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Abstract

The forecasting of lower limb trajectories can improve the operation of assistive devices and

minimise the risk of tripping and balance loss. The aim of this work was to examine four

Long Short Term Memory (LSTM) neural network architectures (Vanilla, Stacked, Bidirec-

tional and Autoencoders) in predicting the future trajectories of lower limb kinematics, i.e.

Angular Velocity (AV) and Linear Acceleration (LA). Kinematics data of foot, shank and

thigh (LA and AV) were collected from 13 male and 3 female participants (28 ± 4 years old,

1.72 ± 0.07 m in height, 66 ± 10 kg in mass) who walked for 10 minutes at preferred walking

speed (4.34 ± 0.43 km.h-1) and at an imposed speed (5km.h-1, 15.4% ± 7.6% faster) on a

0% gradient treadmill. The sliding window technique was adopted for training and testing

the LSTM models with total kinematics time-series data of 10,500 strides. Results based on

leave-one-out cross validation, suggested that the LSTM autoencoders is the top predictor

of the lower limb kinematics trajectories (i.e. up to 0.1s). The normalised mean squared

error was evaluated on trajectory predictions at each time-step and it obtained 2.82–5.31%

for the LSTM autoencoders. The ability to predict future lower limb motions may have a wide

range of applications including the design and control of bionics allowing improved human-

machine interface and mitigating the risk of falls and balance loss.

Introduction

Prediction of gait kinematics is a useful approach to improve the operation of assistive devices

(i.e. bionics) and minimise the risk of falling [1–5]. Prediction of the human gait however has

been a challenging process due to the locomotor system’s high degrees of freedom that contin-

uously change and the asymmetrical foot contact with the ground [6]. One of the most com-

mon straightforward approach for gait prediction is to combine forward dynamics with

optimisation methods in which human muscle forces and limb movements are determined by

minimising a cost function [7,8]. The method, however, requires a long computational time,

and it is highly dependent on the measured data [9,10]. In order to achieve efficient computa-

tional time and to set the optimisation parameters without relying on the measured data,

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0255597 August 5, 2021 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Zaroug A, Garofolini A, Lai DTH, Mudie K,

Begg R (2021) Prediction of gait trajectories based

on the Long Short Term Memory neural networks.

PLoS ONE 16(8): e0255597. https://doi.org/

10.1371/journal.pone.0255597

Editor: Chi-Hua Chen, Fuzhou University, CHINA

Received: January 15, 2021

Accepted: July 20, 2021

Published: August 5, 2021

Copyright: © 2021 Zaroug et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: There are ethical

restrictions in regards to the confidentiality of the

raw data. These restrictions were imposed by the

Victoria University Human Research Ethics

Committee (VUHREC) and if published it

contravenes the participants consent form. Raw

data cannot be shared publicly because of practical

reasons (>1M rows and 6 columns) and it contains

sensitive participants’ information. The raw data

are available from Professor Rezaul Begg (rezaul.

begg@vu.edu.au) and Chair of VUHREC

(researchethics@vu.edu.au) for researchers who

meet the criteria for access to confidential data.

Given these ethical and practical reasons, a

https://orcid.org/0000-0003-1716-2914
https://doi.org/10.1371/journal.pone.0255597
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255597&domain=pdf&date_stamp=2021-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255597&domain=pdf&date_stamp=2021-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255597&domain=pdf&date_stamp=2021-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255597&domain=pdf&date_stamp=2021-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255597&domain=pdf&date_stamp=2021-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255597&domain=pdf&date_stamp=2021-08-05
https://doi.org/10.1371/journal.pone.0255597
https://doi.org/10.1371/journal.pone.0255597
http://creativecommons.org/licenses/by/4.0/
mailto:rezaul.begg@vu.edu.au
mailto:rezaul.begg@vu.edu.au
mailto:researchethics@vu.edu.au


inverse dynamics along with optimisation methods are implemented to predict the human

walking trajectories [11]. Ren et al. [12] predicted all segments motion and ground reaction

forces from the average gait forward velocity, double stance duration and the period of the gait

cycle. Although those methods are able to capture the gait features, they idealise the human

motions and were unable to generalise the gait trajectories [13,14].

The emergence of inexpensive wearable sensors such as Inertial Measurement Units

(IMUs) [15,16] have posed new challenges (i.e. increase in dimensionality) and opportunities

(i.e. new insights) to the analysis of the human movement [17] outside laboratory settings [4].

In response to these challenges, a new set of Machine Learning (ML) algorithmic models have

been widely adopted by biomechanists [17,18]. The ML algorithms are a subfield of Artificial

Intelligence (AI) concerned with the establishment of computer programmes that learn pat-

terns from data [19]. Computational techniques related to ML have been successful in solving

several aspects of biomechanics gait research problems [20,21], such as the gait classification

[22–24], joint angle prediction [25] and energy expenditure minimisation in lower limb exo-

skeletons [26]. Tanghe et al. have applied the Probabilistic Principal Component Analysis

(PPCA) to predict the future lower limb joint kinematics and achieved an error rate between

4.5–12.5% [27]. The data however were collected at an imposed speeds (2 and 5 km.h-1) and

the error was calculated at 3 points only in the gait cycle (10, 50 and 100%) [27].

One of the most utilised algorithms for the human movement prediction are the Artificial

Neural Networks (ANNs) [17,28,29]. A class of ANN known as deep learning (inspired by the

structure and function of the brain) [30], were found to be insightful in human activity classifi-

cation [31–33], gait pattern recognition [34] and the improvement of user intention detection

in wearable assistive devices (i.e. bionics) [35–38]. It was also applied in regression tasks such

as the prediction of lower limb joint angles from the Angular Velocity (AV) and Linear Accel-

eration (LA) of foot and shank segments [39]. Gholami et al. implemented Convolutional Neu-

ral Networks (CNN) to predict the lower limb joint angles from the foot LA data and achieved

between 6.5–11.1% error rate [40]. Nonetheless, the developed ANNs in the literature were

predicting the gait trajectories (i.e. knee angles) from an independent variable (i.e. foot LA)

and it was not implemented to predict future gait trajectories of the same independet variable.

The kinematics of the lower limbs are the means by which powered exoskeletons are con-

trolled, falls are prevented and abnormal gaits are identified [1–4] The authors are not aware

of previous work that investigated sequential ML models such as LSTM neural networks to

predict future gait trajectories at preferred walking speed (PWS) and imposed walking speed.

The LSTM neural networks are an ANN architecture known for modelling time-series infor-

mation [41,42]. The LSTM neural networks have proven wide success in modelling human

movement data such as the lower limb kinematics prediction [43] neurodegenerative disease

diagnosis [44], gait event detection [45,46] and falls recognition [47]. The aim of this work was

to develop and compare four standard LSTM architectures (Vanilla, Stacked, Bidirectional

and Auto-encoders) for the prediction of future lower limb trajectories, i.e. foot AV, shank

AV, thigh AV, foot LA, shank LA and thigh LA. In our previous paper [48], we found that

LSTM autoencoder (i.e. LSTM architecture) is able to predict the future gait trajectories at an

imposed speed. This work further investigates different LSTM architectures in predicting

future gait kinematics when individuals walk at PWS and an imposed speed.

Materials and methods

Study participants

Walking data were collected from 13 male and 3 female participants (28 ± 4 years old, height

1.72 ± 0.07 m, mass 66 ± 10 kg) who walked for 10 minutes at their PWS (4.34 ± 0.43 km�h-1)
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and at an imposed speed (5 km�h-1, 15.4% ± 7.6% faster) on a 0% gradient treadmill. Trials

were randomised and one participant’s data (male) was omitted due to incomplete data. The

PWS was calculated by starting the treadmill at 3 km�h-1, then it was gradually increased until

the participant says “this is comfortable”. It was again increased until an uncomfortable speed

(i.e fast walking) was reached. After that, speed was gradually decreased until the participant

says “this is comfortable”. An average value was then calculated from the two comfortable

recorded speeds to represent the PWS [49]. Each trial was started with a 2 minutes familiarisa-

tion session for treadmill walking. Ethics approval was granted by the Victoria University

Human Research Ethics Committee (ID HRE18-230) and the Department of Defence and Vet-

erans’ Affairs Human Research Ethics Committee (Protocol 852–17). All participants signed a

consent form and volunteered freely to participate.

Gait analysis

A set of 30 retroreflective markers were attached to each participant in the form of clusters

[39]. Each cluster comprised of a group of individual markers that represent a single body seg-

ment (e.g. shank). This include left and right foot clusters (3 markers), left shank cluster (5

markers), right shank cluster (5 markers), left thigh cluster (5 markers), right thigh cluster (5

markers) and pelvis cluster (4 markers). The 3D position of each cluster was tracked using a 14

camera motion analysis system (Vicon Bonita, Version 2.8.2) recording at 250Hz. Before cap-

turing the dynamic trials, a static pose (1 second) was recorded where an additional 8 retrore-

flective markers were placed on anatomical landmarks (e.g. lateral femur medial epicondyle)

identified by palpation [50–52]. The static pose was used to calibrate the position and orienta-

tion of the lower body skeletal system [53].

Kinematic walking profiles

Recorded 3D positional data were processed using Visual 3D (C-motion, Inc, Version 6) to

compute LA and AV for the thigh, shank, and foot segments of the right limb [48]. LA and AV

were then interpolated with a least-squares fit on a 3rd order polynomial and filtered using a

lowpass digital filter with a 15Hz cut-off frequency [54,55]. A stride was defined as the interval

between two successive heel strikes of the right foot [56]. Outlier strides (i.e. bad strides) were

labelled as bad and excluded from the final time series data. The final time series data were

downsampled to 50 Hz (to accelerate LSTM computational time) [43] and normalised with z-

scores using Matlab (Mathworks, Inc, R2020a). The sagittal plane kinematics included the

translation along the Y-axis (i.e. LA) and the rotation along the X-axis (i.e. AV), and were used

for LSTM prediction, resulting in six predictor variables, (i) X1 foot AV (ii) X2 shank AV (iii)

X3 thigh AV (iv) Y4 foot LA (v) Y5 foot LA and (vi) Y6 foot LA (Figs 1 and 2).

Datasets

Processed time series data (10,500 strides) were combined to include the two walking speeds.

The total dataset comprised of 10,500 strides from 15 participants that included 6 kinematic

feature variables (X1, X2, X3, Y4, Y5, Y6). The dataset was divided into training set from 14 par-

ticipants and a testing set from 1 participant. To evaluate the generalisation capability using

leave-one-out cross validation, the testing set was created for each participant comprised of 75

timesteps (i.e. 1.5s of the gait cycle) and the 6 kinematic feature variables (Table 1). A single

timestep is equivalent to 0.02s (i.e. 1/50Hz). The 75 timesteps was selected based on the average
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stride time and was selected from the first right foot strike following the familiarisation

session.

Time series transformation to a supervised learning problem

The T�F (i.e. Timesteps�Features) data structure was transformed into S�T�F (i.e. Sam-

ples�Timesteps�Features) structure (Fig 3) [48]. One sample is a one window that consists of

multiple timesteps and the 6 features. A single timestep is equivalent to 0.02s (i.e. 1/50Hz). The

training input data was transformed from 614,083 timesteps and 6 features into 122,811 sam-

ples and inside of each sample are 25 timesteps and 6 features. While the corresponding output

training data was 112,811 samples and inside of each sample are 5 timesteps and 6 features.

The testing input data was converted from 75 timesteps and 6 features to 15 samples, 25 time-

steps and 6 features. While the corresponding output testing data was converted to 15 samples,

5 timesteps and 6 features.

Fig 1. Definition of sagittal plane movements as well as the (X,Y) coordinates. Sagittal plane movements included

the rotation around the X-axis (i.e., AV) and the translation along the Y-axis (i.e., LA).

https://doi.org/10.1371/journal.pone.0255597.g001
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Fig 2. Foot, shank and thigh sagittal plane AV and LA. Those were selected as the model’s independent variables

predominantly because primary motions of the human movement are flexion and extension in the sagittal plane (6).

(a) Foot (X1), shank (X2) and thigh (X3) AV. (b) Foot (Y1), shank (Y2) and thigh (Y3) LA.

https://doi.org/10.1371/journal.pone.0255597.g002

Table 1. Train-test split datasets.

Validation protocol Number of participants

Training Testing

leave-one-out 14 1, 75 timesteps only

The model was trained and tested using leave-one-out cross validation. At each epoch, the training set doesn’t

contain all trials of the tested participant.

https://doi.org/10.1371/journal.pone.0255597.t001
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The LSTM model architectures

Regression problems are amongst the challenging tasks to ANN [57]. Due to the parameters’

initialisation (i.e. neuron weights), the bias-variance trade-off and the function approximation

that may trap at a local minima [57]. As such, it is necessary to experiment with different net-

work architectures to find the optimum solution. After determining the possibility of future

trajectories in our last paper [48], this work was to determine which LSTM architecture per-

forms the best. There was no report that was found looking into the optimum LSTM neural

networks model for gait forecasting prediction. There were 4 LSTM neural network variants

that have been tested in this paper. This include; (1) Vanilla LSTM neural networks, (2)

Stacked LSTM neural networks, (3) Bidirectional LSTM neural networks and (4) LSTM auto-

encoders neural networks. A detailed description for the LSTM model as well as each architec-

ture is provided in the S1 Appendix.

The sliding windows and the LSTM models were developed using Python 3 (Libraries:

Keras, Numpy, Pandas and Scikit learn) and executed in Amazon Web Services (AWS) Elastic

Computing (EC2) [58,59]. The networks were optimised using Stochastic Gradient Descent

(SGD) optimisation algorithm [60–62]. Proposed by Rumelhart et al,. 1986 [63], the SGD algo-

rithm aims to obtain the minimum error (MAE in this work) at each batch using the network

weights and biases. Using a sparse grid-search, for all models the SGD’s learning rate was

tuned to 0.07, the gradient norm was clipped to 1.0 and the momentum (for accelerating the

gradient descent) was set to 0.9 [64].

Evaluation and performance metrics

The input/output sliding window size was kept fixed throughout models [65,66]. The input

window was 25 time-steps (0.5s) and the output window (future prediction—0.1s) was 5 time-

steps (0.1s) for the 6 feature variables; foot (X1), shank (X2), thigh (X3) AV and foot (Y4),

shank (Y5) and thigh (Y6) LA (48).

The models’ configuration (Table 2) was determined based on a sparse grid search for

obtaining the least MAE on an unseen participant. All participants were tested using the leave-

one-out cross validation technique. When a participant is tested all of their associated trials

Fig 3. Sliding window demonstration on 1 feature. The graph shows the sliding window operation on the foot

angular velocity (X1). In this paper, the input/output window comprises of 6 features.

https://doi.org/10.1371/journal.pone.0255597.g003
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were removed from the training set (5k/h and PWS). In order to fascilitate model comparison,

the models were compared based on the same tested participant. Due to the uniqueness of

individual walking patters and the different PWS across participants [67,68], the testing set for

all participants was kept fixed at 75 time-steps (starting from the foot strike).

To evaluate each model’s performance, 5 parameters were considered to calculate how

closely the predicted variable trajectories ŷj (X1, X2, X3, Y4, Y5, Y6) were to the actual variable

trajectories yj (X1, X2, X3, Y4, Y5, Y6) across the n timesteps:

1. Mean Absolute Error (MAE) given as:

MAE ¼
1

n

Xn

j¼1
jyj � ŷj j ð13Þ

2. Mean Squared Error (MSE) given as:

MSE ¼
1

n

Xn

j¼1
ðyj � ŷjÞ

2
ð14Þ

3. Correlation coefficient (CC) given as:

P ¼
covðy; ŷÞ

stdðyÞ � stdðŷÞ
ð15Þ

Where, std() is the standard deviation and covðy; ŷÞ is the covariance between variables y
and ŷ.

4. Root Mean Square Error (RMSE) given as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

j¼1
ðyj � ŷjÞ

2

r

ð16Þ

5. Normalised RMSE (NRMSE) (27, 40) given as:

NRMSE %ð Þ ¼
RMSE

maxðyÞ � minðyÞ
ð17Þ

Where max (y) and max (n) are the maximum and minimum values of the trial’s ground

truth.

Table 2. Models’ configuration for inter-subject leave-one-out cross validation test.

Models Hidden layers Units per layer Epochs

Vanilla LSTM 1 1024 100

Stacked LSTM 5 256 260

BI-LSTM 2 1024 200

ED-LSTM 2 1024 200

https://doi.org/10.1371/journal.pone.0255597.t002
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Results

All models were firstly evaluated at PWS and on the same participant across 75 timesteps. Tri-

als related to the tested participant were removed from the training set. Models performance

(combined output windows) for each of the independent variables that belong to the tested

participant are shown in Fig 4 for all LSTM models. A single output window (prediction hori-

zon) is a 5 time-steps window (0.1s). All models have shown good tracking of the actual trajec-

tories for the shank and thigh AV (Fig 4c and 4e). Poorer predictions were attained for all

segment predictions based on LA.

Models were then evaluated at PWS and 5km.h-1 combined based on leave-one-out cross

validation technique for each participant (see Tables 3 and 4). All models achieved good pre-

dicted trajectories for AV related to the shank (X2) and thigh (X3) (low RMSE in Fig 5c and 5e)

and good vector patters for all feature vectors (High CC in Fig 5). Predicted trajectories based

on the AV (MAE 0.176–0.318 deg/s) were generally less erroneous than the predicted trajecto-

ries based on the LA (MAE 0.184–0.379 m/s2) across all the LSTM models (see Table 3). The

ED LSTM is found the best predictive model for future predictions of the lower limb kinematic

trajectories at PWS and 5km.h-1. The wider the gap between the two points (CC and RMSE) in

Fig 4. LSTM models prediction performance based on the inter-subject test for each feature vector at PWS only.

Models were tested with 75 time-steps and the same participant was tested across LSTM models. Black is the actual

trajectory. Brown is the Vanilla LSTM predicted trajectory. Red is the Stacked LSTM predicted trajectory. Green is the

Bi-LSTM predicted trajectory. Blue is the ED-LSTM predicted trajectory. (a) Foot AV (X1). (b) Foot LA (Y4). (c) Shank

AV (X2). (d) Shank LA (Y5). (e) Thigh AV (X3). (f) Thigh LA (Y6).

https://doi.org/10.1371/journal.pone.0255597.g004
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Fig 5 indicates a good performance achieved by the LSTM model. The Stacked and ED LSTM

were the only models that maintained a good predicted LA and AV patterns (Higher CC in Fig

5—Table 5) and a more accurate predicted LA and AV trajectories (lower RMSE in Table 3

and Fig 5). The Vanilla LSTM obtained the poorest prediction results (7.06–11.14%) compared

to the Stacked LSTM (5.74–9.88%), the Bi-LSTM (4.71–7.83%) and the ED-LSTM (2.82–

7.91%) (Table 4 and Fig 6).

Discussion

The aim of this study was to investigate the capability of 4 LSTM architectures in predicting

future lower limb trajectories of sagittal plane kinematic variables at an imposed speed (5k/h)

and PWS. The predicted kinematic variables are the foot AV (X1), shank AV (X2), thigh AV

(X3), foot LA (Y4), shank LA (Y5) and thigh LA (Y6). Prediction was performed using: (i)

Vanilla LSTM, (ii) Stacked LSTM, (iii) Bi-LSTM and (iv) ED-LSTM. Results suggested that

stacked and ED LSTM models are more reliable in predicting the future trajectory of the lower

limb kinematics up to 0.1s (5 time-steps) (Fig 6). The ED-LSTM achieved the most accurate

predicted kinematic trajectories among the other LSTM architectures (see Table 3). The pre-

diction of future gait trajectory has the potential to expand the horizon of solving several prob-

lems in human movement science. In general, the LSTM models are designed to predict the

future trajectories of any timeseries variable related to the human motion (e.g. knee angle). A

known future gait trajectory adds a feedforward term to powered exoskeleton devices instead

of predominantly relying on feedback sensors [1,27,29,69]. This would improve device

Table 3. Leave-one-out cross validation test error based on the MAE, MSE and the RMSE at the PWS and 5km.h-1 combined.

Error metric Architecture X1 (deg/s) X2 (deg/s) X3(deg/s) Y4 (m/s2) Y5 (m/s2) Y6 (m/s2)

MAE Vanilla LSTM 0.318 (±0.13) 0.221 (±0.07) 0.225 (±0.07) 0.281 (±0.12) 0.369 (±0.10) 0.379 (±0.14)

Stacked LSTM 0.288 (±0.15) 0.176 (±0.10) 0.185 (±0.11) 0.261 (±0.16) 0.317 (±0.12) 0.340 (±0.16)

Bi-LSTM 0.314 (±0.13) 0.204 (±0.07) 0.212 (±0.08) 0.293 (±0.13) 0.363 (±0.10) 0.365 (±0.28)

ED-LSTM 0.276 (±0.14) 0.176 (±0.09) 0.184 (±0.09) 0.247 (±0.13) 0.322 (±0.12) 0.336 (±0.15)

MSE Vanilla LSTM 0.293 (±0.35) 0.112 (±0.12) 0.106 (±0.08) 0.232 (±0.26) 0.311 (±0.18) 0.348 (±0.26)

Stacked LSTM 0.257 (±0.34) 0.092 (±0.13) 0.092 (±0.13) 0.237 (±0.32) 0.277 (±0.21) 0.314 (±0.28)

Bi-LSTM 0.261 (±0.29) 0.112 (±0.13) 0.109 (±0.10) 0.256 (±0.33) 0.316 (±0.19) 0.334 (±0.24)

ED-LSTM 0.240 (±0.31) 0.097 (±0.14) 0.092 (±0.11) 0.202 (±0.25) 0.276 (±0.21) 0.299 (±0.25)

RMSE Vanilla LSTM 0.478 (±0.25) 0.304 (±0.14) 0.304 (±0.11) 0.425 (±0.22) 0.532 (±0.17) 0.549 (±0.22)

Stacked LSTM 0.425 (±0.27) 0.250 (±0.17) 0.254 (±0.16) 0.396 (±0.28) 0.478 (±0.22) 0.497 (±0.25)

Bi-LSTM 0.457 (±0.22) 0.296 (±0.15) 0.299 (±0.14) 0.439 (±0.25) 0.534 (±0.17) 0.538 (±0.21)

ED-LSTM 0.419 (±0.25) 0.257 (±0.17) 0.262 (±0.15) 0.374 (±0.24) 0.481 (±0.20) 0.490 (±0.24)

Each of the predicted variables (i.e. X1, X1, . . ., Y6) was evaluated for the 4 trained LSTM architectures.

https://doi.org/10.1371/journal.pone.0255597.t003

Table 4. Leave-one-out cross validation test error based on the NRMSE (%) at the PWS and 5km.h-1 combined.

Architecture X1% X2% X3% Y4% Y5% Y6%

Vanilla LSTM 10.71 (±5.25) 7.06 (±2.37) 7.13 (±2.39) 7.51 (±2.99) 10.14 (±3.39) 11.14 (±4.55)

Stacked LSTM 9.53 (±6.22) 5.742 (±3.40) 5.898 (±3.44) 6.933 (±4.17) 9.083 (±4.34) 9.882 (±4.96)

Bi-LSTM 6.983 (±5.0) 4.715 (±2.75) 4.807 (±3.23) 5.254 (±3.16) 7.643 (±3.76) 7.837 (±4.35)

ED-LSTM 5.317 (±5.5) 2.823 (±3.33) 3.256 (±3.58) 2.960 (±3.77) 5.310 (±4.51) 5.287 (±5.02)

Each of the predicted variables (i.e. X1, X1, . . ., Y6) was evaluated for the 4 trained LSTM architectures.

https://doi.org/10.1371/journal.pone.0255597.t004
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Fig 5. Performance comparison between LSTM models based on leave-one-out cross validation at PWS and 5km.h-1 for each feature vector. Red is the

RMSE (Left Y-axis). Black is the CC (Right Y-axis). Wider gaps between the two error lines (CC and RMSE) means better prediction quality for the related

feature vector. The Stacked and ED LSTM maintained the gap for all feature vectors. (a) Foot AV (X1). (b) Foot LA (Y4). (c) Shank AV (X2). (d) Shank LA (Y5).

(e) Thigh AV (X3). (f) Thigh LA (Y6).

https://doi.org/10.1371/journal.pone.0255597.g005
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performance by narrowing down the nonlinear kinematic differences between the user and

the device and therefore avoid altering the user’s natural gait trajectories [70,71]. Prediction of

future gait trajectory could substantially improve the design of prosthetics by adapting the

device controlling parameters according to the user’s movement [72]. Additionally, a known

0.1s future gait trajectory falls in the range of slow and fast twitch motor units [73] and may

allow a response time (10-120ms) for an elderly patient to adjust their gait and avoid an immi-

nent risk of tripping or balance loss [73–77].

Four metrics were implemented to evaluate the LSTM prediction quality (Tables 3–5).

Results have shown that LSTM predictions based on LA were worse than predictions based on

AV in all models, possibly due to the double derivative generating a noisier signal (Fig 4). The

foot AV (X1) predictions showed greater error (MAE 0.276–0.318 deg/s) throughout models

compared to the shank (MAE 0.176–0.221 deg/s) and thigh (MAE 0.184–0.225 deg/s) AV,

likely due to the grater variation of the foot trajectory throughout the gait cycle [40]. The

NRMSE was used to facilitate the comparison between the LSTM models performance and to

simplify the understanding of error rates for cross-disciplinary research. The Vanilla LSTM

attained generalisation earlier (100 epochs) compared to all other models due to its simplicity

and the fewer required parameters to train [57]. Albeit, it obtained higher error rates com-

pared to the Stacked LSTM and the ED-LSTM (Fig 6 and Table 4). The Bi-LSTM have shown

a competent prediction quality in this research (Table 4).

All models were good at predicting the signal patterns but were erroneous at obtaining the

actual trajectories (see Fig 5). This indicates that prediction at PWS further challenges the pre-

diction quality and it can be improved by training and testing the model on the same partici-

pant. The walking speed was found to be the most influential variable amongst sex, age and

body max index on the ambulatory kinematic and kinetic profiles [78]. The changes of speed

are known to have substantial impacts on the spatiotemporal as well as the kinematic and

kinetic patterns of the gait cycle among different age groups [79,80]. Normal (comfortable or

preferred) walking speed reported in the literature had averages ranging from 1.05m.s-1 to

1.43m.s-1 (cadence of 101 to 122 steps/min,) [81,82]. The imposed speed 5km.h-1 was found to

be the general average PWS in previous studies [83–86] and it was adopted in this work to gen-

eralise the LSTM models to populations outside the recruited participants cohort. Prediction

at the imposed walking speed of 5km.h-1 was found to be good in our previous work using the

ED-LSTM [48] and in the literature using the PPCA [27]. The prediction at PWS however,

allows the development of ML models that are better suited to individuals who might have dif-

ferent PWS which in return naturalise the human-machine (i.e. bionics) interface.

In our previous paper, we found that prediction of future kinematics trajectory (up to 0.06

s) was possible at an imposed speed (5km.h-1) using ED-LSTM. In this work we have expanded

the prediction horizon up to 0.1s and investigated the other LSTM architectures to predict the

kinematics trajectory at PWS and imposed speed (5km.h-1). The input (25 timesteps– 0.5s)

and output (5 timesteps– 0.1s) sliding window sizes were designed as per the work by Zaroug

Table 5. Leave-one-out cross validation test evaluation based on the CC at the PWS and 5km.h-1 combined.

Architecture X1 X2 X3 Y4 Y5 Y6

Vanilla LSTM 0.86 (±0.15) 0.94 (±0.05) 0.95 (±0.03) 0.88 (±0.11) 0.77 (±0.17) 0.76 (±0.18)

Stacked LSTM 0.87 (±0.16) 0.95 (±0.06) 0.95 (±0.04) 0.88 (±0.13) 0.77 (±0.20) 0.77 (±0.20)

Bi-LSTM 0.88 (±0.14) 0.95 (±0.06) 0.95 (±0.04) 0.88 (±0.13) 0.77 (±0.17) 0.77 (±0.18)

ED-LSTM 0.89 (±0.14) 0.95 (±0.06) 0.96 (±0.04) 0.90 (±0.11) 0.80 (±0.18) 0.79 (±0.18)

Each of the predicted variables (i.e. X1, X1, . . ., Y6) was evaluated for the 4 trained LSTM architectures.

https://doi.org/10.1371/journal.pone.0255597.t005
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Fig 6. Performance comparison between LSTM models based on leave-one-out cross validation at PWS and 5km.h-1 for each feature vector. Green is the

RMSE (Left Y-axis). Blue is the NRMSE (Right Y-axis). Lower error points for the MAE and NRMSE means a better predictive model for the related feature

vector. (a) Foot AV (X1). (b) Foot LA (Y4). (c) Shank AV (X2). (d) Shank LA (Y5). (e) Thigh AV (X3). (f) Thigh LA (Y6).

https://doi.org/10.1371/journal.pone.0255597.g006
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et al. [48]. The combination of PWS and imposed speed 5km.h-1 timeseries data, widens the

variability in the training data and further challenges the ML model to maintain a good predic-

tion quality across different walking speeds. A ML model trained on PWS allows a generalised

predictive model that could be fine tuned across different participants. The number of partici-

pants was increased for both genders (Male and female) to our previous work [48]. The foot

segment was also added as the foot is the most distal segment of the human locomotor multi-

segment chain and plays an important part in maintaining balance, support and locomotion.

Foot’s movement directly affects the lower extremities (i.e. ankle) dynamics and control [87]

as well as the body’s Centre of Mass (COM) movement [88,89].

In contrast to the predicted trajectories evaluation technique by Tanghe et al. [27] (i.e. 3

selected time-steps), the performance evaluations of this work were calculated relative to the

mean based on each of the predicted 75 time-steps (i.e. 1.5s). The ED-LSTM in this paper

attained lower NRMSE range (2.83–5.31%) than the CNN implemented by Gholami et al.

(6.5–11.1%) [40]. These results suggest that ED LSTM neural network is a more suitable model

to capture features related to sequential time-series lower limb kinematic data [42,44]. The ED

LSTM achieved the most accurate predictions in this paper (see Table 3). As demonstrated in

the ED-LSTM architecture (see S1 Appendix) and in our previous paper [48], the internal

learning process for the ED LSTM is unsupervised [90]. The ED LSTM obtains predictions

based on a two learning phases. The encoder maps the input data (i.e. the input window) into

a hidden layer and learns a compressed feature representation of the independent variables.

While the decoder reconstructs the input data from the hidden layer to obtain the target

dependent variables from the compressed feature representation. The optimiser (i.e. SGD)

then minimises the reconstruction error which is the difference between the input and the

reconstructed output [5]. This type of learning approach allowed the ED LSTM to obtain qual-

ity features from a given input of kinematic trajectories [91]. The unsupervised feature learn-

ing paradigm (i.e. encoder) and the reconstruction of time series information (i.e. decoder)

has made the ED LSTM a good architecture for high level deep features extraction and for gen-

erative models [90,92,93]. The complexity and the power of the ED LSTM could be extended

to other learning techniques such as the unsupervised greedy layer-wise pre-training referred

to as pretraining [57]. The pretraining involves the training of a shallow layer and sequentially

adding up and refitting a new hidden layer to learn inputs from the existing previous layer (i.e.

shallow layer) while keeping fixed the learned weights and biases of the previous layer [94].

The pretraining structure opened up the opportunity to train very deep stacked ED LSTM

with less possibility of overfitting (because the training is performed in layer-wise) and a lower

generalisation error [95].

This work was limited to 15 young healthy participants. There exists a proportional relation-

ship between the human age and their walking speeds. The walking speed was found to be

slightly decreasing each year among healthy male and female populations [96]. Future work is

needed to test the models’ reliability on predicting slower speeds than that tested and accom-

modate predictions related to elderly population who may walk slower. Patients with balance

issues or fall history should be recruited to further understand the potential application of this

work for falls prevention [74,75,97,98]. Finally, a more complex model such as the hybrid mod-

els (i.e. ConvLSTM) or a different learning technique such as the greedy-layer wise pre-training

[95] may help expand the prediction horizon while maintaining the prediction quality.

Conclusions

In this work we developed and compared 4 LSTM architectures for the prediction of future

lower limb kinematics (i.e. foot AV, shank AV, thigh AV, foot LA, shank LA and thigh LA).
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Results suggested that future lower limb kinematics while walking at PWS and at 5km.h-1 can

be well predicted up to 0.1s with ED-LSTM and Stacked LSTM. These findings highlight the

potential of LSTM neural networks to predict the future trajectories of the human movements.

This could have application in exoskeleton control systems or falls prevention. Further work is

needed to understand the model’s robustness under different walking conditions and in par-

ticipants with a pathological gait. Future directions would incorporate other LSTM baseline

varients such as the Gated Recurrent Unit (GRU) and the LSTM with attention or self-

attention.
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