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SOME INEQUALITIES FOR WEIGHTED AND INTEGRAL
MEANS OF CONVEX FUNCTIONS ON LINEAR SPACES

SILVESTRU SEVER DRAGOMIR

Abstract. Let f be a convex function on a convex subset C' of a linear
space and z, y € C, with  # y. If p : [0,1] — R is a Lebesgue integrable
and symmetric function, namely p (1 —¢) = p(¢) for all ¢t € [0,1] and
such that the condition

T 1
OS/ p(s)dsg/ p(s)ds for all T € [0,1]
0 0

holds, then we have

1 1 1
fp()d/ p(T)f((lff)x+Ty)de/O F((L=r)a+ry)dr
<fp(1)d/ (/OTms)ds) (A=) dr [V fy (g — )~ Vo fo (g — @)
0 T T

A

< % V_fy (y— ) — Vo fu (y — )]

Some applications for norms and semi-inner products are also pro-
vided.

1. Introduction

Let X be a real linear space, x, y € X, x # y and let
[I’,y] = {(1 - )\>$ -+ )‘ya A€ [07 1]}

be the segment generated by = and y. We consider the function f : [z,y] — R and
the attached function ¢, ) : [0,1] = R, @@ (t) :== f[(1 —t) x +ty], t € [0,1].

It is well known that f is convex on [z,y] iff ¢ (z,y) is convex on [0, 1], and
the following lateral derivatives exist and satisfy

() @ ay) () = Vifas)zrsy (v — ), s €[0,1),
(i) @ () (0) =V faly —2),
(i) ",y (D =V_fy(y—=),
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198 SILVESTRU SEVER DRAGOMIR

where Vi f, (y) are the Gateaux lateral derivatives, we recall that

[z +hy) = f(x)

Vifa(y) @ = i, Y ,
V_fa(y) : =klggf(m+k‘?_f(x)7 z, y € X.

The following inequality is the well-known Hermite-Hadamard integral inequal-
ity for convex functions defined on a segment [z,y] C X :

z+y f(z)+f(y)
f( > / fl 1—t)x+ty]dt<f, (HH)

which easily follows by the classical Hermite-Hadamard inequality for the convex
function ¢ (z,y) : [0,1] = R

[ ) (0) + Py (D)
Play) <2)S /0 Ploy) (1) dt < ZEY 5 (@) 1)

For other related results see the monograph on line [8]. For some recent results
in linear spaces see [1], [2] and [9]-[12].

In the recent paper [7] we established the following refinements and reverses
of Féjer’s inequality for functions defined on linear spaces:

Theorem 1.1. Let f be an convex function on C and x, y € C with x # y. If
p:[0,1] = [0,00) is Lebesgue integrable and symmetric, namely p (1 —t) = p(t)
for all t € [0,1], then

0<3 [V+fz+y( —x)—foL;y(y—x)} /01

< [ rwp@a- (S5 [

< -0 - Vet [ i3] pr )
and
%[Vﬂ%ﬂ,( y—a) =V fon (y—a:)} /01 (;— ‘t—;Dp(t)dt (1.2)

IN

F@) 1w [ 1
S [pwa= [ ra-ne+mpoa

1
SIS0 - Vas-a] [ (5 |- 5|)p0an

If we take p=11in (1.1

IN

then we get

)
0< 2 [Vifoss (9= 2) = V- fomu (y— 0)| (1.3)
1

IN

f[(l—t):c—l-ty]dt_f(m;y)

IN

IN
Oo\v—lh | —

V- fy(y—2) = Vife(y — )]
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that was firstly obtained in [4], while from (1.2) we recapture the result obtained
in [5]

0% ¢ [Vifon (= 2) =V fos (v - 0)] (14)
L /f [(1—t)z+ty]dt
< SIVfy =) = Vafly— ).

Motivated by the above results, we establish in this paper some upper and
lower bounds for the difference

1 1 1
/Op(f)f((l—T)wnLTy)dT—/O pmdf/o F((L =)z +7y)dr

where f is a convex function on C and z, y € C, with = # y while p: [0,1] - R
is a Lebesgue integrable function such that

T 1
OS/ p(s)dsg/ p(s)ds for all 7 € [0,1].
0 0

Some applications for norms and semi-inner products are also provided.

2. Main Results
We start to the following identity that is of interest in itself as well:

Lemma 2.1. Let f be a convexr function on C and z, y € C, with x # y. If
g :[0,1] — C is a Lebesgue integrable function, then we have the equality

1 1 1
/O 9(r) Qo) (r) dr — /0 o () dr /0 o) (7) dr (2.1)

= [([ 96)s) ey 10
+ [ ([[o0as) - vty (nar

Proof. Integrating by parts in the Lebesgue integral, we have
T 1
T 1
=6 (1) = [ P Ot = (=D ()= [ty (0l

1
= P(z,y) (T) - /O P(z,y) (t> dt

that holds for all 7 € [0,1].
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If we multiply this identity by ¢ (7) and integrate over 7 in [0, 1], then we get

1 1 1
/0 g (T) P(x,y) (T) dr — /0 g (T> dT/O P(x,y) (t) dt (22)

- [o0 ([t @a)ars [96) ([ 00 e @) b

Using integration by parts, we get

/01 g(7) </OT Py () dt> dr (2.3)

and

/01 () ( Tl (t=1) ¢z, (@) dt) dr (2.4)

which proves the identity in (2.1). O

Theorem 2.1. Let f be an operator convex function on C and x, y € C, with
x#y. If p:[0,1] — R is a Lebesgue integrable function such that

T 1
OS/O p(s)ds§/0 p(s)ds for all T € [0,1], (2.5)
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then we have the inequalities

/0 1 ( / ) ds) drV fo (y — ) (26)
_/01 </07p(5)d5> (1=7)drV_f, (y— )

1 1 1
s/o (T)f((l—f):erTy)dT—/O p<¢>df/0 F(1= )z +ry)dr

p
g/ol (/Tlp(s)ds> TdTV_fy (y — )
_/01 (/OTp(sms) (1= ) drVefo (y —2)

or, equivalently,

/01 (1-7) </0 p(1—8)V_f,(y— T) () Vit (y — )] ds) i @)

1 1
g/o p(T)f((l—T)erTy)dT—/O pmdf/o F(1 =)z +ry)dr

< [[0-n ([ w0-9Ver -0 -p6) V-t - ) ds) ar.

Proof. We have for ¢, .y and p : [0,1] — R a Lebesgue integrable function that

1 1 1
/0 P(7) @(ay) (7) dr — / p(r)dr / o) () dr (2.8)

- /01 ( /T 1 p(s) dS) (7) Py (T) dT
- /ol </0Tp () ds) (1= 17) ¢lyy () dr.

By the gradient inequalities for ¢, ) we have

TV_fy (Y= 2) = 79, (T) 2 TV fu (y — ) (2.9)
and
=DV fyly—2) =2 (=1l ()2 (- Vifaly—a)  (210)

for all 7 € (0,1).
From

/OTp(s)ds</Olp(s)ds: Tp(s)ds+/:p(3)d8’

we get that lep (s)ds >0 for all 7 € (0,1).
From (2.9) we derive that
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and from (2.10) that

([r@ras) -0 Vistr-a <= ([ peds) 1= el 0
~([reas)a-nvpe-o
all 7 € (0,1).

If we integrate these inequalities over 7 € [0,1] and add the obtained results,
then we get

/;(/Tl (5)ds ) 79, (o :(/0 p(s)ds ) (1= 7) - fe(y = 0
- [ (/Tlms)ds)w’(x,y) ar— [ ([[psras) - nelsy
z/ol</:p<s>ds>rdfv+fx - ) /0</Op )1—7)d7v fyy—1).
By using the equality (2.1) we obtain

[ ([ rras)rirvese - (2.11)
A ([[peras) a=narv_s, -
< [ een @i [ pGrir [ o @rr
/011 </Tlp(s)d5>7'd7'v_fy(y—:c)
[ ([ reras) a-narvis -,

namely (2.6).
If we change the variable y = 1 — 7, then we have

/01 (/Tlp(s)ds) TdT:/Ol (/liyp(s)ds> (1—1y)dy.

Also by the change of variable u =1 — s, we get

/Iiyms)ds:/oyp(l—u)du,

IN

<

which implies that

1 1p(3)d3 TdT = 1 Tp(l—s)ds (1—7)dr.
0 \Jr o \Jo
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Therefore

Lot p(s)ds | TdrV_f,(y —x) — ' Tp(S)dS (1-7)drVife(y—2)
f (i) [
/;(/0 p(1l—s) ds> (1—7)drV_f, (y— )
/o1 </0 pls ) (1=7)drVfs(y — @)

/01 ) </ pPA=s)V_fyly—z) - (5)V+fx(y—$)]ds>d7-

/;(/Tlp >Td7—v+fx( )_/01(/OTP(S)CZS)(l—T)dTV_fy(y—x)
/01< i p(1—2s) ds> (1—1)drVyfe(y—x)

([ ) a-narw -

_/0 1-7) (/ , (1—s)V+fz(y—96)—p(S)V—fy(y—x)]d8>dT,

0
and by (2.11) we get (2.7). O

We say that the function p : [0, 1] — R is symmetric on [0, 1] if
p(l—t)=p(t) forall t € [0,1].

Corollary 2.1. Let f be a convex function on C and x, y € C, with © # y.
If p : [0,1] — R is a Lebesgue integrable and symmetric function such that the
condition (2.5) holds, then we have

1 1 1
fo d /p(T)f((l—T)l‘-l—Ty)dT—/o f(QA=7)x+T1y)dr| (2.12)

< e ! /1(/OTp(s)ds>(l—T)dT[V—fy(y—w)—V+fx(y—:c)]

1
<5 IV-fyly—2) = Vifoly—2)].
Proof. Since p is symmetric, then p (1 —s) = p(s) for all s € [0,1] and by (2.7)

we get
/01 ([ 1) =) tr(9-tuty—0) - V-fy (s )

1 1 1
< A p (T) P(z,y) (T) dr — /0 p (T) dTA P(z,y) (T) dr

<@ty -Vatetv=a) [ ([Tperas) -

which is equivalent to the first inequality in (2.12).
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Since 0 < [ p(s)ds < folp (1) dT, hence

/01 </07p(s)d8> (1—7‘)d7'§/Olp(T)dT/Ol(l_T)dT:;/Olp(T)dT

and the last part of (2.12) is proved. O

Remark 2.1. If the function p is nonnegative and symmetric then the inequality
(2.12) holds true.

If we consider the weight p : [0, 1] — [0,00), p(s) = ’s - %| , then

(oo

:/0é </OT 3_% ds> (1—r)dr

+/1</0 -3 ds)(l—T)dT

:/0% </OT(;—s>ds) (1—7)dr
(

We have

and
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Therefore

Since fol ‘T — %} dr =

%
i (1 /1</0Tp(s)ds>(1—7)d7:1?%.

Utilising (2.12) for symmetric weight p : [0, 1] — [0, 00), p(s) = }5 - %‘ , we get

1
X
0
3
where f is a convex function on C' and z, y € C, with z # y.
Consider now the symmetric function p(s) = (1 —s) s, z € [0,1]. Then

T T 1
/Op(s)ds:/a (1—s)sds:—672(27—3),76[0,1]

hence

1
T—;‘f((l—T)l’—l—Ty)dT—/O f(l=7)z+7y)dr (2.13)

and
/01 (/OTP(S) dS) (1—7)dr = _(15/0172 (27 =3) (A —7)dr = 4%
Also
/Olp(T)dT: /01(1 —T)TdT:%
and

W/ol </07p(8) ds) (1 -rydr=

and by (2.12) we obtain
1 1
‘6/ 1-7)7f((1 —T)m—l—Ty)dT—/O f((A=7)z+71y)dr (2.14)

S SAEE R AR

where f is a convex function on C and z, y € C, with = # y.

3. Examples for Norms

Now, assume that (X, ||-||) is a normed linear space. The function fy(s) =
i |||, # € X is convex and thus the following limits exist
. . t 2_ 2
() (@,9), = Vo () = Jim L=l
2 2
(v) (@,9); = V- foy (2) = lim Lol

S
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for any z, y € X. They are called the lower and upper semi-inner products
associated to the norm ||-||.

For the sake of completeness we list here some of the main properties of these
mappings that will be used in the sequel (see for example [2] or [6]), assuming
that p, ¢ € {s,i} and p # ¢:

(a) (z,z), = |z||? for all z € X;

( a$76y> =af(z,y), if a, > 0and z, y € X;

a) (
) || < el lyll for all @, y € X;
(av) (ozx —|— y.x), = a(r,z), + (y,2), f v,y € X and a € R;
) (=2, y), = —(z,y), forall z, y € X;
va) (z Ty, z2)p <zl llzll + (y, 2), for all z, y, 2 € X;
) The mapping (-, ), is continuous and subadditive (superadditive) in the
first variable for p = s (or p =1i);
(vaaa) The normed linear space (X, ||-||) is smooth at the point o € X\ {0} if
and only if (y, zo), = (y, o), for all y € X; in general (y,z), < (y,x), for
all z, y € X
(ax) If the norm |[|-|| is induced by an inner product (-, -) , then (y,z), = (y,x) =
(y,x), for all z, y € X.
The function f,(z) = ||z||" (z € X and 1 < r < o) is also convex. There-
fore, the following limits, which are related to the superior (inferior) semi-inner
products,

ly + tz||” — ||lyl|"
Vafry (@) = tLI(])ai t
1 i lly + tz|| — ||yl
—>O:|: t

exist for all x, y € X whenever r > 2; otherwise, they exist for any x € X and
nonzero y € X. In particular, if » = 1, then the following limits

oyt =yl @)
Vi fiy(z) = lim ' Tl

=yl =7yl {2, v) o

exist for x, y € X and y # 0.
If p: [0,1] — R is a Lebesgue integrable and symmetric function such that the
condition

T 1
0< / p(s)ds < / p(s)ds for all 7 € [0,1],
0 0
is valid, then by (2.12) we get

—— [ pIa=netnlar= [l =ne a6

Jop(r)dr Jo

SW/OI (/OTp(s)ds) (1—r)dr

x [yl = @) = el (y = w,2), ]

If > 2, then the inequality (3.1) holds for all x, y € X. If r € [1,2), then the
inequality (3.1) holds for all z, y € X with z, y # 0.
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For r = 2 we get

1 1 1
1/ p(7) ||(1—T)$+Ty||2d7—/ (1 =7z +7ylPdr| (32)
Jo p(r)dr Jo 0

2 1 T
<ot [ ([ Tp@as) 0= ndr = o — -]
Jop(r)dr Jo \Jo
for all z, y € X.
If we take p (1) = ‘7’ — %‘ , 7 €10,1] in (3.1), then we obtain
1 1
‘4/ T— |l =7)z+ Ty|" dr —/ 1 —71)x+7y||" dr (3.3)
0
— L — r—2 —
< [uyu 2y - 2) — ol (g — w,3),]
If X = H a real inner product space, then from (3.2) we get

1 1
/ p(T) |1 =7z + 7y dr—/ (1 =7)z+7y|*dr (3.4)
Jop(7)dr

ff/ (/07p<s>ds) (-7 drly — 2|
0
€

for all x, y € H.

4. Examples for Functions of Several Variables

Now, let €2 C R"™ be an open convex set in R™. If F': 2 — R is a differentiable
convex function on 2, then, obviously, for any ¢ € 2 we have

" OF (¢)
al‘i

=1

VFE (17) = “Yi, Y= (yla 7yn) € Rn?

where % are the partial derivatives of F' with respect to the variable z; (i =

1,..,n).
If p: [0,1] — R is a Lebesgue integrable and symmetric function such that the
condition (2.5) holds, then we have for all a, b € ) that

1 ! L 1 L
W/O p(T)F((l—T)a+rb)dr—/0 f((1=7)a+7b)dr| (4.1)
1 1 T
Solp(T)dT/O (/0 p(s)ds) (1—7)dr
o (8;(.()) —%f@)(bi—ai)
i=1 ! !

1<~ (OF (b) OF (a)
=5 (axi " om >(b"_a")‘
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If we take p (1) = |7 — %‘ , 7 €10,1] in (4.1), then we get

1
T—;‘F((l—r)a—i—rb)dT—/of((l—T)a+Tb)dT (42)

1
‘ /

3 < [OF (b) OF (a)
Slﬁi—l( 8.21;‘Z B 8:62 >(bz_al)

for all @, b € .

1]

[10]

[11]
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