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ABSTRACT 

Australian Football requires physical and skilled output from its participants for more than 

ninety minutes of play. In both research and practice, physical output is typically described 

using aggregate parameters extracted from wearable technologies. Parameters include volume 

measures (eg., total distance), work rates (volume expressed relative to time, eg. metreage per 

minute) and output bands, which bin either accelerations or velocity into a smaller number of 

thresholds. Similarly, skilled output may be described using coaches’ ratings, player rankings 

and counts of skilled actions, termed involvements. Involvements refer to skilled actions when 

players are both in possession and not in possession of the ball. These parameters are typically 

aggregated across pre-set windows, including stints, quarters, and training drills. However, 

there are periods of altered physical and skilled output within training drills and stints, which 

are not captured by aggregate parameters. It is also difficult to determine when output 

meaningfully changes within sessions using these aggregate parameters. Consequently, it is 

difficult to use aggregate parameters to inform time-based decisions, including substitutions 

and stint-to-rest, and training drill length prescription. The aim of this thesis therefore was to 

develop an alternative method to aggregate parameter profiling, which can identify changes—

either increases or decreases-- in physical and skilled output within training drills and matches.  

Study One quantified the relationship between physical output, skilled output and stint duration 

in elite Australian football matches. Physical output was quantified using aggregate parameters, 

extracted from Global Navigation Satellite Local Positioning System devices. Skilled output 

was quantified using individual player involvements. Random effect models showed negative 

relationships between duration, high intensity running, and involvements per minute. Metreage 

per minute had a positive relationship with involvements per minute for most players. Three 
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conditional inference trees were computed. These models described the impact of factors, 

including round (ie., game number within a season) and rotation number, and how individuals 

react to outputs, along with a general set of thresholds for the data. All models demonstrated a 

weak relationship between physical, skilled output and time. This suggests that wearable 

technology data and notational analysis feeds could be analysed differently to improve their use 

in team sports.  

Study Two proposed a combined time-series/frequency domain approach to profiling physical 

and skilled output in team-sport. A binary segmentation change point algorithm was applied to 

the velocity time-series, collected via wearable technologies of Australian football players 

during matches. This method overcame the need for pre-set aggregation windows by identifying 

different segments of physical output through the mean and variability of velocity. Spectral and 

involvement features were extracted for each segment to describe physical and skilled output 

respectively. Spectral features were able to describe aspects of output that are not captured using 

aggregate parameters. For example, spectral kurtosis may describe whether physical output is 

continuous or intermittent. Between five and seven change points were able to give more insight 

into physical and skilled output than aggregate parameters, whilst identifying sufficiently 

different segments of play.  

Study Three applied the time-frequency approach of Study Two to match profiling in team-

sport. This study demonstrated how a time-frequency approach may identify differences in 

physical output between matches, that are not apparent from aggregate parameters. 

Additionally, the time-frequency approach was able to identify changes in physical and skilled 

output within matches. Alongside the change-point algorithm, k-means clustering allowed for 

segments of movement to be classified through both their time elapsed within a match, and their 
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physical and skilled output. These methods could therefore be used, to increase the specificity 

of load monitoring and physical activity prescription in team-sports. 

Study Four illustrated how a time-series/frequency-domain can be applied to physical output to 

assess the sequence, specificity and difficulty of team-sport training drills. By condensing 

velocity data from training drills into a similarity metric relative to match segments, a drill 

sequence resembling physical output at differing points of a match was generated. This study 

identified challenge points for each drill, where the mean and variance of velocity within 

training drills changes. The location and features of challenge points varied substantially by 

drill. Aggregate work rate parameters may therefore misrepresent the influence of training drill 

length on physical output. Movement paths were further analysed to explore how players accrue 

total volume measures such as total distance. These movement paths may reveal differences in 

physical output between training drills to match outputs, despite similar aggregate parameters. 

This thesis demonstrated how a time-frequency analysis of physical and skilled output may 

increase the sophistication of match and training drill profiling in team-sport. The methods 

presented in this thesis can identify periods of high physical output late in a match and the 

movement paths completed by athletes, with differences in physical output between matches. 

This information may assist practitioners to identify difficult matches (ie., matches with high 

physical outputs), without relying on typical aggregate parameters. These methods may also 

increase the specificity of training drill prescription to match outputs. The methods presented 

may also inform training considerations that are not addressed with aggregate parameters, 

including training drill sequence and duration. 
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1.1 Introduction 

In team-sport, physical output is typically quantified using aggregate parameters extracted from 

wearable technologies (Sweeting, Cormack, Morgan, & Aughey, 2017b). Volume parameters, 

including total distance and PlayerLoadTM (Boyd, Ball, & Aughey, 2013), quantify the total 

amount of load completed by a player during a training session or a match (Cummins, Orr, 

O'Connor, & West, 2013). These measures may be further binned into output bands, which 

quantify volume at different intensities (Sweeting et al., 2017b). Intensity measures, including 

metreage per minute and maximum velocity, quantify physical output independent of volume. 

Skilled output may also be described using aggregate parameters. In Australian football, these 

parameters include Champion Data Player Ratings (McIntosh, Kovalchik, & Robertson, 2018), 

Coaches Ratings (Sullivan et al., 2014a; Sullivan et al., 2014b) or the total number of skilled 

actions completed by a player either with or without the ball, as determined through notational 

analysis (Robertson, Back, & Bartlett, 2016). Both physical and skill output parameters may be 

aggregated across pre-set windows, including a rotation or on-field stint (Dillon, Kempton, 

Ryan, Hocking, & Coutts, 2017), quarter (Aughey, 2010) or match (Aughey, 2011). In training, 

parameters are often aggregated across a training drill or session (Corbett et al., 2018). 

Aggregate parameters typically assume physical output is accrued in a linear fashion, and do 

not account for the intermittent nature of many team-sports (Delaney, Thornton, Duthie, & 

Dascombe, 2016b). Output bands are also often determined arbitrarily, calculated off 

physiological test results (Park, Scott, & Lovell, 2018) or based on organisation consensus, and 

may not reflect the true activity profile of a player (Sweeting et al., 2017b). Further, aggregate 

parameters moving averages to inform time-related decisions, including stint-to-rest 

prescription true output of a player. In training, aggregate parameters limit the ability to 
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differentiate physical output between drills (Loader, Montgomery, Williams, Lorenzen, & 

Kemp, 2012). Aggregate parameters are also unable to identify the relationship between drill 

length and physical output. This is because aggregate including sprints, to match outputs, is 

also unknown. or decreases in physical output (Montgomery & Wisbey, 2016). Finally , they 

can explain total or average physical output, but do not identify how output was accrued 

(Sweeting, Aughey, Cormack, & Morgan, 2017a). Consequently, a greater understanding of 

physical and skilled output could be gained, by analysing these factors as a time series. 

Time-series analysis may overcome the current need for pre-set aggregation windows. Moving 

averages have been applied to team-sport velocity time series’ to identify differing intensities 

throughout matches (Varley, Elias, & Aughey, 2012). This method was further developed by 

identifying peak intensities of three to ten-minute durations, in order to set training benchmarks 

across football codes (Delaney, Cummins, Thornton, & Duthie, 2018a; Delaney et al., 2016a; 

Delaney et al., 2015; Delaney, Thornton, Burgess, Dascombe, & Duthie, 2017; Delaney et al., 

2016c; Delaney et al., 2018b). Similarly, phase-of-play analysis has been used to examine 

physical output within short (8 – 40 second) contextual windows (Vella et al., 2021). However, 

both moving averages and phase-of-play analysis are limited by their use of pre-set aggregation 

windows. Consequently, it is difficult to use moving averages to inform time-related decisions, 

including stint-to-rest prescription in team-sport matches.  Time series segmentation is a semi-

supervised learning technique, which can identify changes in the mean or variance of values in 

a series (Chen & Gupta, 2011). Although time series segmentation has been used across 

disciplines, it has not been applied to describe the physical output of team-sport athletes. 

Utilising this method on a physical output time-series would automatically identify different 

segments of physical output. Consequently, a breakdown of how output changes across the 

duration of a training session or match could be attained. 
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Frequency domain analysis is an alternative to aggregate parameters, which can provide a 

description of physical and skilled output. Frequency domain analysis is commonly used in 

engineering and Biomechanics (Wundersitz, Gastin, Robertson, Davey, & Netto, 2015a; 

Wundersitz et al., 2015b; Wundersitz et al., 2015c). This methodology transforms a signal from 

the time domain into the frequency domain (Hall & Education, 2007). Subsequently, the shape, 

magnitude and outliers of the signal are quantified. Consequently, frequency domain analysis 

may remove the need for output bands (Sweeting et al., 2017b). Furthermore, because it is not 

time dependent, it would allow for comparisons between match stints and training drills of 

differing durations (Corbett et al., 2018). This would therefore have potential application across 

athlete physical output in a team-sport setting and allow for similarities to be examined within 

competition levels of sport. 

Machine learning is an application of artificial intelligence, which may be used to further 

understand frequency domain features (Ofoghi, Zeleznikow, MacMahon, & Raab, 2013). This 

is because machine learning algorithms can make sense of signals within a data that are not 

apparent from practitioner insight or linear models (Ofoghi et al., 2013). Utilising machine 

learning may assist in better understanding physical and skilled output in team-sport (Sweeting 

et al., 2017a). Supervised learning maps a known output to a series of inputs (Ofoghi et al., 

2013). Algorithms, including conditional inference trees and random forests, then learn from 

these known outputs to classify or predict data points with unknown outputs (Robertson, Gupta, 

& McIntosh, 2016). These algorithms present a non-linear alternative to prediction and 

classification problems (Sardá-Espinosa, Subbiah, & Bartz-Beielstein, 2017). As a result, 

machine learning can account for non-linearity, when examining the relationship between 

physical output, skilled output and time. Conversely, unsupervised learning approaches, do not 

distinguish between data inputs and outputs (Ofoghi et al., 2013). Clustering, for example, 
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identifies different groups of data points based on their similarity to one another. Clustering 

was used to identify different types of training drills in Australian football (Corbett et al., 2018), 

and to identify player-specific movements in netball (Sweeting et al., 2017a). When used in 

conjunction with frequency domain features, clustering can minimise the dimensionality of 

physical and skilled output. Clustering can provide a brief descriptor of physical and skilled 

output, without relying on a single parameter such as total distance. Consequently, this may 

assist practitioners to better understand the relationship between physical and skilled output. 

Research in team-sport physical and skilled output has typically utilised aggregate parameters. 

Therefore, match output profiles currently lack specificity. Furthermore, methods to sequence 

training drills, or evaluate how their characteristics change over time is lacking. The specificity 

of discrete actions, including sprints, to match outputs, is also unknown. Therefore, the current 

methods of evaluating physical output are limited. Finally, studies investigating the 

relationships between physical and skilled output, and time have employed predominantly 

linear techniques. Therefore, this thesis will examine the relationship between physical and 

skilled output and time in elite Australian football, using a non-parametric technique. Then, 

frequency domain analysis will be proposed as an alternative to current aggregate parameters, 

and time-series analysis as an alternative method to pre-set aggregation windows. This 

technique will then be compared to current methods of match profiling in a case study, to 

illustrate a combined time-frequency approach. Finally, applications of time-frequency analysis 

to evaluate drill sequence, discrete actions and change over time are suggested. Future research 

may employ these methods in both individual and team-sports. 
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1.2 Objectives of The Thesis 

1.2.1 Objectives 

This doctoral investigation presents a more detailed alternative to aggregate parameters, using 

a time-frequency approach to team-sport output profiling. The primary aim of this thesis is to 

develop an alternative to aggregate parameter profiling, which is able to identify changes, both 

increases and decreases, in physical and skilled output within training drills and matches. The 

secondary aim of this thesis is to demonstrate how a combined time-frequency approach to 

player profiling, may give greater insight into the physical and skilled output of team-sport 

athletes in matches. A third objective is to utilise a time-frequency approach to training drill 

prescription in team-sport. 

1.3 Chapter Organisation 

Chapter 1 introduces the rationale, aims and objectives of this thesis. 

Chapter 2 reviews performance analysis in sport, and current methods used to measure physical 

and skilled output. It explores match profiling and training drill design. It also reviews time-

series, frequency domain and machine learning techniques to analyse physical and skilled 

output.  

Chapter 3 is a cross-sectional study, investigating the relationship between stint duration, 

physical output and skilled output in elite Australian Rules football. It presents methods which 

may be utilised in an applied setting, whilst also questioning the efficacy of aggregate 

parameters to measure physical and skilled output.  
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Chapter 4 proposes a combined time-series/frequency domain approach to output profiling in 

team-sport. It identifies potential specifications for a change point algorithm in team-sport, in 

order to identify changes in output across a match. It also describes physical output using 

frequency domain features and compares this method with an existing method to measure peak 

intensity in team-sport matches. 

Chapter 5 is a case study, which explores how a time-frequency can be utilised in team-sport 

match profiling. It demonstrates how a time-frequency approach may reveal insights into 

physical and skilled output, not available from aggregate parameters. It also demonstrates how 

the approach may be utilised to better understand changes in physical output within and between 

matches. 

Chapter 6 applied the time-frequency approach presented Chapter 4, to common training design 

considerations. It demonstrates how a time-frequency approach may be utilised to inform 

training drill sequence, increase the specificity of training drills and determine training drill 

length. 

Chapter 7 is a general discussion of the preceding chapters. It explores the key themes of this 

thesis, as well as imitations, practical applications and future research 

NB: Chapters 3 and 4 have been published in peer reviewed journals. Chapters 5 and 6 are 

currently under review.  
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2.1 Overview 

This review of the literature examines both historical and contemporary performance analysis 

in team-sport. For the purpose of this thesis, performance analysis refers to the analysis of 

both skilled and physical output in team-sport matches or training drills.  This review will 

outline how skilled output measurement has evolved from broad analyses of the frequency 

and success of actions such as goal attempts and passes, into a contemporary suite of metrics, 

which describe the technical actions completed by individual players and collective 

movements of teams across the field. Similarly, this review will identify how physical output 

measurement evolved from notational analysis, with practitioners manually estimating 

distances completed by players, into methods which directly measure velocity and 

acceleration. Subsequently, the advantages and disadvantages of different technologies to 

measure physical output will be examined. Further, common parameters extracted from 

wearable technologies to describe physical output will be reviewed. Previous applications of 

parameters extracted from wearable technologies will also be reviewed. Finally, the 

advantages and disadvantages relevant analytical methods from frequentist statistics, machine 

learning, time-series analysis and frequency domain analysis will be reviewed.  

2.2 Measuring Skilled Output in Team-Sport Athletes 

2.2.1 Evolution of Notational Analysis 

Performance analysis aims to assist practitioners’ decision making, by describing components 

of human performance (Travassos, Davids, Araújo, & Esteves, 2013). Specifically, notational 

analysis describes the frequency and success of skilled actions (Bartlett, 2001). In team-sport, 

notational analysis likely originated in newspaper articles in the 19th Century (Eaves, 2015). 

When summarising the results of lawn tennis matches, journalists provided statistics such as 
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the total frequency of strokes, as well as the proportion of volleys (Eaves, 2015). Similarly, 

counts of game events including touch downs, goals from touch downs, fumbles, punts and 

average length of punts were reported for American gridiron matches (Eaves, 2015). During 

this period, performance analysis existed as a source of entertainment, and a means to further 

describe the events of matches. However, the methods used to extract statistics during this 

period are unknown.  Further, the reliance on manual notation, increased the potential for 

human error. 

A systematic approach to performance analysis developed in the 20th Century. Labanotation 

developed in the early 20th century, to deconstruct the movements of dancers (Guest, 2013). By 

analysing the direction, duration and body segments involved in movement, Rudolf Laban 

developed the first objective and systematic methodology to analyse human movement 

(Barbacci, 2002; Guest, 2013; Loke, Larssen, & Robertson, 2005). A similar methodology was 

adapted by Reep and Benjamin (1968), who  manually sketched passing movements in 

association football, and categorised actions within each movement in shorthand (Pollard, 

2002). The distributions of results from these sketches were analysed to determine passing 

movements associated with goals (Reep & Benjamin, 1968). Dividing a game into smaller 

events, including passes or shots, allowed for an objective study of performance in team-sports 

(Pollard & Reep, 1997). Consequently, this research developed two key paradigms in 

performance analysis. First, the growth of systematic and methodological data collection. 

Second, the growth of notational analysis, whereby, team-sport matches can be summarised 

through a series of smaller match events. 

Notational analysis developed further, with the availability of video footage in team-sport 

matches (James, 2006). Video Footage allows practitioners to view match events multiple 
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times, thus increasing the accuracy of notational analysis. This also means a larger selection of 

match events can be captured, allowing for a more detailed description of match events. In 

professional team-sports, commercial providers perform notational analysis for teams. For 

example, Opta SportsTM performs notational analysis for international sports, including soccer, 

rugby league and ice hockey. Similarly, providers including Second SpectrumTM and 

StatSportsTM perform notational analysis in the National Basketball Association. A common 

feature of these providers is the ability to extract a notational analysis time-series. That is, match 

events are recorded with a time stamp, and presented as a sequence of all on-field actions. 

Measuring the count and sequence of all on-field actions is important in AF in order to measure 

team skill, strategy and success (Robertson, Gupta, & McIntosh, 2016b). Champion DataTM is 

a notational analysis provider in Australian Football (Kempton, Sullivan, Bilsborough, Cordy, 

& Coutts, 2015b; Sullivan et al., 2014). Champion DataTM provide a time-series of key actions 

completed by all athletes during all AFL matches (Robertson et al., 2016b), with a high level 

of accuracy (Robertson et al., 2016b). Common actions include kicks, tackles and passes. 

However, despite the notational analysis time-series provided, the majority of research analyses 

the total frequency of skilled actions across a match. For example, identifying the relationship 

between match outcome and performance indicators (Robertson, Back, & Bartlett, 2016a), 

identifying changes in game style between seasons (Woods, Robertson, & Collier, 2017) and 

assessing individual contributions to team match outcomes (Robertson et al., 2016b). 

Consequently, it is currently unreported how skilled actions change during a match.   

2.2.2 Global Performance Measures 

Skilled output refers to the amount of skilled work completed by a team-sport athlete. Given 

the complex nature of skilled performance (Davids, Glazier, Araújo, & Bartlett, 2003), methods 
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to measure skilled output are less standardised (Corbett et al., 2018a). Across a team, methods 

may include team-movement based patterns such as dominant regions, player density and 

congestion (Alexander, Spencer, Mara, & Robertson, 2019; Spencer, Morgan, Zeleznikow, & 

Robertson, 2016) which aim to quantify how well players’ occupy and control space in team-

sport matches. However, individual skilled output is often described using aggregate 

parameters. These parameters are often situation-specific, for example, kicking efficiency 

(Robertson et al., 2016a). In Australian Football, a common measure of skilled output is 

Champion Data Player Ratings (Jackson, 2008). This parameter weights skilled actions 

completed by a player into a continuous value (McIntosh, Kovalchik, & Robertson, 2018). 

Whilst this parameter correlates with individual (Robertson et al., 2016b) and team success 

(Robertson et al., 2016b), it does not aim to capture all skilled actions completed by a player. 

Furthermore, Player Ratings are not available as a time series, and can only provide a global 

measure of skilled performance for the duration of a match or quarter. Consequently, they are 

unable to identify changes in skilled output within matches and are most commonly used for 

between-match comparisons of athletes. 

2.2.3 Involvements 

In contrast to Player Ratings, skilled involvements describe all on-field skilled output. 

Consequently, skilled involvements may be used to measure skilled output in Australian 

football. Skilled involvements refer to the sum total of key actions completed by players during 

a training session or match. These key actions may be selected by practitioners or coaches, to 

reflect what they consider to be important for match success. Skilled involvements may be 

obtained through notational analysis, whereby, key events can be identified. They may also be 

analysed as a time series. Skilled involvements have been used to explain match outcome 
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(Robertson et al., 2016a) and to assess the similarity of players on-field skilled output (Jackson, 

2016). Future research may utilise skilled involvements as a global measure of player skilled 

output. 

2.3 Measuring Physical Output in Team-Sport 

2.3.1 Physiological Analysis 

Physiological analysis has become common in many sports (Sweeting, Cormack, Morgan, & 

Aughey, 2017c). One aim of physiological analysis is to identify the physical capacity of an 

athlete. This is important, as it gives insight on the peak physical performance achievable by an 

athlete in a controlled setting (Gomes, Coutts, Viveiros, & Aoki, 2011; Gray & Jenkins, 2010a). 

In Australian Rules football, this may relate to attributes such as V̇O2MAX (Reilly, Morris, & 

Whyte, 2009), maximum strength (Gray & Jenkins, 2010b), peak power output (Coutts et al., 

2015b) and lactate threshold (Gray & Jenkins, 2010a). However, it is typically not feasible to 

measure these attributes frequently in the training year (Reilly et al., 2009). This may be due to 

the cost involved in testing, and the need to manage training loads within a training year (Fry, 

Morton, & Keast, 1992). Furthermore, there is limited evidence suggesting a relationship 

between physical capacity, and the outputs of players during matches (Dillon, Kempton, Ryan, 

Hocking, & Coutts, 2017; Ryan et al., 2018; Ryan, Coutts, Hocking, & Kempton, 2017), with 

capacity mediating output at most (Mooney et al., 2011). Consequently, physical capacities are 

typically not used in team-sport performance analysis. Instead, wearable technologies and 

optical tracking systems which provide a more direct measure of physicphysical output (internal 

load) 
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2.3.2 Physical Load and Output in Team-Sport 

Physical load refers to the physiological stress placed upon the athlete through training and 

competition (Rogalski, Dawson, Heasman, & Gabbett, 2013a). From a periodisation 

perspective, it is useful to measure physical load to ensure athletes’ loads are progressed 

gradually, as not doing so may lead to reduced performance or potential injury (Gabbett, 

Jenkins, & Abernethy, 2010; Gabbett, 2015; Gabbett, Whyte, Hartwig, Wescombe, & 

Naughton, 2014). Furthermore, measuring physical load may allow for the comparison of the 

specificity of training sessions to matches to be evaluated (Corbett et al., 2018a). This is 

important, as adaptations to training are specific to: energy systems, muscle groups and 

movement patterns (Coull, Tremblay, & Elliott, 2001; Cronin, McNair, & Marshall, 2001; 

Tremblay & Proteau, 1998). Consequently, physical load is measured systematically in most 

professional team-sports (Hartman & Fritz, 1985; Impellizzeri, Rampinini, Coutts, Sassi, & 

Marcora, 2004; Kelly & Coutts, 2007). 

2.3.3 Internal Load Measures 

Although not the focus of this review, internal load measures will be discussed in the context 

of physical output to give futher background (Bartlett, O’Connor, Pitchford, Torres-Ronda, & 

Robertson, 2017). Internal load measures typically aim to describe an athletes’ physiological 

response, to an external stimulus (Alexiou & Coutts, 2008). Common internal load measures 

include heart rate  (Casamichana & Castellano, 2010; Little & Williams, 2006; Secomb, 

Sheppard, & Dascombe, 2015), ratings of perceived exertion (Impellizzeri et al., 2004; Moreira 

et al., 2015; Rogalski, Dawson, Heasman, & Gabbett, 2013b), stress hormone concentrations 

in blood or saliva (Buchheit et al., 2013b; Gomes et al., 2011) and subjective wellness ratings 

(Buchheit et al., 2013b). Although internal load contributes to an athletes’ total load (Bourdon 
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et al., 2017), these measures are most often used to evaluate an athlete’s response to training 

and loads (Buchheit et al., 2013b). This is in contrast to external load or physical output 

measures, which describe the objective workload completed by a player (Bourdon et al., 2017).  

2.3.4  Observing Physical Output 

Notational analysis was an early method of estimating physical output in team-sport matches 

(Knowles & Brooke, 1974). Several observers would watch a soccer match, and estimate the 

total distance, peak velocity and distance covered in pre-set velocity bands for a player 

(Knowles & Brooke, 1974). However, this method had a number of limitations, preventing its 

systematic adoption in a team-sport environment. Although reliability could be evaluated 

between raters, it is unknown how their estimates related to the true physical output completed 

by players. Furthermore, manually estimating physical output becomes increasingly difficult 

with a larger number of players. Consequently, this method received limited adoption in team-

sports. Instead, total duration provided an early proxy for physical output in team-sports.  This 

was later succeeded by wearable technologies and optical tracking systems which provide a 

more direct measure of physical output (Cummins, Orr, O'Connor, & West, 2013a).  

2.3.5 Inertial Sensors 

Inertial sensors are wearable devices which can be used to measure the force of a body. In team-

sports, tri-axial accelerometers are the most commonly used inertial sensor to measure physical 

output. Inertial sensors may be included in integrated wearable technologies (see Section 2.3.7) 

or worn independently. Although triaxial accelerometers are often placed between the scapulae, 

they can also be attached to any point on the body during training (Buchheit, Gray, & Morin, 

2015a; Clarke, Cooper, Hamill, & Clark, 1985; Colby, Dawson, Heasman, Rogalski, & 
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Gabbett, 2014). Accelerometers measure physical output by calculating acceleration in vertical, 

forward and lateral planes (Cavagna, Saibene, & Margaria, 1961). Aggregated measures of 

physical output can be extracted from accelerometers (Boyd, Ball, & Aughey, 2011). 

Specifically, the sum total of accelerations in all three axes, has been used to describe physical 

output in team-sport athletes (Boyd et al., 2011; Boyd, Ball, & Aughey, 2013). Accelerations 

and decelerations have also been used, to give a more sophisticated breakdown of physical 

output in team-sport matches (Dalen, Jørgen, Gertjan, Havard, & Ulrik, 2016). Triaxial 

accelerometers are light-weight and inexpensive (Bosch, Marin-Perianu, Havinga, & Marin-

Perianu, 2011; Boyd et al., 2013; Cummins et al., 2013a).  

Another advantage of accelerometers is the ability to develop sport-specific parameters from 

their output (Wundersitz et al., 2015b). Specifically, peak impacts have been extracted from 

accelerometers, to describe the forces associated with contact in team-sports (Wundersitz, 

Netto, Aisbett, & Gastin, 2013). Additionally, peak accelerations have also been extracted 

during walking, jogging and running (Wundersitz, Gastin, Richter, Robertson, & Netto, 2014). 

More specific actions, such as change of direction and jumping have also been identified 

(Wundersitz et al., 2015c). Accelerometers are primarily limited by their inability to directly 

measure the velocity or displacement of an athlete (Sweeting, Aughey, Cormack, & Morgan, 

2017a). Consequently, whilst they may provide a supplementary understanding of physical 

output, they should be used alongside location derived measures, such as GPS or optical 

tracking,  to quantify on-field physical output.  

2.3.6 Vision-based and Optical Tracking Systems 

Manual vision-based tracking systems infer physical output from camera footage (Barris & 

Button, 2008). In AF, manual vision-based systems typically utilise either broadcast or 
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organizationally collected footage from video cameras (Barris & Button, 2008). Research has 

estimated distance covered at different velocities from  broadcast (Fox, Spittle, Otago, & 

Saunders, 2013) (Dawson, Hopkinson, Appleby, Stewart, & Roberts, 2004), single camera 

(Davidson & Trewartha, 2008) and multiple camera set-ups (Klusemann, Pyne, Hopkins, & 

Drinkwater, 2013; Mohr, Krustrup, & Bangsbo, 2003). Manual vision-based tracking is 

inexpensive, portable and convenient for athletes, who are not required to physical wear a unit 

to have position and distance estimates (Carling, Bloomfield, Nelsen, & Reilly, 2008). 

However, manual vision-based tracking efficacy is limited by footage quality (Carling et al., 

2008). Specifically, broadcast footage typically tracks only a small radius surrounding players’ 

in possession of the ball (Sha et al., 2020). Consequently, there may be periods of time where 

player location cannot be tracked from broadcast footage. Further, it is time consuming to 

extract physical output parameters using this method. Manual vision-based systems have 

greater potential for human error than automated tracking systems or wearable technologies 

(Carling et al., 2008). Although intra and inter-observer reliability has been established for these 

methods in some sports (Duthie, Pyne, & Hooper, 2003; Fox et al., 2013), there is no established 

validity in the literature. Consequently, manual vision-based systems should be avoided in 

favour of semi-automated and automates vision-based systems when measuring physical 

output. 

Semi-automated vision-based systems have overcome many limitations of manual vision-based 

systems (Carling et al., 2008). These systems place a number of cameras in fixed positions 

around a field or court (Carling et al., 2008). From this, positional coordinates and thus, 

kinematic quantities, including velocity and acceleration may be derived (Valter, Adam, Barry, 

& Marco, 2006). Semi-automated vision based systems have been validated, against timing-

gates as a means to measure physical output (Valter et al., 2006). However, the accuracy of 
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semi-automated vision-based systems can vary due to lighting, image quality and changes in 

camera set up (Valter et al., 2006). Further, there are a number of factors which limit their 

systematic use in an applied team-sport setting. First, they are an expensive method of 

measuring physical output (Linke, Link, & Lames, 2020). They are often not portable, require 

extensive calibration (Barris & Button, 2008) and often  have potential for human error (Barris 

& Button, 2008). Additionally, these systems have only been validated in relatively linear sports 

with large fields (Linke et al., 2020). In sports, including AF and basketball, which are 

characterised by contested situations, vision-based systems may struggle to correctly identify 

players (Sha et al., 2020). Finally, automated systems typically utilise on-field reference lines 

to track player location (Sweeting, Cormack, & J., 2017b). In sports such as AF, where field-

size is variable, vision-based systems would need to be calibrated independently.  For these 

reasons, these systems are typically not used to measure physical output in training (van der 

Kruk & Reijne, 2018). As a result, semi-automated vision systems are frequently used to 

measure physical output in team-sport matches, but not training sessions (Barris & Button, 

2008). Consequently, they are often not a viable method of consistently measuring physical 

output in both training drills and matches in many team-sports.  

2.3.7 Integrated Wearable Technologies 

In team-sports, modern wearable technologies combine gyroscopes, magnetometers and 

accelerometers with player position relative to a field or location on earth (Cummins et al., 

2013a). This is accomplished using a Global Navigation Satellite System (GNSS). Specifically, 

the distance between a device and satellites in the sky are used to measure players’ positions, 

typically  at a rate of 10 to 12 Hz (Larsson, 2003). In indoor environments, where devices cannot 

communicate with satellites, a local positioning system (LPS)  may be used (Sathyan, 
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Shuttleworth, Hedley, & Davids, 2012). In this system, a field or court is surrounded by a series 

of nodes. Devices then communicate with these nodes, typically using radiofrequency, to detect 

player position. From this, it is possible to extract a kinematic time series for velocity and 

acceleration, as well as their angular analogues (Sweeting et al., 2017a). Integrated wearable 

technologies also typically embed an accelerometer, gyroscope and magnetometer (Cummins 

et al., 2013a). As a result, they have the same advantages of inertial sensors, whilst also 

measuring player position. 

Integrated wearable technologies are the most commonly used method of capturing physical 

output in many team-sports, including rugby and AF (Cummins et al., 2013a). They are both 

relatively inexpensive and require little manual effort. Consequently, GNSS can be used to 

measure physical output in both training sessions (Bartlett, O'Connor, Pitchford, Torres-Ronda, 

& Robertson, 2016) and matches (Aughey, 2011). Furthermore, with the growth of Radio 

Frequency Identification (RFID) integrated wearable technologies measure physical output 

indoors and outdoors (Sathyan et al., 2012; Serpiello et al., 2018). Their integration of both 

inertial and locational measurement also gives practitioners a wide range of physical output 

parameters to utilise. They are also lightweight, minimising the interruption to athletes during 

training sessions and matches (Coutts & Duffield, 2010a). As a result, they can systematically 

measure physical output. Consequently, aggregate parameters are often extracted from 

integrated wearable technologies to describe physical output in team-sport. 

2.4 Aggregate Parameters Extracted from Wearable Technologies 

2.4.1 Aggregate Parameters 

Aggregate parameters extracted from wearable technologies are frequently used to measure 

physical output in team-sports (Sweeting et al., 2017c). To obtain aggregate parameters, 
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kinematic time series’ including velocity and acceleration are derived from positional 

coordinates (Sweeting et al., 2017a) These time series’ are then summarised by a smaller group 

of parameters (Sweeting et al., 2017b). Aggregate parameters aim to describe the total volume, 

intensity and composition of physical output in team-sport athletes (Cummins, Orr, O’Connor, 

& West, 2013b). During matches, these parameters may be aggregated across an on-field stint 

(Dillon et al., 2017; Orchard, Driscoll, Seward, & Orchard, 2012; Ryan et al., 2017), quarter 

(Gray, Jenkins, Andrews, Taaffe, & Glover, 2010) or match (Boyd et al., 2013). From a training 

perspective, these parameters may be aggregated across a training phase (Buchheit et al., 

2013a), week (Gabbett & Ullah, 2012), session (Colby et al., 2014; Twist, Waldron, Worsfold, 

& Gabbett, 2013) or training drill (Corbett et al., 2018b; Loader, Montgomery, Williams, 

Lorenzen, & Kemp, 2012b). These aggregation periods have frequently been used for injury 

analysis (Colby et al., 2014; Gabbett et al., 2010; Gabbett & Ullah, 2012), load monitoring 

(Burgess, 2017; Malone et al., 2015; Nedergaard et al., 2017) and performance analysis 

(McLaren, Weston, Smith, Cramb, & Portas, 2016; Sullivan et al., 2014; Tee, Lambert, & 

Coopoo, 2017). However, all of these aggregation windows are pre-set. Consequently, it is 

difficult to identify how physical output changes over time using these predetermined windows, 

that are often arbitrarily demarcated into one to ten minute bands (Delaney, Thornton, Burgess, 

Dascombe, & Duthie, 2017).  

2.4.2 Total Distance 

Volume parameters summarise the total, accumulated physical output of a player in an 

aggregation period (Cummins et al., 2013b). Total distance is the most commonly reported 

volume parameter in team-sport. (Castellano, Casamichana, Calleja-González, San Román, & 

Ostojic, 2011; Gray et al., 2010; Jennings, Cormack, Coutts, Boyd, & Aughey, 2010c). It is 
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commonly a key component of physical match profiles (Carling & Dupont, 2011; Varley, 

Gabbett, & Aughey, 2014), and has been used to discriminate between the physical output of 

players in differing positions (Dawson et al., 2004; McLellan & Lovell, 2013). In training, total 

distance has also been used to evaluate periodisation (Buchheit et al., 2013a) and changes in 

volume across a training year (Gabbett, 2015). Total distance has also been used to analyse the 

characteristics of training drills (Corbett et al., 2018a; Loader, Montgomery, Williams, 

Lorenzen, & Kemp, 2012a), to aid in training drill prescription. The popularity of total distance 

is likely due to its ease of interpretation (Cummins et al., 2013a). The main limitation of total 

distance is its inability to include non-running based components of physical output (Barrett, 

Midgley, & Lovell, 2014).  

2.4.3 Accelerometer Derived Volume 

Accelerometer-derived parameters express the instantaneous acceleration of players across 

three planes in arbitrary units Boyd et al., 2011; Boyd et al., 2013). Depending on the wearable 

technology provider, slightly different calculations and names may be given to accelerometer 

derived parameters. For example, BodyLoadTM is a common acclerometer-derived volume 

parameter in rugby (McLaren et al., 2016; Nedergaard et al., 2017). PlayerLoadTM, developed 

by Catapult Sports, is the most common accelerometer-derived parameter reported in the team-

sport literature (Boyd et al., 2013; Gabbett et al., 2014; McInnes, Carlson, Jones, & McKenna, 

1995). PlayerLoadTM has been widely used, due to its potential to include non-running 

components of load into a global volume parameter (Barrett et al., 2014; Barrett et al., 2016; 

Wik, Luteberget, & Spencer, 2017). These components include jumps, tackles and changes of 

direction (Barrett et al., 2014; Barrett et al., 2016). Additionally, the reliability of PlayerLoadTM 
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has been confirmed in the literature, with moderate to high test-retest-reliability (Barrett et al., 

2014).  

PlayerLoadTM has also been used in sports where athletes train and compete both indoors and 

outdoors. However, there are several limitations with PlayerLoadTM in Australian Football, the 

team-sport of focus in this thesis. First, AF is predominantly a running based sport. 

Consequently, PlayerLoadTM is typically collinear with total distance due to the influence of 

heel strike on accelerometers (Casamichana, Castellano, Calleja-Gonzalez, San Román, & 

Castagna, 2013). Arguably, there is therefore no need to include it as a measure of physical 

output in running based sports. Second, the arbitrary units of PlayerLoadTM are not as easily 

prescribed as total distance in training. This is because PlayerLoadTM measures an abstract 

quantity, unlike total distance which is directly prescribed by coaches and conditioning staff 

(Vella et al., 2021). Third, with the mainstream adoption of LPS systems, total distance can also 

be measured indoors. Additionally, PlayerLoadTM does not directly measure player location or 

movement paths. As a result, it gives limited context to how players accrue physical output. 

2.4.4 Metabolic Power 

Metabolic power aims to summarise the energetic demands of physical output (Di Prampero, 

Botter, & Osgnach, 2015).This is achieved by including the magnitude of accelerations and 

decelerations, in conjunction with steady-state physical output (Buchheit, Manouvrier, 

Cassirame, & Morin, 2015b). The popularity of metabolic power is increasing in team-sports 

including rugby league (Kempton, Sirotic, Rampinini, & Coutts, 2015a), Australian football 

(Coutts et al., 2015a) and soccer (Osgnach, Poser, Bernardini, Rinaldo, & Di Prampero, 

2010).This is likely due to its theoretical potential as a global load aggregate parameter 

(Delaney et al., 2016a; Delaney et al., 2016c). However, metabolic power has a number of 
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limitations. First, metabolic power  does not strongly correlate with a players’ energy 

expenditure in linear and continuous sports (Buchheit et al., 2015b). This is likely because 

metabolic power calculations are derived from linear running, and thus, have poor agreement 

with energy expenditure during change of direction movements (Buchheit et al., 2015b). 

Second, the inclusion of accelerations in a global load measure, is questionable due to the poor 

validity and reliability of accelerations (further discussed in Section 2.4).  As a result, these 

limitations likely offset the benefits of metabolic power in AF. 

2.4.5 Output Bands 

Physical output bands aim to describe the physical output completed by players at varying 

intensities. Specifically, they bin parameters including total distance and acceleration counts, 

into a smaller number of bands (Sweeting et al., 2017b). These bins are created using static 

thresholds and have been described using qualitative descriptors. For example in AF, high 

intensity running, may be defined as all distance covered at speeds > 4.0 m·s-1 (Aughey, 2010b). 

This allows for a more detailed profile of physical output in team-sport matches (Scott, Haigh, 

& Lovell, 2020; Scott, Norris, & Lovell, 2020). Additionally, using arbitrary bands may allow 

for a more specific analysis of training drill characteristics (Corbett et al., 2018a; Gabbett, 2015; 

Gabbett et al., 2014), which may in turn assist with load monitoring and training drill 

prescription (Farrow, Pyne, & Gabbett, 2008; Gabbett, 2015). However, neither velocity or 

acceleration bands are standardised in the literature (Park, Scott, & Lovell, 2018). Within and 

between sports, there are discrepancies in the thresholds set for each band (Sweeting et al., 

2017b). For example, both thresholds of 4.0 m·s-1 (Sullivan et al., 2014) and 4.17 m·s-1 have 

been used to define high intensity running in AF (Mooney, Cormack, O'brien, Morgan, & 

McGuigan, 2013; Sweeting et al., 2017b). These inconsistencies are due to the arbitrary 
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selection of physical output bands (Lovell, Scott, & Park, 2019). Consequently, it is difficult to 

conduct comparisons between and within-sports, using physical output bands. Additionally, 

because physical output bands are typically applied across a team, they do not account for 

differences between athletes (Lovell et al., 2019; Park, Scott, & Lovell, 2019). This may 

decrease the specificity of load monitoring in team-sports (Gabbett, 2015). Consequently, 

physical output bands may not reflect the true intensity of different players within a team 

(Gabbett, 2015). 

The limitations of physical output bands has led to alternative methods to describe physical 

output at varying intensities (Lovell et al., 2019; Park et al., 2019).Specifically, there has been 

a recent interest in setting velocity thresholds to reflect individual differences (Clarke, Anson, 

& Pyne, 2015). A proposed method of achieving this is utilising results derived from 

physiological tests. Clarke et al. (2015), utilised VȮ2MAX scores to develop velocity thresholds, 

in women’s Rugby 7’s. However, in many team-sports, this would not reflect changes in 

velocity, which also contribute to load. Additionally, the linear protocols used to set 

physiological thresholds do not reflect the intermittent nature of many team sports (Sweeting et 

al., 2017b). Furthermore, physiological tests are infrequently performed, and therefore may not 

reflect changes in physical capacity within a season (Larsson, 2003). Consequently, velocity 

bands should be determined using historical data. Murray, Gabbett, and Townshend (2018) 

utilised players’ maximum velocity extracted from GPS devices, to determine individualised 

velocity bands. However, this method does not describe the distribution of velocity and 

acceleration data points for each player. Consequently, it is unknown how well this method 

reflects the true physical output completed by the player.  
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Data mining methodologies may be utilised as an alternative to velocity bands. Sweeting et al. 

(2017a) utilised a k-means algorithm on instantaneous velocity, acceleration and angular 

velocity. Subsequently, four, player-specific clusters of physical output for velocity, angular 

velocity and acceleration were developed. Consequently, this method did not require arbitrarily 

set thresholds, whilst reflecting physical output at different clusters intensities. Similarly, Park 

et al. (2018), utilised k-means, gaussian mixture models and spectral clustering, to develop three 

velocity thresholds. These thresholds were qualitatively described as high, very-high and 

sprinting locomotion (Park et al., 2018). This study differed from (Sweeting et al., 2017a), by 

accounting for dependency between sequences of velocity data (Park et al., 2018). Together, 

these studies highlight the efficacy of data mining methods, in summarising the physical output 

of team-sport athletes. Furthermore, they demonstrate how instantaneous values may be 

utilised, to give increased insight into team-sport physical output. Therefore, physical output 

may be best described by utilising both instantaneous values and machine learning. Finally, 

these studies present an opportunity to examine physical output as a time-series, to account for 

dependency between data points. 

2.4.6 Peak Values 

Peak values are intensity parameters, which aim to quantify the highest intensity achieved by a 

player (Varley, Fairweather, & Aughey, 2012c). In AF, maximum velocity is the most 

frequently used peak intensity parameter (Cummins et al., 2013a). In other sports, peak 

acceleration is often used in conjunction with or in place of peak velocity (Delaney, Cummins, 

Thornton, & Duthie, 2018a). However, peak values are heavily limited by their capture 

duration. For example, players must only maintain a velocity for < 0.2 s, for it to register as 

their peak (further discussed in Section 2.4). Consequently, peak values are often inaccurate, 
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due to the small number of data points used (Coutts & Duffield, 2010a). Furthermore, peak 

values are position dependent, do not identify how frequently players achieve this peak, or how 

long they maintain it for. Consequently, peak values are limited as an intensity measure in AF. 

Therefore, work rates are often used to describe intensity in team-sport. 

2.4.7 Work Rates 

Intensity parameters aim to summarise the difficulty of physical output, independent of duration 

(Cummins et al., 2013a). In team-sport, this is often described by expressing total volume 

relative to time (Corbett, Sweeting, & Robertson, 2017; Cummins et al., 2013a). For example, 

metreage per minute is calculated by dividing total distance by the duration of a session (Coutts 

& Duffield, 2010a; Jennings, Cormack, Coutts, Boyd, & Aughey, 2010a; Wisbey, 

Montgomery, Pyne, & Rattray, 2010). Similarly, average acceleration has gained popularity in 

sports including rugby (Delaney et al., 2018a). Work rates are often used to compare physical 

output, where session time varies. For example, comparing the loads of different training drills 

(Corbett et al., 2018b). However, there are several limitations of the work rates used in sport. 

First, they are linear and therefore calculated using linear statistical techniques. As a result, they 

do not reflect the intermittent nature of physical output in many team-sports (Delaney et al., 

2016a; Delaney et al., 2015; Delaney et al., 2017). Furthermore, they cannot identify non-linear 

periods of altered physical output within training sessions or matches. Finally, the values of 

average acceleration and metreage per minute typically fall within a small range. Consequently, 

these parameters may only be able to identify large differences in physical output.     
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2.4.8 Moving Averages 

Moving averages applied to instantaneous velocity or acceleration, have been proposed as an 

alternative to existing intensity parameters (Delaney et al., 2018a; Delaney et al., 2016a; 

Delaney et al., 2015; Delaney et al., 2017). Initially applied to team-sport by Varley et al., 

(Varley et al., 2012c), this method applies moving averages of varying durations, to the 

instantaneous velocity and/or acceleration of team-sport athletes (Delaney et al., 2015). This 

may be applied to physical output during matches, to attain intensity benchmarks for athletes 

to achieve during training (Delaney et al., 2016c). Moving averages have been used in rugby 

(Delaney et al., 2016a; Delaney et al., 2015; Reardon, Tobin, Tierney, & Delahunt, 2017; 

Whitehead et al., 2018a), Gaelic football (Malone, Solan, & Collins, 2017b; Malone, Solan, 

Hughes, & Collins, 2017c), soccer (Varley, Elias, & Aughey, 2012a) and Australian Rules 

football (Whitehead, Till, Weaving, & Jones, 2018b). However, moving averages have recently 

been questioned recently in the literature (Carling, McCall, Harper, & Bradley, 2018). This is 

because they do not identify the frequency or temporal occurrence of peak intensities (Carling 

et al., 2018). Furthermore, the ability to translate these parameters into training drills has also 

been questioned (Carling et al., 2018). Moving averages also cannot examine the impact of 

match constraints, including substitutions and transient changes in physical output (Carling et 

al., 2018). Consequently, future research should aim to develop methods which address these 

issues. 

 

 

 



 

43 
 

2.5 Validity and Reliability of Wearable Technologies 

2.5.1 Validity and Reliability 

Validity refers to how well a device or artefact measures what it intends to (Coutts & Duffield, 

2010b; Currell & Jeukendrup, 2008; Johnston et al., 2012). Specifically, the construct validity 

of wearable technologies involves the accuracy of aggregate parameters such as total distance, 

banded distance and velocity, to the true distance and velocity covered by a player (Coutts & 

Duffield, 2010b; Frencken, Lemmink, & Delleman, 2010; Gray et al., 2010). On a granular 

level, validity may refer to the accuracy of  positional coordinates relative to a player’s true 

position on a field (Serpiello et al., 2018), and their instantaneous velocity and acceleration 

(Varley, Fairweather, & Aughey1, 2012b). To assess validity, values extracted from wearable 

technologies are compared with criterion measures, which may include optical tracking systems 

(Serpiello et al., 2018) and pre-measured courses (Coutts & Duffield, 2010b). Reliability is the 

consistency of a measurement tool (Currell & Jeukendrup, 2008). Specifically, the reliability 

of wearable technologies refers to the similarity of outputs within and between devices (Köklü, 

Arslan, Alemdaroğlu, & Duffield, 2015; Scott, Scott, & Kelly, 2016). The validity and 

reliability of both aggregated and instantaneous parameters, is important when analysing the 

physical output of matches (Aughey, 2011; Gray & Jenkins, 2010a; Mooney et al., 2011), 

training drills (Gabbett, Jenkins, & Abernethy, 2009; Loader et al., 2012b; Neville, Rowlands, 

Wixted, & James, 2012) and change over time (Delaney et al., 2017). This is because the extent 

to which practitioners can utilise technology to inform decisions, is dependent upon the validity 

and reliability of technology itself. 
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2.5.2 Validity and Reliability of Aggregate Parameters 

The validity and reliability of aggregate parameters extracted from wearable technologies varies 

(Cummins et al., 2013b). Total distance, extracted from either GPS or LPS devices, has 

acceptable validity and reliability (Coutts & Duffield, 2010b; Gray et al., 2010; Jennings, 

Cormack, Coutts, Boyd, & Aughey, 2010b; Scott et al., 2016; Serpiello et al., 2018). However, 

this validity decreases during change of direction tasks (Serpiello et al., 2018). Furthermore, 

the validity and reliability of these devices has an inverse relationship at higher velocities (Scott 

et al., 2016; Varley et al., 2012b). This means aggregate parameters including maximum 

velocity, and distances covered at high speeds may not accurately reflect the physical output of 

team-sport athletes (Heidi, André, Jace, Fabio, & Grant, 2019). Furthermore, accelerative 

parameters, derived from either in-built inertial sensors or from X-Y coordinates, have low 

validity and reliability (Akenhead, French, Thompson, & Hayes, 2014; Buchheit et al., 2014; 

Varley et al., 2012b). This has been partially overcome with recent parameters such as average 

acceleration (Delaney et al., 2018a). Consequently, practitioners should be cautious when using 

these parameters during training load monitoring, match profiling and drill analysis (Cummins 

et al., 2013b).  

2.5.3 Validity and Reliability of Instantaneous Velocity and Acceleration 

There are a limited number of studies examining the validity and reliability of instantaneous 

velocity and acceleration, extracted from wearable technologies (Luteberget, Spencer, & 

Gilgien, 2018; Varley et al., 2012b). Varley et al. (2012b), validated the ability of GPS devices 

to measure constant velocity and acceleration. Furthermore, this study highlighted the increased 

validity and reliability of new GPS devices (Varley et al., 2012b). However, this study did not 

validate instantaneous velocity and acceleration in change of direction movements, which also 
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contribute to a players’ total physical output (Varley et al., 2012b). Indeed, Luteberget et al. 

(2018), identified low validity and reliability for LPS devices, in measuring instantaneous 

velocity in team-sport drills. This demonstrates the dichotomy between the need to maintain 

validity and reliability in measures taken, and the granularity of how data is analysed. 

Specifically, analysing wearable technologies on a per-second basis provides a greater 

understanding of a player’s physical output (Varley et al., 2012b; Varley, Jaspers, Helsen, & 

Malone, 2017). However, doing so may reduce the accuracy of physical output measures 

(Luteberget et al., 2018).  

2.5.4 Filtering 

Filtering and post-processing influence the validity and reliability of wearable technologies 

(Varley et al., 2017). Specifically, high intensity running, and sprint efforts may differ greatly, 

depending on the filtering technique used (Varley et al., 2017). Thornton et al. (2018) 

demonstrated substantial differences between aggregate parameters, arising from differing 

filters. However, this study also demonstrated intra-unit reliability regardless of the filter 

applied. Consequently, this study suggested filtering techniques may influence validity, but not 

intra-unit reliability. Thornton concluded that practitioners should have confidence in aggregate 

parameters, regardless of filter (Thornton et al., 2018). However, this conclusion appears 

unfounded, due to the unknown validity of aggregate parameters, extracted using different 

filters. Given the demonstrated intra-unit reliability of devices, but the inability to relate many 

aggregate parameters with a criterion measure, it is preferable to analyse the raw signal of 

wearable technologies (Thornton et al., 2018). This would allow for physical output to be 

analysed in greater depth, without necessarily relating to existing quantities such as sprint count 

and relying on arbitrary thresholds (Heidi et al., 2019). 
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2.6 Match Analysis in Team-Sports 

2.6.1 Match Profiling 

Match profiles summarise the physical and skilled output of team-sport athletes during 

competition (Sweeting et al., 2017b). These profiles are used to monitor change across a 

competitive season (Aughey, 2011; Sweeting et al., 2017b) and to plan training (Corbett et al., 

2018a; Coutts, Quinn, Hocking, Castagna, & Rampinini, 2010a). Total match outputs have been 

investigated in soccer (Bradley & Noakes, 2013; Buchheit, Mendez-Villanueva, Simpson, & 

Bourdon, 2010; Carling, Le Gall, & Dupont, 2012; Dalen et al., 2016), rugby (Clarke, Anson, 

& Pyne, 2017; Johnston, Gabbett, & Jenkins, 2013; Suárez-Arrones, Portillo, González-Ravé, 

Muñoz, & Sanchez, 2012), hockey (Jennings, Cormack, Coutts, & Aughey, 2012) and netball 

(Cormack, Smith, Mooney, Young, & O’Brien, 2014; Davidson & Trewartha, 2008; Fox et al., 

2013). Specifically, match profiles have characterised Australian football players, as covering 

between 10,000 m and 14,000 m in a match (Cummins et al., 2013a; Gray & Jenkins, 2010b; 

Wisbey et al., 2010). Approximately 30% of this distance is covered at speeds greater than 4 

m.s-1 (Gray & Jenkins, 2010a; Wisbey et al., 2010). Additionally, players complete multiple 

sprint efforts, changes of directions (Brewer, Dawson, Heasman, Stewart, & Cormack, 2010a; 

Gray & Jenkins, 2010a; Kempton, Sullivan, Bilsborough, Cordy, & Coutts, 2015d), tackles and 

impacts (Wundersitz, Gastin, Robertson, Davey, & Netto, 2015a). Consequently, the total 

aggregate outputs for entire matches of AF players are well documented. 

Positional differences in match profiles have also been investigated in the literature. These 

differences have been noted in rugby (Austin & Kelly, 2013; Delaney et al., 2015), soccer (Di 

Salvo, Gregson, Atkinson, Tordoff, & Drust, 2009; Varley & Aughey, 2013), hockey 

(Macutkiewicz & Sunderland, 2011) and netball (Sweeting et al., 2017a). In Australian football, 
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studies have identified differences in match profiles between key and non-key players (Mooney 

et al., 2011). Furthermore, nomadic players typically cover greater distance than forwards and 

backs (Gray & Jenkins, 2010a). Recently, the ability to utilise positional differences in match 

profiles to inform training design and load monitoring has declined in AF (Barrett et al., 2016). 

Players are now typically required to cover multiple roles in a team (Scott et al., 2016). 

Consequently, it is often difficult to accurately categorise players using a single position. 

Therefore, future research should develop methods to identify similarities in physical output, 

independent of position. Furthermore, profiling methods should analyse players individually, 

to best reflect their on-field outputs. 

Another aspect of match profiling in Australian football, is the interplay between physical and 

skilled output (Kempton, Sullivan, Bilsborough, Cordy, & Coutts, 2015c; Sullivan et al., 2014). 

Specifically, analysing whether changes in physical output are indicative of fatigue (Aughey, 

2010a, 2011), or match constraints including pressure and position (Dillon et al., 2017; Ryan et 

al., 2018). Sullivan et al. (2014) found that physical output had only a minor impact on coaches’ 

perceptions of player performance. Furthermore, physical output had a slight negative 

relationship with Player Ratings (Sullivan et al., 2014). Similarly, Dillon et al. (2017), identified 

trivial relationships between physical and skilled output. Conversely, Mooney et al. (2011), 

identified a relationship between physical capacity and number of disposals, with high intensity 

running as a mediator. Consequently, the relationship between physical and skilled output in 

AF is contentious in the literature. The majority of studies examining the interplay between 

physical and skilled output in AF, have employed parametric statistical approaches. 

Consequently, they assume a linear relationship between outputs, and independence between 

parameters. This is problematic, as many commonly used parameters extracted from wearable 

technologies are co-linear (Casamichana et al., 2013). That is, rather than measuring unique 
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aspects of physical output, they incidentally measure the same aspect. Future research should 

therefore employ careful parameter selection, to better understand the relationship between 

physical output, skilled output and time and avoid collinearity, where possible. 

2.6.2 Between Match Profiling 

In team-sport, between-match profiling has typically examined the consistency of physical and 

skilled output between matches. In rugby, parameters of high intensity output including high 

speed running (≥15 km.h−1), very high speed running ( >20 km h−1) and PlayerLoadTM vary 

considerably between matches. Conversely, lower intensity parameters including low speed 

player load (<7.2 km h−1) and total distance were stable from match-to-match (Kempton, 

Sirotic, & Coutts, 2014; McLaren et al., 2016). This finding was also consistent with AF, where 

volume parameters (Coefficient of Variation, CV: %: 5.3–9.2%)  were more consistent than 

intensity parameters (CV %: 13.3–28.6%) (Kempton et al., 2015b). Measures of skilled output 

were highly variable between matches (CV %: 26.1–60.2 %) (Kempton et al., 2015b). 

Specifically, number of kicks and handballs for backs (CV %: 43.9 – 63.1%, 53.2 – 78.6 %) 

and number of handballs for forwards (CV %: 50.9 – 81.1 %) had the highest between-match 

variability (Kempton et al., 2015b).  Conversely, midfielders typically had less variability in 

kicks, handballs, possessions and player ratings than player in other positions (Kempton et al., 

2015b). These findings were also  consistent in soccer (Gregson, Drust, Atkinson, & Salvo, 

2010). During finals, an even greater increase in high intensity running (> 4.17 m.s-1) was 

observed (Aughey, 2011). Each of these studies have successfully utilised aggregate 

parameters, to identify changes in output between matches.  

 



 

49 
 

2.6.3 Within-Match Profiling 

Within-match profiling aims to examine how output changes across the duration of a match. 

Changes in match physical output have been identified in soccer (Bradley & Noakes, 2013) and 

rugby (Lacome, Piscione, Hager, & Carling, 2016). In Australian football, total distance in 

quarters two to four, declines by up to 10.7%, comparative to quarter one (Coutts, Quinn, 

Hocking, Castagna, & Rampinini, 2010b). Specifically, a high metreage per minute earlier in a 

match, is related to reduced physical output later in a match (Coutts et al., 2010b). Although 

this relationship has been quantified, it has limited applicability to inform decision-making. 

This is because, each of these studies argue that a reduction in physical output over time is 

inevitable. None of these studies establish a strong relationship between stint duration and 

physical output in team-sport matches.  

To overcome many of these limitations, studies have utilised stint or rotation length, to identify 

how physical output changes during a match. Aughey (2010a), identified reductions in high 

intensity running (HIR, 4.2 to 10.00 m⋅s-1) and maximal accelerations (2.8 to 10.0 m⋅s–2), in 

second and fourth quarter stints, relative to first and third quarters respectively. Similarly, 

Dillon et al. (2017) identified trivial-to-moderate reductions (effect size 0.1- 0.69) in relative 

Champion Data player ratings, relative total and high speed running (>20 km⋅h−1) as a function 

of duration in Australian football. However, an increased physical output does not necessarily 

impact skilled performance, in line with other literature (Bauer, Young, Fahrner, & Harvey, 

2015). Montgomery and Wisbey (2016), characterised physical output in Australian football, 

as static in the first 5 minutes of a stint, reducing 3% for every subsequent 2 minutes on field, 

up to 9 minutes. These studies relate stint length to physical output between matches 

(Montgomery & Wisbey, 2016). Consequently, it is unknown whether these reductions occur 
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within a match or are the result of match constraints (Dillon et al., 2017; Ryan et al., 2018). 

Furthermore, all of these studies employed linear techniques to quantify changes in physical 

output over time. However, linear analysis of physical and skilled output may not adequately 

model reductions in a team-sport environment. The findings of Aughey (2010a), suggest 

physical output fluctuates throughout a match. This may be due to contextual factors, including 

score line and time in possession of the ball (Carling & Dupont, 2011). Consequently, future 

research should utilise non-linear techniques to model the relationship between physical output 

and time. This would better account for transient changes in physical output within matches.  

Recent literature has examined physical output within phases of play and possession chains. 

Specifically, total distance and high speed running defined as running at speeds > 25 k/hr-1) has 

been computed during offensive, defensive and contested possession chains (Rennie, Watsford, 

Kelly, Spurrs, & Pine, 2018). This method identified greater distance covered when attacking 

and defending across the length of an Australian football field (Vella et al., 2021). This  method 

provides a novel and interpretable means to analyse physical output in specific match contexts. 

However, the methodology proposed requires considerable manual coding by experienced 

practitioners (Vella et al., 2021). Additionally, possession chains are not performed in all 

training drills. Consequently, this method has limited viability outside of match simulation and 

small-sided games (Vella et al., 2021). Finally, this methodology has not been validated to 

identify changes in physical output within matches. Consequently, future research may utilise 

automatic change-detection methods to players’ physical output in training drills and matches. 

This would reduce manual labour and provide a means to compare training drills and matches. 
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2.7 Training Analysis in Team-Sports 

2.7.1 Training Analysis in Team-Sport 

The physical output of training has been investigated extensively in the literature. The majority 

of these studies have aimed to characterise training across blocks, including preseason 

(Buchheit et al., 2013a). Additionally, changes in physical output by training or season phase 

have also been identified (Ritchie, Hopkins, Buchheit, Cordy, & Bartlett, 2016). These changes 

in physical output have also been related to performance and injury risk (Gabbett et al., 2010; 

Gabbett & Seibold, 2013; Gabbett & Ullah, 2012; Rogalski et al., 2013a). However, there is 

limited research examining output characteristics for individual training sessions. 

Consequently, future analysis should examine how physical and skilled outputs can be utilised 

for prescriptive purposes. 

2.7.2 Analysing Drill Characteristics 

Training drills have different characteristics, including different skilled actions, physical 

volumes and physical intensities (Corbett et al., 2018b). Understanding these characteristics 

allows practitioners to select drills which achieve their training goals (Corbett et al., 2018b). 

However, beyond match-derived drills including match simulation and small sided games, there 

are only a limited number of studies investigating the physical and skilled characteristics of 

training drills in team-sport. Loader et al. (2012b) utilised hierarchical clustering, to identify 

different types of training drills in Australian football. Training drills were characterised as 

game specific conditioning, skill refining with moderate physical intensity and skill refining 

with a low physical intensity. Similarly, measures of both physical and skilled output have been 

utilised to identify the characteristics of open and closed training drills (Farrow et al., 2008). 
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Corbett et al. (2018b) expanded upon this study, by identifying five drill types through physical 

output and skilled constraints, including pressure, time in possession and disposal number. 

Additionally, this study characterised training drills, through their specificity to match outputs 

(Corbett et al., 2018a). All of these studies (Corbett et al., 2018a; Loader et al., 2012a) are 

limited by their utilisation of work rates which assume physical output accrues gradually 

throughout a session. Consequently, the true physical output of more intermittent training drills 

may be over or under-estimated. Furthermore, all of these studies (Corbett et al., 2018a; Loader 

et al., 2012a) could only assist with training drill selection. Other training considerations, such 

as training drill sequence, training drill duration and the specificity of movements on a more 

granular level are not addressed in current drill classification systems (Corbett et al., 2018a; 

Loader et al., 2012a).  

2.7.3 Training Design Frameworks 

Training design frameworks provide a theoretical basis for the prescription of technical drills 

in team-sports (Farrow & Robertson, 2017). Specifically, frameworks can provide 

considerations for practitioners when designing training drills. A key framework for the 

prescription of physical activity is ‘SPORT’ (Grout & Long, 2009, p. 197). Under this 

framework, practitioners should design training drills which are specific to match outputs, 

progressively overload athletes, prevent reversibility and maintain variety (Farrow & 

Robertson, 2017). Indeed, combining conditioning drills with position-relevant tactical actions 

including kicks, on-field location and energetic profile will likely lead to maximal learning by 

the athlete (Bradley, Martin Garcia, Ade, & Gomez Diaz, 2019). The ‘SPORT’ framework is 

often used in conjunction with the ‘FITT’ framework (frequency, intensity, time and type), to 

address both long- and short-term training considerations (Grout & Long, 2009, pp. 188, 197). 
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Farrow and Robertson (2017) adapted the ‘SPORT’ framework, to skill acquisition and training 

design in team-sport. The ‘SPORT’ framework highlighted the importance of considerations, 

including specificity and variety, and how they may be monitored and systematically collected 

in a team-sport environment. Future research should identify how analytical methods can be 

utilised to address these training considerations. For example, time-series analysis may be 

utilised to better understand physical intensity. This is because time-series analysis allows for 

second-by-second analysis (Atchison, Berardi, Best, Stevens, & Linstead, 2017), and can detect 

changes as they occur. Similarly, clustering methods may be utilised to identify drills with 

similar physical output but differing movement characteristics, to evaluate variety/tedium.  

2.7.4 Specificity & Representative Task Design 

Specificity may refer to the extent to which training reflects match outputs (Farrow & 

Robertson, 2017; Henry, 1968; Proteau, Marteniuk, & Lévesque, 1992). In team-sport, 

specificity is achieved by prescribing training drills to model outputs similar to matches 

(Corbett et al., 2018a). However, under a representative task design framework, the greatest 

training benefit is argued occur when behaviours and constraints are also similar between 

training sessions and matches (Barris, Davids, & Farrow, 2013; Dicks, Davids, Button, 

MacMahon, & Farrow, 2009; Farrow & Robertson, 2017; Pinder, Davids, Renshaw, & Araújo, 

2011). Recent research has successfully utilised moving averages derived from games to design 

short conditioning drills (Malone, Roe, Doran, Gabbett, & Collins, 2017a; Malone et al., 

2017b).  However, it is unknown how skill-based drills may be modified to increase their 

specificity to match outputs. Consequently, practitioners should identify opportunities to 

increase the representativeness of training drills to matches. However, the ability to identify 

these opportunities is largely limited by the aggregate parameters used to assess physical and 
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skilled output. Future research should aim to better characterise physical and skilled output at 

various points in a match, including discrete actions. This would allow practitioners to more 

carefully prescribe training drills. Furthermore, methods to increase representativeness beyond 

drill selection, including training drill sequence, should be investigated. 

2.7.5 Challenge Point Framework 

The challenge point framework, theorises the relationship between task difficulty and the 

potential learning benefit of an individual (Guadagnoli & Lee, 2004b). It argues that for every 

task, there is an optimal challenge point, where an individual is challenged to learn, but not 

overstimulated (Guadagnoli & Lee, 2004b). The challenge point framework has been utilised 

conceptually in simple motor tasks (Guadagnoli & Lee, 2004a; Onla-or & Winstein, 2008), 

education (Guadagnoli, Morin, & Dubrowski, 2012) and rehabilitation (Pesce et al., 2013). In 

sport, the framework has been utilised in golf to increase learning efficiency (Guadagnoli & 

Lindquist, 2007). However, there is no literature utilising this framework in a team-sport 

setting, to inform training drill difficulty from a physical and skilled output perspective. An 

example of how training drill difficulty may be manipulated, is through training drill duration. 

A positive relationship has been identified between training drill volume, and players perceived 

cognitive complexity (Farrow et al., 2008). Consequently, this suggests that drill duration can 

influence drill difficulty. Future research may therefore apply the challenge point framework to 

physical output, as a means of examining training drill length. In combination with frequency 

domain analysis, change point analysis could identify and characterize changes in physical and 

skilled output over time. 
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2.8 Frequency Domain Analysis 

2.8.1 Frequency Domain Analysis 

Frequency domain analysis aims to describe a signal, based on how frequently data points occur 

at each magnitude (Hall & Education, 2007; Robertson, Caldwell, Hamill, Kamen, & 

Whittlesey, 2013). For example, frequency domain features have been used to describe how 

frequently patients move at different linear and angular velocities during rehabilitation 

(Tedesco, Urru, & O'Flynn, 2017). Consequently, frequency domain analysis describes a series 

of values independent of time.  Each value in a series, and the number times each value 

occurred, is termed the frequency domain. A Fourier transform is the most common method of 

converting a series of values into the frequency domain. Although other methods exist, 

including the Goertzel algorithm, these methods are not commonly used outside of civil and 

sound engineering (Sysel & Rajmic, 2012). This approach converts a signal into a series of 

smaller sine waves (Wu et al., 2016). Subsequently, the shape of a signal is then described using 

features. Frequency domain analysis is commonly used in engineering and Biomechanics, to 

filter and identify outliers in noisy data (Robertson et al., 2013; Wu et al., 2016). Frequency 

domain analysis has also been used in finance, to determine option prices (Carr & Madan, 

1999). This is because frequency domain analysis can take into account features including 

volatility (ie., standard deviation) and the shape of distributions (ie., kurosis and skew), which 

provides a realistic summary of phenomena (Černý, 2006). Similarly, frequency domain 

features may be useful when summarising physical output in team-sports. This is because 

frequency domain analysis, in contrast to aggregate parameters, can summarise all data points 

in a velocity or acceleration time series, without the need to bin data into discrete bands. 
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2.8.2 Frequency Domain Features 

Frequency domain features can be used to describe data points within a time series (Pintelon & 

Schoukens, 2012). A feature typically extracted is the shape of the signal, and includes 

measures such as skewness and kurtosis  (Bracewell & Bracewell, 1986). Another feature 

extracted from a signal is central tendency, and includes the centroid, median or mode (Carr & 

Madan, 1999; Wu et al., 2016). Another feature extracted is noise-based, which describe the 

signal-to-noise ratio in the frequency domain (Stolt, 1978; Wu et al., 2016). Another type of 

feature extracted from a time series, is magnitude, and typically includes percentiles to describe 

the distribution of values in the frequency domain (Bigger Jr et al., 1992; Pintelon & Schoukens, 

2012). Because of these features, frequency domain analysis gives a sophisticated description 

of a series of values, beyond what is captured in standard statistics such as mean and standard 

deviation (Robertson et al., 2013). The key limitation of frequency domain analysis is 

interpretability. Whilst aggregate parameters relate to constructs including total distance, 

frequency domain features are expressed in arbitrary units (Bigger Jr et al., 1992; Ibrahim et 

al., 2020). Nonetheless, frequency domain features are useful in situations, where the 

distribution of data needs to be quantified or understood. Therefore, application of frequency 

domain analysis may be suitable to team-sports whereby skilled and physical data are often 

non-normally distributed. Consequently, the prevalence of frequency domain analysis is 

increasing in the literature yet remains to be explored in profiling the physical and skilled output 

of team-sport data. 

2.8.3 Frequency Domain Analysis in Sport 

Frequency domain analysis is common in motion analysis. Specifically, it is an integral 

technique in processing signals from motion capture (Potter et al., 2014; Secomb et al., 2015), 
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dynamometry (de Araujo, Alvares , de Azevedo, da Silva, & Vaz, 2015) and force analysis 

(Clarke et al., 1985; Fransz, Huurnink, de Boode, Kingma, & van Dieën, 2016). Here, frequency 

domain analysis is used to develop filters in order to remove noise from measurement 

equipment. Frequency domain analysis has also been applied to the outputs of wearable 

technologies, commonly utilised in the motion analysis setting. Wundersitz et al. (2014) 

extracted frequency domain features from an accelerometer during walking, jogging and 

running, in order to discriminate between the movement tasks. Similarly, Wundersitz et al. 

(2015c) extracted frequency domain features from locational, accelerometer and gyroscope 

outputs to discriminate between common team-sport activities. Furthermore, frequency domain 

features have been used to characterise concussion (Bishop, Dech, Guzik, & Neary, 2018) and 

overuse injuries (Oliveira‐Junior et al., 2017)from heart rate data. Finally, more recent studies 

utilising Inertial Measurement Units (IMU’s)  have been able to classify upper body movements 

in tennis (McGrath, Neville, Stewart, & Cronin, 2020) and to classify skateboard tricks (Ibrahim 

et al., 2020). Together, these studies demonstrate that frequency domain analysis presents a 

useful means to analyse the outputs of wearable technologies. Furthermore, frequency domain 

analysis may be able to better distinguish between different types of movement (Wundersitz et 

al., 2015c). Finally, frequency domain analysis is able to describe the shape of a signal and does 

not require pre-set output bands like aggregate parameter profiling.  

2.9 Time Series Analysis 

2.9.1 Assumptions of Time Series Analysis 

Time series analysis is a branch of statistics, which aims to characterise how data changes over 

time. A time series is a set of data points, typically sampled at regular intervals (Berndt & 

Clifford, 1994; Cryer & Chan, 2008). Distinct from time-series forecasting, time series analysis 
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aims to describe values in a series, without drawing an inference to future data points (Atchison 

et al., 2017). There are several key assumptions which need to be met, to ensure a data set is 

eligible for time-series analysis (Wiener, 1949). First, there should be an absence of trend. 

Trend refers to a persistent increase or decrease in the values within a velocity time series (Cryer 

& Chan, 2008). A trend may misconstrue the characteristics of a time series, when included in 

analysis. This is because a trend acts as an additional source of variance and distorts the 

relationships between input and output variables (Cryer & Chan, 2008). Additionally, trends 

often do not continue indefinitely when forecasting a time-series, and thus, may mislead any 

time-series forecasts (Tanaka, 2017). There should also be a lack of seasonality (Atchison et 

al., 2017). That is, values should not be lower or higher in a time-series, purely due to the time 

it was sampled. Finally, the signal should be stationary, whereby, the mean, variance do not 

change over time (Cryer & Chan, 2008; Tanaka, 2017). Although some time-series methods 

have been utilised in sport, predominantly in the form of fixed moving averages (Delaney et 

al., 2015; Delaney et al., 2017; Delaney et al., 2016c; Delaney et al., 2018b), they have not 

tested for these time-series assumptions. Consequently, research into physical output using 

time-series analysis, should ensure each of these assumptions are met, to ascertain the suitability 

of the analysis technique.  

2.9.2 Simple and Exponential Moving Averages 

Moving averages are the most common time-series analysis technique (Tanaka, 2017). Broadly, 

they create subsets of the full time-series, and calculate average values for each subset. Simple 

moving averages calculate a mean value for n preceding periods. Conversely, exponential 

moving averages calculate a mean for all values. However, exponential moving averages weight 

recent values more highly. Consequently, moving averages are primarily used to smooth or 
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filter a time-series. Specifically, moving averages aim to identify whether a change in a time-

series is transient, or indicative of a longer-term increase or decrease in the values of a time 

series. Moving averages were used extensively in the 20th century, in the fields of economics, 

finance, health care (Tanaka, 2017). In each of these fields, a change in the moving average 

may indicate a longer-term increase or decrease in values. 

Moving averages are the only time-series analysis technique to also be used extensively in sport 

and have been used as a longitudinal measure of training load (Bourdon et al., 2017; Murray, 

Gabbett, Townshend, & Blanch, 2017; Williams, West, Cross, & Stokes, 2017). Here, they are 

used to either complement or replace measures such as training stress balance, to identify shifts 

in training load, whilst removing noise from the dataset. A major application of moving 

averages in team sport has been to identify peak intensities of acceleration and metreage per 

minute. Simple moving averages have been applied to a players’ velocity or acceleration time 

series (Delaney et al., 2016a; Delaney et al., 2015; Delaney, Thornton, Duthie, & Dascombe, 

2016b; Delaney et al., 2016c; Delaney et al., 2018b). This information is then used to create 

intensity benchmarks of varying durations, which players should hypothetically achieve during 

a training session or drill (Delaney et al., 2015). However, there are several limitations in the 

use of moving averages to a physical output time series. First, although moving averages can 

identify a peak intensity, they cannot succinctly summarise how physical output changes across 

a match. This is because they do not identify the temporal occurrence of peaks, and how these 

change across the duration of a match (Carling et al., 2018). Further, they only utilise a mean 

value, and thus cannot capture the variability of a time series (Cryer & Chan, 2008; Tanaka, 

2017). In team-sports, this is important, as physical output is often intermittent (Boyd et al., 

2013). Finally, moving averages are typically designed to identify real-time changes in a time-

series (Tanaka, 2017). Consequently, using moving averages to analyse retrospective data can 
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be confusing and misleading. Specifically, they rely heavily on user interpretation to identify 

changes in a time-series. These limitations have caused a recent shift in other disciplines, 

including finance and ecology, to automatic or semi-automatic methods of change detection 

(Chen & Gupta, 2011).  

2.9.3 Time Series Segmentation 

Team-sport may utilise time-series segmentation to examine how physical and skilled output 

change across a training drill or match. Time series segmentation is an analysis technique which 

divides a time-series into a smaller number of continuous segments (Piotr & Haeran, 2014). 

Developed in the late 1990’s, segmentation algorithms identify a number of change points, 

based on user specifications. (Taylor, 2000).  Hypothesised change type is the first key 

specification of all segmentation algorithms (Chen & Gupta, 2011; Taylor, 2000). Specifically, 

users specify whether they wish to identify a change in mean, a change in variance or a change 

in both A minimum segment length must also be specified. This allows users to specify the 

sensitivity of the algorithm to short, rapid changes in a time series (Himberg, Korpiaho, 

Mannila, Tikanmaki, & Toivonen, 2001; Jamali, Jönsson, Eklundh, Ardö, & Seaquist, 2015; 

Piotr & Haeran, 2014). Finally, users must specify either a penalty value or change point 

quotient. These specifications allow users to specify the required severity and number of change 

points. There is no consensus in the literature on which specifications could be used, with most 

specifications acting as open research questions (Chen & Gupta, 2011). Consequently, the 

specifications in these algorithms are typically discipline and application perspective.  

There are several time-series segmentation algorithms. Binary segmentation is the most 

common algorithm used (Piotr & Haeran, 2014; Yang & Buenfeld, 2001). Specifically, this 

algorithm searches through a time series to identify either all change points which fit user 
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specifications, or in the instance of a limited change point quotient, the most severe change 

points (Killick & Eckley, 2014; Taylor, 2000). Binary segmentation improved upon previous 

algorithms, including X, Y, Z, due to the ability to recognise multiple change points in a time 

series (Taylor, 2000). Although other change point algorithms have been proposed, they have 

yet to be validated in the literature. Furthermore, energy-divisive, arguably the most accurate 

change point algorithm, requires considerable computing power (James & Matteson, 2013). 

Thus, it is likely not feasible on a physical output time-series, which contains thousands of data 

points. Consequently, binary segmentation could be utilised when analysing the physical output 

of team-sport athletes. Future research should utilise this algorithm, to characterise changes in 

team-sport data, specifically physical output over time. This would overcome the need to pre-

set aggregation windows or use moving averages to summarise output time series. 

2.10 Data Mining 

2.10.1 Data Mining and Machine Learning in Sport 

Data mining is a problem solving methodology which converts raw data into a description of 

patterns within the data set (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). Specifically, machine 

learning aims to expose hidden and underlying relationships between variables by training 

computers to understand how different permutations of variables can influence outcomes. 

Consequently, machine learning can generate insights which may not be apparent from standard 

statistical methods including linear regression (Ofoghi, Zeleznikow, MacMahon, & Raab, 

2013). Machine learning algorithms are often able to better account for contextual factors and 

variations in values within a data set (Ofoghi et al., 2013).  Additionally, basic statistical 

methods usually assume independence between variables, and that responses increase in a linear 

fashion (Wasserman, Casey, Champion, & Huey, 2017). In machine learning practitioners 
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expose algorithms to a training data set, in order to allow the algorithm to identify patterns 

within the data. Subsequently, the performance of an algorithm is then evaluated on a test or 

holdout data set which has not been seen by the algorithm. This ensures that any insights 

gleaned from the model are generalizable outside the data set, as opposed to purely being a 

description of the data set seen by the algorithm (termed overfitting). Machine learning 

algorithms are often described as either supervised or unsupervised learning. Unsupervised 

learning is able to describe data sets without dependent and independent variables, and thus, 

can explore data sets with less structure (Ofoghi et al., 2013). Conversely, supervised learning 

is used to describe the relationship between independent and dependent variables (Fayyad et 

al., 1996; Ofoghi et al., 2013). The key limitation of many machine learning algorithms is that 

they may overfit the data set. Overfitting refers to situations where models accurately describe 

observed data, but do not generalise to describe phenomena broadly (Ofoghi et al., 2013). This 

limitation is mitigated by cross validation, whereby, the data set is trained on a subset of the 

data and “tested” on an unseen subset of the data (Ofoghi et al., 2013). In a field like sport 

where phenomena is often non-linear, machine learning presents a range of methods and 

algorithms which may expose patterns in data sets which are not apparent using traditional 

statistical methods (Ofoghi et al., 2013). 

2.10.2 Distance Measures 

Distance measures summarise the similarity of two observations across multiple parameters 

(Maurer, Qi, & Raghavan, 2003; Wang, Zhang, & Feng, 2005). In sport and data science, they 

are most commonly used to reduce the dimensionality of a data set (Narayanan & Nelson, 

2019). Where physical and skilled output is described using a large suite of parameters, distance 

measures can describe the similarity of two observations with a single value. For example, 
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distance measures have been used to determine similarity between players in Australian football 

using skilled output parameters (Jackson, 2016). This allowed for players to be described using 

a continuous value, instead of descriptive player positions (Jackson, 2016; Pers & Kovacic, 

2000). However, there is no literature which examines the similarity of training drills to match 

outputs using similarity measures. Research in this area has only used z-scores, which assume 

normally distributed data and are only capable of describing a single parameter at a time 

(Corbett et al., 2018b). Consequently, future research may utilise distance measures to examine 

the similarity of training drills to match outputs across multiple parameters. 

Euclidean distance is the most versatile and commonly used distance measure in the literature 

(Breu, Gil, Kirkpatrick, & Werman, 1995; Maurer et al., 2003; Narayanan & Nelson, 2019). 

Euclidean distance plots two observations as coordinates on a plane with n dimensions (Alfakih, 

Khandani, & Wolkowicz, 1999). The distance between points is then calculated by calculating 

the numeric distance between coordinates (Alfakih et al., 1999). Euclidean distance has several 

advantages over other distance measures. First, it is useful in a range of circumstances, 

including image processing (Maurer et al., 2003; Wang et al., 2005), language processing 

(Singha & Das, 2013), locational surveillance (Behrens et al., 2018) and feature-based analysis 

(Narayanan & Nelson, 2019). This is in contrast to other distance measures, for example cosine 

similarity, which is specialised to text-based analysis and is not commonly generalised to other 

types of data (Li & Han, 2013). Second, Euclidean distance is conceptually easier to understand 

than other distance measures (Prasath et al., 2017). Uniform Manifold Approximation and 

Projection (McInnes, Healy, & Melville, 2018) and t-Distributed Stochastic Neighbour 

Embedding (Wattenberg, Viégas, & Johnson, 2016)  may best preserve both the global and 

local structure of a data set. However, they are produced using complex neural networks 

(Wattenberg et al., 2016), where Euclidean distance can be understood as a generalisation of 
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the Pythagorean theorem. Additionally, these methods likely pose no advantage over Euclidean 

distance when calculating similarity in a single dimension (as opposed to two or more 

dimensions, which are uninterpretable by humans but may be used to reduce the dimensionality 

of a data set for other models (Wattenberg et al., 2016)). Consequently, Euclidean distance 

provides a robust means to measure the similarity of players’ physical and skilled output in 

team-sport. 

2.10.3 Clustering 

Clustering is an unsupervised branch of machine learning (Ofoghi et al., 2013). Clustering does 

not require users to manually select independent or dependent variables (Liao, 2005; Spencer 

et al., 2016). Instead, it aims to describe how different sets of parameters may group together, 

to define different data points (Jain, Murty, & Flynn, 1999; Liao, 2005). This is typically 

achieved by condensing all data points into a single similarity metric, and then allocating them 

to a centroid identified algorithmically from the data set (Ofoghi et al., 2013). Clustering has 

been used to identify common movement patterns, captured from wearable tracking, in team-

sport (Sweeting et al., 2017a). Additionally, clustering has been used to determine different 

types of training drills based on their physical and skilled outputs (Corbett et al., 2018b). 

Clustering has also been used to classify activity types (Corbett et al., 2018b). The key 

limitation of clustering algorithms, including k-means, is the requirement for practitioners to 

manually determine the number of clusters Ofoghi et al., 2013). This can be overcome by 

modelling the relationship between cluster number, and the within-cluster observation error, in 

order to minimise cluster number without introducing large amounts of noise (Jain, 2010; Jain 

et al., 1999). These studies demonstrate the ability of clustering to describe outputs of team-

sport athletes. 



 

65 
 

2.10.4 Linear Regression 

Linear models are the most common form of regression, both broadly in the literature (Yu & 

Yao, 2017) and within team-sport (Ofoghi et al., 2013). Linear models describe an independent 

variable in relation to one or more dependent variables. Linear models assign each dependent 

variable a coefficient, to quantify the strength it has on the independent variable. Linear models 

require minimal computing power and are easily interpretable. For this reason, they have been 

applied to a plethora of problems in team sport. These problems include the relationship 

between preparation factors on technical and physical output in Australian football (Dillon et 

al., 2017; Ryan et al., 2018), the relationship between physical output and injury (Colby et al., 

2014; Rogalski et al., 2013a) and comparisons of athletes at varying levels of play (Brewer, 

Dawson, Heasman, Stewart, & Cormack, 2010b). Due to their simplicity and established use in 

the literature, linear regression is useful as an initial method to explore relationships between 

dependent and independent variables. 

Linear mixed effects models describe a dependent variable as a function of fixed and random 

effects (Delaney et al., 2016a; Lindstrom & Bates, 1990; Pinheiro, Bates, DebRoy, Sarkar, & 

Team, 2007). Fixed effects are analogous to independent variables in other linear models 

(Gałecki & Burzykowski, 2013). That is, they are expected to have an impact of some strength 

on the dependent variable. Random effects, however, are unique to mixed effects models and 

have some unknown influence on a dependent variable (Xu, 2003). Common examples of 

random effects in sport may include game season, gender or participant (Delaney et al., 2016a; 

Potter et al., 2014; Ryan et al., 2018). Random intercept models are a subset of linear mixed 

effects models, which give a differing intercept based on random effects (Eyduran et al., 2016). 

For example, random intercept models have been utilised to give participants different base-

line performance values when examining the relationship between emotions and performance 
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in volleyball (Peña & Casals, 2016). Random slope models are less commonly used and alter 

the strength of each fixed effect based on random effects (Eyduran et al., 2016). For example, 

the influence of high intensity running on player performance in team-sport could specifically 

be examined using a random slope model. Linear mixed effects models are advantageous over 

standard linear models due to their ability to not only explain a large amount of variance but 

explain the source of the variance (Xu, 2003). This is due to the computation of both conditional 

and marginal R squared values (Nakagawa & Schielzeth, 2013; Xu, 2003). Marginal R squared 

describes the amount of variance that can be explained by fixed effects. Conditional R squared 

describes the amount of variance described by both random and fixed effects (Pinheiro et al., 

2007).  

2.10.5 Decision Trees 

Linear models provide an initial method to explore the relationships between dependent and 

independent variables. However, linear models are often unable to uncover relationships in 

data, which has unknown interactions between dependent variables. For example, the 

relationship between physical output and time in AF has been examined using linear regression 

(Dillon et al., 2017; Montgomery & Wisbey, 2016). However, linear models assume that 

physical parameters including total distance and metreage per minute independently impact 

skilled output and do not account for how these parameters may interact to influence skilled 

output. In these situations, non-linear regression models may be warranted. Specifically, 

decision trees summarise how interactions between parameters influence a dependent variable. 

For this reason, they are becoming increasingly common in the sport literature.  Specifically, 

they have been used to; proactively predict illness from self-report questionnaires , identify 

performance characteristics of winning outcomes in mixed martial arts (James, Robertson, 
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Haff, Beckman, & Kelly, 2017) and explain match outcome in Australian football (Robertson 

et al., 2016a) and rugby league (Woods, Sinclair, & Robertson, 2017). The key limitation of 

decision trees is that they are prone to overfitting (Sardá-Espinosa, Subbiah, & Bartz-Beielstein, 

2017). However. This limitation may be mitigated through cross validation (Sardá-Espinosa et 

al., 2017). 

 Conditional inference trees are a type of decision tree, which utilise null hypothesis 

significance testing (NHST) to determine how interactions between parameters influence an 

independent variable (Sardá-Espinosa et al., 2017). Consequently, they may be advantageous 

over other forms of decision trees, including recursive partitioned trees, as they are less prone 

to variable selection bias (Das, Abdel-Aty, & Pande, 2009). Additionally, unlike other tree-

based learnings including Bayesian Additive Regression Trees, they require almost no 

hyperparameter tuning whilst being lightweight and accurate (Sparapani, Logan, McCulloch, 

& Laud, 2016). Thus, they provide a quick, non-linear way to model relationships with minimal 

latency between construction and deployment.   

2.10.6 Random Forests 

A key disadvantage of decision trees is that they are prone to overfitting (Strempel, Nendza, 

Scheringer, & Hungerbühler, 2013). Random forests attempt to overcome this limitation, by 

building an ensemble of n decision trees to either predict or classify observations (Liaw & 

Wiener, 2002). Random forests iteratively take subsets of the training data set, compute 

decision trees and then take either the mean (regression) or mode (classification) to predict or 

classify an observation (Liaw & Wiener, 2002). In the sport science literature, random forests 

are most commonly used to maximise holdout set model performance. Specifically, they have 

been applied to the outputs of wearable technologies to predict energy expenditure (Ellis et al., 
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2014) and classify team-sport movements and activities (Wundersitz et al., 2015b). Random 

forests can also be useful alongside individual decision trees. Whilst decision trees provide a 

descriptive schematic of how dependent variables interact to influence an independent variable, 

random forests reduce the chance of overfitting and thus, can more easily be generalised to 

other data sets (Thornton et al., 2016).  

Random forests have many advantages over other regression and classification algorithms (Liu, 

Wang, Wang, & Li, 2013). First, they are relatively fast and require minimal computational 

power. Newer algorithms, including gradient boosted trees (Chen & Guestrin, 2016) and 

categorical feature boosting (Prokhorenkova, Gusev, Vorobev, Dorogush, & Gulin, 2018) often  

boast higher accuracy than random forests, at the cost of extremely high compute power and 

long runtimes (Al Daoud, 2019). Consequently, categorical feature boosting and gradient 

boosting are currently inaccessible to many practitioners. Second, random forests require only 

a small number of easily interpretable hyperparameters to be tuned (Liaw & Wiener, 2002; Liu 

et al., 2013). This is in contrast to other classification and regression algorithms, for example 

support vector machines, which require abstract values including gamma and c parameters to 

be specified by the user (Liu et al., 2013; Wu et al., 2016). Third, random forests are relatively 

robust when classifying on both moderately-sized and large data sets (Liaw & Wiener, 2002). 

This is in contrast to highly accurate deep learning and neural network methodologies, which 

are only advised with thousands or more observations (Liu et al., 2013; Lu, Chen, Little, & He, 

2018; Ofoghi et al., 2013). Finally, random forests are more interpretable than neural networks 

Liaw & Wiener, 2002). Specifically, random forests uniquely provide variable importance 

(Liaw & Wiener, 2002). This summarises the strength dependent variables have on an 

independent variable  For these reasons, random forests are a valid method for classification 

and regression in team-sport.  
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2.11 Aims of Thesis 

The aim of this thesis was to develop a method to quantify change over time in professional 

Australian Rules football and illustrate the utility of this approach to match profiling and 

training drill prescription. Specifically:  

• To identify how physical and skilled output change as a function of time, in professional 

Australian Football matches 

•  To identify and describe segments of physical and skilled output in team-sport matches 

with an example in Australian Football 

• To apply a combined time-series and frequency-domain approach to match profiling in 

team-sports 

• To illustrate how a time-series/ frequency-domain approach can be applied to assess the 

sequence, specificity and difficulty of team-sport training drills 
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‘Weak Relationships between Stint Duration, Physical and Skilled 

Match Performance in Australian Football 

This chapter is presented in pre-publication format of a recent publication titled: 

Corbett, D. M., Sweeting, A. J., & Robertson, S. (2017). Weak relationships between stint 

duration, physical and skilled match performance in Australian Football. Frontiers in 

Physiology, 8(820). doi:10.3389/fphys.2017.00820 

 

3.1 Abstract 

Australian Rules football comprises physical and skilled performance for more than ninety 

minutes of play. The cognitive and physiological fatigue experienced by participants during a 

match may reduce performance. Consequently, the length of time an athlete is on the field 

before being interchanged (known as a stint), is a key tactic which could maximize the skill and 

physical output of the Australian Rules athlete. This study developed two methods to quantify 

the relationship between athlete time on field, skilled and physical output. Professional male 

athletes (n = 39) from a single elite Australian Rules football club participated, with physical 

output quantified via player tracking systems across 22 competitive matches. Skilled output 

was calculated as the sum of involvements performed by each athlete, collected from a 

commercial statistics company. A random intercept and slope model was built to identify how 

a team and individuals respond to physical outputs and stint lengths. Stint duration (mins), high 

intensity running (speeds >14.4 km∙hr-1) per minute, meterage per minute and very high 

intensity running (speeds >25 km∙hr-1) per minute had some relationship with skilled 

involvements. However, none of these relationships were strong, and the direction of influence 
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for each player was varied. Three conditional inference trees were computed to identify the 

extent to which combinations of physical parameters altered the anticipated skilled output of 

players. Meterage per minute, player, round number and duration were all related to player 

involvement. All methods had an average error of 10 to 11 involvements, per player per match. 

Therefore, other factors aside from physical parameters extracted from wearable technologies 

may be needed to explain skilled output within Australian Rules football matches.   
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3.2 Introduction 

Australian Football (AF) involves a high physical and skilled output for more than ninety 

minutes of play to maximize team performance (Gray & Jenkins, 2010).  Physical and skill 

output may decline, as a function of time, during AF matches (Coutts & Duffield, 2010b). 

Consequently, a key tactical consideration during AF matches relates to the length of an on-

field stint (i.e., the consecutive amount of time spent on ground by a player) for a player, before 

their physical and/or skilled output is adversely affected (Montgomery & Wisbey, 2016). In 

elite AF, there is a limitation on the number of player substitutions a team can make within a 

match. In the 2017 Australian Football League season, this limit was 90 rotations per match. 

Consequently, it is crucial in AF that stints are not ended (or started) unnecessarily early or are 

too short or long in duration. 

During an AF match, various athlete performance data is collected. Physical output can be 

measured via Global Positioning System (GPS) or Radio Frequency Identification (RFID) 

(Coutts & Duffield, 2010a; Wyld, 2008). These devices typically sample at 10 or 15 Hz, 

allowing for the calculation of total distance (m), distance within velocity bands (i.e., distance 

covered > 14.4 km∙hr-1), and peak velocity (km∙hr-1). Match statistics are provided by 

commercial performance analysis companies (Sullivan et al., 2014b). However, there is less 

standardization in the measurement of skilled output comparative to physical. Skilled output 

can be measured by quantifying the number of involvements or actions completed by each 

player. Involvements may include kicks, handballs and other actions                                                                                                                                                                                                                                                                                                                                                                                                                  

considered important to match success by AF coaching staff.  The amount of time each player 

spends on the field and on the bench is available as a measure of temporal output (Bradley & 

Noakes, 2013). Potentially due to a combination of cognitive (Tenenbaum & Bar-Eli, 1993) 
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and physiological fatigue (Aughey, 2010), it is unlikely that players can maintain an optimal 

level of physical and skilled output for an entire match (Aughey, 2010; Thelen & Smith, 1994). 

In AF, a decrement in physical output has been observed for each quarter completed (Coutts & 

Duffield, 2010b), with a 3% reduction in meterage per minute for every two minutes spent on 

field during rotations longer than 5 minutes (Montgomery & Wisbey, 2016). Similarly, the level 

of skilled involvements for players also likely declines as the duration of a match increases. 

Recent research has examined how work rate, time on field and situational factors, including 

the number of stoppages, interact to affect skilled involvement (Sullivan et al., 2014a; Sullivan 

et al., 2014b). Although factors influencing the skilled output of players have been identified to 

date (Sullivan et al., 2014a; Sullivan et al., 2014b), research assessing how these factors may 

aid match-day stint/rotation strategies remains to be examined. Measures of skilled, physical 

and temporal output could be modelled to identify how the skilled output of a team and 

individual responds to change in temporal and physical output. 

For this purpose, generalized linear mixed models present a suitable analysis option, in that 

they allow for the quantification of independent and dependent variables with repeated 

measures (Gałecki & Burzykowski, 2013). Random intercept models allow for the 

quantification of pooled data, whereas random slope modelling outputs differing coefficients 

and equations for each individual entered into the model (Eyduran et al., 2016). Consequently, 

the relationship between time, physical and skilled outputs at a team and individual level can 

be quantified.  

Decision trees present an alternative, non-linear option to quantify the relationship between 

physical, skilled and temporal outputs. Conditional inference trees, for example, incorporate a 

series of significance tests to create thresholds for each dependent variable (Sardá-Espinosa, 
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Subbiah, & Bartz-Beielstein, 2017). These thresholds create branches in the tree, each 

consisting of differing combinations of dependent variables, which then leads to a prediction of 

the independent variable. It is possible to nest participants within these trees, thus accounting 

for how individuals respond to differing combinations of dependent variables. This could allow 

examination of how physical and temporal parameters interact to influence skilled output.  

Utilizing a mixed analysis approach comprised of generalized linear mixed models and 

conditional inference trees, this study will; i) identify how athlete skilled output changes as a 

function of time in an AF match, ii) determine the extent to which these changes occur at the 

individual level and iii) reveal how different permutations of physical and skilled parameters 

might correspond to differences in skilled output.  

 3.3 Methods 

3.3.1 Participants 

Professional male athletes (n = 39) from an elite Australian Football League (AFL) club 

provided written informed consent to participate in this study (age: 23 ± 4 years, height: 187 ± 

8 cm, mass: 86 ± 9 kg). All participants completed at least one full match and at least one stint 

lasting greater than three minutes in the 2016 AF home and away season. Ethical approval was 

granted by the Victoria University Human Research Ethics Committee. 

3.3.2 Data collection 

Skilled output, defined as the sum of events completed by each player, are likely to contribute 

to team success as an ‘involvement’.  This was calculated as the total of involvements 

completed by each player, aggregated from a timeline supplied by a commercial provider of 
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sports statistics (Champion Data, Melbourne, Australia). Champion Data provide a timeline of 

key actions time stamped to each player, which can broadly be categories as; i) disposals, ii) 

other offensive actions and iii) defensive actions. An Excel spreadsheet was designed to 

aggregate the number of key involvements completed by each player within each stint. To 

develop the most meaningful measure of skilled output for the team included in this study, key 

involvements were chosen in consultation with the coaching group (Appendix 1). The sum of 

involvements for each player’s stint was databased alongside physical data and saved as a .csv 

file for analysis.  

Data was collected from 14 indoor matches and 7 outdoor matches (n = 21) during the 2016 

AFL home and away Season. For all indoor matches, athlete physical output was collected via 

a Catapult T5 Local Positioning System (LPS) tag (Catapult Sports, Melbourne, Australia). 

During outdoor matches, all participants wore a Catapult S5 GPS (Jennings, Cormack, Coutts, 

Boyd, & Aughey, 2010) device (Catapult Sports, Melbourne, Australia). Both devices were 

worn within each player’s jumpers in a custom-sewn pouch. All matches were monitored live 

using proprietary software Openfield (Catapult Openfield v 1.11.2-1.13.1) to ensure an 

adequate signal quality of > 8 packets/second, and that stints were correctly recorded. At the 

conclusion of each match, files were synchronized to the Catapult Cloud storage system. Data 

for each stint was then exported into a .csv file for further analysis. 

3.3.3 Data cleaning 

This study aimed to provide methods that were generalizable to future data. As a result, several 

filters were applied to the data to remove outliers (Ofoghi, Zeleznikow, MacMahon, & Raab, 

2013). Only stint maximum velocities in the bottom 98% of the data set (<32.2 km∙hr-1), 

durations in the top 95% (>3 minutes) and involvements in the bottom 98% (<2.2 
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Involvements/minute) were included in the analysis. These cut-offs were heuristically selected 

based on perceived practical application of the findings.  All parameters were then expressed 

relative to stint time. Each player was assigned a random ID (1-45), whilst each stint was 

labelled in the format ‘Quarter. Stint’ (i.e., the first stint of quarter 1 was labelled as 1.1). Round 

number was labelled from 1-23. 

3.3.4 Feature selection 

Parameters included in the analyses were selected based on validity, reliability and 

multicollinearity features. This process was informed via a literature review on common 

locational parameters (Cummins, Orr, O'Connor, & West, 2013), a correlation matrix and 

variance inflation matrix between all parameters. Consequently, meterage per minute (m∙min-

1), high intensity running (distance >14.4 km∙hr-1) per minute (m∙min-1), very high intensity 

running (distance >25 km∙hr-1) per minute (VHIR∙min-1), stint time (mins) and involvements 

per minute (IPM-1) were all selected for inclusion in the study. 

3.3.5 Generalized linear mixed models 

Generalized linear mixed models were computed in R, using the package lme4 (R Foundation 

for Statistical Computing, Vienna, Austria). For all models, player ID, stint and round number 

were specified as random effects, with the restricted maximal likelihood approach adopted 

(Gałecki & Burzykowski, 2013). A random intercept model was built to identify how skilled 

output changes, as a function of the other parameters, across the team. Involvements per and 

duration were the dependent and independent variables, respectively. Bench time, meterage per 

minute, high intensity running per minute and very high intensity running per minute were 

added to the model sequentially, with the Akaike information criteria (AIC) computed after 
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each model to assess variable importance (Akaike, 1981). Preliminary modelling revealed that 

bench time (the time an athlete spent off the field between stints) had minimal impact upon 

model performance and it therefore was not included in the final model. Finally, a random slope 

model was built for each player using the remaining parameters. 

3.3.6 Conditional inference trees 

Three conditional inference trees were constructed using the party package in R. This algorithm 

operates based on a pre-determined level of statistical significance (p<0.05), and conducts 

recursive partitioning based on factors most strongly linked with the response variable (Sardá-

Espinosa et al., 2017). For the present study, the data were split into an 80% training set and a 

20% testing set. Each tree was computed with a 95% confidence interval (CI) under a 

Bonferroni correction and a minimum terminal node size of 100 instances. The first tree in this 

study utilized the same parameters as the final generalized linear mixed model. Round and stint 

number was removed from the second tree, whilst player ID was removed from the final tree. 

Each tree was cross-validated on the test data set, with model performance represented by the 

root mean squared error (RMSE) of involvements. 

3.4 Results  

3.4.1 Generalized linear mixed models 

Descriptive statistics of each parameter for stints (n = 2493) and matches (n = 21) are shown in 

Table 1. The coefficients for the random intercept model are presented in Table 2 with a 95% 

CI.  This model had an R2 value of 0.01, and a conditional R2 of 0.14 (Figure 3.1). 
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Table 3.1-- Descriptive statistics (mean ± SD) for; Involvements (n), duration (mins), bench 

time (mins), distance (m), high intensity running (HIR, distance >14.4 km∙hr-1,  m), very high 

intensity running (VHIR, distance >25 km∙hr-1, m)  

 

 

Stint Match 

Distance (m) 1816 ± 903 11608 ± 3573 

HIR (m) 500 ± 263 3198 ± 1165 

VHIR (m) 24 ± 29 154 ± 105 

Duration (mins) 13.7 ± 7.0 87.8 ± 27.2 

Involvements (n) 3.6 ± 2.6 23.2 ± 9.3 

Bench time (mins) 11.6 ± 9.9 74.2 ± 17.2 
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Figure 3.1--  Individual coefficients for Duration (mins), meterage per minute (MPM, 

m·min−1), high intensity running per minute (HIRMPM, m·min−1), and very high intensity 

running per minute (VHIRM, m·min−1) in the random slope model. 

 

The coefficients for the random slope model are presented in Figure 3.2. This model had an R2 

of 0.013, and a conditional R2 of 0.23 (Figure 3.1). The relationship between both duration (for 

25/39 players) and high intensity running (for 39/39 players), and involvements per minute was 

negative. Conversely, MPM experienced a positive relationship with involvements per minute 

for most players (36/39 players). The relationship between very high intensity running per 

minute differed considerably depending on the player. Each of these parameters had only a 

minor relationship with involvements, with the final model having an R2 of 0.012, and a 

conditional R2 of 0.23 



 

114 
 

Table 3.2-- Model 1 & 2: coefficients of fixed effects (95% confidence interval) for 

Intercept/Involvements per minute (IPM-1), Duration (mins), High intensity running per 

minute (HIRMPM, m∙min-1), meterage per minute (MPM-1, m∙min-1) and very high 

intensity running per minute (VHIRM, m∙min-1) 

 

 

 

Estimate (95% CI) t -Value 

Model 1   

Intercept (IPM-1) 0.108 (0.187,0.03) 2.695 

Duration (mins) -0.001 (0,-0.002) -2.802 

HIRMPM (m∙min-1) -0.002 (-0.001,-0.003) -3.746 

MPM (m∙min-1) 0.002 (0.002,0.001) 4.785 

VHIRM (m∙min-1) 0.003 (0.006,0) 1.692 

Model 2   

Intercept (IPM-1) 0.142 (0.037,0.247) 2.648 

Stint duration (mins) -0.002 (-0.003,0) -2.572 

HIRMPM (m∙min-1) 0.002 (0.001,0.003) 3.813 

MPM (m∙min-1) -0.002 (-0.003,-0.001) -4.49 

VHIRM (m∙min-1) 0.001 (-0.003,0.006) 0.684 
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Figure 3.2 -- Predicted vs actual involvements per minute (IPM−1) in random intercept and 

random slope models, with grey reference line at 0 involvements of error. 

3.4.2 Conditional inference trees 

Results from the first conditional inference classification tree revealed Player ID, stint number, 

duration and round number as the strongest indicators of involvements per minute (Figure 3.3). 

An RMSE of 0.12 involvements per minute (approximately 10.1 involvements per match) was 

reported on both the test and training sets. This tree’s first partition included player ID, with 

rotation, duration and Round number forming the second to fourth partitions respectively. The 

second tree included player, stint duration and stint meterage per minute (Figure 3.4) as the 

strongest predictors. As per the first conditional inference tree, an RMSE of 0.12 for 

involvements for minute (10.1 involvements per match) was observed on both the test and train 

sets. This tree had an initial partition based on Player ID, with subsequent partitions based on; 

duration (2nd), an additional division of Player ID (3rd) and finally duration or MPM (4th).The 
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final tree, with ID removed as an input, used only meterage per minute and stint duration to 

predict involvements per minute (Figure 3.5). An increased RMSE (0.12 to 0.13 involvements 

per minute; 11.05 involvements per match) was observed on both sets of data. In this tree, both 

the first and second partitions were determined using MPM, with duration only forming a 

partition in instances where MPM exceeded 125.  
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Figure 3.3-- Conditional inference tree with Player ID, Round and Duration (mins) as 

independent variables, and involvements per minute (IPM) as the dependent variable where n 

= the number of cases in each group and y = predicted IPM. 

Group A = Player ID (1, 3, 5, 6, 7, 8, 9, 11, 13, 14, 16, 17, 19, 23, 24, 26, 29, 31, 32, 39). 

Group B = Player ID (2, 4, 10, 12, 15, 18, 20, 21, 22, 25, 27, 28, 30, 33, 34, 35, 36, 37, 38). 

Group C = Rotation (1.1, 1.2, 1.3, 2.2, 2.3, 3.1, 3.2, 3.3, 4.1). 

Group D = Rotation (2.1, 4.2, 4.3). 

Group E = Round (19). 

Group F: Round (1, 3, 4, 6, 7, 8, 9, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23). 



 

118 
 

Group G = Round (1, 2, 6, 8, 15, 17, 20, 22, 23). 

Group H = Round (3, 4, 7, 9, 12, 13, 16, 18, 19, 21). 
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Figure 3.4-- Conditional inference with Player ID, Duration (mins) and meterage per minute 

(MPM) as independent variables, and involvements per minute (IPM) as the dependent 

variable where n = the number of cases in each group and y = predicted IPM. 

Group A = Player ID (1, 3, 5-9, 11-17, 19, 23, 24, 26, 29, 31, 32, 39). 

Group B = Player ID (2, 4, 10, 12, 15, 18, 20, 21, 22, 25, 27, 28, 30, 33, 34, 35, 36, 37, 38). 

Group C = Duration (<5 mins). 

Group D = Duration (>5 mins). 

Group E = Player ID (3, 5, 6, 7, 8, 13, 29, 32, 39). 

Group F = Player ID (1, 9, 11, 14, 16, 17, 19, 23, 24, 26, 31). 
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Figure 3.5-- Conditional inference tree including Duration (mins) and meterage per minute 

(MPM) as independent variables, and involvements per minute (IPM) as the dependent 

variable where n = the number of cases in each group and y = predicted IPM. 
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Figure 3.6-- Conditional inference tree including Duration (mins) and meterage per minute 

(MPM) as independent variables, and involvements per minute (IPM) as the dependent 

variable where n = the number of cases in each group and y = predicted IPM.  
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3.5 Discussion 

This study developed two methods to quantify the impact of physical outputs, on a team and 

individual level, on skilled output by elite AF players during matches. The first method 

comprised two generalized linear mixed models, resulting in broad equations for the team and 

individual players. Both models had low R2 and conditional R2 values, resulting in limited 

explanatory ability.  

The second method, a series of conditional inference trees, identified how different 

circumstances and combinations of physical parameters may change an athletes expected 

skilled output. Whilst partitions in the first tree were dominated by uncontrollable factors such 

as round and stint number, the second tree achieved a similar classification accuracy using 

meterage per minute, player ID and duration. The final tree removed player ID as a parameter 

to identify a broad set of team rules, which only slightly reduced accuracy (0.13 compared to 

0.12 involvements per minute).  

The random intercept model broadly showed the strength and direction of influence for each 

parameter. In the observed team, meterage per minute had a negative relationship with 

involvements per minute. The only variable to have any positive relationship was high intensity 

running per minute. Practitioners could use this information as a general ‘rule of thumb’ in 

match day decision making, whereby, a player who is consistently running at a high meterage 

per minute for an extended duration, without completing high intensity running, is less likely 

to reach a maximal skilled output. A limitation of this modelling technique is that it does not 

necessarily apply to all players and does not identify how players individually respond to 

different parameters.  
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The random slope model addresses the above issue by allowing for different coefficients of the 

physical parameters for each player. This allows for better profiling of each athlete and for the 

importance of each parameter to better reflect an individual’s strengths and weaknesses. In the 

observed team, for example, each of the parameters had positive and negative relationships with 

skilled output, depending on the player. However, despite the strengths of this modelling 

approach there are still limitations. The linear decline of involvements per minute declines in 

response to the temporal and physical inputs is assumed, when it is unlikely the decline in 

skilled output would be so gradual. Rather, players likely need time and physical intensity on 

field before their skilled output reaches an optimal level. Finally, these models suggest some 

level of independence between the physical and temporal parameters. As a result, they are 

unable to determine how parameters may interact to affect skilled output. 

The first tree in this study used the same parameters entered into the random slope model, to 

identify how parameters interact to influence skilled output (Figure 3.3). However, the 

significance testing procedure selected uncontrollable factors such as round and rotation 

numbers as the key explainers of skilled output. The first tree provided a schematic of factors 

that may influence skilled output in AF. However, because none of the factors from this tree 

are controllable within a match, this tree would likely have limited uptake in an applied setting. 

The second tree removed round and rotation number and partitioned based on player, stint time 

and meterage per minute (Figure 3.4). In an applied setting, the schematic created by this tree 

could be used to identify the conditions that are likely to lead to maximal skilled output for each 

player. Additionally, it could be used in a real-time monitoring setting, to identify if the current 

circumstances imposed upon a player are conducive to maximal skilled output. 
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The final conditional inference tree in this study removed player, in an attempt to generate a 

broad set of team rules.  This could provide a cleaner schematic of influences upon skilled 

output across a team. Using only meterage per minute and stint time, this model set six major 

partitions for skilled involvement. This ranged from high physical output, but a mixed skilled 

output, to a low physical and low skilled output. In this playing group, a high intensity (>172 

m∙min-1), or a moderate intensity (125-172 m∙min-1) and moderate duration (<19.75 mins) leads 

to a higher skilled output. Consequently, match day prescription strategies for the observed 

team could use this information to limit the stint time of players. 

None of the models developed in this study had particularly strong accuracy. The average match 

duration for a player included in this study was 86 minutes, resulting in an average error of 0.12 

IPM and equating to an average error of approximately 10.1 involvements per match. This is in 

agreement with other research examining the impact of contextual factors on both physical and 

skilled output in AF matches. In itself, physical output is influenced by factors such as the 

opposition and the location of a match (Ryan, Coutts, Hocking, & Kempton, 2017). 

Furthermore, trivial relationships between common locational parameters and Champion Data 

player ratings as a measure of skilled performance have been noted elsewhere (Dillon, 

Kempton, Ryan, Hocking, & Coutts, 2017). These findings, collectively, highlight the 

importance of using skilled and technical data alongside locational parameters to inform match 

day decision-making, as opposed to the latter alone. 

There are several factors which may explain the limited relationship between GPS parameters 

and skilled output in Australian Football matches. Firstly, AF is a dynamic sport, and many 

circumstantial details are difficult to model. In particular, opposition playing styles and changes 

in positions (Robertson & Joyce, 2014), may have an impact on both the physical and skilled 
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output of player (Sullivan et al., 2014a). Secondly, the aggregate data utilized in this study is 

limited in its’ ability to identify thresholds for reductions in both physical and skilled output. 

Other research has examined these outputs across quarters (Bradley & Noakes, 2013), and more 

recently within stints (Montgomery & Wisbey, 2016). Further work is needed to examine 

physical and skilled behaviour as a time-series, to better describe the outputs competed by 

players. Finally, this was a methodological study, which aimed to identify trends across a single 

playing group. For this methodology to be applied to other teams and sports, the modelling 

approaches would need to be independently run. Therefore, the thresholds created here may not 

necessarily stand true outside of this playing group. 

The models utilized in this study may still aid decision making in elite team sports. They use 

information that is controllable and readily available during matches, and therefore may assist 

in situations where objective information is desired to make quick, time-sensitive decisions. 

3.6 Conclusion 

This study developed two methods to identify the relationship between physical, skilled and 

temporal outputs, on an individual and team level. The first method utilized random slope and 

intercept models to identify factors that may correlate with a decline in skilled output, and what 

direction their relationship is with skilled output. This could be used to develop a broad equation 

for the team and individuals, to identify how they would react to differing stint times and 

physical workloads. The second set of methods utilized conditional inference trees to identify 

how physical and temporal parameters may interact to influence skilled output. Together, these 

three models describe; i) the impact of uncontrollable factors, such as round and rotation 

number, ii) how different individuals react to different outputs and iii) a general set of thresholds 

for the data entered into the modelling process. These trees can provide a schematic to assist 
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match day prescription in team sports. None of these models held an optimal predictive ability, 

suggesting that wearable technology data and notational analysis feeds could be analysed 

differently to improve their use in team sports.  
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“A change point approach to analysing the match activity profiles of 

team-sport athletes” 

This chapter is presented in pre-publication format of a recent publication titled: 

Corbett, D. M., Sweeting, A. J., & Robertson, S. (2019). A change point approach to 

analysing the match activity profiles of team-sport athletes. Journal of Sports Sciences. 

doi: 10.1080/02640414.2019.1577941 

 

4.1 Abstract 

In team-sport, physical and skilled output is often described via aggregate parameters including 

total distance and number of skilled involvements. However, the degree to which these output 

change throughout a team-sport match, as a function of time, is relatively unknown. This study 

aimed to identify and describe segments of physical and skilled output in team-sport matches with 

an example in Australian Football. The relationship between the number of change points and 

level of similarity was also quantified. A binary segmentation algorithm was applied to the 

velocity time series, collected via wearable sensors, of 37 Australian football players (age: 23 ± 

4 years, height: 187 ± 8 cm, mass: 86 ± 9 kg). A change point quotient of between 1 and 15 was 

used. For these quotients, descriptive statistics, spectral features and a sum of skilled 

involvements were extracted. Segment similarity for each quotient was evaluated using a random 

forest model. The strongest classification features in the model were spectral entropy and 

skewness. Offensive and defensive involvements were the weakest features for classification, 

suggesting skilled output is dependent on match circumstances. The methodology presented may 

have application in comparing the specificity of training to matches and designing match rotation 

strategies. 
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4.2 Introduction 

Physiological and cognitive fatigue typically reduce the ability for team-sport athletes to 

maintain a maximal output for the duration of competition (Aughey, 2010; Gréhaigne, Godbout, 

& Bouthier, 2001). Other factors, including game style, positional requirements and opposition 

tactics, mean that physical and skilled output is dynamic for most team-sport athletes (Woods, 

Robertson, & Collier, 2017). Understanding the extent to which physical and skilled output 

change as a function of time may be useful in the prescription of on-field stints relative to time 

on bench (Corbett, Sweeting, & Robertson, 2017), and designing the workload characteristics 

of training  (Corbett et al., 2017). A sport where many of these applications are pertinent is 

Australian Football (AF).  

In team-sports including AF, physical output is typically described using aggregate parameters 

extracted from wearable technologies such as global positioning systems (GPS) (Cummins, Orr, 

O’Connor, & West, 2013). These parameters include global volume measures, such as total 

distance and PlayerLoadTM, work rate, and velocity bands, which bin total distance into velocity 

zones (Sweeting, Cormack, Morgan, & Aughey, 2017). These parameters are often aggregated 

across; an on-field stint (Corbett et al., 2017; Dillon, Kempton, Ryan, Hocking, & Coutts, 

2017), quarter (Aughey, 2010) or entire match (Aughey, 2011). Similarly, skilled output is 

typically quantified using aggregate parameters. In AF these have included global measures of 

skilled performance, such as Champion Data player rankings (Dillon et al., 2017), coaches 

ratings (Sullivan et al., 2014) and a count of the total number of skilled actions completed by 

each player, termed involvements (Corbett et al., 2017).  
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Aggregating physical and skilled output presents multiple limitations. There are likely periods 

of altered physical and skilled output that are not captured by aggregate parameters. For 

instance, there are periods of physical output at a much higher intensity than that of an averaged 

entire game (Delaney et al., 2015). It is also difficult to determine distinguishable time points 

where output meaningfully changes (Corbett et al., 2017). By inference it is therefore 

problematic to use measures of physical and skilled output to inform decisions whereby time is 

expected to exert an influence. 

By analysing physical and skilled output as a time series, a greater understanding of how 

physical and skilled output change within a match could be developed. However, this presents 

two challenges. The noise in the signal obtained from wearable technologies contains numerous 

erroneous data points (Coutts & Duffield, 2010). Physical output in an intermittent sport, for 

example AF, is likely to be too volatile (Varley, Fairweather, & Aughey, 2012) to identify 

meaningful changes on a per-second basis. This creates a dichotomy between the interest in 

identifying changes in physical output over time, and the need to maintain accuracy in measures 

taken.  

Aggregating time-series in smaller windows, has partially overcome the volatility in physical 

output (Wundersitz et al., 2015). In professional AF and rugby league matches, average velocity 

and acceleration have been calculated for three, five and 10-minute windows (Delaney et al., 

2015). A specific representation of the peak physical outputs in both sports, and the length of 

time these outputs are maintained, was identified. A method of automatically identifying 

segments within a time series, based on the mean and variance, may expand on this approach. 

This could allow for the aggregation of physical output over segments of non-uniform size and 

remove the need to manually select pre-defined time windows.  Further, the computation of 
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additional, custom built parameters may allow for a more detailed description of the time series. 

This could improve the specificity in which match output could be evaluated, and potentially 

improve training drill design (Corbett et al., 2017).  

Time series segmentation or change point analysis, allows for computation of non-uniform 

segments from a time series. Time series segmentation algorithms are built upon the assumption 

that within a given time series, there are a number of change points. Thereafter, the behaviour 

of subsequent data points is inherently different to those before it (Piotr & Haeran, 2014). Users 

typically apply a penalty value, or specify the number of change points desired (Killick & 

Eckley, 2014), meaning, in a volatile time series such as team-sport physical output, the 

algorithm can be limited to a smaller number of aggregation windows (Piotr & Haeran, 2014). 

The hypothesised maximum number of change points in a velocity time series is unknown. 

Whilst a higher number of change points provides a more detailed summary of the time series 

through shorter aggregation windows (Cryer & Chan, 2008) differences between segmental 

features are likely to decrease.   

Frequency domain analysis could be used to summarise players’ physical output within 

segments. Features may include the shape of a signal, including skewness, kurtosis, flatness, 

entropy, the location of values within a signal, such as percentiles and spectral centroid (Fransz, 

Huurnink, de Boode, Kingma, & van Dieën, 2016) and customised features to describe the 

magnitude of values within a signal (Wundersitz et al., 2015). Frequency domain analysis has 

been applied for the purpose of movement classification (Wundersitz et al., 2015) and anomaly 

detection (Fransz et al., 2016).  To help guide the number of change points selected, data mining 

classification methods can be used (Ofoghi, Zeleznikow, MacMahon, & Raab, 2013). By 

placing the features of segments extracted from a varying number of maximum change points 
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into a classification algorithm, the trade-off between the uniqueness of segments and a 

heightened number of change points could be understood.  

The first aim of this study was to identify the impact of change point number on the features of 

segments in Australian footballers’ velocity time series. The subsequent aim of this study was 

to determine a method to identify an optimum number of change points to describe the velocity 

time series of Australian Rules footballers for general purposes. 

4.3 Methods 

4.3.1 Participants 

Professional male athletes (n = 37, age: 23 ± 4 years, height: 187 ± 8 cm, mass: 86 ± 9 kg) from 

an elite AF club provided written informed consent to participate in this study. All players 

completed at least one full match in the 2017 Home and Away Australian Rules Premiership 

season. Ethical approval was granted by the University Human Research Ethics Committee 

(Code HRE17-127).  

4.3.2 Data Collection 

Locational data was collected from 19 rounds comprising: 12 indoor matches and 7 outdoor 

matches (n = 19) during the 2017 Home and Away Season. For all matches, players were fitted 

with a 10 Hz Catapult T6 Local Positioning System (LPS) tag (indoor matches), or a 10 Hz 

Catapult S5 Global Navigation System (GNSS) device (outdoor matches). Both LPS and GNSS 

devices were worn in custom sewn pouches within players’ jerseys. Both LPS and GPS systems 

have established acceptable validity and reliability in measuring the physical output of team-

sport athletes (Coutts & Duffield, 2010; Luteberget, Spencer, & Gilgien, 2018). All matches 
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were monitored live using proprietary software Openfield (Catapult Openfield v 1.11.2-1.13.1) 

to ensure an adequate signal quality of > eight packets/second and an average horizontal dilution 

of precision of 0.6-1.5. A comma separated value file of instantaneous data for velocity was 

cleaned to exclude time on bench, as well as quarter and half-time breaks. This was to allow 

velocity data for each player in each match to be analysed as a single continuous time series. 

Skilled output was quantified via match involvements. An involvement was defined as any 

singular skilled action completed by a player (Corbett et al., 2017). An involvement could 

further be categorised as either offensive or defensive (Appendix A). Involvements were 

extracted from a timeline by a commercial sports statistics provider (Champion Data, 

Melbourne, Australia). This timeline includes each involvement that occurred in a match, along 

with the corresponding player and timestamp.  

4.3.3 Time series analysis 

Time series analysis methodologies are built upon the assumptions of stationarity, absence of 

seasonality and absence of trend (Cryer & Chan, 2008). Stationarity refers to the consistency 

of mean, variance and autocorrelation over time (Cryer & Chan, 2008). The Dickey-Fuller test 

for stationarity was applied to all velocity time series’ and returned an average test statistic of -

19.87, a lag order of 39 and a p-value of <0.01, suggesting the velocity time series was 

stationary (Tanaka, 2017). Seasonality refers to a time series, where data points periodically 

fluctuate at fixed intervals (Atchison, Berardi, Best, Stevens, & Linstead, 2017). Due to the 

uneven length of quarters in AF, the velocity time series’ do not violate the assumption of 

seasonality. The inability of linear approaches in the literature to determine a linear change in 

physical output as a function of time within matches, demonstrates an absence of trend (Dillon 
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et al., 2017). This suggests that instantaneous velocity files do not violate any of the 

assumptions for time series analysis and can be analysed without any transformations. 

Change points were used to divide each players’ velocity time series into a number of smaller 

segments. Preliminary change point analysis was conducted on each velocity time series. This 

included an unsupervised power of the pruned extract of time (PELT) change-point analysis, 

and a “change point for a range of penalties” (CROPS) analysis. CROPS analysis identified the 

impact of differing penalty values on change point quotient. These algorithms identified 1026 

and 82 change points respectively per time series. Consequently, it was deemed necessary to 

limit the number of change points identified. 

For this purpose, 15 trials of a binary segmentation algorithm were run, searching for between 

two and 16 change points.  All change points were calculated in the R changepoint package, 

with an AIC penalty value of 0.01. Binary segmentation is the most widely used change point 

algorithm (Killick & Eckley, 2014). It functions by progressively dividing the data set into a 

series of smaller segments, until additional change points cannot be located (Killick & Eckley, 

2014). It is computationally fast and has established validity within the literature (Piotr & 

Haeran, 2014).  

4.3.4 Descriptive statistics 

The peak three and five minute moving averages achieved by any player in each Round were 

calculated for metreage per minute, in line with previous literature (Delaney et al., 2015). 

Additionally, the peak segment based on metreage per minute, as well as it’s corresponding 

segment number and duration was also obtained. This was done to compare the change point 

approach introduced in this study, with previously used moving averages to establish peak 

match intensities.  
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Pearson’s product moment correlation was calculated between on-ground stint end time and 

change point location for every stint completed by every player. This was done to assess the 

relationship between on-ground stints and change point location. 

4.3.5 Feature extraction 

A fast Fourier transform was applied to the velocity time series’. The following frequency 

domain features were extracted using the seewave package (Sueur et al., 2016) in R; minimum 

amplitude, spectral centroid, maximum amplitude, spectral entropy, skewness, spectral flatness 

measure, kurtosis, standard error of mean (SEM) and the frequency precision of the spectrum, 

25th percentile (Q25), 75th percentile (Q75) and interquartile range (IQR). An energy feature, 

designed to reduce multiple inputs from wearable technologies into a single metric (Wundersitz 

et al., 2015) was also extracted for each segment. Energy has been used to discriminate between 

different movement tasks, for the purpose of classification. Energy is defined in Equation 1. 

Equation 1-- Equation for spectral energy where ai are the sum of the squared values for axes 

i (i = acceleration & velocity) and p = number of observations per axis (Wundersitz et al., 

2015) 

E = å3i = 1ai/p                  (1) 

To describe skilled output within each segment, two features were extracted from the Champion 

Data time series for each player in each match. These were; defensive action count and 

offensive action count. 
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4.3.6 Segment similarity 

For 15 change point trials, a random forest was utilised to classify cases as segment number, 

using both spectral and involvement features. This was done to quantify the impact of 

increasing change point quotient (Q), on the similarity of features within each segment. The 

random forest in this study was created using the randomForest package in R (Liaw, 2015). To 

identify segment number, 70% of the data was used with the following features: Player Number, 

25th percentile (Q25), 75th percentile (Q75), interquartile range, spectral centroid, skewness, 

kurtosis, spectral flatness measure, spectral entropy, spectral precision, segment duration 

(seconds) and energy.  Each of these methods were then tested on the remaining 30% of the 

data, with the corresponding classification accuracy and confusion matrix computed. The 

results of a multidimensional scaling algorithm (MDS) were also utilised to visually 

demonstrate the impact of Q on segment similarity, based on an average value across all players, 

for each segment and feature.  

4.4 Results 

4.4.1 Change point locations 

An example of the influence of change point quotient (Q), on the location of change points for 

a single player, is shown in Figure 4.1. For the purpose of visual comparison, change point 

quotients of; two (A), five (B), 10 (C) and 15 (D) are shown. This figure depicts the functioning 

of the binary segmentation algorithm, which progressively identified change points within 

existing segments. By increasing Q from two to five, additional segments were created within 

segments at the beginning of the match. As this increased from five to 10, additional segments 
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were created towards the beginning and end of the match. When increased from 10 to 15, 

additional change points occurred midway through the match. 

  

Figure 4.1—Example of the influence of change point quotient (Q) on the number and 

location of change points for a single player across a single match. A = Q of 2, B = Q of 5, C 

= Q of 10, D =Q of 15.   Blue and red circles indicate offensive and defensive involvements, 

respectively. Fixed vertical lines denote change point location. 

 

Change points locations within matches varied considerably between players. The average 

change point location, measured as on-field seconds lapsed within a match, is depicted in Figure 

4.2. The majority of segments occurred towards the beginning of a match for some players (eg. 

Player 18), whilst others had a greater number of change points occurring towards the end of a 

match (eg. Player 12 and Player Seven). The change points for some players were relatively 
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evenly spaced (eg. Player 14 and Player Five), whilst other players had a number of change 

points occurring in close proximity with one another (eg.  Player Nine).  

 

Figure 4.2— Average change point locations (Q = 5) for all players in the 2017 Home and 

Away Australian Football Season, shown as elapsed time on ground in seconds. 

4.4.2 Descriptive statistics 

The peak segment and its corresponding duration and metreage per minute for each Round is 

depicted in Table 4.1.  This table also depicts the peak 3 and 5-minute moving averages 

attained by any player for metreage per minute by Round. In some Rounds, the change point 

method was able to detect segments with a higher intensity than the moving average method 

(ie., Round 8). In other instances, the change point method was able to detect a similar 

intensity to the moving average method, maintained for a longer period of time (ie., Round 1). 
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There were several Rounds, where peak intensity was lower than both 3 and 5-minute moving 

average intensities (eg., Round 15). Peak match intensities occurred at varying time points 

during the match. Furthermore, there was also only a weak relationship (r = 0.21) between 

segment location, and stint end time. This suggests physical output is independent of on-

ground stints. 
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Table 4.1—Peak segment, peak segment duration, peak segment meterage per minute 
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(MPM), 3-minute and 5-minute moving averages for meterage per minute (MPM) in each 
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4.4.3 Feature extraction 

The distribution of values for six of the extracted features, for all players in all matches, in each 

of the segments (where Q = 5) is shown in Figure 4.3. The shape of distributions for spectral 

skewness, defensive action count and offensive action count also appeared similar regardless 

of segment, with minor discrepancies in values at the lower end of the distribution for each 

feature.  The shape of the spectral energy and spectral flatness distributions appeared 

considerably different depending on segment. 

 

Figure 4.3— Distribution of values for six of the features, across all segments (where Q = 5), 

for all players in all matches in the 2017 AFL Home & Away season. 
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4.4.4 Segment similarity 

The accuracy of the random forest in classifying segments through their features is shown in 

Figure 4.4. Where Q = 1, the random forest was able to classify segments correctly 64% of the 

time. This decreased linearly towards Q = 4/Q = 7, where the model was correctly able to 

classify segments 27% of the time. After this, there was a steady decline in the ability for the 

random forest to differentiate between segments through their features, reaching a classification 

accuracy of 14%, where Q = 15. This is reinforced by Figure 4.5, which demonstrates an 

increase in segment similarity as Q increases. For example, a smaller change point quotient (Q 

= 2) returned three distinct segments based on their feature, whilst a higher quotient (Q = 15), 

created 16 segments—most of which were closer together. When Q = 5, there were six 

segments, which were dissimilar to one another. 

Figure 4.4—Scree plot, depicting classification accuracy of 15 random forest models, with a 

change point quotient of between 1 and 15. 
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Figure 4.5—Similarity plots of the average features for each segment, with a change point 

quotient of 2 (left), 5 (centre) and 15 (right). Values were calculated using the average across 

all matches and players, for each feature in each segment, reduced to a single set of Cartesian 

coordinates using multidimensional scaling.The  confusion matrix for the final model, where 

Q = 5, is shown in Table 4.2. This model had a classification accuracy of 26.7% (95% CI; 

23.7% - 29.9%). Spectral kurtosis (18.1), 75th percentile of velocity (18.1) and spectral 

flatness (19.3) were the three strongest variables in the random forest as measured through 

mean decrease in gini coefficient. Offensive action count (6.8), defensive action count (6.8) 

and Player ID (5.6), were the weakest classifiers in the random forest. 
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Table 4.2-- Confusion matrix for final random forest (RF) classifications (where Q = 5)--  

actual cases vs classified cases 
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4.5 Discussion 

This study aimed to identify and describe segments of physical and skilled output in team-

sport matches with an example in Australian Football. The physical output of team-sport 

athletes was split into between two and 16 segments and then summarised each of these 

segments using spectral features and a measure of skilled output. An advantage of this method 

is the ability to analyse outputs across a match, without having to specify fixed duration 

windows.  By assessing segment similarity using a random forest model and 

multidimensional scaling, it was determined that between six and eight segments could be 

used to describe the physical output of team-sports athletes. 

Whilst considerable research has utilised aggregated data over periods of equal length, this 

study utilised a binary segmentation algorithm which split the velocity time series of all players 

into between two and 16 unequal segments. Each of these segments was categorised by data 

points with a different mean or variance, compared to the previous or subsequent segment (Piotr 

& Haeran, 2014). These segments varied in their location and duration between players and had 

only a small relationship with on-field stint end time. This highlights the importance of 

analysing velocity data as a time series, as aggregating across quarters or on-field stints may 

not be sufficient when analysing changes in physical output.  

 By analysing velocity data across static windows, such as three or five-minute periods, details 

of potentially high or low periods of physical activity may be lost. Indeed, the change point 

algorithm often detected higher or similar peak match intensities as moving average windows. 

There were several instances where the change point algorithm extracted lower peak intensities 

than the moving average method. This is likely due to the algorithm used, which searched for 

a change in both mean and variance in velocity. This is in contrast to moving averages which 
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summarise match intensity using only mean velocity or acceleration (Delaney et al., 2015). 

Additionally, this study was able to identify the time point at which peak match intensities 

occurred. This may be useful for practitioners wishing to increase the specificity of their 

training sessions to match demands (Al-Abood, Davids, & Bennett, 2001). For example, peak 

intensity segments occurred at varying points of the match. Therefore, it may be useful to reach 

these intensities during training at varying points of the session,  

Spectral features were used to summarise the data points for every player’s segments in all 

matches. Ridge plots for all players, were utilised to highlight the difference in distributions of 

each feature across six different segments. Whilst some features, such as spectral centroid (i.e., 

mean velocity within each segment) did not appear to change between segments, other 

parameters such as spectral energy and spectral flatness measure had different distributions 

depending on the segment. Spectral features are able to describe additional aspects of physical 

output, not currently captured by parameters such as work rate. These include; whether running 

was intermittent or more steady state (spectral flatness measure), how intensity was maintained 

across a segment (Q25 and Q75) and how physical output was distributed across a segment 

(kurtosis and skew). These features may be utilised to give a greater understanding of how 

physical output is accrued in a segment. Whilst work rates such as metreage per minute are 

predominantly used in AF, these findings suggest that additional detail could be gained from 

velocity data by utilising spectral measures of variance.  

Skilled output, measured through match involvements, showed no clear differences between 

segments. Consequently, they were the weakest features in the random forest model for 

classification. This highlights the dynamic nature of skilled actions in AF. Skilled output can 
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be affected by many factors including the strategy of the opposing team, player roles, team 

composition and team form (Corbett et al., 2017; Woods et al., 2017). 

Multidimensional scaling and similarity plots were used to combine spectral features and 

explore the similarity of segments for each player for four different change point quotients. 

These plots were useful in highlighting two phenomena. First, there was a trade-off between 

the number of change points selected, and the differences in features of each segment. For 

example, a change point quotient of two generated three distinct change points and a change 

point quotient of five generated six somewhat different segments. A quotient of 15, however, 

generated two clearly distinct segments, and 14 segments with relatively similar features. This 

suggests that increasing the change point quotient past a point is likely to yield a number of 

similar segments, which provide limited added detail over using a smaller number of change 

points. 

To quantify the increasing similarity of segments as change point quotient increased, a series 

of random forest models were constructed. Spectral and involvement features were calculated 

for 15 different change point quotients, and the accuracy of the random forest to identify 

segment number through these features was calculated. As anticipated, the highest classification 

accuracy occurred where Q = 1. Between Q = 4 and Q = 7 signified an inflection point in the 

classification accuracy of the random forest models. In the random forest model, the strongest 

classification variables were measures of shape and spread, such as spectral flatness, kurtosis 

and the location of the 75th percentile of velocity. This highlights the ability of a change-point 

and frequency domain analysis, to describe phenomena which would be lost in aggregate 

parameters such as metreage per minute (Corbett et al., 2017; Dillon et al., 2017).  



 

160 
 

The differences between segments when a higher change point quotient is used are likely to be 

subtle (Piotr & Haeran, 2014). A very low number of change points, on the other hand, may 

provide a description of the velocity time series, that is no more detailed than aggregating across 

pre-determined windows such as a quarter or stint. When attempting to investigate changes in 

physical and skilled output over time, or when attempting to identify periods of high physical 

output, a single change point may provide a less detailed description of the time series, than 

aggregating across a pre-set window such as quarter or stint on ground. As a result, a quotient 

of five was ultimately selected to summarise the most unique periods of physical output for 

each player. This is because it provides a trade-off between providing increased detail of a time 

series (as visually inspected through the similarity plots), without generating segments that are 

unnecessarily similar to one another (as calculated from the random forest model). When 

examining sequences of physical output, change point quotient may be modified to provide a 

more granular description of the velocity time series. 

There are numerous applications of the change point method to AF matches. Change points 

could be compared with changes in position, team strategy or on-field stints, to better quantify 

in-match output. Similarly, this method could be adapted to identify changes in physical and 

skilled output as a function of time, by identifying change points within on-field stints. To date, 

the literature has identified only a trivial-small relationship between physical output, skilled 

output and time (Corbett et al., 2017; Dillon et al., 2017; Ryan, Coutts, Hocking, & Kempton, 

2017). However, this could possibly be due to the aggregate parameters utilised in all of these 

studies. By aggregating features or parameters across different segments, it may be possible to 

infer patterns, decrements or changes in physical output as a function of time. 
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The methodologies used in this study have applications in a team-sport training environment. 

Feature extraction has already been used to classify movements based on accelerometer and 

GPS inputs (Wundersitz et al., 2015). In the present study, feature extraction was used to 

provide a more detailed description of physical output than measures such as total distance or 

distance covered in velocity bands. At present, velocity bands are often heuristically chosen 

(Sweeting et al., 2017) or individualised by an external physiological factor, such as maximal 

aerobic sprinting score (Cummins et al., 2013). The features of spread used in this study (eg., 

Q25, Q75) could be used to develop bands based on how often players reach different velocities. 

These detailed measures may be useful in evaluating the specificity of training drills to match 

demands. In rehabilitation, for example, it is common practice for players’ to complete a session 

in which GPS parameters in training resemble that of a match (Kelly & Coutts, 2007). By 

utilising these features, practitioners would have a greater understanding of whether players 

have completed a training session with similar match intensity (Delaney et al., 2015). 

The methods utilised in this study could also be applied in sports where pacing is a key strategy. 

In track cycling, for example, the ability of athletes to increase or decrease their velocity at 

crucial moments in an event is a key strategic consideration.  The change point methodology 

could be applied to the instantaneous velocity of such sports, to dissect opposition strategies, 

and to evaluate the strategy of a given athlete (Woods et al., 2017). Depending on the 

application, the change point quotient may be modified.  

4.6 Conclusion 

This study proposed a method to divide the velocity time series into a series of unequal blocks. 

For this study, a change point quotient of between five and seven was selected, as providing 

increased insight into the velocity time series, whilst identifying sufficiently different segments 
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of play through their physical and skilled output. Differing change point quotients may be 

utilised, depending on the purpose of practitioners. These methods could be utilised to increase 

the sophistication of match profiling in team-sports, and in turn, could allow practitioners to 

clearly investigate the specificity of their training sessions in meeting match demands. 
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 “Profiling individual team-sport athlete physical and skilled output 

with frequency and time-series domain analysis” 

This chapter is presented in pre-publication format of a recent submission to The 

Journal of Strength and Conditioning Research titled: 

Corbett, D. M., Sweeting, A. J., & Robertson, S. Profiling individual team-sport athlete 

physical and skilled output with frequency and time-series domain analysis  

5.1 Abstract 

The aim of this study was to apply a combined time-series and frequency-domain approach to 

match profiling in team-sports. An exemplar player was selected from a professional Australian 

Rules football club. Physical output was measured using a Catapult S5 GNSS device (outdoor 

matches) or a Catapult T6 RFID device (indoor matches). Aggregate parameters (total distance; 

metreage per minute; high intensity running; very high intensity running) were calculated for 

an exemplar match and as an average across all matches. A binary segmentation algorithm was 

applied to the player’s velocity time series for each match to identify differentiated segments. 

Frequency-domain features were extracted across a match and for each segment, to describe 

physical output. Aggregate offensive actions and defensive actions were extracted to describe 

skilled output. K-means clustering was also used to classify segments through their physical 

and skilled output. Using aggregate parameters, the exemplar match was similar to historical 

data. The methods used in this study were able to identify differences between the exemplar 

match and historical data. These methods were also able to quantify change in physical and 

skilled output both within and between matches. This study identified differences within and 

between matches that were not apparent from aggregate parameters. These methods could 
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therefore be used, to increase the specificity of load monitoring and physical activity 

prescription in team-sports.  
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5.2 Introduction 

In team-sports, physical and skilled output are typically described using aggregate parameters 

(Corbett, Sweeting, & Robertson, 2017; Cummins, Orr, O'Connor, & West, 2013).  To quantify 

physical output, parameters such as total distance are used in addition to velocity bands which 

bin distance covered into an arbitrary number of thresholds (Sweeting, Cormack, & J., 2017). 

Similarly, skilled output is also often measured using parameters such as player rankings, player 

ratings and involvements (McIntosh, Kovalchik, & Robertson, 2018). These parameters are 

typically aggregated across an entire match, quarter, or on-ground stint (Corbett et al., 2017). 

Currently, aggregate parameters form the basis of within-player match profiling, which 

describes the total output completed by a player, as well as how output changes both within and 

between matches (Gray & Jenkins, 2010a). 

Velocity bands aim to distinguish between distance covered at low, moderate and high 

intensities (Sweeting et al., 2017). However, the methods used to determine velocity bands, and 

thus, what constitutes high intensity, is contentious (Cummins et al., 2013; Sweeting et al., 

2017). Even within the same team-sport, velocity bands vary considerably in the literature 

(Cummins et al., 2013; Sweeting et al., 2017). Standardised velocity bands may also under or 

over-estimate the intensity of a match for a given player (Cummins et al., 2013). Consequently, 

there is a dichotomy between ease of interpretation and the sophistication by which velocity 

bands describe physical output. This has led to a recent interest in promoting the 

individualisation of velocity bands. Methods used to individualise velocity bands have ranged 

from; machine learning algorithms applied to the raw velocity output of each player (Sweeting 

et al., 2017), to using physiological test results such as maximal aerobic sprinting scores as a 

threshold (Clarke, Anson, & Pyne, 2015; Gabbett, 2015). However, using a score derived from 
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a continuous running protocol may not accurately reflect the non-linear, sporadic nature of 

team-sport physical output. 

By binning total distance into velocity bands, aggregate parameters are limited in their ability 

to describe the velocities attained by each player (Liu, Hussain, Tan, & Dash, 2002). For 

example, “Very High Intensity Running” or “Sprinting” is a common velocity band used in 

Australian football, to describe all distance covered at > 25 km/hr-1 (Coutts, Quinn, Hocking, 

Castagna, & Rampinini, 2010). However, velocities completed by a player may be more heavily 

concentrated at either end of this band. This limits application from a training prescription 

perspective, when specifically preparing athletes for the demands of a match. Aggregate 

parameters also provide limited insight into how distance was accrued. For example, it is 

possible for continuous running to return the same metreage per minute as a number of high 

intensity efforts interspersed with stationary periods. Similarly, whilst velocity band efforts 

describe the number of times a player completes a bout of physical activity in each band, they 

do not identify the magnitude of duration of each effort (Brewer, Dawson, Heasman, Stewart, 

& Cormack, 2010). 

Aggregated parameters are also limited with respect to their inability to describe changes in 

physical output over time (Dillon, Kempton, Ryan, Hocking, & Coutts, 2017). In team-sport, 

there is only a weak relationship between aggregate parameters and time (Corbett et al., 2018; 

Corbett et al., 2017; Dillon et al., 2017). Furthermore, aggregate parameters are unable to 

identify key time points where physical output changes for individual athletes (Corbett, 

Sweeting, & Robertson, 2019). As a result, match profiling currently has limited application 

for decisions related to time, such as the length of on-field stints relative to time on bench. 
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The abovementioned limitations have led to a recent interest in alternative methodologies. 

Corbett et al. (Corbett et al., 2019) proposed a combined time-series segmentation and 

frequency domain analysis approach to activity profiling for team sport athletes. Using time-

series segmentation, the velocity time series of team-sport athletes were divided into four to 

seven segments of differing lengths per match. Individual match profiles were developed using 

frequency domain features, which describe the distribution of data points for each player. 

Additionally, the sophistication of profiling was increased by utilising frequency domain 

features to identify differences in physical and skilled output as a result of position. By using 

time-series segmentation to identify commonly recurring movement patterns for each player, 

changes in physical and skilled output over time could be analysed using frequency-domain 

features extracted from each segment (Tedesco, Urru, & O'Flynn, 2017). 

The aim of this study was to utilise a combined time-series/frequency-domain analysis 

approach, to within-athlete match profiling in team sports. Specifically, to i) combine frequency 

domain features derived from positional data with skilled involvement-based features in order 

to develop individualised match profiles for team-sport athletes; ii) to identify a method to 

demonstrate how individualised profiles change within matches, iii) to identify a method to 

identify how individualised profiles change between matches and iv) to compare a combined 

frequency-domain and time-series approach to match profiling, with standard match profiling 

using aggregate parameters. It was hypothesized that a combined time-series/frequency-domain 

approach could integrate physical and skilled output features in match profiling. Further, it was 

hypothesized that this approach could highlight differences in match outputs which were not 

apparent from aggregate parameters. 

 



 

172 
 

5.3 Methods 

5.3.1 Experimental Approach to the Problem 

A combined time-series/frequency-domain analysis approach was applied to match profiling in 

team sports using a case study design. To measure physical output, an exemplar player was 

fitted with a Catapult T6 Local Positioning System (LPS) tag (indoor matches), or a 10 Hz 

Catapult S5 Global Navigation System (GNSS) device (outdoor matches) for all matches in the 

2017 Home and Away season. Skilled output was quantified using match involvements. Time-

series segmentation and frequency domain analysis was utilised to identify changes in physical 

output within a match. A k-means algorithm was then applied to these features, to identify 

changes between matches. Frequency domain characteristics were compared with aggregate 

parameters, to highlight differences in match output between the two approaches.  

5.3.2 Subjects 

A single professional male athlete from an elite Australian Rules football (AFL) club provided 

written informed consent to participate in this study. This player completed 19 matches in the 

2017 Home and Away Australian Rules Premiership season. Ethical approval was granted by 

the University Human Research Ethics Committee.  

5.3.3 Procedures 

Locational (GNSS or LPS) data was collected from 12 indoor matches and seven outdoor 

matches (n = 19) during the 2017 AFL regular season for an exemplar player. Both GNSS and 

LPS devices have been validated in the literature to measure on-field athlete location (Sathyan, 

Shuttleworth, Hedley, & Davids, 2012). LPS and GNSS devices were worn in custom sewn 
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pouches within the athletes’ jersey. All matches were monitored live using proprietary software 

Openfield (Catapult Openfield v 1.11.2-1.13.1) to ensure an adequate signal quality of > eight 

packets/second. Instantaneous data for velocity was exported from Openfield for later analysis.  

Involvements were extracted from a timeline by a commercial sports statistics provider 

(Champion Data, Melbourne, Australia). This timeline includes each involvement that occurred 

in a match, along with the corresponding player and timestamp. An involvement was defined 

as any singular skilled action completed by the player (Corbett et al., 2017). An involvement 

could further be categorised as either offensive or defensive (Appendix A).  

For the exemplar player, a single match was selected. This was used to compare the athletes’ 

aggregate parameters in a single match, with their historical data completed across all matches. 

This match was selected, due to it falling within one standard deviation of the mean for; total 

distance (m), total duration (minutes), metreage per minute (m.min-1), total HIR (distance 

covered at velocities > 5.0 m∙s-1) and VHIR (distance covered at velocities > 7.5 m∙s-1). One 

standard deviation was selected, as values within this range are described as typical in the 

statistical literature (Wasserman, Casey, Champion, & Huey, 2017). Consequently, it was a 

typical match for the exemplar player, as defined through aggregate parameters. 

5.3.4 Statistical analysis 

Aggregate parameters were extracted for the exemplar player for each match. These parameters 

were; total distance (m), total duration (minutes), metreage per minute (m.min-1), total HIR 

(distance covered at velocities > 5.0 m∙s-1) and VHIR (distance covered at velocities > 7.5 m∙s-

1). These parameters were extracted as a means of comparing the combined time-series and 

frequency-domain approach proposed in this study, with match profiling using aggregate 
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parameters. The following statistical features were extracted for each of the five parameters 

used in this study; minimum, 25th percentile, median, 75th percentile and maximum.  

The velocity time-series did not violate any of the assumptions of time-series analysis 

(stationarity, seasonality and trend) and therefore was deemed suitable for analysis without any 

further transformation (Corbett et al., 2019). To identify a change in physical output over time, 

a binary segmentation algorithm was used with a change point quotient (Q) of five. A change 

point quotient (Q) of five was selected, as between five and eight segments have been shown 

as able to describe the velocity time-series whilst minimizing the similarity of segments 

(Corbett et al., 2019). A penalty value of 0.01 was applied, as assessed using the Aikake 

Information Criterion (AIC). A minimum segment length of five minutes was specified in order 

to reduce the sensitivity of the algorithm to brief high-intensity efforts. 

Frequency-domain features were used to describe the velocity trace of the exemplar player. A 

fast-Fourier transform was applied to the velocity time-series of the participant. The following 

frequency domain features were extracted using the seewave package in R; minimum 

amplitude, spectral centroid, maximum amplitude, spectral entropy, skewness, spectral flatness 

measure, kurtosis, standard error of mean (SEM) and the frequency precision of the spectrum, 

25th percentile (Q25), 75th percentile (Q75) and interquartile range (IQR). An energy feature, 

designed to reduce multiple inputs from wearable technologies into a single metric (Wundersitz 

et al., 2015) was also extracted for each segment. Energy is defined in Equation 5.1 (Wundersitz 

et al., 2015). All frequency domain features were extracted for both individual segments, and 

the participants’ entire match. 
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Equation 5.1-- Equation for spectral energy where ai are the sum of the squared values for 

axes i (I = acceleration & velocity) and p = number of observations per axis (Wundersitz et 

al., 2015).  

E = å3i = 1ai/p                    (1) 

 

To identify frequently recurring movement patterns, a k-means clustering algorithm was run 

using involvement and frequency domain features for the participant. Frequency domain 

features were selected based on their established ability to describe the following aspects of the 

velocity signal; central tendency (spectral centroid), range (interquartile range), shape 

(skewness, kurtosis, spectral flatness measure and spectral entropy), duration (seconds) and 

shape (spectral energy). The sum of offensive actions, and defensive actions were used as two 

involvement features to describe the skilled output of athletes.  The k-means algorithm was run 

with between one and 30 cluster centres. This was done to minimize both the number of cluster 

centres and the number of outliers within each cluster. A scree plot of the within cluster sum of 

squares (WSS) of each trial as a function of k was computed. Based on visual inspection of the 

plot, six cluster centres were selected for use.  For each cluster, player movement path charts 

were generated to provide context for the frequency-domain and involvement-based features 

utilised in this study. These paths display player position, depicted as X and Y for each time 

point in the segment, with the location where skilled actions occurred also displayed.  
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5.4 Results 

5.4.1 Aggregate parameter profiling 

An example of player profiling using aggregate parameters is depicted in Figure 5.1. The 

distribution of values attained for each parameter across a season are shown as a box and 

whisker plot. A black diamond is used to denote the value achieved for each parameter in the 

exemplar match. For this match, the player was slightly below their median value for duration, 

HIR distance, metres/minute and total distance. However, they were slightly above median for 

VHIR distance.  
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Figure 5.1 – A series of box and whisker plots, depicting how aggregate parameters of 

physical output may currently be reported in the field. Each plot shows the distribution of 

values achieved across the season for the exemplar player, for each parameter. The black 

diamond depicts the value achieved in the exemplar Round. 

 

5.4.2 Frequency domain profiling 

The frequency domain profile of the exemplar player is depicted in Figure 5.2. The exemplar 

match (white) is overlaid upon the total distribution of velocity for the player across the entire 

season (black). Data points in grey represent an overlap between the exemplar match and the 

player’s historical data.  At these data points, the player’s historical and exemplar physical 
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output were similar. A greater proportion of data points exist at ~ 2.5 m∙s-1, and a slightly greater 

proportion of data points at ~ 5 m∙s-1. This indicates that the player spent more time at these 

speeds more frequently than they typically would in a match. There were less data points 

between ~ 0 and 0.5 m∙s-1, suggesting the player spent less time stationary than they would in a 

typical match.  

  



 

179 
 

 

Figure 5.2 – A density plot depicting the frequency of data points recorded at each velocity 

across an entire match. The black density series is the distribution of velocity values across 

the entire season. The white density series is the distribution of velocity across the exemplar 

match. Data points in grey represent overlaps between the values of the exemplar match and 

values across the entire season. 
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The frequency domain profile for the player within each segment is shown in Figure 5.3. The 

first segment of the match had a similar velocity distribution to previous first segments in other 

matches. Segments Two, Three and Four had less data points > 2.5 m∙s-1 (-12%, -1% & -16% 

respectively). Segment Three had more data points > 5.0 m∙s-1 than previous third segments in 

other matches (+ 4%). 

 

Figure 5.3 – A density plot depicting the frequency of data points recorded at each velocity 

within each segment. The black density series is the distribution of velocity values across the 

entire season for each segment. The white density series is the distribution of velocity across 

the exemplar match for each segment. Data points in grey represent overlaps between the 

values of the exemplar match and values across the entire season. 
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5.4.3  k-Means clustering 

The results of the k-means clustering algorithm are depicted in Table 5.1. Cluster One had a 

small number of offensive and defensive involvements with moderate values for all frequency-

domain features. Cluster Two typically had no defensive actions and a short duration, but all 

other frequency-domain features were moderate. Cluster Three had a relatively high number of 

offensive actions and the equal highest number of defensive actions. Cluster Three was also 

relatively long in duration, had the highest value for kurtosis and a moderate standard deviation. 

Cluster Four segments typically had no defensive actions and one offensive action. This cluster 

had a low interquartile range, the lowest standard deviation of any cluster and the lowest 

kurtosis. Cluster Five segments typically had the highest number of offensive and defensive 

actions, and the longest duration. They also had the highest standard deviation. Cluster Six 

segments had a small number of offensive and defensive actions, the lowest interquartile range 

and a low standard deviation. Six movement paths from Cluster Four are depicted in Figure 5.4. 

These segments had the shortest duration and included only a small number of skilled actions.  
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Table 5.1 – cluster centres for each feature used in the k-means clustering algorithm. 
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The proportion of segments belonging to each cluster is shown in Figure 5.5. In the exemplar 

match (Round 16), all segments fell into Cluster One, Four or Five. This suggests, that for 

differing components of the match, the player had a comparatively highly variable velocity 

accompanied by periods of low defensive involvement. They also likely did not have an 

extremely high number of offensive and defensive involvements, or periods of lower variability, 

which define Cluster Two and Six respectively. 
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Figure 5.4—Six movement paths completed by the exemplar player, located in Cluster 4. 

Movement paths are drawn as the longitude and latitudes covered by each player for the 

duration of the segment. Darker portions of the path depict a higher velocity, whilst lighter 

portions depict a lower velocity. Skilled actions are annotated throughout the path, where HE 

= Handball Effective, T = Tackle.  
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Figure 5.5—Stacked bar chart, indicating the proportion of segments within each cluster for 

the exemplar player.  
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5.5 Discussion 

The aim of this study was to apply a combined frequency-domain/time-series approach to match 

profiling in team sports. Unlike profiling undertaken using aggregate parameters, this approach 

was able to identify changes in physical and skilled output within and between matches. A 

method was also developed to identify commonly occurring clusters of physical and skilled 

output within matches These results were visualised as movement paths to provide context to 

the values attained by the player. 

A box and whisker plot compared a single athletes’ data in an exemplar match across commonly 

used aggregate parameters. These parameters suggested that the athletes’ physical output in the 

exemplar match was similar to historical match data. This is in line with literature, which has 

demonstrated low match-to-match variability (CV: 5.3 – 9.2%)  in aggregated measures, such 

as total distance and meterage per minute (Kempton, Sullivan, Bilsborough, Cordy, & Coutts, 

2015).  As a result, individual athlete aggregate parameters suggest physical output remained 

consistent across different matches. 

However, the frequency domain plots utilised in this study illustrate that dissimilarity in the 

player’s physical output longitudinally may in fact be present. In the exemplar match, the player 

spent less time stationary (0 m∙s-1) and spent a greater amount of time running at speeds between 

2.5 m∙s-1and 5.0 m∙s-1. Whilst the parameter, high intensity running, suggested that the player 

completed less volume at higher velocities, the approach used in this study suggests that the 

match was not necessarily of a lower intensity for the player, comparative to the norm. This 

reflects the limitations of binning velocity data points into a number of arbitrary bands 

(Sweeting et al., 2017). By viewing velocity as a continuous variable, match intensity can be 

described without pre-determining velocity thresholds. As a result, the method in this study was 
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able to identify differences in physical output between matches, which have not been found 

when using aggregate parameters (Kempton et al., 2015). 

The use of a time-series segmentation, to the physical output of team-sport athletes was a novel 

application presented in this study. The method used in this paper compared a player’s physical 

output of different segments of a match, with segments occurring at similar time points in 

previous matches. This revealed segments where the player had a higher physical output than 

they had in previous games. For example, the player had a greater number of data points in their 

third and fifth segments, at speeds > 5 m∙s-1. Consequently, the exemplar player ran at fast 

velocities at various segments in the match. This finding expands upon previous research 

identifying peak intensities across various football codes (Delaney et al., 2015), by identifying 

intensities at specific time points. Additionally, the methods in this study did not require fixed 

or pre-set durations, to analyse change over time. As a result, this method can be utilised to 

identify not only a peak physical intensity, but the duration at which the athlete maintains that 

intensity for.  This may be useful when setting benchmarks of physical output for players to 

achieve during training (Delaney et al., 2015). 

Alongside the change-point algorithm used, k-means clustering allowed for segments of 

movement to be classified through both their time elapsed within a match, and their physical 

and skilled output. By visualising the results of k-means clustering as movement paths, context 

was given to explain how the player achieved their frequency-domain and involvement-based 

features. This is able to describe various movement paths such as linear running, running with 

a change of direction and running whilst completing skilled actions. This gives insight into the 

non-linear output of a match, where inertial parameters may be inaccurate (Akenhead, French, 

Thompson, & Hayes, 2014). Practitioners may utilise these movement paths, to develop 
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conditioning drills which best replicate match demands through not only their physical output, 

but also through their running paths.  

Changes in the number of segments belonging to each cluster, can be utilised to identify 

differences in a player’s physical and skilled output between matches. For example, in the 

exemplar match, the player did not have any Cluster Six segments, which are typified by a low 

standard deviation of velocity data points, but had a higher number of Cluster Four segments, 

which had the lowest range and standard deviation. This suggests that the player completed 

more steady-state running than they would in a typical match. These findings have not 

previously been discussed in the literature because match profiling strategies aim to describe 

physical and skilled output as a whole, without identifying the ways in which athletes achieve 

these outputs (Gray & Jenkins, 2010b). This method allows users to easily identify deviations 

in the physical and skilled output of athletes between matches without requiring pre-set velocity 

bands.  

This study applied a combined time-series/frequency-domain approach, to match- profiling in 

team sports. By doing so, it was able to identify differences—both within and between 

matches—that were not apparent from aggregate parameters. These methods could therefore be 

used, to increase the specificity of load monitoring and physical activity prescription in team-

sports.  

5.6 Practical Applications 

The match profiling methodology presented in this study, may be practically useful in two ways. 

First, it allows for more detailed monitoring of the physical and skilled output completed by 

athletes. The methods presented in this study are able to identify; periods of high physical output 
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late in a match, the movement paths completed by athletes and differences between matches. 

This may give insight into difficult matches for a player, despite seemingly typical aggregate 

parameters. Secondly, by clearly outlining the typical physical and skilled output of a player, 

practitioners are able to increase the specificity of their exercise prescription to match demands 

(Izquierdo, Häkkinen, Gonzalez-Badillo, Ibanez, & Gorostiaga, 2002; O'Keeffe, Harrison, & 

Smyth, 2007; Reilly, Morris, & Whyte, 2009). Further research may utilise frequency domain 

and time-series analysis, to increase the sophistication of between-athlete match profiling. 
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‘Methods for prescribing drill sequence, specificity and difficulty in team-sport 

training using player physical output” 

This chapter is presented in pre-publication format of a recent submission to The 

Journal of Sport Sciences titled: 

Corbett, D. M., Sweeting, A. J., & Robertson, S. Methods for prescribing drill sequence, 

specificity and difficulty in team-sport training using player physical output 

 

6.1 Abstract 

Team sport athlete training sessions are typically designed relative to the requirements of 

competition. However, the design of training, including drill order and length, is often 

determined heuristically. Further, examining only aggregate parameters, such as average 

metres per minute during a training drill, provides limited insight into the movement paths 

performed by athletes. Subsequently, designing drill order, specificity and difficulty is 

challenging based on current methodology. Therefore, the aim of this study was to 

describe how a time-series and frequency-domain approach can be applied to assess the 

order, specificity and difficulty of team-sport training drills. Positional data was collected 

via wearable technology devices for n = 37 elite Australian football athletes during 19 

matches and 30 training sessions, across a season. A method was applied to sequence 

training drills, based on their specificity to physical output at different stages of a match. 

The challenge point framework was then adopted to inform training drill duration, based 

on the mean and variability of athlete velocity. The movement paths performed by 

athletes were also used to evaluate the similarity of sprinting in training sessions and 
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matches. Together, these methods could be utilised by practitioners to provide an 

evidence base for decisions related to training drill prescription. 
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6.2 Introduction 

Team-sport athletes perform training drills on a weekly basis (Corbett et al., 2018). However, 

excessively long sessions and/ or drills are detrimental, given physiological and cognitive 

fatigue limit the effectiveness of training (Donovan & Radosevich, 1999). Consequently, it is 

important to design training drills and subsequently, sessions, that maximise the opportunity 

for athletes to improve cognitive capacity, including decision making (Passos, Araújo, Davids, 

& Shuttleworth, 2010), skill and physical performance, including aerobic capacity (Reilly, 

Morris, & Whyte, 2009). Therefore, the planning and design of training drills and sessions is 

an important yet often time-consuming responsibility of coaches and high-performance staff. 

A key consideration in team-sport training design is drill difficulty (Farrow & Robertson, 2017). 

Training drill difficulty can be determined by considering the interaction between cognitive 

effort, physical fitness, skill level and task or environmental constraints (Farrow & Robertson, 

2017). Consequently, difficulty may be related to an athlete’s ability to maintain physical or 

skilled output in a drill (Aughey, 2010b; Bradley & Noakes, 2013). The challenge point 

framework explains the relationship between task difficulty and the learning benefit of athletes 

(Guadagnoli & Lee, 2004; Guadagnoli & Lindquist, 2007). Used extensively to design motor 

tasks (Guadagnoli & Bertram, 2014), a challenge point during human movement could 

constitute the location after which, learning by an athlete begins to diminish. Given the 

systematic quantitative monitoring of training drills in elite team-sport, this framework could 

also be applied in the high-performance sport setting (Farrow & Robertson, 2017). A potential 

application of the challenge point framework is the determination of training drill length, based 

on athlete physical output. Here, a challenge point framework could be identified using changes 

in the expected or actual velocity of a team-sport athlete within a training drill. The physical 

parameters, including changes in total distance or high-speed running, could then be compared 



 

197 
 

pre- and post-challenge point to identify changes in physical output over time. However, this 

application is yet to be applied to the physical output of a team-sport athlete within and across 

training drills. 

Another key decision in the design of team-sport training is drill order or sequencing (Donovan 

& Radosevich, 1999). The sequence of training drills performed by athletes within a session 

influences subsequent physical output (Sánchez et al., 2018). For example, drills placed at the 

end of training sessions typically have less total distance and high intensity running, than if they 

were performed towards the beginning (Sánchez et al., 2018). The learning effect gained from 

each drill is subsequently impacted by drill sequence (Reza, Samaneh Miar Abase, & 

Masoomeh, 2018). A framework that may be useful to determine drill sequence is 

representative task design (Pinder, Davids, Renshaw, & Araújo, 2011), whereby drills would 

ideally be ordered based on the similarity and timing of physical and skilled output to a match. 

In this setting, representativeness becomes analogous to physical specificity; a term used to 

describe how closely a training stimulus resembles match outputs on a metabolic and 

mechanical level (Cronin, McNair, & Marshall, 2001; Reilly et al., 2009; Tremblay & Proteau, 

1998).  Utilising this approach would allow high-performance staff to further increase the 

specificity of a training session beyond drill selection.  

In team-sports, athlete physical output during training and matches can be quantified via 

wearable technologies, including global and local positioning systems (Corbett, Sweeting, & 

Robertson, 2017). Typically, aggregate parameters including total distance covered and meters 

per minute will be examined within and across training drills. However, examining only 

aggregate parameters such as total distance is problematic, because they do not describe how 

physical output changes within a training drill, session or match (Corbett, Sweeting, & 

Robertson, 2019). Further, the features of smaller physical actions, including sprints, cannot be 
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described using aggregate parameters (Corbett et al., 2019). Recently, the physical output of 

team-sport athletes has been analysed as a time series, via simple moving averages (Delaney et 

al., 2015). Although simple moving averages can identify peak physical output, they do not 

identify how athletes attain this peak (Carling, McCall, Harper, & Bradley, 2018). For example, 

steady state running and repeat sprint efforts may attain the same physical output using simple 

moving averages (Carling et al., 2018). Given moving averages do not describe the temporal 

occurrence of peak physical output and require pre-determined aggregation windows (Carling 

et al., 2018), they are limited in their ability to identify change in physical output over time. 

Subsequently, research examining how match physical output can be replicated in training is 

often limited to match simulation and small-sided game style drills (Carling et al., 2018). 

A combined time-frequency approach may overcome many of the limitations associated with 

simple moving averages. Corbett et al. (2019) proposed a combined time-frequency approach 

to analysing physical output in team-sports. Using a change point algorithm, differing segments 

of match physical output were analysed. Each segment’s characteristics were then described 

using frequency domain features (Corbett et al., 2019). Using this approach, drill order or 

sequence could be determined by identifying the similarity of match features to drills. A 

challenge point for each training drill could then be identified via examining how frequency 

domain features change over time. By also visualising athlete trajectories, or plots of athlete 

positional data over time as represented on a playing surface, the specificity of drill movements 

to match output could be further evaluated on a more granular level.   

The aim of this study was to describe how a time-series and frequency-domain approach can 

be applied to athlete physical output, to assess the sequence, specificity and difficulty of team-

sport training drills. Specifically, to i) develop a drill sequencing system, through the specificity 

of drills to match outputs ii) identify a method to identify physical challenge points for each 
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drill iii) identify a method to evaluate the specificity of movement paths within training drills, 

to matches. 

6.3 Methods 

6.3.1 Participants 

Professional male athletes (n = 37, age: 23 ± 4 years, height: 187 ± 8 cm, mass: 86 ± 9 kg) from 

an elite Australian Football (AF) club provided written informed consent to participate in this 

study. All players completed at least one full match in the 2017 home and away Australian 

Rules Premiership season. Ethical approval was granted by the University Human Research 

Ethics Committee (Code HRE17-127).  

6.3.2 Data Collection 

Positional data was collected from 12 indoor and 7 outdoor (n = 19) matches and 30 outdoor 

training sessions during the 2017 home and away season. For all indoor matches, participants 

wore a 10 Hz Local Positioning System (LPS) device (Catapult T6) in a custom sewn pouch 

within the athlete’s playing jumper. During outdoor matches and all training sessions, a 10 Hz 

Global Navigation System (GNSS) device (Catapult S5) was worn as above or housed in a 

pocket within a custom designed vest. The LPS and GNSS systems have established acceptable 

validity and reliability in measuring the physical output of team-sport athletes (Coutts & 

Duffield, 2010; Luteberget, Spencer, & Gilgien, 2018). All matches and training sessions were 

monitored live using proprietary software (Catapult Openfield v1.11.2-1.13.1) to ensure an 

adequate signal quality of > eight packets/second and an average horizontal dilatation of 

precision between 0.6 to 1.5. A comma separated value file of instantaneous velocity data was 

exported from Openfield for analysis. 
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6.3.3 Match analysis 

Given instantaneous velocity files do not violate any assumptions of time-series analysis, a 

change point approach can be used to divide an athlete’s velocity trace into a number of smaller 

segments. Periods of inactivity due to interchanges (matches) and coach instruction (training) 

were removed to create a continuous velocity time-series for analysis.  To identify the different 

segments of an athlete’s instantaneous velocity during matches, via change point analysis, the 

binary segmentation algorithm was used in the present study. This algorithm and the subsequent 

methodology are described in Chapter Four. Briefly, binary segmentation is a widely used 

change point algorithm, which progressively divides a data set into smaller sections until the 

number of change points is exhausted (Killick & Eckley, 2014).A change point quotient (Q) of 

five was utilised, as this can best describe the velocity time-series  whilst minimising the 

similarity of segments (Corbett et al., 2019). A penalty value of 0.01 was applied, as assessed 

using the Aikake Information Criterion (AIC).  

Frequency domain features were extracted for each individual segment, of an athlete’s trace, 

using the seewave package in R (Sueur et al., 2018). Features included minimum amplitude, 

spectral centroid, maximum amplitude, spectral entropy, skewness, spectral flatness measure, 

kurtosis, standard error of mean (SEM) and the frequency precision of the spectrum, 25th 

percentile (Q25), 75th percentile (Q75) and interquartile range (IQR).  

6.3.4 Drill sequencing 

Frequency domain features were also extracted for each training drill. To determine the 

similarity of training drills to segments of athlete physical output during a match, a similarity 

matrix was calculated. This was achieved by condensing the frequency domain features of drills 

and match segments for all players, into a single similarity metric. Euclidean distance was 
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chosen, as it is valid and widely reported in the literature (Singh, Yadav, & Rana, 2013). 

Euclidean distance is the square root of the sum of squared distance between each feature, for 

each training drill to each match segment. The drill with the lowest mean Euclidean distance 

across all players was then selected for each match segment. The following constraints were 

also applied; the drill was not match simulation, the drill had not occurred previously in the 

session and the drill was not solely conditioning based. The distribution of velocity values for 

match segments and sequenced drills for an exemplar player were visualised for the purpose of 

this study. 

6.3.5 Drill challenge point analysis 

To determine a challenge point for each training drill, a secondary change point analysis was 

run to identify the largest change in mean and variability of velocity for each training drill, for 

each athlete. This was done to account for the intermittent nature of training drills in team-

sports (Corbett et al., 2018). A change point quotient (Q) of one was selected, given there is a 

single challenge point before athlete learning and performance begins to diminish (Guadagnoli 

& Lee, 2004). To identify changes in physical output, frequency-domain features were 

calculated for the pre-challenge point (Segment 1) and post-challenge point (Segment 2), for 

each athlete in each training drill. Mean challenge point location and frequency-domain features 

were then calculated across the wider cohort, for each drill. 

6.3.6 Drill movement path analysis 

To analyse the specificity of very high intensity movement paths within match simulation drills 

to match output, each player’s 99th percentile (Q99) of velocity was heuristically selected as a 

threshold (Pintelon & Schoukens, 2012). This is in-line with other frequency domain research, 
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which often utilises data points in the 95th or 99th percentile as a feature (Pintelon & Schoukens, 

2012). Movement paths were defined as the X-Y coordinates of a player within an effort. An 

effort was defined as the five seconds leading up to, including and following distance covered 

in the players’ 99th percentile of velocity. A five second threshold was heuristically chosen after 

visualising bout thresholds of between one and ten seconds. Instances where a player 

decelerated, before again covering speed in their 99th percentile of velocity in the five seconds 

following the initial bout, were included as a single effort. The results for a single player were 

visualised to compare high intensity movement paths in matches with match simulation. 

6.4 Results 

6.4.1 Drill sequencing 

The mean Euclidean distance of each training drill to each match segment is shown in Appendix 

1. Drills were optimized to have the lowest mean Euclidean distance for each match segment 

to inform drill sequence. Figure 6.1 depicts drills sequenced through their similarity to match 

segments. The density plots in a) demonstrate how velocity changes for a player in a given 

match. The density plots of drills in b) have been sequenced to minimise their Euclidean 

distance from each match segment. All drills follow a similar distribution to their respective 

match segment. In the drills; Full Ground Bulldog Ball, 1v1 and Ball Security Circuit, players 

spent more time at 0 m∙s-1, than in their respective match segments. 
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Figure 6.1-- A density plot depicting the relative frequency of data points recorded at each 

velocity in match segments (A), and drills selected through their Euclidean distance to each 

match segment (B). Data is for a single player. 

6.4.2 Challenge point analysis 

Figure 6.2 depicts the average length of 10 frequently recurring training drills. Additionally, it 

shows the location of the challenge point, which divided velocity data points into two segments. 

Challenge point location is also expressed as a percentage of drill length. Challenge point 

location varied considerably depending on drill. For example, in Cascade Handball, the 

challenge point occurred with less than one-minute remaining in the drill. In 3 Kick Variation, 
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the challenge point occurred more than halfway through the drill, with six minutes until drill 

completion. 

 

Figure 6.2 -- Average challenge point location across the team for 10 frequently occurring 

drills. Portions of the bar in white depict time pre-challenge point. Portions of the bar in black 

depict time post-challenge point. Challenge point location is also expressed as a percentage of 

total drill duration. 
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Figure 6.3 depicts the distribution of velocity before and after the challenge point for 10 

frequently occurring training drills. Across most drills, there was a lower central tendency post-

challenge point. This was particularly prominent in drills including Ice Hockey Handball, Euro 

Handball, Hit Up and Slide. For a small number of drills, the central tendency of velocity 

appeared higher post change point. These drills included Grids and Cascade Handball.  
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Figure 6.1-- A density plot depicting the relative frequency of data points recorded at each 

velocity, for 10 frequently occurring drills. Data points in white are velocities occurring pre-

challenge point. Data points in dark grey are velocities occurring post challenge point. 

 



 

207 
 

6.4.3 High intensity movement path specificity  

Figure 6.4 depicts 10 movement paths for an exemplar player, with velocities in their 99th 

percentile. This figure demonstrates the differences in very high intensity running patterns for 

the player, between match simulation and actual match conditions. In match conditions, efforts 

appeared more discrete and required the player to maintain a higher velocity. In match 

simulation, however, efforts required the player to maintain higher velocities briefly, 

interspersed with periods of lower velocity. These efforts also typically required a higher 

acceleration and were performed in closer succession than in matches. 
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Figure 6.2-- Exemplar movement paths, visualising efforts in a player’s 99th percentile of 

velocity as X-Y coordinates. Green data points denote a slower velocity. Red data points 

denote a faster velocity. 

6.5 Discussion 

This study aimed to illustrate how a time-series/ frequency-domain approach can be applied to 

physical output to assess the sequence, specificity and difficulty of team-sport training drills. 

The similarity of training drills to various match segments was utilised to determine a 

specificity-based drill sequence. Furthermore, a binary segmentation change point algorithm 

was run for velocity data in all training drills, to identify how physical output changes as a 

function of time. Movement paths were also visualised, to examine the similarity of maximal 
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intensity efforts in training and matches. These methods were able to quantify physical output 

for each drill, as well as how output changes over time. 

 

By condensing velocity data from training drills into a similarity metric from match segments, 

a drill sequence resembling physical output at differing points of a match was generated. This 

allows for a specific physical stimulus to be delivered to players, at a similar time to when they 

would in a match. Typically, high intensity drills are performed in an unfatigued state towards 

the beginning of training sessions (Little & Williams, 2006). However, practitioners may utilise 

the methods presented in the current study to deliver a physical stimulus at time points specific 

to the players’ match profile. Consequently, these methods could be pertinent in increasing the 

specificity of training sessions, where drills are pre-set due to coaching or load monitoring 

concerns (Corbett et al., 2018). When specificity may not be a training objective (Robertson & 

Joyce, 2015), for example in early pre-season or when reintegrating injured players into training 

drills (Rogalski, Dawson, Heasman, & Gabbett, 2013), other constraints may be applied to 

inform training drill sequence. For example, features reflecting considerations, including 

limiting the level of high-speed running or starting and finishing a session with lower intensity 

drills, could also be utilised instead of the similarity-based metrics used in this study.  

 

The visualisations used to compare the features of training drills to match segments may also 

be useful in training drill modification. Although velocity within training drills followed a 

similar distribution to their respective match segments, drills may still be modified to further 

increase their specificity to match segments (Travassos, Duarte, Vilar, Davids, & Araújo, 2012). 

For example, in Ball Security Circuit, Full Ground Bulldog Ball and 1v1, players spent 

considerably more time stationary than they would in a match. Although there are instances 
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where this is unavoidable, including the delivery of concurrent feedback (Schmidt & Wrisberg, 

2008), practitioners may use this information to find opportunities to increase the total physical 

output of players. This may be achieved through modifications including changing the 

dimensions of the training drill, or reducing the number of players in each group to minimise 

idle time (Hodgson, Akenhead, & Thomas, 2014). Similarity metrics could also be calculated 

between training drills. This could identify drills which are specific in their physical output, but 

provide variety from a skill perspective (Corbett et al., 2018).   

 

Another novel method presented in this study was the application of a challenge point 

framework to measures of physical output in team-sport training drills. Other literature has 

established peak match intensities and utilised these results to prescribe training-drill 

benchmarks of varying durations (Delaney et al., 2015). Similarly, time points where the 

physical output of matches have also been identified (Corbett et al., 2019). However there is no 

research, examining how peaks in physical output, extracted from match data can be replicated 

in training drills (Carling et al., 2018). Therefore, this study expanded upon these methods, by 

identifying a challenge point, where the physical output of training drills changes. Challenge 

point location varied substantially by drill. Whilst drills such as 3-Kick Variation and Match 

Simulation had a challenge point approximately halfway through the drill, Cascade Handball’s 

challenge point occurred towards the end of the drill. These results highlight the importance of 

analysing changes in physical output within training drills, to determine training drill length. 

This is because aggregate parameters of physical output cannot identify intensities at differing 

periods within and across training drills (Carling et al., 2018).  
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Current drill prescription systems emphasise metrics such as metreage per minute, which 

assume a linear increase in training volume as a session progresses (Corbett et al., 2018). 

Change in physical output over time has been examined in matches (Aughey, 2010a; 

Montgomery & Wisbey, 2016). In the present study, the features of training drills were found 

to differ before and after their respective challenge points. In most drills (eg. Ice Hockey 

Handball, 7v7) players had a tendency to reach and maintain higher velocities. Consequently, 

practitioners may modify or shorten these types of drills post-challenge-point, if wishing to 

maintain the drill at a higher intensity. Conversely, there were some training drills where players 

maintained higher velocities post-challenge-point (eg. Grids, Hit Up and Slide). In these 

situations, practitioners may wish to avoid shortening training drills, as doing so may cause an 

unexpected reduction in a player’s total physical output. This method may be used in 

conjunction with existing profiling methods (Delaney et al., 2015), to identify the efficacy of 

different training drills in attaining differing physical outputs (Carling et al., 2018). To gain a 

more sophisticated understanding of how physical output changes over time, practitioners may 

specify a greater number of challenge points. Subsequently, the physical output of altering 

duration for a given drill could be monitored. This method may be utilised to identify the 

potential impact of manipulating training drill duration.  

 

Specificity of training is currently evaluated using either aggregate parameters (Corbett et al., 

2018) or via peak moving averages extracted from match data (Delaney et al., 2015). This study 

expanded upon these methods, by visualising on-field match and training movement paths. 

Consequently, the specificity of how players accrue total distance was examined. This study 

found that high intensity sprint efforts in matches were generally discrete, linear and required 

players to maintain high velocities for a number of seconds. Sprint efforts were defined as 
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efforts in the 99th percentile of velocity for training drills and matches. However, this similar 

output was achieved differently in training sessions, than in matches. Specifically, sprint efforts 

in training, were generally shorter, performed in closer succession, non-linear and required the 

players to reach a higher velocity before decelerating. This suggests that, the specificity of 

training drills to match outputs, could be further improved by examining  movement paths 

(Corbett et al., 2018).  Indeed, the paths in this study were able to identify differences between 

match and training movements that are not available using existing parameters including effort 

count, effort duration or effort distance (Sweeting, Cormack, Morgan, & Aughey, 2017). The 

visualisations in this study provide a means for practitioners to inspect the shape, duration and 

distance covered in team-sport running paths. These observations may then be used to modify 

movements within training drills or to design more specific rehabilitation and conditioning 

sessions. This may be important from both a fitness improvement (Gabbett, Kelly, & Sheppard, 

2008) and injury prevention perspective (Rogalski et al., 2013). 

 

The methods in this study can also be used to increase the sophistication of training drill 

evaluation and monitoring. The frequency domain analysis presented in the present study 

utilised percentiles to quantify the intensity of training, relative to the individual. Specifically, 

very high intensity efforts were examined as the 99th percentile of efforts for each player. This 

removes the need to pre-set velocity thresholds (Sweeting et al., 2017), and adds to the growing 

body of literature, aiming to individualise measures of physical output in team-sports. 

Furthermore, the movement paths analysed in this study, may be utilised to explore how players 

accrue total volume measures such as total distance.  Further research should utilise time-series 

and frequency domain analysis to monitor physical output in other training situations such as 

rehabilitation or individual sports.  
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This study presented a method to assess the specificity, sequence and difficulty of training drills 

using physical output. This study was limited by the validity and reliability of wearable 

technologies, in measuring acceleration (Luteberget et al., 2018). As the reliability of devices 

improves, an acceleration time-series could be used to give a greater understanding of physical 

output. Further research should integrate measures of skilled output, such as involvements, to 

develop a holistic drill prescription system. Additionally, this study focussed on evaluating 

movement paths and drill sequence through their specificity to match outputs. Further research 

may adapt these methodologies, to achieve other training outcomes such as variety and 

progressive overload. 

6.6 Conclusion 

This study illustrated how a time-series/frequency-domain can be applied to physical output to 

assess the sequence, specificity and difficulty of team-sport training drills. Frequency domain 

features were utilised to sequence training drills, through their specificity to physical output at 

varying points of a match. Furthermore, this study adapted the challenge point framework, to 

examine the influence of time on physical output in training drills. Finally, movement paths 

were visualised, to examine the specificity of movement paths to match outputs. These methods 

could be utilised by practitioners, to provide an evidence base for decisions related to training 

drill prescription. 
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7.1 Thesis Overview 

In team-sport, physical and skilled output is typically described using aggregate volume (eg., 

total distance (Coutts & Duffield, 2010) and metabolic power (Buchheit, Manouvrier, 

Cassirame, & Morin, 2015; Coutts et al., 2015)) and intensity (eg., peak velocity (Coutts & 

Duffield, 2010), metreage per minute (Corbett et al., 2018)) parameters. Skilled output is also 

described using aggregate parameters, including coach’s ratings (Kempton, Sullivan, 

Bilsborough, Cordy, & Coutts, 2015) and Champion DataTM player rankings (McIntosh, 

Kovalchik, & Robertson, 2018; Robertson, Gupta, & McIntosh, 2016). However, aggregate 

parameters could not identify changes in physical and skilled output within a session (Dillon, 

Kempton, Ryan, Hocking, & Coutts, 2017). This thesis presented a time-frequency approach 

to team-sport output profiling (Corbett, Sweeting, & Robertson, 2019). Further, this thesis 

demonstrated the efficacy of a time-frequency approach to match profiling. It illustrated how 

a time-frequency approach may be utilised to address training considerations, including the 

duration and sequence of training drills, which are not possible using aggregate parameters. 

Consequently, this thesis presents a complementary method to aggregate parameter profiling 

to understand the physical and skilled output of team-sport athletes. 

7.1.1 Study One 

“Weak Relationships between Stint Duration, Physical and Skilled Match Performance in 

Australian Football” 

Study One examined the relationship between physical and skilled output and time in team-

sport using aggregate parameters. This study integrated involvements (defined as the sum total 

skilled actions completed by a player) alongside aggregate parameters including meterage per 

minute (total distance relative to time). Study One expanded upon the literature by utilising 

random intercept and random slope models to account for differences in physical and skilled 

output between players and games. This study was also utilised conditional inference trees, as 
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a non-parametric method to model the relationship between physical and skilled output and 

time. Consequently, Study One was the first to examine how physical aggregate parameters 

may interact to change skilled output in team-sport.  

Regardless of the modelling technique, Study One identified a weak relationship between 

physical and skilled output and time (RMSE 10 - 11 involvements/match; conditional R2 0.14- 

0.23). In the random intercept and random slope models, aggregate parameters could positively 

or negatively relate to skilled output depending on the player. Furthermore, in the conditional 

inference tree, splits were dominated by external factors such as Round and Player ID, and 

utilised only duration and meterage per minute. This was likely due to several factors. First, 

aggregate parameters do not account for individual differences between players (Sweeting, 

Cormack, & J., 2017). For example, a static threshold of 25 km/hr-1 as “very high intensity 

running”, may be commonly or seldom reached depending on the player. Secondly, aggregate 

parameters cannot identify time-points when physical and skilled output change within a match 

(Dillon et al., 2017). Therefore, analyses exploring the relationship between output and time, 

are restricted to repeated measures designs. The key limitation of this study was its reliance on 

aggregate parameters. These findings laid the foundation for Study Two to develop a method 

to identify changes in physical and skilled output within team-sport matches. 

7.1.2 Study Two 

“A change point approach to analysing the match activity profiles of team sport athletes” 

 

Study Two bridged the analysis of aggregate parameters in Study One, with Studies Three and 

Four which applied a time-frequency approach to team-sport match profiling and training drill 

design. This study expanded upon moving averages (Delaney et al., 2018b), by utilising change 

point analysis which does not require a “duration windows” to identify peak intensities. 
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Additionally, change point analysis could also identify fluctuations in physical and skilled 

output, as well as their temporal occurrence within a match. Binary segmentation was selected 

as a fast, valid change point method to identify segments of physical and skilled output in team-

sport matches. Subsequently, frequency domain features were computed for individual match 

segments. This study was the first to use frequency domain features to quantify physical output.  

Study Two simulated the impact of different change point quotients on the frequency domain 

features of match segments. From this, it was determined that between 4 and 7 change points 

could adequately describe the most distinct segments of a match. Change points occurred 

independently of stint interchanges (r = 0.21), highlighting the advantage of time-series 

methods in identifying change in physical and skilled output over time over stints as 

aggregation windows. This study suggested hyperparameters to be used in Studies Three and 

Four, which would utilise the proposed time-frequency in both match and training drill 

prescription settings. The key limitation of this Study was that frequency domain features are 

unfamiliar to practitioners. Consequently, both Study Three and Four aimed to overcome this 

limitation, by outlining how frequency domain features may be practically used to inform 

match profiling and training drill design. 

7.1.3 Study Three 

“Profiling individual team-sport athlete physical and skilled output with frequency and time-

series domain analysis” 

Study Three illustrated how a combined time-frequency approach could be used to profile 

physical and skilled output in team-sport matches. As part of a growing body of literature 

examining both physical and skilled output, this study compared aggregate parameters and the 

combined time-frequency approach presented in Study Two to match profiling. This study 

created a dual match analysis system, whereby segments of team-sport matches could be 
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analysed as a function of time (time series segmentation) and based purely on their physical 

and skilled output (k-means clustering). 

 This dual classification system was able to identify changes in physical and skilled output 

within a match, which is not conceptually possible using aggregate parameters. Furthermore, 

this approach was able to identify differences in physical and skilled output between matches. 

For a given match, aggregate parameters (total distance, high intensity running, very high 

intensity running and metreage per minute) were all within one standard deviation for a given 

player. However, a time-frequency approach revealed less time spent stationary for the given 

player, and more time spent at velocities > 5.0 m.s-1. This study laid the foundation for Study 

Four, by improving match profiling in team-sport. Specifically, by demonstrating how a 

combined time-series/frequency domain approach may overcome the limitations of moving 

averages and output bands.  This would later be crucial, for the representative task design 

framework utilised in Study Four (Correia et al., 2012). The key limitation of this study was 

its small sample size. An exemplar athlete was utilised to illustrate the efficacy of a combined 

time-series/frequency domain approach to match profiling. However, future research could 

utilise a larger sample size to better compare players’ outputs.  

7.1.4 Study Four 

“Methods for prescribing drill sequence, specificity and difficulty in team-sport training 

using player physical output” 

Study Four combined the methods from both Studies’ Three and Four to improve training drill 

prescription in team-sport. This study built upon previous drill classification systems (Corbett 

et al., 2018; Loader, Montgomery, Williams, Lorenzen, & Kemp, 2012)., by illustrating how a 

time-frequency approach to analysing physical output could be used to prescribe training under 

a representative task design framework. This study computed frequency domain features for 
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each training drill and compared them to match segments for all players (computed in Studies’ 

Three and Four). This was achieved by summarising frequency domain features for all drills, 

based on their similarity to each match segment. This study computed a single binary change 

point for all training drills as a proxy for “challenge points”. Change points occurred anywhere 

between 43% and 80% of elapsed drill time dependent on training drill. Physical output post-

change point was not necessarily impaired and increased in many drills. This highlighted the 

potential limitations of utilising linear work rates such as metreage per minute to infer physical 

output at differing durations. Finally, this study compared running paths in the 99th percentile 

of velocity for players between match simulation and actual matches. In training, players 

completed shorter efforts and spent less continuous time at near-maximal intensities. 

Collectively, Study Three and Four illustrated how the added insight gleaned from a combined 

time-frequency approach, may improve match profiling and training drill prescription. Skilled 

output data was not included in this study, as its’ applications related to replicating the physical 

output of matches. However, future research may integrate skilled output data to develop a 

more holistic understanding of training drill prescription. 

7.2 Thematic Discussion 

7.2.1 Limitations of Aggregate Parameters 

This thesis highlighted how analysing physical and skilled output beyond aggregate 

parameters, may increase our understanding of team-sport athletes. Future research may utilise 

time-series analysis to investigate problems where insight may be gleaned from data changing 

over time. For example, in endurance sports such as track-cycling where pacing is a strategic 

consideration (Corbett, 2009), time-series segmentation may be used to identify segments of 

competition. This is because track-cycling is less intermittent than team-sport (Corbett, 2009), 

and thus, segments are likely characterised by more sustained changes in physical output. 
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Consequently, time-series segmentation could be used to characterise fatigue or better 

understand when opponents physical output changes. Additionally, in sports requiring frequent 

travel including basketball and cricket, time-series segmentation  may be used to identify high 

stress travel periods across the year (Fowler, Duffield, Howle, Waterson, & Vaile, 2015). 

Additionally, time-series segmentation may be used to identify for changes in playstyle over 

time. This would allow practitioners to better evaluate players in the context of their time period 

when making decisions related to list management and recruiting. Furthermore, time-frequency 

approach could be applied to other datasets, such as IMU devices to better understand physical 

output in off-field training settings (Huang et al., 2012). This would allow practitioners to 

quantify output on a global level, which is usually only possible using internal measures 

including RPE and heart rate (Alexiou & Coutts, 2008; Bartlett, O'Connor, Pitchford, Torres-

Ronda, & Robertson, 2016). 

Despite their limitations, aggregate parameters are easily interpretable by practitioners 

(Cummins, Orr, O’Connor, & West, 2013; Delaney, Cummins, Thornton, & Duthie, 2018a). 

Conversely, frequency domain features do not relate to a concrete quantity, and thus, 

summarise physical and skilled output in more abstract terms (Tedesco, Urru, & O'Flynn, 

2017). This thesis utilised density plot visualisation, as a means to communicate frequency 

domain features. However, this approach may still not be as interpretable as aggregate 

parameters for some practitioners. For this reason, it is recommended that a combined time-

frequency approach be used to complement aggregate parameters. Specifically, broader 

questions related to periodisation may be better addressed using aggregate parameters. For 

example, aggregated differences in load from session-to-session and week-to-week are 

important for maximising adaptation and reducing injury risk (Bourdon et al., 2017; Gabbett, 

2015; Murray, Gabbett, Townshend, & Blanch, 2017). In these settings, aggregate parameters 

complement the periodisation lexicon used by parameters, and thus, assist with decision 
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making (Ritchie, Hopkins, Buchheit, Cordy, & Bartlett, 2016). Conversely, within match and 

training considerations may be better addressed with a combined time-frequency approach. No 

study has been able to identify a clear relationship between physical output, skilled output and 

time (Dillon et al., 2017). Therefore, a time-frequency approach is warranted to uncover 

nuanced differences in physical and skilled output within a match. Although this thesis 

proposed a method to identify fluctuations in physical and skilled output, it is unknown to what 

extent these fluctuations are due to fatigue, the influence of the opposition or changes in match 

tactics.  

7.2.2 Understanding Physical and Skilled Match Profiles 

Prior to this thesis, there was a limited body of research, examining how physical output 

changes within stints themselves. Moving averages, were a common within-stint method 

reported in the literature (Delaney et al., 2016a; Delaney et al., 2016b; Delaney et al., 2018b). 

However, moving averages were limited by their inability to identify the frequency and 

temporal occurrence of peak intensities (Carling, McCall, Harper, & Bradley, 2018). Similarly, 

phase-of-play analysis aimed to analyse physical output within contextual actions. By utilising 

time-series segmentation, this thesis identified peak intensities for each player, and how 

intensity fluctuated across the course of a match. Furthermore, the methods in this thesis may 

identify whether a player completes high physical output segments later in matches. This could 

be used to design specific rehabilitation and conditioning sessions, which may potentially 

increase performance and prevent injury in matches.  

Future research may utilise the methods in this thesis to understand the profiles of team-sport 

athletes in greater depth. For example, it is increasingly common for athletes to play multiple 

or ambiguous positions in team-sport (Jackson, Polglaze, Dawson, King, & Peeling, 2018; 

Luteberget, Spencer, & Gilgien, 2018; Varley, Jaspers, Helsen, & Malone, 2017). A time-

frequency approach combined with clustering, could be used to ascertain player archetypes 



 

226 
 

based on their physical and skilled output. This would allow for training groups to be 

objectively prescribed. Additionally, the physical preparation required for players who either 

have no data or are changing on-field roles could be estimated using this method. 

Furthermore, differences in physical output based on competition level could also be 

investigated. This would allow for athlete development, which considers the output required 

to progress to higher levels of competition (Brewer, Dawson, Heasman, Stewart, & Cormack, 

2010). Conversely, the impact of ageing on the physical and skilled output of players could 

be explored using this method. This may assist practitioners to identify declines in physical 

and skilled output with age, which may inform list management and contract decisions.  

Furthermore, the relationship between physical output, subjective measures of physical 

output and injury occurrence could be investigated to better understand on-field injury 

mechanisms. Future research should also examine the underlying contextual factors leading 

to changes in physical and skilled output in team-sport matches. Finally, the relationship 

between physical change points and tests of physical fitness could also be examined. This 

would allow practitioners to examine the relationship between physical output and capacity. 

7.2.3 Understanding Training Drills 

Studies exist to aid practitioners with drill selection (Corbett et al., 2018; Loader et al., 2012). 

However, other considerations, including the sequence of training drills within a session, the 

difficulty/length of training drills and the specificity of high velocity movement paths to match 

outputs were unexplored. Each of these considerations contributes to the specificity and 

physical intensity of a training session, and therefore, are important to evaluate when designing 

training. Consequently, this thesis explored how a time-frequency approach could be integrated 

with skill acquisition frameworks, to design training sessions which are specific to match 

outputs. 
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Representative task design contends that maximal performance benefits occur when learning 

environments most closely resemble performance environments (Dicks, Davids, Button, 

MacMahon, & Farrow, 2009; Pinder, Davids, Renshaw, & Araújo, 2011). Consequently, this 

thesis illustrated how a combined time-frequency approach could be utilised to not only select 

specific drills (Corbett et al., 2018), but also to design training sessions which replicate 

fluctuations in physical output experienced by players in matches (Study Four). Theoretically, 

this would allow for the greatest cognitive and physical adaptations for players, as they would 

be practicing in similar circumstances to which they perform. Consequently, future research 

should investigate the impact of training drill sequence on player performance to 

validate/invalidate this framework. Additionally, further resources should be directed towards 

notating skilled data during training sessions. This would allow future research to integrate 

skilled output measures to the methods proposed in this thesis. In turn, this would allow for 

more specific training session evaluation and design 

This thesis drew upon the challenge point framework to inform training drill length. Under this 

framework, there was a hypothesised challenge point, after which physical output would be 

altered. In this thesis, physical output was not necessarily impaired post-challenge point. This 

demonstrated how linear work rates such as average acceleration and meterage per minute may 

over or under-estimate estimates if used to simulate the impact of drill length on physical 

output. Consequently, future research and practice may utilise time-series segmentation to 

understand phases of training drills. This may be integrated with contextual factors, including 

coach’s direction and drill modification, to better explain why output changes within training 

drills. 

The challenge point and representative task design frameworks illustrate how a combined time-

frequency approach may be combined with skill acquisition to better prescribe training drills. 

However, specificity may not always be a training objective. For example, in many team-sport, 
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physical overload is prioritised, with specific match simulation drills often not being introduced 

until mid-late pre-season (Fry, Morton, & Keast, 1992). Consequently, practitioners may alter 

the methods presented in this thesis to prescribe drills in-line with their training objectives. For 

example, the similarity metrics utilised in Study Four may be replaced with features such as 

spectral energy to describe the overall physical output of training drills. This information may 

be used to gradually increase the intensity of training drills over a training block (Ritchie et al., 

2016). Furthermore, training drills could be arranged based on increasing physical output in 

order to train players in a fatigued state. 

7.2.4 Technological Progression 

Machine learning methodologies were used in all four studies of this thesis. In Studies One and 

Two, conditional inference trees and random forests were used to model a non-linear 

relationship between physical output, skilled output and time. These methods require minimal 

hyper-parameter tuning (Sardá-Espinosa, Subbiah, & Bartz-Beielstein, 2017), and are thus, 

extremely accessible to practitioners. Similarly, the k-means algorithm utilised in Study Three 

and Euclidean distance calculated in Study Four, required only one hyper-parameter to be tuned 

(Jain, 2010). Consequently, these methods were relatively fast and easily interpretable. 

However, it should be noted that additional classification/predictive accuracy may be possible, 

with reductions in model interpretability. For example, neural networks may better learn the 

relationship between physical and skilled output and time (Lu, Chen, Little, & He, 2018). 

However, this output could not be deciphered (Ofoghi, Zeleznikow, MacMahon, & Raab, 

2013). This is because neural networks typically calculate a single output given a set of inputs 

and cannot describe the interactions and relative strengths of dependent variables on 

independent variables (Ofoghi et al., 2013). Consequently, the methods utilised in this thesis, 

including random forests and decision trees, provided a balance between interpretability and 
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predictive performance. This was important, to ensure the methods could be translated to match 

profiling and training drill prescription practices. 

This thesis leveraged wearable technologies to better understand physical output in team-sport 

training sessions and matches. Specifically, velocity time-series was the primary data set for 

Studies Two to Four. However, due to questionable validity (Akenhead, French, Thompson, & 

Hayes, 2014; Barrett, Midgley, & Lovell, 2014), features were derived exclusively from 

velocity to quantify physical output. Consequently, although defensive involvements such as 

tackles were analysed, acceleration, deceleration and micro-movements were not quantified in 

this thesis. The time-frequency approach presented could be applied to acceleration time-

series’ when the validity of devices improves. This would allow practitioners to encompass 

other aspects of physical output which may enrich match activity profiles and our 

understanding of training drill characteristics (Cummins, Orr, O'Connor, & West, 2013; 

Delaney et al., 2018a). Additionally, the current lack of automation in skilled movement 

detection (Lu et al., 2018), means manual tagging of events is still necessary in many team-

sports. As automatic event detection becomes ubiquitous, there is greater potential to analyse 

skilled actions in both training sessions and matches. Collectively, these developments may 

allow practitioners to better understand the interactions between all aspects of physical and 

skilled output in team-sport matches and training. 

In AF practitioners currently utilise GNSS devices to measure physical output during training 

sessions and matches (Dillon et al., 2017; Ryan, Coutts, Hocking, & Kempton, 2017; Vella et 

al., 2021). Conversely. LPS devices are used to measure physical output during indoor matches  

(Dillon et al., 2017; Ryan et al., 2017; Vella et al., 2021). This means, it can be difficult to 

compare physical output between training drills and matches. In Chapters Three and Four, this 

limitation. was overcome by specifying Round Number as a random effect (mixed effects 

model), or by utilising Round Number as a dependent variable (conditional inference trees, 
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random forests.) Consequently, any error introduced by utilising different devices was 

accounted for in these Chapters. Chapters Five and Six proposed new methodologies, and 

utilised LPS and GNSS systems interchangeably for match profiling and training drill design. 

This was done, as all comparisons were performed within individual matches. However, for 

future researching aiming to use these methods for inferential questions, it is recommended 

that practitioners account for the random effect measurement tools may have on measured 

phenomenon. As LPS and optical based devices become more ubiquitous, the need to utilise 

different devices will likely be reduced.  

Developments in cloud data storage and computing power may allow practitioners to better 

leverage the methods presented in this thesis (Ofoghi et al., 2013). For example, a season of 10 

Hz GPS data in team-sport comprises millions of rows of data. At present, such data cannot 

currently be stored locally or easily joined with other datasets. Further, processing large-scale 

locational data is currently unfeasible using local computing power. As a result of these 

technical limitations, Chapters Five and Six analysed only a small pool of players. Further, 

many of the methods utilised in this thesis were selected due to being computationally 

inexpensive in addition to validated. For example, binary segmentation is less powerful than 

recent segmentation algorithms such as energy divisive (James & Matteson, 2013) and prophet 

(Medina, Montaner, Tárraga, & Dopazo, 2007). However, it was advantageous due to its fast 

processing speed which allowed more players to be analysed in Study Two. Similarly, neural-

network based dimensionality reduction including Uniform Manifold Approximation and 

Projection (McInnes, Healy, & Melville, 2018) may have better preserved global differences 

between match segments in Study Two. Conversely, computing power and cloud storage is 

rapidly evolving (Zhang, Zhang, Chen, & Huo, 2010). Consequently, there will be greater 

potential for practitioners to implement, productionalise and develop many of these methods 

in the future. 
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7.3 Summary 

This thesis highlighted the limitations of aggregate parameters to measure the relationship 

between physical output, skilled output and time in team-sport (Chapter Three). A combined 

time-frequency approach to measure physical and skilled output was then proposed (Chapter 

Four). These techniques were then applied to match profiling, to understand changes in 

physical and skilled output both within and between matches (Chapter Five). The proposed 

time-frequency approach was then applied to training in order to evaluate the specificity, 

sequence and difficulty of different drills. Overall, this thesis illustrated how a combined time-

frequency approach may give greater insight into match and training outputs than are currently 

available. Future research should further examine the interplay between physical and skilled 

output in training drills and apply the methodologies in this thesis to other sports. 
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7.4 Practical Applications 

The main practical applications of this thesis are: 

1. Change point analysis may be utilised to understand when meaningful changes in 

physical output occur during team-sport matches. This could be pertinent in sports 

including track cycling, where increasing or decreasing velocity is a tactical decision 

2. Frequency domain analysis may be utilised to understand physical and skilled output 

at varying points of a match. This can allow practitioners to determine benchmarks to 

reach within training sessions. 

3. A combined time-frequency approach may be utilised to identify more nuanced 

changes within and between matches, than are apparent from aggregate parameters. 

This could be utilised to identify matches with high or low match outputs and assist 

with decisions related to increasing or decreasing training load in subsequent weeks. 

4. A combined time-frequency approach may be utilised to inform the sequence and 

duration of training drills if specificity is a desired training outcome. This would allow 

practitioners to manipulate training drill sequence to best emulate match outputs, where 

drill selection may be static.  
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7.5 Conclusions 

The specific conclusions of this thesis are: 

1. There is a weak relationship between physical output, skilled output and time, as 

quantified using aggregate parameters in professional Australian football 

2. A better understanding of physical and skilled output in Australian football may be 

gained utilising change point and frequency domain analysis. 

3. Aggregate parameters may be unable to identify meaningful and practically useful 

changes in athlete profiles between matches in team sport. 

4. Physical output is not accumulated in a linear fashion in training drills. Current work 

rates may over or under-estimate the physical output of training drills if used 

prescriptively.  
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Appendix 1-- Involvements included in this thesis 

 

  

Involvement Category Reason for usage 
Disposals (Boundary Kick Ineffective, Kick In Short, Handball 

Effective, Handball Ineffective, Kick Effective, Kick In Long, 

Handball Clanger, Handball, Boundary Kick Long, Ground Kick 

Ineffective, Kick Long To Advantage, Kick Ineffective, Kick 

Backwards, Kick Inside 50, Kick Short, Kick Long,  

Measure each time the player 

interacted with the ball 

Offensive Actions (Mark Contested, Knock On Effective, Centre 

Bounce Clearance, Gather, Ball Up Hitout To Advantage, Loose 

Ball Get, Mark From Opp Kick, Free For, Mark Lead, Inside 50, 

Mark, Mark Lead, Mark Uncontested, Mark Play On, Handball 

Received, Shark, Hitouts to Advantage) 

Measure every action which 

the club deems important in 

contributing to a goal 

Defensive Actions (Block, Smother, Smotherer After Disposal, 

Run Down Tackle Dispossessed, Pressure Credit,  Chase, Tackle, 

1-on-1 Contest Defender, Spoil Gaining, Spoil Defensive, Hold 

Measure each time a player 

contributed to the team by 

potentially preventing the 

oppositions’ goal. 
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Appendix 2 – Aggregated Euclidian Distance (AU) across all players for each training drill 
to each segment 

Drill Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment 6 

1v1 1751 1166 1074 1182 1081 1926 

2 Way Shape 8750 9281 9358 9265 9358 8607 

3 Kick Variation 70496 71051 71132 71035 71131 70343 

3 Way Handball 7898 8423 8500 8407 8499 7757 

3 Way Handball Euro Handball  29642 30200 30282 30183 30281 29488 

3 Way Handball Squares - Shuttles 12845 13395 13476 13379 13475 12694 

3 Way Kick 28613 29161 29241 29145 29240 28463 

3v3 Grids 6101 6614 6690 6599 6689 5966 

3v3v3 Kicking Game 11025 11564 11643 11548 11642 10879 

5 Star Handball Into Kick 1361 1647 1697 1635 1700 1338 

5 Star Into Roundabout 21701 22248 22329 22232 22328 21551 

6v6 20484 21032 21112 21016 21111 20334 

6v6 Corridor Footy 15275 15831 15913 15815 15912 15122 

7v4 51242 51795 51876 51779 51875 51090 

7v4 Kick 8785 9315 9393 9299 9392 8642 

7v4 Kicking 25869 26417 26498 26401 26497 25719 

7v5 Kicking 17507 18053 18133 18036 18132 17358 

7v7 74624 75177 75259 75161 75257 74471 

Away and Entry 1293 1630 1687 1617 1689 1252 

Ball In Motion Kick 12563 13105 13184 13089 13183 12416 

Ball Security 12794 13332 13410 13316 13410 12649 

Ball Security Circuit 1508 1839 1894 1826 1896 1463 

Ball Security Grid 13341 13879 13958 13863 13957 13195 

Bulldog Ball 940 1051 1088 1042 1092 995 

Bulldog Ball In Pairs 13759 14303 14383 14287 14382 13611 

Cascade Handball 6549 7072 7148 7056 7148 6411 

Check Mate 55088 55642 55723 55626 55722 54936 

Contest Stoppage To Fwds 24721 25268 25348 25252 25347 24571 

D50 Walkthrough 2261 2670 2733 2657 2734 2175 

Deception Kick 9749 10282 10360 10266 10360 9605 

Euro Handball 17194 17739 17819 17723 17818 17046 

Extras 245342 245897 245979 245881 245977 245189 

Full Ground Bulldog Ball 47501 48052 48133 48036 48132 47349 

Full Ground Bulldog Ball in Pairs 16705 17252 17332 17236 17331 16556 

Game of Cones 14988 15532 15612 15516 15611 14840 

Goal Kicking 270264 270819 270901 270803 270899 270111 

Goal Kicking Circuit 32941 33494 33575 33477 33574 32789 

Grid 2127 2596 2667 2581 2667 2019 

Ground Balls 1829 2228 2290 2214 2292 1752 

Half Ground Bulldog Ball 11977 12516 12595 12500 12594 11830 
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Half Ground Transition 129244 129798 129879 129782 129878 129091 

Handball Ice Hockey 29442 29991 30072 29975 30071 29291 

Handball Ice Hockey 3 Way Handball 27811 28366 28447 28349 28446 27658 

Handball Ice Hockey Euro Handball  13574 14133 14215 14116 14214 13421 

Handball Squares 10315 10849 10928 10833 10927 10171 

Handball Squares Cascade Handball 

3v3v3  

29056 29611 29693 29595 29692 28903 

Hit Up and Slide 35770 36320 36401 36304 36400 35619 

Ice Hockey Handball 23755 24306 24387 24290 24386 23604 

In Out In 18056 18599 18679 18583 18678 17907 

Initiative Squares 4857 5374 5450 5359 5450 4722 

Kick Warm up 344244 344799 344881 344783 344879 344091 

Kicking Volume 6469 6987 7063 6972 7063 6333 

Large Cascade Handball Game 31580 32129 32210 32113 32209 31429 

LDL Diamond Into F50 29278 29828 29908 29811 29907 29128 

LDTL Diamond 10764 11304 11383 11288 11382 10618 

Lines (Backs) 34172 34724 34805 34708 34804 34020 

Lines (Fwds) 34597 35149 35230 35133 35229 34445 

Lines (Mids) 45234 45787 45868 45771 45867 45082 

Lines Warm up (Backs) 36066 36619 36700 36603 36699 35914 

Lines Warm up (Fwds) 39213 39766 39847 39749 39846 39061 

Lines Warm up (Mids) 42618 43171 43252 43154 43251 42465 

MAS Test 54668 55223 55304 55207 55303 54515 

Match Simulation 497404 497960 498041 497943 498040 497251 

Match Simulation #2 23149 23698 23779 23682 23778 22999 

Quad Colour Decision Kick 32394 32945 33026 32929 33025 32243 

Reel and Go Kick 8167 8696 8773 8680 8773 8025 

Roundabout and 5 Point Link Up 10534 11073 11152 11057 11151 10388 

Roundabout Into 5 Star 27855 28403 28483 28386 28482 27705 

Roundabout With Circuit 1036 1027 1046 1021 1052 1119 

Roundabout with Cutback 14776 15319 15399 15303 15398 14628 

RTP 419638 420195 420277 420178 420275 419484 

Shape to Coach Into Goal 2147 2594 2662 2580 2663 2047 

Shape To Goal 26303 26850 26930 26834 26929 26153 

Shuttle 16203 16742 16821 16726 16820 16057 

Shuttles 2691 3123 3188 3109 3189 2593 

Small Into Big Bowtie 7885 8418 8497 8402 8496 7742 

Soccer 49090 49643 49724 49627 49723 48938 

Strides 3727 4201 4271 4186 4272 3609 

Take Off Drill 4350 4860 4935 4844 4935 4218 

Team Competition 1953 2385 2452 2371 2453 1862 

Transition Runs Into Goal 3321 3850 3929 3834 3928 3183 

Warm up 772898 773453 773535 773437 773534 772744 

Warm up and Strides 34947 35500 35581 35484 35580 34795 
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Warm up Game Prep with Scenarios 25374 25928 26009 25911 26008 25222 
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Appendix 3 – Ethics—Information to Participants 

 

INFORMATION TO PARTICIPANTS 
INVOLVED IN RESEARCH 
 
 
You are invited to participate 
 
You are invited to participate in a research project entitled “Temporal analysis of physical and skilled performance 
in elite Australian Rules football’ 
 
This project is being conducted by a student researcher David Corbett as part of a Doctoral thesis at Victoria 
University under the supervision of Dr. Sam Robertson from ISEAL, College of Sport and Exercise Science at 
Victoria University and the Western Bulldogs. 
 
Project explanation 

 
It is likely that both the number of involvements and the physical intensity of matches and training sessions 
decline as a function of time. However, there are currently very few methods to measure these reductions in 
performance. Specifically, there is currently no way to know how long on-field stints or training drills should last, 
before player performance begins to decline. 
 
The aim of this study is to develop and apply a range of methods, to measure short-term changes in both physical 
output (as measured through wearable technologies, such as GPS), and skilled output (as measured using 
Champion Data performance statistics, as well as coding conducted within the club) The methods developed in 
this study will allow for the creation of game-day strategies, which consider how long you are able to spend on 
field or in a certain position, before your physical and skilled outputs begin to decline. Additionally, these methods 
will allow for a more targeted approach to training drill design, which identifies how long a drill needs to go for 
before coach objectives are met. 
 
What will I be asked to do? 
 
You will not be required to do anything outside of your normal training and match day participation. For the 
purposes of this project, we would like to access the data from the wearable technologies (ie., GPS devices, and 
LPS devices for indoor games)  used during training sessions and matches. We would also like to access your 
Champion Data statistics, and the notational analysis performed upon you. This will allow us to quantify your 
physical and skilled output on a ‘minute by minute’ basis. 

 
What will I gain from participating? 
 
By participating in this study, you will contribute the development of methods to identify performance changes 
within training drills and matches. These methods will provide coaches and performance staff a way to monitor 
your physical and skilled outputs on a minute-by-minute basis, and will allow for the design of match-day 
strategies which maximise your on field involvement. Additionally, they will be used to gain a greater 
understanding of how different drill durations impact your physical and skilled outputs. This will allow coaches and 
performance staff to design more efficient training sessions, with optimized drill lengths. 

 
How will the information I give be used? 
 
The data from your wearable technologies will be analysed, to see if we can find a way to identify drop offs in 
your physical output as a function of time. Similarly, the notational analysis performed upon you by both 
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Champion Data and the clubs Performance Analysts will be analysed on a minute by minute basis, to gain a 
greater understanding of how your skilled output changes during a training drill or match. These analyses will 
then be used to build a range of decision making tools, which allow coaches and performance staff to better 
monitor your on field performance, and to design training drills which best cater to your strengths and 
weaknesses. 

 
What are the potential risks of participating in this project? 
 
There are no perceived risks associated with this study.  If you do not wish to participate in this study there will be 
no ramifications in terms of the level of service and delivery with regard to coaching and skill learning prescription. 
Nor will findings from the study it have any influence on squad selection. 
 
How will this project be conducted? 

 
We will use the outputs from your GPS (outdoor sessions and matches) and RFID (Etihad matches) devices. We 
will also use the results from the notational analysis conducted by Champion Data and within the club. This data 
will then be analysed using a range of different techniques by Student Investigator David Corbett. All of the 
results will be securely stored at Whitten Oval.  
 
Who is conducting the study? 

 
The study is conducted by personnel from the Institute of Sport, Exercise and Active Living (ISEAL) at Victoria 
University and sports science staff at Western Bulldogs. 
 
Chief Investigator: Sam Robertson 
Mobile Number: 0424 980 643 
Email: sam.robertson@vu.edu.au  
 
Student Investigator: David Corbett 
Mobile Number: 0488 404 747 
Email: david.corbett@live.vu.edu.au 
 
 
Any queries about your participation in this project may be directed to the Chief Investigator listed above.  
If you have any queries or complaints about the way you have been treated, you may contact the Ethics 
Secretary, Victoria University Human Research Ethics Committee, Office for Research, Victoria University, PO 
Box 14428, Melbourne, VIC, 8001, email researchethics@vu.edu.au or phone (03) 9919 4781 or 4461. 
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Appendix 4 – Ethics-- Consent Form 

 

CONSENT FORM FOR PARTICIPANTS 
INVOLVED IN RESEARCH 
 
INFORMATION TO PARTICIPANTS: 
We would like to invite you to be a part of a study into changes in the skilled and physical outputs of elite 

Australian Rules footballers, during football matches and training sessions. 
 
This project will develop methods to identify how skilled performance (as measured through statistics collected by 
Champion Data), and physical performance (as measured through Catapult Sports’, global and local positioning 
systems GPS and LPS), changes as a function of time. These methods will then be applied to match day decision 
making, in order to identify optimal time on ground for each players. They will also be applied to training data, in 
order to prescribe optimal durations for training drills. Your 2016 and 2017 GPS and LPS data, as well as your 
performance statistics from Champion Data will be accessed. This data will be coded and re-identifiable during 
this process. 
 
CERTIFICATION BY PARTICIPANT 
 
I, __________________________________)) 
of __________________________________)) 
 
 
certify that I am at least 18 years old* and that I am voluntarily giving my consent to participate in the study: 
“Temporal analysis of physical and skilled performance in elite Australian Rules football” being conducted at 
Victoria University by: Associate Professor Sam Robertson and Mr. David Corbett 
 
I certify that the objectives of the study, together with any risks and safeguards associated with the procedures 
listed hereunder to be carried out in the research, have been fully explained to me by: 
Associate Professor Sam Robertson and Mr. David Corbett 
 
and that I freely consent to participation involving the below mentioned procedures: 
 

• Access to 2016 and 2017 GPS/LPS data for all training sessions and matches 
• Access to performance coding, within the club, for all training sessions in 2016 and2017 
• Access to performance coding, conducted by Champion Data, for all matches in 2016 and 2017 

 
 
I certify that I have had the opportunity to have any questions answered and that I understand that I can withdraw 
from this study at any time and that this withdrawal will not jeopardise me in any way. 
 
I have been informed that the information I provide will be kept confidential. 
 
Signed: ________________________________________________ 
 
Date: __________________________________________________ 
 
Any queries about your participation in this project may be directed to the researcher  
Associate Professor Sam Robertson 
0439 392 881 



 

247 
 

 
If you have any queries or complaints about the way you have been treated, you may contact the Ethics 
Secretary, Victoria University Human Research Ethics Committee, Office for Research, Victoria University, PO 
Box 14428, Melbourne, VIC, 8001, email Researchethics@vu.edu.au or phone (03) 9919 4781 or 4461. 
 

 




