-3_r1i1p1, IPSL-CM5A-LR_r2i1p1, 

NOAA_GFDL_GFDL-ESM2M_r1i1p1 and CanESM2_r4i1p1 were selected at the cold and 

dry, warm and dry, cold and wet, and warm and wet corner respectively.  

Table 5.19: Selected model/ensembles for the short-term future period (2016-2045) for 

climate change scenarios RCP4.5 and RCP8.5. 

 

Similarly, models/ensembles selected for the mid-century future period (2036-2065) for 

climate change scenarios RCP4.5 and RCP8.5 are shown in Table 5.20. 

Table 5.20: Selected models/ensembles for the mid-century future period (2036-2065) for 

climate change scenarios RCP4.5 and RCP8.5. 

 

Table 5.20 shows that, for climate change scenario RCP4.5, the models EC-EARTH_r12i1p1, 

MIROC5_r2i1p1, CCSM4_r2i1p1 and CanESM2_r2i1p1 were selected at the cold and dry, 

warm and dry, cold and wet, and warm and wet corners respectively. Likewise, for climate 

change scenario RCP8.5, the ACCESS1-3_r1i1p1, MIROC-ESM-CHEM_r1i1p1, 

NOAA_GFDL_GFDL-ESM2G_r1i1p and CanESM2_r1i1p1 global climate models were 

Projection RCP4.5 RCP8.5

Cold and dry ACCESS1-3_r1i1p1 ACCESS1-3_r1i1p1

Warm and dry MPI-ESM-MR_r3i1p1 IPSL-CM5A-LR_r2i1p1

Cold and wet NOAA_GFDL_GFDL-ESM2G_r1i1p1 NOAA_GFDL_GFDL-ESM2M_r1i1p1

Warm and wet CanESM2_r2i1p1 CanESM2_r4i1p1

Projection RCP4.5 RCP8.5

Cold and dry EC-EARTH_r12i1p1 ACCESS1-3_r1i1p1

Warm and dry MIROC5_r2i1p1 MIROC-ESM-CHEM_r1i1p1

Cold and wet CCSM4_r2i1p1 NOAA_GFDL_GFDL-ESM2G_r1i1p1

Warm and wet CanESM2_r2i1p1 CanESM2_r1i1p1
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selected at the cold and dry, warm and dry, cold and wet, and warm and wet corners 

respectively.  

The models/ensembles selected for the end-of-century future period (2071-2100) for climate 

change scenarios RCP4.5 and RCP8.5 are shown in Table 5.21. 

Table 5.21: Selected models/ensembles for the end-of-century future period (2071-2100) for 

climate change scenarios RCP4.5 and RCP8.5 

 

Table 5.21 shows that, for climate change scenario RCP4.5, the models EC-EARTH_r2i1p1, 

CSIRO-Mk3-6-0_r1i1p1, CCSM4_r2i1p1 and CanESM2_r3i1p1 were selected at the cold 

and dry, warm and dry, cold and wet, and warm and wet corners respectively. Likewise, for 

RCP8.5, the EC-EARTH_r2i1p1, MIROC-ESM-CHEM_r1i1p1, NOAA_GFDL_GFDL-

ESM2G_r1i1p and CanESM2_r3i1p1 global climate models were selected at the cold and 

dry, warm and dry, cold and wet, and warm and wet corners respectively. 

5.1.5 Results and discussion   

Step 1: Initial model selection based on changes in mean air temperature and annual 

precipitation 

The initial selection was made based on the projected changes in mean air temperature and 

total annual precipitation between the short-term (2016-2045), mid-century (2036-2065) and 

end-of-century (2071-2100) future periods; and the reference period (1981-2010).  

The ∆T and ∆P ranges from 0.5°C to 2.4°C and -6.9% to +18.1% respectively, considering 

the short-term period (2016-2045) for climate change scenario RCP4.5, whereas for climate 

change scenario RCP8.5, these ranges are 0.6°C to 2.2°C and -8.5% to +21.3% (Figures 5.4 

and 5.5). The ∆T and ∆P ranges from 0.97°C to 3.29°C and -7.63% to +3.29% respectively, 

considering the mid-century period (2036-2065) for climate change scenario RCP4.5, 

whereas for climate change scenario RCP8.5, these ranges are 1.59°C to 4.01°C and -11.51% 

to +23.98% (Figures 5.6 and 5.7). Likewise, the ∆T and ∆P ranges from 1.3°C to 4.6°C and -

Projection RCP4.5 RCP8.5

Cold and dry EC-EARTH_r2i1p1 EC-EARTH_r9i1p1

Warm and dry CSIRO-Mk3-6-0_r1i1p1 MIROC-ESM-CHEM_r1i1p1

Cold and wet CCSM4_r2i1p1 NOAA_GFDL_GFDL-ESM2G_r1i1p1

Warm and wet CanESM2_r3i1p1 CanESM2_r3i1p1
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9.1% to +31.4% respectively, considering the end-of-century period (2071-2100) for climate 

change scenario RCP4.5, whereas for climate change scenario RCP8.5, these ranges are 

3.3°C to 7.0°C and -11.0% to +63.0% (Figures 5.8 and 5.9).  

The proximity of the selected models/ensembles (marked with colour in Figures 5.4 to 5.9) to 

their respective corners differs substantially, as most of the model outputs are not available at 

daily time-steps. The models/ensembles which are close to their respective corners and have 

outputs at daily time-steps were selected (Tables 5.6 to 5.8).  

Step 2: Refined model selection based on projected changes in four indices for climatic 

extremes 

For the models chosen from the initial selection (Figure 5.3- Step 1), the projected changes in 

four ETCCDI indices between the short-term (2016-2045), mid-century (2036-2065) and 

end-of-century (2071-2100) future periods and the reference period (1981-2010) were 

calculated. In general, models projecting large changes in means (∆T and ∆P) also project 

large changes in extreme indices. The model CanESM2_r2i1p1 (Table 5.10) projected the 

largest changes in ∆T (1.7°C) and ∆P (15.6%) in the warm and wet corner for the short-term 

(2016-2045) period, and also projected the largest increase in WSDI (194.4%) and R95pTOT 

(42.9%). The models were selected based on the highest combined scores (Tables 5.10 to 

5.15).     

Step 3: Final model selection based on model capability in simulating the annual cycle 

of air temperature and precipitation (past performance) 

The final selection of models/ensembles was carried out based on the validation of model 

performance to the Hi-AWARE reference climate dataset. The models were selected based 

on the lowest combined bias score (sum of precipitation bias score and temperature bias 

score) as shown in Tables 5.16 to 5.18. This method of calculating a combined bias score can 

lead to models with the least P bias score not being selected due to a high T bias score. For 

example, in the cold and dry corner, climate change scenario RCP4.5, in Table 5.16, the 

model inmcm4_r1i1p1 is not selected although it has the least P bias score (0.32), as it has a 

high T bias score (1.0), resulting in a combined bias score of 1.32. In contrast, its counterpart 

model, ACCESS1-3_r1i1p1, has a combined bias score of 0.75, with a P bias score and a T 

bias score of 0.54 and 0.2 respectively. The model ACCESS1-3_r1i1p1 was selected as it has 

the least combined score in the cold and dry corner.        



87 

 

The representative global climate models selected for the Koshi River basin for climate 

change scenarios RCP4.5 and RCP8.5 considering the short-term (2016-2045), mid-century 

(2036-2065) and end-of-century (2071-2100) future periods are shown in Tables 5.19, 5.20 

and 5.21 respectively. 

For the short-term (2016-2045) future period, the model/ensemble ACCESS1-3_r1i1p1 is 

selected in the cold and dry corner (Table 5.19). Likewise, the same model/ensemble 

CanESM2_r1i1p1 is selected for both climate change scenarios RCP4.5 and RCP8.5 for the 

mid-century (2036-2065) study period. Similarly, the model/ensemble CanESM2_r3i1p1 is 

selected for both climate change scenarios RCP4.5 and RCP8.5 for the end-of-century (2071-

2100) future period. For the remaining corners and RCPs, different models/ensembles were 

selected. Although the GCM selection was carried out for the same Koshi River basin, 

different GCMs are selected for the short-term (2016-2045), long term (2035-2065) and end-

of-century (2071-2100) periods for future climate change scenarios RCP4.5 and RCP8.5. 

This indicates that GCM selection for a catchment varies with different future climate change 

scenarios (RCP4.5 and RCP8.5), as well as different future analysis periods. Therefore, 

representative GCM selection should be given a high priority when conducting climate 

change impact studies. 

5.2 Climate data downscaling for the Koshi River basin  

5.2.1 Downscaling methods  

As the GCM outputs are at a coarser resolution, they are used to generate climate data at a 

finer scale to represent local climatic conditions. Conceptualisation of downscaling and 

aggregation between atmospheric and hydrologic models is shown in Figure 5.14. The 

process used to reduce the scale of any information finer than 100 km x 100 km scales 

(spatially) and finer than monthly values (temporally) is called downscaling. It assumes that 

the local climate is a combination of local conditions (land surface, topography and water 

bodies) and large-scale atmospheric features (regional, continental, hemispheric and global) 

(Trzaska and Schnarr, 2014). Downscaling methods have been developed to generate climate 

variables at a finer resolution using the GCM outputs at a coarse resolution (Chen et al., 

2010c).  
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Figure 5.14: Conceptualisation of downscaling and aggregation between atmospheric and 

hydrologic models (adapted from Wilby and Wigley, 1997). 

Basically, downscaling techniques are classified into two types: statistical and dynamic 

downscaling.  Statistical downscaling techniques develop a statistical relationship between 

local climate variables and large-scale GCM outputs, and dynamic downscaling techniques 

use high-resolution Regional Climate Models (RCMs) nested in a GCM to generate local 

weather variables (Chen et al., 2010c). The RCMs use GCM outputs as lateral boundaries and 

represent physical processes at a spatial resolution of about 20 - 50 square km to generate 

regional climate variables (Trzaska and Schnarr, 2014). Dynamic downscaling is 

computationally expensive and is not always a feasible option for downscaling to the local 

scales with the required spatial resolution (Ahmed et al., 2013). Dynamic downscaling 

requires huge data sets, making it computationally intensive and time consuming. Dynamic 
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downscaling is recommended for projects having research periods of more than two years 

(Trzaska and Schnarr, 2014). Furthermore, RCM outputs are generally not free from biases, 

so bias correction of RCM outputs is normally required in climate change impact studies 

(Chen et al., 2013, Chen et al., 1999, Themeßl et al., 2011, Wood et al., 2004). In contrast, 

statistical downscaling methods are easy not only to apply but also to interpret, and the spatial 

resolution is also finer than that of an RCM (Trzaska and Schnarr, 2014). Statistical 

downscaling has been commonly used in climate change impact studies because it is 

computationally efficient, and can be appropriately used for spatial downscaling and the bias 

correction of  GCM outputs (Ahmed et al., 2013). Thus, a statistical downscaling approach 

has been adopted for this research. 

5.2.2 Quantile mapping approach for climate data downscaling  

The common approaches for bias correction in statistical downscaling are delta change, 

multiple linear regression, analogue, local intensity scaling and quantile mapping. Delta 

change is the simplest and most common method used to address the biases between the 

observed historical and GCM output data, which adds the difference of the climatological 

means (e.g. monthly, seasonal, or seasonal) between the future study and the observed 

baseline of the climate variable (Boé et al., 2007, Themeßl et al., 2012). However, because 

the delta change method only considers differences in the mean, it fails to consider temporal 

variability (Themeßl et al., 2012). Themeßl et al. (2011) compared the performance of seven 

empirical-statistical downscaling and error-correction methods (multiple linear regression, 

multiple linear regression with cube root transformation, multiple linear regression with 

randomization, analogue, nearest neighbour analogue, local intensity scaling and quantile 

mapping) and concluded that quantile mapping outperforms all other methods.    

Quantile mapping is classified as distribution-based (calibrated on climatological 

distributions) and parameter-free, as it uses empirical cumulative density functions (ecdfs). 

The empirical cumulative distribution function of a parameter is a non-parametric estimator 

of the underlying cumulative distribution function. Basically, an ecdf sorts all the data (n, 

number of data) in ascending order and assigns a probability of 1/n to each datum. Quantile 

mapping originated from the empirical transformation of Panofsky and Brier (1968), and has 

been successfully applied in hydrological applications (Boé et al., 2007, Themeßl et al., 

2011). Quantile mapping compares the distributions (empirical cumulative distribution 

function) of a climate variable in historical observations and GCMs outputs, and defines the 

correction function depending upon the quantile, which is used to correct the variable data 
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sets of GCM outputs based on the respective quantile (Boé et al., 2007, Themeßl et al., 2012, 

Themeßl et al., 2011). As mentioned in Themeßl et al. (2012), it is applied on a daily basis (t) 

and for each grid cell (i) separately resulting in a corrected time series     
   

 (Eq. 5.2) using the 

correction function       (Eq. 5.3).  

      
          

                                                                                                                  5.2 

                 
         

(    )             
         

(    )                                                      5.3 

                
       

     
                                                                                                5.4 

where,     
    is a corrected time series on a daily basis (t) within the study period and for each 

grid cell (i) over the study area,     
    is the GCM time series on a daily basis (t) within the 

study period and for each grid cell (i) over the study area,        is a correction function on a 

daily basis (t) within the study period and for each grid cell (i) over the study area. Likewise, 

           
         

(    ) is the observed inverse ecdf (        for the particular day of the year in 

the reference period at probability P (     ,             
         

(    ) is the GCM inverse ecdf 

(        for the particular day of the year in the reference period at probability P (      and 

           
       

     
     is the GCM ecdf  for the particular day of the year in the reference 

period for each grid cell (i) over the study area.  

The correction function represents the difference between observed (obs) and the GCM 

inverse ecdf (        for the particular day of the year in the reference period at probability P 

(     . P is obtained by relating the GCM data        to the corresponding ecdf in the 

reference period. This results in a corrected time series      to create the bias corrected 

dataset.  

This basic quantile mapping procedure may result in a methodological problem when the dry-

day frequency in the GCM data (           ) is greater than in the observations (           ) 

(Themeßl et al., 2012). This results in a systematic wet precipitation bias as any dry day in 

     is mapped to a precipitation day in the observed dataset. So, frequency adaptation (FA) 

is applied to extend the basic QM procedure, in order to account for this methodological 

problem (Themeßl et al., 2012). With FA, only the fraction ( oP ) (Eq. 5-5) of such dry-day 

cases with probability oP  are corrected randomly by linearly interpolating between zero 
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precipitation and the precipitation amount of ))0(( ,

,

1,

,

refGCM

imonth

refobs

imonth ecdfecdf 
(the first 

precipitation class in QM without FA). It will reduce the wet bias in the GCM dataset. 

    
           

                      
       

   

    
       
          

                                                                      5.5 

In climate change impact studies, precipitation and temperature values in future may exceed 

the greatest value found in the reference period. For values of extremes that are outside the 

range of the reference period, corrections are made by including constant linear extrapolation 

of the correction value (i.e. the difference between 
refobsecdf ,

 and 
refGCMecdf ,

at the highest 

and lowest quantiles) (Boé et al., 2007, Themeßl et al., 2012). In such cases, the future 

corrected values would be calculated applying Eq. 5.6. 

                   
        

              
                         5.6 

5.2.3  Application of quantile mapping downscaling  

A quantile mapping downscaling approach is applied for the selected GCM outputs as 

mentioned in Tables 5.19, 5.20 and 5.21.  

Quantile mapping with frequency adaptation and extreme value extrapolation, as mentioned 

in Section 5.2.2, was applied for the selected GCM outputs. Daily precipitation, average 

temperature, maximum temperature and minimum temperature GCM data are downscaled for 

each grid (grid size= 10 km x 10 km) for the entire Koshi River basin down to Chatara in 

Nepal.  

5.2.4 Results and discussion   

GCM data were downscaled for each of the selected GCMs at different time periods and 

climatic extreme corners. For exemplar purposes, the daily precipitation and temperature data 

for the years 2010, 2045, 2065 and 2100 (the ending years of the reference period, short-term, 

mid-century and end-of-century periods) for the selected model CanESM2_r3i1p1, which 

represents the warm and wet corner for climate change scenario RCP8.5 and the end-of-

century period, are shown in Figures 5.15 and 5.16. 
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Figure 5.15: Daily precipitation data for the years 2010, 2045, 2065 and 2100 for the model 

CanESM2_r3i1p1_RCP8.5. 

 

Figure 5.16: Daily average temperature of the years 2010, 2045, 2065 and 2100 for the model 

CanESM2_r3i1p1_RCP8.5. 

Precipitation  

The absolute and percentage changes in average annual, winter, pre-monsoon, monsoon and 

post-monsoon precipitation in the short-term, mid-century and end-of-century periods 

compared to the reference precipitation datasets are shown in Table 5.22. The winter, pre-

monsoon, monsoon, and post-monsoon seasons refer to December-February, March-May, 

June-September, and October-November respectively. 
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Table 5.22: Uncertainty in absolute and percentages changes in average precipitation in the Koshi River basin compared to base period. 

Annual / 

seasonal 

precipitation 

Short-term                   Mid-century End-of-century 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Absolute 

(mm)  

Relative 

(%)  

Absolute 

(mm)  

Relative 

(%)  

Absolute 

(mm)  

Relative 

(%)  

Absolute 

(mm)  

Relative 

(%)  

Absolute 

(mm)  

Relative 

(%)  

Absolute 

(mm)  

Relative 

(%)  

Annual  4 to 288 0 to 16 
103 to 

365 
6 to 20 

70 to 

417 
4 to 23 

107 to 

663 
6 to 36 

79 to 

441 
4 to 24 

242 to 

890 
13 to 49 

Winter -30 to 12 
-53 to 

21 
-24 to -6 

-42 to -

10 
-18 to 8 

-32 to 

13 
-32 to 4 -55 to 6 -14 to -1 

-24 to -

2 
5 to 10 9 to 18 

Pre-

monsoon 
-71 to -4 

-26 to -

1 

-89 to -

23 

-32 to -

8 

-109 to 

42 

-39 to 

15 

-116 to 

10 
-42 to 4 

-156 to -

8 

-56 to -

3 

-149 to 

36 

-54 to 

12 

Monsoon 
-70 to 

257 
-5 to 18 

83 to 

331 
6 to 24 -8 to 381 -1 to 27 

159 to 

574 
12 to 41 

34 to 

448 
3 to 32 

282 to 

788 
21 to 56 

Post-

monsoon 

42 to 

132 

48 to 

152 

28 to 

147 

32 to 

169 

28 to 

163 

33 to 

187 

36 to 

237 

41 to 

272 

27 to 

151 

31 to 

173 

77 to 

217 

88 to 

249 

Regional annual precipitation 

Tibet -9 to 180 
-0.5 to 

10 

71 to 

168 
4 to 9 

86 to 

367 
5 to 21 

122 to 

366 
7 to 21 

167 to 

431 
7 to 24 

253 to 

766 
14 to 43 

High 

Himalaya 

-31 to 

312 
-1 to 12 

107 to 

450 
4 to 18 

37 to 

534 
1 to 21 

110 to 

852 
4 to 33 

57 to 

485 
2 to 19 

290 to 

1189 
11 to 46 

Lower 

Himalaya 

-15 to 

504 

-0.7 to 

25 

71 to 

625 
4 to 31 

42 to 

476 
2 to 24 

54 to 

1077 
3 to 54 

-35 to 

447 
-2 to 22 

198 to 

992 
10 to 50 
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Average annual precipitation is expected to increase in the future. Modelling based on the 

climate change scenario RCP4.5 suggests increases of 0 to 16% in the short-term, 4 to 23% 

by mid-century and 4-24% at the end-of-century periods. Higher precipitation is expected 

under climate change scenario RCP8.5 with average annual precipitation projected to 

increase by 6 to 20% in the short-term, 6 to 36% by mid-century and 13 to 49% at the end-of-

century periods. Winter precipitation is expected to decrease for all the scenarios and study 

periods, except for the end-of-century period under climate change scenario RCP8.5. While 

pre-monsoon precipitation is expected to decrease in coming decades, monsoonal 

precipitation is expected to increase in all scenarios and study periods. Similarly, post-

monsoon precipitation is also expected to increase in future. Decreased winter and pre-

monsoon precipitation, combined with increased monsoon, post-monsoon precipitation and 

annual precipitation indicate that more dry winters and wetter monsoon seasons are expected 

in the future. 

Table 5.22 shows large uncertainty in terms of future precipitation. For the short-term period, 

three of the four GCMs have predicted a decrease in precipitation during winter (-53 to -9%). 

However, one GCM has predicted an increase in precipitation by 21% for climate change 

scenario RCP4.5 scenario. In contrast, only one GCM out of four has predicted a decrease in 

monsoon precipitation (-5%), while the three GCMs remaining have predicted an increase in 

precipitation (13 to 18%).  

For the mid-century period, three of the four GCMs have predicted decrease in precipitation 

during winter (-32 to -9%) and pre-monsoon (-39 to -9%). However, one GCM has predicted 

increases of 13% and 15% for winter and the pre-monsoon season respectively under climate 

change scenario RCP4.5. In contrast, only one GCM out of four has predicted a decrease in 

precipitation during the monsoon season (-1%), while the remaining GCMs have predicted 

increases of between 13 and 27%. For the RCP8.5 climate change scenario, three out of four 

GCMs have predicted decreases in precipitation during winter (-55 to -1%) and pre-monsoon 

(-42 to -2%). However, one GCM has predicted increases of 6% and 4% during winter and 

the pre-monsoon respectively.  

For the end-of-century period, all the selected GCMs have predicted decreases in 

precipitation in winter and the pre-monsoon season under the RCP4.5 climate change 

scenario. For climate change scenario RCP8.5, three out of four GCMs have predicted 

decreases (-54 to -8%) in precipitation during pre-monsoon; however, one GCM has 

predicted an increase of 12%. The uncertainty in the post-monsoon period is large in all three 
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study periods under both climate change scenarios RCP4.5 and RCP8.5. Although the 

percentage increase in precipitation in post-monsoon is high compared with the monsoon 

season, the absolute increase in post-monsoon season is less compared to the monsoon 

season. The rainfall quantity in post-monsoon season is less in the reference period and a 

small increase in the precipitation amount in the post-monsoon season results in higher 

percentage increase compared to monsoon season.  

Precipitation patterns in the Tibet region, including the High Himalaya in Nepal with 

elevation >3000 m, and the Lower Himalaya in Nepal with elevation <3000 m (see Figure 

2.1) were also analysed, and are summarised in Table 5.22. 

Table 5.22 also shows that higher uncertainty in precipitation, with figures -0.7 to 25% 

considering RCP4.5 and 4 to 31% considering climate change scenario RCP8.5 being 

expected in the Lower Himalaya region during the short-term period. Likewise, higher 

uncertainty in precipitation is expected in the Lower Himalaya region during the mid-century 

period, 2 to 24% and 3 to 54% under climate change scenarios RCP4.5 and RCP8.5 

respectively. Similarly, higher uncertainty in precipitation is predicted in the Lower Himalaya 

regions during the end-of-century period, being -2 to 22% and 10 to 50% under climate 

change scenarios RCP4.5 and RCP8.5 respectively. The ensemble mean (average of 4 

GCMs) of absolute and percentage changes in average precipitation compared to the 

reference period in the Koshi River basin is shown in Table 5.23. Table 5.23 shows that 

higher increase in precipitation are expected in the High Himalaya region compared to Tibet 

and the Lower Himalaya regions. 
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Table 5.23: Ensemble mean (4 GCMs) of absolute and percentages changes in average precipitation in the Koshi River basin compared to base 

period. 

Annual / 

seasonal 

precipitation 

Short-term                   Mid-century End-of-century 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Absolute 

(mm)  

Relative 

(%)  

Absolute 

(mm)  

Relative 

(%)  

Absolute 

(mm)  

Relative 

(%)  

Absolute 

(mm)  

Relative 

(%)  

Absolute 

(mm)  

Relative 

(%)  

Absolute 

(mm)  

Relative 

(%)  

Annual  178 10 196 11 237 13 335 18 297 16 701 39 

Winter -8 -14 -14 -25 -7 -12 -8 -14 -5 -9 7 13 

Pre-

monsoon 
-44 -16 -45 -16 -34 -12 -55 -20 -54 -19 -64 -23 

Monsoon 142 10 187 13 206 15 294 21 276 20 619 44 

Post-

monsoon 
88 101 69 79 71 82 105 120 80 92 139 160 

Regional annual precipitation 

Tibet 114 6 124 7 206 12 249 14 223 13 631 36 

High 

Himalaya 
199 8 229 9 291 11 419 16 391 16 922 36 

Lower 

Himalaya 
231 12 270 14 252 13 431 22 226 11 770 39 
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The ensemble mean of monthly precipitation for the end-of-century period is shown in 

Figure 5.17. The ensemble mean for the reference period for both climate change 

scenarios RCP4.5 and RCP8.5 is close to reference data, which shows that the accuracy 

of downscaling for the reference period is satisfactory. The spatial pattern of absolute 

change in ensemble mean precipitation compared to reference data during the end-of-

century period is shown in Figure 5.18. Figures 5.18 (a) and 5.18 (b) show the ensemble 

mean of absolute change in precipitation during the end-of-century period considering 

climate change scenarios RCP4.5 and RCP8.5 scenarios respectively. Higher increase in 

precipitation is expected in the High Himalaya region compared to Tibet and the Lower 

Himalaya region at the end-of-century period.  

 

Figure 5.17: Ensemble mean monthly precipitation for end-of-century period. 
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Figure 5.18: Ensemble mean of absolute change in average precipitation and 

temperature during the end-of-century period compared to reference period. 

Present and future average annual precipitation values along with their standard 

deviation for four GCMs selected for climate change scenarios RCP4.5 and RCP8.5 

considering the end-of-century period, are shown in Figure 5.19(a). Temperature values 

are shown at Figure 5.19(b). In both parts of Figure 5.19, the blue and red lines 

represent the corresponding average values of four GCMs selected for climate change 

scenarios RCP4.5 and RCP8.5 respectively. The black line represents the average 

values of the reference data. The sky blue and pink areas represent the standard 

deviation for the four GCMs selected for climate change scenarios RCP4.5 and RCP8.5 

respectively. The average annual precipitation in the reference period is 1817mm. The 

average annual precipitation values in the short-term, mid-century and end-of-century 

periods are 2011mm, 2060mm and 2114 mm respectively for the climate change 

scenario RCP4.5 and 2018mm, 2098mm and 2518mm respectively for the climate 

change scenario RCP8.5.  
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Figure 5.19: Present and future average annual precipitation and temperature along with 

their standard deviation for the Koshi River basin. 
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Temperature 

The uncertainty in average increases in annual, winter and monsoon temperature in the 

short-term, mid-century and end-of-century periods as compared to the reference 

average temperature datasets, is shown in Table 5-24. 

Table 5.24: Uncertainty in absolute changes in average temperature in the Koshi River 

basin compared to base period. 

Annual / 

seasonal mean 

temperature 

Short-term                            

(°C increase) 

Mid-century                  

(°C increase) 

End-of-century                                     

(°C increase) 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Annual  1.0 to 1.4 1.0 to 1.6 1.3 to 1.9 1.8 to 2.9 1.6 to 2.8 3.1 to 5.6 

Winter 0.9 to 1.7 1.1 to 1.6 1.3 to 2.1 1.8 to 3.9 1.7 to 2.9 2.9 to 7.8 

Monsoon 0.7 to 1.3 0.8 to 1.4 1.3 to 1.9 1.8 to 2.9 1.4 to 2.8 3.0 to 4.4 

Regional mean annual temperature 

Tibet 0.7 to 1.4 0.8 to 1.8 0.9 to 1.9 1.7 to 2.8 1.2 to 2.5  3.2 to 5.6 

High 

Himalaya 
0.7 to 1.1 0.8 to 1.3 1 to 1.5 1.4 to 2.5 1.3 to 2.5 2.7 to 5.1 

Lower 

Himalaya 
0.6 to 1.0 0.8 to 1.4 1.2 to 1.4 1.4 to 2.4 1.5 to 2.6 2.5 to 5.0 

 

The results show that there is a strong seasonal variability for temperature changes in 

the Koshi River basin. Average annual temperature is expected to increase in the future 

(1 to 1.4°C in the short-term, 1.3 to 1.9°C by mid-century and 1.6 to 2.8°C in the end-

of-century periods, considering the RCP4.5 climate change scenario). Higher increases 

in temperature are expected under climate change scenario RCP8.5 as compared to the 

RCP4.5 scenario. Under climate change scenario RCP8.5, the average annual 

temperature is expected to increase in future by 1 to 1.6°C in the short-term, 1.8 to 

2.9°C by mid-century and 3.1 to 5.6°C in the end-of-century period. The incremental 

increases in winter temperature vary from 0.9 to 1.7°C, 1.3 to 2.1°C and 1.7 to 2.9°C for 

the short-term, mid-century and end-of-century periods considering the RCP4.5 climate 

change scenario. However, such incremental increases in monsoon temperature vary 
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from 0.7 to 1.3°C, 1.3 to 1.9°C and 1.4 to 2.8°C for the short-term, mid-century and 

end-of-century periods considering the climate change scenario RCP4.5. Table 5.24 

shows large uncertainty in terms of future mean temperature. Uncertainty in annual 

mean temperature is higher under the climate change scenario RCP8.5 compared to 

RCP4.5 scenario in all study periods. The results show that the uncertainty increases 

approaching the end-of-century period. For example, the predicted increase in annual 

mean temperature in the short-term, mid-century and end-of-century periods varies 

between 1.0 to 1.4°C, 1.3 to 1.9°C, and 1.6 to 2.8°C for climate change scenario 

RCP4.5, and 1.0 to 1.6°C, 1.8 to 2.9°C, and 3.1 to 5.6°C for climate change scenario 

RCP8.5 respectively. All the GCMs have predicted increases in annual mean 

temperatures in future. Uncertainty about winter mean temperatures is large compared 

to monsoon temperatures. 

The ensemble mean (average of 4 GCMs) of absolute and percentage changes in 

average temperature compared to the reference period in the Koshi River basin is shown 

in Table 5-25. Table 5-25 shows that higher increases in temperature are expected in the 

Tibet region compared to the High Himalaya and Lower Himalaya regions. Winter 

temperatures are expected to increase more than temperatures in the monsoon season for 

all study periods. The temperature patterns in the Tibet region, the High Himalaya in 

Nepal, and the Lower Himalaya in Nepal (see Figure 2-1) were also analysed and are 

summarised in Table 5-25. There is a high temperature variation between these regions. 

The average annual temperatures in the Tibet, High Himalaya and Lower Himalaya 

regions during the reference period were -3.7°C, -0.5°C and 14.4°C respectively.  

 

 

 

 

 

 

 



102 

 

Table 5.25: Ensemble mean (4 GCMs) of absolute changes in average temperature in 

the Koshi River basin compared to reference period. 

Annual / 

seasonal mean 

temperature 

Short-term                            

(°C increase) 

Mid-century                  

(°C increase) 

End-of-century                                     

(°C increase) 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Annual  1.1 1.4 1.6 2.2 2.0 4.1 

Winter 1.4 1.4 1.6 2.6 2.3 4.7 

Monsoon 1 1.1 1.6 2.2 2.1 3.6 

Regional mean annual temperature 

Tibet 1.2 1.6 1.7 2.3 1.9 4.3 

High 

Himalaya 
0.8 1.1 1.3 1.9 1.9 3.9 

Lower 

Himalaya 
0.8 1.1 1.3 1.8 2 3.6 

 

Table 5.24 indicates that increases in temperature for each climate scenario are almost 

the same throughout the regions during the short-term, with increases in temperature 

from 0.6°C to 1.4°C and 0.8°C to 1.8°C considering the climate change scenarios 

RCP4.5 and RCP8.5 respectively. Average temperature is expected to increase up to 

1.9°C considering RCP4.5 and up to 2.8°C considering climate change scenario RCP8.5 

in Tibet in the mid-century period. However, in end-of-century period higher increases 

in temperature are expected in the Lower Himalaya region (1.5 to 2.6°C) considering 

the climate change scenario RCP4.5, and in the Tibet region (3.2 to 5.6°C) considering 

the RCP8.5 scenario. The ensemble mean (4 GCMs) of absolute changes in average 

temperatures compared to the reference period in the Koshi River basin is shown in 

Table 5-25. Higher increase in temperature is projected in the Tibet region compared to 

High Himalaya and Lower Himalaya regions.   

The spatial pattern of absolute change in ensemble mean temperature compared to 

reference data during end-of-century period is shown in Figure 5.18. Figures 5.18 (a) 

and 5.18 (b) show the ensemble mean of absolute changes in temperatures during the 

end-of-century period considering climate change scenarios RCP4.5 and RCP8.5 
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respectively. Higher increases in temperature are expected in the Tibet region compared 

to the High Himalaya and Lower Himalaya regions at the end-of-century period.   

Present and future average annual temperature values along with their standard 

deviation for four GCMs selected for the climate change scenarios RCP4.5 and RCP8.5 

considering the end-of-century period is shown in Figure 5.19(b). The average annual 

temperature in reference period is 3.6°C. The average annual temperature values in the 

short-term, mid-century and end-of-century periods are 4.7°C, 5.2°C and 5.6°C 

respectively for climate change scenario RCP4.5 and 5.0°C, 5.8°C and 7.8°C 

respectively for climate change scenario RCP8.5. 

5.3 Conclusion 

The GCMs selection is a critical step for climate change impact studies in different 

sectors. The advanced envelope-based selection approach, which combines the past-

performance approach and the envelope approach, is applied in this research to the 

selection of a representative global climate model for the transboundary Koshi River 

basin, down to Chatara in Nepal. Previous studies conducted on climate projections for 

the Koshi River basin are based on few GCMs and lack multiple criteria to select 

GCMs. This study addresses the limitations of the previous studies and provides new 

climatological insights for the region. A systematic approach for the selection of 

representative GCM runs from a large pool of climate models and downscaling of 

climate data for the river basin has been used. The precipitation and temperature data 

have been downscaled for the short-term (2016-2045), mid-century (2036-2065) and 

end-of-century (2071-2100) periods. The findings for short-term periods could be 

immediately used by the National Planning Commission, Nepal for the forthcoming 

Five-Year Periodic plan. The ensembles of 105 GCM outputs for RCP4.5 and 77 GCM 

outputs for RCP8.5 show that the uncertainty of future climate changes in the Koshi 

River basin is large. Based on these ensembles outputs, the change in future temperature 

and precipitation ranges have been estimated.  

The main outcomes of this research are as follows: 

 The GCM selection for a catchment varies with the future scenario chosen 

(climate change scenarios RCP4.5 or RCP8.5) as well as the future analysis 

periods (short-term, mid-century and end-of-century periods).    
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 The changes in temperature and precipitation range from 0.97 to 3.29°C and -

7.63% to +3.29% respectively for the mid-century period under climate change 

scenario RCP4.5, whereas under climate change scenario RCP8.5, these ranges 

are 1.59 to 4.01°C and -11.51% to +23.98%.  

 Similarly, the change in temperature and precipitation ranges from 1.3 to 4.6°C 

and -9.1% to +31.4% respectively for the end-of-century under climate change 

scenario RCP4.5, whereas, these ranges are 3.3 to 7.0°C and -11.0% to +63.0% 

under climate change scenario RCP8.5. 

Downscaled data (10 km x 10 km grid) for the entire Koshi River basin were developed 

for each grid point. The downscaled data from the selected GCMs predict the following 

likely future climatic conditions: 

 Uncertainty in the average increase in annual precipitation is large in the future: 

0 to 16% in the short-term, 4 to 23% in mid-century and 4 to 24% in end-of-

century period, considering the climate change scenario RCP4.5. Higher 

uncertainty in precipitation is expected in the climate change scenario RCP8.5 as 

compared to the RCP4.5 scenario. The uncertainty in average increases in 

annual precipitation is 6 to 20% in the short-term, 6 to 36% in mid-century and 

13 to 49% in the end-of-century periods, considering the climate change 

scenario RCP8.5.  

 However, winter precipitation is projected to decrease in future. The pre-

monsoon precipitation is also expected to decrease in coming decades. Monsoon 

precipitation is expected to increase in all scenarios and study periods. Similarly, 

post-monsoon precipitation is also expected to increase in future. 

  Based on the ensemble mean of average precipitation, higher absolute increases 

in precipitation are expected in the Lower Himalaya region in the short-term 

period (231 mm for climate change scenario RCP4.5 and 270 mm for climate 

change scenario RCP8.5) and in the High Himalaya region at mid-century (291 

mm for climate change scenario RCP4.5 and 419 mm for climate change 

scenario RCP8.5) and end-of-century periods (391 mm for climate change 

scenario RCP4.5 and 922 mm for climate change scenario RCP8.5). Based on 

the ensemble mean of average temperatures, Tibet is more sensitive to climate 

change, with changes in temperature indicated for all scenarios and study 
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periods. Higher absolute increases in temperature are expected in Tibet region in 

the short-term (1.2°C for climate change scenario RCP4.5 and 1.6°C for climate 

change scenario RCP8.5), mid-century (1.7°C for climate change scenario 

RCP4.5 and 2.3°C for climate change scenario RCP8.5) and end-of-century 

periods (1.9°C for climate change scenario RCP4.5 and 4.3°C for climate 

change scenario RCP8.5) compared to the High Himalaya and Lower Himalaya 

regions. 

 Uncertainty in average increases in annual temperature is large in the future (1 to 

1.6°C in the short-term, 1.3 to 2.9°C in the mid-century and 1.6 to 5.6°C in the 

end-of-century periods).   

 Increase in temperature during winter is expected to be higher than increases in 

the monsoon period. 
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Chapter 6: Hydrology of the river basin 

This chapter describes the hydrological process simulated by the Soil and Water 

Assessment Tool (SWAT) hydrological model. This chapter then explains how future 

climate data has been  used in conjunction with the SWAT model to project likely 

future water availability in the Koshi River basin in the short-term (2016-2045), mid-

century (2036-2065) and end-of-century (2071-2100) time periods, under different 

climate change scenarios (RCP4.5 and RCP8.5). These projections of future water 

availability at the headwork of the Sunsari Morang Irrigation Scheme in the Koshi River 

basin were then used to estimate future flows into the irrigation canal. 

6.1 Selection of Soil and Water Assessment Tool (SWAT) hydrological model  

6.1.1 Selection of hydrological model 

Hydrological models have been extensively used to assess the impact of climate change 

in hydrology. Of the many hydrological models available, only a few models such as 

the Agricultural Non-Point Source (AGNPS), the Hydrological Simulation Program-

Fortran (HSPF), the Hydrological Engineering Centre – The Hydrologic Modelling 

System (HEC-HMS), MIKE SHE, and the Soil and Water Assessment Tool (SWAT) 

have been successfully verified in hydrological applications in many watersheds around 

the world (Khoi, 2016). Physically-based distributed hydrological models with input 

parameters which incorporate physical interpretation and explicit representation of 

spatial variability are being used to understand the effects of climate change on water 

resources, and on water resource planning and management (Cao et al., 2006). 

Physically-based hydrological models are derived deductively from established physical 

principles, as defined by appropriate assumptions and laws, and imply consistency with 

observations (Beven, 2002). Distributed hydrological models attempt to address the 

spatial distribution of topography, soil characteristics, land use, rainfall and 

evapotranspiration within the watershed. Physically based models are mathematically 

idealized representations of the real phenomenon (Devi et al., 2015).  

SWAT (Arnold et al., 1998), a physically-based distributed model developed by the 

United States Department of Agriculture, is used in this research as it is freely available. 

It has been shown to be a robust watershed modelling tool, used to assess climate 
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change impacts on hydrology in many parts of the world (Gassman et al., 2007). Borah 

and Bera (2003) compared 11 different hydrological models and concluded that SWAT 

is a promising model for assessing long-term hydrological changes, as well as basin 

management. Khoi (2016) compared the HEC-HMS and SWAT models‘ abilities to 

produce streamflow in a catchment, and concluded that the SWAT model simulates 

hydrologic processes with a high degree of accuracy. In addition, the SWAT model has 

been successfully applied in the Asian Himalayan catchments (Bharati et al., 2016, 

Devkota and Gyawali, 2015, Agarwal et al., 2015, Gurung and Bharati, 2012, Manjan 

and Aggarwal, 2014, Thakuri and Salerno, 2016). Furthermore, SWAT provides good 

hydrologic projection, provided effort is spent on its calibration (Devi et al., 2015). An 

overview of major applications of the SWAT worldwide is reported by Gassman et al. 

(2007). 

6.1.2 The SWAT model 

The SWAT model is computationally efficient and capable of continuous long time 

period simulations which compute the effects of climate change impacts on the 

hydrological behaviours of a watershed. The SWAT model is also able to handle 

spatially and temporally distributed input data for estimating streamflow by considering 

various hydrological process (Arnold et al., 1998). 

Water balance: The hydrologic cycle simulated by SWAT is based on the water 

balance Equation 6.1. 

        ∑                           
      Equation 6.1

  

where     is the final soil water content (mm H2O),     is the initial soil water content 

on day   (mm H2O), t is the time (days),      is the amount of precipitation on day   

(mm H2O),       is the amount of surface runoff on day   (mm H2O),    is the amount 

of evapotranspiration on day   (mm H2O),       is the amount of water entering the 

vadose zone from the soil profile (ie deep drainage) on day   (mm H2O), and     is the 

amount of return flow on day   (mm H2O). 

The subdivision of the watershed into sub-basins enables the SWAT model to reflect 

differences in evapotranspiration for various soil and crop types. The sub-basins are 
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further divided into hydrologic response units (HRUs). The HRUs are used to describe 

spatial heterogeneity in terms of land cover, soil type and slope class within a watershed 

(Setegn et al., 2008). Runoff is estimated separately for each HRU, and routed to obtain 

the total runoff for the catchment. This increases accuracy and gives a much better 

physical description of the water balance (Neitsch et al., 2011). 

Surface runoff: Surface runoff occurs when water flows over the soil surface due to 

impervious areas, locally saturated areas or from areas where the rainfall rate exceeds 

the infiltration capacity of soil (Brooks et al., 2013). Basically, surface runoff takes 

place when the rate of water application to the soil surface is higher than the rate of 

infiltration. The amount of surface runoff largely depends upon topographic factors such 

as slope, land use, soil, soil moisture, etc. The soil percolation component of SWAT 

uses a storage routing technique to estimate flow through each soil layer in the root 

zone. SWAT simulates the surface runoff at the HRU level and uses the Muskingum 

routing technique to project total runoff from the catchment (Neitsch et al., 2011).  

The surface runoff from daily rainfall is projected by means of the modified curve 

number (CN) method of the United States Department of Agriculture – Soil 

Conservation Service (SCS), which estimates the amount of runoff based on local land 

use, soil type and the antecedent soil moisture conditions (Neitsch et al., 2011). The 

surface runoff is estimated using Equation 6.2. 

      
         

 

           
          6.2 

where       is the accumulated runoff or rainfall excess (mm H2O),      is the rainfall 

depth for the day (mm H2O),    is the initial abstraction which includes surface storage, 

interception and infiltration prior to runoff (mm H2O), and   is the retention parameter 

(mm H2O). The retention parameter varies spatially due to changes in soils, land use, 

management and slope, and varies temporally due to changes in soil water content. The 

retention parameter is defined in Equation 6.3: 

      (
    

  
   )           6.3 
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where    is the curve number for the day. The curve number is a function of the soil‘s 

permeability, land use and antecedent soil water conditions. The initial abstraction,     is 

usually approximated as 0.2S and Equation 6-2 then becomes as Equation 6.4 

      
            

           
                                                     6.4 

Runoff will occur when     >  . The details of the soil and curve number relationships 

can be found in SWAT theoretical documentation, Version 2009 (Neitsch et al., 2011). 

The relationship between rainfall, runoff and curve number is shown in Figure 6.1. 

 

Figure 6.1: Relationship of runoff to rainfall in SCS curve number method (Neitsch et 

al., 2011). 

Snowfall-Snowmelt process: The snowfall-snowmelt process largely affects the 

hydrologic response in the mountainous part of a river basin. SWAT classifies 

precipitation as rain or freezing rain (snow), using a threshold air temperature. 

Precipitation is treated as snow when the daily mean temperature is less than a defined 

threshold, and water equivalent to snow precipitation is added to the snowpack in the 

HRU (Neitsch et al., 2011). Surface runoff from snow cover is also included in the 



110 

 

SWAT. Snow melts on days when the maximum temperature exceeds 0°C using a 

linear function of the difference between the average maximum air temperature of snow 

pack and the base or threshold temperature for snow melt. Equation 6.5 represents 

snowmelt process. 

                     *
         

 
     +       6.5  

where,        is amount of snow melt on a given day (mm H2O),      is the melt 

factor for the day (mm H2O/day-°C),        is the fraction of the HRU area covered by 

snow,       is the snow pack temperature on a given day (°C),     is maximum air 

temperature on a given day (°C), and      is threshold temperature above which snow 

melt is allowed (°C) (Neitsch et al., 2011). 

The melt factor varies during the season (1.4-8.0 mm H2O/day-°C), and is estimated 

based on maximum and minimum melt rate as mentioned in Equation 6.6. 

     
              

 
 

              

 
     (

  

   
        )     6.6 

Where,      is the melt factor for the day (mm H2O/day-°C),       and        are the 

melt factors for June 21 and December 21 respectively (mm H2O/day-°C) and    is the 

day number of the year (Neitsch et al., 2011). 

The amount of melted snow is considered as precipitation for estimating percolation 

(i.e. deep drainage) and runoff. The snowfall that accumulates on the ground is termed 

as snowpack. Snowpack decreases with snowmelt or sublimation, and increases with 

additional snowfall. Snowpacks are not uniformly distributed over the subbasin due to 

variability in topography, shading and drifting. SWAT uses an aerial depletion curve to 

define the fraction of snow cover area, which shows the functional relationship between 

the areal snow coverage and amount of snow present in the sub-basin at a given time 

(Neitsch et al., 2011).  

The SWAT model has provision to split the sub-basins into a maximum of ten elevation 

bands. The snow cover and snowmelt are simulated separately for each elevation band. 

Thus, the SWAT model is able to address snowfall-snowmelt process caused by 

orographic variation in precipitation and temperature.  
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Evapotranspiration: Evapotranspiration (ET) includes all the processes by which 

water from the Earth‘s surface is converted into evaporation, and transpiration, which is 

water vapour emitted by plants. Evapotranspiration is the combination of evaporation 

from the soil and plant canopy transpiration. The water available for human use and 

management is the difference between precipitation and evapotranspiration (Neitsch et 

al., 2011). Potential evapotranspiration (PET) is the maximum evapotranspiration that 

occurs in existing climatic conditions when the surface is well-supplied with water 

(Milly and Dunne, 2016). In the SWAT model, three potential evapotranspiration 

metrics are available: Hargreaves, Priestley-Taylor and Penman-Monteith (Neitsch et 

al., 2011). The Hargreaves method requires air temperature data only, while the 

Priestley-Taylor method requires air temperature, solar radiation and relative humidity 

data. In contrast, the Penman-Monteith method requires data on air temperature, solar 

radiation, relative humidity, wind speed and an estimation of the canopy resistance. The 

Penman-Monteith method (Equation 6.7) was used in this study.  

   
                         [  

    ]   ⁄

            ⁄  
              6.7 

where,    is latent heat flux density (MJ/m
2
/d),   is depth rate evaporation (mm/day), 

  is the slope of the saturation vapour pressure-temperature curve (kPa/°C),      is the 

net radiation (MJ/ m
2
/d),   is the heat flux density to the ground (MJ/m

2
/d),      is the 

air density (kg/m
3
),    is the specific heat at constant pressure (MJ/ kg/°C),   

  is the 

saturation vapour pressure of air at height z (kPa),    is the water vapour pressure of air 

at height z (kPa),   is the psychometric constant (kPa/°C),    is the plant canopy 

resistance (s/m); and    is the diffusion resistance of the air layer (aerodynamic 

resistance) (s/m). The details of the each component can be found in SWAT theoretical 

documentation, Version 2009 (Neitsch et al., 2011). 

In SWAT, actual evaporation is derived from potential evapotranspiration in two steps. 

Firstly, rainfall intercepted by the plant canopy is evaporated. Then, SWAT calculates 

soil evaporation/sublimation and plant transpiration (Neitsch et al., 2011). Sublimation 

will occur only when snow is present, otherwise evaporation will take place from the 
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soil. The details on actual evapotranspiration can be found in SWAT theoretical 

documentation, Version 2009 (Neitsch et al., 2011). 

Soil water: Water entering into soil is partitioned into three components: soil 

evaporation and plant uptake (transpiration); percolation (deep drainage) below the root 

zone to the bottom aquifer;, and lateral flow from the aquifer to the stream (base flow). 

In the SWAT model, the vertical soil profile is classified as root zone, vadose 

(unsaturated) zone, shallow aquifer and deep aquifer. The SWAT model uses a storage 

routing technique to project the flow through each soil layer (up to 10 layers) in the root 

zone. Downward flow (percolation) from any layer occurs only when its water content 

exceeds the field capacity. The downward flow rate is governed by a function related to 

the saturated hydraulic conductivity. The SWAT partitions groundwater into two 

aquifer systems; shallow and deep aquifers. The shallow aquifer is an unconfined 

aquifer, and contributes return flow (base flow) to streams within the watershed. The 

deep aquifer is confined, and contributes return flow to streams outside the watershed. 

Water flow in a soil layer will not occur if that soil layer is frozen (Neitsch et al., 2011). 

6.2 Methodological framework for the SWAT modelling 

The overall methodology for the SWAT modelling is schematised in Figure 6.2. The 

main steps in the SWAT modelling include input data processing and model 

development/set up, sensitivity analysis and calibration, validation, and scenario 

analysis. These steps are described in the following sections: 
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Figure 6.2: Framework for the SWAT model development and scenarios analysis. 

6.2.1 SWAT input data processing and model development (Model initialisation) 

SWAT model input data includes spatial data and time series data. The spatial data are 

digital elevation model, land use, and soil type. The time series data are daily 

precipitation, temperature (minimum and maximum), relative humidity, solar radiation 

and wind speed. The observed discharge data after separation into two independent data 

sets is used for the calibration and validation of the SWAT model. The SWAT model 

was run with spatial and time series data for the reference period (1981-2010). The 

latest available version of SWAT, version 2012.10.21, which is included in the 

ArcSWAT extension with in ArcGIS, was used in this research. 
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6.2.2 Sensitivity analysis and model calibration 

Physically-based distributed hydrological models lack sufficient data to fully represent 

spatial variability, and include scale problems of field measurements integration and 

model parameter elements. This results in the requirement for model calibration and 

subsequent validation (Cao et al., 2006). The SWAT Calibration and Uncertainty 

Program (SWAT-CUP) with Sequential Uncertainty Fitting – Version 2 (SUFI2) 

Optimization Algorithm was used for calibration sensitivity analysis purposes. The 

SWAT-CUP program is mainly developed for sensitivity analysis and calibration of 

SWAT models, and thus was applied. As SWAT-CUP is recommended by the SWAT 

model developer and is a freely available tool, the latest version of SWAT-CUP at the 

time of this research period, Swat-CUP version 5.2.1.1, was downloaded from 

https://www.2w2e.com/home/SwatCup and used in this research. In SWAT-CUP, a t-

test is used to assess the relative significance of each parameter. A multiple regression 

analysis is applied to obtain the statistics of parameter sensitivity. The t-stat and p-value 

are used to identify the significance of parameter sensitivity. The t-stat is a measure of 

the precision with which the regression coefficient is measured, and is estimated by the 

coefficient of a parameter divided by its standard error. A parameter is sensitive when 

its coefficient is large compared to its standard error. The p-value tests the null 

hypothesis that the coefficient is equal to zero (i.e. has no effect on prediction). A low 

p-value (<0.05) means the null hypothesis can be rejected. Rejection of the null 

hypothesis indicates that the coefficient is not equal to zero, and there is a meaningful 

contribution of the parameter in the model. A predictor that has a low p-value is likely 

to be a sensitive parameter in the model, because changes in the predictor‘s value are 

related to changes in the corresponding variable. In contrast, a large p-value indicates 

that changes in the predictor are not associated with changes in the response, and the 

parameter is not very sensitive. A p-value of < 0.05 is the generally accepted value at 

which the null hypothesis can be rejected (Abbaspour, 2015). 

After the SWAT model development (as mentioned in 6.2.1), sensitivity analysis is 

carried out to identify sensitive SWAT parameters which are then used to calibrate the 

model using measured discharge data. Observed discharge data at Chatara in the Koshi 

River basin (Figures 3.1 and 3.3) for the period 1996-2000 were used for the calibration 

of the SWAT model. 

https://www.2w2e.com/home/SwatCup
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Model performance evaluation 

The Nash-Sutcliffe efficiency (NSE), Percent bias (PBIAS) and the coefficient of 

determination (R
2
) are model performance metrics commonly used to evaluate the 

precision of hydrological models (Bharati et al., 2019, Bouraoui et al., 2005, Cao et al., 

2006, Neupane et al., 2014, Yan et al., 2013). Kling–Gupta efficiency (KGE) has also 

been used to evaluate hydrological model performance in recent studies.         

Nash-Sutcliffe efficiency (Equation 6.8) represents how well the plot of observed versus 

simulated value fits the 1:1 line (Santhi et al., 2001). A perfect match between observed 

and predicted values occurs when NSE=1 (Golmohammadi et al., 2014). The optimal 

value of NSE is 1, and it should be >0 for acceptable model performance 

(Golmohammadi et al., 2014, Gupta et al., 1999). A value less than zero indicates 

unacceptable model performance (Golmohammadi et al., 2014, Gupta et al., 1999). A 

model with NSE>0.75 is considered to have good prediction precision, and a model 

between 0.36 to 0.75 is considered satisfactory (Motovilov et al., 1999). 

      
∑ (               )

  
   

∑ (             ̅̅ ̅̅ ̅̅ ̅̅ )
  

   

                                                               6.8 

where,     is Nash-Sutcliffe efficiency,         is the observed daily discharge on day 

 ,         is the simulated daily discharge on day   and     
̅̅ ̅̅ ̅̅  is the mean observed daily 

discharge during the simulation period. 

Percent bias (Equation 6.9) shows the percentage difference between the volume of 

observed and simulated flows. It measures the average tendency of the simulated flows 

to be smaller or larger than the observed flow (Gupta et al., 1999). The optimal value of 

the P bias is zero, and a positive value indicates a model bias towards underestimation, 

while a negative value indicates a model bias towards overestimation (Gupta et al., 

1999). A low magnitude value indicates a better model simulation. A model calibration 

with PBIAS <25% is considered acceptable (Van Liew et al., 2007).     

       
∑ (               )

 
   

∑        
 
   

                                                                   6.9                          

where,       is Percent bias,         is the observed daily discharge on day   and 

        is the simulated daily discharge on day   during the simulation period. 
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The coefficient of determination (Equation 6.10) describes the strength of the 

relationship between the observed and simulated values (Santhi et al., 2001). It indicates 

the proportion of the variance in the measured data, and a higher value indicates less 

error variance (Golmohammadi et al., 2014). A model with R
2
 >0.6 is acceptable for 

hydrological applications (Santhi et al., 2001). 

   
[∑               ̅̅ ̅̅ ̅̅ ̅̅ 

                    ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ]

√∑ (             ̅̅ ̅̅ ̅̅ ̅̅ )
  

   
√∑ (             ̅̅ ̅̅ ̅̅ ̅̅ )

  
   

                                               6.10 

where,    is coefficient of determination,         is the observed daily discharge on day 

 ,         is the simulated daily discharge on day   and     
̅̅ ̅̅ ̅̅  is the mean observed daily 

discharge, and     
̅̅ ̅̅ ̅̅  is the mean simulated daily discharge during the simulation period. 

The Kling–Gupta efficiency (KGE) (Equation 6.11) is based on the decomposition of 

NSE and provides information on the relative importance of the correlation, variability 

bias and mean bias components of NSE (Gupta et al., 2009). The modified KGE ensures 

that bias and variability ratios are not cross-correlated, which may occur when the 

precipitation inputs are biased (Kling et al., 2012). KGE is expressed as: 

      √                                                              6.11 

where    is the correlation coefficient between simulated and observed runoff 

(dimensionless),   = µs/µo is the bias ratio (dimensionless),   = (σs/µs)/(σo/µo) is the 

variability ratio (dimensionless), σs and σo are the standard deviation of simulated and 

observed runoff in m
3
/s, µs and µo are the mean simulated and observed runoff in m

3
/s. 

The Kling–Gupta efficiency addresses the limitations of NSE and is increasingly used 

for model performance evaluation (Knoben et al., 2019). The ideal value of KGE is 

unity (Gupta et al., 2009). 

6.2.3 Model validation 

The calibrated model (as mentioned in Section 6.2.2) is used for the validation. 

Observed discharge flow data at Chatara in the Koshi River basin for the period 2001-

2005 were used for the validation of the SWAT model.  
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6.2.4 Scenario analysis 

The validated SWAT model (as mentioned in Section 6.2.2) is applied to project 

hydrological changes based on precipitation and temperature data for different time 

periods and climate scenarios. The short-term (2016-2045), mid-century (2036-2065) 

and end-of-century (2071-2100) periods with the downscaled precipitation and 

temperature data for RCP4.5 and RCP8.5 were considered for the future scenarios.   

6.3 Application of methodology for SWAT hydrological modelling 

The application of the methodological framework described in Figure 6.2 is 

demonstrated in the following sections.  

6.3.1 SWAT input data processing and model development 

The SWAT model was developed based using the Digital Elevation Model (DEM), 

land-use, soil type, slope, precipitation, temperature, relative humidity, solar radiation, 

and wind speed data as mentioned in Section 6.2.1. The developed SWAT model was 

used for model calibration. 

Digital elevation model (DEM) 

The Shuttle Radar Topography Mission (SRTM) 90 m x 90 m resolution 

(http://srtm.csi.cgiar.org) DEM for the transboundary Koshi River basin was used as an 

input to represent the topography of the basin. The maximum and minimum elevations 

within the catchment are 8806 m and 97 m respectively (Figure 6.3). The DEM was 

then used to generate a representation of the stream network and delineate the watershed 

using ArcSWAT 2012. The minimum and maximum area for stream definition given by 

ArcSWAT were about 27,000 ha and 5,000,000 ha respectively, noting that the SWAT 

recommended area was about 108,050 ha. The stream definition area plays a vital role 

in generating streams at the sub-basin level. The SWAT recommended area was not 

able to generate streams at the sub-basin level where measured discharge data are 

available from the Department of Hydrology and Meteorology in the Nepal part. Hence, 

the stream definition area was assigned as 54,000 ha. It covered all the streams where 

measured discharge data is available for the Nepalese part. The Koshi River basin was 

divided into 294 sub-basins for this study. The meteorological data for the Tibet part 

were derived from data globally available in the public domain. As the hydro-

http://srtm.csi.cgiar.org/
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meteorological data in the Nepalese part are available at sub-basin scales, the size of 

sub-basins in the Nepalese part are smaller compared to Chinese part.          

 

Figure 6.3: Digital elevation model and major river network in the Koshi River basin. 

Land use 

The land use and land cover (LULC) map for the Koshi River basin was obtained from 

the International Centre for Integrated Mountain Development (ICIMOD) 

(http://geoportal.icimod.org/) to represent the different land use practices in the Koshi 

River basin. Land use practices carried out in the Koshi River basin down to Chatara in 

Nepal are shown in Figure 6.4. The spatial resolution of the processed land use map is 

90 m x 90 m.   

http://geoportal.icimod.org/
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Figure 6.4: Land use practices in the Koshi River basin (Blue colour represents grass 

and white colour represents snow). 

For hydrologic response unit analysis, land-use areas of less than 100 km
2
 are merged 

into nearby dominant land-use practices as small portions of land-use practices have 

negligible impact on total surface runoff in the catchment. Hence, 49 land-use practices, 

as shown in Figure 6.4, have been reduced to 23 land-use practices. Grass land is the 

dominant land practice in the Koshi River basin covering around 25630 km
2 

or 47% of 

the total catchment area. The blue colour in Figure 6.4 represents grass (denoted by 

GRSS in Legend). Around 12% of the total catchment area is covered by snow. The 

white colour in Figure 6.4 represents snow (denoted by SNOW in Legend). Other land-

use practices include open forest, closed forest, rock outcrop, and agricultural crop land. 

Soils 

The soil map for the Koshi River basin was downloaded from the soil and terrain 

(SOTER) database program (https://www.isric.org). The soil map represents the 

different soil types available in the Koshi River basin. Different soil types (as per the 

https://www.isric.org/
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FAO soil classification system 2015) in the Koshi River basin down to Chatara in Nepal 

are shown in Figure 6.5. The spatial resolution of the processed soil map is 90 m x 90 

m.   

 

Figure 6.5: Soil map of the Koshi River basin. 

For hydrologic response unit analysis, soil type of less than 100 km
2
 are merged into 

nearby dominant soil types as small portions of soil types have negligible impact on the 

total surface runoff in the catchment. Hence, the 22 soil types as shown in Figure 6.5 

have been reduced to 12 major soil types. Gelic leptosols are the dominant soil type in 

the Koshi River basin, covering around 21715 km
2 

which is around 40% of the total 

catchment area. The blue colour in Figure 6.5 represents Gelic leptosols (denoted by 

Gelic LEPTOSOLS in Legend). Eutric cambisols cover around 13% of the total 

catchment area. The purple colour in Figure 6.5 represents Eutric cambisols (denoted by 

Eutric CAMBISOLS in Legend). Snow and glaciers cover around 12% of the total 

catchment area. Other dominant soil types include chromic cambisols, eutric leptosols, 

humic cambisols, and eutric regosols. 
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Slope classification 

A maximum five slope categories can be defined in the SWAT model. The slope types 

are classified as 0-17%, 17-32%, 32-46%, 46-64% and 64-9999%. These slope types 

are chosen so that the areas under each slope type are almost equal. As the five slope 

classes are defined, each slope class covers around 20% of the total catchment area (i.e. 

10,800 km
2
). As each slope category has equal area coverage, the chosen slope 

classification system ensures equal representation of all slope categories in the 

catchment. Spatial distribution of different slope types in the Koshi River basin down to 

Chatara in Nepal is shown in Figure 6.6. The spatial resolution of the processed slope 

map is 90 m x 90 m.    

 

Figure 6.6: Slope variation in the Koshi River basin. 
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The hydrologic response units are defined based on HRU thresholds of 20% each for 

land use, soil class, and slope class. This has resulted in 1870 HRUs. Hence, the 294 

sub-basins are further divided into 1870 HRUs. 

Precipitation 

Precipitation data for the Nepalese part were obtained from the Department of 

Hydrology and Meteorology (DHM), Nepal. Asian Precipitation - Highly-Resolved 

Observational Data Integration Towards Evaluation (APHRODITE) data were used for 

precipitation for the Tibet part. These data were downloaded from 

http://aphrodite.st.hirosaki-u.ac.jp/index.html. The spatial resolution of APHRODITE 

data was 0.5° x 0.5° (~ 50 km x 50 km). A total of 81 precipitation station data sets (59 

DHM stations and 22 APHRODITE grids) were used in the model SWAT. The spatial 

location of precipitation stations are shown in Figure 6.7. 

 

Figure 6.7: Precipitation and temperature stations used in the SWAT modelling. 

 

 

http://aphrodite.st.hirosaki-u.ac.jp/index.html
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Temperature 

Temperature data for the Nepalese part were obtained from the Department of 

Hydrology and Meteorology, Nepal. European Center for Medium Range Weather 

Forecast ReAnalysis (ERA) data were used for the temperature for the Tibet part. These 

data were downloaded from https://www.ecmwf.int/en/forecasts/datasets/reanalysis-

datasets/era5. The spatial resolution of ERA5 data was 0.25° x 0.25° (~ 25 km x 25 

km). A total of 68 temperature station data sets (16 DHM stations and 52 ERA5 grids) 

were used in the SWAT modelling. The spatial locations of temperature stations are 

shown in Figure 6.7. 

Relative humidity, solar radiation, and wind speed 

Relative humidity, solar radiation, and wind speed data for the Nepalese part were 

obtained from the Department of Hydrology and Meteorology, Nepal. As the main 

purpose of this research is to assess the climate change impacts on the hydrological 

regime of the Koshi River due to changes on precipitation and temperature, only the 

DHM station data available for relative humidity, solar radiation, and wind speed were 

used. A total of 12 relative humidity stations, 5 solar radiation stations, and 7 wind 

speed stations were used for SWAT modelling. 

6.3.2 Sensitivity analysis, calibration and validation of SWAT model 

Initially, 22 sensitive SWAT parameters were selected based on existing literature 

(Bharati et al., 2019, Bharati et al., 2014, Devkota and Gyawali, 2015). The sensitivity 

analysis of these parameters was carried out for 1000 simulations, and the results are 

shown in Figure 6.8. 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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Figure 6.8: Sensitivity analysis of 22 SWAT parameters. 

Out of 22 SWAT parameters, seven parameters: baseflow Alpha factor 

(ALPHA_BF.gw), initial SCS curve number (CN2.mgt), lateral flow travel time 

(LAT_TTIME.hru), effective hydraulic conductivity in the main channel alluvium 

(CH_K2.rte), temperature lapse rate (TLAPS.sub), groundwater delay time 

(GW_DELAY.gw), soil evaporation compensation factor (ESCO.hru) were found to be 

most sensitive. The second iteration was carried out for 1000 simulations for the 7 most 

sensitive parameters. After auto-calibration, rigorous manual calibration was carried out 

for the calibration period of 1996 to 2000. The calibrated values after manual calibration 

is shown in Table 6.1.  
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Table 6.1: SWAT calibrated parameter values. 

Sensitivity analysis rank Parameter Calibrated value 

1 ALPHA_BF.gw 0.097 

2 CN2.mgt 97.976 

3 LAT_TTIME.hru 12.225 

4 CH_K2.rte 119.8975 

5 TLAPS.sub -6.059 

6 GW_DELAY.gw 168.985 

7 ESCO.hru 0.2885 

The observed and simulated flows on a daily time step for the 1996 to 2000 calibration 

period are shown in Figure 6.9. 
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Figure 6.9: Observed and simulated daily flows (m
3
/s) for the Koshi River at Chatara (the 

blue colour represents observed daily flows and the red colour represents simulated daily 

flows).
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SWAT Model performance evaluation 

The stream discharge data measured at the outlet of the Koshi River basin, Chatara, was used 

to assess the performance of the SWAT model. In this study, Nash-Sutcliffe efficiency 

(NSE), Percent bias (PBIAS), Coefficient of determination (R
2
) and Kling–Gupta efficiency 

(KGE) were used to evaluate the SWAT model‘s performance for the Koshi River basin.          

The SWAT model performance for the calibration and validation period is shown in Table 

6.2. The NSE, PBIAS, R
2
 and KGE values for the calibration period are 0.87, -9.46, 0.95 and 

0.75 respectively. The SWAT model performance is considered very good when NSE>0.65 

and PBIAS<10% (Moriasi et al., 2007). Hence, the SWAT model performance for the 

calibration period is very good as the NSE>0.65 and PBIAS<10%. As shown in Figure 6.9, 

most of the observed and simulated flows coincide within the calibration period. 

Table 6.2: SWAT model performance for calibration and validation. 

Model performance 

Index  
Calibration  Validation 

NSE 0.87 0.86 

PBIAS -9.46 -2.73 

R
2
 0.95 0.93 

KGE 0.75 0.65 

Performance Very good Very good 

 

6.3.3 Model validation 

Based on the calibrated values for the period 1996 to 2000 using discharge data at Chatara in 

the Koshi River basin, the SWAT model was validated for the periods of 2001 to 2005 based 

on available flow data. The observed and simulated flows on a daily time step for the 

calibration and validation periods are shown in Figure 6.9. The NSE, PBIAS, R
2
 and KGE 

values for the validation period are 0.86, -2.73, 0.93 and 0.65 respectively. The SWAT model 

performance for the validation period is also very good as the NSE>0.65 and PBIAS<10%. 

As shown in Figure 6.9, most of the observed and simulated flows coincide within the 

validation period. 

6.3.4 Scenario analysis (future hydrological analysis) 

The validated SWAT model was applied to project climate change impacts on the 

hydrological regime of the Koshi River basin using downscaled precipitation and temperature 
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data for different study periods and climate scenarios. The datasets for the reference period 

(1981 to 2010) can be downloaded from http://rds.icimod.org/clim. The reference climate 

datasets for the Indus, Ganges and Brahmaputra river basins were prepared using Watch 

Forcing based on the ERA interim dataset, which was bias corrected using Global 

Precipitation Climatology Centre (GPCC) and glacier mass balance data. Since the ERA 

interim and GPCC data were also based on observed stations, it is assumed that they 

represent the regional climatic patterns. However, because of their regional nature, sub-

variability is expected within the sub-set. These datasets have been used in various studies 

(Kaini et al., 2020d, Wijngaard et al., 2017, MOFE, 2019). For this assessment, additional 

bias correction using stations‘ data was not carried out.  

Downscaled precipitation and temperature data for climate change scenarios RCP4.5 and 

RCP8.5 were considered for the short-term (2016-2045), mid-century (2036-2065) and end-

of-century (2071-2100) future scenarios. The precipitation and temperature data were 

downscaled at a spatial resolution of 10 km x 10 km. Details on GCM selection and climate 

data downscaling are mentioned in Kaini et al. (2020d). Based on the downscaled data, the 

total number of grid stations for precipitation and temperature was 581 for the whole Koshi 

River basin. The spatial location of the precipitation and temperature grid stations for 

reference and downscaled data are shown in Figure 6.10. 
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Figure 6.10: Precipitation and temperature grid stations for the reference and downscaled 

data. 

The validated SWAT model was run for the reference period (1981-2010) using the reference 

datasets, and for future periods (2016-2100) for each corner of climatic extremes (Kaini et al., 

2020d) for both the climate change scenarios RCP4.5 and RCP8.5. As 4 GCMs were selected 

for each RCPs for each study period, the SWAT model was run for 8 different datasets (4 

datasets for climate change scenario RCP4.5 and 4 datasets for climate change scenario 

RCP8.5) for the entire study period. 

6.4 Results and discussion  

Figure 6.11 shows the projected mean monthly flow during the short-term, mid-century and 

end-of-century periods, and the reference period. The projected mean monthly flow is 

expected to decrease in June, but to increase in August, September, October and November in 

all scenarios and study periods. The projected peak mean monthly flow for climate change 

scenario RCP4.5 is lower than the flow for climate change scenario RCP8.5 for all study 

periods, and the difference in magnitude increases through the future periods. In the short-

term period, the projected peak mean monthly flows for climate change scenarios RCP4.5 

and RCP8.5 are 17% and 24% higher respectively, compared to the reference (base) period 
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(1981-2010). Likewise, the projected peak average mean monthly flows for climate change 

scenarios RCP4.5 and RCP8.5 in the mid-century period are 24% and 42% higher 

respectively, compared to the reference period. For the end-of-century period, the projected 

average peak mean monthly flows for climate change scenarios RCP4.5 and RCP8.5 are 35% 

and 67% higher respectively, compared to the reference period. Hence, an increase in the 

peak flow is expected in future, with the shift concentrated towards the August-September 

period.  
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Figure 6.11: Average monthly projected discharge in the Koshi River for the short-term, mid-

century and end-of-century periods. Also shown is the modelled flow during the base 

(reference) period (1981-2010). 
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Uncertainty 

The projected flows based on selected ensembles in different climatic extremes show that 

there is high uncertainty about the future flows in the Koshi River. The uncertainty in 

projected annual and seasonal river flows in shown is Figure 6.12. The winter, pre-monsoon, 

monsoon and post-monsoon seasons refer to December–February, March–May, June–

September and October–November, respectively. Most of the GCMs/ensembles result in 

increased uncertainty within the future time periods. The uncertainty is high for the end-of-

century period compared to mid-century period. The relative uncertainty in projected mean 

annual flows for climate change scenario RCP4.5 are 6 to 23%, 11 to 39% and 15 to 40% for 

the short-term, mid-century and end-of-century periods respectively. Likewise, the relative 

uncertainty in projected mean annual flows for climate change scenario RCP8.5 are 12 to 

29%, 16 to 54% and 25 to 70% for the short-term, mid-century and end-of-century periods 

respectively. Uncertainty in projected river flows is higher for climate change scenario 

RCP8.5 compared to the RCP4.5 scenario in the mid-century and end-of-century periods. All 

the GCMs/ensembles result in increased projected river flows in winter and post-monsoon 

seasons for all scenarios and study periods. Likewise, all the GCMs/ensembles result in 

increased projected river flows in the monsoon period for all scenarios and study periods, 

except for climate change scenario RCP4.5 during short-term period. 
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Figure 6.12: Uncertainty in projected annual and seasonal river flows (percentage change in 

flow based on outputs from four GCMs for the short term, mid-century, and end-of-century 

periods for climate change scenarios RCP4.5 and RCP8.5. Percentage changes in flows are 

relative to reference period flow data). 
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Changes in future flows 

The absolute and relative changes in the annual and seasonal flows of the Koshi River based 

on ensembles of an average of 4 GCMs are shown in Table 6.3. The average annual river 

flow is projected to increase for all scenarios and study periods. For climate change scenario 

RCP4.5, average annual flows in the Koshi River are expected to increase by 16%, 22% and 

28% in the short-term, mid-century and end-of-century periods respectively. Similarly, for 

the RCP8.5 climate change scenario, average annual flows are expected to increase by 18%, 

31% and 57% in the short-term, mid-century and end-of-century periods respectively. The 

increases under the RCP8.5 scenario almost double in magnitude between the mid-century 

and the end-of-century periods. The projected average annual flow for RCP8.5 climate 

change scenario is higher than the RCP4.5 scenario. Winter flows are expected to increase by 

17 to 23% and 13 to 39% for the climate change scenarios RCP4.5 and RCP8.5 respectively. 

However, the projected absolute increases in winter flows are smaller than the predicted 

increases in monsoon and post-monsoon flows. The increases in winter flows could be due to 

the groundwater contribution to the river flow. As the rainfall is expected to increase in 

future, this will cause higher infiltration which is reflected in the groundwater contribution. 

The Koshi River basin is particularly suitable for groundwater recharge, as around 47% of the 

total catchment is covered with grass-land. Baseflow Alpha Factor (ALPHA_BF.gw) and 

Groundwater Delay Time (GW_DELAY.gw) are sensitive SWAT parameters for the Koshi 

River basin. The ALPHA_BF.gw is related to the baseflow recession and GW_DELAY.gw is 

related to the lag between the times that water exits the soil profile and enters the shallow 

aquifer.  

The pre-monsoon flow is expected to decrease in the short-term period, which might be due 

to decreases in precipitation. However, pre-monsoon flows might increase by 9 to 11% and 

15 to 21% in the mid-century and end-of-century periods respectively. Monsoon flows are 

expected to increase by 13 to 15%, 18 to 26% and 24 to 52% in the short-term, mid-century 

and end-of-century periods respectively. Higher monsoon floods are expected in the future. 

This is likely as precipitation is also projected to increase by 10 to 13%, 15 to 21%, and 20 to 

44% in the short-term, mid-century and end-of-century periods respectively. In post-monsoon 

season, mean river flows are expected to increase by 50 to 54%, 62 to 87% and 68 to 128% in 

the short-term, mid-century and end-of-century periods respectively. Although the relative 

increase in projected flows in the post-monsoon season is higher than other seasons, the 
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absolute increase is less compared to monsoonal flows. The higher increase in the post-

monsoon season is due to shift (translation) in the peak flow from July to early September.  
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Table 6.3: Absolute and relative changes in projected annual and seasonal flows of the Koshi River. 

 

 

Absolute
*

Relative
#

Absolute
*

Relative
#

Absolute
*

Relative
#

Absolute
*

Relative
#

Absolute
*

Relative
#

Absolute
*

Relative
#

Annual 404 16 452 18 567 22 785 31 720 28 1449 57

Winter 98 17 72 13 113 20 121 21 132 23 223 39

Pre-monsoon -44 -6 -2 0 79 11 68 9 115 15 154 21

Monsoon 818 13 1001 15 1183 18 1682 26 1585 24 3362 52

Post-monsoon 906 54 828 50 1030 62 1451 87 1139 68 2131 128

*Absolute values in m3/s and #relative values in %.

Average 

annual / 

seasonal flow

Short-term                  Mid-century End-of-century

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5
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Changes in projected annual and seasonal river flows in the short-term, mid-century and 

end-of-century periods are shown in Figure 6.13. Mean annual river flows will most 

likely follow an increasing trajectory under both the RCP4.5 and RCP8.5 climate 

change scenarios. Similarly, river discharges are projected to increase in the future in all 

seasons, except for the pre-monsoon season during the short-term period.     

 

Figure 6.13: Changes in projected annual and seasonal river flows in percentage. 

The percentage changes in minimum and maximum average monthly flows for three 

study periods in the Koshi River at Chatara are shown in Figure 6.14. The minimum 

average monthly flow is selected based on projected minimum average annual river 
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flows among the results drawn from four GCMs/ensembles for each climate scenario 

and study period. Likewise, the maximum average monthly flow is selected based on 

projected maximum average annual river flows among the results drawn from four 

GCMs/ensembles for each climate scenario and study period. Both the minimum and 

maximum average monthly flows indicate that river flows in August-March are likely to 

increase in future. The minimum increases in projected river flows are around 17 to 

26% for climate change scenario RCP4.5 and 11 to 36% for climate change scenario 

RCP8.5 in January, 19 to 26% for RCP4.5 scenario and 9 to 26% for RCP8.5 scenario 

in February, and 6 to 15% for RCP4.5 scenario and 6 to 16% for RCP8.5 scenario in 

March in future periods. The minimum increases in projected river flows in August, 

September, October, November and December are high compared to January, February 

and March (see Figure 6.14). However, the minimum average monthly flows indicates 

that river flow is likely to decrease in April, May, June and July in future periods. 

 

 

 

 

 

 

 

 

 

 

 



139 

 

 

 

Figure 6.14: Percentage change in average minimum and maximum monthly river flows of the Koshi River at Chatara. Future projections 

are relative to the reference data for 1981–2010.
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Figure 6.15 shows an average monthly river flows with standard deviation at Chatara on 

the Koshi River based on four GCMs/ensembles selected for climate change scenarios 

RCP4.5 and RCP8.5 considering the short-term, medium-term and end-of-century 

periods. The black line represents the average monthly river flow based on the reference 

period. The blue and red lines represent the corresponding average monthly river flow 

based on the ensemble outcomes of the GCMs selected for climate change scenarios 

RCP4.5 and RCP8.5 respectively. The sky blue and pink shaded areas represent the 

standard deviation based on the ensemble outcomes of the GCMs selected for climate 

change scenarios RCP4.5 and RCP8.5 respectively. The future flow is increasing 

specially during the monsoon and post-monsoon seasons. The magnitude of increase is 

higher in climate change scenario RCP8.5 than in RCP4.5 scenario. The monsoon flow 

is consistently increasing towards the end-of-century compared to recent time periods. It 

may be because the projection of precipitation also indicates higher increases in the 

monsoon and post-monsoon seasons. The peak flow shifted from July (in the reference 

period) to August (in the future period) in all time periods and both RCPs. The 

uncertainty of future flows is higher in the distant future compared to recent periods. 

The pre-monsoon flow is projected to decrease in the short-term. In the medium-term 

and end-of-century periods, the pre-monsoon flows are projected to increase less than in 

the winter, monsoon and post-monsoon periods. This may be because pre-monsoon 

precipitation is projected to decrease in the future, and precipitation would be in the 

form of rainfall rather than snowfall in the winter, due to increases in temperature. 

Therefore, the pre-monsoon flow which was due to snowmelt in the reference period 

would lessen in the future periods.     
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Figure 6.15: Monthly average river flow with standard deviation at Chatara of the Koshi 

River. 
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Overall, the average annual river flow (ensemble mean) is projected to increase in future 

in the Himalayan Koshi River basin. Immerzeel et al. (2012) and Lutz et al. (2014) have 

also reported that river flows in Himalayan river basins are projected to increase due to 

increased precipitation and temperature. Temperature increases have resulted in a rapid 

decline of the glacier area in Nepal (Shrestha and Aryal, 2011), and are likely to 

continue into the  future, which in turn will contribute to increases in river flow. Similar 

studies have shown that river flows in most of the rivers in Nepal are likely to increase 

in future. For example  Shrestha et al. (2016), Dahal et al. (2016),  Bajracharya et al. 

(2018), Mishra et al. (2018), Pandey et al. (2019), and Dahal et al. (2020) assessed 

climate change impacts on hydrology of the Indrawati, Bagmati, Kaligandaki, Bheri, 

Chamelia, and  Karnali River basins in Nepal respectively, and reported that annual 

river flows are projected to increase in future. The findings of this study also support 

findings of other studies in the Koshi River basin that water availability will most likely 

increase in the future (Bharati et al., 2019, Bharati et al., 2014, Devkota and Gyawali, 

2015, Nepal, 2016). However, these studies on the Koshi River basin were based on low 

resolution climate data. This study has identified a range of possible future flows in the 

Koshi River and likely impact on irrigation water availability using high-resolution 

precipitation and temperature data. Uncertainty associated with future river flows needs 

to be taken into account while making decisions regarding water resources planning, 

development and management. 

6.5 Conclusion 

This study assessed the change in the hydrological regime of the Koshi River basin for 

the short-term, mid-century and end-of-century periods due to climate change. A 

methodology for the application of a suitable hydrological model to investigate the 

impacts of climate change on a river basin was developed and applied to the Koshi 

River basin.    

The Soil and Water Assessment Tool (SWAT) hydrological model was selected for 

hydrological modelling, and then calibrated and validated based on the observed river 

flow data. Downscaled climate data, detailed in Kaini et al. (2020d), were used in the 

validated SWAT model to project the likely future water availability in the Koshi River 

basin. This study projected the future water availability at Chatara in the Koshi River 
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basin of Nepal in the short-term (2016-2045), mid-century (2036-2065) and end-of-

century (2071-2100) time periods, considering the climate change scenarios RCP4.5 and 

RCP8.5. The findings for short-term periods could be immediately used by the National 

Planning Commission, Nepal for the forthcoming Five-Year Periodic plan. 

Among the selected 22 SWAT parameters, 7 parameters - ALPHA_BF.gw, CN2.mgt, 

LAT_TIME.hru, CH_K2.rte, TLAPS.sub, GW_DELAY.gw and ESCO.hru - were 

found to be most sensitive for the Koshi River basin. The SWAT model performance 

for both calibration (NSE=0.87, PBIAS=-9.46, R
2
=0.95, KGE=0.75) and validation 

(NSE=0.86, PBIAS=-2.73, R
2
=0.93, KGE=0.65) periods was found to be very good.  

The results from the selected GCMs/ensembles project the following likely future water 

availability at Chatara in the Koshi River basin. 

 Annual flow: The average annual river flow is projected to increase for all 

scenarios and study periods. For the RCP4.5 climate change scenario, the 

average annual flow in the Koshi River is expected to increase by 16%, 22% and 

28% in the short-term, mid-century and end-of-century periods respectively. 

Similarly, the average annual flow in the Koshi River, for the climate change 

scenario RCP8.5, is expected to increase by 18%, 31% and 57% in the short-

term, mid-century and end-of-century periods respectively. 

 Seasonal flows: The winter flow is expected to increase in future time periods by 

17 to 23% and 13 to 39% for climate change scenarios RCP4.5 and RCP8.5 

respectively. The pre-monsoon flow is expected to decrease in the short-term 

period; however, it is projected to increase by 9 to 11% and 15 to 21% in the 

mid-century and end-of-century periods respectively. The monsoon flow is 

expected to increase by 13 to 15%, 18 to 26% and 24 to 52% in the short-term, 

mid-century and end-of-century periods respectively. In post-monsoon season, 

mean river flow is expected to increase by 50 to 54%, 62 to 87% and 68 to 128% 

in the short-term, mid-century and end-of-century periods respectively.   

 Based on RCP scenarios, the projected peak mean monthly flow for climate 

change scenario RCP4.5 is lower than the flow for RCP8.5 scenario for all study 

periods, and the difference in magnitude increases in future time periods. In 

short-term period, the projected peak mean monthly flow for climate change 
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scenarios RCP4.5 and RCP8.5 are 17% and 24% higher compared to the 

reference period. Likewise, the projected peak mean monthly flows for RCP4.5 

and RCP8.5 scenarios in the mid-century period are 24% and 42% higher 

compared to the reference period. In the end-of-century period, the projected 

peak mean monthly flows for the climate change scenarios RCP4.5 and RCP8.5 

are 35% and 67% higher compared to the reference period. Hence, higher floods 

are expected in future. A shift in the peak flow is expected in future, towards 

August-September.  

 Uncertainty: The projected river flows based on selected ensembles in different 

climatic extremes show that there is a high uncertainty about future flows in the 

Koshi River. The uncertainty in projected annual river flows is high for the end-

of-century period compared to mid-century period. Uncertainty in projected 

annual river flows is higher for climate change scenario RCP8.5 compared to 

RCP4.5 scenario in both the mid-century and end-of-century periods. The 

relative uncertainty in projected mean annual flows for RCP4.5 is 6-23%, 11-

39% and 15-40% for short-term, mid-century and end-of-century respectively. 

Likewise, the relative uncertainty in projected mean annual flow for RCP8.5 is 

12-29%, 16-54% and 25-70% for short-term, mid-century and end-of-century 

respectively. 
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Chapter 7: Crop water assessment for irrigation water requirement 

The aim of this chapter is to investigate irrigation water requirements for winter wheat 

crops under climate change scenarios. Water availability in the Koshi River for 

irrigating the Sunsari Morang Irrigation Scheme command area is sufficient in the 

monsoon season; however, it is in limited supply in the winter and spring seasons. The 

cropping area in the Sunsari Morang Irrigation scheme command area is larger in the 

winter season compared to the spring season. Winter wheat crops were chosen here for 

assessment because wheat is the main crop during winter, and the supply of water 

throughout the Sunsari Morang Irrigation Scheme command area is critical to the 

success of these crops. The Sunsari Morang Irrigation Scheme has been considered for 

the crop water assessment for irrigation water requirements considering climate change 

impacts on the demand side of irrigation water. 

7.1 Understanding local stakeholders’ needs and crop area coverage under 

irrigation scheme 

Stakeholders are generally associated with the development and management of 

irrigation schemes in developing countries like Nepal. These stakeholders include local 

farmers, the Water Users‘ Association (WUA), federal and provincial district irrigation 

department officials, agricultural department officials, groups of local traders supplying 

agricultural goods and purchasing agricultural products from the farmers, and other 

local agencies (governmental and non-governmental) associated with the irrigation 

scheme (Kaini et al., 2020a). The WUA of an irrigation scheme connects agencies 

directly associated with the irrigation scheme and the local farmers. The federal and 

provincial district irrigation offices are generally responsible for the management, 

operation and development of irrigation schemes.  

Studies have shown that cropping areas in Nepalese irrigation schemes could be 

increased by providing optimal irrigation water at the farm level, changing the 

conventional paradigm of subsistence farming into a market-oriented model, adapting 

an appropriate land tenancy (landowner–tenant) model in crop production (Kaini et al., 

2020a). They also reported that cropping areas could be increased by providing proper 

market facilities, ensuring the availability of machinery (thresher machines, mini-

tractors), increasing sources of organic manure, farmer training, and farmers‘ visits to 
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example farmlands and other facilities where knowledge and information sharing are 

made available. This study also mentioned that coordination between the Water Users‘ 

Association, the district irrigation development office and the district agriculture 

development office is crucial for intensifying crop area coverage. 

Socio-economic conditions of landowner and tenant farmers also impact on crop area 

coverage in an irrigation scheme. Year-round availability of irrigation water, selection 

of appropriate crops, land tenancy rules, and crop rotation are the key factors in 

motivating tenant farmers to increase cropping intensity (Kaini et al., 2020a). The 

cropping intensity is the ratio of the total cropped area to the command area of the 

irrigation scheme. It represents the frequency of crops planted on the same irrigated land 

per year, within the entire irrigation command area. 

Water availability for irrigation during the growing season is one of the crucial 

components for increasing the cropped area. Research on climate change impacts on the 

flows in the Koshi River has projected that the average flow in the Koshi River, the 

water source of the Sunsari Morang irrigation scheme, is projected to increase during 

the mid-century and end-of-century periods (Kaini et al., 2020a). Furthermore, based on 

projections of average minimum monthly river flows, this study also suggested that 

river flows would increase in the winter and monsoon seasons.    

7.2 Crop types and cropping intensity in the Sunsari Morang Irrigation Scheme 

The main crops grown  in the command area of the Sunsari Morang Irrigation Scheme 

are monsoon paddy rice, sugarcane, pulses, vegetables and other crops in the monsoon 

period (June/ July to October/November); wheat, pulses, oilseed, maize, sugarcane, 

potato, and vegetables in the winter period (November/December to March/April); and 

spring paddy rice, pulses, oilseed, maize, sugarcane, jute, vegetables and others in the 

spring season (April/May to June/July). The main crops and their average planted area 

in the Sunsari Morang Irrigation command area during 2008–2016 are shown in Table 

7.1. 
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Table 7.1: Main crops and their planted area in the Sunsari Morang Irrigation command 

area in the period 2008-2016. 

Season of the year Crop type Area covered (ha) 

Monsoon season 

Monsoon paddy 56900 

Sugarcane 2100 

Pulses 300 

Vegetables 400 

Others 1100 

Winter season 

Wheat 26000 

Pulses 8400 

Oilseed 2400 

Maize 1300 

Sugarcane 2000 

Potato 1200 

Vegetables 1300 

Others 1300 

Spring season 

Spring paddy 14000 

Pulses 4800 

Oilseed 600 

Maize 2600 

Sugarcane 2800 

Jute 900 

Vegetables 1500 

Others 1200 

 

The average crop area coverage in the monsoon season by monsoon paddy rice, 

sugarcane, pulses, vegetables and other crops are 56,900 ha, 2,100 ha, 300 ha, 400 ha, 

and 1,100 ha respectively. The total irrigated area in the monsoon season is around 

60,800 ha, with monsoon paddy rice being the dominant crop. The average crop area 

coverage in the winter season by wheat, pulses, oilseed, maize, sugarcane, potato, 

vegetables and other crops are 26,000 ha, 8,400 ha, 2,400 ha, 1,300 ha, 2,000 ha, 1,200 

ha, 1,300 ha, and 1,300 ha respectively. The total irrigated area in the winter season is 
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around 43,900 ha, with the dominant crop being winter wheat (around 60% of irrigated 

area), followed by pulses and oilseed crops. The average crop area coverage in the 

spring season by spring paddy rice, pulses, oilseed, maize, sugarcane, jute, vegetables 

and others crops are 14,000 ha, 4,800 ha, 600 ha, 2,600 ha, 2,800 ha, 900 ha, 1,500 ha, 

and 1,200 ha respectively. The total irrigated area in the spring season is around 28,400 

ha, with spring rice and pulses being the dominant crops. Overall, the total cropped area 

in the Sunsari Morang Irrigation Scheme in a year is 133,100 ha (the sum of cropped 

area in monsoon, winter and spring seasons). Since the command area of the Sunsari 

Morang Irrigation Scheme is 68,000 ha, the cropping intensity (the ratio of total cropped 

area to command area) is 195%. More details on cropping intensity are described in 

Kaini et al. (2020a).       

7.3 Selection of Agricultural Production Systems Simulator (APSIM) crop 

model for crop growth and irrigation water assessment 

An increasing pressure on food production system has been realised to meet the 

growing food demand for increasing population (Ramankutty et al., 2018). Increase in 

food production per unit agricultural land (ton/hectare) as well as grain yield per unit 

irrigation water (ton/mm of water), are required in coming decades to fulfil the demand 

of growing population in the climate change context. Crop models can predict grain 

yield per unit of agricultural land (ton/hectare) and grain yield per unit of irrigation 

water (ton/mm of water) under present and future climate. Crop models integrate crop 

development processes and their response to surrounding environment. Boote et al. 

(1996) reported that crops models are required to improve crop system decision making 

process, enhance research knowledge, and analyse policy alternatives for improving 

cropping systems. Crop models improve our knowledge on crop development, growing 

stages and grain yield (Chenu et al., 2017). Challinor et al. (2018) reported that crop 

models could be applied for risk assessment in food production system and preparing 

adaptation strategies to cope with climate change impacts on crop grain yield. Crop 

models are efficient tools to optimize current crop grain yields and irrigation 

scheduling, predict the future grain yields and irrigation water requirements, and 

suggest possible solutions to enhance cropping system. Crop models have been 

developed to incorporate cropping systems with profitability and sustainability, grain 
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quality, biotic effects, responses to changed climatic factors, project climate change 

impacts crop development and grain yield (Chenu et al., 2017). 

7.3.1 Selection of crop model 

Crop models have been extensively used to assess crop growth, development, water 

uptake, stresses due to various factors (water, nitrogen, and temperature) and crop grain 

yield. Among the many crop models available, a few models like the Agricultural 

Production Systems Simulator (APSIM), the Decision Support System for 

Agrotechnology Transfer (DSSAT), CROPWAT, AquaCrop, ORYZA, CERES, 

Dynamic Computable General Equilibrium (DCGE), CropSyst, and Simple Simulation 

Models (SSM) have been successfully verified in crop modelling in many farmlands 

around the world (Kabir et al., 2018, Soltani and Sinclair, 2015).  

However, cropping system models, including DSSAT, CROPWAT, AquaCrop, 

ORYZA, CERES, DCGE, can represent actual farm practices depending on the 

complexity of the adaptation being modelled (Harrison et al., 2017, Harrison et al., 

2011, Kabir et al., 2018). Soltani and Sinclair (2015) compared simpler crop models: 

CropSyst and SSM, and complex models: APSIM and DSSAT. They reported that (a) 

APSIM, CropSyst and DSSAT can simulate crop management effects like tillage and 

straw mulch while SSM cannot, and (b) access to the model codes is free for APSIM 

and SSM, however, CropSyst and DSSAT provide (limited) access to the codes after 

permission is granted. APSIM has the complexity needed in describing the soil,  plant 

and atmospheric processes to be able to reliably simulate climate change impacts on 

cropping systems, and is simple enough that does not take too long time to setup and 

run. 

APSIM is a modelling framework that allows individual sub-models (biophysical, 

management, data input and output, and simulation engine) to be linked to simulate 

farming system  performance (Keating et al., 2003). APSIM has been developed by the 

Agricultural Production Systems Research Unit (APSRU), a collaborative group 

drawing upon expertise from Australia‘s Commonwealth Scientific and Industrial 

Research Organisation (CSIRO) and Queensland State Government agencies. APSIM 

combines biophysical and management modules to simulate cropping systems at a daily 

time-step. Different sub-models in APSIM includes meteorological data, surface 
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organic matter, management options (like crop type, crop sowing window, crop density, 

irrigation and fertilizer application etc.), soil water, soil organic matter, initial nitrogen, 

initial water, physical and chemical properties of soil. Management options like wheat 

crop, soil water, soil and residue are most relevant to the simulation of wheat-based 

cropping systems (Asseng et al., 1998). APSIM is able to effectively simulate different 

crop types including paddy rice, wheat, chickpea, canola, cotton, maize, millet, mung 

bean, sorghum and sunflower (APSIM-Crop Module Documentation, 2020, Harrison et 

al., 2019, Liu et al., 2011, Pembleton et al., 2016). 

The APSIM-Wheat model has been developed for wheat crop modelling within the 

APSIM model framework (Zheng et al., 2015). The APSIM-Wheat module simulates 

crop growth, development, water and nitrogen uptake, crop nitrogen concentration, 

stresses (water, nitrogen, temperature), grain yield and the response of the crop to these 

stresses (Keating et al., 2003). The APSIM-Wheat model has been successfully 

calibrated and validated many parts of the world, including Australia (Asseng et al., 

1998, Dreccer et al., 2018, Flohr et al., 2017, Houshmandfar et al., 2018, Luo and 

Kathuria, 2013, Peake et al., 2014, Zhao et al., 2014a, Harrison et al., 2012, Phelan et 

al., 2015), China (Bai et al., 2020, Chen et al., 2010a, Chen et al., 2010b, Zhang et al., 

2013, Zhao et al., 2014b, Liu et al., 2020b), Ethiopia (Sida et al., 2018) and Iran 

(Deihimfard et al., 2015). Moreover, it has also been successfully applied in the South 

Asia region, including India (Mohanty et al., 2012, Singh et al., 2011, Singh et al., 

2015), Bangladesh (Hasan et al., 2019, Kabir et al., 2018) and Pakistan (Anser et al., 

2020, Haider et al., 2015, Khaliq et al., 2019).  

7.3.2 APSIM crop modelling  

The APSIM model has been selected for this research as it is capable of simulating the 

effects of climate change impacts on crop development, growth, grain yield and biomass 

yield. The main processes addressed in APSIM modelling include phenological 

development, soil water, biomass accumulation, soil nitrogen and carbon (Zheng et al., 

2015).  

Phenological development: There are 11 phases in the APSIM-Wheat module. They 

are sowing, germination, emergence, end of juvenile, floral initiation, flowering, start of 

grain filling, end of grain filling, maturity, harvest, end crop. Phenology is very 
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important in determining grain yield for any given wheat variety by climate 

combination. This is separate to other grain yield determining factors such as nutrients 

(nitrogen), water stress, planting density etc. The timing of each phase (except between 

sowing and germination, which is driven by sowing depth and soil moisture) is 

determined by the accumulation of thermal time adjusted for other factors which vary 

with the phase considered e.g. vernalisation, photoperiod, and nitrogen (Zheng et al., 

2015). The daily thermal time is calculated from the daily average of maximum and 

minimum crown temperatures, and is adjusted by genetic and environmental factors. 

The details on phenological development can be found in APSIM-Wheat Module 

Documentation (Zheng et al., 2015). 

Soil water: Crop water supply is governed by the drained upper limit of soil, the lower 

limit of plant-extractable soil water, and root water uptake from each soil layer. 

Potential extractable soil water is the difference between the drained upper limit (field 

capacity) and the lower limit of plant-extractable soil water for each soil layer. The 

actual extractable soil water is the difference between the soil moisture content and the 

lower limit of plant-extractable soil water for each soil layer. The details on soil water 

and soil water stress can be found in APSIM-Wheat Module Documentation (Zheng et 

al., 2015). 

Biomass accumulation: In the APSIM-Wheat module, biomass is partitioned into root 

biomass and above-ground biomass. The above-ground biomass includes head, leaf and 

stem. Head includes grain and pod (spike without grain). Leaf includes leaf blades only. 

Stem includes plant stems and leaf sheaths. The details on biomass accumulation can be 

found in APSIM-Wheat Module Documentation (Zheng et al., 2015). 

Nitrogen: In the APSIM-Wheat module, total nitrogen demand is the sum of the 

nitrogen demand in all parts of the wheat including head, leaf, stem, and head. Grain 

nitrogen demand starts at anthesis (i.e. flowering) and is the highest nitrogen sink of all 

the plant components. Nitrogen demand on any day include demands from the pre-

existing biomass of each part and the nitrogen required for biomass produced on that 

day. Nitrogen demand in each part (except grain) is driven by the plants‘ behaviour to 

maintain nitrogen at the critical (non-stressed) concentration level. The details on 
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nitrogen demand and nitrogen stress can be found in APSIM-Wheat Module 

Documentation (Zheng et al., 2015). 

7.4 Approach for crop modelling using APSIM 

The overall methodology for the APSIM modelling is schematised in Figure 7.1. The 

main steps in the APSIM modelling include input data processing and model 

development/set up, calibration, validation, scenario analysis and output. These steps 

are described in the following sections: 

 

Figure 7.1: Flowchart of overall methodology for this study, including crop modelling, 

climate change impacts and summarization of outputs. 

7.4.1 APSIM input data processing and model development (Model initialisation) 

APSIM input data include soil data, crop specific data, management data and time series 

climate data. The observed phenology, biomass yield and grain yield data for winter 

wheat crops are used for the calibration and validation of the APSIM crop model. The 
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APSIM model was initialised following Harrison et al. (2019) for the winter wheat crop 

(Nepal 297 variety) using the data set for the study area.  The climate data for the 

Sunsari Morang Irrigation command area from APSIM Next Generation (Holzworth et 

al., 2018) for the years 2016-2020 was adopted here. The management data used are 

that as measured in the field. The soil data are used as per laboratory test results. The 

latest version of APSIM at the time of performing this research, version 7.10-r4158, was 

used for this research. 

7.4.2 Model calibration 

After model initialisation (APSIM model development as mentioned in 7.4.1), the 

model was calibrated with observed phenology, biomass yield and grain yield data for 

the winter wheat crop.  Crop specific parameters such as photoperiod, vernalisation and 

thermal time period were generally adjusted in the wheat base cultivar available in 

APSIM for model calibration. Observed phenology, biomass yield and grain yield data 

drawn from the Sunsari Morang Irrigation Scheme command area for the period 2018-

2019 were used for the calibration of the APSIM model. Calibration was conducted by 

minimising the sum of squared differences between observed and simulated data, 

similar to that described by Harrison et al. (2019). 

7.4.3 Model validation 

The calibrated APSIM model (as mentioned in section 7.4.2) was validated for the 

winter wheat crop using observed phenology, biomass yield and grain yield data drawn 

from the Sunsari Morang Irrigation Scheme command area for the period 2019-2020. 

Validation was conducted by minimising the sum of squared differences between 

observed and simulated data, similar to the methodology described by Harrison et al. 

(2019). 

7.4.4 Scenario analysis 

The validated APSIM model (as mentioned in section 7.4.3) was applied to predict 

irrigation water demand, grain yield and biomass yield based on changes in 

precipitation and temperature data for different time periods and climate scenarios. The 

short-term (2016-2045), mid-century (2036-2065) and end-of-century (2071-2100) 

periods with the downscaled precipitation and temperature data for climate change 

scenarios RCP4.5 and RCP8.5 were considered for the future scenarios. Changes in 
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future periods are compared with the reference (base) period (1981-2010) data. In 

addition, irrigation levels required to achieve potential grain yields under current farm 

condition were also compared with existing observed irrigation practice.   

7.5 Application of methodology for APSIM crop modelling 

The application of the methodological framework described in Figure 7.1 is described in 

the following sections.  

7.5.1 APSIM input data processing and model development (model initialisation) 

The APSIM model was developed using soil data, crop specific data, management data 

and time series climate data as mentioned in section 7.4.1. The developed APSIM 

model was used for model calibration. 

Location of selected farm plots: Three farm plots were selected from a command area 

within the Bariyati branch canal, an undeveloped command area, to monitor winter 

wheat crop in cropping season 2018-2019 and 2019-2020. Using the soil map produced 

by Government of Nepal, these farm plots were chosen because they were comprised of 

the dominant soil type in the irrigation command area. In addition, the farmers‘ 

willingness to provide the land for experimental activities and vicinity to a house to 

closely monitor field activities were also considered. Such fragmented land holding 

patterns and irregular shaped farm plots are common in the Sunsari Morang Irrigation 

Scheme command area. Within the small fragmented plots of land, farmers grow wheat, 

pulses, oilseed, maize, sugarcane, potato and vegetables in the winter season. Winter 

wheat is the main crop in the winter season. The selected field plot sizes vary from 

1,231 m
2
 to 3,772 m

2 
in cropping season 2018-2019, and 670 m

2
 to 2,370 m

2 
in cropping 

season 2019-2020. The geographical location of field plot 1 is 26°34'17.72"N 

87°25'19.19"E (Datum: WGS 1984). Likewise, the geographical location of field plot 2 

is 26°34'16.18"N 87°25'21.50"E (Datum: WGS 1984). Similarly, the geographical 

location of field plot 3 is 26°34'16.39"N 87°25'29.39"E (Datum: WGS 1984). The 

location of selected field plots is shown in Figure 7.2. 
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Figure 7.2: Location of selected field plots used for APSIM Wheat module calibration 

and validation. 

Soil data: Soil samples were collected from the Sunsari Morang irrigation command 

area at a depth of 0-10, 10-20, 20-30, 30-50, 50-70 and 70-90 cm from three field plots. 

The soil samples were measured in soil laboratories in Australia and Nepal. Soil 

properties included both physical and chemical properties. Main soil physical properties 

assessed included bulk density (BD), air-dry (AD), lower limit-LL15 (wilting point), 

drained upper limit-DUL (field capacity), saturated volumetric water contents (Sat), 



156 

 

saturated hydraulic conductivity (Ks) and soil texture, as shown in Table 7.2. The bulk 

density was measured using a cylindrical galvanised iron pipe having 7 cm diameter and 

7.5 cm height. Standard value of saturated hydraulic conductivity (Ks) was taken from 

Dingman (2015).   

Table 7.2: Soil physical properties - bulk density (BD), air-dry (AD), lower limit-LL15 

(wilting point), drained upper limit-DUL (field capacity), saturated volumetric water 

contents (Sat), saturated hydraulic conductivity (Ks), plant available water capacity 

(PAWC) and soil texture. 

  

Depth 

(cm) 

BD 

(g/ 

cc) 

AD 

(mm/ 

mm) 

LL15 

(mm/ 

mm) 

DUL 

(mm/ 

mm) 

Sat 

(mm/ 

mm) 

Ks     

(mm/ 

day) 

Wheat 

PAWC 

(138.6 

mm) 

Texture 

0-10 1.35 0.01 0.157 0.374 0.414 600 21.7 Loam 

10-20 1.4 0.01 0.169 0.38 0.443 600 21.1 Loam 

20-30 1.35 0.01 0.137 0.319 0.356 600 18.2 
Sandy 

loam 

30-50 1.38 0.01 0.171 0.312 0.349 600 28.2 
Sandy 

clay loam 

50-70 1.5 
0.01

1 
0.186 0.315 0.331 600 25.8 

Sandy 

clay loam 

70-90 1.49 
0.01

1 
0.184 0.302 0.359 600 23.6 

Sandy 

clay loam 

The main soil chemical properties measured included electrical conductivity (EC), pH, 

chloride (CL), boron (B), cation exchange capacity (CEC), calcium (Ca), Magnesium 

(Mg), Sodium (Na), Potassium (K), exchangeable sodium percentage (ESP) and 

Manganese (Mn), as shown in Table 7.3. 
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Table 7.3: Soil chemical properties - electrical conductivity (EC), pH, chloride (CL), 

boron (B), cation exchange capacity (CEC), calcium (Ca), Magnesium (Mg), Sodium 

(Na), Potassium (K), exchangeable sodium percentage (ESP) and Manganese (Mn). 
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0-10 1.5 5.1 14.2 0.04 10.68 3.82 1.45 0.2 0.118 1 1.63 

10-20 1.5 5.4 10.65 2.2 10.67 3.37 1.38 0.21 0.112 1 3.02 

20-30 1.5 6 7.1 0.05 10.45 3.52 1.25 0.23 0.164 1 5.72 

30-50 1.5 6.1 7.1 1.57 10.68 4.61 1.25 0.12 0.146 1 4.66 

50-70 1.1 6.2 10.65 0.04 10.67 5.05 2.4 0.13 0.139 1 4.66 

70-90 1.3 6.2 10.65 1.07 10.23 4.3 1.26 0.12 0.139 1 5.14 

Management data: The main management data gathered included sowing date, sowing 

density (plants/m2), sowing depth, fertilizer applied at sowing, and subsequent fertilizer 

application. These data were taken as per actual field conditions. For model calibration 

(2018-2019), sowing date, sowing density, sowing depth, fertilizer applied at sowing 

and subsequent fertilizer application were 7 December 2018, 125 plants/m
2
, 15 mm, 

DAP: 87 kg/ha, and UREA-Nitrogen 70 kg/ha, respectively. Likewise, for model 

validation (2019-2020), sowing date, sowing density, sowing depth, fertilizer applied at 

sowing and subsequent fertilizer application were 12 December 2019, 130 plants/m
2
, 15 

mm, DAP:110 kg/ha, and UREA-Nitrogen 150 kg/ha, respectively. 

Irrigation data: The volume of canal water applied to the irrigated wheat field was 

measured using a triangular V-notch (90°) weir. Applied irrigation water was measured 

in the water course suppling water to the experimental field. The size of the triangular 

V-notch varied with the width of the canal section. The distance between the end of V-

shaped triangle at top and the edge of the canal should be at least 2 x the maximum head 

at the V-notch weir. Likewise, distance between the end of V-shaped triangle at the 

bottom and the bed of the canal should be at least 2 x the maximum head at the V-notch 

weir as shown in Figure 7.3. 
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Figure 7.3: A triangular V-notch (90°) weir used to measure irrigation water supplied in 

the experimental field. 

The hydraulic head over the V-notch crest was measured at various time interval and the 

water discharge passing through the V-notch was calculated using equation. 7.1 (Grant, 

1989): 

                                            Equation 7.1 

where Q is flow rate in cubic feet per second, H is the head on the weir in feet and K is 

a constant dependent on the angle of notch and unit of measurement. For a V-notch with 

a 90° angle and unit of measurement as cubic feet per second, K=2.5. The triangular V-

notch used in the field is shown in Figure 7.4. 
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(a) V-notch before water overflow (upstream 

view)  

(b) V-notch after water overflow 

(downstream view) 

Figure 7.4: Triangular V-notch (90°) used in the field. 

During the model calibration period for 2018-2019, the irrigation application was 92 

mm (a single irrigation on 28 December 2018). Similarly, during the model validation 

period for 2019-2020, the irrigation application was 65 mm (from a single irrigation on 

8 January 2020). 

Crop specific data: The main crop specific data used included photoperiod, 

vernalisation, thermal time period and maximum grain size. Changes in crop specific 

parameter values like photoperiod, vernalisation and thermal time period are available 

in the APSIM wheat cultivar data base and were parameterised for the Nepal wheat 

variety because it was not part of the default APSIM release. Photoperiod, vernalisation 

and thermal time period parameters were adjusted for the Nepalese wheat variety. This 

adjustment was part of model calibration process.  

Climate data: The main climate data used included daily precipitation, minimum 

temperature, maximum temperature, solar radiation and wind speed. The climate data 

for the Sunsari Morang Irrigation command area were obtained from the APSIM Next 

Generation (Holzworth et al., 2018) for the year 2016-2020. 

7.5.2 Model calibration 

Observed wheat phenology, biomass yield and grain yield data for the winter wheat 

crop in the Sunsari Morang Irrigation scheme command area for the period 2018-2019 
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were used for the calibration of the APSIM model. Rigorous systematic manual 

calibration was carried out for the calibration period (2018-2019) by changing 

photoperiod, vernalisation and thermal time period parameters for the wheat cultivar 

data base available in APSIM (following Harrison et al., 2011, Ibrahim et al., 2019, Liu 

et al., 2020b). The photoperiod and vernalisation parameters were adjusted to 4.0 and 

2.4 respectively. To minimize the sum of squared residuals between measured and 

simulated data, the thermal time periods for end of juvenile, floral initiation and start 

grain fill were adjusted to 380°C days, 395°C days and 660°C days respectively. All 

other crop parameters were derived from the base cultivar.  

The observed and simulated phenological days after sowing for the calibration (2018-

2019) and validation (2019-2020) periods are shown in Table 7.4. The average observed 

sowing, emergence, floral initiation, start grain filling and harvest days after sowing for 

the calibration period (2018-2019) are 1, 7, 65, 91 and 127 days respectively. The 

simulated values are close to observed values. The simulated sowing, emergence, floral 

initiation, start grain filling and harvest days after sowing for calibration period are 1, 5, 

65, 93 and 124 days respectively. The minimum (mean minus standard deviation) and 

maximum (mean plus standard deviation) standard deviations range for harvest days, 

based on three field plots, are 124 and 130 days after sowing for the calibration period. 

The simulated harvest days after sowing for the calibration period is within the standard 

deviation of the mean.  

Table 7.4: Observed and simulated phenological days after sowing for the calibration 

(2018-2019) and validation (2019-2020) periods. 

Phenological stage     

(Days after 

sowing) 

Calibration Validation 

Observed Simulated  Observed Simulated  

Sowing 1 1 1 1 

Emergence 7 5 7 5 

Floral initiation 65 65 65 67 

Start grain filling 91 93 91 94 

Harvest 127 124 126 125 
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The observed and simulated biomass yield and grain yield for the calibration 

(parameterisation) period are shown in Figure 7.5 (a). The average observed and 

simulated biomass yield are 7210 kg/ha and 7286 kg/ha respectively. The minimum and 

maximum standard deviations range for biomass yield, based on three field plots, are 

6820 kg/ha and 7600 kg/ha. The simulated biomass yield for the calibration period is 

within the standard deviation of the mean. Likewise, the average observed and 

simulated grain yield are 1862 kg/ha and 1939 kg/ha respectively. The minimum and 

maximum standard deviations range for grain yield, based on three field plots, are 1623 

kg/ha and 2101 kg/ha respectively. The simulated grain yield for the calibration period 

is within the standard deviation of the mean. 

 

Figure 7.5: Observed and simulated biomass yield and grain yield for the calibration 

(parameterisation) (2018-2019) and validation (2019-2020) periods (SD = standard 

deviation). 

The APSIM model performance for the calibration period is good, as the simulated 

values for phenology, biomass yield and grain yield are within the standard deviation of 

the mean. 
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7.5.3 Model validation 

Using the calibrated model data for the period 2018-2019 using phenology, biomass 

yield and grain yield data derived from the Sunsari Morang Irrigation scheme command 

area, the APSIM model was validated for the 2019-2020 period based on observed 

phenology, biomass yield and grain yield data. Table 7.4 shows observed and simulated 

phonological stages for the validation period. The average observed sowing, emergence, 

floral initiation, start grain filling and harvest days after sowing for the validation period 

are 1, 7, 65, 91 and 126 days respectively. The simulated values are close to observed 

values. The simulated sowing, emergence, floral initiation, start grain filling and harvest 

days after sowing for calibration period are 1, 5, 67, 94 and 125 days respectively. The 

minimum (mean minus standard deviation) and maximum (mean plus standard 

deviation) standard deviations range for harvest days, based on three field plots, are 124 

and 128 days after sowing for the validation period. The simulated harvest days after 

sowing for the validation period is within the standard deviation of the mean. 

The observed and simulated phenology, biomass yield and grain yield data for the 

validation period is shown in Figure 7.5 (b). The average observed and simulated 

biomass yield are 6885 kg/ha and 7072 kg/ha respectively. The minimum and maximum 

standard deviations range for biomass yield, based on three field plots, are 5292 kg/ha 

and 8478 kg/ha respectively. The simulated biomass yield for the validation period is 

within the standard deviation of the mean. Likewise, the average observed and 

simulated grain yield are 2145 kg/ha and 2492 kg/ha respectively. The minimum and 

maximum standard deviations range for grain yield, based on three field plots, are 1753 

kg/ha and 2537 kg/ha respectively. The simulated grain yield for the validation period is 

within the standard deviation of the mean. 

From the above, it is concluded that the validation period is good, since the simulated 

values for phenology, biomass yield and grain yield are within the standard deviation of 

the mean. 

7.5.4 Scenario analysis (future irrigation water demand analysis) 

The main aim of scenario analysis is to predict irrigation water demand, based on 

changes in precipitation and temperature data for the short-term (2016-2045), mid-

century (2036-2065) and end-of-century (2071-2100) time periods, and climate change 



163 

 

scenarios RCP4.5 and RCP8.5. The validated APSIM model was applied to predict 

climate change impacts on the irrigation water demand using downscaled daily 

precipitation, as well as minimum and maximum temperature data for different future 

study periods and climate scenarios. The climate datasets for the reference period 

(1981-2010) were downloaded from http://rds.icimod.org/clim. Lutz and Immerzeel 

(2015) developed climate datasets for the Indus, Ganges and Brahmaputra River basins 

using Watch Forcing based on the ERA-interim dataset, which were bias corrected 

using Global Precipitation Climatology Centre (GPCC) and glacier mass balance data. It 

was assumed that the climate datasets represent the regional climatic patterns, as ERA-

interim and GPCC were also derived based on observed stations. Sub-variability can be 

expected within the sub-set because of the datasets‘ regional nature. These datasets have 

been widely used in various studies (Kaini et al., 2020d, Kaini et al., 2020c, MOFE, 

2019, Wijngaard et al., 2017).  

Future scenarios were developed for the short-term (2016-2045), mid-century (2036-

2065) and end-of-century (2071-2100) periods for the climate change scenarios RCP4.5 

and RCP8.5 using the downscaled daily precipitation, minimum temperature and 

maximum temperature data. The precipitation and temperature data were downscaled 

for the southern part of Nepal in the Koshi River basin including the command area of 

the Sunsari Morang Irrigation Scheme under this study. Details on GCM selection and 

climate data downscaling are described  in Chapter 5 and reported by Kaini et al. 

(2020d). 

The validated APSIM model was run for the reference period (1981-2010) using the 

reference datasets. The validated APSIM model was then run for the short-term (2016-

2045), mid-century (2036-2065) and end-of-century (2071-2100) periods for the four 

corners of climatic extreme, as described in Chapter 5 and published in Kaini et al. 

(2020d), for both climate change scenarios RCP4.5 and RCP8.5. Details on the four 

corners of climatic extreme (i.e. cold/dry, cold/wet, warm/dry, and warm/wet) are 

explained in Chapter 5 and published in Kaini et al. (2020d). In addition, the irrigation 

levels required to reach potential grain yields at current conditions (2018-2019 and 

2019-2020) are also compared with existing observed irrigation practice. 
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7.6 Results and discussion 

7.6.1 Changes in projected irrigation water demand, grain yield and biomass yield 

Figure 7.6 shows the changes in projected irrigation water demand required to reach 

potential grain yields, and biomass yield for winter wheat crops at the Sunsari Morang 

Irrigation Scheme command area, considering climate change scenarios RCP 4.5 and 

8.5 at the short-term, mid-century and end-of-century periods compared to the reference 

period (1981-2010). In the reference period, 429 mm of irrigation water was required to 

reach a potential grain yield of 5800 kg/ha, and a biomass of 18,025 kg/ha. The 

projected mean irrigation water demand for winter wheat crops is likely to increase by 

around 2%, 1% and 3% in the short-term, mid-century and end-of-century periods, 

considering climate change scenario RCP4.5. For the climate change scenario RCP8.5, 

mean irrigation water demand is projected to increase by 2% in the short-term period. 

However, it is likely to decrease by about 1% and 8% in the mid-century and end-of-

century periods respectively. Winter wheat crop grain yield at the Sunsari Morang 

Irrigation Scheme command area is expected to decrease by around 1%, 4% and 7% in 

the short-term, mid-century and end-of-century periods respectively, considering 

climate change scenario RCP4.5. For RCP8.5 scenario, equivalent projected decreases 

are 4%, 6% and 19% respectively. Winter wheat crop biomass yield at the Sunsari 

Morang Irrigation Scheme command area is projected to decrease, expect for the 

RCP4.5 scenario in the short-term period. Biomass yield is anticipated to increase by 

1% in the short-term period, considering climate change scenario RCP4.5; however, it is 

likely to decrease by 4%, considering the RCP8.5 scenario in the same period. For 

climate change scenarios RCP4.5 and RCP8.5, biomass yield is projected to decrease by 

3% and 5% in the mid-century period, and by 6% and 20% in the end-of-century period 

respectively. The changes (both absolute and relative) in irrigation water demand, grain 

yield and biomass yield for the winter wheat crop at the Sunsari Morang Irrigation 

Scheme command area, based on results from average of four GCMs ensembles, are 

shown in Table 7.5. 
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Figure 7.6: Changes in projected irrigation water demand, grain yield and biomass yield 

for the winter wheat crop at the Sunsari Morang Irrigation Scheme command area, 

considering RCP 4.5 and 8.5 climate change scenarios. 
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Table 7.5: Change in irrigation water demand, grain yield and biomass yield for winter wheat, based on average values from 4 GCMs 

and calculated against the reference period (1981-2010). 

Change                    

(based on 

average 

from 4 

GCMs and 

base 

period) 

Short-term (2016-2045) Mid-century (2036-2065) End-of-century (2071-2100) 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Absolute 

change  

Percentage 

change 

Absolute 

change  

Percentage 

change 

Absolute 

change  

Percentage 

change 

Absolute 

change  

Percentage 

change 

Absolute 

change  

Percentage 

change 

Absolute 

change  

Percentage 

change 

Irrigation 

water 

demand 

10 2.3 10 2.3 6 1.4 -2 -0.5 12 2.8 -36 -8.4 

Grain yield -76 -1.3 -215 -3.7 -228 -3.9 -320 -5.5 -399 -6.9 -1072 -18.5 

Biomass 

yield 
120 0.7 -671 -3.7 -613 -3.4 -919 -5.1 -1049 -5.8 -3509 -19.5 

Absolute values for irrigation water demand, grain yield and biomass yield are in mm, kg/ha and kg/ha respectively. Relative values are in %. 
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7.6.2 Uncertainty (variability) in projected irrigation water demand, grain yield and 

biomass yield 

Based on results from selected GCM ensembles representing the four climatic extremes 

(cold/dry, cold/wet, warm/dry, warm/wet), a high uncertainty is projected in irrigation 

water demand, grain yield and biomass yield for the winter wheat crop at the Sunsari 

Morang Irrigation scheme command area, especially in the end-of-century period. The 

uncertainty (variability) in projected irrigation water demand, grain yield and biomass 

yield is shown in Figure 7.5. 

The uncertainty in irrigation water demand, biomass yield and grain yield is projected to 

increase in future time periods. The uncertainty in irrigation water demand, biomass 

yield and grain yield is high for the end-of-century period, compared to the mid-century 

and short-term periods. The relative uncertainties in irrigation water demand under 

climate change scenario RCP4.5 are -1 to 5 %, -5 to 9 %, and -2 to 11 % for the short-

term, mid-century and end-of-century periods respectively. Likewise, equivalent 

uncertainty projections for irrigation water demand for climate change scenario RCP8.5 

are 0 to 5 %, -6 to 6 % and -20 to -1 % respectively. All the GCMs/ensembles predicted 

an increased irrigation water demand in the short-term, and decreased irrigation water 

demand in the end-of-century period for climate change scenario RCP8.5; however, for 

other study periods and climate change scenarios, the GCMs/ensembles‘ results 

contradicted with each other in the changes in predicted irrigation water demand. A few 

GCMs/ensembles resulted in decreases in predicted irrigation water demand, and a few 

resulted in increases in predicted irrigation water demand.  

For the short-term, mid-century and end-of-century periods, the respective uncertainties 

in biomass yield under climate change scenario RCP4.5 are -3 to 4 %, -10 to 4 % and -

15 to 7 %; while for RCP8.5 scenario the corresponding figures are -11 to 5 %, -8 to 2 

% and -35 to -7 % respectively. All the GCMs/ensembles predicted a decreased biomass 

yield in the end-of-century period for RCP8.5 scenario. However, for other study 

periods and climate change scenarios, the GCMs/ensembles‘ results contradicted with 

each other in changes in predicted biomass yield.  

For the short-term, mid-century and end-of-century periods, the respective uncertainties 

in grain yield under the climate change scenario RCP4.5 are -5 to 1 %, -10 to 2 % and -
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14 to 5 %; while for RCP8.5 scenario the corresponding figures are -8 to 3 %, -8 to -2 % 

and -35 to -10 % respectively. All the GCMs/ensembles predicted a decreased grain 

yield in the mid-century and end-of-century periods for the climate change scenario 

RCP8.5. However, for other study periods and climate change scenarios, 

GCMs/ensembles‘ results contradicted with each other in changes in predicted grain 

yield. 

 

Figure 7.7: Uncertainty (variability) in projected irrigation water demand, biomass yield 

and grain yield compared to reference period (1981-2010). 

7.6.3 Irrigation levels required to achieve potential grain yields under current climate 

Irrigation levels required to achieve potential grain yields for the winter wheat crop in 

the Sunsari Morang Irrigation Scheme command area under current climate conditions 

(2018-2019 and 2019-2020) are also compared with existing observed irrigation 
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applications (Figure 7.8). The actual irrigation applied and the observed grain yield for 

the 2018-2019 crop period were 92 mm and 1862 kg/ha respectively. However, APSIM 

modeling showed that irrigation supply of 332 mm is required to achieve the optimal 

grain yield of 4312 kg/ha. Similarly, the actual irrigation applied and the observed grain 

yield for the 2019-2020 crop period were 65 mm and 2145 kg/ha respectively. 

However, APSIM modeling showed that irrigation supply of 292 mm is required to 

achieve the optimal grain yield of 4604 kg/ha.  
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Figure 7.8: Irrigation required to reach potential grain yields, and actual irrigation 

supplied for the winter wheat crop in the Sunsari Morang Irrigation scheme command 

area in 2018-2019 and 2019-2020.  

This shows that farmers were applying only 28% and 22% of the total irrigation water 

required to achieve optimal grain yield for the winter wheat crop in the Sunsari Morang 
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Irrigation scheme command area in 2018-2019 and 2019-2020 respectively. This under-

irrigation had a direct impact on grain yield. In 2018-2019 and 2019-2020 respectively, 

the actual grain yield was only 43% and 47% of the optimal grain yield, which could 

have been achieved with no irrigation deficit irrigation. 

Overall, irrigation water demand is projected to increase under climate change scenario 

RCP4.5 at all three time periods in the future, and in the short-short period under 

RCP8.5 scenario. However, irrigation water demand is projected to decrease in the mid-

century and end-of-century under the RCP8.5 scenario. Irrigation water demand at the 

field level is the difference between crop water requirements and effective rainfall. 

Hence, the effective rainfall plays a crucial role in moderating irrigation water demand, 

in addition to other factors affecting crop water requirements such as temperature, solar 

radiation, wind speed and humidity.  

Changes in total rainfall during the winter wheat period (December to mid-April) in the 

short-term, mid-century and end-of-century periods under climate change scenarios 

RCP4.5 and RCP8.5 are -5 mm, -4 mm and -10 mm respectively. Under climate change 

scenario RCP8.5 for the same periods, these changes are -12 mm, -2 mm and -9 mm 

respectively. Changes in average temperature during winter wheat season are 0.6°, 1.4° 

and 2.0° for RCP4.5 scenario, and 1.1°, 1.8° and 3.7° for RCP8.5 scenario in the short-

term, mid-century and end-of-century periods respectively.  

These data show that changes in rainfall are not significant compared to changes in 

temperature. Increases in temperature have resulted in increases in irrigation water 

demand under climate change scenario RCP4.5 in all the three time periods, and in the 

short-short period under RCP8.5 scenario. Decreases in irrigation water demand in the 

mid-century and end-of-century periods under RCP8.5 scenario could be due to more 

distributed rainfall throughout the crop period, rather than intense rainfall for a short 

period. More distributed rainfall during the crop period reduces the irrigation water 

demand and decreases the length of the cropping period. Total crop period (duration 

from sowing to harvest) is projected to decrease under both the RCP4.5 and RCP8.5 

scenarios, compared to the reference period. Under RCP8.5 scenario, the total crop 

period is projected to decrease by 1, 2 and 5 days in the short-term, mid-century and 

end-of-century periods. Under RCP4.5, the equivalent predictions are 0, 1 and 2 days 
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respectively. Irrigation water demand is high for winter wheat crops from floral 

initiation to the maturity period. Decreases in irrigation water demand in the mid-

century and end-of-century periods under RCP8.5 scenario could be due to the reduced 

total crop period.   

Farmers in the tail portion of the Sunsari Morang Irrigation scheme command area (the 

eastern portion of the command area) generally irrigate their winter wheat crop two 

times between the sowing and harvest periods. The first irrigation occurs 3-4 weeks 

after sowing, with the second occurring during the flower initiation period. It has been 

observed that while all farmers irrigate 3-4 weeks after sowing, some farmers do not 

apply the second irrigation if there is rainfall during the flower initiation period. When 

deciding not to irrigate for a second time, the farmers do not consider whether the 

quantity of rainfall is sufficient to fulfill the crop water requirement. For instance, total 

rainfall during the flower initiation period in 2018-2019 crop season was only 35 mm 

(Figure 7.6-a). Farmers did not irrigate for second time, assuming that irrigation was not 

required because of rain had fallen. But 35 mm of rainfall is negligible compared to the 

260 mm of total irrigation required between flower initiation and maturity.  

Similarly, farmers near the observed field plots did not irrigate for a second time in 

2019-2020 crop period, considering a total of 38 mm of rainfall (16 mm during flower 

initiation, 22 mm during flowering) to be enough to maintain crop growth (Figure 7.6-

b). Again, 38 mm of rainfall is much less than the 222 mm of total irrigation required 

between flower initiation and maturity. Since the actual grain yields in 2018-2019 and 

2019-2020 were only 43% and 47% of the optimal grain yield respectively, such under-

irrigation had contributed to a significant reduction in grain yield.  

Other studies have also projected that the irrigation water requirement would increase 

and grain yield would decrease in the future for winter wheat crops in various parts of 

the world. Mirgol et al. (2020) modelled climate change impacts on grain yields of 

winter wheat crop in the 2030s, 2050s and 2080s using a single GCM, The Canadian 

Earth System Model (CanESM2), applying IPCC climate change scenarios RCPs 2.6, 

4.5, and 8.5 to the Qazvin Plateau, Iran. Their study projected that grain yields of winter 

wheat crops would decrease in future for all RCPs by 60-100%. They also reported an 

increase in irrigation water requirements in future by 40-80% compared to 1986-2015 
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period. Likewise, Goodarzi et al. (2019) evaluated climate change impacts on irrigation 

water requirements for different crops in Iran during 2017-2046, considering the 

RCP4.5 and RCP8.5 scenarios. They projected an increase in irrigation water 

requirements for wheat crops by 12-16% compared to 1976-2005 period. Zhang et al. 

(2013) assessed climate change impacts on wheat grain yield in the 2080s compared to 

1961-1990 in the North China, and projected that wheat (local varieties) grain yields 

would decrease by 4-6 % and 1-5 % considering A2 and B2 scenarios respectively.  

Bouras et al. (2019) assessed climate change impacts on irrigation water requirements 

and grain yield of wheat crops in the Tensift region in Morocco for the 2050s and 2090s 

using climate change scenarios RCP4.5 and RCP8.5. Their study reported that both 

irrigation water demands and wheat grain yields would decrease by 13-42% and 7-30% 

in the 2050s and 2090s respectively. The decrease in irrigation water demands were due 

to decreases in the length of cropping period. Similarly, Yuan et al. (2016) assessed 

climate change impacts on irrigation water requirements for winter wheat in China, and 

concluded that decreases in the length of crop growth period reduced irrigation water 

requirements. Chattaraj et al. (2014) also reported reductions in irrigation water 

requirements of wheat in India in 2020-2021 and 2050-2051, compared to 2009-2011. 

They indicated that increased temperature reduced the growth phase. The early maturity 

of wheat resulted in reduced irrigation water requirements. These findings are in line 

with the results of this study for the mid-century and end-of-century for climate change 

scenario RCP8.5, where the length of cropping period has decreased and consequently 

irrigation water demand has also decreased. 

Similar to the Sunsari Morang Irrigation Scheme command area, farmers are not able to 

harvest potential wheat grain yields in other agricultural farms. Khaliq et al. (2019) 

analysed the crop grain yield gaps in Pakistan and reported that farmers are harvesting 

48–56% of potential wheat grain yields at present. Li et al. (2014) assessed grain yields 

of winter wheat in the North China Plain, and stated that regional average grain yields 

were around 55% of the potential grain yields in 1981-2010. Deihimfard et al. (2015) 

studied the wheat grain yield gaps in Khorasan province, Iran, and reported that average 

wheat grain yields were around 80-98% of the potential grain yields. 
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The findings on projected irrigation water demand, biomass and yield could be used by 

Department of Water Resources and Irrigation, Nepal for management of irrigation 

projects in the Sunsari Morang Irrigaion Scheme region. It would help project 

management team and local farmers for irrigation scheduling. As farmers are applying 

only around one-fourth of total irrigation water required to achieve optimal yield, 

farmers could apply more irrigation to increase the crop yield. Local farmers could 

directly be benefitted with increased yield resulted from proper irrigation scheduling. 

For improving irrigation scheduling, seasonal climate forecasts may help farmers decide 

whether or not to apply irrigation. Indeed, various irrigation scheduling tools are already 

available, that irrigators can use with the support of Water Users‘ Associations and the 

district irrigation development office to improve irrigation management. It could be 

explored in more detail for the Sunsari Morang irrigation area in future studies. 

Department of Irrigation and Water Users‘ Associations can help to promote the 

research outcome among local farmers through local workshops. 

7.7 Conclusions 

This study projected the future irrigation water demand, biomass yield and grain yield 

for the winter wheat crop in the Sunsari Morang Irrigation scheme command in Nepal 

in the short-term (2016-2045), mid-century (2036-2065) and end-of-century (2071-

2100) time periods, considering the climate change scenarios RCP4.5 and RCP8.5. A 

generalised methodology for the application of a suitable crop model was developed to 

investigate the climate change impacts on irrigation water demand, biomass yield and 

grain yield and its application has been demonstrated in the Sunsari Morang Irrigation 

scheme command area in Nepal.    

The Agricultural Production Systems Simulator (APSIM) crop model was calibrated 

and validated using observed phenology, biomass yield and grain yield data. The 

downscaled climate data documented in Chapter 5 and reported in Kaini et al. (2020d) 

were used in the validated APSIM model to project irrigation water demand, biomass 

yield and grain yield for the winter wheat crop.  

Projections on irrigation water demand, biomass yield and grain yield based on the 

GCMs/ensembles, representing four corners of climatic extreme (i.e. cold/dry, cold/wet, 

warm/dry, and warm/wet), are as follows: 
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Current irrigation application and impacts on crop grain yield  

 During the study period, farmers were applying only 28% and 22% of the total 

irrigation water required to achieve potential grain yield for the winter wheat 

crop in the Sunsari Morang Irrigation scheme command area in 2018-2019 and 

2019-2020 respectively.  

 Actual winter wheat crop grain yields were only 43% and 47% of optimal grain 

yields in 2018-2019 and 2019-2020 respectively, due to the irrigation deficit. 

Changes in projected irrigation water demand, grain yield and biomass yield 

 The projected mean irrigation water demand for winter wheat crops in the 

Sunsari Morang Irrigation Scheme command area is likely to increase by around 

2%, 1% and 3% in the short-term, mid-century and end-of-century periods 

respectively, considering the RCP4.5 scenario. Under the RCP8.5 scenario, 

mean irrigation water demand is projected to increase by 2% in the short-term 

period, however, it is likely to decrease by about 1% and 8% in the mid-century 

and end-of-century periods respectively. The reduction in irrigation water 

demand could be due to reduced growing time in critical phenological  periods. 

 Winter wheat crop grain yields in the Sunsari Morang Irrigation scheme 

command area are expected to decrease by around 1%, 4% and 7% in the short-

term, mid-century and end-of-century periods under the RCP4.5 scenario. Under 

the RCP8.5 scenario, the equivalent projections are 4%, 6% and 19% 

respectively. The larger reduction in grain yield could be due to reduced 

growing time in critical phenological periods. 

 Winter wheat crop biomass yield is anticipated to increase by 1% in the short-

term considering climate change scenario RCP4.5; however, it is likely to 

decrease by 4% considering the RCP8.5 scenario. For RCP4.5 and RCP8.5 

scenarios, biomass yield is projected to decrease by 3% and 5% respectively in 

the mid-century, and by 6% and 20% respectively in the end-of-century period. 

Uncertainty (variability) in projected irrigation water demand, grain yield and biomass 

yield 

 The uncertainty in irrigation water demand, biomass yield and grain yield is 

projected to increase in future time periods.  
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 The relative uncertainties in irrigation water demand for climate change scenario 

RCP4.5 are -1 to 5 %, -5 to 9 %, and -2 to 11 % for the short-term, mid-century 

and end-of-century periods respectively. Likewise, equivalent projections for 

irrigation water demand for RCP8.5 scenario are 0 to 5 %, -6 to 6 % and -20 to -

1 % respectively. 

 The relative uncertainties in biomass yield for the RCP4.5 scenario are -3 to 4 

%, -10 to 4 % and -15 to 7 % for short-term, mid-century and end-of-century 

periods respectively. Under the RCP8.5 scenario, the respective figures are -11 

to 5 %, -8 to 2 % and -35 to -7 %. 

 The relative uncertainties in grain yield for the RCP4.5 scenario are -5 to 1 %, -

10 to 2 % and -14 to 5 % for short-term, mid-century and end-of-century periods 

respectively. Under the RCP8.5 scenario, the respective figures are -8 to 3 %, -8 

to -2 % and -35 to -10 %. 

Since farmers are applying less irrigation water than required, government programs 

should be conducted to educate farmers about irrigation quantities and timing 

requirements. Different adaptation programs to cope with projected grain yield 

reductions could be planned and implemented by relevant agencies.   
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Chapter 8: Canal hydraulic capacity assessment 

The aim of this chapter is to assess the canal hydraulic capacity of the main canal of the 

Sunsari Morang Irrigation Scheme under climate change scenarios. Water availability 

for future irrigation requirements is dependent on water levels in Koshi River and 

irrigation canal intake characteristics, which are used to project the future winter wheat 

area coverage in the Sunsari Morang Irrigation Scheme command area. Current 

hydraulic capacity of the main canal is investigated, and the canal discharge capacity of 

the main canal for future available flows is also assessed.   

8.1 Canal discharge measurement and losses in the irrigation canal network  

8.1.1 Canal discharge measurement 

Canal discharge was measured at various locations on the main canal. A vertical axis-

current meter, where a series of conical cups mounted in a vertical axis rotates on a 

horizontal axis, was used to measure the number of revolutions of the cup assembly 

every 60 seconds. The current meter used in the field is shown in Figure 8.1. The cup 

assembly was fixed at 0.2, 0.6 and 0.8 times the depth of water below the water surface 

in the main canal to measure the average flow velocity. The cup assembly was fixed at 

three vertical profiles in the main canal because of greater water depth (>1 m). 

The current meter readings were taken at various cross sections along the canal width, 

considering the segment width should not be greater than 1/15 to 1/20 of the total canal 

width (Subramanya, 2007). The current meter rating equation, as provided by the 

manufacturer, Government of Punjab, P.W.D. (I.B.), Hydraulic Research Station, 

Malikpur (Pathankot), is mentioned in Equation 8.1. 

V = 0.8021 x N - 0.0065                                Equation 8.1 

where V is flow velocity (m/s) and N is number of revolutions of cup assembly per sec. 
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Figure 8.1: Current meter used for discharge measurement in the main irrigation canal. 

Water discharge was estimated using the velocity and measured cross sectional area. 

The measured discharge at various locations was used to estimate the losses in the canal 

network. Measured water discharge was calculated using Equation 8.2. Details of the 

field measurement and calculation process for discharge measurement in open channels 

are mentioned in Subramanya (2007).   

Q = V x A                         8.2 

where Q is discharge (m
3
/s), V is average flow velocity (m/s), and A is the wetted cross 

sectional area (m
2
).  

With known measured velocity, canal geometry and canal slope, the Manning‘s 

roughness coefficient was estimated using Equation 8.3. 

   
 

 
                                     8.3 

where n is Manning‘s roughness coefficient, R is the hydraulic radius (wetted 

area/wetted perimeter) (meter) and S is slope of the canal (meter/meter). 
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A longitudinal and cross section survey of the canal network was also conducted. The 

canal geometry data and slope are used to estimate the Manning‘s roughness coefficient 

with a known flow velocity in the canal network section. The canal geometry, slope, 

Manning‘s roughness coefficient and seepage rate data were used in the hydraulic 

model. 

8.1.2 Losses in the irrigation canal network 

The analytical methods used to estimate losses are generally applied in the planning 

phase of the irrigation schemes. These methods are grounded on the coefficient of 

hydraulic conductivity of soil layers and the associated boundary conditions. In the 

existing canals, direct measurement methods to measure loss, rather than analytical 

methods, are generally applied (Indian Standards Institution, 1980). The direct 

measurement methods include the inflow-outflow method, ponding method, seepage 

meter, tracer technique, electrical logging (resistivity measurement), piezometric 

surveys and remote sensing. Among these methods, the inflow-outflow and pond 

methods are suitable for various canal and soil conditions (Indian Standards Institution, 

1980). Seepage meters measure seepage loss through a small area and cannot be applied 

in canal with velocities higher than 0.6 m/sec (Worstell, 1976). The inflow-outflow 

method was applied in this research as it can be applied without affecting the canal 

operation. 

Inflow-outflow method: Losses in the canal are measured based on the water volume 

entering into and outgoing from a particular reach (section) of the canal. The difference 

in water volume calculated by accounting for discharge to offtakes, and losses from 

structures due to leakage, seepage and evaporation. The water balance of the reach 

considered for the experiment is depicted in Equation 8.4. 

                                  8.4 

where, 

       = Total Losses (m
3
/s) 

inQ = inflow discharge at upstream end of the reach (m
3
/s) 

outQ = outflow discharge at the downstream end of the reach (m
3
/s) 
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offtakesQ =discharge at offtakes located within the reach (m
3
/s) 

The inflow-outflow method is described in Figure 8.2. 

 

 

 

 

 

Figure 8.2: Losses measurement in an irrigation canal (Inflow-outflow method). 

The selection of canal reach for loss measurement depends on the availability of flow 

measurement devices or structures. The current meters or other flow measuring devices 

can be used in well-defined sections. Alternatively, existing measuring structures with 

no submergence, for example, a drop (fall) structure with a calibrated rating curve, can 

also be used. A longer canal reach length is preferable, so that the measured losses shall 

be sufficiently higher than the accuracy of the measuring structures. After selecting a 

suitable canal reach, the offtakes within the reach are closed if possible, or are opened 

with a constant opening for the measurement period. The discharge entering into the 

canal reach is kept constant for the test period. The water levels at different portions of 

the canal reach are measured. When a steady water level obtained, the incoming 

discharge, discharge from outlets and outgoing discharge are measured by flow 

measuring devices or based on the rating curves.  

The inflow-outflow method can be applied when canal is in operation, hence, without 

affecting the canal operation. The measured losses represent real canal operating 

conditions. However, this method has a few limitations. The computed loss is generally 

a small quantity compared to the larger water quantities measured as inflow and 

outflow. Hence, small errors in flow measurement lead to large errors in loss 

calculation. The inflow-outflow method is affected by a particular ground water table, 

and by the temperature and humidity conditions in the canal reach during the 

measurement, which may vary with time and space along the total canal length. The 

spatial distribution of losses along the measured canal reach is considered uniform. 

Qin 

Upstream 

Qofftake 

Qout 

Downstream 
Canal flow 
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Moreover, it may take a long time to maintain a steady state condition if the longer 

canal reach is considered, and it may be difficult to monitor the offtakes within the 

reach during the experiment. 

8.2 Personal Computer Storm Water Management Model (PCSWMM) for 

canal hydraulic modelling 

The Storm Water Management Model (SWMM) was developed by United States 

Environmental Protection Agency (US-EPA). It is open source software which can 

perform hydraulic and hydrological modelling (Rossman, 2017, Rossman, 2016). The 

Personal Computer Storm Water Management Model (PCSWMM) is an improved 

version of SWMM developed by Computational Hydraulics International (CHI), 

Canada. The computational principles in PCSWMM are same as SWMM. However, 

graphical representation is better in PCSWMM than in SWMM. 

Open channels or pipes are represented by conduits in PCSWMM, and two channels are 

connected by a junction. Input data in PCSWMM include the size and length of the 

conduits, the elevation and height of the junctions, inflows or outflows at the junctions, 

Manning‘s roughness coefficient of conduits, losses from the conduits, and climate data 

(temperature, precipitation, wind speed). Different flow routing options are available in 

PCSWMM. SWMM hydraulic modelling offers a range of different flowing options, 

including steady flow (which translates the inflow hydrograph at the upstream end of 

the conduit to the downstream end, with no delay and no change in shape, i.e. no 

routing), kinematic wave (which models continuity and simplified momentum, i.e. 

while  flow and area can vary spatially and temporally, this option does not consider the 

backwater effect, entrance/exit losses or pressurised flow) and dynamic routing (which 

considers the continuity equation and the Saint Venant equation, i.e. a complete routing 

including channel storage, backwater effects, losses and pressurised flow) (Rossman, 

2017). Details of the capacities and principles of SWMM hydraulic modelling are 

mentioned in Rossman (2017). The capacities and principles of SWMM hydraulic 

modelling are valid for PCSWMM modelling, too. 

SWMM and PCSWMM hydraulic models have been successfully used around the 

world for the hydraulic assessment of irrigation canal networks (Kim et al., 2016, 

Schoenfelder et al., 2006). SWMM and PCSWMM hydraulic models are being 
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increasingly used for assessing hydraulic performance of irrigation canal networks 

(Bang et al., 2019, Do et al., 2019, Ha et al., 2019). Similarly, Shin et al. (2020a) and 

Shin et al. (2020b) have also successful used SWMM for hydraulic analysis of irrigation 

canals. In this study, the PCSWMM hydraulic model (version 5.0.012) was used for the 

assessment of canal hydraulic capacity of the main canal in the Sunsari Morang 

Irrigation Scheme. 

8.3 Methodological approach for PCSWMM hydraulic modelling  

A complete methodology for PCSWMM hydraulic modelling is schematised in Figure 

8.3. The main steps in the hydraulic modelling include input data processing and model 

development/set up, calibration, validation, and scenario analysis. These steps are 

described in the following sections: 

 

Figure 8.3: Flowchart of methodology for hydraulic modelling using the PCSWMM 

model. 



183 

 

8.3.1 PCSWMM input data processing and model development (Model initialisation) 

PCSWMM input data include the size, length, elevation and slope of the canal, inflow 

or outflow from the canal, Manning‘s roughness coefficient of the canal, losses from the 

canal, and climate data (temperature, precipitation, wind speed). The observed 

discharge, velocity and water depth at main canal of the Sunsari Morang Irrigation canal 

were used for the calibration and validation of the PCSWMM model. 

8.3.2 Model calibration  

After model initialisation (PCSWMM model development as mentioned in 8.3.1), the 

model was calibrated using observed discharge, flow velocity and water depth at the 

main canal of the Sunsari Morang Irrigation canal. Observed discharge, flow velocity 

and water depth at the main canal of the Sunsari Morang Irrigation canal network for 

the period 2018-2020 were used for the calibration of the PCSWMM model. 

 8.3.3 Model validation 

The calibrated PCSWMM model (section 8.3.2) was validated using observed 

discharge, flow velocity and water depth at the main canal of the Sunsari Morang 

Irrigation canal network. Observed discharge, flow velocity and water depth at the main 

canal of the Sunsari Morang Irrigation canal for the period 2018-2020 were used for the 

validation of the PCSWMM model. 

 8.3.4 Scenario analysis (canal capacity assessment) 

The validated PCSWMM model (section 8.3.3) was applied to assess the hydraulic 

capacity of the canal, based on water availability for irrigation at the irrigation canal 

intake considering future climate change scenarios. The short-term (2016-2045), mid-

century (2036-2065) and end-of-century (2071-2100) periods with the projected Koshi 

River flows under climate change scenarios RCP4.5 and RCP8.5 were considered for 

the future scenarios. Changes in future water availability for irrigation at the irrigation 

canal intake were compared with the reference (base) period (1981-2010) data. The 

flow capacity of the main canal was assessed with respect to future water availability for 

irrigation at the irrigation canal intake. 
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8.4 Application of methodology for PCSWMM hydraulic modelling  

The application of the methodological framework described in Figure 8.3 is 

demonstrated in the following sections.  

 8.4.1 PCSWMM input data processing and model development 

The PCSWMM model was developed using the size, length, elevation and slope of the 

canal, inflow or outflow from the canal, Manning‘s roughness coefficient of the canal, 

losses from the canal, and climate data (temperature, precipitation, wind speed) as 

mentioned in section 8.3.1. The developed PCSWMM model was used for model 

calibration. 

Input data: Irrigation canal geometry including size (canal sections), length, elevation 

and slope were measured during field visits as well as being collected from the Sunsari 

Morang Irrigation Project Office. Climate data for 2016-2020 were taken from APSIM 

Next Generation (Holzworth et al., 2018). These climate data were also used in APSIM 

crop modelling (Chapter 7). 

Canal discharge measurements were carried out at different locations of the main canal. 

The canal network of the Sunsari Morang Irrigation Scheme, including the main canal 

and branch canals, is shown in Figure 3.5. Canal discharge measurements were carried 

out on the main canal, at the following distances from the irrigation intake: 5.2 km 

(Table 8.1), 11.8 km (Table 8.2), 13 km (Table 8.3), 15 km (Table 8.4), 22.5 km (Table 

8.5) and 25.3 km (Table 8.6). Canal discharge measurements were taken using the 

current meter as mentioned in Section 8.1.1. A conceptual diagram showing the channel 

section, distances and depths for measuring discharge is shown in Figure 8.4. As shown 

in Figure 8.4, the current cup assembly was fixed at 0.2, 0.6 and 0.8 times the depth of 

water below the water surface at each segment to measure the average flow velocity of 

the respective segment. 
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Figure 8.4: A conceptual diagram showing the channel section, distances and depths for 

measuring discharge. 

Discharge measurements at 5.2 km and 11.8 km were conducted considering the 

calculation of losses between these two measuring stations. Discharge measurements at 

13 km and 15 km were performed considering the calculation of losses between these 

two measuring stations. Likewise, discharge measurements at 22.5 km and 25.3 km 

were carried out considering the calculation of losses between these the two measuring 

stations. In all three cases, there was no outflow in between the two respective 

measuring stations. The discharge was kept constant in the canal during the discharge 

measurements at 5.2 km and 11.8 km, 13 km and 15 km, and 22.5 km and 25.3 km. 

Details on canal discharge measurements at 5.2 km, 11.8 km, 13 km, 15 km, 22.5 km, 

and 25.3 km from the irrigation intake along the main canal of Sunsari Morang 

Irrigation are presented in Tables 8.1, 8.2, 8.3, 8.4, 8.5 and 8.6 respectively. 
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Table 8.1: Canal discharge measurement at 5.2 km from the irrigation intake along the 

main canal. 
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1 1.4 28 32 35 0.417 1.575 0.657 

2 1.3 30 34 38 0.448 1.3 0.582 

3 1.3 31 41 45 0.515 1.3 0.67 

4 1.3 30 38 40 0.475 1.3 0.618 

5 1.3 28 32 35 0.417 1.3 0.542 

6 1.4 27 31 31 0.39 1.4 0.546 

7 1.5 24 27 28 0.346 1.5 0.519 

8 1.5 22 24 24 0.305 1.5 0.458 

9 1.5 26 28 30 0.368 1.5 0.552 

10 1.5 31 35 37 0.452 1.5 0.678 

11 1.5 33 38 42 0.497 1.5 0.746 

12 1.5 36 40 43 0.524 1.5 0.786 

13 1.5 38 41 44 0.542 1.5 0.813 

14 1.5 42 46 50 0.608 1.5 0.912 

15 1.48 45 50 52 0.649 1.48 0.961 

16 1.48 47 52 55 0.68 1.48 1.006 

17 1.48 43 48 50 0.622 1.48 0.921 

18 1.5 43 49 52 0.635 1.5 0.953 

19 1.4 42 46 50 0.608 1.4 0.851 

Total = 27.515 13.771 
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Table 8.2: Canal discharge measurement at 11.8 km from the irrigation intake along the 

main canal. 

D
is

ta
n
ce

 f
ro

m
 

in
ta

k
e 

T
o
ta

l 
w

id
th

 (
W

) 
  
 

(m
) 

D
is

ta
n
ce

 f
ro

m
  
 

le
ft

 (
m

) 

W
at

er
 d

ep
th

 (
m

) 

Revolution per 60 sec (current 

meter placed at ...from bottom) 

V
el

o
ci

ty
 (

m
/s

) 

A
re

a 
(m

2
) 

D
is

ch
ar

g
e 

(m
3
/s

) 

0.2 x 

water 

depth 

0.4 x 

water 

depth  

0.8 x 

water 

depth  

1
1
.8

 k
m

 

W
 =

 1
9
.5

 m
, 
W

/1
5
 =

 1
.3

 m
, 
W

/2
0
 =

 0
.9

7
 m

 

1 1.1 17 18 19 0.234 1.238 0.29 

2 1.3 20 22 24 0.288 1.3 0.374 

3 1.5 25 27 27 0.346 1.5 0.519 

4 1.8 26 27 27 0.35 1.8 0.63 

5 1.8 28 35 35 0.43 1.8 0.774 

6 1.9 27 28 28 0.363 1.9 0.69 

7 1.9 26 28 28 0.359 1.9 0.682 

8 2 24 25 29 0.341 2 0.682 

9 2 28 33 34 0.417 2 0.834 

10 2.2 31 33 35 0.435 2.2 0.957 

11 2.2 34 36 39 0.479 2.2 1.054 

12 2.1 31 33 36 0.439 2.1 0.922 

13 2 27 31 33 0.399 2 0.798 

14 1.9 24 25 25 0.323 1.9 0.614 

15 1.9 22 25 26 0.319 1.9 0.606 

16 1.8 20 23 24 0.292 1.8 0.526 

17 1.55 17 18 19 0.234 1.55 0.363 

18 1.3 15 16 17 0.207 1.3 0.269 

19 1.1 15 16 17 0.207 1.1 0.228 

Total = 33.488 11.81 
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Table 8.3: Canal discharge measurement at 13 km from the irrigation intake along the 

main canal. 
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1.5 0.5 6 7 8 0.087 0.844 0.073 

3 0.8 7 8 9 0.1 1.2 0.12 

4.5 0.9 10 11 12 0.141 1.35 0.19 

6 1.2 12 13 14 0.167 1.8 0.301 

7.5 1.5 13 15 17 0.194 2.25 0.437 

9 1.5 14 15 17 0.198 2.25 0.446 

10.5 1.7 15 17 19 0.221 2.55 0.564 

12 1.9 18 20 23 0.265 2.85 0.755 

13.5 2 18 21 23 0.27 3 0.81 

15 1.9 18 19 22 0.256 2.85 0.73 

16.5 1.75 19 21 24 0.279 2.625 0.732 

18 1.7 22 24 27 0.319 2.55 0.813 

19.5 1.55 20 22 25 0.292 2.325 0.679 

21 1.4 18 19 22 0.256 2.1 0.538 

22.5 1.4 15 17 20 0.225 2.1 0.473 

24 1.3 13 16 18 0.203 1.95 0.396 

25.5 0.9 12 13 15 0.172 1.35 0.232 

27 0.7 10 11 13 0.145 1.05 0.152 

28.5 0.5 8 9 10 0.114 0.781 0.089 

Total = 37.775 8.53 
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Table 8.4: Canal discharge measurement at 15 km from the irrigation intake along the 

main canal. 
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1.5 1.3 5 7 9 0.087 2.194 0.191 

3 1.5 7 10 11 0.118 2.25 0.266 

4.5 1.5 7 11 13 0.132 2.25 0.297 

6 1.5 9 12 14 0.149 2.25 0.335 

7.5 1.9 8 10 11 0.123 2.85 0.351 

9 1.9 9 12 13 0.145 2.85 0.413 

10.5 1.9 10 12 14 0.154 2.85 0.439 

12 1.5 11 13 16 0.172 2.25 0.387 

13.5 1.5 13 17 19 0.212 2.25 0.477 

15 1.7 16 20 23 0.256 2.55 0.653 

16.5 1.8 19 22 25 0.288 2.7 0.778 

18 1.9 18 22 25 0.283 2.85 0.807 

19.5 1.9 15 18 21 0.234 2.85 0.667 

21 1.6 13 17 19 0.212 2.4 0.509 

22.5 1.5 12 16 17 0.194 2.25 0.437 

24 1.5 9 12 14 0.149 2.25 0.335 

25.5 1.5 7 10 11 0.118 2.25 0.266 

27 1.5 6 9 10 0.105 2.25 0.236 

28.5 1.3 4 7 9 0.083 2.031 0.169 

Total = 46.375 8.013 
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Table 8.5: Canal discharge measurement at 22.5 km from the irrigation intake along the 

main canal. 
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0.8 x 
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2
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W
 =

 2
0
 m

, 
W

/1
5
 =

 1
.3

 m
, 
W

/2
0
 =

 1
.0

 m
 

1 0.7 3 4 5 
0.047 0.788 0.037 

2 0.9 4 5 6 
0.06 0.9 0.054 

3 1.1 8 13 15 
0.154 1.1 0.169 

4 1.3 12 14 16 
0.181 1.3 0.235 

5 1.5 14 16 17 
0.203 1.5 0.305 

6 1.5 15 16 18 
0.212 1.5 0.318 

7 1.5 16 18 21 
0.239 1.5 0.359 

8 1.45 19 23 26 
0.297 1.45 0.431 

9 1.45 20 24 26 
0.305 1.45 0.442 

10 1.45 20 23 27 
0.305 1.45 0.442 

11 1.5 19 21 24 
0.279 1.5 0.419 

12 1.5 18 21 23 
0.27 1.5 0.405 

13 1.5 17 20 21 
0.252 1.5 0.378 

14 1.5 15 16 18 
0.212 1.5 0.318 

15 1.45 14 16 18 
0.207 1.45 0.3 

16 1.35 12 13 16 
0.176 1.35 0.238 

17 1.1 7 8 9 
0.1 1.1 0.11 

18 0.8 4 5 6 
0.06 0.8 0.048 

19 0.6 3 4 5 
0.047 0.6 0.028 

Total = 24.24 5.036 
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Table 8.6: Canal discharge measurement at 25.3 km from the irrigation intake along the 

main canal. 
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1 0.8 2 6 9 0.069 0.9 0.062 

2 1.1 3 8 11 0.092 1.1 0.101 

3 1.35 5 8 12 0.105 1.35 0.142 

4 1.55 8 11 15 0.145 1.55 0.225 

5 1.65 10 14 17 0.176 1.65 0.29 

6 1.8 13 15 16 0.19 1.8 0.342 

7 1.9 15 17 19 0.221 1.9 0.42 

8 1.8 15 18 19 0.225 1.8 0.405 

9 1.7 16 18 19 0.23 1.7 0.391 

10 1.6 16 18 19 0.23 1.6 0.368 

11 1.6 15 17 18 0.216 1.6 0.346 

12 1.65 15 18 19 0.225 1.65 0.371 

13 1.55 15 17 18 0.216 1.55 0.335 

14 1.5 12 13 15 0.172 1.5 0.258 

15 1.4 10 11 13 0.145 1.4 0.203 

16 1.3 8 10 11 0.123 1.3 0.16 

17 1.15 8 10 12 0.127 1.15 0.146 

18 0.9 6 8 9 0.096 0.9 0.086 

Total = 26.4 4.651 

 

The losses and Manning‘s roughness coefficient at different portions of the main canal 

are shown in Table 8.7. The water losses between 5.2 km and 11.8 km, 13 km and 15 
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km, and 22.5 km and 25.3 km distance from irrigation canal intake are 0.014 

liter/sec/m
2
 (l/s/m

2
), 0.009 l/s/m

2
 and 0.007 l/s/m

2
 respectively. The average water loss 

in the Sunsari Morang Irrigation main canal was 0.01 l/s/m
2
. The Manning‘s roughness 

coefficient varies from 0.037 to 0.093 at different locations of the main canal (Table 

8.7). The average value of Manning‘s roughness coefficient was 0.066 in the main canal 

of the Sunsari Morang Irrigation. 

Table 8.7: Losses and Manning‘s roughness coefficient at different portions of the main 

canal. 

Distance 

from intake 

Discharge 

(m
3
/s) 

Wetted 

perimeter (m) 

Losses 

(l/s/m
2
)* 

Manning's 

roughness 

coefficient (n) 

5.2 km   13.771 21.231 
0.014 

0.047 

11.8 km 11.81 20.92 0.037 

13 km 8.53 29.72 
0.009 

0.060 

15 km 8.013 30.58 0.093 

22.6 km 5.036 20.56 
0.007 

0.074 

25.4 km 4.651 19.734 0.083 

*Liter/sec/sq. meter (l/s/m
2
)  

Kilic and Tuylu (2011) investigated water losses in the conveyance system of the 

Ahmetli irrigation scheme in Turkey using the inflow-out flow method. They reported 

that the average water loss in the main canal was 0.067 l/s/m
2
 with the loss varying from 

0.012 – 0.142 l/s/m
2 

at different sections of the main canal. Likewise, Eshetu and 

Alamirew (2018) evaluated water losses in irrigation canals in Ethiopia using the 

inflow-outflow method. They reported that average water loss in sections of the main 

canal which were lined with geo-membrane was 0.0126 l/s/m
2 

with the loss varying 

from 0.0123 – 0.0129 l/s/m
2 

at different sections of the main canal. In the earthen 

portion of the main irrigation canal, the average water loss was 0.0180 l/s/m
2
. 

Mohammadi et al. (2019) analysed water losses in the main irrigation channels in Iran 

and reported an average water losses of 0.014 l/s/m
2 

in the main canal. Water losses 

varied from 0.013 l/s/m
2 

to 0.016 l/s/m
2
. Akkuzu (2012) assessed water losses in an 

irrigation canal in Turkey using the inflow-outflow method, and reported an average 
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water loss of 0.014 l/s/m
2 

varying from 0.002 l/s/m
2 

to 0.036 l/s/m
2
 at different locations 

of the canal. Manning‘s roughness coefficient values for earthen canals are 0.02 for 

newly constructed, very smooth canal sections without meandering, 0.1 for  very high 

vegetation conditions, and 1.3 for severe meandering conditions (Department of 

Irrigation, 2014). When designing earthen irrigation canals in Nepal, Manning‘s 

roughness coefficient values is generally taken as 0.025 to 0.03. Bakry et al. (1992) 

invested the Manning‘s roughness coefficient in an irrigation canal in Egypt, and 

reported a maximum Manning‘s coefficient of 0.083 in an earthen canal. Salah Abd 

Elmoaty and El-Samman (2020) conducted an investigation on Manning‘s roughness 

coefficient for different weed density scenarios in channels. They reported the 

maximum value of Manning‘s roughness coefficient for high weed, medium weed and 

low weed densities as 0.12, 0.08 and 0.07 respectively. These findings support the 

results from this research as some reaches of the earthen irrigation canals in the Sunsari 

Morang Irrigation Scheme have silt deposits and medium to high vegetation.    

 8.4.2 Model calibration  

Observed discharge, velocity and water depth data in the main canal of the Sunsari 

Morang Irrigation canal system were used for the calibration of the PCSWMM model. 

Initially, canal discharge at the intake of the main irrigation canal was adjusted to match 

the simulated discharge with the observed discharge at the 5.2 km distance from the 

irrigation intake. Rigorous systematic manual adjustment of the canal discharge at the 

intake point was carried out so that the simulated discharge value was close to observed 

discharge at the 5.2 km distance from the irrigation intake. After this, simulated velocity 

and simulated water depth are compared with observed values. Similar processes were 

carried out to calibrate measurements at the 13 km and 22.5 km distances from the 

irrigation intake along the main canal. The observed and simulated discharge, velocity 

and water depth for the calibration period are shown in Figure 8.5 (a). 

The average observed discharge, velocity and water depth data for the calibration period 

at 5.2 km distance along the main canal from the irrigation intake are 13.77 m
3
/s, 0.5 

m/s, and 1.44 m respectively. The simulated values are close to observed values. The 

simulated discharge, velocity and water depth data for the calibration period are 13.71 

m
3
/s, 0.53 m/s, and 1.45 m respectively. The minimum (mean minus standard deviation) 
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and maximum (mean plus standard deviation) standard deviations range for velocity are 

0.39 m/s and 0.61 m/s for the calibration period based on the variation in velocity within 

the measured canal section. The simulated velocity for the calibration period is within 

the standard deviation of the mean. Likewise, the minimum and maximum standard 

deviations range for water depth are 1.36 m and 1.52 m for the calibration period, based 

on the variation in water depth within the measured canal section. The simulated water 

depth for the calibration period is within the standard deviation of the mean. 
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Figure 8.5: Observed and simulated discharge, velocity and water depth for the (a) calibration and (b) validation periods.
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On the main canal, the average observed discharge, velocity and water depth data for 

the calibration period at 13 km distance from the irrigation intake are 8.53 m
3
/s, 0.21 

m/s, and 1.32 m respectively. The simulated values are close to observed values. The 

simulated discharge, velocity and water depth data for the calibration period are 8.53 

m
3
/s, 0.17 m/s, and 1.77 m respectively. The minimum (mean minus standard deviation) 

and maximum (mean plus standard deviation) standard deviations range for velocity are 

0.14 m/s and 0.28 m/s for the calibration period based on the variation in velocity within 

the measured canal section. The simulated velocity for the calibration period is within 

the standard deviation of the mean. Likewise, the minimum and maximum standard 

deviations range for water depth are 0.84 m and 1.80 m for the calibration period based 

on the variation in water depth within the measured canal section. The simulated water 

depth for the calibration period is within the standard deviation of the mean. 

On the main canal, the average observed discharge, velocity and water depth data for 

the calibration period at 22.5 km distance from the irrigation intake are 5.04 m
3
/s, 0.19 

m/s, and 1.27 m respectively. The simulated values are close to observed values. The 

simulated discharge, velocity and water depth data for the calibration period are 5.01 

m
3
/s, 0.21 m/s, and 1.27 m respectively. The minimum (mean minus standard deviation) 

and maximum (mean plus standard deviation) standard deviations range for velocity are 

0.10 m/s and 0.28 m/s for the calibration period, based on the variation in velocity 

within the measured canal section. The simulated velocity for the calibration period is 

within the standard deviation of the mean. Likewise, the minimum and maximum 

standard deviations range for water depth are 0.96 m and 1.58 m for the calibration 

period based on the variation in water depth within the measured canal section. The 

simulated water depth for the calibration period is within the standard deviation of the 

mean. 

The PCSWMM model performance for the calibration period is good as the simulated 

values for discharge, velocity and water depth are close to observed values and within 

the standard deviation of the mean. 

 8.4.3 Model validation 

Using the calibrated model based on discharge, velocity and water depth data in the 

main canal of the Sunsari Morang Irrigation scheme, the PCSWMM model was 
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validated using discharge, velocity and water depth data at different canal sections than 

those used for model calibration. Different data sets were used for calibration and 

validation. For model validation, discharge, velocity and water depth data at 11.8 km, 

15 km and 25.3 km distance along the main canal from the irrigation intake were used. 

The observed and simulated discharge, velocity and water depth data for the validation 

period are shown above in Figure 8.5 (b). 

On the main canal, the average observed discharge, velocity and water depth data for 

the validation period at 11.8 km distance from the irrigation intake are 11.81 m
3
/s, 0.34 

m/s, and 1.76 m respectively. The simulated values are close to observed values. The 

simulated discharge, velocity and water depth for the validation period are 11.73 m
3
/s, 

0.29 m/s, and 2.06 m respectively. The minimum (mean minus standard deviation) and 

maximum (mean plus standard deviation) standard deviation range for velocity are 0.26 

m/s and 0.42 m/s for the validation period. Likewise, the minimum and maximum 

standard deviation range for water depth are 1.41 m and 2.11 m for the validation 

period. The simulated velocity and water depth for validation period are within the 

standard deviation of the mean. 

On the main canal, the average observed discharge, velocity and water depth data for 

the validation period at 15 km distance from the irrigation intake are 8.01 m
3
/s, 0.17 

m/s, and 1.62 m respectively. The simulated values are close to observed values. The 

simulated discharge, velocity and water depth for the validation period are 7.9 m
3
/s, 

0.19 m/s, and 1.62 m respectively. The minimum (mean minus standard deviation) and 

maximum (mean plus standard deviation) standard deviation range for velocity are 0.11 

m/s and 0.23 m/s for the validation period. Likewise, the minimum and maximum 

standard deviation range for water depth are 1.41 m and 1.83 m for the validation 

period. The simulated velocity and water depth for the validation period are within the 

standard deviation of the mean. 

On the main canal, the average observed discharge, velocity and water depth data for 

the validation period at 25.3 km distance from the irrigation intake are 4.65 m
3
/s, 0.17 

m/s, and 1.46 m respectively. The simulated values are close to observed values. The 

simulated discharge, velocity and water depth for the validation period are 4.39 m
3
/s, 

0.20 m/s, and 1.32 m respectively. The minimum (mean minus standard deviation) and 



198 

 

maximum (mean plus standard deviation) standard deviation range for velocity are 0.11 

m/s and 0.23 m/s for the validation period. Likewise, the minimum and maximum 

standard deviation range for water depth are 1.15 m and 1.77 m for the validation 

period. The simulated velocity and water depth for the validation period are within the 

standard deviation of the mean. 

The PCSWMM model performance for the validation period is good, as the simulated 

values for discharge, velocity and water depth are close to observed values and within 

the standard deviation of the mean. 

 8.4.4 Scenario analysis (canal capacity assessment) 

The main aim of scenario analysis was to assess the hydraulic capacity of the main 

canal of the Sunsari Morang Irrigation Scheme considering future water availability for 

irrigation at the irrigation canal intake for the short-term (2016-2045), mid-century 

(2036-2065) and end-of-century (2071-2100) time periods, under different climate 

change scenarios. The validated PCSWMM model was applied to assess the hydraulic 

capacity of the main canal for different future study periods and climate scenarios. The 

analysis will provide information on the carrying capacity of canal system based on 

water availability in Koshi River at the canal intake. 

The short-term (2016-2045), mid-century (2036-2065) and end-of-century (2071-2100) 

periods, with the future water availability for irrigation at the irrigation canal intake 

under climate change scenarios RCP4.5 and RCP8.5 were considered for the future 

scenarios. 

Future water availability for irrigation at the irrigation canal intake was projected based 

on future river discharge available in the Koshi River at irrigation canal intake (Chapter 

6). This was carried out in the following steps: 

(a) Development of a stage-discharge relationship (rating curve) for the Koshi River 

at irrigation canal intake. 

(b) Projected river flow for future scenarios (output of hydrological model). 

(c) Water availability for irrigation at the irrigation canal intake for future scenarios 

derived from (a) and (b) above. 
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Records of Koshi River water levels at the irrigation intake were taken from the Sunsari 

Morang Irrigation Project office, and the river discharge data were obtained from the 

Department of Hydrology and Meteorology, Nepal. Although the record-keeping 

system exists at the irrigation intake, the record-keeping books are missing and only 

around six years‘ data are available. Data available on the river water level at the 

irrigation intake for around six years from 1996 – 2012 were used for developing a 

stage-discharge relationship (rating curve) for the Koshi River at the irrigation canal 

intake (Figure: 8.6). The elevation of the intake crest level at the entry point to the main 

irrigation canal is 107 m above mean sea level (AMSL). More concentrated dotted 

points near 107 m AMSL represent river water at dry season. When the river water level 

is <= 107 m, there is no water flow into the canal system. The relationship between 

water level elevation and river discharge is mentioned in Equation 8.5. 

                                                            8.5 

 

Figure 8.6: Stage-discharge relationship for the Koshi River at the irrigation canal 

intake, based on data available from 1996 to 2012. 

Using the rating curve at Figure 8.6, water level elevations for observed river discharge 

for reference (base) period (1981-2010) were calculated. The minimum average 

monthly flows in the Koshi River at the irrigation canal intake for the three study 
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periods were taken from the hydrological analysis described in Chapter Six and 

published in  (Kaini et al., 2020b). Water level elevations for projected future minimum 

average monthly flows in the Koshi River at the irrigation canal intake during the dry 

season (December – May) were calculated using rating curve Equation 8.5. 

Based on water level elevations at the canal intake for projected future minimum 

average monthly flows, water availability for irrigation at the irrigation canal intake in 

future during the dry season was calculated. In the dry season, water flows into the 

canal from the river as a broad-crested free flow. The weir acts as a broad-crested weir 

when the head over the crest is less than the 1.5 times the width of crest (Garg, 2006). 

The weir crest elevation at the irrigation intake is 107 m AMSL. The width of weir in 

the flow direction at the intake of the Sunsari Morang Irrigation Scheme is 2 m. The 

average and median values of the head over the weir crest at intake in the dry season 

(December – May) during 1982-2010 were 107.78 m and 107.72 m respectively. The 

water level at the intake and river discharge derived from the stage-discharge 

relationship in the dry season (December – May) during 1982-2010 is shown in Figure 

8.3. The head over the weir crest at intake in the dry season (December – May) is never 

4.5 m (1.5 x 2 m). Hence, weir always acts as broad-crested weir in the dry season.  

The discharge from a broad-crested weir can be calculated by Equation 8.6 (Garg, 

2006). 

                            8.6 

Where Q = discharge in m3/s, L = clear waterway length (m), K = coefficient of end 

contraction general taken as 0.1, n = number of end contractions (twice the number of 

gated bays) and H = head over the crest (m). 

Water availability for irrigation at the irrigation canal intake in future dry seasons was 

calculated based on water level elevations at the canal intake for the projected future 

minimum average monthly flow using Equation 8.6. 
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8.5 Results and discussion  

8.5.1 Average monthly water availability for irrigation at the irrigation canal intake 

for dry season during 1982-2010 

Average monthly water availability for irrigation at the irrigation canal intake for dry 

seasons during 1982-2010 is shown in Figure 8.7. The average monthly water 

availability for irrigation at the irrigation canal intake during 1982-2010 in December, 

January, February, March, April and May were 76.69 m
3
/s, 41.68 m

3
/s, 27.87 m

3
/s, 

29.39 m
3
/s, 50.50 m

3
/s and 124.84 m

3
/s respectively. The lowest flow into the canal was 

in February, followed by March. The standard deviation of the mean varies from 13.30 

m
3
/s to 42.44 m

3
/s in February, and 13.49 m3/s to 45.29 m

3
/s in March. This shows that 

there was a low discharge into the canal during January, February, March and April, 

compared to the designed discharge of 60 m
3
/s. 

  

 

Figure 8.7: Average monthly water availability for irrigation at the irrigation canal 

intake for dry seasons during 1982-2010. 

8.5.2 Projected average monthly minimum flow availability for irrigation at canal 

intake 

Data about monthly or half-monthly water availability in the river, rather than annual or 

seasonal water availability, is crucial for design and management of irrigation schemes 

in developing countries. In many irrigation schemes in developing countries, 
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mechanisms which divert water from the source into the irrigation canal are still 

operating on gravity flow, and lack pumping mechanisms and impoundment structures. 

Projected average monthly minimum flow availability for irrigation at the Sunsari 

Morang Irrigation Scheme  canal intake for the short-term (2016-2045), mid-century 

(2036-2065) and end-of-century (2071-2100) periods, considering climate change 

scenarios RCP4.5 and RCP8.5, is shown in Table 8.8. Water availability for irrigation at 

the canal intake is expected to increase for all time periods and climate change scenarios 

in December, January, February and March. However, there is no consensus in 

increases or decreases in projected flows for April and May. This is due to the projected 

flow variation in river water availability (Kaini et al., 2020c), as the discharge in the 

river directly affects the water availability for irrigation at the irrigation canal intake. 

Table 8.8 shows that although there is an increase in water availability for irrigation in 

December, January, February and March, the designed discharge of 60 m
3
/s would not 

be available in February and March for all future scenarios. 

Table 8.8: Projected average monthly minimum flow (m
3
/s) availability for irrigation at 

the canal intake, with reference (base) period flow for comparison. 

Scenarios Dec Jan Feb Mar Apr May 

Reference period (1982-2010) 76.69 41.68 27.87 29.39 50.50 124.84 

Short-term (2016-2045)_RCP4.5 124.80 70.42 47.65 40.50 42.02 90.64 

Short-term (2016-2045)_RCP8.5 92.18 54.35 36.96 35.57 55.26 155.43 

Mid-century (2036-2065)_RCP4.5 114.41 65.15 42.80 43.46 85.89 200.22 

Mid-century (2036-2065)_RCP8.5 110.84 66.21 46.69 44.44 46.87 115.34 

End-of-century (2071-

2100)_RCP4.5 
112.03 60.87 37.93 35.57 73.78 209.31 

End-of-century (2071-

2100)_RCP8.5 
134.76 80.70 53.43 45.42 51.68 65.51 

 

Projected average monthly minimum flow availability for irrigation at the canal intake 

along with their standard deviation of the mean is shown in Figure 8.8. In December 

and January, the lower value of the standard deviation of the mean for future average 

monthly minimum flow availability for irrigation at the canal intake is above the mean 
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flow for the period 1982-2010. In February, the lower value of the standard deviation of 

the mean for future average monthly minimum flow availability for irrigation at the 

canal intake is almost the same as the mean flow for the period 1982-2010. In March, 

April and May, the lower value of the standard deviation of the mean for future average 

monthly minimum flow availability for irrigation at the canal intake is below the mean 

flow for the period 1982-2010.   

 

Figure 8.8: Projected average monthly minimum flow availability for irrigation at the 

canal intake, along with their standard deviation of the mean. 

8.5.3 Projected area coverage for winter wheat crop 

Irrigation water requirements for winter wheat crops at farm level, derived from crop 

modelling, are shown in Table 8.9. Table 8.9 shows that the highest irrigation water 

demand occurs in March, followed by February, for winter wheat crops in future. 
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However, water availability for irrigation at the canal intake will be less in March and 

February than in December, January and April.    

Table 8.9: Irrigation water requirement (mm) for winter wheat crops at field level, 

derived from crop modelling. 

Irrigation water requirement (mm) for winter wheat crop at field level  

Scenarios Dec Jan Feb Mar Apr 

Short-term (2016-2045)_RCP4.5 4 48 125 195 67 

Short-term (2016-2045)_RCP8.5 4 50 130 197 58 

Mid-century (2036-2065)_RCP4.5 4 49 126 198 58 

Mid-century (2036-2065)_RCP8.5 5 53 127 192 50 

End-of-century (2071-2100)_RCP4.5 4 55 135 196 51 

End-of-century (2071-2100)_RCP8.5 4 52 125 183 29 

Reference period (1982-2010) 3 44 118 198 66 

 

Irrigation water requirements for winter wheat at the canal intake is shown in Table 

8.10. In Nepal, average irrigation field efficiency, distribution canal efficiency, and 

main canal efficiency values for winter wheat crops are considered as 0.60, 0.75 and 

0.75 respectively (Department of Irrigation, 1990). Considering these values of 

efficiencies, irrigation water requirements for winter wheat at the irrigation canal intake 

were estimated.  
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Table 8.10: Irrigation water requirements (liter/sec/ha) for winter wheat crop at the 

irrigation canal intake. 

Irrigation water requirement (liter/sec/ha) for winter wheat at the irrigation canal  intake 

Scenarios Dec Jan Feb Mar Apr 

Short-term (2016-2045)_RCP4.5 0.05 0.55 1.43 2.23 0.77 

Short-term (2016-2045)_RCP8.5 0.05 0.57 1.49 2.25 0.66 

Mid-century (2036-2065)_RCP4.5 0.05 0.56 1.44 2.26 0.66 

Mid-century (2036-2065)_RCP8.5 0.06 0.61 1.45 2.19 0.57 

End-of-century (2071-2100)_RCP4.5 0.05 0.63 1.54 2.24 0.58 

End-of-century (2071-2100)_RCP8.5 0.05 0.59 1.43 2.09 0.33 

Reference period (1982-2010) 0.03 0.5 1.35 2.26 0.75 

 

Based on projected average monthly minimum flow availability for irrigation at the 

canal intake, and irrigation water requirements for winter wheat crops at the canal 

intake, the potential area coverage by winter wheat crop was projected (Table 8.11). For 

example, projected average monthly minimum flow availability for irrigation at the 

canal intake in the short-term (2016-2045) for climate change scenario RCP4.5 is 40.50 

m
3
/s (Table 8.8), and the irrigation water requirements for this period is 2.23 liter/sec/ha 

(Table 8.10). Hence, the potential winter wheat area coverage for short-term (2016-

2045), considering RCP4.5 scenario is 18200 hectares. The minimum area that can be 

covered throughout the cropping period of the winter wheat crop (December – April) 

should be taken as the potential area coverage for the winter wheat crop. Hence, area 

that could be covered in March is considered as potential area coverage, as it describes 

the minimum area coverage during the month when the irrigation demand is at its 

maximum.   
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Table 8.11: Potential area coverage by the winter wheat crop (in hectares). 

Scenarios Dec Jan Feb Mar Apr 

Short-term (2016-2045)_RCP4.5 2496000 128000 33300 18200 54600 

Short-term (2016-2045)_RCP8.5 1843600 95400 24800 15800 83700 

Mid-century (2036-

2065)_RCP4.5 
2288200 116300 29700 19200 130100 

Mid-century (2036-

2065)_RCP8.5 
1847300 108500 32200 20300 82200 

End-of-century (2071-

2100)_RCP4.5 
2240600 96600 24600 15900 127200 

End-of-century (2071-

2100)_RCP8.5 
2695200 136800 37400 21700 156600 

Reference period (1982-2010) 2556300 83400 20600 13000 67300 

 

Although water available for irrigation was sufficient for irrigating 13,000 ha of wheat 

during 1982-2010 reference period with no water deficit conditions, the average winter 

wheat area coverage during 2008-2016 was 26,000 ha (Table 7.1). This shows that there 

is water deficit in the winter wheat crop in the Sunsari Morang Irrigation Scheme 

command area and farmers are still practicing protective irrigation, which was also 

observed during field visits. The Sunsari Morang Irrigation Scheme was designed 

without considering crop water requirement criteria, and the main foci were to increase 

the crop area coverage and to protect crops from failure (Paudel, 2010, Adhikari, 2016, 

Renault and Wahaj, 2006). Jurriens et al. (1996) argued that protective design criteria, 

spreading available water thinly over a large command area rather than considering crop 

water requirements, have been followed in most of the irrigation schemes in India and 

nearby countries since 1880, and that such design criteria still prevail. 

From Table 8.9, the minimum winter wheat area coverage that could be irrigated 

without any irrigation deficit is governed by the potential area coverage in March. 

Potential area coverage in March could be irrigated throughout the cropping period 

(December – April). With the existing irrigation intake, the winter wheat crop area 

could be increased by 3,000-5,000 ha in the short-term period, 6,000-7,000 ha in the 

mid-century period, and 3,000-9,000 ha in the end-of-century period with no water 

deficit conditions in the Sunsari Morang Irrigation Scheme command area. However, 
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winter wheat area coverage at present is 26,000 ha, and there is potential to increase the 

area coverage, water diversion or pumping mechanism at the irrigation canal intake, 

which could be realised to utilise the increased river discharge and to increase the winter 

wheat area coverage in the Sunsari Morang Irrigation Scheme command area. 

8.5.4 Canal flow capacity assessment 

Canal flow capacity in the Sunsari Morang Irrigation Scheme has been governed by the 

silt deposition and weed growth in the canal sections, thus resulting in reduced 

hydraulic capacity. Silt deposition has been an issue since the beginning of the project. 

Silt deposition in the canal varies along the length of the canal. In 2018-2020, a 

maximum silt depth of 0.80 m was observed in the main canal. Maximum flow capacity 

of the main canal was assessed in the validated PCSWMM model. The Sunsari Morang 

Irrigation Scheme was designed for 60 m
3
/s of discharge. However, the current canal 

capacity at the head reach portion of the main canal is only 53 m
3
/s at up to 10.7 km 

distance from the new canal intake. It shows that discharge capacity of canal has 

reduced by 12% in this portion of canal. Similarly, canal flow capacity was simulated as 

35 m
3
/s at 13.8 km distance from new canal intake against the designed discharge 

capacity of 48 m
3
/s. In this portion of canal, the flow capacity of the canal has reduced 

by 27%. Likewise, canal flow capacity was simulated as 27 m
3
/s at 22.1 km distance 

from new canal intake against the designed flow capacity of 39 m
3
/s. In this portion of 

canal, the discharge capacity of the canal has reduced by 31%. Both the silt deposit 

(0.80 m) and Manning‘s roughness coefficient (0.093) were the highest at this portion. 

The average discharge reduction was 23%, which was due to inadequate maintenance of 

the canal system. 

As potential area coverage in March could be irrigated throughout the cropping period, 

canal discharge available for irrigation at the canal intake was considered to assess the 

canal capacity needs for future scenarios. The maximum flow available in the irrigation 

canal during March in future is 45 m
3
/s for the end-of-century (2071-2100) period for 

the RCP8.5 scenario (Table 8.8). As the existing canal capacity at the head reach 

portion of the main canal is 53 m
3
/s, the canal system is adequate to pass the future 

flows for irrigating winter wheat crops with the existing irrigation intake. 
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There is the possibility to increase canal discharge capacity by reducing the Manning‘s 

roughness coefficient (n) as 0.03, considering less flow obstruction by silt and weeds. 

Canal discharge capacity is inversely proportional to the Manning‘s roughness 

coefficient. With regular maintenance of the canal system, the value of Manning‘s 

roughness coefficient can be reduced, and consequently canal discharge capacity can be 

increased compared to its current discharge capacity. Reduction in the current 

Manning‘s roughness coefficient values from 0.093 to 0.03 and 0.06 to 0.03 by regular 

maintenance of the canal network could significantly increase canal discharge capacity 

in the Sunsari Morang Irrigation Scheme main canal. However, any further increase in 

flow capacity would require a pumping system at the canal intake. 

8.6 Conclusions 

This study assessed the canal hydraulic capacity of the main canal of the Sunsari 

Morang Irrigation under climate change scenarios. Water availability in the Koshi River 

for irrigation has been investigated based on the irrigation canal intake characterises. 

These water availability data have been used to project the future winter wheat area 

coverage in the Sunsari Morang Irrigation Scheme command area based on future 

irrigation water requirement. The current hydraulic capacity of the main canal has been 

assessed. A methodology for the application of a hydraulic model to investigate the 

irrigaion canal discharge capacity was developed and applied to the Sunsari Morang 

Irrigation Scheme main canal.    

The Personal Computer Storm Water Management Model (PCSWMM) hydraulic model 

was used for hydraulic modelling, being calibrated and validated based on the observed 

canal discharge, velocity and water depth. This study projected the future water 

availability for irrigation at the irrigation canal intake of the Sunsari Morang Irrigation 

Scheme, and potential winter wheat area coverage in the irrigation command area in the 

short-term (2016-2045), mid-century (2036-2065) and end-of-century (2071-2100) time 

periods considering the climate change scenario RCP4.5 and RCP8.5. These projections 

were done based on results from hydrological modelling (Chapter 6) and crop 

modelling (Chapter 7). The canal discharge capacity at present, and discharge capacity 

of the main canal considering future water availability were also investigated. The 

findings could be applied by the Department of Water Resources and Irrigation, Nepal 
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for increasing the discharge capacity of the irrigation canal, and increasing crop area 

coverage of the winter wheat crop in the irrigation command area. 

The results from the discharge measurements in the main canal, assessment of water 

availability for irrigation at the irrigation canal intake and potential winter wheat area 

coverage, and a hydraulic capacity assessment of the Sunsari Morang Irrigation Scheme 

are as follows. 

Water losses and manning’s roughness coefficient 

 The water losses between various canal sections as measured were 0.014 

liter/sec/m
2
 (l/s/m

2
), 0.009 l/s/m

2
 and 0.007 l/s/m

2
 respectively. Average water 

loss in the main canal was 0.01 l/s/m
2
 in the Sunsari Morang Irrigation canal.  

 The Manning‘s roughness coefficient varies from 0.037 to 0.093 at different 

locations of the main canal. The average value of Manning‘s roughness 

coefficient was 0.066 at the main canal of the Sunsari Morang Irrigation which 

is more than twice compared to the current design value for an earthen canal 

(0.025 - 0.03). 

Water availability for irrigation at irrigation canal intake and potential winter 

wheat area coverage 

 The average monthly water availability data for irrigation at the canal intake 

during 1982-2010 in December, January, February, March, April and May were 

76.69 m
3
/s, 41.68 m

3
/s, 27.87 m

3
/s, 29.39 m

3
/s, 50.50 m

3
/s and 124.84 m

3
/s 

respectively. The lowest flow into the canal was in February followed by March. 

The standard deviation of the mean varies from 13.30 m
3
/s to 42.44 m

3
/s in 

February, and 13.49 m3/s to 45.29 m
3
/s in March. This shows that there was a 

low discharge into the canal during January, February, March and April, 

compared to the designed discharge of 60 m
3
/s. 

 Water availability for irrigation at the canal intake is expected to increase for all 

time periods and climate change scenarios in December, January, February and 

March. Although there is an increase in water availability for irrigation in 

December, January, February and March, the designed discharge of 60 m
3
/s will 

not be available in February and March for all future scenarios. 
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 Although the amount of water available for irrigation was sufficient for 

irrigating 13,000 ha of wheat during 1982-2010 with no water deficit conditions, 

the average winter wheat area coverage during 2008-2016 was 26,000 ha. This 

shows a water deficit in the winter wheat crop in the Sunsari Morang Irrigation 

Scheme command area, and that farmers are still practicing protective irrigation, 

which was also observed during field visits. 

 Based on the projected average monthly minimum flow availability for 

irrigation at the canal intake, and irrigation water requirements for winter wheat 

crop at the  irrigation canal intake, and considering the existing irrigation intake 

and canal discharge capacity, the winter wheat crop area could be increased by 

3,000-5,000 ha in the short-term period, 6,000-7,000 ha in the mid-century 

period, and 3,000-9,000 ha in the end-of-century period with no water deficit 

conditions in the Sunsari Morang Irrigation Scheme command area.  

 Water diversion or a pumping mechanism at the irrigation canal intake could be 

realised to utilise the increased river discharge and to increase the winter wheat 

area coverage in the Sunsari Morang Irrigation Scheme command area. 

Assessment of canal flow capacity  

 The existing canal system is adequate to pass the future canal flows from the 

existing irrigation intake for irrigating the winter wheat crop, considering the 

flow available in the irrigation canal during March. 

 The discharge capacity of canal has reduced by 12-31% at different sections of 

the main canal. The average discharge reduction is 23% due to inadequate 

maintenance of the canal system. 

 Reduction in the current Manning‘s roughness coefficient values from 0.093 to 

0.03 and from 0.06 to 0.03 by regular maintenance of the canal network could 

increase the canal flow capacity significantly in the Sunsari Morang Irrigation 

Scheme main canal. 

 The quality and regularity of maintenance of the canal play a crucial role in 

terms of carrying the flow required under future climate change driven irrigation 

water demand conditions. Lining, relining, or piping the sections of the channel 

are growing trends across the globe for most major irrigation schemes. Thus, 
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lining, relining, or piping the sections of channel followed by regular 

maintenance could improve flow carrying capacity in the Sunsari Morang 

Irrigation Scheme canal network. 
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Chapter 9: Summary, conclusions and future research directions 

This chapter summaries all the research tasks conducted to accomplish the research 

aims, and presents the conclusions based on the results discussed in the earlier chapters. 

Furthermore, future research directions in this area are also provided. 

9.1 Summary 

The impacts of climate change on water resources and agriculture, accompanied by 

growing population, have contributed to increasing food and water scarcity. Due to 

continuing growth in population and changes in food requirement habits, the demand 

for agricultural products is increasing continuously. The irrigation sector plays a crucial 

role in agricultural food security, utilizing about 70% of the world‘s total total annual 

water consumption. Climate variability and change have influenced on water 

availability for agriculture, crop water demands, and crop grain yields, rendering global 

food security vulnerable to climate change.  

From the literature review, it is highlighted that a comprehensive methodology for 

irrigation schemes to investigate the impacts of climate change on both the supply and 

demand sides of irrigation water, and to simultaneously cope with changes in future 

water availability is missing. This research aims to holistically investigate the climate 

change impacts on both the supply and demand sides of irrigation water, and addresses 

the research gap. The methodology developed in this research was applied in the 

Sunsari Morang Irrigation Scheme in the Koshi River basin of Nepal, which has an 

irrigation command area of 68,000 hectares.  

This research is divided into four major components. These components are: (a) 

understand the climate change impacts on daily rainfall and temperature (minimum and 

maximum) in the river basin and the irrigation command area, (b) assess future impacts 

of climate change on river water flow rates at the irrigation canal intake, (c) assess crop 

water requirements due to climate change, and (d) assess the existing irrigation canal 

system‘s hydraulic capacity and requirements for irrigation water supply in the climate 

change context. 

Climate change is the main driver in assessing the river water availability for irrigation, 

crop irrigation requirements and canal system capacity needs. In this study, 
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Representative Concentration Pathways (RCPs) 4.5 and 8.5 climate change scenarios 

for the short-term (2016–2045), mid-century (2036–2065) and end-of-century (2071–

2100) periods were considered. Representative General Circulation Models (GCMs) 

were selected for the study area for each climate change scenario and study periods. 

Daily precipitation and temperature data based on selected GCMs were downscaled to a 

higher resolution (10 km x 10 km). The downscaled daily precipitation and temperature 

data were applied to assess the climate change impacts on water availability in the river, 

and irrigation water demand in the irrigation scheme command area. An irrigation canal 

system capacity assessment was conducted based on the water availability in the river 

and irrigation water demand. 

The Soil and Water Assessment Tool (SWAT) hydrological model was used for 

hydrological modelling, which was calibrated and validated based on the observed river 

flow data near the headwork of the Sunsari Morang Irrigation Scheme in the Koshi 

River. Impacts of climate change on the flow of the Koshi River at the headwork of the 

Sunsari Morang Irrigation Scheme was projected for the short-term, mid-century and 

end-of-century periods using downscaled daily precipitation and temperature data. 

The Agricultural Production Systems Simulator (APSIM) crop model was selected for 

crop modelling, which was calibrated and validated based on the observed field-level 

data on phenological development, biomass yield and grain yield for the winter wheat 

crop in the Sunsari Morang Irrigation Scheme command area over two years. Impacts of 

climate change on the irrigation water demand, biomass yield and grain yield were 

projected for the short-term, mid-century and end-of-century periods, using downscaled 

daily precipitation and temperature data. In addition, the amount of irrigation water 

required to reach potential grain yields under current climate conditions was also 

compared with existing observed irrigation practices. 

The hydraulic capacity of the main canal network, in terms of canal losses and flow 

carrying capacity of the irrigation canal system of the Sunsari Morang Irrigation 

Scheme, was assessed using the Personal Computer Stormwater Management Model 

(PCSWMM) hydraulic model, which was calibrated and validated based on the 

measured canal characteristics, discharge, flow velocity and water depth data. Based on 

hydrological assessments, information on daily water availability at the headwork 
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(intake) of the Sunsari Morang Irrigation Scheme in the Koshi River was used to 

estimate water intake into the canal network system. Considering irrigation water 

availability at the headwork and irrigation water amounts required for winter wheat 

crops at present, and in the future due to changes in climatic conditions, potential winter 

wheat area coverage and the water carrying capacity of the main canal were assessed. 

9.2 Conclusions 

The main conclusions of this research are summarised below. 

9.2.1 General circulation models selection and climate data downscaling for the 

Koshi River basin 

 The GCM selection for a catchment varies with the future climate change 

pathways selected (RCP4.5 and RCP8.5), as well as the future analysis periods 

(short-term, mid-century and end-of-century periods).    

 Uncertainty in an average increase in annual precipitation is large in future. 

Higher uncertainty in precipitation is expected under climate change scenario 

RCP8.5, as compared to the RCP4.5 scenario.  

 Monsoon precipitation is expected to increase in all scenarios and study periods. 

Similarly, post-monsoon precipitation is also expected to increase in future. 

However, winter precipitation is projected to decrease in future. The pre-

monsoon precipitation is also expected to decrease in the coming decades.  

 Uncertainty in an average increase in annual temperature is large in future. 

Higher uncertainty in mean annual temperature is expected in climate change 

scenario RCP8.5 as compared to RCP4.5 scenario.  

 Mean annual temperature is expected to increase in all scenarios and study 

periods. An increase in temperature during winter is expected to be higher than 

that in the monsoon period. An increase in winter temperature will have an 

effect on the phenological development of winter wheat crop.  

9.2.2 Hydrology of the Koshi River basin 

 A river basin scale hydrological tool is needed to assess effects of climate 

change on river runoff. Soil and Water Assessment Tool (SWAT) can 

successfully be calibrated and validated using measured river discharge 
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parameter. SWAT is capable of projecting the effects of climate change on river 

runoff. 

 The average annual river flow is projected to increase for all scenarios and study 

periods.  

 The winter flow is expected to increase in future time periods. The pre-monsoon 

flow is expected to decrease in the short-term period; however, it is projected to 

increase in the mid-century and end-of-century periods. The monsoon and post-

monsoon season flows are expected to increase in all study periods.   

 The projected peak mean flow for climate change scenario RCP4.5 is lower than 

the flow for RCP8.5 scenario for all study periods, and the difference in 

magnitude increases in future time periods. A shift in the peak flow is expected 

in future, shifting towards the month of August and September, rather than 

occurring in July. 

 The projected river flows based on selected ensembles in different climatic 

extremes show that there is high uncertainty about future flows in the Koshi 

River. The uncertainty in projected annual river flows is high for the end-of-

century period compared to the mid-century period. Uncertainty in projected 

annual river flows is higher for the climate change scenario RCP8.5, compared 

to RCP4.5 scenario in the mid-century and end-of-century periods. 

9.2.3 Crop water assessment for irrigation water requirement 

 A crop growth/water balance model is needed to assess effects of climate change 

on crop growth, irrigation water demand, grain yield and biomass yield. 

 The Agricultural Production Systems Simulator (APSIM) crop growth model 

can successfully be calibrated and validated using measured crop growth, grain 

yield and biomass yield indicators. APSIM has a good projection capacity. 

 Farmers were applying only around one-fourth of the total irrigation water 

required to achieve optimal grain yields for the winter wheat crop in the Sunsari 

Morang Irrigation Scheme command area in the 2018-2019 and 2019-2020 

seasons.  

 The actual winter wheat crop grain yield was less than half of optimal grain 

yield in 2018-2019 and 2019-2020 respectively, due to irrigation deficit. 
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 The projected mean irrigation water demand for winter wheat crops in the 

Sunsari Morang Irrigation Scheme command area is likely to increase in the 

short-term, mid-century and end-of-century periods considering the climate 

change scenario RCP4.5. For the climate change scenario RCP8.5, mean 

irrigation water demand is projected to increase at the short-term period; 

however, it is likely to decrease in the mid-century and end-of-century periods. 

 An increase in winter temperature would reduce the cropping periods (sowing – 

harvest) of winter wheat crops, resulting in a decrease in mean irrigation water 

demand at mid-century and end-of-century periods considering the climate 

change scenarios RCP4.5 and RCP8.5. 

 The winter wheat crop grain yield at the Sunsari Morang Irrigation Scheme 

command area is expected to decrease in the short-term, mid-century and end-

of-century periods for both climate change scenarios RCP4.5 and RCP8.5. 

 The largest decrease in winter wheat crop grain yield is expected for end-of-

century period under the climate change scenario RCP8.5, which is probably the 

result of reduced growing time due to increased winter temperature.  

 The uncertainties in irrigation water demand, biomass yield and grain yield are 

projected to increase with the future time periods. The uncertainties are high at 

the end-of-century period compared to short-term and mid-century periods. 

9.2.4 Canal hydraulic capacity assessment 

 The Personal Computer Stormwater Management Model (PCSWMM) can 

successfully be calibrated and validated using measured discharge, velocity and 

water depth indicators. 

 Inadequate maintenance of the canal system has resulted in the reduced flow 

capacity of the main canal. The discharge capacity of the canal has reduced by 

12 to 31%. The average discharge capacity of the main canal has decreased by 

23% due to inadequate maintenance of the canal system. 

 Average monthly irrigation water availability at the irrigation canal intake 

during 1982-2010 was low during January, February, March and April, as 

compared to the designed discharge. There is a water deficit in the winter wheat 

crop in the Sunsari Morang Irrigation Scheme command area due to less water 
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being available in the main canal, and the farmers are still practicing protective 

irrigation. 

 Water availability for irrigation at the canal intake is expected to increase for all 

time periods and climate change scenarios in December, January, February and 

March compared to the reference period (1982-2010). However, the increased 

future flow is less than the designed discharge, and the existing canal system is 

adequate to pass the future canal flows from the existing irrigation intake. Water 

diversion or a pumping mechanism at the irrigation canal intake could be 

realised to utilise the increased river discharge and to increase the winter wheat 

area coverage in the Sunsari Morang Irrigation Scheme command area, using the 

existing canal system. 

 Projections on average monthly minimum discharge in Koshi River indicates 

that water availability into the canal will increase for all combinations of time 

periods (short-term, mid-century, and end-of-century) and climate change 

scenarios RCP4.5 and RCP8.5. Based on projected average monthly minimum 

flow availability for irrigation at the canal intake, and irrigation water 

requirements at irrigation canal intake for maximum winter wheat crop grain 

yield, winter wheat cropping area could be increased in future compared to the 

area cropped during 1982-2010, using the existing irrigation intake. 

 Canal discharge capacity of 60 m
3
/s could be recaptured by regular maintenance 

of canal system which includes desilting and weed removal to reduce hydraulic 

roughness coefficient in the canal network. 

9.3 Benefits, limitations and future research directions  

The key innovation of this research is the development of a comprehensive 

methodology to assess the climate change impacts on the supply and demand sides of 

irrigation water. Moreover, this research has demonstrated its effectiveness through its 

successful application in the Sunsari Morang Irrigation Scheme in the Koshi River of 

Nepal. The methodology could be adopted to any physical-climatic conditions around 

the world to holistically assess the climate change impacts on both the supply and 

demand sides of irrigation water. The findings of this research are beneficial to water 

practitioners, the agricultural community, policy makers, and planners and researchers 

both in Nepal and internationally. The findings on projected climate change impacts on 
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water resources, irrigation water demand and hydraulic assessment of the irrigation 

canal network could be used by the Department of Water Resources and Irrigation, 

Nepal, to manage irrigation projects in the region and by local farmers to increase crop 

yield in study area.  

However, this methodology and its application have a few limitations which can be 

improved by conducting further research as discussed below: 

 The demand side of irrigation water is affected by many factors, including the 

socio-economic behaviour of users, the use of technology, irrigation application 

methods and stakeholders‘ involvement. These aspects have not been included 

in this research, and it is recommended to integrate these aspects into future 

research.  

 Results from the Soil and Water Assessment Tool (SWAT) hydrological model 

have been analysed at Chatara near the intake of the Sunsari Morang Irrigation 

Scheme. Analysis of results from SWAT hydrological model could be extended 

to the Koshi sub-basin scale to assess water availability for irrigation at sub-

basins. It could provide potential expansion of the cropping area at each sub-

basin. 

 In this study, water availability for irrigation has been analysed for winter wheat 

crop only and it could be extended to all crops grown throughout the year. 

 The Agricultural Production Systems Simulator (APSIM) crop model for winter 

wheat crop has been calibrated and validated based on two years‘ data. This 

model could be used to investigate impacts of different irrigation scheduling on 

crop grain yield and biomass yield. The application part of APSIM model could 

further be used to explore the effects of different sowing times on irrigation 

water requirement, grain yield and biomass yield. Further field data would be 

required for such investigation in detail focused on crop modelling.  

 The research could be extended to investigate the water-energy-food nexus in 

the irrigation command area.  

 The Personal Computer Stormwater Management Model (PCSWMM) hydraulic 

model was calibrated and validated for the main canal of the Sunsari Morang 

Irrigation Scheme and it could be extended to the entire canal network in a 
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separate study for detailed investigation and improvements at intake structure 

and canal network to meet future water demand in the irrigation command area. 

The whole of scheme model could be used to assess the timing and volume of 

water availability to farmers in different parts of the Sunsari Morang Irrigation 

Scheme command area. Usually remote farmers (further from the main canal) 

have reduced access to the water. The water distribution (timing and volume) 

could be improved with a complete hydraulic modelling of the irrigation 

network from the intake to farm level. 

 The uncertainties for GCMs selection and downscaling, SWAT hydrological 

modelling, APSIM crop modelling and PCSWMM hydraulic modelling are 

assessed in this research individually. However, cumulative uncertainty that is 

propagated through the selection of appropriate GCMs and the downscaling, and 

then the application of this information towards the SWAT, APSIM and 

PCSWMM modelling aspects has not been assessed. It could be extended to 

explore the cumulative uncertainty. However, a comprehensive modelling tool 

would be required to develop, which was outside the scope of this work. This 

aspect has included in the limitations of this research. 
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Appendix 

Appendix -1: Distance of the first ten GCMs/ensembles from four corners, based on the short-term 

future period (2016-2045) and the reference period (1981-2010), for RCP8.5 

 

Appendix -2: Distance of the first ten GCMs/ensembles from four corners, based on the mid-century 

future period (2036-2065) and the reference period (1981-2010), for RCP4.5 

 

Cold and Dry Warm and Dry Cold and Wet Warm and Wet

ACCESS1-0_r1i1p1 0.3793 0.6787 0.5199 0.7662

ACCESS1-3_r1i1p1 0.2867 0.7944 0.5221 0.9063

bcc-csm1-1_r1i1p1 0.6123 0.7519 0.3801 0.5787

BNU-ESM_r1i1p1 0.7109 0.4361 0.7265 0.4611

CanESM2_r1i1p1 1.1321 0.807 0.794 0.0092

CanESM2_r2i1p1 1.0113 0.7057 0.7346 0.1216

CanESM2_r3i1p1 1.2538 0.903 0.8787 0.1238

CanESM2_r4i1p1 1.1641 0.7599 0.8871 0.0971

CanESM2_r5i1p1 0.9732 0.544 0.8466 0.2561

CCSM4_r1i1p1 0.7 0.7159 0.4423 0.467

Model
Distance from Corner

Cold and Dry Warm and Dry Cold and Wet Warm and Wet

ACCESS1-0_r1i1p1 0.4376 0.4727 0.6959 0.7185

ACCESS1-3_r1i1p1 0.539 0.8223 0.3264 0.7015

bcc-csm1-1_r1i1p1 0.6513 0.9331 0.2006 0.6976

bcc-csm1-1-m_r1i1p1 0.4238 0.4238 0.7718 0.7718

BNU-ESM_r1i1p1 0.6551 0.62 0.525 0.4804

CanESM2_r1i1p1 0.9643 0.6134 0.7696 0.1966

CanESM2_r2i1p1 1.0487 0.8366 0.6504 0.1518

CanESM2_r3i1p1 1.1518 0.7674 0.8617 0.0703

CanESM2_r4i1p1 0.6291 0.2413 0.8921 0.6769

CanESM2_r5i1p1 0.963 0.7575 0.6243 0.1901

Model
Distance from Corner
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Appendix -3: Distance of the first ten GCMs/ensembles from four corners, based on the mid-century 

future period (2036-2065) and the reference period (1981-2010), for RCP8.5 

 

Appendix -4: Distance of the first ten GCMs/ensembles from four corners, based on the end-of-

century future period (2071-2100) and the reference period (1981-2010), for RCP4.5 

 

Cold and Dry Warm and Dry Cold and Wet Warm and Wet

ACCESS1-0_r1i1p1 0.4488 0.5152 0.6424 0.6904

ACCESS1-3_r1i1p1 0.3041 0.6233 0.6233 0.8273

bcc-csm1-1_r1i1p1 0.8476 1.144 0.0563 0.7704

BNU-ESM_r1i1p1 0.5944 0.6129 0.5197 0.5408

CanESM2_r1i1p1 1.1557 0.8879 0.747 0.1037

CanESM2_r2i1p1 1.0985 0.8383 0.7158 0.0915

CanESM2_r3i1p1 1.1889 0.873 0.8103 0.0733

CanESM2_r4i1p1 1.0029 0.558 0.8687 0.2454

CanESM2_r5i1p1 1.1444 0.8612 0.7574 0.075

CCSM4_r1i1p1 0.5231 0.5028 0.6325 0.6158

Model
Distance from Corner

Cold and Dry Warm and Dry Cold and Wet Warm and Wet

ACCESS1-0_r1i1p1 0.6696 0.5142 0.6353 0.4686

ACCESS1-3_r1i1p1 0.769 0.6959 0.5038 0.3829

bcc-csm1-1_r1i1p1 0.486 0.6256 0.5179 0.6507

bcc-csm1-1-m_r1i1p1 0.2851 0.5166 0.8254 0.9311

BNU-ESM_r1i1p1 0.6902 0.723 0.4303 0.4812

CanESM2_r1i1p1 1.0068 0.9196 0.51 0.3034

CanESM2_r2i1p1 0.8642 0.6521 0.6271 0.2677

CanESM2_r3i1p1 1.1549 0.8923 0.7415 0.1104

CanESM2_r4i1p1 0.8235 0.646 0.5971 0.3095

CanESM2_r5i1p1 1.0084 0.9039 0.5285 0.2817

Model

Distance from Corner
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Appendix -5: Distance of the first ten GCMs/ensembles from four corners, based on the end-of-

century future period (2071-2100) and the reference period (1981-2010), for RCP8.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cold and Dry Warm and Dry Cold and Wet Warm and Wet

ACCESS1-0_r1i1p1 0.4075 0.5611 0.6142 0.7253

ACCESS1-3_r1i1p1 0.6391 0.8268 0.3053 0.607

bcc-csm1-1_r1i1p1 0.769 0.953 0.2102 0.6008

BNU-ESM_r1i1p1 0.3288 0.4842 0.7965 0.8723

CanESM2_r1i1p1 1.0939 0.8689 0.6787 0.1378

CanESM2_r2i1p1 1.1284 0.8771 0.7187 0.112

CanESM2_r3i1p1 1.1916 0.9002 0.7874 0.1018

CanESM2_r4i1p1 1.107 0.8371 0.7288 0.0796

CanESM2_r5i1p1 1.1725 0.8866 0.7728 0.0918

CCSM4_r1i1p1 0.4815 0.6656 0.4815 0.6656

Model
Distance from Corner
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