THE EPIGENETIC BASIS OF VARIABLE RESPONSES TO EXERCISE TRAINING

Macsue Jacques

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Principal supervisor: Prof. Nir Eynon

Co-Supervisors: Dr. Sarah Voisin

Dr. Xu Sean Yan

Victoria University

College of Sport and Exercise Science Institute for Health and Sports (iHES)

2020

Abstract

Exercise training provides health benefits to the general population, but there is considerable variability in the individual response to similar training. Some people have limited improvements following exercise ("low responders"), while others seem to improve considerably ("high responders"). To date, most exercise studies that have claimed to identify "low" or "high" responders assumed that if the participants were to repeat the same exercise training, they would show a similar response. However, *withinsubject variability* has not been tested, which might lead to inaccurate classification of exercise responses at the individual level and the waste of precious research resources. Exposing individuals to a repeated or longer training intervention can assist in identifying the magnitude of responses to exercise training with better accuracy.

Recent evidence also suggests that the response to exercise training may be influenced by epigenetic signatures. Epigenetics is a reversible process that affects how genes are expressed in cells, and it carries the memory of past cellular and environmental events. To date, no study has tested whether individual response is influenced by epigenetic marks. Thus, the overarching aim of this thesis is to identify the physiological, molecular, and epigenetic marks of exercise responses.

Twenty young, healthy men from the Gene SMART (Skeletal Muscle Adaptive Response to Training) study completed a repeated and a longer exercise training intervention to measure within-subject variability and to obtain individual progress curves (See Figure 3.1 for study design). Participants underwent a four-week control period followed by four weeks of High-Intensity Interval Training (HIIT), had a washout period of > 1 year, and underwent another four weeks of HIIT followed by an additional 8 weeks of HIIT. The HIIT program was adjusted to individual fitness levels that were re-assessed every four weeks during the intervention to ensure improvements. Participants' peak power output (W_{peak}), lactate threshold (LT), and maximal oxygen uptake (VO_{2max}) were assessed in duplicates at each time point. We used five known statistical methods to investigate changes in fitness and mixed models to estimate individual response. Muscle biopsies were collected at each time point to measure mitochondrial markers (i.e. mitochondrial respiration, citrate synthase, cytochrome C oxidase, succinate dehydrogenase, mitochondrial copy number, fibre typing, and myosin heavy chains

PCRs), as well as genome-wide DNA methylation profiles in skeletal muscle using the Illumina HumanMethylation EPIC array.

In Chapter 3, we show that at the group level, all physiological measures increased in a dose-response manner following HIIT (p<0.05). We found no changes in mitochondrial function and content or fibre type distributions. Baseline citrate synthase (CS) was associated with HIIT-induced changes in cytochrome-c oxidase (COX) and vice-versa (p < 0.05). At the individual level, we successfully identified trainability in physiological measurements using the repeated testing approach but failed to do so using the repeated intervention approach. We did not identify consistent individual response at the molecular level (mitochondrial function and content and fibre type distribution) using either approach, as measurements were highly variable within participants.

We then investigated the reliability of the mitochondrial respiration technique (Chapter 4) by measuring the Technical Error of measurement (TEM) and the coefficient of variation (CV) for each mitochondrial complex. While the correlation between the two chambers was good for all complexes (R > 0.7 p < 0.001), the TEM was large (7.9 to 27 pmol·s-1·mg-1), and the CV was > 15% for all complexes. We performed statistical simulations to determine the sample size that would be required to detect a range of effect sizes at 80% power. We found that duplicate measurements on 75 participants are required to detect a 6% change in mitochondrial respiration after an intervention.

Finally, Chapter 5 and 6 focus on the DNA methylation measures at the group and individual level respectively. For the first time at the group level, we have investigated DNA methylation patterns that are associated with fitness by combining three measurements of performance into a comprehensive z-score (Chapter 5). We found 12,107 DMPs that were associated with baseline fitness (z-score) (FDR < 0.005), 18.2% of which were hypomethylated and 81.8% hypermethylated with higher fitness levels. We identified 1,268 DMRs for baseline fitness, 15.3% of which hypomethylated and 85.7% hypermethylated. Hyper-DMRs were robustly over-represented in genic enhancers and flanking active TSS, and highly depleted in strong and weak candidate enhancers. Hypo and Hyper-DMRs had a moderate association with bivalent enhancers and promoters. Both hyper and hypo-DMRs presented a moderate representation in regions actively repressed by PolyComb proteins. Finally, significant DMRs were enriched for 26 GO terms, and these pathways were related to muscle system processes, actin cytoskeleton organization and regulation of actin filament and cytoskeleton processes.

Next, we investigated the effects of exercise on the methylome, and surprisingly we observed an inverse pattern of DNA methylation profile after exercise. In summary, we found 568 DMPs that significantly changed after the 4 weeks (FDR < 0.005), and out of those only 1.4% were hypermethylated and 98.6% were hypomethylated. We identified 17 DMRs associated with changes in DNA methylation in response of 4 weeks of HIIT, and 100% of DMRs were hypomethylated. Lastly, we intersected DMPs that were significant for both baseline fitness z-score and after 4 weeks of HIIT. Five DMPs were significant, and they appeared to have inverse patterns for baseline z-score (more hypermethylation) and 4 weeks of HIIT (more hypomethylation). When we transitioned to the individual level study in Chapter 6, neither of our approaches (i.e. repeated intervention and repeated testing) yielded many significant results: only one DMP was significant (cg11260483, p-value: 3.22000e-10, adj.p-value: 0.00022) after the repeated intervention, and no DMPs significant after the repeated testing approach.

The challenging experimental design of this thesis provided high resolution, longitudinal physiological and molecular profiles in skeletal muscle following repeated exercise training and testing. It yielded novel insights into the phenomenon of trainability in humans; young, healthy men displayed individual responses to HIIT at the physiological level, but not at the molecular level. This thesis also issued methodological considerations for protocols aimed at measuring individual response (Chapter 3). In particular, the high *within-subject* variability we observed led us to conclude that many repeated testings on the same individual at regular intervals during the training program, along with a moderate-to-large sample size, were necessary to estimate inter-individual variability in response to training. The mitochondrial respiration technique showed high technical variability (Chapter 4), making the measurement unreliable in our study with only n = 20 men and only two duplicates per individual. The typical sample sizes used in exercise training studies (n < 20) are likely insufficient to capture exercise-induced changes in mitochondrial respiration at the group level, let alone the individual level. Lastly, we observed a clear DNA methylation profile association with fitness levels (Chapter 5). However, when an exercise intervention was applied, we noticed a change in DNA methylation patterns that were inverse to those observed at baseline for the fitter participants. Such observations left us wondering on potential reasons to why this occurs. Thus, future research should also integrate the methylome with transcriptome and proteome to elucidate the mechanisms underlying adaptations to exercise training.

Student Declaration

"I, Macsue Jacques, declare that the PhD thesis entitled "The epigenetic basis of variable response to exercise training" is no more than 80,000 words in length including quotes and exclusive of tables, figures, appendices, bibliography, references and footnotes. This thesis contains no material that has been submitted previously, in whole or in part, for the award of any other academic degree or diploma. Except where otherwise indicated, this thesis is my own work".

"I have conducted my research in alignment with the Australian Code for the Responsible Conduct of Research and Victoria University's Higher Degree by Research Policy and Procedures"

Signature

Date <u>03/05/2021</u>

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisors Professor Nir Eynon and Dr Sarah Voisin for your continual support, guidance, and sharing of your extensive research experience with me throughout my PhD journey. A special thank you to Sarah Voisin, who has introduced me to R and for all your patience in teaching me how to code as well as statistics. Without you I would have never found out how much I love working with R and found the desire to become a bioinformatician one day, thank you for being such a great inspiration! To Nir Eynon who has helped me from day one to be where I am today, without your help and belief in me I probably would not be getting a PhD today, thank you for being a great supervisor and someone I can always count on. I would also like to thank Dr Xu Yean and Dr Danielle Hiam for your valuable insights and contribution to this research.

To all the laboratory technical staff and research assistants, without your assistance this research could not have happened. Thank you to my colleagues and friends, Shanie Landen and Javier Alvarez-Romero, who helped with testing and data collection. To Shanie Landen, thank you for all the discussion and brainstorming and lab sessions we have shared, from which I have found great encouragement and desire to become a better scientist. To Javier Alvarez-Romeiro and Fiona Munson, without your help I wouldn't have finished my data collection before taking maternity leave.

To my family. Nathan thank you for your love, support, and encouragement throughout this PhD journey, always believing in and cheering for me. Also thank you for building a beautiful family with me in the middle of it all. I love you! To my parents, who have raised me to be strong and to follow my dreams in life. Thank you for all your support and opportunities you have provided for me to be where I am today. Without you I wouldn't be half of the person I am today; I love you dearly and miss you always! To my in-laws for your constant support though this journey of becoming a doctor and raising a family, I deeply appreciate all your efforts and willingness to help me with Avery so I can keep pushing through with work, I am very lucky to be part of your family.

List of Publications

The following work has been accepted for publication at peer-reviewed journals in support of this thesis:

1. **Jacques M**, Hiam D, Craig J, Barrès R, Eynon N, Voisin S. (2019) Epigenetic changes in healthy human skeletal muscle following exercise- a systematic review. Epigenetics. Jul;14(7):633-648 (Chapter Two).

2. Voisin S, **Jacques M**, Lucia A, Bishop DJ, Eynon N. (2018) Statistical considerations for exercise protocols aimed at measuring trainability. Exerc Sport Sci Rev. Jan;47(1):37-45 (Chapter Two).

3. **Jacques M**, Yan X, Bishop DJ, Romero JA, Munson F, Kuang J, Garnham A, Papadimitriou I, Voisin S*, Eynon N*. (2019) Mitochondrial respiration variability and simulations in human skeletal muscle: the Gene SMART study. FASEB J. Feb;34(2):2978-2986. doi:10.1096/fj.201901997RR (Chapter Four).

The following work has been submitted or is being prepared for publication at peer reviewed journals in support of this thesis:

1. **Jacques M**, Landen S, Romero JA, Yan X, Garnham A, Hiam D, Siegwald M, Mercier E, Voisin S, Eynon N. Individual physiological and mitochondrial responses during 12 weeks of intensified exercise. Physiological Reports (Accepted) (<u>Chapter Three</u>).

2. **Jacques M**, Voisin S, Xu Yan, Eynon N. Measuring true physiological responses to exercise using a repeated and longer exercise intervention. Sports Medicine (Submitted) (Chapter Three).

3. **Jacques M**, Landen S, Alvarez-Romeiro J, Hiam D, Garnham A, Schittenhelm R, Shah A, Huang C, Voisin S, Eynon N. An integrative OMICS approach to investigate changes in DNA methylation and proteomics with exercise: A 12-week time-course analyses (provisional title). In preparation. <u>(Chapter Five)</u>.

4. **Jacques M**, Landen S, Alvarez-Romeiro J, Hiam D, Garnham A, Schittenhelm R, Shah A, Huang C, Voisin S, Eynon N Individual DNA methylation response to exercise training (provisional title) (Chapter Six).

The following work has been published in a peer reviewed journal during my candidature, and is outside the scope of this thesis:

1. Harvey N, Voisin S, Lea S, Yan X, Benton M, Papadimitriou I, **Jacques M**, Haupt L, Ashton K, Eynon N, Griffiths L. (2020) Investigating the influence of mtDNA and nuclear encoded mitochondrial variants on high intensity interval training outcomes. Sci Rep. Jul 6;10(1):11089. doi: 10.1038/s41598-020-67870-1.

2. Harvey NR, Voisin S, Dunn PJ, Sutherland H, Yan X, Jacques M, Papadimitriou ID, Haseler LJ, Ashton KJ, Haupt LM, Eynon N, Griffiths LR. (2019) Genetic variants associated with exercise performance in both moderately trained and highly trained individuals. Mol Gent Genomics. 20;10.1007/s00438-019-01639-8.

3. Hiam D, Smith C, Voisin S, Denham J, Yan X, Landen S, **Jacques M**, Alvarez-Romeiro J, Garnham A, Wossner M, Herrmann M, Duque G, Levinger I, Eynon N. (2019) Aerobic capacity and telomere length in human skeletal muscle and leukocytes across the lifespan. Aging. 12(1):359–369.

4. Papadimitriou ID, Eynon N, Yan X, Munson F, **Jacques M**, Kuang J, Voisin S, North KN, Bishop DJ. (2019) A "human knockout" model to investigate the influence of the α -actinin-3 protein on exercise-induced mitochondrial adaptations. Sci Rep.Sep 3;9(1):12688.

5. Hiam D, Voisin S, Yan X, Landen S, **Jacques M**, Papadimitriou ID, Munson F, Byrnes E, Brennan Speranza TC, Levinger I, Eynon N. (2019) The association between bone mineral density gene variants and osteocalcin at baseline, and in response to exercise: The Gene SMART study. Bone. Volume 123, June, Pages 23-27.

6. Yan X, Dvir N, **Jacques M**, Cavalcante L, Papadimitriou ID, Munson F, Kuang J, Garnham A, Landen S, Li J, O'Keefe L, Tirosh O, Bishop DJ, Voisin S, Eynon N. (2018) ACE I/D gene variant predicts ACE enzyme content in blood but not the ACE, UCP2, and UCP3 protein content in human skeletal muscle in the Gene SMART study. J Appl Physiol (1985). Sep 1;125(3):923-930.

7. Papadimitriou ID, Lockey SJ, Voisin S, Herbert AJ, Garton F, Houweling PJ, Cieszczyk P, Maciejewska-Skrendo A, Sawczuk M, Massidda M, Calò CM, Astratenkova IV, Kouvatsi A, Druzhevskaya AM, **Jacques M**, Ahmetov II, Stebbings GK, Heffernan S, Day SH, Erskine R, Pedlar C, Kipps C, North KN, Williams AG, Eynon N. (2018) No association between ACTN3 R577X and ACE I/D polymorphisms and endurance running times in 698 Caucasian athletes. BMC Genomics. Jan 3;19(1):13.

Pre-prints

1. Landen S, Jacques M, Hiam D, Alvarez J, Harvey NR, Haupt LM, Griffiths LR, Ashton KJ, Lamon S, Voisin S, Eynon N. (2021) Genome-wide DNA methylation and transcriptome integration reveal distinct sex differences in skeletal muscle. bioRxiv 2021.03.16.435733

2. Genders AJ, Kuang J, Marin EC, Saner NJ, Botella J, **Jacques M**, McConell GK, Andrade-Souza VA, Chagolla J, Bishop DJ.(2020) Changes in insulin resistance do not occur in parallel with changes in mitochondrial content and function in male rats. bioRxiv. https://doi.org/10.1101/2020.07.06.190702

3. Voisin S, **Jacques M**, Landen S, Harvey NR, Haupt LM, Griffiths LR, Gancheva S, Ouni M, Jahnert M, Ashton KJ, Coffey VG, Thompson JM, Doering TM, Gabory A, Junien C, Caiazzo R, Verkindt H, Raverdy V, Pattou F, Froguel P, Craig JM, Blocquiaux S, Thomis M, Sharples AP, Schurmann A, Roden M, Hovarth S, Eynon N.(2020) Meta-analysis of genome-wide DNA methylation and integrative OMICs in human skeletal muscle. bioRxiv. https://doi.org/10.1101/2020.09.28.315838

Book Chapters

1. Jacques M, Landen S, Palmer A, Eynon N. (2020) Epigenetic effects of exercise on human skeletal muscle. *Handbook of Stress Volume 4: Stress Genetics, Epigenetics, and Genomics.* Elsevier.

2. Jacques M, Landen S, Voisin S, Eynon N. (2018) Summary Findings on Genetics and Sport Performance. *The Routledge Handbook of Sport and Exercise System Genetics*. Taylor & Francis.

3. Jacques M, Landen S, Voisin S, Lamon S, Eynon N. (2018) Nurture vs Nature: The Genetics and Epigenetics of Exercise. *Research Methods in Physical Activity and Health*. Routledge.

4. **Jacques M**, Hanson ED, Eynon N. (2018) Genetic Aspects of Sprint, Strength, and Power Performance – 2017 update. *Nutrition and Enhanced Sports Performance: Muscle Building, Endurance and Strength* (2nd Edition). Elsevier.

DETAILS OF INCLUDED PAPERS: THESIS WITH PUBLICATION

Please list details of each scholarly publication and/or manuscript included in the thesis submission. Copies of published scholarly publications and/or manuscripts submitted and/or final draft manuscripts should also be included in the thesis submission.

This table must be incorporated in the thesis before the Table of Contents.

Chapter No.	Publication Title	Publication Status Published Accepted for publication In revised and resubmit stage Under review Manuscript ready 	 Publication Details Citation, if published Title, Journal, Date of acceptance letter and Corresponding editor's email address Title, Journal, Date of submission
2	Epigenetic changes in healthy human skeletal muscle following exercise- a systematic review.	Published	Jacques M, Hiam D, Craig J, Barrès R, Eynon N, Voisin S. (2019) Epigenetic changes in healthy human skeletal muscle following exercise- a systematic review. Epigenetics. Jul;14(7):633-648.
2	Statistical considerations for exercise protocols aimed at measuring trainability.	Published	Voisin S, Jacques M, Lucia A, Bishop DJ, Eynon N. (2018) Statistical considerations for exercise protocols aimed at measuring trainability. Exerc Sport Sci Rev. Jan;47(1):37-45.
3	Jacques M, Landen S, Romero JA, Yan X, Garnham A, Hiam D, Siegwald M, Mercier M, Voisin S, Eynon N. Trainability analyses of whole body and skeletal muscle molecular adaptation to 12 weeks of high-intensity exercise.	Under review	Trainability analyses of whole body and skeletal muscle molecular adaptation to 12 weeks of high-intensity exercise. Target Journal: American Journal of Physiology. Date of submission:
3	Jacques M, Voisin S, Xu Yan, Eynon N. Individual physiological and mitochondrial responses during 12 weeks of intensified exercise	Under review	Individual physiological and mitochondrial responses during 12 weeks of intensified exercise. Target journal: MSSE. Date of submission:
4	Mitochondrial respiration variability and simulations in human skeletal muscle: the Gene SMART study.	Published	Jacques M, Yan X, Bishop DJ, Romero JA, Munson F, Kuang J, Garnham A, Papadimitriou I, Voisin S*, Eynon N*. (2019) Mitochondrial respiration variability and simulations in human skeletal muscle: the Gene SMART study. FASEB J, 2020;
Declaratic Macsue Jae	on by [candidate name]: Signature:		Date: 23 April 2021

83 776 954 731 113 ABN 1300 842 864) olicy vu.edu 1300 VIC UNI / You have a right to us on 9919 6100 or **ASKVU or** your personal NFORMATION: We col

Updated: September 2020

Table of Contents

Abstract	i
Student Declaration	iv
Acknowledgements	•••••• v
List of Publications	vi
Details of Included Papers	ix
List of Figures	xiii
List of Tables	XV
List of Abbreviations	xvi
Chapter 1. Introduction	1
Chapter 2. Literature Review	4
2.1 Chapter outline	
2.2 Statistical and methodological considerations to accurately identify trainability studies	in exercise 8
2.2.1. Responders, non-responders and the concept of trainability	8
2.2.2. Sources of variability	10
2.2.3. Within-subject variability is an important yet overlooked source of error.	12
2.2.4. Methods to estimate trainability	16
2.3 Epigenetics	
2.4 Epigenetics and exercise	
2.4.1. Histone modifications and exercise	
2.4.2. MiRNAs and exercise – candidate gene approach	
2.4.3. MiRNAs and exercise – high-throughput analyses	
2.4.4. DNA methylation and exercise – candidate gene approach	
2.4.5. DNA methylation and exercise – genome wide approach	
2.5 Summary and study aims	
2.5.1. Chapter Three	
2.5.2. Chapter Four	43
2.5.3. Chapter Five	
2.5.4. Chapter Six	
Chapter 3. Deciphering the true physiological and molecular responses to exerc using a repeated and longer intervention	ise training 44
3.1 Introduction	

3.2 Methods	50
3.2.1. Participants	50
3.2.2. Study design	50
3.2.3. Muscle biopsies	
3.2.4. Molecular analyses and immunohistochemistry	55
3.2.5. Statistical analyses	58
3.3 Results	61
3.3.1. The repeated and longer exercise training intervention improved aerobe dose-response manner	ic fitness in a 61
3.3.2. Analysis of inter-individual variation in response to exercise training	64
3.4 Discussion	
3.4.1. Control group/period	83
3.4.2. Technical error of measurement (TEM)	83
3.4.3. Repeated intervention	
3.4.4. Repeated measurements	85
3.4.5. Associations between physiological and molecular markers	86
3.4.6. Summary and suggestions for future studies	87
Chapter 4. Mitochondrial respiration variability and simulations in human sk muscle: The Gene SMART study	eletal 89
4.1 Introduction	91
4.2 Materials and methods	
4.2.1. Participants	
4.2.2. Muscle biopsies	
4.2.3. Mitochondrial respiration	
4.2.4. Citrate synthase activity	
4.2.5. Statistical analyses	
4.3 Results	
4.3.1. Large technical error in mitochondrial respiration measurement	
4.3.2. Simulations to estimate the sample size required to detect changes in market respiration at 80% power	itochondrial 98
4.4 Discussion	100
Chapter 5. DNA methylation patterns are associated with baseline fitness leve	ls and
change following high-intensity interval training	
5.1 Introduction	

5.2.1. Participants	
5.2.2. Muscle biopsies	
5.2.3. DNA extraction and DNA methylation analyses	
5.2.4 Pre-processing	
5.2.5 Statistical analyses	
5.3 Results	108
5.3.1. Individuals with high aerobic fitness show a clear DNA methylation sig skeletal muscle, related to muscle structure and function	nature in 108
5.3.2 Few DNA methylation changes following 4 weeks of HIIT	
5.3.3 Significant DMPs at baseline and after 4 weeks of HIIT	
5.4 Discussion	
Chapter 6. Individual DNA methylation response to exercise training	
6.1 Introduction	
6.2 Methods	
6.2.1. Participants	
6.2.2. Study design	
6.2.3. Muscle biopsies, DNA extraction and DNA methylation analyses and pr	e-processing 240
6.2.4. Statistical analyses	
6.3 Results	
6.3.1 No individual DNA methylation response after 4 weeks of HIIT	
6.3.2 No individual DNA methylation response to 12 weeks of HIIT	
6.4 Discussion	
Chapter 7. Overall discussion, limitations and future directions	
7.1 Discussion	
7.2 Limitations and future directions	
References	
Appendix: Included Publications	

List of Figures

Figure 2.1. Sources of variability in exercise training studies
Figure 2.2. Correlation between changes in performance, citrate synthase (CS), and 3- hydroxyacyl-CoA dehydrogenase (β -HAD) in the same leg of the same individuals after the first and second training periods in Lindholm <i>et al.</i> (n= 12) ⁴⁷ 14
Figure 2.3. Protocols to quantify interindividual variability in response to exercise training 17
Figure 2.4. Epigenetic modifications after environmental stimuli (e.g. exercise)
Figure 3.1. Study design and statistical methods with indication of how many participants/tests were used for each approach
Figure 3.2. Individual changes in peak power output (W _{peak}), the lactate threshold (LT) and maximal oxygen uptake (VO _{2max}) after 4 weeks of control (Con/End), first intervention (4 weeks of HIIT, Pre1/4WP), and second intervention (12 weeks of HIIT, Pre2/12WP)63
Figure 3.3. Participants ordered by peak power output (W_{peak}) response after 4 weeks of HIIT 65
Figure 3.4. Changes in peak power output (W _{peak}), lactate threshold (LT) and maximal oxygen uptake (VO _{2max})
Figure 3.5. A: Correlation between baseline in peak power output (W _{peak}), lactate threshold (LT) and maximal oxygen uptake (VO _{2max}) before the first (x-axis) and second (y-axis) interventions (Pearson's correlation coefficient). B: Within-subject correlation between response to first (x-axis) and second (y-axis) interventions
Figure 3.6. Individual changes in physiological measures (W _{peak} , LT, and VO _{2max}) after 4, 8 and 12 weeks of HIIT70
Figure 3.7. Example of trainability and comparison between whole body and molecular markers for high, average and low responder for VO2max and MHI measurement after 12 weeks of HIIT
Figure 3.8. Individual changes in Citrate Synthase (CS), Cytochrome-C Oxidase (COX), Succinate Dehydrogenase (SDH), Mitochondrial Copy Number (mtCN), and Mitochondrial Health Index (MHI) for each 4 weeks up to 12 weeks
Figure 3.9. Fibre type % and log expression correlations
Figure 3.10. Distribution of fibre type separated by timepoint
Figure 4.1. Spearman's correlation between chambers after the addition of (A) oxidative phosphorylation (OXPHOS) capacity (_P) through Complex I (CI _P), (B), measure P through CI+Complex II (CII) linked respiration (CI+CII _P), (C) electron transport system (ETS) capacity (E) through CI+CII (CI+CII _E)
Figure 4.2. Minimum sample size required to detect increases in mitochondrial respiration (MR) after training at 80% power
Figure 4.3. Minimum sample size required to detect increases (DI) in mitochondrial respiration (MR) ratios after training at 80% power
Figure 4.4. A: Power to detect percentage change in mitochondrial respiration (effect size) after a training intervention with $n = 20$ participants. B: Power to detect percentage change in mitochondrial respiration ratios (effect size) after a training intervention with $n = 20$ participants. 100

Figure 5.1.	Study design
Figure 5.2.	A: Volcano plot of fitness-related differential methylation. Each point represents a different CpG. B: Top hypomethylated DMP. C: Top hypermethylated DMP. In plot B & C each colour represents a different individual. D: Unsupervised hierarchical clustering of individuals at fitness-related DMPs
Figure 5.3.	Distribution of fitness-related differentially methylated regions (DMRs) and non- DMRs in functional regions of the genome
Figure 5.4.	A: Volcano plot showing significant CpGs (false discovery rate <0.005) associated 4 weeks of HIIT. B: Heatmap composed of significant CpGs associated with 4 weeks of HIIT
Figure 5.5.	Distribution of hypomethylated, differentially methylated regions (DMRs) and non- DMRs in functional regions of the genome
Figure 5.6.	A: Heatmap of effect sizes for DMPs at baseline fitness and after 4 weeks of HIIT. B: Dot plot of the five intersected DMPs
Figure 6.1.	Study design
Figure 6.2.	Significant CpG presenting consistent individual response after a repeated HIIT intervention of 4 weeks
Figure 6.3.	A: p-values for random effect (i.e. trainability, individual response). B: Quantile- Quantile plot of p-values for individual response

List of Tables

Table 2.1	Estimates of trainability and within-subject variability in Lindholm et al., 2016	15
Table 2.2.	Summary of miRNAs study's findings.	32
Table 2.3.	Summary of miRNAs that were up- or down-regulated after exercise	35
Table 2.4	Summary of DNA methylation findings.	41
Table 3.1.	Group characteristics for each period (Control, 1 st intervention and 2 nd intervention) with Delta Changes.) 53
Table 3.2.	Repeated Testing.	62
Table 3.3.	Technical error of measurement (TE_M) and coefficient of variation (CV) for peak power output (W_{peak}), lactate threshold (LT) and maximum oxygen uptake (VO_{2max}). 64
Table 3.4.	Baseline comparison between control group and intervention group.	66
Table 3.5.	Results of the linear mixed model for the repeated intervention after 1 year of washout.	69
Table 3.6.	Results of the linear mixed model for the mitochondrial measurements	74
Table 3.7.	Results of the linear mixed model for fibre type % and log expression	76
Table 3.8.	Bivariate growth models.	80
Table 3.9.	Methods comparison classification based on responsiveness.	81
Table 4.1.	Chamber-specific respiration values and FCRs, typical error of measurement and coefficient of variation for each substrate.	97
Table 4.2.	Chamber-specific respiration values normalized by CS activity, typical error of measurement and coefficient of variation for each substrate.	97
Table 5.1.	Significant DMRs associated with baseline z-score	25
Table 5.2.	Gene Set Enrichment Analyses (GSEA) of significant CpGs associated with baselir z-score fitness using the Gene Ontology (GO) data set	ne 26
Table 5.3.	DMRs after 4 weeks of HIIT	32

List of Abbreviations

%	Percent
<	Less than
>	Greater than
~	Approximately
ADP	Adenosine diphosphate
akt-mTOR	Phosphatidylinositol 3-kinase target of the rapamycin signalling pathway
AMPK	AMP-activated protein kinase
ATP	Adenosine triphosphate
BCAR3	Breast cancer anti-estrogen resistance 3
BCL6	B cell lymphoma 6
BMI	Body Mass Index
BP	Biological Process
CaMKII	Calcium calmodulin-dependent protein kinase II
CC	Cellular Component
CD93	Cluster of differentiation 93
chr	Chromosome
CI	Confidence Interval
CI	Complex I, electron input through CI
CI+CII	Convergent electron input through CI and CII
CI+CII _E	measurement of electron transport system [ETS] capacity [E] through CI+CII
CI+CII _P	Complex II [CII] linked respiration
CIP	oxidative phosphorylation [OXPHOS] capacity [P] through CI
COX	Cytochrome-c Oxidase
CRF	Cardiorespiratory Fitness
CS	Citrate synthase
Ct	Cycle threshold
CV	Coefficient of variation
DMPs	Differently Methylated Positions
DMRs	Differently Methylated Regions
DNA	Deoxyribonucleic acid
DNMTs	DNA methyltransferases
DZ	Dizygotic
Ε	ETS capacity
END	Endurance

ETS	Electron Transport System
EWAS	Epigenome-Wide Association Studies
FC	Fold Change
FCCP	p-trifluoromethoxyphenylhydrazone
FDR	False Discovery Rate
FZD5	Frizzled-5
Gene SMART	Genes and Skeletal Muscle Adaptive Response to Training
GEO	Gene Expression Omnibus
GO	Gene Ontology
GpGs	Cytosine and Guanine separated by a Phosphate
GXT	Graded Exercise Test
H2O2	Hydrogen Peroxide
HDAC	Histone Deacetylase
HIIT	High Intensity Exercise Training
НОХ	Homeobox
Inv-RCR	Inverse of respiratory control ratio [CIL/CI+II _P]
IPA	Incidental Physical Activity
K ₂ HPO ₄	Dipotassium phosphate
KEGG	Kyoto Encyclopedia of Genes and Genomes
KH ₂ PO ₄	Monopotassium phosphate
L)	Leak respiration
LCR	Leak control ratio [CIL/CI+II _E]
LT	Lactate Threshold
MEF2	Myocyte Enhancer Factor-2
MF	Molecular Function
MHI	Mitochondrial Health Index
miRNAs	microRNAs
mL·min ⁻¹ ·kg ⁻¹	Millilitres per minute per kilogram
mmol	Millimole
mRNA	Messenger RNA
mtDNA	Mitochondrial DNA
MYOM1	Myomesin-1
MZ	Monozygotic
n	Sample size
ncRNA	Non-coding RNAs
OXPHOS	Oxidative phosphorylation
Р	Oxphos capacity
PCR	Phosphorylation control ratio [CI+II _P /CI+II _E]
PCR	Polymerase Chain Reaction

PDK4	Pyruvate dehydrogenase lipoamide kinase isoenzyme 4
PGC-1a	Proliferator-activated receptor gamma coactivator 1-alpha
PGC-1ß	Proliferator-activated receptor gamma coactivator 1-beta
PPAR-d	Peroxisome Proliferator Activated delta
PPO	Peak Power Output
qPCR	Quantitative Polymerase Chain Reaction
RES	Resistance
RNA	Ribonucleic acid
ROX	Residual oxygen consumption
RT-PCR	Real-Time Polymerase Chain Reaction
SCR	Substrate control ratio at constant P [CIP/CI+II _P]
SD	Standard deviation
SDH	Succinate dehydrogenase
T2D	Type 2 Diabetes
T2D	Type 2 diabetes
TCA	Tricarboxylic Acid
ТЕм	Technical Error of measurement
TET enzymes	Ten-eleven translocation enzymes
TFAM	Transcription Factor A, Mitochondrial
TSS	Transcription Start Site
VO _{2max}	Maximal rate of oxygen uptake
W	Watt
Wpeak	Power Peak
β-HAD	3-hydroxyacyl-CoA dehydrogenase
Δ	Delta change
μm	Micrometre

Chapter 1. Introduction

Exercise training results in many morphological, metabolic, and functional adaptations in the human body. The magnitude of adaptations to repeated exercise sessions (e.g. increased cardiac output, or maximal oxygen uptake (VO_{2max}) depends on many factors, such as the duration, intensity, volume, and the type of exercise training¹. However, not everyone adapts to it to the same degree. It is becoming clear that there is large inter-individual variability in humans in response to similar exercise training stimuli^{2–6}. This variability has been observed in all measurements of interest, whether physiological, health, or performance-related⁴, and in both short (e.g. 2 weeks) and longer (e.g. 12 weeks) exercise training interventions⁶.

Personalised exercise prescription is an appealing term for coaches, exercise physiologists, and clinicians who strive to use the best possible scientific information to prescribe exercise training to their clients and patients depending on their "trainability" (i.e. consistent individual response to exercise). Trainability lays at the core of personalised exercise prescription and it is based in the assumption that individuals have variable ability to respond to similar exercise training, with some individuals showing little to no improvement, while others significantly improve following a specific training regime⁷. However, intra-individual variability (i.e. variable response within an individual) has proven to be an often-ignored limitation on the search for reliable biomarkers of adaptive response to exercise^{5,8–10}. For instance, a recent study comparing changes in muscle messenger RNA (mRNA) expression after repeatable bouts of exercise found that changes in mRNA expression were not repeatable (i.e. individuals presented a different mRNA response to the same stimulus)⁹. Additionally, the intra-individual variability in expression was not explained by technical error, indicating that sources of variability were originated from within the muscle^{8,9}. Personalised exercise prescription cannot succeed if inter- and intra-individual variability are not appropriately considered for the accurate identification of individual responses profiles. Therefore, the aim of the first study (Chapter Three) was to accurately identify individual response at the physiological and molecular level (e.g. mitochondria), using a comprehensive study design and robust statistical approaches.

The epigenetic basis of variable response to exercise training

Mitochondria are essential organelles that control the regulation of the metabolic status of skeletal muscle¹¹. The mitochondria exhibit remarkable plasticity in response to exercise, and among the benefits of exercise is the consistent up-regulation of mitochondrial function and content^{12–17}. As little as a single bout of exercise can initiate signalling cascades in skeletal muscle, leading to increases in mitochondrial biogenesis, along with the onset of organelle turnover conducted by the mitophagy pathway. Such turnover warrants a high functioning network of mitochondria function for optimal ATP supply¹¹. One of the primary ways of accessing mitochondrial function and capacity is via mitochondrial respiration measured by maximal oxygen consumption in skeletal muscle fibres^{18,19}. However, previous reports in humans have shown that such technique presents a large variability between duplicated samples from the same muscle biopsy (i.e. intra-biopsy variability)¹⁹. Furthermore, within-biopsy variability has also been recently reported for mRNA expression⁹. Thus, such observations have driven us to shift our focus from measuring mitochondrial function to investigate the reliability of mitochondrial respiration measurements in human vastus lateralis muscle. In our recent publication (See Chapter 4) we have also provided guidelines for future studies regarding sample and effect sizes to achieve reliable results using the mitochondrial respiration technique (Chapter Four).

Virtually all exercise training studies suggest that there is a high inter-individual variability in response to specific training programs. This variability is partly explained by genetics, but attempts to identify genetic markers of exercise response have largely failed, primarily due to low statistical power to accurately measure individual response to exercise as well as low-throughput genetic approaches²⁰. Epigenetics (literally 'on top of genetics') is another level of gene regulation that is sensitive to environmental stimuli. It allows cells to remember their past activity and primes them to respond to future environmental stresses²¹. Epigenetic marks such as DNA methylation are sensitive to exercise adaptations. DNA methylation responds to an acute exercise session²², and a handful of studies reported alterations in DNA methylation patterns after short-term (e.g. 4 weeks/1 acute session) exercise training^{23–28}. However, research on exercise induces changes in the muscle methylome, there is no evidence that these changes are related to physiological improvements or *causally* involved in the physiological adaptations to

exercise training. Thus, the aim of <u>Chapter Five</u> was to evaluate whether epigenetic (DNA methylation) patterns are associated with measures of physical fitness, and whether exercise-induced DNA methylation changes correlated with exercise-induced physiological improvements.

In addition, it is still unknown whether individual DNA methylation responses contribute to the *individual* physiological adaptations to exercise training (trainability). Thus, <u>Chapter Six</u> aimed to detect individual responses to exercise training at the epigenetic level.

Commencing with a literature review (<u>Chapter Two</u>), this thesis further comprises four experimental chapters:

- I. <u>Chapter Three</u>: Deciphering the true physiological and molecular responses to exercise training using a repeated and a longer exercise intervention approach.
- II. <u>Chapter Four</u>: Mitochondrial respiration variability and simulations in human skeletal muscle: The Gene SMART study.
- III. <u>Chapter Five</u>: Association between DNA methylation patterns, exercise training and aerobic fitness.
- IV. <u>Chapter Six</u>: Individual responses to exercise training at the DNA methylation level.

The main findings of this thesis are summarised with a general discussion (<u>Chapter Seven</u>), including limitations of each study presented, and recommendations for future research.

Chapter 2. Literature Review

This chapter is based on the following publications:

1. **Jacques M**, Hiam D, Craig J, Barrès R, Eynon N, Voisin S. (2019) Epigenetic changes in healthy human skeletal muscle following exercise- a systematic review. Epigenetics. Jul;14(7):633-648.

THE NEW WAY TO DO UNI

OFFICE FOR RESEARCH TRAINING, QUALITY AND INTEGRITY

DECLARATION OF CO-AUTHORSHIP AND CO-CONTRIBUTION: PAPERS INCORPORATED IN THESIS

This declaration is to be completed for each conjointly authored publication and placed at the beginning of the thesis chapter in which the publication appears.

1. PUBLICATION DETAILS (to be completed by the candidate)

Title of Paper/Journal/Book:	Epigenetic changes muscle following ex	s in healthy human skeletal vercise– a systematic review
	Macsue Jacques, D Sarah Voisin (2019	Danielle Hiam, Jeffrey Craig, Romain Barrès, Nir Eynon &) Epigenetic changes in healthy human skeletal muscle
Surname: Jacques		First name: Macsue
nstitute: Institute for H	ealth and Sport	Candidate's Contribution (%): 65
Status: Accepted and in press: Published:		Date: Date: 2019
CANDIDATE DECLAR	ATION	

I declare that the publication above meets the requirements to be included in the thesis as outlined in the HDR Policy and related Procedures – <u>policy.vu.edu.au</u>.

Date: 2021.04.06 10:17:09 + 10:00	
Macsue Jacques Jacques	06/04/2021

3. CO-AUTHOR(S) DECLARATION

In the case of the above publication, the following authors contributed to the work as follows:

The undersigned certify that:

- They meet criteria for authorship in that they have participated in the conception, execution or interpretation of at least that part of the publication in their field of expertise;
- They take public responsibility for their part of the publication, except for the responsible author who accepts overall responsibility for the publication;

PO Box 14428, Melbourne, Vic 8001, Australia +61 3 9919 6100

- 4. Potential conflicts of interest have been disclosed to a) granting bodies, b) the editor or publisher of journals or other publications, and c) the head of the responsible academic unit; and
- 5. The original data will be held for at least five years from the date indicated below and is stored at the following **location(s)**:

Name(s) ofContributionCo-Author(s)(%)		Nature of Contribution	Signature	Date
Danielle Hiam	10%	Contributed to data interpretation & assisted withwriting and revising the manuscript		10/04/2021
Jeffrey Craig	5%	Contributed to data interpretation & assisted withwriting and revising the manuscript		08/04/2021
Romain Barres	5%	Editing and approval of final manuscript		08/04/2021
Sarah Voisin	10%	Editing and approval of final manuscript		12/04/2021
Nir Eynon	5%	Editing and approval of final manuscript		12/04/2021

Updated: September 2019

PO Box 14428, Melbourne, Vic 8001, Australia +61 3 9919 6100

2. Voisin S, **Jacques M**, Lucia A, Bishop DJ, Eynon N. (2018) Statistical considerations for exercise protocols aimed at measuring trainability. Exerc Sport Sci Rev. Jan;47(1):37-45.

THE NEW WAY TO DO UNI

OFFICE FOR RESEARCH TRAINING, QUALITY AND INTEGRITY

DECLARATION OF CO-AUTHORSHIP AND CO-CONTRIBUTION: PAPERS INCORPORATED IN THESIS

This declaration is to be completed for each conjointly authored publication and placed at the beginning of the thesis chapter in which the publication appears.

1. PUBLICATION DETAILS	(to be completed by the candidate)	
Title of Paper/Journal/Book:	lournal/Book: Statistical Considerations for Exercise Protocols Aimed at Measuring Trainability VOISIN, S., M. JACQUES, A. LUCIA, D.J. BISHOP, and N. EYNON. Statistical considerations for exercise protocols aimed at	
Surname: Jacques	First name: Macsue Realth and Sport Candidate's Contribution	(%): 40
Status: Accepted and in press: Published:	: Date: Date: 2018	

2. CANDIDATE DECLARATION

I declare that the publication above meets the requirements to be included in the thesis as outlined in the HDR Policy and related Procedures – <u>policy.vu.edu.au</u>.

Signature		Date	
Macsue	Jacques	Digitally signed by Macsue Jacques Date: 2021.04.06 16:19:43 +10'00'	06/04/2021

3. CO-AUTHOR(S) DECLARATION

In the case of the above publication, the following authors contributed to the work as follows:

The undersigned certify that:

- 1. They meet criteria for authorship in that they have participated in the conception, execution or interpretation of at least that part of the publication in their field of expertise;
- They take public responsibility for their part of the publication, except for the responsible author who accepts overall responsibility for the publication;

PO Box 14428, Melbourne, Vic 8001, Australia +61 3 9919 6100

UNIVERSITY 3. There are no other authors of the publication according to these criteria;

- 4. Potential conflicts of interest have been disclosed to a) granting bodies, b) the editor or publisher of journals or other publications, and c) the head of the responsible academic unit; and
- 5. The original data will be held for at least five years from the date indicated below and is stored at the following **location(s)**:

Name(s) of Co-Author(s)	Contribution (%)	Nature of Contribution	Signature	Date	
Sarah Voisin 45%		Draft and manuscript editing.		0/04/2021	
Alejandro Lucia	5%	Editing and approval of final manuscript.		0/04/2021	
David Bishop	5%	Editing and approval of final manuscript.		0/04/2021	
Nir Eynon	5%	Editing and approval of final manuscript.		0/04/2021	

Updated: September 2019

PO Box 14428, Melbourne, Vic 8001, Australia +61 3 9919 6100

2.1 Chapter outline

The literature review opens with an introduction to the concept of trainability and a comprehensive review of statistical methods proposed to accurately identify trainability following an exercise intervention. We then provide an overview of epigenetics and epigenetic marks. Finally, we provide a comprehensive overview of the most updated literature on epigenetics and exercise.

2.2 Statistical and methodological considerations to accurately identify trainability in exercise studies

Exercise challenges whole-body homeostasis and promotes positive adaptations in the musculo-skeletal system. Skeletal muscle is a plastic tissue rapidly reacting and adapting to internal (e.g. hormones) and external (e.g. mechanical loads) stimuli. Exercise training can be broadly classified into two major categories; 1) Endurance (END), which primarily promotes endurance-specific metabolic adaptations, including increases in cardiorespiratory fitness (CRF) and mitochondrial function; and 2) Resistance (RES), which primarily promotes mechanical adaptations, including muscle remodelling and increases in muscular mass and strength. Physiological adaptations are specific to the training modality, intensity, and duration of exercise. Furthermore, responses to exercise both END and RES training varies between individuals, resulting in individuals being classified based on their degree of response to a specific training regime (i.e. "high" or "low" responders)²⁹.

2.2.1. Responders, non-responders, and the concept of trainability

The terms responders, non-responders, and adverse responders^{10,29} to exercise training are relevant when a threshold, whether purely theoretical or empirically determined, is defined to split individuals into those categories¹⁰. Using the concepts of high/extreme, modest, and low-responders implies that no formal threshold has been used to classify individuals into categories, but individuals are instead grouped depending on their relative degree of response and those groups are then compared with each other^{10,30}. For some, "responders" are simply those who show a positive response after training (post- minus pre training (Δ) > 0), as opposed to non-responders who show no response or a negative response ($\Delta \leq 0$), regardless of its magnitude^{2,31}. Others have

The epigenetic basis of variable response to exercise training

considered individuals to be responders if they show a response with a magnitude beyond the random error in individual measurement, but there is no uniform formula to calculate this threshold^{29,32–34}. This random error in individual measurement is distinct from withinsubject variability and consists of natural biological day-to-day and technical variability. Finally, some have used practically meaningful thresholds, such as the "smallest worthwhile difference"^{35,36} or the "minimum clinically important difference"³⁷, above which individuals are considered to be responders^{6,38}. Studies that are more clinical or performance-oriented require target outcomes, such as a significant improvement in a patient's survival rate or an athlete's personal best time to judge the efficacy of an intervention for a particular individual. However, such dichotomization (i.e., responder/ non-responder) is not appropriate in studies aiming to uncover modulators of the variable response to exercise training. Indeed, the transformation of the continuous spectrum of exercise responses into a dichotomous variable leads to unnecessary loss of information and statistical power^{39,40}.

The adaptation of a given individual to specific exercise training at any given occasion is modulated by the interaction between intrinsic factors (e.g. genetics, epigenetics, age, sex) that dictate the *potential* for improvement, and extrinsic factors (e.g. sleep, diet, stress, physical activity) that bring about the actual improvement. The potential for improvement is commonly referred to as *trainability*, and can be defined as the *consistent* response of a given individual to a specific intervention^{5,30,40,41}. However, the presence of random variability in data collected during exercise training studies in humans hinders the identification of such components^{5,6,10,35,38,42}. The key to quantifying trainability is to isolate sources of variation in exercise training responses. The extrinsic factors that largely modulate exercise responses are challenging to measure in humans, since they fluctuate constantly and vary within subjects. Specific study designs and methods^{10,40,43} have been proposed to overcome this barrier, and each will be discussed in detail by the following section (Section 2.2.4.). To date, only one study has implemented some of those designs, looking only at VO_{2max} response to exercise intervention¹⁰. If exercise physiologists wish to use physiological and molecular data to prescribe personalized exercise programs, well-designed exercise studies addressing all sources of variability should be implemented. Specifically, repeating the intervention on the same participants (for short interventions), or assessing the outcome multiple times during the intervention at regular intervals (for long intervention), allows measuring

The epigenetic basis of variable response to exercise training

within-subject variability and disentangle it from true trainability. This is both challenging and costly, but it is guaranteed to save a large amount of resources and effort as the obtained results are reliable. Given the prime importance of study design to successfully estimate trainability, we will now provide a comprehensive overview of the sources of variability that can be present in exercise studies.

2.2.2. Sources of variability

The observed variability in collected data is always a mix of true variability between individuals and random variability due to experimental and environmental factors. The key is to separate the variability of interest from the unwanted variability but obtaining a high signal-to-noise ratio can be difficult. We first describe hereinafter the different sources of variability that are typically present in exercise training studies, and then discuss some of the methods used to distinguish trainability from noise.

From previous work on the topic^{5,6,10,35,38,42} we have identified six sources of variability that contribute to the observed variance in a typical exercise training dataset (**Figure 2.1**). Note that these sources of variability are used from a statistical perspective, meaning that they contribute to the variability observed not only in individual training responses but also in the whole dataset.

In this exercise training study, we have represented the hypothetical case where individuals underwent a control period, an exercise intervention, and a second intervention after an adequate washout period. We plotted the fitness levels of two individuals (black dots), as well as their mean (black bars). At the beginning of the control

The epigenetic basis of variable response to exercise training

period, we also represented the scenario where their fitness levels were tested twice a few days apart (black crosses) and the black dots are the average of these repeated tests. We have represented each source of variability with blue arrows and a number. 1) Technical variability, due to machine and experimenter errors; 2) day-to-day biological variability, due to fluctuations in life components (sleep, diet, circadian rhythms) between individuals. 1) and 2) are illustrated by the difference between the black crosses; 3) variability due to different baseline values between subjects and measured with a random intercept in a linear mixed model; 4) variability due to the intervention, which is measured with a fixed effect in a linear mixed model (control vs intervention); 5) variability in response between individuals (trainability), which is measured with a random slope for each individual in a linear mixed model; 6) within-subject variability, which is the variability observed when a subject undergoes the same intervention again, and it can be estimated by comparing the slopes in the first and second interventions. The slopes can be made more accurate by doing multiple tests a few days apart for a given time point, or by doing repeated tests at regular time points during the course of the exercise intervention.

1. *Technical variability*^{10,29,32,44}: This variability derives from differences in machine calibration, protocol, and experimenter. Its magnitude depends on the measured parameter(e.g., small magnitude for VO_{2max}^{45} and large magnitude for mitochondrial respiration¹⁹); it is theoretically identical for all individuals. It can be illustrated by the question: what would have happened if the outcome had been measured on a different machine, with a different protocol, or by a different person?

2. *Biological day-to-day variability*^{4,10,29,32}: This variability derives from differences in environmental factors, such as sleep quality, diet, weather, circadian time, psychological stress, or menstrual cycles between individuals, influencing the outcome. It is individual-specific. For instance, shift workers may display particularly large variability in performance during a test, as their sleep patterns often are erratic⁴⁶. It can be illustrated by the question: what would have happened if the outcome had been measured on a different day, at a different time of the day, or after a different meal?

3. *Variability due to exercise training, regardless of the individual:* This source of variability is due to the intervention, as opposed to no intervention at all (i.e., control condition). It corresponds to the mean effect of the exercise intervention on all the individuals but does not contribute to the variability in individual training responses. It can be illustrated by the question: what would have happened to the phenotype if it had been measured after a similar period as the exercise-training program but without any intervention (i.e., control period)?

4. *Variability due to the individual, regardless of exercise training*: This source of variability is due to individuals having different mean levels. In a heterogeneous cohort (e.g., large age or fitness range), it can be a major source of variability and needs to be taken into consideration, by adding a random intercept to a statistical linear mixed model, for example. It is a source of variability that is independent from the exercise training (i.e., it is not an interaction between individuals and exercise training and does

The epigenetic basis of variable response to exercise training

not correspond to trainability). It can be illustrated by the question: what would have happened if the outcome had been measured on individual A instead of individual B?

5. Variability in responses to the same exercise training between individuals: This variability corresponds to the interaction between each individual and the training and should not be mistaken for the abovementioned variability. Even if the exercisetraining program had an average effect on all individuals, each individual showed a consistently better (or worse) response than the average response. This is the variability of interest (trainability, individual training response^{5,10} and its magnitude is debated^{10,38}, as it often is impossible to disentangle from within-subject variability. It can be illustrated by the question: what would have happened to the changes in outcome following the exercise-training program, if it was individual A instead of individual B?

6. *Within-subject variability*: This source of variability is difficult to capture; however, Hecksteden et al. have discussed possible approaches to account for it^{5,10}. We currently do not know the magnitude of this variability, as it requires implementing repeated interventions or repeated tests during the intervention. It can be illustrated by the question: what would have happened to the changes in outcome in individual A if we applied the same training again?

The ideal exercise training protocol allows separating all these sources of variability, but it can be very resource- and time-consuming^{5,35,42}. Although we can easily estimate the magnitude of technical and biological day-to-day variability by performing a reliability trial, we currently have little information on the relative magnitudes of trainability and within-subject variability, which means that all observed between-subject differences in response to exercise training could be just noise. Next we will review the only two studies we are aware of that provided insights into the magnitude of within-subject variability^{10,47}.

2.2.3. Within-subject variability is an important yet overlooked source of error

Two recent studies have elegantly provided some insights into the magnitude of within-subject variability^{10,47}. In the first study, 12 young (28.5 \pm 3.8 years old), moderately fit (VO_{2max} = 40.3 \pm 4.3 mL·min⁻¹·kg⁻¹) men and women underwent two training periods separated by a washout period of 9 months. During the first training period, participants performed three sessions of knee extensions per week for 12 weeks

The epigenetic basis of variable response to exercise training

with one leg only, whereas in the second training period (after a 9-month washout period), they trained both legs⁴⁷. This design is close to a crossover study with repeated intervention where participants are assigned successively to the control condition (the untrained leg in the first training period), and then in the intervention condition (the trained leg in the first training period) with a repetition of the intervention (the trained leg in the second training period). This approach makes it possible to quantify most sources of variability, including between-subject variability, subject-by-training interaction (trainability), and within- subject variability. This study has an advantage compared with a crossover study, because here, any lifestyle-related event that could affect muscle responses during either the "control" or the "intervention" periods would have had the same effect on both legs, thus significantly reducing random variation⁴. Although the focus of this study was on skeletal muscle memory at the transcriptional level⁴⁷, it was interesting to observe individual responses to the two repeated training periods. Using the Digitizelt software (Köln, Germany), we extracted individual values from the Supplementary Data of the study⁴⁷ and quantified within-subject variability (Figure 2.2, **Table 2.1**). As noted by the authors⁴⁷, changes in performance at a 15-min optimal performance test, in 3-hydroxyacyl-CoA dehydrogenase (β-HAD) activity and in citrate synthase (CS) activity, were surprisingly poorly correlated between the two training periods, which was reflected in our linear mixed model (Table 2.1). The magnitude of residual error (containing within-subject variability) was large compared with the magnitude of trainability (see 90% confidence interval in Table 2.1), and we did not detect significant trainability for any outcome (all p-values >0.05 in likelihood ratio test).

Figure 2.2. Correlation between changes in performance, citrate synthase (CS), and 3-hydroxyacyl-CoA dehydrogenase (β-HAD) in the same leg of the same individuals after the first and second training periods in Lindholm *et al.* (n= 12)⁴⁷.

	∆Performance (W)		Δβ-HAD activity (mM/kg/min)		ΔCS activity (AU)	
	Estimate (90% CI) [†]	p-value*	Estimate (90% CI) [†]	p-value*	Estimate (90% CI) [†]	p- value*
Random effect: ID x Condition (trainability)	2.33 (1.30; 5.59)	0.91	2.94 x 10 ⁻¹² (1.64 x 10 ⁻¹² ; 7.06 x 10 ⁻¹²)	1	9.44 x 10 ⁻¹⁵ (5.28 x 10 ⁻¹⁵ ; 2.27 x 10 ⁻¹⁴)	1
Residual error (incl. within- subject variab)	10.5 (5.87; 25.3)	NA	37.7 (21.1; 90.7)	NA	59.9 (33.5; 144.1)	NA

Table 2.1. Estimates of trainability and within-subject variability in Lindholm et al., 2016

Individual changes in performance, in 3-hydroxyacyl-CoA dehydrogenase (β -HAD) activity, and citrate synthase (CS) activity were extracted from the Supplementary data of Lindholm *et al.*⁴⁷. Data were analysed in R (R Core Team, 2017) using the *lmerTest* package⁴⁸ to estimate the relative magnitudes of trainability (i.e. subject-by-training interaction) and within-subject variability (i.e. included in the residual error). We used the Δ in outcome as the dependent variable; we used condition (training/no training) as fixed effect; we used random intercepts and random slopes (subject-by-training interaction) as random effects. Visual inspection of residual plots did not reveal any obvious deviations from homoscedasticity or normality.

*P-values for significance of random effects, obtained with a likelihood ratio test as implemented in the ranova function of the *lmerTest* package.

[†]Estimates of the variances were given in the output of the lmer function in R, and 90% confidence intervals were obtained with the following formula where n = sample size and assuming a χ^2 distribution of sampling variance as per Hecksteden *et al.*¹⁰:

90% CI:
$$\frac{(n-1)*Var}{\chi_{0.05}} < Var < \frac{(n-1)*Var}{\chi_{0.95}}$$

However, this analysis has limitations because of the study design. Contrary to a 2x2 classic crossover design, the "control" condition was only administered once and in a specific order, making it impossible to formally test for potential carry-over effects. Although there was no evidence for a training-induced skeletal muscle global transcriptome memory in the original study⁴⁷, there could be a residual effect at the epigenetic level that was not investigated. Furthermore, there could also be crosseducation from one leg to the other⁴⁹. Finally, we could not separate random variability in individual measurements (i.e., technical, and biological day-to-day variability) from trainability, as the reliability of performance measures in this study is unknown. It should however be noted that β -HAD and CS activities have technical variability <2 units; samples were all run in duplicates, and rerun if necessary until a reliable measure was obtained, thereby reducing the possible influence of technical variability²⁶, but not excluding the possibility of biological variability.

In the second study, 20 men and women underwent a one-year exercise-training program that consisted of walking or jogging 3 days·week⁻¹ for 45 min with a constant

The epigenetic basis of variable response to exercise training

heart rate prescription. Participants were tested for VO_{2max} at baseline, 3, 6, 9, and 12 months, which allowed building a progress curve to analyse each individual slope (trainability). Trainability was estimated accurately for each individual, but the SDs of the segmental changes (within-subject variabilities) were large compared with the overall progress they made¹⁰.

The insights provided by the aforementioned studies suggest that within-subject variability is an important source of variability. We argue that most exercise studies do not yield trainability estimates that are accurate enough to warrant further investigation. Some protocols have been proposed to estimate individual responses to exercise training, but they do not all address the key issue of within-subject variability.

2.2.4. Methods to estimate trainability

The following list of methods have been proposed recently and discussed by others^{5,10,35,42,43}. In this section, we discuss these methods and highlight their strengths and weaknesses. In addition, we have added a method that has not been discussed thoroughly in the past, which involves a control period before the intervention in the same participants.

1. Separate Control Group: The presence of a separate, independent control group provides an estimate of the variability because of the exercise intervention⁴². Involving a control group allows estimating the magnitude of interindividual variability in the absence of exercise training and is essential to know whether the interindividual variability in the presence of exercise training is indeed due to the training^{6,35,38}. The variability in change scores in the control group is subtracted from the variability in change scores between individuals, according to the following formula:

$$SD_{true} = \sqrt{SD_{inter}^2 - SD_{control}^2}$$

where SD_{true} is the true interindividual variability in response to the intervention, SD_{inter} is the observed interindividual variability in change scores in the exercise group, and $SD_{control}$ is the observed interindividual variability in change scores in the control group (**Figure 2.3**). This equation is based on the assumption that 1) both SD_{inter} and $SD_{control}$ contain between-subject variability (i.e., the variation between participants given the same condition) and within-subject variability (i.e., the variation from occasion to

occasion when the same individual is given the same condition) and 2) the only extra source of variability contained in SD_{inter} is the true interindividual variability in response to the intervention.

 $\Delta_{VO2max} = Condition + Baseline VO_{2max} + Age + random(ID) + random(ID + Condition) \\ VO2max = Timepoint + Age + random(ID) + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID) + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID) + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID) + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID) + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID) + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID) + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID) + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID) + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID) + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID + Timepoint) \\ VO2max = Timepoint + Age + random(ID + Timepoint) \\ VO2max = Timepoint + Timepoint +$

Figure 2.3. Protocols to quantify interindividual variability in response to exercise training.

Using maximum oxygen uptake (VO_{2max}) as an example phenotype, we have represented the different methods to estimate trainability, namely the control group, control period, reliability trial, repeated testing, and repeated intervention methods. We also have written down the statistical calculations associated with each method to obtain trainability estimates at the group level or the individual level.

It should, however, be noted that SD_{true} estimated with this approach may overestimate trainability because of residual within-subject variability in the exercise training group. Indeed, the response to training may vary from individual to individual (trainability), but the response to training also may vary from occasion to occasion for a given individual (within-subject variability), and this would lead to an inflation of variance within the exercise group⁴². The control group method is nonetheless useful in medium (3–6 months) to long (>6 months) interventions, where it is possible to run both
the exercise and control groups at the same time, but it significantly increases the required sample size. Moreover, the use of a control group in long exercise training studies can pose ethical issues when individuals are required to remain inactive for a long period of time⁵.

2. Control Period Before the Intervention: One study design that has not been discussed thoroughly is the possibility to ask the participants to undergo a control period before starting the exercise program. This is slightly different from a crossover trial because the "treatments" (control/ exercise) are administered in a particular order (first control, then exercise). Indeed, the appropriate washout period for exercise training studies is difficult to estimate, so this would be the only way to avoid the potential carry-over effects of exercise training. This method is similar to the separate control group, but the same participants undergo a control period before commencing the exercise intervention. The "true" variability in exercise response is then calculated using the formula 40 :

$$SD_{true} = \sqrt{SD_{inter}^2 - SD_{control}^2}$$

Where SD_{inter} is the observed inter-individual variability in change scores after the exercise period and $SD_{control}$ is the observed inter-individual variability in change scores after the control period. This method removes any variability between the control group and exercise group due random sampling of individuals, but this method suffers from the same shortcomings as the control group method.

3. Reliability Trial: When neither a control group nor a control period is available, some resort to reliability trials that consist in repeating the same exercise tests a few times and a few days apart (e.g., exercise test to exhaustion), repeating the same test multiple times in a row on the same machine (e.g., mitochondrial respiration), or running biological samples in technical duplicates or triplicates (e.g., gene expression) (**Figure 2.3**). All these tests provide estimates for technical variability, and the exercise tests also include biological day-to-day variability. Although repeated tests are not needed at each time point, averaging duplicates or triplicates increases the accuracy of individual measurements. Second, even if this method cannot directly estimate SD_{true}, between-test variability can be used to calculate a threshold above which individuals may be classified as "responders." It should be noted that the accuracy of classification in the responder and

non-responder categories highly depends on the reliability of the test (i.e., a noisy test cannot detect true changes with certainty when they are small). All the calculated cut-offs are based on the so-called typical error of measurement (TE_M), calculated with the following formula ⁵⁰:

$$TE_M = \sqrt{\frac{\sum_{1}^{n} (x_{i1} - x_{i2})^2}{2n}}$$

where n is the sample size and x is the measurement of interest.

 TE_M could also be called "within-subject standard deviation," as it corresponds to the square root of the sum of the squared differences of replicates divided by twice the number of pairs of replicates. Importantly, TEM includes the variability due to machine calibration and human error, so it is likely to be specific to a given laboratory; for physiological and performance tests, it also includes day-to-day biological variability, so it is likely to be specific to the studied population (e.g., young/old, trained/untrained). Therefore, we suggest that studies including a reliability trial should assess TEM instead of extracting it from the literature.

4. Repeated Intervention with a Control Period: Theoretically, the best method to separate trainability from within-subject variability is to repeat the exercise intervention on the same participants, after an adequate washout period (**Figure 2.3**). This is achieved by making the participants undergo 1) a control period, 2) an exercise period, 3) a washout period, 4) another exercise period, and fitting the following linear mixed model to the data:

Δ = Condition + Covariates + random (ID) + random (ID * Condition)

 Δ is the change score in the measure outcome, Condition is a dichotomous variable corresponding to control/exercise, Covariates is any relevant covariate that can influence Δ change (such as age), random ID is a random effect that allows each individual to have his or her own intercept, and random ID*Condition is a random effect that allows each individual to have his or her own slope (trainability). Each individual slope corresponds to the trainability estimate for each individual, separated from within-subject variability that is contained in the residual variability of the model. The residual variability also will contain technical and biological day-to-day variability, and only a reliability trial can estimate it.

Although this is the most compelling way to obtain individualized trainability estimates, it has many practical limitations. First, it is extremely time- and resource-consuming, because participants are required to remain in the study for two training periods separated by a washout for whose duration there is no guidelines. Second, the high risk of participant dropout would not allow to achieve a large sample size and the sample could end up being biased if low-responders were more likely to quit. Third, a single repetition of the exercise training may not be sufficient to obtain good estimates of trainability if within-subject variability is large, and there may be long-lasting effects of the first intervention (e.g., at the epigenetic level) that are difficult to account for. A repetition of the exercise training program is therefore recommended for short exercise interventions (<2 months), where participant attrition is kept to a reasonable amount and a short washout period is likely to be sufficient.

5. *Repeated Tests During the Exercise Training Program*: An elegant, recently proposed way to circumvent the need for a repeated intervention is to perform additional tests on subjects during the exercise-training period, provided that the training period is long enough to allow for repeated assessments (Figure 2.3). This permit building a slope of the progress for each individual and examining segmental changes to partition trainability from within-subject variability. The distance between individual points and the slope represents this within-subject variability, and the further the points are from the slope, the greater within-subject variability is (and the less accurate the slope is). A linear mixed model is an appropriate way to analyse these data, as follows:

Outcome = *Timepoint* + *Covariates* + *random*(*ID*) + *random*(*ID* * *Condition*)

This random intercept and slope model estimate the time course of outcome changes for each individual. Of note, nonlinear mixed models also are available when the change in phenotype with time is nonlinear (such as when a plateau is reached)⁵, and the autocorrelation between measurements can be accounted for⁵¹. A brilliant twist of this protocol is that without repeating the intervention, trainability (the magnitude of individual slopes) and within-subject variability (variability between different segments of individual slopes) can be partitioned. This method is more time- and resource-efficient than any of the abovementioned methods, but it seems only appropriate for medium to long interventions (e.g., >2 months). Repeated tests are hardly feasible during short interventions where they are likely to interfere with the training itself.

Finally, random noise is prevalent in exercise training studies, but elegant protocols have been proposed recently to isolate individual responses to exercise training. The existence of the terms "responders" and "non-responders" to exercise is increasingly and rightfully being challenged, as individuals originally identified as non-responders following a specific training protocol show actual improvements if the type of training is changed³³, if the frequency of training is increased⁵², or if the training intensity is increased^{53,54}. The terms "responders" or "non- responders" are not fundamentally wrong, but because most studies aim to uncover the genetic, epigenetic, and molecular modulators of trainability, such dichotomous classification is not actually precise and reduces statistical power. To our knowledge, no study has performed yet a qualitative comparison of the different methods to quantify trainability. Hecksteden et al. have shown great discrepancy between different approaches to classify individuals into responders and non-responders to exercise training¹⁰, future studies are necessary to perform simulations with known trainability and variability parameters to help clarify which protocols are best adapted to estimate trainability. Uncovering the modulators of trainability would generate relevant and progressive knowledge^{55,56}, but it is of paramount importance to ensure first that our protocols are accurate enough to measure trainability devoid of within-subject variability.

2.3 Epigenetics

Epigenetics has recently gained much attention as it is both sensitive to environmental stimuli and can affect how our genes are read (**Figure 2.4**). In this section we will present what epigenetics is, and how it might influence exercise training adaptations.

Epigenetics can be defined as the structural adaptation of chromosomal regions so as to register, signal or perpetuate altered activity states⁵⁷. Epigenetics can alter gene expression, without changing the DNA sequence, while being remodelled by environmental factors. For example, exposure to heavy metals and pesticides, regular exercise, diet, smoking, and obesity can all remodel the epigenome in a tissue-specific manner^{58–60}. One interesting feature of epigenetic modifications is that they are not confined to the initial cells that have been affected, but they can be passed on to daughter cells during mitosis and meiosis⁵⁸. Epigenetic modifications often involve the addition of chemical groups to the DNA or to proteins, such as methylation, acetylation,

phosphorylation, ubiquitylation and sumoylation⁵⁸. Since Waddington first coined the term "epigenetics" in 1956⁶¹, the definition of epigenetics has considerably evolved and there are ongoing discussions regarding which marks should be considered "epigenetic" because some marks are not heritable through cell divisions^{62,63}, and some epigenetic modifications quickly disappear once the initial stimulus is gone^{64–66}. However, it is generally accepted that epigenetic modifications fall broadly into three categories: DNA methylation, histone modification, and microRNAs (miRNAs).

An important epigenetic modification and perhaps the most studied one is **DNA methylation**⁶⁷. DNA methylation is the covalent modification of a cytosine base usually located in the dinucleotide sequence 5'CpG3' (cytosine and guanine separated by a phosphate)⁵⁶. Global DNA methylation patterns are established during embryogenesis in mammals⁶⁸, and is accurately replicated after cell divisions, and therefore it is often considered a form of cell memory²¹. The enzymes DNA methyltransferases (DNMTs) specifically DNMT3A and DNMT3B are responsible for the addition of methyl group to the cytosine base during de novo methylation. The enzyme DNMT1 is then responsible for maintaining the methyl marks during subsequent cell divisions⁶⁹. Whether DNA methylation alters gene expression is highly dependent on the genomic location within a gene (i.e. promoter, gene body, or enhancer), and the density of CpGs. For example, increased DNA methylation at CpG-dense promoters tends to lead to a decrease in gene transcription⁷⁰. In addition, the silencing of a gene can lead to the accumulation of DNA methylation at the promoter of said gene, further locking it into a silent state $^{71-76}$. DNA methylation can also be removed actively (demethylation) by Ten-eleven translocation (TET) enzymes^{75,77}. Further, there is a cross-talk between DNA methylation and other epigenetic processes such as histone lysine methylation and acetylation⁶⁹. DNA methylation levels are altered in several diseases, including cancer⁵⁸ and metabolic syndrome⁶⁰.

In eukaryotes, DNA tightly coils around proteins called *histones* to form the chromatin^{78–80}. Histones have (N)- and (C)- terminals tails that protrude from the centre of the nucleosome and can interact with adjacent nucleosomes and linker DNA⁸⁰. These histone tails can undergo post-translational modifications (acetylation, phosphorylation, methylation and ubiquitylation) that alters chromatin structure and modifies the accessibility of transcription factors and machinery to the DNA⁸¹. When chromatin is tightly coiled in heterochromatin, gene expression is almost non-existent⁸². When

chromatin uncoils and become less tightly folded in euchromatin, portions of DNA become more accessible for transcription. Epigenetic modifications are responsible for the transformation of chromatin structure, inhibiting genes or opening frames for expression. Histone tails can also serve as a binding site for other proteins (non-histones) to chromatin⁸⁰. Active genes typically display high levels of lysine acetylation on the tails of histones H3 and H4, trimethylation of H3 lysine's 4, 36 and 79, and ubiquitylation of H2B⁸⁰. Conversely, gene that have been silenced typically display trimethylation of H3 lysine 9 and 27, and ubiquitylation of H2A lysine 119⁸⁰.

Gene expression can also be regulated by ncRNAs⁸³. The best characterized ncRNAs are microRNAs (miRNAs) that are ~22 nucleotides long and mediate post-transcriptional gene silencing⁸⁴. miRNAs are non-protein coding molecules that act by base-pairing to the 3'-untranslated regions of the target mRNAs and repress protein synthesis⁸⁵. Approximately 50% of protein-coding genes are regulated by miRNAs⁸⁶.

Contrary to DNA mutations, epigenetic modifications can be reverted. This was demonstrated in study by Barrès (2012) and colleagues, where L6 myotubes cells were treated with caffeine. Caffeine exposure decreased promoter methylation of PGC1-a, TFAM, MEF2a, CS, and PDK4, inhibiting gene expression on those sites. However those changes were reverted when cells were treated with H_2O_2 , eliciting hypermethylation²². Exposure to pollutants, drugs and lifestyle components (diet, exercise, smoking) have a major impact on epigenetics, which was demonstrated in a twin studies^{87,88}. Monozygotic (MZ) twins have very similar DNA methylation patterns. However, epigenetic variability amongst twins increases with age and the greatest differences are observed in twins who differed most in lifestyle⁸⁸. Differences in epigenetic patterns between twins can be observed in several tissues, such as lymphocytes, epithelial mouth cells, intra-abdominal fat and skeletal muscle⁸⁷. Furthermore, rates of disease discordance among MZ twins are usually over 50%⁸⁸, which suggests that epigenetics may be a significant contributor to a twin's phenotype. While epigenetic patterns are partly heritable89–91, they are also influenced by environmental factors. Thus epigenetics can be considered the crossroads between genetics (nature) and the environment (nurture)92. Epigenetics holds great promise to explain exercise-related phenomena such as the inter-individual variability to similar exercise training, and skeletal muscle memory.

Figure 2.4. Epigenetic modifications after environmental stimuli (e.g. exercise).

2.4 Epigenetics and exercise

Repetitive muscle contractions result in increases in mitochondrial size and number, changes in substrate metabolism, enhanced angiogenesis and hypertrophy of cardiac and skeletal muscle fibres⁹³. Adaptations to exercise occur in a coordinated time frame and are mediated by a plethora of transcriptional, translational, and post-translational regulators^{94,95}. In the last two decades, there have been significant advances in research regarding the cellular and molecular adaptations to exercise training in muscle¹. However, despite ongoing investigations, the molecular mechanisms responsible for these adaptations are yet to be fully understood^{1,96}. Specifically it is not well understood if and how epigenetic signals can mediate physiological adaptations to exercise training^{56,97}. Next, we will review what has been done so far in the field of epigenetics and exercise. For easy comprehension we have subdivided each section based on epigenetic markers.

2.4.1. Histone modifications and exercise

Only one study focused on histone modifications following exercise. This study investigated changes in H3K36 and H3K9/14 acetylation in 9 men following an acute bout of endurance exercise⁹⁸. While H3K9/14 acetylation was not altered, H3K36 acetylation increased by 64% from baseline (P<0.05) immediately after exercise. As H3K36 acetylation regulates transcriptional elongation, these results suggest that exercise-induced chromatin remodelling is associated with enhanced transcription. While there was no change in global HDAC activity (P =0.31), two kinases that can induce nuclear export of HDAC4 and 5 (AMPK and CaMKII) showed signs of activation. This data delineates a signalling pathway that might mediate gene transcription in human skeletal muscle in response to exercise⁹⁸. However, since this information is based on one study, further investigation is required to validate these findings and to uncover novel exercise-related histone modifications.

2.4.2. MiRNAs and exercise - candidate gene approach

MiRNAs act in a tissue-specific manner and when exclusively expressed in skeletal muscle are called myomiRs. A total of 10 miRNA studies were included and divided into candidate and high-throughput studies (Table 2.3). A vast majority of studies focused on candidate miRNA and expression following exercise training as it is simple and cost-effective way to analyse miRNAs. Six of the papers focused on the effect of an acute bout of exercise (endurance⁹⁹⁻¹⁰¹, resistance^{102,103} and concurrent exercise¹⁰⁴), two studies conducted both an acute intervention and chronic exercise training intervention^{99,101} (10 days and 12 weeks of training, respectively). In addition three studies investigated the effect of chronic exercise training on miRNA expression^{105–107}, and one study compared powerlifting athletes to healthy controls¹⁰⁸. Keller et al.¹⁰⁵ conducted 6 weeks of endurance training, while Zhang et al.¹⁰⁶ and Mueller et al.¹⁰⁷ conducted 20 weeks and 12 weeks of resistance training, respectively. Seven studies were done in men, in addition Zhang et al.¹⁰⁶ and Mueller et al.¹⁰⁷ included women in their cohorts. Each study had a small sample size (8-28 participants), with the largest combined cohort of 35 participants undergoing resistance training^{106,107}. MiRNA expression changes following exercise training were dependent on the mode and length of the intervention. After acute exercise, only miR-1 and miR-133a, known modulators of muscle proliferation and differentiation¹⁰⁹, were consistently upregulated in candidate

miRNA studies (p<0.05)^{99,101,103}. However after chronic exercise miR-1 and miR-133b were downregulated in a majority of studies^{99,105–107}. Only two studies reported increased expression of miR-133b and miR-181 which is thought to be associated with increased glucose homeostasis^{101,110}, and another study found a decrease in miR-23¹⁰⁰ involved in myogenic processes¹¹¹. A case-control study comparing powerlifters to healthy controls¹⁰⁸ reported a unique miR expression profiles that was able to distinguish powerlifters from healthy controls based on a five miR signature (miR-126, -23b, -16, -23a, -15a). While multiple miRNAs were identified to be associated with exercise, the results were heterogeneous. Discrepancies between studies could be due to variability in biopsy time, low statistical power, and differences in exercise intensity and duration. In addition, variable amount of total RNA can influence cDNA synthesis efficiency¹¹², and the use of different housekeeping genes (small RNA to 18s) for normalisation in studies could also generate variable findings¹¹³.

Very few studies attempted to link changes in miRNA expression to exercise trainability. Russel *et al.*¹⁰¹ reported correlations between VO_{2peak} and Peak Power Output (PPO) with changes in miRNA expression. Baseline VO_{2peak} positively correlated with miR-181 (r= 0.70, P=0.03), while baseline PPO negatively correlated with miR-23a (r= -0.79, P=0.012) and post training PPO negatively correlated with miR-31 (r= -0.74, P=0.042). Zhang *et al.*¹⁰⁶ reported a strong positive correlation between the change in knee strength following resistance training and the change in miR-133a, miR-133b and miR-206 expression (p<0.01). In summary, expression changes of candidate miRNAs were more consistent in chronic than acute studies, and appear to be dependent on the exercise modality, intensity, and duration. Changes in expression of miRNA following exercise training may underlie training adaptations, but more work is needed to confirm this.

2.4.3. MiRNAs and exercise – high-throughput analyses

With advances in technology, high-throughput miRNA expression analysis has become more readily available (**Table 2.4**) with technologies ranging from microarrays, digital multiplex to miRNA-seq, allowing hundreds of miRNAs to be analysed simultaneously. However, with such different platforms, results may yield differences in expression that might simply be due to variability between techniques. All highthroughput studies have been conducted after an acute bout of exercise. Of the 4 studies,

3 used targeted miRNA arrays^{114–116} and 1 study conducted miRNA sequencing¹¹⁷. Three of the studies were based on resistance exercise (men, n=26)^{115,116,118}, and one following endurance exercise (men and women, n=6)¹¹⁷. The range of miRNAs that were differentially expressed across 3 studies varied from 26 to 102 after resistance exercise^{115,116,118}. Interestingly, Zacharewicz et.al.¹¹⁶ identified that 7 of the 26 miRNAs may regulate cellular growth and proliferation pathways and another 9 miRNAs may regulate the Akt-mTOR signalling pathway, a central regulator of muscle protein synthesis and muscle growth¹¹⁹. McLean *et.al*.¹¹⁷ found 13 miRNAs that increased after endurance exercise (p<0.001), and several of those miRNAs belonged to the miR-378 family. This family of miRNAs is embedded in the first intron of $PGC-1\beta^{120}$. Ogasawara et al. was the only study that investigated genome-wide miRNA expression changes following chronic exercise and found that the expression levels of 102 miRNAs were altered after chronic resistance exercise training $(p < 0.05)^{115}$. Interestingly 26 miRNAs were differentially regulated in high vs low responders for hypertrophy¹¹⁵. This further consolidates the candidate miRNA studies that specific miRNAs change following acute (and perhaps chronic) exercise, although the specific function of the miRNAs in exercise trainability remains to be elucidated.

	Author	D'Souza <i>et</i> al.	Fyfe <i>et al</i> .	Rivas <i>et al.</i>	Russell <i>et al</i> .
	Year	2017	2016	2014	2013
	Age	24.6 ± 4.9	27 ± 4	22 ± 1	23 ±
	BMI	28.1 ± 3.3	26.5 ± 2.8	NA	
	Sex	М	R	М	Z
	Sample size	9	∞	8	Q
Ca	Type of intervention	Resistance Training	Concurrent Training	Resistance Training	Endurance training + HIIT
Acute Exerci ndidate Gene A	Length of intervention	1 session (acute)	1 session (acute)	1 session (acute)	1 session (acute) + 10 days of training
se pproach	Biopsy time	Baseline, 2h and 4h	Baseline, 1h and 3h	Baseline and 6 hrs after exercise	Acute: 0h, 3h
	Technique	TaqMan RT-PCR (10ng of total RNA)	TaqMan RT-PCR (20ng of total RNA)	miRNA PCR array from Qiagen (total RNA amount not described)	TaqMan RT-PCR (10ng of total RNA)
	Results	30 miRNAs were analysed, of which 6 were significantly altered by exercise (miRNA -24a, -133a, - 146a, -206, -378b and 486) p=<0.05.	4 miRNAs were analysed, of which miRNA -133a decreased in expression after RE and after HIIT+RE. In addition differences between types of training (HIIT+RE vs RE) and miRNA expression for miRNA -133a, -378 and -486 were also observed. miRNA -1 didn't show any changes.	Of the 60 miRNAs analysed 17 were significantly altered by resistance exercise in young men. Only one miRNA was increased in expression both in young and old subjects after exercise (miR-423- 5p)	Of the 12 miRNAs analysed miR- 1, -133a, 133b, -181 were significantly increased after acute endurance exercise (60%, 35%, 40% and 35% respectively). miR-9, -23a, -23b, and -31 reduced after exercise (50%, 24%, 27% and 28%). Short term training increased

Ogasawara <i>et al</i> .	Russell <i>et al</i> .	Author	EWAS	Ringholm <i>et</i> al.	Nielsen <i>et</i> <i>al.</i>	
2016	2017	Year		2011	2010	
21.4 ± 1.1	24.2 ± 0.9	Age		26.2 ± 5.3	30.5 ± 5.5	
22.4 ± 1	23.3 ± 0.9	BMI		22.8 ± 2.7	<30	
Z	М	Sex		М	Z	
6	10	Sample size		12	10	
Resistance training	Resistance training	Type of intervention		Endurance	Endurance training	
12-week	1 session (acute)	Length of intervention		1 session (acute)	1 session (acute) + 12 weeks	
Baseline, +3hr, after 12weeks	NA	Biopsy time		Baseline, immediately after, +3h	Baseline, +1hr, +3h. Before and After intervention	
Digital multiplex Nano string nCounter human miRNA expression	TaqMan Array Human MicroRNA A+B Cards version Set v3.0 (total RNA amount not described) GEO:NA	Technique		TaqMan RT-PCR (total RNA amount not described)	TaqMan RT-PCR (10ng of total RNA)	
Analysed patterns of 800 miRNAs before and after acute exercise and 12-week exercise. Expression levels of 85 and 102 miRNAs were	26 miRNAs expression were significantly changed by age, exercise, or a combination of both.	Results		Only miR-23a had a decrease of 27% (p<0.05) in response to exercise. miR-1, -29b, -133a did not change in response to exercise.	After the acute exercise miR-1 and -133a increased in expression(p<0.05). After chronic exercise all miRNAs showed a decrease in expression. (mir-1 (32%, P <0.05), mir-133a (23%, P <0.01), mir-133b (19%, P <0.05) and mir-206 (49%, P <0.01)). Such levels returned to baseline after 2- weeks.	miR-29b by 210% and decreased miR-31 by 35%.

-	The epigenet. response to e	ic basi. xercise	s of va e train	riable ing							
										assay (10-30ng of total RNA) GEO: NA	altered after acute and chronic exercise respectively (p<0.05).
	Zacharewicz et al.	2014	24.2 ± 0.9	23.3 ± 0.9	М	10	Resistance training	1 session (acute)	NA	TaqMan Array Human MicroRNA A+B Cards version Set v3.0 (350ng of total RNA) GEO: NA	26 miRNAs were regulated by age or exercise. Of those 7 were differentially regulated by age and exercise, and other 7 miRNAs were regulated by exercise in either young or older subjects.
	McLean <i>et</i> <i>al.</i>	2015	33 ± 2	27.2 ± 0.8	9M/ 5F	6	Aerobic exercise (cycling)	1 session (acute)	Baseline, 30min post exercise	microRNA sequencing - Illumina HiSeq 2000 (total RNA amount not described) GEO: GSE66334	13 miRNAs increased in expression after exercise. Only 2 miRNAs decreased expression after exercise miRNA -144-5p and -144-3p, but such decrease was not statistically significant.
	Chronic Exer	cise									

Candidate G	ene App	roach								
Author	Year	Age	BMI	Sex	sample size	Type of intervention	Length of intervention	Biopsy time	Technique	Results
Russell <i>et al.</i>	2013	23 ± 5		М	6	Endurance training + HIIT	1 session (acute) + 10 days of training	Acute: 0h, 3h	TaqMan RT-PCR (10ng of total RNA)	Of the 12 miRNAs analysed miR- 1, -133a, 133b, -181 were significantly increased after acute endurance exercise (60%, 35%, 40% and 35% respectively). miR-9, -23a, -23b, and -31 reduced after exercise (50%, 24%, 27% and 28%). Short term training increased miR-29b by 210% and decreased miR-31 by 35%.

	r	r		
D' Souza <i>et</i> al.	Mueller <i>et</i> al.	Zhang <i>et al</i> .	Nielsen <i>et</i> al.	Keller <i>et al</i> .
2017	2011	2015	2010	2010
25.1 + 5.8 5.8	80.1 ± 3.7	70.5 ± 2.5	30.5 ± 5.5	29 ± 6
			<30	
М	14 M/1 4F	3M/ 4F	М	Z
28	28	7	10	∞
Powerlifters	Resistance training	Resistance training	Endurance training	Endurance training
Powerlifting athletes (resistance training) vs controls	12 weeks	5 months	1 session (acute) + 12 weeks	6 weeks
Biopsy in athletes and controls	Before and after intervention	Before and after intervention	Baseline, +1hr, +3h. Before and After intervention	Before and after intervention
TaqMan RT-PCR (10ng of total RNA)	Taqman MicroRNA assays (total RNA amount not described)	TaqMan RT-PCR (total RNA amount not described)	TaqMan RT-PCR (10ng of total RNA)	TaqMan RT-PCR (10ng of total RNA)
17miRs species were analysed. 12 were differently expressed (p < 0.05) between groups with 7 being more abundant in powerlifters and five having lower expression. The unique miR expression profiles between groups allow for categorization of individuals as either powerlifter or healthy controls based on a five	miRNA 1 expression was decreased after training.	After RE all miRNAs tended to decrease, however the only significant one was miR-133b $(-26.5 \pm 27.5\%; p = 0.043; ES = -1.46).$	After the acute exercise miR-1 and -133a increased in expression(p<0.05). After chronic exercise all miRNAs showed a decrease in expression. (mir-1 (32%, P <0.05), mir-133a (23%, P <0.01), mir-133b (19%, P <0.05) and mir-206 (49%, P <0.01)). Such levels returned to baseline after 2- weeks.	21 miRNAs were investigated. There was a trend for reduced in miRNA expression after exercise (14 miRNAs vs 7 miRNAs respectively) >1.5FC, FDR <15%.

31

The epigenetic basis of variable response to exercise training

miR signature (miR-126, -23b, -16 -23a, -15a).

EWAS		
AuthorYearAgeBMISexsampleType of sizeLength of interventionBiopsy timeTechnique	iopsy time Technique	Results
Ogasawara et al.201621.422.4M18Resistance training12-weekBaseline, +3hr, after 12weeksDigital multiplex Hano string miRNA expressic assay (10-30ng of total RNA)Baseline, assay (10-30ng of total RNA)Digital multiplex	aseline, 3hr, after 2weeks 2weeks 10-30ng of 10-30ng of 10-3	Analysed patterns of 800 miRNAs before and after acute exercise and 12-week exercise. Expression levels of 85 and 102 miRNAs were altered after acute and chronic exercise respectively (p<0.05).

Table 2.2. Summary of miRNAs study's findings.

Studies highlighted in yellow had both acute and chronic intervention applied.

		ACUT	E EXERCISE - Candidat	e Genes
Author	Type of exercise	No. of participants	miRNAs upregulated	miRNAs downregulated
D'Souza, 2017	Resistance	9	miR-133a , miR-206, miR-486, miR-146a	miR-378, miR-23a
Fyfe, 2016	Concurrent	11	NA	miR-133a
Rivas, 2014	Resistance	8	miR-423-5p	miR-16-5p, miR-23b-3p, miR-24-3p, miR-26a-5p, miR-26b-5p, miR-27a-3p, miR-27b-3p, miR-29a-3p , miR-29c- 3p, miR-30a-5p , miR-30d-5p , miR- 95-3p, miR-107, miR-126-3p, miR- 133b, miR-140-3p, miR-181a-5p, miR- 324-3p, miR-378a-5p
Russell, 2013	Endurance	9	miR-1 , miR-133a , miR- 133b, miR-181a	miR-9, miR-23a , miR-23b, miR-31
Nielsen, 2010	Endurance	10	miR-1, miR-133a	NA
Ringholm, 2011	Endurance	12	NA	miR-23a
		ACUT	E EXERCISE - High-thro	oughput
Russell, 2017 & Zacharewicz, 2014	Resistance	10	miR-486-3p , miR-518b	miR-1201, miR-149, miR-520g, miR- 99b
Ogasawara, 2016	Resistance	6	miR-29a-3p , miR-146a- 5p	let-7b-5p, miR-18a-5p, miR-95, miR- 99a-5p, miR-139-5p, miR-146b-3p, miR-147b, miR-188-5p, miR-192-5p, miR-219-1-3p, miR-298, miR-320a, miR-323a-3p, miR-323a-5p, miR-326, miR-330-3p, miR-382-5p, miR-362-5p, miR-369-3p, miR-382-5p, miR-369-3p, miR-369-5p, miR-378b, miR-380-3p, miR-382-5p, miR-429, miR-429a, miR-486-3p , miR-491-5p, miR-494, miR-506-3p, miR-520a-3p, miR-524-3p, miR-539-5p, miR-548ad, miR-548ag, miR-548ah-5p, miR-548ad, miR-548az, miR-559, miR-548ad, miR-566, miR-577, miR-582-3p, miR- 584-5p, miR-585, miR-587, miR-590- 3p, miR-602, miR-627, miR-653, miR- 664a-3p, miR-744-5p, miR-759, miR- 802, miR-875-3p, miR-1204, miR-1233, miR-1251, miR-1265, miR-1267, miR-

				1269a, miR-1275, miR-1284, miR- 1285-3p, miR-1290, miR-1291, miR- 1301, miR-1321, miR-1322, miR-1323, miR-1324, miR-1468, miR-2113, miR- 2278, miR-3180, miR-3190-5p, miR- 3934, miR-4792
McLean, 2015	Endurance	6	miR-10a-5p, miR-30a- 5p, miR-30d-5p, miR- 22-3p , miR-128, miR- 378a-3p, miR-378a-5p , miR-378f, miR-378g, miR-378i, miR-422a, miR-532-5p	NA
		CHRON	IC EXERCISE - Candida	ate Genes
Russell, 2013	Endurance training	9	miR-29b, miR-1, miR- 133b	miR-31
Keller, 2010	Endurance training	8	miR-125a, miR-183, miR-189, miR-432, miR- 575, miR-616, miR-637	miR-101, miR-133, miR-144, miR-15b, miR-26b, miR-28, miR-29b , miR-338, miR-455, miR-92, miR-98, miR-451, miR-589, miR-1
Nielsen, 2010	Endurance training	10	NA	miR-1, miR-133a, miR-133b, miR- 206
Zhang, 2015	Resistance training	7	NA	miR-133b
Mueller, 2011	Resistance training	28	NA	miR-1
D'Souza, 2017	Powerlifting	28	miR-206 , miR-15a, miR- 16, miR-451a, miR-23a, miR-23b, miR-30b	miR-486, miR-499a, miR-133a, miR- 1, miR-126
	(CHRON	IC EXERCISE - High-th	roughput
Ogasawara, 2016	Resistance	6	miR-19b-3p, miR-21-5p, miR-126-3p, miR-136- 5p, miR-376a-3p, miR- 663b	miR-7-5p, let-7b-5p, let-7c, miR-22- 3p , miR-30d-5p, miR-99a-5p, miR- 141-3p, miR-146b-3p, miR-147b, miR- 192-5p, miR-198, miR-222-3p, miR- 297, miR-323a-5p, miR-325, miR-338- 5p, miR-361-5p, miR-362-5p, miR- 369-3p, miR-369-5p, miR-371a-5p, miR-378d, miR-380-3p, miR-422a, miR-424-5p, miR-429, miR-449a, miR-450b-3p, miR-483-5p, miR-485- 5p, miR-496, miR-499a-3p, miR-502- 3p, miR-502-5p, miR-512-5p, miR- 526b-5p, miR-548ag, miR-548an, miR- 548x-3p, miR-549, miR-550a-5p, miR- 551b-3p, miR-552, miR-555, miR-559, miR-574-3p, miR-577, miR-581, miR- 582-3p, miR-583, miR-584-5p, miR- 596, miR-603, miR-627, miR-628-3p, miR-637 , miR-640, miR-653, miR-

		664-3p, miR-744-5p, miR-802, miR- 875-5p, miR-877-5p, miR-888-5p, miR-891a, miR-920, miR-937, miR- 1185-5p, miR-1202, miR-1206, miR-
		1233, miR-1247-5p, miR-1251, miR- 1267, miR-1269a, miR-1272, miR- 1273f, miR-1275, miR-1283, miR- 1284, miR-1285-3p, miR-1290, miR- 1291, miR-1301, miR-1827, miR-1908, miR-1915-3p, miR-2053, miR-3123, miR-3151, miR-3168, miR-3182, miR-
		3190-5p, miR-3934, miR-4458, miR- 4532

Table 2.3. Summary of miRNAs that were up- or down-regulated after exercise.

miRNAs highlighted in red presented discordant results between studies, while those highlighted in blue presented concordant results.

2.4.4. DNA methylation and exercise – candidate gene approach

Early studies on DNA methylation, and exercise investigated candidate genes involved in exercise adaptations (Table 2.2). Most candidate studies focused on peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1a), the master regulator of mitochondrial biogenesis and fat metabolism⁹⁵. Alibegovic et al. investigated the effect of forced bed rest (10 days) on DNA methylation levels at three CpG sites located in the promoter of PGC-1a, in the vastus lateralis muscle of 20 participants¹²¹. DNA methylation at two of those sites negatively correlated with PGC*la* mRNA expression at baseline (site 816: r =-0.65, P=0.03; site 783: r=-0.59, P=0.04), and methylation at site 816 increased by $\sim 7\%$ following bed rest (P=0.04). After four weeks of aerobic retraining, DNA methylation levels decreased, but did not return to their baseline levels¹²¹. Barres et al. investigated DNA methylation in *vastus lateralis* biopsies after an acute bout of exercise and identified the PGC-1a promoter as differentially methylated after an exercise intervention. In addition, the promoter regions of key genes involved in exercise response (i.e. PGC-1a, TFAM, MEF2A and PDK4) were hypomethylated by ~10% immediately after a strenuous bout of cycling and became remethylated 3 hours after exercise (n=14, p < 0.05). It should be noted that some genes showed a delayed hypomethylation (i.e. PPAR-d, 3h after exercise), and these changes were exercise intensity dependent. Hypomethylation of the promoters was accompanied by increases in mRNA levels either immediately after or 3h after exercise²². Bajpeyi et al. divided 11 healthy young men into high- and low-responders based on their DNA methylation response at an important regulatory region in PGC-1a following an single

bout of exercise¹²². Only high-responders, who had decreased DNA methylation after exercise, showed nucleosome repositioning in the promoter of PGC-1a along with an associated increase in PGC-1a mRNA expression (1.05 ± 0.08 to 1.29 ± 0.11-fold-change). The dichotomising of only 11 subjects included in this study was arbitrary which reduced statistical power and leads to the question whether the conclusions would have been similar using a continuous spectrum of responses. Nonetheless it can be concluded that these candidate-gene studies demonstrated that exercise alters DNA methylation levels at genes involved in muscle metabolism and are associated with a concomitant change in mRNA expression.

2.4.5. DNA methylation and exercise – genome wide approach

Four studies conducted Epigenome-Wide Association Studies (EWAS) investigating genome-wide DNA methylation changes following an exercise training intervention in healthy populations^{25–27,123} (**Table 2.2**). The studies consisted of a 6-month endurance training intervention in 28 middle-aged men with and without family history of Type 2 Diabetes (T2D)²⁵, a 3-month unilateral endurance training in 17 young men and women ²⁶; a 7-week resistance training intervention in 8 young men¹²³; 3 months of endurance, resistance or combined training in 34 young and 26 old men and women²⁷. Results from these studies were highly heterogeneous, due to differences in exercise mode (resistance^{27,123}, endurance^{25–27} or both²⁷), length of intervention (from 7 weeks to 6 months), genome coverage (gene promoters only^{25,27} or all genomic regions^{47,123}), density coverage (2-4% of all CpGs with Illumina 450k or 850k arrays^{25–27} or 8% of all CpGs with MeDIP-chip²⁵), sample size, age and sex.

Two studies reported more hypomethylation than hypermethylation at the Differentially Methylated Positions $(DMPs)^{25,123}$ following an exercise training intervention, one study reported a similar number of hypo- and hyper-methylated DMPs²⁶, and the last study did not find any DMP²⁷ after 3 months of exercise. Interestingly, a moderate effect size was consistent across the studies (< 10% methylation change after the intervention^{25–27,123}), suggesting that exercise training may alter the DNA methylation state of multiple genes, in an exercise dose-dependent manner. While the biological relevance of such small changes in methylation is questionable, a direct correlation between DNA methylation levels and the resulting expression level of mRNA of selected genes was demonstrated by gene reporter assay²⁵. Three of the studies

identified a consistent inverse relationship between DNA methylation and gene expression changes^{25,26,123}. Robinson *et al.*, who used an absolute cut-off of 5% methylation change following exercise found no DMPs however only focused on promoter regions²⁷. Lindholm et al. investigated the distribution of these DMPs and reported an enrichment of DMPs in enhancers and regulatory regions which may give an explanation to why no DMPs were observed in the Robinson et al. study²⁶. It is worth noting that the magnitude of DNA methylation changes following training was smaller than after acute exercise²², indicating that DNA methylation changes in response to exercise is a dynamic process activated in the early phase of gene expression. Yet residual DNA methylation changes are retained after the training stimulus is gone, indicating that these changes are accumulated over multiple exercise sessions.

	se al	A	E	Bį	B _ž al.	A	C	
	aborne <i>et</i>	uthor	VAS	arrès <i>et al</i> .	ijpeyi <i>et</i>	uthor	undidate Ge	ute Exercis
	2018	Year		2012	2017	Year	ene Appi	se
	27.6 ± 2.4	Age		NA	24.6 ± 1 years	Age	roach	
	<30	BMI		NA	23.2 ± 0.5	BMI	-	
	Z	Sex		M/F	Z	Sex	-	
	∞	Sample size		14	11	Sample size		
	Resistance exercise	Type of intervention		Endurance exercise	Cycling until 650 Kcal	Type of intervention		
	1 session (acute) + 7- week	Length of intervention		1 session (acute)	1 session (acute)	Length of intervention		
	Before, immediately after and post 7-week	Biopsy time		Before, immediately after and +3h	Before and immediately after	Biopsy time		
	Illumina EPIC array GEO: GSE114763	Technique		Pyrosequencing	Pyrosequencing	Technique		
38	17,365 CpG sites were significantly (P < 0.05) differentially epigenetically modified following 7-week resistance training compared to baseline, with a larger number being hypomethylated (9,153) compared to	Results		HIIT reduced DNA methylation of PGC-1a, TFAM, MEF2A, and PDK4 immediately after exercise, whereas PPAR-d methylation was decreased 3hr after exercise. Decreases in DNA methylation were associated with increase in gene expression at the same or following time point.	Repositioning of -1N within the PGC1a promoter, which in turn increased fold change of PGC1a gene expression after acute exercise (1.05 ± 0.08 to 1.29 ± 0.11 -fold change).	Results		

et al. Alibegovic Author **Chronic Exercise Candidate Gene Approach** 2010 Year 25 ± 1 Age 24.1 ± 2.3 BMI Sex \leq Sample size 20 training Type of Endurance intervention 4 weeks intervention Length of After intervention Before and **Biopsy time** Technique analyser. genetic Sequenced with the ABI 3130xl General increased DNA methylation of PPARGC1A site of 3 being significant -816 gene after bed rest (only one p=0.04), tending to hypomethylated DNA sites enhanced number of number of epigenetically observed an increase in the week of resistance exercise without training, another 7reversibility after retraining versus untraining period 7-week of training (8,339) remained stable during second (18,816). Hypermethylation modified sites (27,155) and an was conducted, and it was Following a period of 7-week hypermethylated (8,212). Results (8,212)(8,638) and initial 7-week

as before.

but not achieving same levels

Seaborne et al.	Robinson <i>et</i> <i>al.</i>	Nitert <i>et al.</i>	Lindholm <i>et al.</i>	Author	EWAS
2018	2017	2012	2014	Year	
27.6 ± 2.4	23-26	37.5 ± 5.2	27 ± 0.8	Age	
<30	24.6- 25.6	27.85 ± 3.0	24 ± 0.8	BMI	
Z	M/F	М	12M/ 11F	Sex	
∞	34	28	23	Sample size	
Resistance exercise	НИТ	Endurance exercise	One-legged knee extension	Type of intervention	
1 session (acute) + 7- week	3 months	6 months	3 months	Length of intervention	
Before, immediately after and post 7-week	Before and After intervention	Before and after intervention	Rest, before and after training	Biopsy time	
Illumina EPIC array GEO: GSE114763	Infinium 450K array (Illumina). GEO: GSE97084	MeDIP-Chip GEO: Not Available	Illumina Infinium HumanMethylat ion450 array GEO: GSE60655	Technique	
17,365 CpG sites were significantly (P < 0.05) differentially epigenetically modified following 7-week resistance training compared to baseline, with a larger number being hypomethylated (9,153) compared to hypermethylated (8,212). Following a period of 7-week without training, another 7-	Relatively small changes (<10%) in DNA methylation in comparison to a more substantial increase in gene expression following exercise training.	134 individual genes changed amount of methylation after exercise (115 hypomethylation and 19 hypermethylation). See supplementary data - has complete data set.	Endurance training induced significant changes in 4919 sites across the genome of the trained leg. The corresponding transcriptional analyses resulted in 4076 differentially expressed genes.	Results	

wee was obs nun moo enh hyp (18, rem 7-w vers (8,6
sk of r cond- erved hfred anced anced omethore ained ained ained ained ained ained ained ained ained ained ained ances ained ances ained ances ained ances ained ances ained ances ained aine ained ained ained ained ained ained ained ained ained ained ai
esistai ucted, an inc f epig sites (numb numb iylatec Hypei stable f traini trainir trainir
nce ex and i rrease enetic 27,15 27,15 Der of 1 DN/ 1 DN/ 1 DN/ 1 DN/ 1 mmeth ing (8 ing (8 ing per ial 7-v
cercise in the ally 5) and 5) and 5) and ylation ylation ylation g seed ,339) iod week
an an ond

Table 2.4 Summary of DNA methylation findings.

Studies highlighted in yellow had both acute and chronic intervention applied.

Differentially methylated genes were enriched for pathways such as retinol metabolism and calcium signalling²⁵, structural remodelling of the muscle, inflammatory/immunological processes and transcriptional regulation²⁶. Three of the EWAS studies found DMPs enriched for pathways linked to glucose and/or insulin metabolism^{25–27,123}. However, whether DNA methylation changes result in downstream changes in phenotype has not been investigated in depth. In fact only one study found that a higher number of hypomethylated sites was associated with hypertrophy in the muscle following a repeated intervention of 7 weeks¹²³. This indicates DNA methylation changes might correlate with exercise trainability.

2.5 Summary and study aims

To summarize, individual responses to exercise training should be properly assessed using robust study designs and adequate statistical methods, all of which involve repeated measurements on individuals to account for within-subject variability. These study designs can accurately measure individual responses to exercise. Understanding exercise-induced physiological (e.g. $VO2_{max}$) and molecular markers (e.g. mitochondrial function) at the individual level is tedious and requires optimal study designs as well as large sample sizes.

The epigenome is highly sensitive to environmental stimuli such as exercise, and the best characterised epigenetic mark is DNA methylation. Exercise epigenetics is a new and fascinating research field, and, to date, most studies have been limited to *a single bout of exercise*, have mostly focused on *candidate genes*, and are all plagued by *small sample size*. This thesis aims to draw a much more comprehensive picture of the DNA methylation sites, genes, and pathways associated with exercise training.

Therefore, the overarching aim of this thesis is two-fold: 1) to accurately estimate trainability using two distinct study designs (repeated intervention, and repeated testing during the intervention); and 2) to uncover the DNA methylation marks in skeletal muscle associated with responses to exercise training. For easy comprehension this work has been subdivided into research studies presented here as chapters.

2.5.1. Chapter Three

Currently most exercise studies have failed to overcome the difficulties in isolating sources of variability and accurately identifying trainability. Only few studies

have applied some of the methods described previously and have used too few measures of fitness. To overcome these barriers, we modified and extended the original protocol of the Gene SMART (Skeletal Muscle Response to Training) study to test the five abovementioned methods to comprehensively and accurately estimate trainability. By implementing all five in a single study, we provide a comprehensive comparison of these methods to estimate trainability and direct future studies to better study protocols. Furthermore, we have extended the protocol that was most efficient in our case to measure trainability at the physiological level to build a comprehensive time-course of mitochondrial and fibre type changes following 12 weeks of HIIT. In addition, we investigated to what extent physiological markers of fitness correlate with skeletal muscle mitochondrial ones within the same individuals as they progress through the 12-week HIIT intervention.

2.5.2. Chapter Four

Mitochondria function is highly modulated by exercise, and initially we aimed on using respiration protocols to measure such changes. However, high intra-biopsy variability was observed with this protocol, which left us wondering how reliable such measurements were. Therefore, the aim of the present study was to investigate the reliability of mitochondrial respiration measurements in human *vastus lateralis* muscle using a large number of duplicate fibre bundles (160 pairs) collected from a range of participants at different time points.

2.5.3. Chapter Five

Exercise can modify DNA methylation profile in individuals; however, we are unaware of the link between DNA methylation and fitness measures. Thus, the aim of this chapter was to investigate this relationship and what DNA methylation changes would be associated with 4 weeks of HIIT. Finally, we intersected baseline fitness measures with changes in DNA methylation following 4 weeks of exercise intervention to test if it would change towards the profile of more fit individuals.

2.5.4. Chapter Six

Following investigation of DNA methylation at a group scale, we also investigated if DNA methylation consistently changed at the individual level after a repeated and longer intervention.

Chapter 3. Deciphering the true physiological and molecular responses to exercise training using a repeated and longer intervention

This paper is based on the following publications that are being prepared:

1. Jacques M, Voisin S, Xu Yan, Eynon N. Implementation of multiple statistical and exercise training methods to measure trainability. Target Journal: MSSE

PC Vi +6 THE NEW WAY TO DO UNI

OFFICE FOR RESEARCH TRAINING, QUALITY AND INTEGRITY

DECLARATION OF CO-AUTHORSHIP AND CO-CONTRIBUTION: PAPERS INCORPORATED IN THESIS

This declaration is to be completed for each conjointly authored publication and placed at the beginning of the thesis chapter in which the publication appears.

Title of Paper/Journal/Book:	Implementation of mult measure trainability.	iple statistical and	exercise training methods to	
	Ready for submission.			
Surname: Jacques		First name:	Macsue	
Institute: Institute for Hea	alth and Sport	Candidate's	Contribution (%): 70	
Status: Accepted and in press: Published:		Date: [Date: [2021	
	TION			
2. CANDIDATE DECLARA	TION			
2. CANDIDATE DECLARA	ion above meets the re-	quirements to be i	ncluded in the thesis as outlined	ł
2. CANDIDATE DECLARA I declare that the publicati in the HDR Policy and relation	ion above meets the rea ted Procedures – <u>policy</u>	quirements to be in vu.edu.au.	cluded in the thesis as outlined	ł
2. CANDIDATE DECLARA I declare that the publicat in the HDR Policy and rela Macsue Jacques	tion above meets the red ted Procedures – policy gitally signed by Macsue cques te: 2021.04.06 16:26:55 +10000	quirements to be in .vu.edu.au. 2021	ncluded in the thesis as outlined	ł
2. CANDIDATE DECLARA I declare that the publicat in the HDR Policy and rela Macsue Jacques	tion above meets the ret ted Procedures – policy gitally signed by Macsue erceus erceus te: 2021.04.06 16:26:55 + 1000	quirements to be in <u>.vu.edu.au</u> . 2021 Date	ncluded in the thesis as outlined	ł
2. CANDIDATE DECLARA I declare that the publicati in the HDR Policy and rela Macsue Jacques	TION ion above meets the re- ted Procedures – <u>policy</u> glally signed by Macsue cross ste: 2021.04.06 16:26:55 +10000	quirements to be in .vu.edu.au. 2021 Date	ncluded in the thesis as outlined	ł
2. CANDIDATE DECLARA I declare that the publicati in the HDR Policy and rela Macsue Jacques Signat S. CO-AUTHOR(S) DECLA In the case of the above publi	and the set of the set	quirements to be in .vu.edu.au. 2021 Date	ncluded in the thesis as outlined	ł
2. CANDIDATE DECLARA I declare that the publicati in the HDR Policy and rela Macsue Jacques Signat 3. CO-AUTHOR(S) DECLA In the case of the above publ The undersigned certify th	ITON ion above meets the re- ted Procedures – policy and the second seco	quirements to be in .vu.edu.au. 2021 Date	ncluded in the thesis as outlined	ł
CANDIDATE DECLARA I declare that the publicati in the HDR Policy and rela Macsue Jacques Signat CO-AUTHOR(S) DECLA In the case of the above publ The undersigned certify th 1. They meet criteria for interpretation of at lea	IION ion above meets the re- ted Procedures – <u>policy</u> ataly signed by Macsue coses ate: 2021.04.06 16:26:55 + 1000 (ate: atc: authorship in that they st that part of the public	quirements to be in .vu.edu.au. 2021 Date hors contributed to t y have participated cation in their field	ncluded in the thesis as outlined ne work as follows: in the conception, execution o of expertise;	ł
2. CANDIDATE DECLARA I declare that the publicati in the HDR Policy and rela Macsue Jacques 3. CO-AUTHOR(S) DECLA In the case of the above publ The undersigned certify th 1. They meet criteria for interpretation of at lea 2. They take public respo who accepts overall res	IDN ion above meets the re- ted Procedures – policy glially signed by Macsue copes ate: 2021 04 08 16:26:55 + 1000 ate: ARATION ication, the following authorship in that they st that part of the publi nsibility for their part of sponsibility for the publi	quirements to be in .vu.edu.au. 2021 Date hors contributed to t / have participated cation in their field f the publication, e ication;	ncluded in the thesis as outlined ne work as follows: in the conception, execution o of expertise; xcept for the responsible autho	br Dr
2. CANDIDATE DECLARA I declare that the publicati in the HDR Policy and rela Macsue Jacques Dimensional Signate Signate CO-AUTHOR(S) DECLA In the case of the above publ The undersigned certify th 1. They meet criteria for interpretation of at lea 2. They take public respo who accepts overall res	A constraints of the part of the public part of p	quirements to be in .vu.edu.au. 2021 Date hors contributed to t y have participated cation in their field f the publication, e ication;	ncluded in the thesis as outlined ne work as follows: in the conception, execution of of expertise; xcept for the responsible author yictoria University AB	d Dr Dr

THE <u>NEW WAY</u> TO DO UNI

3. There are no other authors of the publication according to these criteria;

- 4. Potential conflicts of interest have been disclosed to a) granting bodies, b) the editor or publisher of journals or other publications, and c) the head of the responsible academic unit; and
- 5. The original data will be held for at least five years from the date indicated below and is stored at the following **location**(s):

Name(s) of Co-Author(s)	Contribution (%)	Nature of Contribution	Signature	Date
Shanie Landen	5%	Data collection and revised manuscript	-	
Javier Alvarez Romeiro	5%	Data collection and revised manuscript	-	
Xu Yan	5%	Data collection and revised manuscript	-	
Danielle Hiam	5%	Data collection and revised manuscript	-	
Nir Eynon	5%	Manuscript Editing and final approval		
Sarah Voisin	5%	Guided student through statistical analyses and revised manuscript		

Updated: September 2019

PO Box 14428, Melbourne, Vic 8001, Australia +61 3 9919 6100

Victoria University ABN 83776954731 CRICOS Provider No. 00124K (Melbourne), 02475D (Sydney), RTO 3113

 Jacques M, Landen S, Romero JA, Yan X, Garnham A, Hiam D, Siegwald M, Mercier M, Voisin S, Eynon N. (2020) Individual physiological and mitochondrial responses during 12 weeks of intensified exercise. (Accepted)

- Physiological Reports.

3. There are no other authors of the publication according to these criteria;

- 4. Potential conflicts of interest have been disclosed to a) granting bodies, b) the editor or publisher of journals or other publications, and c) the head of the responsible academic unit; and
- 5. The original data will be held for at least five years from the date indicated below and is stored at the following **location(s)**:

Contribution (%)	Nature of Contribution	Signature	Date
2%	Data collection, lab analyses and revised manuscript		
2%	Data collection		
2% 2%	Data collection and analyses Performed Muscle biopsies		
2% 2%	Data collection and revising manuscript Data collection and analyses		
2%	Data collection and analyses		
5%	Manuscript editing and final approval		
10% 6%	Guided student to successful completion of analysis and reviewe manuscript.		
	Contribution (%) 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 5% 10% 6%	Contribution (%)Nature of Contribution2%Data collection, lab analyses and revised manuscript2%Data collection2%Data collection and analyses Performed Muscle biopsies2%Data collection and revising manuscript Data collection and analyses2%Data collection and analyses5%Manuscript editing and final approval10%Guided student to successful completion of analysis and reviewed manuscript.6%Editing and final approval of	Contribution (%)Nature of ContributionSignature2%Data collection, lab analyses and revised manuscript2%2%Data collection2%Data collection and analyses Performed Muscle biopsies2%Data collection and revising manuscript Data collection and analyses2%Data collection and revising manuscript Data collection and analyses2%Data collection and revising manuscript Data collection and analyses2%Data collection and analyses5%Manuscript editing and final approval10%Guided student to successful completion of analysis and reviewe manuscript. Editing and final approval of

PO Box 14428, Melbourne, Vic 8001, Australia +61 3 9919 6100

Victoria University ABN 83776954731 CRICOS Provider No. 00124K (Melbourne), 02475D (Sydney), RTO 3113

3.1 Introduction

Exercise training leads to physiological adaptations, such as increased maximal oxygen uptake (VO_{2max}) as well as molecular adaptations, such as mitochondrial biogenesis⁹³. The magnitude of these adaptations depends on the duration, intensity, volume, and type of exercise training¹. Although the benefits of exercise are well described, large inter-individual variability in the response to apparently similar exercise training exists^{2–6} for all exercise-related phenotypes⁴, independently of the intervention duration⁶. Individual response (also known as subject-by-training interaction) relies on the assumption that consistent training changes occur for each individual^{5,30,40,41}. However, we and others, have shown that measuring individual response for any given variable is more complex than previously assumed, and exercise studies often fail to robustly measure it^{5,6,10,38,40,43,124}.

The key to quantifying individual responses to exercise is to isolate sources of variation by first quantifying the magnitude of variation in training response, given that if subject-by-training interaction is low then assessing response of individuals is futile; and only then quantifying individual responses. In exercise studies, two stances are commonly observed as sources of variation: 1) day-to-day or biological variability (i.e. sleep, nutrition, etc), and 2) statistical variance such as random error. In order to isolate such sources of variation and obtain true effects of exercise training, specific study designs and methods^{10,40,43} have been proposed. For instance, measuring gradual adaptations at consecutive timepoints during the intervention, to obtain individual progress curves, or by utilizing a cross-over repeated intervention. With the reference standard being a replicated cross-over design, and repeated testing measuring gradual adaptations at consecutive timepoints being a relative substitute. To date, two studies to our knowledge has implemented the repeated testing design solely for VO_{2max} measurement^{10,125}, and no molecular markers have been investigated thus far. Furthermore, physical exercise leads to cellular metabolic stress; however, it remains unclear whether improvements in physiological phenotypes (i.e. VO_{2max}, lactate threshold (LT)) from exercise interventions mirror improvements in molecular phenotypes in skeletal muscle (i.e. mitochondrial markers).

Among the many molecular changes that are led by exercise (i.e. fibre type switch, glucose uptake, etc.), the mitochondria is known to be heavily regulated by exercise

training ^{95,126–128}. The mitochondrion is responsible for energy production to the cells, and mitochondrial deficiency can lead to both physical and psychological disorders ^{129–132}. Exercise studies often rely on isolated mitochondrial markers measures; however, one human cell contains multiple copies of mitochondria and consequently mitochondrial DNA (mtDNA). MtDNA encodes critical components of the respiratory complexes and is necessary for ATP production. An increase in mtDNA copy number (mtCN) does not necessarily equate with an increase in mitochondrial capacity and could simply be a consequence of compensatory mechanisms (i.e. reduction in mitochondrial quality and elevated mitochondrial content)^{133,134}. Thus, mitochondrial markers measured in isolation do not provide the full picture of mitochondrial health¹³⁵. Combining measures of mitochondrial content and quality is essential to access mitochondrial health. A functional index of mitochondrial health in blood has been recently proposed (Mitochondrial Health Index), by mathematically integrating biochemical enzymatic activities and mtCN into a single score, that may represent an optimized measure of mitochondrial functional capacity¹³⁵. This method successfully captured a reduction in mitochondrial health in blood as a result of chronic psychological stress¹³⁵. However, this approach has not been explored in skeletal muscle, either in the basal state, or following a chronic physiological stimulus, such as exercise training. Furthermore, variability across mitochondrial measures is not well described, and no study to date has estimated subject-by-training interaction by the mitochondria.

To overcome these barriers, and comprehensively and accurately estimate individual response, we modified and extended the original protocol of the Gene SMART (Skeletal Muscle Response to Training) study¹³⁶ to test the five methods described in our literature review, namely; separate control group, applying control period before the intervention, reliability trial, repeated intervention and repeated tests during exercise training program. By implementing these five methods in a single study, we provide a comprehensive comparison of these methods to estimate trainability to direct future studies to better study protocols. In addition, we report a comprehensive time-course of mitochondrial and physiological changes during 12 weeks of HIIT in 16 healthy young men. We hypothesised that measuring multiple physiological and molecular components at regular intervals would allow to account for sources of variability and identification of true individual responses to exercise. Furthermore, for the first time, we investigated to what extent whole body physiological markers correlate with skeletal muscle

mitochondrial markers within the same individuals as they progress through the 12-week HIIT intervention.

3.2 Methods

3.2.1. Participants

This study had a variable number of participants as not all participants completed all components of the full intervention. The number of participants used by each test is highlighted in the methods/results (Figure 3.1). In brief, the study was subdivided into two parts, the Gene SMART study and second repeated intervention in the same participants. The Gene SMART participants recruitment and selection criteria has been previously described in detail ¹³⁶. 95 participants commenced the Gene SMART study, and 78 of them completed the entire intervention period (Testing at baseline, 4 weeks of HIIT and testing after 4 weeks). Following at least one-year of washout period, participants who had previously completed the Gene SMART study were contacted and invited to participate in a repeated and longer intervention (12 weeks of HIIT). All participants who completed the first intervention were contacted to avoid selection bias, and 20 of them agreed to take part in the repeated intervention. Participants were apparently healthy, moderately trained men, aged 18 to 45 years (Table 3.1). The study was approved by the Victoria University Human Ethics Committee (HRE13-223) and written informed consent was obtained from each participant. Participants were excluded from the study if they had a past history of definite or possible coronary heart disease, significant chronic or recurrent respiratory condition, significant neuromuscular, major musculoskeletal problems interfering with ability to cycle, uncontrolled endocrine and metabolic disorders or diabetes requiring insulin and other therapies¹³⁶.

3.2.2. Study design

Participants from the Gene SMART study¹³⁶ (T₁₀) completed a control period of 4 weeks (T₁₁), followed by 4 weeks of HIIT (T₁₂). After a washout period of 12 months (T₂₁), participants that agreed to return for a follow up intervention, repeated the 4-week HIIT intervention (T₂₂), followed by another 4 weeks (T₂₃), and another 4 weeks (T₂₄), totalling 12 weeks of HIIT. Two graded Exercise Tests (GXTs) were conducted at each time point to determine peak power output (W_{peak}), the lactate threshold (LT) and maximal oxygen consumption (VO_{2max}) (Figure 3.1).

Graded exercise test to exhaustion (GXT)

Participants underwent GXTs, for baseline determination of the LT and W_{peak} and VO_{2max} . This test was performed on an electronically-braked cycle-ergometer (Lode-excalibur sport, Groningen, the Netherlands) and was consisted of 4-min stages separated by 30-s rest periods until exhaustion. The test started at 60W and was increased by 30W in each subsequent stage. Capillary blood samples were taken at rest, and after each completed stage, and immediately following exhaustion, and was analysed by a YSI 2300 STAT Plus system (Yellow Springs, Ohio, USA). During the GXT, the LT was calculated by the modified DMAX method, which is determined by the point on the polynomial regression curve that yields the maximum perpendicular distance to the straight line connecting the first increase in lactate concentration above resting value and the final lactate point. The average of the two GXT tests were used to individualise exercise intensities, if the difference were more than 5%, otherwise the highest value was used.

After 5 min of rest following the GXT, VO_{2max} was measured using a calibrated Quark CPET metabolic system (COSMED, Rome, Italy). Briefly, participants wore the Cosmed face mask and VO_2 values were collected at stationary for 2 min, while exercising for 3 min at the intensity of the first stage of GXT (60W), and during exercise to exhaustion at 105% of W_{peak} measured during the previous GXT. VO_{2max} was considered the highest value in 1 min obtained during the test. The HIIT phase commenced 48–72 h after the last baseline exercise test.

Control period (4 weeks)

Prior to commencing the study, participants were familiarised with a graded exercise test (GXT). Participants were instructed to wear an activity monitor for two weeks to estimate incidental physical activity (IPA) during their normal daily life. The control period was key to quantifying inter-individual variation in fitness occurring regardless of the intervention⁶.

HIIT – first intervention (4 weeks)

Participants trained 3 times/week under supervision. All training sessions were completed on an electronically braked cycle ergometer (Velotron, Racer Mate Inc, Seattle, USA) and were preceded by a 5-min warm up at 50 W. Each session consisted of six to twelve 2-min intervals performed at different intensities ranging from 40 to 70% of $(W_{peak} - LT)$ above LT and interspersed by 1-min recovery periods (work-to-rest ratio of

2:1). The training intensity initiated at 40% of LT threshold for the first week (1st training 8 intervals, 2nd training 9 intervals and 3rd training 10 intervals). On the second week the intensity increased to 50% of LT threshold (4th training 10 intervals, 5th training 12 intervals, 6th interval 11 intervals). On the third week the intensity increased to 60% of LT threshold (7th training 11 intervals, 8th training 12 intervals, 9th training 14 intervals), and on the fourth week the intensity increased to 70% of LT threshold (10th training 11 intervals, 11th training 9 intervals, 12th training 6 intervals).

	Control			First Intervei	ntion (4 weeks))		Second Interve	ntion (12 we	eks)	
	Start	End	Δ	Pre	4WP	Δ	Pre	4WP	8WP	12WP	Δ
Ν	30	29	I	56	78	I	20	19	18	17	ı
Age (years)	33.20±8.33	I	I	31.56±8.24	I	-	33.07±8.96	I	I	I	ı
BMI (kg.m-2)	26.18±3.98	26.20±3.98		25.43±3.29	25.29±3.39	-	26.40±4.23			26.42±3.78	ı
W _{peak} (W/kg)	$3.44{\pm}0.90$	3.45±0.91	0.00±0.16	3.64±0.76	3.88±0.77	$0.23 {\pm} 0.21$	3.48±0.97	3.76±0.96	3.88±0.95	4.06±0.94	0.56±0.28
LT (W/kg)	2.39±0.69	2.34±0.68	$0.00{\pm}0.28$	2.54±0.63	2.74±0.67	0.20±0.19	2.38±0.74	2.63±0.79	2.71±0.76	2.76±0.70	0.37±0.35
VO _{2max} (mL.min- 1.kg-1)	48.53±10.57	49.60±10.27	-0.80±9.12	47.19±7.97	48.65±8.09	1.50±3.84	51.0±10.6	53.1±10.3	54.5±11.1	55.3±10.7	4.43±6.39
	Table 3.1. Grou	p characteris	tics for each	period (Coi	ntrol, 1 st inte	rvention an	ıd 2 nd interve	ntion) with D	elta Chang	es.	

ł - F 2 ., J a

Values are presented as mean \pm SD. $\Delta = 12WP\text{-}Pre$ measurements.
HIIT – second intervention (4 weeks + 8 weeks of additional training)

After a washout of at least 1 year, participants repeated the HIIT described above, and continued training for a total of 12 weeks. To ensure progression, training intensity was re-adjusted every 4 weeks based on the newly determined W_{peak} and LT from the GXTs. Training length and intervals were repeated in each week of the intervention, as described above, and only resistance was changed to reflect the participants' progression.

We used the duplicate measurements from the two GXTs conducted at each time point to calculate the typical error of measurement (TE_M) that encompasses both technical variability due to machine and experimenter error, and day-to-day biological variability

in test performance^{40,50}: $TE_M = \sqrt{\frac{\sum_{1}^{n} (x_{i1} - x_{i2})^2}{2n}}$, where n is the number of pairs of duplicates and x is the specific measurement (i.e. W_{peak}, LT or VO_{2max}). The value of a given individual at a given time point was calculated as follows: if the values from two GXTs differed by $> TE_M$, the maximum value was taken; otherwise, the average of the two values was taken.

From the 20 returning participants, **19 completed 4 weeks of HIIT** (1 dropout), **of these 18 completed 8 weeks** (1 dropout), **and 16 completed the full 12-weeks of HIIT** (1 dropout and 1 exclusion due to inconsistent results, i.e., duplicate tests provided more than 10% difference) (see Figure 3.1B).

3.2.3. Muscle biopsies

Muscle biopsies were collected at timepoints T_{21} - T_{24} for comprehensive analyses of mitochondrial markers, including citrate synthase, succinate dehydrogenase, mitochondrial copy number, cytochrome oxidase and fibre type composition (**Figure 3.1**). Due to dropouts previously described, all statistical analyses for mitochondrial measures were based on 16 participants.

Figure 3.1. A: Study design and statistical methods with indication of how many participants/tests were used for each approach. B: Number of participants in each timepoint. Blocks highlighted in black indicate that participant has completed the respective timepoint.

3.2.4. Molecular analyses and immunohistochemistry

Energy production capacity markers (mitochondrial function)

Succinate Dehydrogenase Activity (Complex II activity). We utilised the Succinate Dehydrogenase (SDH) Activity Assay Kit (Colorimetric) (#ab228560). Muscle was lysed according to kit's protocol and 15ul of muscle lysate was used for reaction. Assay was performed in duplicates. In this assay, SDH converts succinate to fumarate, and transfers the electron to an artificial electron acceptor (Probe), which changes the colour from blue to a colourless product (depending upon the sample enzymatic activity). The assay kit was able to detect less than 0.1mU Succinate Dehydrogenase activity in our muscle samples. Protocol was followed according to kit user guide. SDH activities (mU/mg of tissue) were averaged and if CV >10% for the duplicate results values were removed.

<u>Cytochrome C Oxidase Activity (Complex IV activity)</u>. For Cytochrome C Oxidase Activity (COX), we utilised the assay kit (#ab239711). Muscle was lysed using SDH buffer described above and 10ul of lysate was used for each reaction. The activity of the enzyme was determined calorimetrically in triplicates by following the oxidation

of reduced Cytochrome c as an absorbance decrease at 550 nm, according to kit user guide. COX results were averaged and if CV > 10% for the triplicate divergent results were removed. COX results ate presented as mol/h/kg of protein.

Mitochondrial content

Intrinsic changes in mitochondria reflect changes in mitochondrial content and are commonly used to normalise global measurements of mitochondrial function.

<u>Citrate Synthase Activity.</u> The most commonly used measurement of mitochondrial content is the citrate synthase (CS) enzyme activity¹³⁷. Complete enzyme extractions, from small pieces of frozen tissues, were performed in an ice-cold buffer (KH₂PO₄ & K₂HPO₄) using a TissueLyser II (Qiagen, Hilden, Germany). Protein concentration was assessed using the bicinchoninic acid assay. Total CS activity (mol/h/kg of protein) was measured in triplicates (30°C, pH 7.5) using standard spectrophotometric assays. Results for CS activity were manually curated, and values that presented a Coefficient of Variance (CV) > 10% were removed.

<u>Mitochondrial Copy Number.</u> Mitochondrial DNA copy number also reflects the content of mtDNA, and it is usually associated with mitochondrial gene stability and mitochondrial biogenesis. Mitochondrial copy number (mtDNA) was determined in quadruplicates, using multiplex qPCR. This method allows for simultaneous amplification of a mitochondrial (ND1) and a nuclear (RNAseP) amplicon to verify their relative abundance^{135,138}. The sequences for the ND1 amplicon (IDT) are as follows:

Forward primer (300nM): 5'CCCTAAAACCCGCCACATCT3';

Reverse primer (300nM):5'GAGCGATGGTGAGAGCTAAGGT3'; and

Probe (100nM): 5'FAMCCATCACCCTCTACATCACCGCCC-TAMRA3'.

We utilised the RNAseP assay kit (Thermofisher Scientific #4403328). Taqman Universal Mastermix (Thermofisher #4304437) was used, and the assay ran on a QuantStudioTM 7 Flex Real-Time PCR System. The average CV for mtDNA Cts was 1.02%. Data was manually curated and cases where samples yielded a standard deviation > 0.3, the divergent sample was removed.

Mitochondrial Health Index (MHI)

The calculated MHI as previously reported in blood¹³⁵ was obtained using the following equation:

$$MHI = \left[\frac{Energy \ production \ capacity}{Mitochondrial \ content}\right]$$
$$= \left[\frac{Compex \ II \ (SDH) + Complex \ IV(COX)}{CS + mtCN}\right] * 100$$

<u>Fibre Typing (immunohistochemistry), and Expression (RT-PCR).</u> Exercise is known to affect fibre type composition and expression. Shifts in fibre type composition might not be achieved so easily in human interventions, however changes in myosin heavy chain expression patterns might occur even after short interventions¹³⁹. Thus, in our study we measured both parameters to see if trainability could be observed in either measurement.

Immunofluorescence analyses of muscle fibre types were performed on frozen muscle tissue sections. Primary and secondary antibodies information have been previously described somewhere $else^{140}$. In summary, preserved muscle in optimum cutting temperature (O.C.T.) were sectioned at 5-8 µm and immediately fixed in 4% formaldehyde (10 min). After 10 min, excess formaldehyde was removed, and slides were washed 3x1min in ddH2O. 10% goat serum was using for blocking (1hr). Primary antibodies in 10% goat serum (ThermoFisher #50062Z) (1:25) incubated slides overnight in the dark. Primary antibody was then removed, and slides washed 3x5min in ddH2O. Secondary antibodies in 10% goat serum (1:500) were then used to incubate slides for 2 hr in the dark at 4 degrees. Slides were washed once more in ddH2O and then mounted with PBS for imaging. Fibre type distribution was quantified using Fiji software and values are presented in percentage distribution.

RNA was extracted using the AllPrep DNA/RNA FFPE Kit (#80234 Qiagen). 10ng of RNA was then diluted into 50ul and reverse transcription was conducted using the iScript[™] Reverse Transcription Supermix for RT-qPCR (Bio-Rad) with a thermomixer. Primers for myosin heavy chain I, IIa and IIx used for this experiment have been described elsewhere¹³⁹. RT-PCR was conducted using the QuantumStudio-7 (biorad). mRNA expression levels were quantified by real-time PCT using SYBR green fluorescence. Cycle threshold (Ct) values were normalized to a housekeeping gene, Cycl1. Primers used were described elsewhere¹³⁹. Samples were analysed in triplicates and data was manually curated. In cases where samples yielded a standard deviation > 0.4, the divergent sample was removed.

3.2.5. Statistical analyses

Response to training at the group level

Responses at the group level were investigated using 2 different mixed models:

Control period vs intervention period. We fit a linear mixed model using changes after the 4-week control period and after the 4-week intervention: $\Delta \sim$ condition + IPA + age + random intercept (ID), where Δ is the change in physiological measurement (W_{peak}, LT or VO_{2max}), condition is either "control" or "intervention", IPA is Incidental Physical Activity, and the ID corresponds to the participants' individual ID, which allows each individual to have his own intercept. The fixed effect for "condition" estimates whether there were changes in physiological measurements at the group level after the intervention period beyond that of the control period.

<u>Repeated testing during intervention:</u> We fit a linear mixed model⁴⁸ using changes after 4, 8 and 12 weeks:

Physiological fitness outcome

= timepoint + random intercept (ID)

+ random slope (ID x Timepoint)

where outcome is W_{peak} or LT or VO_{2max} , timepoint is a numeric variable (0, 4, 8 or 12), the random intercept accounts for baseline differences between individuals. The fixed effect for "timepoint" estimates whether there were changes in physiological measurements at the group level over time during the 12-week intervention period. We applied a similar model for the molecular markers as outcome:

Molecular marker outcome = Physiological variable + timepoint + random intercept (ID) + random slope (ID x Timepoint).

Response to training at the individual level (trainability)

We conducted five distinct statistical analyses, as previously suggested⁴⁰:

1. <u>Reliability Trial (i.e. duplicate tests)</u>. This method uses multiple measurements of the outcome of interest (in our study, W_{peak} , LT and VO_{2max}) at each

timepoint to estimate technical variability due to machine and technician error, and dayto-day biological variability in test performance^{40,50}. TE_M, or a multiple of it, is then used as a threshold to determine whether an individual has indeed improved after training, with a sufficient degree of certainty^{40,50}. Some studies have used 1 x TE_M as a threshold, which gives ~95% confidence that the response of a given individual is non-null (i.e. >0 or <0)^{43,53}, while other studies have chosen a more stringent threshold of 2 x TE_M, which gives ~98% confidence the response of a given individual is positive^{10,29,43}. The coefficient of variance (CV) is derived from TE_M and is usually presented as a percentage. This measurement has been widely used as to identify and classify response to training^{34,141}. It is important to note that this method does not quantify trainability at the group or individual levels but provides a threshold to tell with a certain degree of confidence that an individual has shown a non-null response (i.e. >0 or <0).

2. <u>Separate control group</u>. This method estimates the variability in changes following a control period (i.e. no exercise training). The variability under the control condition is then subtracted from the variability under the intervention condition. The "true" variability in exercise response is then calculated using the formula^{10,40,43}: $SD_{true} = \sqrt{SD_{inter}^2 - SD_{control}^2}$, where SD_{inter} is the observed inter-individual variability in change scores in the exercise group and SD_{control} is the observed inter-individual variability in change scores in the control group. While this method insinuate the amount of variability in response that is induced by the exercise training itself, it does not quantify individual response, but rather represents the difference in variability between exercise and control groups⁴³.

3. <u>Control period</u>. This method is similar to the separate control group, but the same participants undergo a control period before commencing the exercise intervention. The "true" variability in exercise response is then calculated using the formula ⁴⁰: $SD_{true} = \sqrt{SD_{inter}^2 - SD_{control}^2}$, where SD_{inter} is the observed inter-individual variability in change scores after the exercise period and SD_{control} is the observed interindividual variability in change scores after the control period. This method removes any variability between the control group and exercise group due random sampling of individuals, but this method suffers from the same shortcomings as the control group method.

4. <u>Repeated intervention.</u> 19 participants successfully repeated the 4-week HIIT program after a washout period > 1 year. We fitted a linear mixed model of the form: $\Delta = IPA + age + random intercept$ (*ID*), were Δ is the change score in the measured outcome (W_{peak}, LT or VO_{2max}), IPA (kcals) is measured by an activity monitor worn for 1 week during the intervention, and the random intercept corresponds to trainability. The residuals of the linear mixed model contain the unwanted source of variability, namely within-subject variability in response to the same exercise training. We tested the significance of the random intercept (i.e. trainability) with a likelihood ratio test. This method directly estimates within-subject variability in response to training.

5. <u>Repeated tests during the intervention</u>. 16 participants successfully completed 12 weeks of HIIT with measurements at four timepoints (at 0, 4, 8 and 12 weeks). We estimated the slope of progress for each individual (i.e. trainability), with the variance around the slope corresponding to within-subject variability. These segmental changes partitioning trainability from within-subject variability were examined with a linear mixed model: Outcome = timepoint + random intercept (ID) + random slope (ID x Timepoint), where outcome is W_{peak} , LT, VO_{2max} , CS, COX, SDH, mtCN, MHI or fibre type composition/expression, timepoint is a numeric variable (0, 4, 8 or 12), the random intercept accounts for baseline differences between individuals, and the random slope corresponds to trainability (subject-by-training interaction). The individual segmental changes from this method estimate within-subject variability, acknowledging that response to training may not be linear.

Finally, a series of bivariate latent growth curve models¹⁴² were used to test whether the slopes of fitness variables were correlated with the slopes of molecular variables. We did not have enough muscle for some individuals so mitochondrial data was missing, and the pattern was missing completely at random. Thus, we used multiple imputations using the *mice* package¹⁴³, and results were pooled from all imputed iterations for both mixed models as well as parallel growth models with the *miceadds* package¹⁴⁴. All analyses were performed using the R software version 4.0.2. (packages: *dplyr*¹⁴⁵, *readxl*¹⁴⁶, *ggpubr*¹⁴⁷, *lmerTest*⁴⁸, *ggplot2*¹⁴⁸).

3.3 Results

3.3.1. The repeated and longer exercise training intervention improved aerobic fitness in a dose-response manner.

The exercise training triggered positive physiological adaptations, compared with a control group or a control period (**Table 3.1**). After the first intervention, W_{peak} increased by 7% (p <0.005), LT by 8% (p <0.005) and VO_{2max} by 3% (p = 0.001). After the repeated intervention, W_{peak} , LT and VO_{2max} increased by 8%, 12% and 4% respectively after 4 weeks, 11%, 15% and 6% after 8 weeks, and by 17%, 18% and 8% after 12 weeks of HIIT compared with baseline (p<0.05 for all variables, **Figure 3.2 & Table 3.2**).

response to exercise training The epigenetic basis of variable

	Fixed Effects				Random Effects			
	Variable	Regression coefficient	Standard error	p-value	Variable	Variance	Standard error	p-value
W _{peak} (W/kg)	Timepoint	0.162	0.035	0.00028	ID x Timepoint	0.019	0.138	0.00046
					Residual	0.141	0.119	
LT (W/kg)	Timepoint	0.116	0.028	89000.0	ID x Timepoint	0.009	0.094	0.052
					Residual	0.027	0.164	
VO _{2max} (mL/min/kg)	Timepoint	1.385	0.513	0.015	ID x Timepoint	3.809	1.952	0.00019
					Residual	4.543	2.131	
		Ţ	able 3.2. Repeated	Testing.				

H ď

Linear mixed model – Variable ~ Timepoint + random intercept (ID) + random slope (ID x Timepoint). Age and Kcals were omitted from results as those have not shown any significant values. Where Variable = Measurement value, Timepoint = PRE – 4WP - 8WP - 12WP.

Figure 3.2. Individual changes in peak power output (W_{peak}), the lactate threshold (LT) and maximal oxygen uptake (VO_{2max}) after 4 weeks of control (Con/End), first intervention (4 weeks of HIIT, Pre1/4WP), and second intervention (12 weeks of HIIT, Pre2/12WP).

3.3.2. Analysis of inter-individual variation in response to exercise training

Technical Error of Measurement (TE_M) to assert non-null response at a certain level of confidence

GXTs were conducted a few days apart for each participant at each time point. Therefore, we estimated the TE_M for each physiological measurement using all duplicate pairs of GXTs (**Table 3.3**). Multiples of this TE_M were then used as a threshold above which an individual may be considered to have responded positively to the training. After the first four weeks of HIIT, 31 out of 73 participants increased their W_{peak} by more than 2 x TE_M (~ 98% CI), 5 participants for LT and 8 participants for VO_{2max} (**Figure 3.3**). After the second intervention, 14 of 17 participants included in the analyses surpassed 2 x TE_M for W_{peak}, 6 for LT and 4 for VO_{2max}.

	TEM	CV (%)	number of paired GXTs
W _{peak} (W/kg)	0.13	3%	224
LT (W/kg)	0.25	9%	217
VO _{2max} (mL/min/kg)	3.33	7%	209

Table 3.3. Technical error of measurement (TE_M) and coefficient of variation (CV) for peak power output (W_{peak}), lactate threshold (LT) and maximum oxygen uptake (VO_{2max}).

GXTs with errors such as software breakdown during test, mask fall off, etc. that might have occurred during the test were removed.

Figure 3.3. Participants ordered by peak power output (Wpeak) response after 4 weeks of HIIT

Same colour corresponds to the same participant. Dotted line represents 1 x TE_M (~95% confidence), solid line represents 2 x TE_M (~98% confidence)

Control group (True SD)

We evaluated physiological changes after 4 weeks in a separate control group (n = 30) and compared them to that of the exercise group who underwent 4 weeks of HIIT (n = 48 – participants from first intervention that did not underwent a control period prior to intervention). This determined whether the observed inter-individual variability in training response was indeed due to exercise training itself^{35,38,42}. Age, baseline fitness and IPA did not differ between control and intervention groups (**Table 3.4**). We calculated the true inter-individual response to exercise training (SD_{true}) as $SD_{true} =$

 $\sqrt{SD_{inter}^2 - SD_{control}^2}$. The amount of inter-individual variability that was left after subtracting that of a control group was $SD_{true} = \sqrt{0.21 - 0.16} = 0.22 W/kg$ for W_{peak} and $SD_{true} = \sqrt{3.93 - 3.65} = 1.46 mL/min/kg$ for VO_{2max} (Figure 3.4A). We were

0			
	Mean±SD control group	Mean±SD intervention group	p-value
Kcal	637±217	714±295	0.341
Age	33.1±8.55	32±8.28	0.451
BMI	25.9±4.2	25.1±2.97	0.259
Wpeak (W/kg)	3.44±0.937	3.71±0.740	0.199
LT (W/kg)	2.36±0.717	2.6±0.642	0.18
VO _{2max} (ml/min/kg)	49.6±11.0	47.5±7.31	0.334

unable to calculate SD_{true} for LT as we observed a larger variability in the control group than the exercise group ($SD_{control} > SD_{inter}$).

Table 3.4. Baseline comparison between control group and intervention group.

P-values are non-significant between groups, indicating homogeneity between groups.

Control period

29 participants who completed the 4-week HIIT intervention also completed a 4week control period prior to the intervention, and we used this control period in the same way as the control group to estimate the variability in training response that is indeed due to the exercise training itself. Participants did not change their levels of IPA between the control and intervention periods (p= 0.609). Similarly, to the control group, we were unable to calculate SD_{true} for any physiological measurements because there was more variability in the control period than in the intervention period (**Figure 3.4B**).

Figure 3.4. Changes in peak power output (W_{peak}), lactate threshold (LT) and maximal oxygen uptake (VO_{2max}).

Data is presented with mean and SD for each variable. A) Control group (different subjects in each group); B) Control period (same subjects).

Repeated intervention

Before quantifying within-subject variability in response to the same intervention, we first investigated potential selection bias (for example, participants who accepted to come back for the second intervention may also be keener exercisers and would be fitter than the group average from the first intervention). Returning participants had similar baseline W_{peak} and LT levels as the whole group from the first intervention, but they showed higher VO_{2max} (+ 4.09 mL/min/kg, p = 0.000656). We also tested whether returning participants had similar baseline fitness levels before starting the first and second interventions (i.e. after >1 year of washout). There was a strong correlation between baseline fitness levels before the first and second interventions (**Figure 3.5A**), and participants showed similar baseline W_{peak} and LT levels at the first and second intervention ($W_{peak} p = 0.279$; LT p = 0.078). However, participants had higher baseline VO_{2max} (+ 4.4 mL/min/kg, p = 0.000893). Levels of IPA were similar during the first and second interventions (p = 0.91).

The epigenetic basis of variable response to exercise training

Figure 3.5. A: Correlation between baseline in peak power output (W_{peak}), lactate threshold (LT) and maximal oxygen uptake (VO_{2max}) before the first (x-axis) and second (y-axis) interventions (Pearson's correlation coefficient). B: Within-subject correlation between response to first (x-axis) and second (y-axis) interventions

The repeated intervention allows testing directly whether there is within-subject variability in response to the same intervention. Participants did not show a consistent response to the same exercise training (Figure 3.5B) and no subject-by-training interaction was detected in the linear mixed model (random effect p-value Wpeak = 0.49, LT = 0.99, $VO_{2max} = 0.27$ Table 3.5).

response to exercise training The epigenetic basis of variable

	Kc	$\Delta VO_{2max} (ml/min/kg)$ Ag	Inte	Kc	ΔLT (W/kg)	Int	Kc	ΔW_{peak} (W/kg) Ag	Int	Va	
Table	al	ē	ercept	al	õ	ercept	al	õ	ercept	riable	
3.5. Results of the linear	0.0003136	-0.0808566	3.7438575	8.768e-05	-5.333e-03	3.278e-01	5.586e-05	-6.406e-03	4.117e-01	Regression coefficient	Fixed Effe
mixed model for	0.0016881	0.0559901	2.1463597	8.524e-05	2.771e-03	1.037e-01	8.401e-05	2.734e-03	1.019e-01	Standard error	cts
nodel for the repeated interventi	0.853	0.087 0.156 Ir		0.30821	0.06123	0.00267	0.508609	0.024053	0.000183	p-value	
d intervention after 1 year of	Residual	Interaction Condition x ID		Residual	Interaction Condition x ID		Residual	Interaction Condition x ID		Variable	Rai
washout.	9.683	4.733		4.053e-02	5.854e-05		0.028549	0.008906		Variance	ndom Effects
	3.112	2.175		0.201317	0.007651		0.16896	0.09437		Standard error	
		0.273			0.9948			0.4951		p-value	

(Changes-Covariates+random(ID)+random(ID*Condition). Where Changes = change in measurement (PRE & POST), Covariates= Age, Activity monitor (kcals consumed), rand (ID) = random intercept corresponding to individual IDs.

Repeated testing during the exercise intervention (12 weeks of HIIT)

The use of multiple measurements at different time points allows estimating within-subject variability between multiple segments during the training period. We applied mixed modelling with a random intercept corresponding to individual baseline levels and a random slope corresponding to individual trainability (**Table 3.2** – random effects). We separated trainability from within-subject variability that corresponds to the error surrounding the segmental changes of the slope. We were able to successfully identify trainability, meaning each participant responded differently to the intervention, with some participants showing rapid and large increases in fitness while others showed slower improvements (**Figure 3.6**). The highest responder improved in VO_{2max} by an additional +3.28 (ml/min/kg), compared with the group average +0.03 (ml/min/kg); conversely, the lowest responder declined in VO_{2max} by -2.29 (ml/min/kg) less than the group average.

Figure 3.6. Individual changes in physiological measures (W_{peak}, LT, and VO_{2max}) after 4, 8 and 12 weeks of HIIT.

This figure is a recreation of Figure 3.2 highlighting only second intervention and individual participants.

Figure 3.7. Example of trainability and comparison between whole body and molecular markers for high, average, and low responder for VO2max and MHI measurement after 12 weeks of HIIT.

The highest responder is represented in blue, the group average in pink and the lowest responder in green. It can also be noted in the last graph that if confidence intervals (CI) were calculated according to the formula proposed by Hecksteden et al. 2018 (segmental_changes±1.96*SE_segmental changes), participant in green would have a small CI, meaning his changes are more consistent overtime than compared with participant in blue.

We failed to detect any change in CS, SDH, COX, mtCN, or MHI at the group or individual level following 12 weeks of HIIT (Figure 3.8, Table 3.6). In addition, mitochondrial markers were not associated with physiological fitness measures (p>0.05 – for complete results summary see Table 3.6). Of note, mtCN was strongly associated with age in all models (p<0.005) (Table 3.6), which is in accordance with the literature^{149,150}.

Figure 3.8. Individual changes in Citrate Synthase (CS), Cytochrome-C Oxidase (COX), Succinate Dehydrogenase (SDH), Mitochondrial Copy Number (mtCN),

12WP

Next, we investigated whether the training led to changes in fibre type distributions and whether those changes were associated with physiological or molecular changes (**Tables 3.6 & 3.7**). First, we tested whether fibre type proportion (as a percentage of number of fibres that were counted) and expression of myosin heavy chains (MHC) were correlated. Fibre type proportion and MHC expression presented small but significant correlation (**Figure 3.9**). We did not detect any shifts in fibre type percentage distributions or MHC expression after 12 weeks of HIIT at either the group or individual level (p-value >0.05) (**Figure 3.10, Table 3.7**). However, the proportions of types I and IIa, but not IIx, were associated with physiological markers (W_{peak} , LT and VO_{2max} , p<0.05) (**Table 3.7**). Finally, fibre type proportion and expression were not associated with any of the mitochondrial markers after adjusting p-values (p>0.05, data not shown).

 $\label{eq:Linear} Linear mixed model-Variable \sim Timepoint + random intercept (ID) + random slope (ID x Timepoint). Where Variable = Measurement value, Timepoint = PRE - 4WP - 8WP - 12WP. Fixed effects represent changes at the group level, while random effects represent changes at the individual level (trainability)$

		surements.	mitochondrial meas	nodel for the	ults of the linear mixed r	Table 3.6. Resu			
	261.56	68412	Residual	0.884	4.645	4.105	Age		
0.0964	81.68	6671	ID x Timepoint	0.559	35.669	21.197	Timepoint	MHI	
	248.248	2232.516	Residual	0.0016	41.251	130.091	Age		
0.148	535.213	775.159	ID	0.237	263.178	311.242	Timepoint	mtCN	
	1.232	11.539	Residual	0.254	0.217	-0.248	Age		
0.05	2.344	4.7	ID	0.253	1.415	1.62	Timepoint	SDH	
	0.199	1.403	Residual	0.933	0.027	-0.002	Age		
0.959	8.315	0.422	ID	0.654	0.196	0.088	Timepoint	COX	
	0.277	1.807	Residual	0.658	0.069	0.03	Age		
0.246	0.448	0.5216	ID x Timepoint	0.241	0.274	0.321	Timepoint	CS	
p-value	Standard error	Variance	Variable	p-value	Standard error	Estimate	Variable		
	Individual Level	n Effects - l	Randor		s - Group Level	Fixed Effect			

response to exercise training The epigenetic basis of variable

		Fixed Effects - Gro	up Level		Random	n Effects - In	dividual Level	
	Variable	Regression coefficient	Standard error	p-value	Variable	Variance	Standard error	p-value
Fibre Type I %	Timepoint	-0.969	1.266	0.453	ID x Timepoint	2.672	1.635	0.792
	Wpeak	4.67	2.406	0.07	Residual	94.83	9.738	
	Timepoint	-0.876	1.192	0.471	ID x Timepoint	0.905	0.951	0.833
	LT	6.392	2.767	0.032	Residual	96.378	9.817	
	Timepoint	-0.85	0.206	0.458	ID x Timepoint	0.262	0.512	0.938
	VO2max	0.582	0.206	0.01	Residual	93.323	9.66	
Fibre Type IIa %	Timepoint	1.863	1.36	0.178	ID x Timepoint	0.841	0.917	0.792
	Wpeak	-6.034	1.908	0.005	Residual	127.62	11.297	
	Timepoint	1.858	1.165	0.117	ID x Timepoint	0.385	0.62	0.907
	LT	-5.66	2.714	0.051	Residual	94.505	9.721	
	Timepoint	1.81	1.141	0.119	ID x Timepoint	0.292	0.54	0.9289
	VO2max	-0.5	0.198	0.02	Residual	94.015	9.696	
Fibre Type IIx %	Timepoint	-0.981	4.4609	0.1964	ID x Timepoint	1.008	0.909	0.268
	Wpeak	0.433	1.2175	0.7217	Residual	5.856	0.704	
	Timepoint	-0.944	0.781	0.227	ID x Timepoint	0.977	0.919	0.287
	LT	-0.312	1.45	0.829	Residual	5.87	0.705	
	Timepoint	-0.89	0.778	0.253	ID x Timepoint	0.97	0.887	0.274
	VO2max	-0.068	0.114	0.549	Residual	5.827	0.702	
Fibre Type I (log expression)	Timepoint	-0.005	0.085	0.945	ID x Timepoint	0.004	0.064	0.952
	Wpeak	-0.005	0.111	0.959	Residual	0.527	0.726	
	Timepoint	-0.007	0.084	0.931	ID x Timepoint	0.003	0.059	0.959
	LT	0.003	0.136	0.979	Residual	0.529	0.727	

	1.249	1.561	Residual	0.625	0.026	0.013	VO2max	
0.624	0.166	0.027	ID x Timepoint	0.872	0.15	-0.024	Timepoint	
	1.253	1.571	Residual	0.798	0.359	0.093	LT	
0.654	0.163	0.026	ID x Timepoint	0.902	0.152	-0.017	Timepoint	
	1.243	1.545	Residual	0.455	0.028	0.227	Wpeak	
0.572	0.181	0.033	ID x Timepoint	0.757	0.156	-0.048	Timepoint	Fibre Type IIx (log expression)
	0.952	0.906	Residual	0.248	0.013	-0.015	VO2max	
0.966	0.109	0.012	ID x Timepoint	0.363	0.111	0.103	Timepoint	
	0.93	0.865	Residual	0.106	0.172	-0.286	LT	
0.881	0.143	0.02	ID x Timepoint	0.309	0.112	0.116	Timepoint	
	0.939	0.882	Residual	0.205	0.141	-0.184	Wpeak	
0.891	0.146	0.021	ID x Timepoint	0.318	0.114	0.116	Timepoint	Fibre Type IIa (log expression)
	0.728	0.53	Residual	0.611	0.01	0.005	VO2max	
0.981	0.039	0.001	ID x Timepoint	0.866	0.083	-0.014	Timepoint	

Table 3.7. Results of the linear mixed model for fibre type % and log expression.

Linear mixed model - Variable \sim Timepoint + random intercept (ID) + random slope (ID x Timepoint). Where Variable = Measurement value, Timepoint = PRE - 4WP - 8WP - 12WP. Fixed effects represent changes at the group level, while random effects represent changes at the individual level (trainability).

response to exercise training The epigenetic basis of variable

77

Figure 3.10. Distribution of fibre type separated by timepoint.

Although minor changes are observed in the distribution overtime, those were not significant for either fibre type proportion or expression following 4, 8 and 12 weeks of HIIT. Cycle threshold (Ct).

Relationship between physiological and mitochondrial variables – bivariate latent growth models

To understand the relationship between changes in molecular variables and changes in physiological variables, we built a bivariate latent growth model. **Table 3.8** summarises the interaction between each bivariate model. As expected, W_{peak} , LT & VO_{2max} were correlated at baseline, which means that participants with high W_{peak} at baseline also had high LT and VO_{2max} at baseline (p<0.05). A similar correlation was observed between baseline CS and COX (p=0.049). Unsurprisingly, W_{peak} and LT showed similar increases over time across participants (p=0.05). However, no other associations were observed between physiological and mitochondrial measures. Finally,

participants with higher baseline CS displayed smaller changes in COX following training (p=0.042), and vice versa, participants with higher baseline COX had smaller changes in CS following training (p=0.026) (**Table 3.8**).

Comparison of methods for measurement of trainability

The different methods provided various types and degrees of information. The control group and control period methods could not attribute the observed trainability to the exercise training itself, as the variability in changes in the control group (or after a control period) was at least as large as the variability in changes in the exercise group (or after the intervention period). The reliability trial did not allow a comparison of the training responses of different individuals, as it only ascertained response/non-response at a certain level of confidence. In addition, the CI at the individual level during the repeated intervention revealed that some people present a positive response at some later point during the intervention but present no positive response if only assessing the 4 weeks' time point or if simply assessing a pre- and post-response (**Table 3.9**).

response to exercise	The epigenetic basis
training	of variable

				th models.	Bivariate grow	Table 3.8.			
0.194	0.219	0.285	0.933	0.072	-0.006	0.801	0.374	-0.094	SDH & mtCN
0.195	0.067	-0.087	0.188	0.095	-0.126	0.126	0.055	0.085	COX & mtCN
0.91	4.724	-0.532	0.647	2.241	-1.026	0.128	4.465	6.795	COX & SDH
0.285	0.461	-0.495	0.577	0.137	0.077	0.733	1.44	0.493	CS & mtCN
0.111	48.169	76.867	0.543	1.451	0.884	0.41	8.449	6.966	CS & SDH
0.042	1.762	-3.578	0.252	0.798	0.914	0.049	1.461	2.872	CS & COX
0.717	0.793	0.288	0.766	0.221	-0.066	0.366	2.93	2.649	VO2max & MHI
0.491	2.946	-2.101	0.716	0.684	0.25	0.807	4.783	1.168	VO2max & mtCN
0.528	12.254	-7.738	0.499	1.511	1.023	0.546	22.645	13.69	VO2max & SDH
0.418	4.567	3.699	0.255	1.403	-1.598	0.381	3.831	3.354	VO2max & COX
0.568	2.584	-1.477	0.246	0.755	0.877	0.641	8.112	3.777	VO2max & CS
0.898	0.128	0.035	0.87	-0.163	0.008	0.245	1.162	0.227	LT & MHI
0.415	-0.816	0.196	0.434	-0.786	0.045	0.322	0.99	0.323	LT & mtCN
-0.079	0.942	-0.591	0.83	0.259	0.055	0.283	1.861	1.999	LT & SDH
0.991	0.344	-0.004	0.825	0.09	0.02	0.096	0.324	0.538	LT & COX
0.418	0.188	-0.152	0.411	0.052	0.042	0.218	0.612	0.754	LT & CS
0.624	0.498	-0.245	0.395	0.136	0.116	0.008	2.256	6.025	LT & VO2max
0.848	0.031	-0.006	0.484	0.037	0.026	0.156	0.293	0.416	Wpeak & MHI
0.926	0.173	0.016	0.891	0.018	-0.002	0.667	0.413	0.178	Wpeak & mtCN
0.081	43.992	76.867	0.344	0.14	0.133	0.378	2.218	1.956	Wpeak & SDH
0.782	0.411	0.114	0.755	0.047	-0.015	0.217	0.361	0.446	Wpeak & COX
0.481	0.221	-0.156	0.081	0.024	0.002	0.207	0.728	0.919	Wpeak & CS
0.844	0.542	-0.107	0.344	0.063	0.06	0.006	2.718	7.445	Wpeak & VO2max
0.826	0.039	-0.009	0.052	0.006	0.012	0.006	0.209	0.574	Wpeak & LT
P-Value	Std. Error	Estimate	P-Value	Std. Error	Estimate	P-Value	Std. Error	Estimate	Variable
	ntercept & Slope	I		Slope & Slope		yt	tercept & Intercep	Ir	
				Covariates					

The Intercept & Intercept informs if variables have similar baseline values, Slope & Slope informs if variables have similar rate of changes, and Intercept & Slope informs if baseline values of one variable affects the rate of change of the other variable.

	COTOC	56185	SG174	SG173	SG172	SG162	SG160	SG154	SG152	SG149	SG144	SG140	SG139	SG138	SG134	SG133	SG131	SG129	SG125	SG112	SG110	D		
	C.	0 1	0.6	0.2	-0.2	0.3	0.3	0.1	0.5	0.1	0.2	0.2	0.1	0.3	0.3	0.3	0.1	0.1	0.1	0.2	0.2	Δ(W_p	
		۶۵ ۵ ک	0.08	-0.05	19 0.34	0.61	0.40	-0.05	0.39	.7 -0.03	0.32	.8 0.44	.1 -0.03	0.21	0.25	0.22	.9 0.24	.5 0.14	.5 0.39	0.05	0.11	(4 weeks) Δ (4 weeks)	_{reak} (W/kg) LT (W/kg)	1st interve
		ΔN	5.80	0.45	0.54	1.50	-1.13	-2.41	-2.05	0.41	2.75	-2.24	-2.60	-6.11	3.16	5.68	2.94	-7.18	-2.59	1.63	-2.10	Δ(4 weeks)	VO _{2max} (mL/min/kg)	ention
	0.00	0 69 0 10	NA 0.24	0.40 0.16	1.10 0.33	0.51 0.24	0.17 0.02	0.45 0.15	0.41 0.15	0.50 0.16	0.50 0.15	NA -0.2	0.19 0.07	NA 0.19	0.44 0.15	1.45 0.34	0.35 0.16	0.68 0.20	0.35 0.11	0.88 0.30	NA 0.14	Δ (12 weeks) Slop	Wpeak (W/kg)	
	0.10	0 16 0		0.33 0	1.06 0	0.57 0	0.06 0	0.60 0	0.06 0	0.04 0	0.47 0	4 NA 0	0.00 0	NA 0	0.97 0	0.75 0	0.26 0	0.03 0	0.01 0	0.56 0	I NA O	oe Δ(12 weeks) S	LT (W/kg)	2nd interven
	1.11	07 -1 44	16 NA	13 1.83	26 -0.63	15 14.63	02 -0.85	17 1.02	06 5.02	06 5.84	13 10.81	05 NA	05 -4.84	12 NA	24 8.62	20 4.25	08 -2.99	02 4.39	06 -0.59	18 15.92	13 NA	lope Δ (12 weeks)	VO2max (mL	lion
	0.05	-0 09	2.49	0.67	0.97	4.69	-0.20	-0.24	2.03	1.82	3.50	1.29	-0.88	1.47	3.22	1.04	0.11	1.63	-0.28	4.73	-0.26	Slope	/min/kg)	
*account																						1st inter 2nd inter	1xTEM (0.13 W/kg)	W _{peak}
ing for individual Cl																						* 1st inter 2nd inter	2xTEM (0.26 W/kg	(W/kg)
																						* 1st inter 2nd inter) 1xTEM (0.25 W/kg	LT
																						* 1st inter 2nd inte) 2xTEM (0.5 W/kg	(W/kg)
																						r* 1st inter 2nd inter) 1xTEM (3.33 W/k	VO _{2max}
																						er* 1st inter 2nd inte	g) 2xTEM (6.66 W/kg	(mL/min/kg)

Table 3.9. Methods comparison classification based on responsiveness.

Each participant was colour coded according to response (green: responder for the method, red: non-responder for the method, and yellow: inconclusive response for the method).

The epigenetic basis of variable response to exercise training

3.4 Discussion

In the present study, we provide a comprehensive picture of the statistical methods and their applications in an interventional study to isolate sources of variability. All methods provided different information and may be used complementarily. For example, a control period or control group determined whether inter-individual variability in response to training was due to the training itself, but it does not estimate trainability. TE_M is useful to determine the reliability and intra-test variability as well as to establish thresholds (i.e. minimum change necessary for biological meaning), but also does not quantify trainability. Studies investigating individual responses to exercise training often assume that if the same intervention was re-applied or extended to the same participants, their responses would be consistent^{10,40}. This assumption has been rightfully challenged^{5,10,40,43}, but innovative methods to measure trainability have only recently been proposed and only one study has implemented some of them¹⁰. Here we have applied repeated intervention and repeated test approach was successful in estimating trainability while the repeated intervention did not.

Since our repeated testing approach was successful in quantifying trainability, we have extended the analyses to include mitochondrial and fibre type profiles analyses during the 12-week HIIT intervention. We found that physiological measurements improved more consistently than molecular measurements from the 12-week HIIT intervention. While there were clear changes in physiological measurements at the group level and we were able to identify high and low responders to exercise training based on these measurements, we were unable to do so with mitochondrial markers as they were highly variable both within and between participants. Type I and IIa fibres that were associated with some physiological variables (W_{peak} , LT and VO_{2max}). Baseline fitness did not influence magnitude of change for any physiological, molecular or fibre type related measurement. Finally, changes at the physiological level were not associated with changes at the molecular level.

To explore the results from each model in more depth we have subdivided the following sections according to statistical tests applied.

3.4.1. Control group/period

In line with many other studies, we found that inter-individual variability in physiological changes after the control group/period was on par with that of the intervention group/period, suggesting that the observed trainability after 4 weeks of HIIT was not due to the training itself and was in fact just random error⁴³. However, this method assumes that any difference in physiological measures between groups/periods is caused by the exercise intervention $alone^{43}$, and that the groups/periods have identical environments (sleep, diet, etc.). However, participants' habits may change when they start an exercise training intervention. For example, participants may lower their IPA when commencing the intervention, replacing some of the habitual physical activity they were already doing with the new intervention¹⁵¹. This would effectively lead to an underestimation of the training effect at the group level, and an underestimation of trainability. While we did not observe any difference in IPA between the control and intervention groups/periods, we did not monitor sleep, diet, or any other environmental factor that may influence training responses. In addition, the use of a control group/period does not determine the presence of trainability, as within-subject variability in response to training may still be present.

3.4.2. Technical error of measurement (TEM)

Common measures reported by exercise studies that are used as thresholds for classifying individuals as responders (or adverse responders) include the technical error of measurement (TE_M) and coefficient of variance (CV)^{4,29,32}. Although this method is based on a clear rationale (categorise individuals based on their level of response), it cannot *quantify* trainability at the individual level, resulting in a loss of statistical power as highly informative continuous data (i.e. change scores) is reduced to two or three categories. In our study, only one participant was a systematic non-responder (fitness changes $< 2 \times TE_M$) for all physiological measurements. Unsurprisingly, some global non-responders from the first intervention (n= 10) did respond after a second intervention (4 weeks), and some non-responders (n= 6) from the first intervention responded after the longer intervention (> 4 weeks of HIIT). It is important to reiterate that this method is not recommended to continuous measures (i.e. response to exercise), or classification of response. Unless a clear rationale is proposed for the establishment of thresholds of changes, or to evaluate reliability of measurements.

3.4.3. Repeated intervention

A repeated intervention on the same participants after an adequate washout period is theoretically the most straightforward approach to estimate trainability^{5,6,10,35}. This method assumes that participants have not significantly changed between the first and second interventions (i.e. no major life changes between interventions). However, there are factors that may influence how well each individual respond to training in the repeated intervention, such as carry-over effects from the first intervention or ageing significantly. In our study, participants were given a relatively long washout period (>1 year) compared with the length of the first intervention (4 weeks of training), yet not long enough for participants to age significantly, limiting carry-over and age-related effects. In addition, participants showed very similar fitness levels before the first and second intervention, thus suggesting limited lifestyle changes between the first and second interventions. We found no evidence of recruitment bias for the second intervention using W_{peak} or LT, yet returning participants showed higher VO_{2max} than the group of the first intervention taken as a whole (p=0.0006). Using a repeated intervention, we could not detect trainability after 4 weeks of HIIT, as the responses to the first vs second intervention were very different within participants. This may be explained by the short length of training (4 weeks) that triggered relatively small adaptations, which are harder to detect in the "noise" of within-subject variability. We could not apply the repeated testing method on the 4 weeks of training since it was a relatively short intervention. We performed repeated testing in the longer intervention (12 weeks of training), which naturally triggered larger adaptations and made it easier to detect trainability in the "noise" of within-subject variability. Therefore, we suggest studies measuring trainability to design exercise training studies that are long enough to trigger physiological adaptations that are larger than any technical and biological day-to-day variability, to increase the "signal-to-noise" ratio. Finally, repeated interventions are challenging and costly to implement, which might limit their applicability. Repeated interventions may be used to investigate the sex and genetic basis of trainability, as these factors are stable over time. While the repeated testing method discussed in the following subsection may be better suited for linking trainability to molecular profiles that fluctuate with age and other environmental factors, and that may differ at baseline before the first and second interventions (e.g. epigenetic profiles, gene, and protein expression).

3.4.4. Repeated measurements

Including repeated measurements during the intervention is an emerging approach to estimate trainability^{5,10,40}. Continuous, repeated measures during exercise interventions constitute a cost-effective approach to estimate individual exercise responses^{5,10,40}. Using this method, we successfully quantified trainability for W_{peak} , LT and VO_{2max} , and identified individuals who responded to the training better (or worse) than the group. This methodology should therefore be the gold standard for studies aiming at uncovering the genetic or epigenetic basis of individual responses to exercise training. Due to the success of this application at the physiological level we have expanded our analyses in order to include molecular markers.

This study has assessed, for the first time in skeletal muscle, a comprehensive mitochondrial health "score", MHI, originally assessed in blood¹³⁵. Although biologically relevant, mitochondrial markers measured in isolation are hard to interpret as compensatory mechanisms may be occurring among variables. Thus, the novel MHI measurement integrating biochemical and molecular mitochondrial measures, aims to obtain higher sensitivity to mitochondrial responses as it accounts for any relationship between variables¹³⁵. During the 12-week HIIT intervention, the mitochondrial enzyme maximal activity and therefore the MHI were highly variable, and no consistent changes were observed at either the group or individual level. This was surprising given that mitochondrial content and function are upregulated by exercise^{126–128}. To ensure that the variance was not due to technical variability, we removed any duplicate results that presented a variance >10%. However, it is known that enzyme activity is highly dynamic and the timeframe in which enzymes are fired may vary both within as well as between subjects¹⁵². In addition, we cannot rule out the potential involvement of other enzymes in similar pathways, or enzyme Km and not the maximal activity could be different between people¹⁵³, but these hypothesis remains to be tested. Furthermore, due to the nature of skeletal muscle (i.e. multi-nucleated) we could not account for cell number as suggested by Picard et al. The multi-nucleated characteristic of skeletal muscle promotes the possibility that each myonuclear differ in transcriptional rates and are independently regulated and distinctive from each other, to the extent that local differences in skeletal muscle (i.e. two pieces of same biopsy) might be present following exercise^{9,154,155}, and thus potentially explaining part of the variability observed between and among measures.

3.4.5. Associations between physiological and molecular markers

Adaptive mechanisms that improve muscle function and enhance response to exercise are initiated at the transcriptional level^{9,156}. However, apart from correlational observations there is no direct evidence linking changes in mRNA expression to training induced adaptations^{9,157,158}. Here, we investigated whether fibre type gene expression was associated with fibre type composition. The proportions of fibre type have been previously reported to be associated with different modalities of exercise^{159–161}. For example, a high proportion of type I fibres are beneficial to endurance athletes as they are slow twitch, oxidative and relatively more resistant to fatigue. We found significant associations between the proportions of type I and IIa fibres with physiological markers. Fibre type I was positively associated with LT and VO_{2max} while fibre type IIa was negatively associated with all physiological measurements (W_{peak}, LT and VO_{2max}) (p<0.05). However, neither fibre type composition nor MHC mRNA expression significantly changed with 12-weeks of HIIT at either the group or individual level. It is recommended that for better accuracy a minimum of 150 fibres to be used for estimation of fibre type proportions¹⁶², and these guidelines were followed whenever possible (i.e. large enough sample) in our study, and the absolutely minimum number of fibres considered was 100. However, even though we were careful to reduce variability within the data whenever possible, it is possible that the large noise to ratio observed by these techniques might have hindered any significant changes in our cohort¹⁶³. Further, we hypothesise that, the apparent lack of association between composition and expression may be due to the confounding influence of random error (i.e. technical error of measurement and/or biological variability)⁹. A recent study investigating repeatability of exercise-induced changes, has shown a large intra-biopsy variation, most like to due to slight changes in the site for sampling, for fibre type distribution as well as gene expression⁹, this could potentially explain the poor correlation observed between our results for fibre type composition and expression, and even the mitochondrial enzyme analysis.

Growth models allowed testing as to whether an individual who started with higher baseline values had lower improvements after training, without suffering from the statistical artefact of regression to the mean that often plagues exercise training studies⁶. We found that baseline values did not affect the rate of change of any of the physiological or molecular variables. We also hypothesised that changes at the physiological level are

a consequence of changes at the molecular level, and therefore physiological changes should be associated with changes molecular changes. Surprisingly, only W_{peak} and LT changed similarly over time, meaning that changes in most variables were independent from one another, and improvement in one variable did not necessarily mean improvement in another variable. Finally, we found an interesting relationship between CS and COX. CS and COX levels were correlated at baseline, and baseline CS values were associated with changes in COX and vice versa. CS activity is closely associated with mitochondrial content, while COX activity is strongly associated with mitochondrial oxidative phosphorylation capacity^{135,137}. CS activity influences the oxidation of substrates in some respirations protocols, and complex IV is part of the mitochondrial substrate oxidation¹³⁷, which could potentially explain the relationship observed in our results. COX/CS ratio has been previously reported to be a biochemical marker of mitochondrial dysfunction related to obesity in blood¹⁶⁴. An increase of this ratio (i.e. energy-coupled substrate oxidation) could potentially lead to increase of ATP synthesis which in turn may be channelled toward lipid formation¹⁶⁵. Based on our results exercise might be acting as a regulator of CS/COX ratio, which might represent an important mechanism regulating adipocyte formation and reducing the risk of obesity. This is an important finding, which require further exploration and validation.

3.4.6. Summary and suggestions for future studies

In summary, we successfully accounted for sources of variability that are often common to exercise studies by applying an exercise protocol of repeated measurements at regular intervals during exercise training to quantify individual responses. However, we could only estimate trainability for physiological measures of fitness, while mitochondrial markers were highly variable both between and within participants over time. We also reported a low correlation between physiological and molecular markers of fitness. Further studies utilizing the repeated testing approach in larger cohorts are needed in order to clarify the relationship between molecular and physiological responses to training. Variability between and within variables might be due to compensatory molecular mechanisms, and other associations might be occurring such as the one reported here by CS/COX, however further studies in the field are necessary to elucidate such networks.

Finally, based on our comprehensive approach, we suggest that future exercise training studies carefully consider the strengths and weaknesses of all these methods and choose the most suitable protocol addressing their scientific question. We propose to consider the following before embarking on an exercise training study:

- Ensure trainability is reproducible within the same participant by quantifying within-subject variability using either a repeated intervention, or repeated testing during the intervention. We found that repeated testing at regular time points during the course of the intervention was the most feasible and cheapest method to implement.
- 2) Ensure the magnitude of individual adaptations is larger than the magnitude of technical and day-to-day variability by conducting at minimum duplicate measurements at each timepoint. Duplicate measurements quantify technical and day-to-day variability and allow obtaining accurate measurements for each individual at each time point. Then, apply an intervention with the optimum duration and intensity to trigger physiological improvements that are detectable above random "noise." Here, increasing training length from 4 to 12 weeks, with duplicate graded exercise tests every 4 weeks, was sufficient to quantify trainability.
- 3) If possible, *use a control group or control period* (same participants) to ensure inter-individual differences in response to training are due to the training intervention. Depending on the length of the intervention, this may not be feasible for ethical reasons¹⁰. Both models presented similar results with SD_{true} (i.e. null or close to 0), strengthening the fact that that interventions need to be intense and long enough to overcome biological noise.
- 4) Keep statistical power to a maximum by avoiding dichotomising or categorising continuous, informative data into "responders"/"non-responders"/"adverse responders" and embrace continuous measures. Future studies should implement non-linear, more complex modelling of individual training responses to further increase statistical power in detecting trainability.

Chapter 4. Mitochondrial respiration variability and simulations in human skeletal muscle: The Gene SMART study

This paper is based on the following publication:

Jacques M, Yan X, Bishop DJ, Romero JA, Munson F, Kuang J, Garnham A, Papadimitriou I, Voisin S*, Eynon N*. (2019) Mitochondrial respiration variability and simulations in human skeletal muscle: the Gene SMART study. FASEB J. 2020;10.1096/fj.201901997RR.

PO B Vic 8 +61 3 THE NEW WAY TO DO UNI

OFFICE FOR RESEARCH TRAINING, QUALITY AND INTEGRITY

DECLARATION OF CO-AUTHORSHIP AND CO-CONTRIBUTION: PAPERS INCORPORATED IN THESIS

This declaration is to be comp in which the publication appe 1. PUBLICATION DETAILS	leted for each conjointly authored ars. • (to be completed by the ca	d publication and placed a ndidate)	t the beginning of the thesis chapter
Title of Paper/Journal/Book:	Mitochondrial respiration skeletal muscle: The Ger Jacques M, Kuang J, Bis Garnham A, Papadimitric	variability and simula ne SMART study hop DJ, Yan X, Alvan bu I, Voisin S, Eynon	ations in human rez-Romero J, Munson F, N. Mitochondrial respiration
Surname: Jacques		First name: Ma	acsue
Institute: Institute for H	lealth and Sport	Candidate's Co	ntribution (%): 60
Status: Accepted and in press Published: 2. CANDIDATE DECLAR	ATTION	Date: 202	0
I declare that the public in the HDR Policy and re	ation above meets the requ lated Procedures – <u>policy.v</u>	uirements to be inclu <u>ru.edu.au</u> .	ded in the thesis as outlined
Macsue Jacques	Digitally signed by Macsue Jacques Date: 2021.04.07 15:17:40 +10'00'	7/04/2021	
Sign	ature	Date	
3. CO-AUTHOR(S) DEC In the case of the above pu	LARATION ublication, the following author	ors contributed to the v	vork as follows:
The undersigned certify	that:		
1. They meet criteria for interpretation of at le	or authorship in that they l east that part of the publica	have participated in ation in their field of	the conception, execution or expertise;
2. They take public resp who accepts overall	consibility for their part of responsibility for the public	the publication, exce ation;	pt for the responsible author
.4428, Melbourne, L, Australia			Victoria University ABN 83776954 CRICOS Provider No. 00124K (Melbour

UNIVERSITY 3. There are no other authors of the publication according to these criteria;

- 4. Potential conflicts of interest have been disclosed to a) granting bodies, b) the editor or publisher of journals or other publications, and c) the head of the responsible academic unit; and
- 5. The original data will be held for at least five years from the date indicated below and is stored at the following **location(s)**:

Name(s) of Co-Author(s)	Contribution (%)	Nature of Contribution	Signature	Date
Jujiao Kuang	5%	Optimization of experiment protocol, data colection		12/04/2021
David Bishop	3%	Editing and approval final manuscript.		12/04/2021
Xu Yan Andrew Garnham	5% 2%	Data collection & manuscript editing.	_	12/04/2021
Javier Alvarez-Romeiro	5%	Data collection & manuscript editing.		12/04/2021
Fiona Munson Ioannis Papadimitriou	5% 5%	Data collection & manuscript editing.		12/04/2021
Sarah Voisin Nir Eynon	5% 5%	Editing and approval final manuscript.		12/04/2021

Updated: September 2019

Victoria University ABN 83776954731 CRICOS Provider No. 00124K (Melbourne), 02475D (Sydney), RTO 3113

PO Box 14428, Melbourne, Vic 8001, Australia +61 3 9919 6100

4.1 Introduction

The mitochondrion is a membrane-enclosed organelle found in eukaryotic cells. With its five specialized complexes, it produces adenosine triphosphate (ATP) and thus constitutes the powerhouse of the cell⁹⁵. ATP is produced during oxidative phosphorylation (OXPHOS) via the tricarboxylic acid (TCA) cycle inside the mitochondrial matrix, and via the electron transport system (ETS) along the inner mitochondrial membrane¹⁶⁶. Mitochondrial respiration measured by maximal oxygen consumption in skeletal muscle fibres, is currently the primary way of assessing mitochondrial capacity^{18,19}. The most common method in human skeletal muscle uses fibres permeabilized by saponin^{167,168}. Using a combination of different substrates, this technique is able to mimic the processes (i.e., TCA cycle & ETS) occurring within the mitochondrion.

Regular exercise has a beneficial effect on mitochondrial function¹⁶⁹. Endurance exercise training improves mitochondrial respiration^{12–17}, with high-intensity exercise training leading to larger improvements (up to 40%)^{12,14–16} than moderate continuous exercise training (up to 20%)^{170,171}. However, changes in mitochondrial respiration using permeabilized muscle fibres following exercise training have been assessed in relatively small sample sizes, typically within a range of n = 8-15¹⁵⁷, and without assessing respiration changes in a control group⁴⁰. Mitochondrial respiration values, as well as improvements in mitochondrial respiration following exercise training are also quite variable between studies^{12,19,157,170,172,173}. For example, Irving *et al.*¹⁷² observed a ~1.5 fold change in mitochondrial respiration after moderate intensity endurance training (n=34), while Robach *et al.*¹⁷⁴ did not observe any change after a similar intervention (n=17). Mitochondrial respiration capacity in human exercise intervention studies is not exclusive to skeletal muscle samples. Although such investigations are less common, different studies have measured respiration capacity in adipose tissue^{175,176}, and blood cells (including lymphocytes and platelet)^{177–180}.

Tests run in duplicates (or more) enable researchers to capture technical variability, and/or biological day-to-day variability within participants⁴⁰. The typical error of measurement (TE_M), also called "within-subject standard deviation", provides an estimate of such variability⁴⁰. In the only study to date investigating the reliability of mitochondrial respiration measurement¹⁹, the TE_M between two fibre-bundles from the

same biopsy was 10.5 pmol.s⁻¹.mg⁻¹ in the maximal oxidative phosphorylation (OXPHOS) and the coefficient of variations (CVs) were worryingly high (15.2% between two fibre bundles, 23.9% between legs, and 33.1% at different time points)¹⁹. More studies are required to confirm whether such variability is consistently high, but, more importantly, this technical variability needs to be put into perspective with typical mitochondrial respiration changes following interventions (e.g. exercise training interventions). The qualifiers "high" and "low" variability only make sense when compared with the magnitude of the intervention-induced changes, which will determine how likely we are to detect those changes.

Therefore, the aim of the present study was to investigate the reliability of mitochondrial respiration measurements in human *vastus lateralis* muscle using large number of duplicate fibre bundles (160 pairs) collected from a range of participants at different time points. We correlated mitochondrial respiration values between two chambers containing bundles of same muscle sample for complexes CI_P , $CI+CII_P$ and $CI+CII_E$, and calculated the TE_M and the CV between experiments. Using the estimated TE_M and CV, we performed simulations to determine the minimum number of participants required to detect meaningful mitochondrial respiration changes of various effect sizes following a hypothetical intervention, at 80% power.

4.2 Materials and methods

4.2.1. Participants

Participants were from the Genes and Skeletal Muscle Adaptive Response to Training (Gene SMART) cohort. The full study methodology has been previously described elsewhere¹³⁶. 68 apparently healthy, Caucasian men (age = 31.4 ± 8.2 years old; BMI = 25.2 ± 3.2 kg/m²) participated in the study and signed a written informed consent. Participants were excluded if they had any pre-existing heart condition, health issues and/or pre-existing injury that could potentially impair exercise capacity. The study was approved by the Human Ethics Research Committee at Victoria University (HRE13-223).

4.2.2. Muscle biopsies

A controlled diet for 48 h prior to the muscle biopsies was provided to the participants, according to the guidelines of the Australian National Health & Medical

Research Council (NHMRC). Muscle biopsies were taken by an experienced medical doctor from the *vastus lateralis* muscle of the participants' dominant leg, following local anaesthesia (2mL, 1% Lidocaine (Lignocaine)). The needle was inserted in the participant leg and manual suction was applied for muscle collection. Care was taken not to contaminate the muscle samples with local anaesthetic during the biopsy. 2-6 mg of muscle was then immediately placed in ice-cold BIOPS for determination of mitochondrial respiration in two individual chambers (duplicates).

4.2.3. Mitochondrial respiration

Immediately after each biopsy (within max 30 minutes of collection), 2-6 mg of muscle fibres were mechanically separated using pointed forceps under a binocular microscope in 2mL ice-cold biopsy preservation solution on ice (BIOPS, 2.77 mM CaK2EGTA, 7.23 mM K2EGTA, 5.77 mM Na2ATP, 6.56 mM MgCl2•6H2O, 20 mM Taurine, 15 mM Na₂Phosphocreatine, 20 mM Imidazole, 0.5 mM Dithiothreitol, and 50 mM K⁺-MES at pH 7.1)¹⁶⁸. Permeabilization of the plasma membrane occurred in the same solution with 50 µg/ml of saponin (Sigma-Aldrich, St Louis, USA) for 30 minutes rotating on ice. This was followed by rinsing the muscle fibres for 3×7 minutes in mitochondrial respiration medium (MiR05, 0.5 mM EGTA, 3 mM MgCl₂•6H₂O, 60 mM K-lactobionate, 20 mM Taurine, 10 mM KH₂PO₄, 20 mM Hepes, 110 mM sucrose, and 1 g/L bovine serum albumin at pH 7.1)¹⁶⁸ on ice. Mitochondrial respiration was measured in duplicates in washed muscle fibers (between 1 to 3 mg wet weight of muscle fibers/chamber) in MiR05 at 37°C using the high-resolution Oxygraph-2k (Oroboros, Innsbruck, Austria), with additional substrates. Oxygen concentration (mM) and flux $(pmol \times s^{-1} \times mg^{-1})$ were recorded using DatLab software. Reoxygenation by direct syringe injection of O₂ was necessary to maintain O₂ levels between 275 and 450 mM and to avoid potential oxygen diffusion limitation. A substrate-uncoupler-inhibition tritation sequence was used. The following substrates were added (final concentration): malate (2 mM) and pyruvate (5 mM) were added to measure the LEAK respiration (L) through Complex I (CI) (CI_L), followed by MgCl₂ (3mM) and ADP (5 mM) to measure oxidative phosphorylation (OXPHOS) capacity (P) through CI (CI_P), followed by succinate (10 mM) to measure P through CI + Complex II (CII) linked respiration $(CI+CII_P)^{181}$. This respiration state represents the maximal respiratory capacity in the respirometer chamber¹⁸¹. Cytochrome c (10 μ M) was used to test the integrity of the outer mitochondrial membrane, in this step if the respiration increased >10% when cytochrome

c was added, values from that chamber were removed due to a damaged membrane. A series of steps (steps of 0.5 μ M) p-trifluoromethoxyphenylhydrazone (FCCP) titrations followed for measurement of electron transport system (ETS) capacity (E) through CI+CII (CI+CII_E). Antimycin (3.75 μ M) was added to block the activity of complex III and to measure the residual oxygen consumption (ROX) indicative of non-mitochondrial oxygen consumption. Substrate and coupling control ratios were calculated from the different titration steps obtained from the protocol used¹⁶⁹. A background calibration for the Oroboros machine was performed every three months, and air calibrations were performed before each experiment. The results were pasted into the excel spreadsheet supplied by the manufacturer (Oroboros). If air calibrations presented more than 5% deviation in the results, membranes were changed, and new background calibration was done. Instrument backgrounds were performed in MiR05, and oxygen levels were at 450 nmol/ml. Highly variable graphs indicative of poor quality, as shown on the O2K software, were removed.

4.2.4. Citrate synthase activity

Intrinsic changes in the mitochondria can be determined by quantitative measurements of specific markers. Such measurements can estimate the content of the mitochondria and are commonly used to normalise global measurements of mitochondrial function. The most commonly used measurement is the citrate synthase (CS) enzyme activity¹³⁷. Thus, we have normalized our results by CS activity.

Complete enzyme extractions, from small pieces of frozen tissues, were performed in an ice-cold buffer (KH₂PO₄ & K₂HPO₄) using a TissueLyser II (Qiagen, Hilden, Germany). Protein concentration was assessed using the bicinchoninic acid assay. Total citrate synthase (CS) activity was measured (30 °C, pH 7.5) using standard spectrophotometric assays. CS activity is presented in international units (IU).

4.2.5. Statistical analyses

We calculated three different metrics to show the reliability of mitochondrial respiration measurements. First, we calculated the correlation between duplicates from the two chambers, for each complex, using non-parametric Spearman's test to downweight the influence of outliers, and a stringent p-value<0.005 for significance. Then, we calculated the within-subject standard deviation, also called typical (or technical) error of measurement (TE_M)⁴⁰:

$$TE_M = \sqrt{\frac{\sum_{1}^{n} (x_{i1} - x_{i2})^2}{2n}}$$

where n is the number of pairs of duplicates and x is the respiration measurement. We calculated the coefficient of variability (CV) estimated by: $CV = 100 * \frac{TE_M}{\mu}$, where μ is the mean respiration across all duplicates and all samples. While TE_M is expressed in the units of mitochondrial respiration (pmol \cdot s⁻¹ \cdot mg⁻¹), CV is a percentage.

Lastly, we performed simulations based on the TE_M for the CI+CII_P and CI+CII_E respiration values. We simulated increases of 1-50% in mitochondrial respiration in each participant after a hypothetical intervention and estimated the sample size (number of participants) required to detect this change at 80% power. All analyses were performed using the R software.

4.3 Results

4.3.1. Large technical error in mitochondrial respiration measurement.

Two fibre bundles from the same muscle biopsy were run simultaneously in two chambers totalling 160 duplicate pairs after removal of results that indicated damaged membrane (i.e., cyt-c increased > 10%). Respiration measurements were correlated between chambers ($R \ge 0.71$ -0.75, p<0.005 for all – **Figure 4.1**). Yet when compared with correlations obtained for gene expression data (generally R>0.9)^{182,183}, the correlation values obtained here are rather low.

Figure 4.1. Spearman's correlation between chambers after the addition of (A) oxidative phosphorylation (OXPHOS) capacity (P) through Complex I (CIP), (B), measure P through CI+Complex II (CII) linked respiration (CI+CIIP), (C) electron transport system (ETS) capacity (E) through CI+CII (CI+CIIE).

All values are in pmol s⁻¹ mg⁻¹

The poor correlation between chambers was consistent with high TE_M and CV estimates for all complexes (**Table 4.1**), as all complexes showed a $CV \ge 15\%$. When reporting the Flux Control Ratios (FCRs), to account for lab-to-lab variability¹⁶⁹, the TE_M and CV estimates were also significantly elevated, with some reaching more than 100%.

	$Mean \pm SD$			
	Chamber 1	Chamber 2	TE _M	CV (%)
$CI_P \text{ (pmol} \cdot \text{s}^{-1} \cdot \text{mg}^{-1})$	82.9 ± 30.6	85.1 ± 28.7	14.9	17.5 %
$CI+CII_P (pmol \cdot s^{-1} \cdot mg^{-1})$	123.1 ± 39.0	123.0 ± 36.0	19.0	15.3 %
$CI+II_E (pmol \cdot s^{-1} \cdot mg^{-1})$	154.9 ± 48.8	150.6 ± 44.1	24.4	15.9 %
LCR $(CI_L/CI+II_E)$	0.08 ± 0.08	0.09 ± 0.07	0.04	50.8%
PCR (CI+II _P /CI+II _E)	0.80 ± 0.12	0.82 ± 0.11	0.07	9.0%
RCR (CI+II _P /CI _L)	11.1 ± 31.3	11.6 ± 16.7	22.8	193.7%
Inv_RCR (CI _L /CI+II _P)	0.11 ± 0.09	0.11 ± 0.08	0.05	48.6%
SCR (CI _P /CI+II _P)	0.67 ± 0.11	0.69 ± 0.08	0.07	10.8%

 Table 4.1. Chamber-specific respiration values and FCRs, typical error of measurement and coefficient of variation for each substrate.

*CI, Complex I; CI+CII, Complex I & II; L, leak respiration; P, oxphos capacity; E, ETS capacity; LCR, leak control ratio (CI_L/CI+II_E); PCR, phosphorylation control ratio (CI+II_P/CI+II_E); RCR, respiratory control ratio (CI+II_P/CI_L); Inv-RCR, inverse of respiratory control ratio (CI_L/CI+II_P); SCR, substrate control ratio at constant P (CI_P/CI+II_P); CI, electron input through CI; CI+II, convergent electron input through CI and CII. FCR were calculated from mass-specific mitochondrial respiration measurements in permeabilized muscle fibres (vastus lateralis).

The poor correlation along with high TE_M and CV (> 15%) estimates for all complexes, was still observed when we normalized mitochondrial respiration with CS activity, (**Table 4.2**).

	Mean \pm SD			
	Chamber 1	Chamber 2	TE _M	CV (%)
CI _P */CS**	5.38 ± 1.92	5.60 ± 1.79	1.02	18.5 %
CI+CII _P */CS**	8.13 ± 2.73	8.24± 2.52	1.25	15.2 %
CI+II _E */CS**	10.35 ± 3.65	10.22 ± 3.32	1.57	15.3%

 Table 4.2. Chamber-specific respiration values normalized by CS activity, typical error of measurement and coefficient of variation for each substrate.

Results based on 128 muscle samples * (pmol \cdot s⁻¹ \cdot mg⁻¹) ** (mIU \times mg protein⁻¹)

4.3.2. Simulations to estimate the sample size required to detect changes in mitochondrial respiration at 80% power.

We performed simulations for both the CI+CII_P and CI+II_E respiration values since they are the most commonly reported respiration measurements in the literature, as well as the PCR and SCR ratios. We estimated the sample size required to detect true changes in mitochondrial respiration at 80% power. Since TE_M and CV values for mitochondrial respiration and mitochondrial respiration/CS were similar we have not conducted simulations for the latter. However, we have attached the code for this calculation in the supplementary file of our published paper¹²⁴.

For the coupled and uncoupled respiration, the minimum sample size required to observe a percentage increase at 80% power is shown on **Figure 4.2**. An intervention that increases mitochondrial respiration by 10% at the group level requires a minimum of 23 participants to detect changes for CI+CII_P and CI+CII_E at 80% power. Our results suggest that with the typical sample size in exercise training studies (n = 12), only changes of >15% in mitochondrial respiration following training would be detectable at 80% power.

Figure 4.2. Minimum sample size required to detect increases in mitochondrial respiration (MR) after training at 80% power.

A minimum of \sim 65 (CI+CII_P) and \sim 75 (CI+CII_E) pairs of duplicate samples are necessary to detect an increase of 6% in mitochondrial respiration at the group-level, at 80% power. An intervention with \sim 25 samples/individuals

would require a change of at least 11% in mitochondrial respiration to achieve 80% power for both CI+CII_P and CI+CII_E respiration. Experiments with less than 20 individuals would require a change of at least 15-20% to achieve 80% power. The triangles represent real effect sizes and sample sizes reported in different studies: 1-MacInnis et al. 2017, 2- Granata et al. 2016, 3- Granata et al. 2016, 4- Dohlmann et al. 2018, 5- Robach et al. 2014, 6- Robach et al. 2013, 8- Vincent et al. 2015, 9- Christensen et al. 2016 (changes from respective studies are reported as %)^{12,14-16,170,174,184}.

For the PCR and SCR respiration ratios, the minimum sample size required to observe a percentage increase at 80% power is shown on **Figure 4.3**. An intervention that increases mitochondrial respiration by 10%, at the group level, requires a minimum of 11 participants to detect changes for PCR ratio and 22 participants for the SCR ratio at 80% power.

We have also simulated percentage increases after hypothetical exercise training intervention in a cohort of 20 individuals (**Figure 4.4A**). We observed that an increase of ~11% or more in mitochondrial respiration is necessary for changes to be detected at 80% statistical power if each participant had duplicate respiration measurements. While for ratios (**Figure 4.4B**), a minimum of ~6% increase for PCR phosphorylation control ratio (CI+II_P/CI+II_E) and ~7% increase for SCR substrate control ratio at constant P (CI_P/CI+II_P) is required to be detected at 80% power, if each participant had duplicate respiration measurements.

Figure 4.3. Minimum sample size required to detect increases (DI) in mitochondrial respiration (MR) ratios after training at 80% power.

A minimum of ~26 (PCR) and ~38 (SCR) pairs of duplicate samples are necessary to detect an increase of 5% in mitochondrial respiration at the group level, at 80% power. An intervention with ~20 samples/individuals would require a change of at least 6% and 8% in mitochondrial respiration to achieve 80% power for PCR and SCR ratios, respectively. Experiments with less than 20 individuals would require a change of at least 7%-10% to achieve 80% power. Due to inconsistencies in the literature in which ratios each study calculates we have not included data from published studies in our ratios graph.

Figure 4.4. A: Power to detect percentage change in mitochondrial respiration (effect size) after a training intervention with n = 20 participants.

A minimum of $\sim 11\%$ increase in mitochondrial respiration is needed to be detected at 80% power for both the CI+CII_P and CI+CII_E, if each participant had duplicate respiration measurements.

Figure 4.4 B: Power to detect percentage change in mitochondrial respiration ratios (effect size) after a training intervention with n = 20 participants.

A minimum of ~6% increase for PCR phosphorylation control ratio ($CI+II_P/CI+II_E$) and ~7% increase for SCR substrate control ratio at constant P ($CI_P/CI+II_P$) is required to be detected at 80% power, if each participant had duplicate respiration measurements.

4.4 Discussion

In the present study, we reported the TEM and CV for measurements of mitochondrial respiration for CIp, CI+CIIP, and CI+CIIE, using the OROBOROS equipment, and in a large sample (n = 160 pairs of duplicate respiration measurements). We also performed statistical simulations to uncover the minimum number of participants required to detect an intervention-induced change in mitochondrial respiration at 80% power. We found a very large variability in all measurements (CV >15%), suggesting that this measurement may only be appropriate in studies using large sample sizes (n \geq 55) or

that detect large effect sizes (>15%). To account for between-lab (lab-by-lab) variability, we have also computed the TEM and CV for mitochondrial respiration ratios including: LCR (L/E), PCR (P/E), RCR (P/L), Inv RCR (L/P) and SCR (constant P). Not surprisingly, the TEM and CV remained >9%, and the statistical simulations suggest a sample size of \geq 26 is required to achieve 80% power. Mitochondrial respirations values were also normalized by CS activity, but no significant changes in TEM or CVs were observed. In other words, the type of training should be carefully selected to achieve effect sizes in mitochondrial respiration experiments if sample size is a limitation. For example, participants who did sprint interval training (SIT) (n=9) presented > 19% change in mitochondrial respiration after 4 weeks of training1. Higher numbers of technical replicates (i.e. number of chambers used for the same muscle - here we used two) could potentially lower the TEM, in which case the required sample size would be lower to detect a given effect size.

TEM includes variability due to machine calibration and human error, and is potentially specific to each research facility40. However, Cardinale et al.¹⁹ recently reported a similarly high CV (15.2%), suggesting that the high variability we observed occurs across research facilities and is intrinsic to the OROBOROS equipment. Permeabilization of muscle pieces involves taking a small piece of muscle (typically 2-6 mg) and placing it in a dish with BIOPS solution; then, a technician uses two pairs of sharp forceps to separate individual fibre bundles¹⁸⁵. Since this process is complicated, it is recommended that the same person performs the procedure in a given study to avoid variability between technicians¹⁸⁶. The degree of fibre separation determines the amount of mitochondria present after the permeabilization, thus affecting the respiration measurements¹⁸⁶. It is plausible that technicians vary in their ability to efficiently separate fibres, and this could lead to higher respiration values and potentially higher variability as well. Thus, different technical staff/researchers conducting the experiment can explain why experiments are variable. The largest variability in measurements, recently reported by Cardinale et al.¹⁹ was in experiments conducted by two different technicians working on the same piece of muscle (mean \pm SD = 31.3 \pm 7.1 vs 26.3 \pm 8.1 pmol \cdot s-1 \cdot mg-1, P = 0.12). In the present study, some of the experiments were conducted by one technician, and some by another technician (i.e. the two technicians never handled the same piece of

muscle), which might explain some of the variability we reported. Unfortunately, we are unable to calculate the variability due to technicians in this study as they worked on different muscle samples. It should also be noted that it is common to use creatine in the respiration chambers when working with permeabilized muscle. However, several papers have not used creatine in their experiments and have reported valid and replicable results^{12,14,15,169}.

To the best of our knowledge, the smallest meaningful change in mitochondrial respiration after training or other lifestyle interventions has never been reported, since this is dependent on the overall aim of each study¹². In the present study, we calculated the minimum number of participants required to detect a change in mitochondrial respiration at 80% power. Our results suggest that with the typical sample size in exercise training studies (n = 12), only changes of >18% in mitochondrial respiration following training would be detectable at 80% power. This means that it would be a challenge to observe true changes in mitochondrial capacity using the OROBOROS technology, since most studies do not report such large increases following exercise training (-9% to 20%)^{172,173,184,185,187-190}. We acknowledge that some of the studies have observed significant changes in mitochondrial respiration without reaching the effect sizes we presented here. This implies that although such studies were significant, the sample sizes were too low to detect the magnitude of changes they reported at 80% power. The simulations presented in this paper provide important information for planning experiments investigating mitochondrial capacity. Future studies can use this data and the code we provided (see Supplementary File 1) as a guide to determine the number of participants required to detect changes in mitochondrial respiration in their study. Alternatively, if the number of participants is a limitation, then a careful consideration of the exercise intervention duration is recommended, to trigger changes that are large enough to achieve 80% power.

In conclusion, we found very large variability in mitochondrial respiration measurements, reflected by TEM and CV, and calculated the required sample size necessary for studies aimed at detecting changes in mitochondrial respiration. We recommend that future studies utilising this method in skeletal muscle would follow the guidelines we provided here to detect significant changes in mitochondrial capacity, following lifestyle interventions. Finally, it should be noted that mitochondrial respiration is only one measure of mitochondrial function. The use of integrative approaches^{95,157,185},

such as mitochondrial protein expression, mitochondrial content quantification, mitochondrial DNA sequencing, and appropriate statistical methods⁴⁰ may allow discoveries in the complex and integrative nature of exercise adaptations^{157,191} as well as strengthen results from mitochondrial respiration measurements.

Chapter 5. DNA methylation patterns are associated with baseline fitness levels and change following high-intensity interval training

5.1 Introduction

Epigenetics has recently been suggested as underlying physiological adaptations to exercise training¹⁹². However, the field of exercise epigenetics is still in its infancy, and only a few studies have assessed genome-wide DNA methylation changes after short-term exercise training^{23–28}. Reports from such studies are quite heterogeneous, since they used different exercise modalities (i.e. resistance or endurance) and length^{25–27,123}. Although results were heterogeneous (i.e. some presented more hypomethylation and others more hypermethylation after exercise), the vast majority of studies did find changes in DNA methylation spread across multiple genes. Furthermore, a key study focused on candidate genes have also demonstrated that the promoter regions of key genes involved in exercise response are strongly hypomethylated immediately after strenuous exercise and become re-methylated at 3 hours post exercise²². However, no previous study linked DNA methylation profiles with baseline fitness or exercise training-induced fitness improvements.

The aim of this study was therefore to determine whether DNA methylation profiles are associated with physical fitness measures at baseline, and whether 4 weeks of high-intensity interval training (HIIT) is able to shift in the DNA methylation profiles consistent with higher fitness profiles. We conducted an epigenome-wide association study (EWAS) in 46 healthy young male participants from the Gene SMART study who underwent 4 weeks of HIIT. We intersected the fitness-related and exercise-induced DNA methylation sites to establish whether exercise-induced DNA methylation changes were consistent with DNA methylation patterns typically seen in highly trained individuals.

5.2 Methods

5.2.1. Participants

The study design has been described in detail in <u>Chapter 3.</u> To explore associations between DNA methylation patterns and measures of physical fitness or exercise training, we analysed all 46 males from the Gene SMART study who were profiled for DNA methylation patterns before and after the first 4 weeks of HIIT.

First Intervention - Total of 4 weeks of HIIT

Figure 5.1. Study design

5.2.2. Muscle biopsies

Participants were provided a control diet for 48 h prior to the muscle biopsies, according to the guidelines of the Australian National Health & Medical Research Council (NHMRC). Muscle biopsies were taken by an experienced medical doctor from the vastus lateralis muscle of the participants' dominant leg, following local anaesthesia (2mL 1% Lidocaine (Lignocaine)). The needle was inserted in the participant leg and manual suction was applied for muscle collection. Excess blood from the biopsy was removed using an absorbent sheet, and muscle was then immediately frozen in liquid nitrogen and stored at -80 degrees until further analysis. Muscle biopsies were collected at 2 timepoints (before and after 4 weeks of HIIT) for DNA methylation profiling (**Figure 5.1**).

5.2.3. DNA extraction and DNA methylation analyses

DNA was extracted using the Qiagen All prep DNA/RNA kit (Cat/ID: 80204), according to manufacturer guidelines. In brief, ~15mg of muscle samples were

homogenised and separated by a column into genomic DNA and RNA, and then eluted separately. RNA was stored at -80 degrees for future analysis while dsDNA concentrations were estimated with the Invitrogen Qubit Fluorometer. DNA methylation analysis was conducted with the Illumina Infinium Methylation EPIC array (https://www.illumina.com/products/by-type/microarray-kits/infinium-methylation-epic.html) according to manufacturer protocols. In brief, DNA input amount was 500 ng for bisulfite conversion. The QC of bisulfite conversion was carried by MPS (Methylation specific PCR) on specific regions. Once QC was evaluated as good, whole genome amplification was conducted followed by Array hybridization and single base extension; finally, the array was scanned.

5.2.4 Pre-processing

DNA methylation data was pre-processed using the ChAMP analysis pipeline¹⁹³ in the R statistical software version 4.0.2. After loading the raw IDAT files into R, probes located on the sex chromosomes were removed. While the current study only focuses on males, both males and females were analysed and pre-processed together. Then, we removed probes with detection p-value > 0.01, with < 3 beads in at least 5% of samples, with missing β -values, aligning to multiple locations, and non-CpG probes. Probes mapping to single-nucleotide polymorphisms (SNPs) or located close to SNPs showing a high frequency in the Caucasian population ("EUR" population probes described in Zhou *et al.*¹⁹⁴) were also removed. β -values were then obtained as follows:

$\beta - value$

intensity of the methylated allele

= $\frac{1}{100}$ intensity of the unmethylated allele + intensity of the methylated allele + $\frac{1}{100}$

Then, we applied β -mixture quantile normalisation (BMIQ) to normalize the distributions of Type I and Type II probes. We then performed singular value decomposition (SVD) to identify major sources of variability in the dataset. This data exploration step revealed that batch and position on the batch were significant sources of variation in the data. Therefore, data was converted to M-values according to the following formula:

$$M - value = log2(\beta/(1 - \beta))$$

and the ComBat function of the *sva* package was used to remove those technical artefacts. Finally, distributions of DNA methylation profiles and hierarchical clustering

of samples were performed as a last quality control step to ensure all unwanted sources of variability were accounted for.

5.2.5 Statistical analyses

As previously stated, we restricted this analysis to all males who were profiled for DNA methylation patterns before and after 4 weeks of HIIT (n = 46). We first converted β -values to M-values, as the latter are more homoscedastic and therefore more appropriate for differential analysis of methylation levels¹⁹⁵. We used linear models and moderated Bayesian statistics as implemented in *limma*¹⁹⁶. DNA methylation levels at each individual CpG were regressed against baseline fitness and other covariates. Baseline fitness was a z-score that combines W_{peak}, LT, and VO_{2max} into a single value to achieve greater power and provide a comprehensive view of whole-body changes associated with DNA methylation changes. We calculated the z-score for each fitness measure relative to body weight, and then we averaged those to obtain the final z-score. We included timepoint (PRE or POST training), as well as Age and Batch (batch #1 or batch #2) as covariates:

DNA methylation ~ Baseline fitness + Timepoint + Age + Batch

Note that here, batch does not refer to the Illumina Array, as this was adjusted in the pre-processing, but to the two groups of participants whose muscle methylomes were profiled a few years apart in different labs (i.e batch #1 or batch #2). We used the *duplicateCorrelation* function to account for the paired design (i.e. repeated measures on the same individuals before and after HIIT). CpGs associated with *Baseline fitness* and *Timepoint* at a false discovery rate (FDR) < 0.005 were considered differentially methylated positions (DMPs). If DMPs were identified, we then proceeded to identify differentially methylated regions (DMRs), i.e. contiguous clusters of DMPs showing consistent changes in DNA methylation. DMRs were identified using the *DMRcate* package¹⁹⁷.

To evaluate whether the shifts in DNA methylation profiles after 4 weeks of HIIT were consistent with DNA methylation patterns indicative of higher fitness, we overlapped the fitness-related DMPs with timepoint-related DMPs.

We then proceeded to identify pathways potentially altered as a result of the differential DNA methylation. We performed a gene set enrichment analysis (GSEA) to

identify enriched pathways, using the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. We used the GOmeth method. This methodology takes into account the unequal number of CpGs mapped to different genes, but it performs a hypergeometric test on the DMPs (or CpGs in DMRs) to identify enriched pathways¹⁹⁸. All pathways at FDR < 0.005 were considered significant. We used the *ggplot2*¹⁴⁸, *ggpubr*¹⁴⁷, *complexHeatmaps*¹⁹⁹, and *FactorMiner*²⁰⁰ packages for data visualisation.

5.3 Results

5.3.1. Individuals with high aerobic fitness show a clear DNA methylation signature in skeletal muscle, related to muscle structure and function

To identify fitness-related DNA methylation patterns, we studied n = 46 males from the Gene SMART study who underwent 4 weeks of HIIT and for whom we had baseline aerobic fitness measures (W_{peak}, LT and VO_{2max}). To achieve greater statistical power, we combined all fitness measures into one comprehensive measurement (z-score – see Methods section). We found 12,170 DMPs associated with baseline fitness (FDR < 0.005), 81.8% of which were hypermethylated with higher fitness levels (**Figure 5.2**), while 1,268 DMRs were associated with baseline fitness, 85.8% of which were hypermethylated with higher fitness levels (**Table 5.1**).

We then focused on the DMRs to remove spatial redundancy. CpG sites within ~500bp from each other are usually highly correlated²⁰¹, and therefore provide more robust and functionally important information than the DMPs^{202,203}. DMRs' distribution in chromatin states was different from that of all tested CpGs (χ 2 -test p-value < 2.2 x 10⁻¹⁶, **Figure 5.3**). We observed a clear under-representation of DMRs at quiescent (i.e. silent) and Polycomb-repressed regions, and an over-representation at enhancers and in regions flanking active TSS. Hyper-DMRs were strongly depleted in regions of active transcription. Both hypo- and hyper-DMRs were under-represented in CpG islands, but only hyper-DMRs were over-represented outside of CpG islands (χ 2 -test p-value < 2.2 x 10-16, **Figure 5.3**).

Finally, we used a comprehensive annotation of Illumina HumanMethylation arrays¹⁹⁴ with chromatin states from the Roadmap Epigenomics project²⁰⁴ and the latest GeneHencer²⁰⁵ information to map DMRs to genes (**Table 5.1**). 1,000 unique genes

harboured at least one DMR. Of these genes, many are known to be associated with muscle function, such as the HOX family and MYOG. The differentially methylated genes were enriched for 11 gene ontologies (FDR <0.005) (**Table 5.2**) that were related to muscle structure development and muscle contraction, transmembrane receptor protein tyrosine kinase signalling, regulation of cell migration, supramolecular fiber organisation and regulation of cell adhesion. However, no enrichment for any KEGG term was identified (FDR <0.005).

discovery rate < 0.005 appear in red. B: Top hypomethylated DMP. C: Top hypermethylated DMP. In plot B & C each colour represents a different individual. D: Unsupervised hierarchical clustering of individuals at fitness related DMPs.

Figure 5.2. A: Volcano plot of fitness-related differential methylation. Each point represents a different CpG. Differentially methylated positions (DMPs) at false

Colour scale: purple represents hypomethylation and yellow hypermethylation; the units of the colour scale are arbitrary and do not represent % DNA methylation change.

chr17	chr2	chr16	chr3	chr7	chr13	Chromosome
5499562	33133991	2210188	1.28E+08	27166924	35474754	Position start (hg38)
5501827	33134620	2213059	1.28E+08	27172121	35479270	Position end (hg38)
2266	630	2872	2274	5198	4517	Length of DMR (base pairs)
17	11	19	13	30	25	Number of CpGs in DMR
Shore; Island	Open sea	Shelf; Shore	Island	Shore; Island	Shore; Island	CpG island position
Repressed PolyComb; Bivalent Enhancer; Flanking Bivalent TSS/Enh;	Flanking Active TSS; Active TSS	Genic enhancers; Flanking Active TSS	NA; Bivalent Enhancer; Flanking Bivalent TSS/Enh	Flanking Active TSS; Flanking Bivalent TSS/Enh; Bivalent/Poised TSS; Active TSS	Bivalent/Poised TSS; Flanking Active TSS; Active TSS; Weak transcription; Quiescent/Low	Chromatin state in male skeletal muscle
NLRP1	LTBP1	BRICD5; RP11- 304L19.8; PGP	GATA2-AS1; GATA2; DNAJB8	HOXA10-HOXA9; HOXA9; HOXA10-AS; MIR196B; HOXA10	NBEA; MAB21L1	Annotated gene(s)
0.02533	0.024924	0.018623	0.018094	0.021663	0.025787	Maximum effect size in DMR
0.013874	0.016132	0.012979	0.014172	0.012398	0.016829	Mean effect size in DMR
3.30E-14	2.12E-20	3.12E-21	3.22E-22	1.18E-29	7.17E-42	Stouffer score
0.000744	0.001232	0.004808	0.001243	0.004148	0.000913	Harmonic mean of the individual component FDRs
1.21E-17	9.73E-18	1.51E-18	3.55E-19	5.55E-25	1.34E-35	Fisher multiple comparison statistic

						Bivalent/Poised TSS				
chr1:	1 1838279	1839004	726	10	Open sea	Enhancers	TNNI2; LSP1, TNNI2	0.036443	0.036443 0.022645	0.036443 0.022645 1.88E-19
chr2.	1 45454328	45456470	2143	12	Shore; Island	Repressed PolyComb; Bivalent Enhancer; Flanking Bivalent TSS/Enh; Bivalent/Poised TSS	COL18A1	0.021817	0.021817 0.013878	0.021817 0.013878 8.69E-18
chr5	66958090	66959943	1854	10	Open sea	Quiescent/Low; Active TSS	MAST4	0.024713	0.024713 0.020398	0.024713 0.020398 5.78E-20
chr11	1 1867947	1871657	3711	18	Shelf; Shore; Island	Bivalent Enhancer; Flanking Bivalent TSS/Enh; Bivalent/Poised TSS	LSP1	0.024014	0.024014 0.013143	0.024014 0.013143 2.73E-18
chr1:	1 1.29E+08	1.29E+08	2280	16	Shelf; Shore; Island	Repressed PolyComb; Flanking Bivalent TSS/Enh; Bivalent Enhancer	RP11-744N12.3; FLI1	 0.02051	0.02051 0.012709	0.02051 0.012709 5.60E-16
chr2:	1 29130409	29131153	745	8	Open sea	Flanking Active TSS	MAP3K7CL	0.024936	0.024936 0.02034	0.024936 0.02034 1.32E-17
chr7	1708367	1709129	763	و	Open sea	Weak Repressed PolyComb	ELFN1	0.025187	0.025187 0.018568	0.025187 0.018568 1.03E-17

chr6	chr19	chr11	chr16	chr5	chr12	chr11	chr3
30752029	13013158	1918315	85286252	1.41E+08	3200097	72012928	1.88E+08
30752706	13015173	1921244	85287275	1.41E+08	3201954	72014543	1.88E+08
678	2016	2930	1024	1137	1858	1616	2144
σ	14	17	و	ى	Q	11	12
Open sea	Island; Shore	Open sea	Shore; Island	Shore; Island	Island; Shore	Open sea	Shelf; Shore
Flanking Active TSS; Enhancers	Flanking Active TSS; Active TSS	Flanking Active TSS	Flanking Active TSS	Flanking Active TSS	Flanking Active TSS; Active TSS; Flanking Bivalent TSS/Enh	Transcr. at gene 5' and 3'	Enhancers; Flanking Active TSS
HLA-K, HLA-J, TRIM39, ABCF1, C6orf136, HCG20, VARS2, GTF2H4; PPP1R10,	NFIX; CTC-239J10.1	TNNT3		PCDHGB5; PCDHGA6; PCDHGA12; PCDHGB6; PCDHGA7; PCDHGB7; PCDHGA8; PCDHGA9; PCDHGA1; PCDHGB1; PCDHGA2; PCDHGB1; PCDHGA2; PCDHGB2; PCDHGA3; PCDHGB3; PCDHGA3; PCDHGB3; PCDHGA4; PCDHGB410; PCDHGA5; PCDHGA11; RN7SL68P; AC008781.1	TSPAN9	RP11-849H4.4; NUMA1	BCL6
0.020038	0.023715	0.034986	0.024262	0.021786	0.024198	0.024144	0.022107
0.017981	0.013146	0.015077	0.015722	0.017112	0.014576	0.015696	0.015633
4.67E-15	1.15E-08	1.76E-12	1.64E-16	1.24E-16	5.72E-17	9.20E-18	5.22E-18
0.000495	0.000673	0.00214	0.002115	0.001831	0.002326	0.002014	0.003409
2.73E-13	2.35E-13	1.71E-13	4.34E-14	3.43E-14	1.94E-14	3.90E-15	3.52E-15

chr11	chr16	chr7	chr6	chr1	chr19	chr1	chr11	
1.11E+08	28877425	47304006	1605677	1.57E+08	3369479	2.03E+08	57540389	
1.11E+08	28879164	47305151	1608741	1.57E+08	3370245	2.03E+08	57543602	
652	1740	1146	3065	1113	767	1783	3214	
11	7	6	14	7	6	10	13	
Open sea	Shelf; Shore	Open sea	Shore; Island	Shore; Island	Island; Shore	Open sea	Open sea	
Bivalent Enhancer	Flanking Active TSS; Enhancers; Transcr. at gene 5' and 3'	Transcr. at gene 5' and 3'; Flanking Active TSS	Repressed PolyComb; Bivalent Enhancer	Repressed PolyComb	Active TSS; Flanking Active TSS	Transcr. at gene 5' and 3'; Active TSS; Flanking Active TSS; Enhancers	Enhancers; Flanking Active TSS; Active TSS; Genic enhancers; Transcr. at gene 5' and 3'	
POU2AF1	ATP2A1; ATP2A1-AS1	TNS3	FOXCUT	BCAN; RP11- 284F21.10; RP11- 284F21.7	NFIC; AC005514.2	MYOG	SMTNL1	DHX16, NRM, MDC1, IER3, LINC00243
-0.01998	0.029094	-0.04505	0.021209	0.017835	0.021098	0.024818	0.043745	
-0.01366	0.019395	-0.02037	0.01408	0.014972	0.017537	0.014643	0.018461	
1.58E-14	2.80E-14	5.49E-14	2.41E-14	2.06E-14	1.45E-14	2.48E-14	6.42E-14	
0.004084	0.001081	0.000103	0.004521	0.001096	0.000649	0.001961	0.003631	
1.85E-12	1.72E-12	1.35E-12	1.02E-12	1.01E-12	7.99E-13	5.53E-13	4.68E-13	

chr11	chr11	chr16	chr13	chr7	chr16	chr20	chr13	chr20	chr7
64555417	2149181	30373962	44158302	5495089	75266574	31818778	49401246	23086306	1.36E+08
64555983	2150463	30374828	44160796	5496302	75268903	31819584	49402336	23087581	1.36E+08
567	1283	867	2495	1214	2330	807	1091	1276	1126
∞	10	U	œ	13	13	11	σ	12	10
Open sea	Open sea	Shelf	Open sea	Island; Shore	Shore; Shelf	Shelf	Open sea	Open sea	Open sea
Enhancers; Weak Repressed PolyComb	Bivalent Enhancer	Enhancers; Flanking Active TSS	Flanking Active TSS; Enhancers	Flanking Active TSS	Flanking Active TSS; Enhancers; Weak transcription	Flanking Active TSS; Transcr. at gene 5' and 3'	Active TSS; Flanking Active TSS; Enhancers	Flanking Active TSS; Enhancers	Enhancers; Flanking Active TSS; Weak transcription
SLC22A11	IGF2	ZNF48, MYLPF; MYLPF; NPIPB12, GDPD3, SMG1P5	SMIM2-IT1; SMIM2; SMIM2-AS1	FBXL18; MIR589	BCAR1	MYLK2	CAB39L	CD93; THBD, CD93	FAM180A
0.024281	0.023364	0.024435	0.034547	0.020602	0.022414	0.025372	0.022226	-0.02161	0.025654
0.016176	0.015798	0.02282	0.022596	0.013678	0.013189	0.015012	0.018262	-0.01486	0.016217
2.20E-13	4.34E-13	6.32E-13	8.21E-14	8.03E-13	1.17E-10	1.62E-12	2.08E-12	8.33E-15	6.52E-11
0.003144	0.003877	0.00059	0.003539	0.003912	0.002404	0.003796	0.000163	0.004886	0.001484
2.28E-11	1.95E-11	1.70E-11	1.02E-11	4.90E-12	4.65E-12	4.13E-12	2.61E-12	2.60E-12	2.51E-12

chr14	chr11	chr7	chr4	chr20	chr11	chr10	chr12	chr7	chr14	chr7
80209930	1298458	1.12E+08	94995818	45826733	1.22E+08	92833510	1.09E+08	47582088	1.03E+08	5428565
80211503	1300723	1.12E+08	94996334	45827844	1.22E+08	92834736	1.09E+08	47583870	1.03E+08	5429903
1574	2266	1488	517	1112	2865	1227	732	1783	1883	1339
7	11	10	л	7	16	6	л	13	11	6
Open sea	Shelf; Open sea	Open sea	Open sea	Shelf	Open sea	Open sea	Open sea	Island; Shore	Shore; Island	lsland; Shore
Quiescent/Low; Active TSS	Flanking Active TSS; Enhancers	Flanking Active TSS; Active TSS	Enhancers; Active TSS	Flanking Active TSS	Active TSS; Flanking Active TSS; Enhancers	Enhancers; Active TSS	Enhancers	Active TSS; Flanking Active TSS; Enhancers	Flanking Active TSS; Transcr. at gene 5' and 3'	Flanking Active TSS
DIO2; DIO2-AS1	TOLLIP; BRSK2	LSMEM1; IFRD1	BMPR1B	TNNC2	RP11-166D19.1; MIR125B1; MIR100HG	EXOC6	CORO1C	TNS3	TNFAIP2	RP11-1275H24.1; RP11-1275H24.3
0.02876	0.026169	0.024757	0.022911	0.029903	0.025619	0.027764	0.02764	0.02618	0.018285	0.021589
0.01881	0.016487	0.017756	0.019972	0.023207	0.012445	0.019731	0.021309	0.01196	0.012554	0.019088
3.29E-11	2.11E-09	2.78E-12	8.94E-12	5.27E-12	1.64E-11	1.82E-09	4.55E-12	2.45E-07	1.95E-12	6.84E-13
0.000388	0.001343	0.004524	0.000956	0.002245	0.004334	0.000587	0.000229	0.000754	0.002478	0.001092
3.20E-10	2.57E-10	2.56E-10	2.03E-10	1.93E-10	1.44E-10	1.43E-10	4.74E-11	4.50E-11	3.11E-11	2.78E-11

chr16	chr18	chr17	chr12	chr6	chr10	chr2	chr15	chr2
58500776	26865169	77883112	1.22E+08	89561619	329307	1.74E+08	63595185	1.05E+08
58501651	26865823	77885149	1.22E+08	89562772	329889	1.74E+08	63597698	1.05E+08
876	655	2038	729	1154	583	1612	2514	814
8	6	7	л	12	л	9	12	œ
Shore; Island	Shore; Shelf	Open sea; Shelf	Open sea	Open sea	Shelf	Shore; Island	Open sea; Shelf	Open sea
Bivalent Enhancer; Flanking Bivalent TSS/Enh	Active TSS	Bivalent Enhancer; Weak Repressed PolyComb; Repressed PolyComb	Enhancers	Quiescent/Low; Active TSS; Flanking Active TSS	Enhancers; Weak transcription	Flanking Active TSS; Enhancers	Enhancers; Flanking Active TSS	Flanking Active TSS; Enhancers
NDRG4	AQP4; AQP4-AS1	FLJ45079	HPD	RP11-16C18.3; ANKRD6	DIP2C	RP11-394 13.1; SP3, ENSG00000273258	USP3-AS1; USP3; FBXL22	FHL2
0.019632	0.023752	0.025695	0.022447	0.01865	0.03367	0.018963	0.027824	0.032406
0.012243	0.019678	0.014237	0.017866	0.011411	0.022913	0.014382	0.012432	0.015972
5.07E-09	3.55E-11	3.82E-10	1.42E-10	3.06E-09	5.84E-11	9.30E-11	8.87E-10	2.07E-11
0.001934	0.003197	0.001701	0.000521	0.004806	0.000642	0.001195	0.003961	0.001308
1.43E-09	1.26E-09	1.19E-09	1.14E-09	1.09E-09	8.72E-10	5.65E-10	4.52E-10	3.63E-10

chr9	chr15	chr6	chr5	chr22	chr17	chr8	chr13	chr6
1.22E+08	81133405	1.68E+08	1.43E+08	30207118	43842024	8381263	98483288	46921997
1.22E+08	81134478	1.68E+08	1.43E+08	30207470	43843150	8383150	98484325	46922774
1344	1074	2731	1301	353	1127	1888	1038	778
7	00	11	13	л	6	9	9	6
Shore; Island	Shore; Island	Open sea; Shelf	Open sea	Open sea	Open sea	Open sea; Shelf	Open sea	Open sea
Repressed PolyComb; Bivalent/Poised	Weak Repressed PolyComb; Bivalent/Poised TSS; Flanking Bivalent TSS/Enh; Repressed PolyComb	Weak Repressed PolyComb; Repressed PolyComb	Flanking Active TSS; Enhancers	Bivalent Enhancer	Enhancers; Weak transcription	Strong transcription; Weak transcription; Enhancers	Flanking Active TSS	Weak transcription
LHX6	C15orf26	KIF25-AS1; KIF25	FGF1	MTMR3, CCDC157; RP3-43804.4	MPP3	SGK223	STK24	GPR116
0.019848	0.018462	0.039523	0.023074	0.023248	0.024127	-0.025	0.017562	-0.01901
0.011721	0.012974	0.017372	0.010244	0.017267	0.01721	-0.01139	0.011806	-0.01581
1.76E-08	2.03E-09	2.91E-10	3.81E-08	3.10E-10	2.17E-10	1.55E-08	8.54E-11	7.88E-11
0.001275	0.000552	0.00436	0.001923	0.000647	0.001008	0.002238	0.004082	0.000724
2.85E-09	2.66E-09	2.60E-09	2.53E-09	2.52E-09	2.45E-09	2.28E-09	1.91E-09	1.64E-09

chr2	chr2	chr11	chr7	chr1	chr4	chr17	chr2	
2.39E+08	2.39E+08	69012084	1.01E+08	20684305	1300994	39193531	2.42E+08	
2.39E+08	2.39E+08	69012415	1.01E+08	20685792	1301289	39195502	2.42E+08	
1694	590	332	275	1488	296	1972	2005	
7	σ	J	U	7	σ	8	ى	
Shore; Island	Open sea	Shore	Open sea	Open sea	Open sea	Shelf; Shore	Shelf; Shore	
Enhancers; Flanking Active TSS	Flanking Active TSS	Bivalent/Poised TSS	Bivalent Enhancer; Flanking Bivalent TSS/Enh; Repressed PolyComb	Active TSS; Flanking Active TSS	Enhancers; Flanking Active TSS	Transcr. at gene 5' and 3'; Flanking Active TSS	Bivalent Enhancer; Flanking Bivalent TSS/Enh	TSS; Bivalent Enhancer
HDAC4	HDAC4	MRGPRF; MRGPRF-AS1	RP11-44M6.1	KIF17	MAEA	CACNB1	LOC285095; LINC01237; AC131097.4	
0.019292	0.0178	0.018861	0.020306	-0.0188	0.023965	0.034895	0.020195	
0.012691	0.016493	0.015548	0.017709	-0.0146	0.019764	0.016698	0.014497	
5.73E-08	1.65E-10	1.77E-10	1.45E-10	1.38E-10	8.41E-11	4.93E-10	1.22E-10	
0.00155	0.001695	0.00113	0.001912	0.003322	0.003921	0.00346	0.004258	
3.01E-09	2.99E-09	2.95E-09	2.92E-09	2.91E-09	2.90E-09	2.89E-09	2.89E-09	

chr7	chr3	chr21	chr6	chr6	chr3	chr1	chr8	chr2
1.38E+08	63967700	45409684	1.3E+08	1.39E+08	39192366	9069427	51809096	23524055
1.38E+08	63968306	45411368	1.3E+08	1.39E+08	39193874	9070035	51810189	23526216
1014	607	1685	915	465	1509	609	1094	2162
4	л	л	10	б	œ	л	10	ى
Open sea	Open sea	Shelf; Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shelf; Shore; Island
Weak transcription; Enhancers	Enhancers; Flanking Active TSS	Flanking Bivalent TSS/Enh; Enhancers	Active TSS; Flanking Active TSS; Quiescent/Low	Weak transcription; Enhancers	Transcr. at gene 5' and 3'; Active TSS; Enhancers; Flanking Active TSS	Active TSS; Flanking Active TSS	Flanking Active TSS; Enhancers	Flanking Active TSS; Enhancers
CREB3L2; AC022173.2	PSMD6-AS2; ATXN7	COL18A1-AS2; COL18A1	TMEM244	RP11-445F6.2; TXLNB; RP1-225E12.3	XIRP1	SLC2A5	PXDNL	KLHL29; AC011239.1
0.032713	0.018183	0.024583	0.026003	0.026002	0.020253	0.028466	0.025342	0.032138
0.025703	0.014844	0.018869	0.015677	0.023432	0.014244	0.017839	0.012633	0.020429
4.39E-10	2.50E-10	2.37E-10	3.91E-08	1.65E-10	3.36E-09	7.73E-10	3.13E-09	1.20E-10
0.00036	0.001105	0.000934	0.001823	0.001838	0.001801	0.000361	0.002869	0.004138
3.67E-09	3.31E-09	3.28E-09	3.17E-09	3.15E-09	3.14E-09	3.08E-09	3.05E-09	3.04E-09

chr14	chr16	chr3	chr9	chr5	chr13	chr8	chr1	chr13	chr1
34131132	72989827	1.3E+08	1.27E+08	1.76E+08	74289308	53945134	54152981	30364272	1.48E+08
34131700	72990302	1.3E+08	1.27E+08	1.76E+08	74290644	53945331	54154029	30365833	1.48E+08
569	476	981	847	1265	1337	198	1049	1562	957
თ	3	б	л	∞	л	З	Q	6	6
Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea
Flanking Active TSS; Enhancers	Flanking Active TSS	Active TSS	Enhancers	Enhancers; Flanking Active TSS	Enhancers; Active TSS	Active TSS; Flanking Active TSS	Quiescent/Low; Enhancers; Flanking Active TSS	Enhancers; Weak transcription; Quiescent/Low	Enhancers; Genic enhancers; Transcr. at gene 5' and 3'; Flanking Active TSS
EGLN3	ZFHX3	TMCC1	RALGPS1	HRH2	RNY1P5	RGS20	RP11-446E24.4; CDCP2	LINC00426	BCL9
0.023578	0.02619	0.025104	0.039559	0.023644	0.028429	0.031202	0.02683	-0.01764	0.028073
0.017365	0.022072	0.018245	0.021049	0.016304	0.021192	0.027186	0.014622	-0.01417	0.021149
5.27E-10	1.00E-09	2.82E-10	2.09E-09	1.15E-10	5.72E-10	7.98E-10	1.50E-08	2.44E-10	1.35E-10
0.001863	0.000225	0.002597	0.000661	0.004183	0.000333	9.17E-05	0.002656	0.001685	0.00242
6.21E-09	6.09E-09	6.00E-09	5.63E-09	4.51E-09	4.50E-09	4.27E-09	3.94E-09	3.83E-09	3.68E-09

chr12	chr15	chr19	chr1	chr8	chr17	chr12	chr13	chr1	chr5
1.32E+08	90100533	49155290	1.85E+08	10350381	969521	55719035	98307515	1.11E+08	34042870
1.32E+08	90101445	49156041	1.85E+08	10351089	970211	55720484	98308365	1.11E+08	34045233
1206	913	752	1567	709	691	1450	851	474	2364
м	7	σ	6	С	б	6	5	б	11
Open sea	Shore	Shelf; Shore	Open sea	Open sea	Open sea	Shelf; Open sea	Open sea	Open sea	Open sea
Enhancers; Flanking Active TSS	Transcr. at gene 5' and 3'	Transcr. at gene 5' and 3'; Active TSS; Flanking Active TSS	Genic enhancers; Enhancers	Active TSS; Flanking Active TSS; NA	Enhancers; Flanking Active TSS; Active TSS	Genic enhancers; Flanking Active TSS	Quiescent/Low; Enhancers	Weak transcription	Flanking Active TSS; Enhancers; Weak transcription
EP400	IDH2; CTD-2315E11.1	HRC	FAM129A	MSRA	NXN	RDH5, BLOC1S1; RDH5; BLOC1S1; RP11- 644F5.10	FARP1	C1orf162	C1QTNF3; C1QTNF3- AMACR; AMACR
0.020608	0.022588	0.01845	0.039404	0.020856	0.025154	0.023062	-0.02144	-0.02328	0.027418
0.015921	0.017625	0.012918	0.027174	0.018303	0.018329	0.016086	-0.01515	-0.02008	0.01395
7.56E-10	5.79E-10	4.48E-10	5.23E-10	7.99E-10	5.21E-10	4.47E-10	8.77E-10	3.07E-10	6.01E-10
0.001723	0.004163	0.001794	0.002242	0.001303	0.000982	0.002611	0.000565	0.002646	0.000566
9.96E-09	9.55E-09	8.69E-09	8.67E-09	8.52E-09	7.32E-09	7.21E-09	6.88E-09	6.84E-09	6.63E-09

chr17	chr13	chr11	chr16	chr13	chr10	chr5	chr16	chr21
7838807	1.13E+08	334250	85004689	99312556	29634990	1.42E+08	1334624	42395575
7840091	1.13E+08	334832	85005768	99312627	29635923	1.42E+08	1336288	42396976
1285	1192	583	1080	72	934	1256	1665	1402
7	۵	σ	4	ω	7	σ	12	9
Shelf; Shore	Shore; Shelf	Shelf	Open sea	Open sea	Open sea	Shore; Island	lsland; Shore	Open sea
Flanking Active TSS; Enhancers	Bivalent Enhancer; Repressed PolyComb; Weak Repressed PolyComb	Bivalent Enhancer; Weak Repressed PolyComb	Enhancers; Flanking Active TSS	Enhancers	Active TSS; Flanking Active TSS	Repressed PolyComb	Repressed PolyComb; Bivalent Enhancer	Weak Repressed PolyComb
KDM6B; POLR2A, EIF4A1, WRAP53, CHD3, CYB5D1, KDM6B; ZBTB4, CTC1, BORCS6, VAMP2, PER1	MCF2L		ZDHHC7	UBAC2; DOCK9, GPR18, GPR183	SVIL		BAIAP3	TMPRSS3
0.021087	-0.01522	0.023445	0.026561	0.029412	0.021611	0.028428	0.020077	0.033839
0.014921	-0.01102	0.016994	0.022979	0.027	0.014466	0.014423	0.009918	0.017027
6.78E-10	2.38E-08	1.51E-09	1.45E-09	2.05E-09	1.90E-09	6.08E-09	6.03E-09	1.20E-09
0.003764	0.003482	0.001262	0.000743	0.000316	0.001777	0.000204	0.004779	0.00397
1.55E-08	1.53E-08	1.47E-08	1.28E-08	1.24E-08	1.16E-08	1.05E-08	1.04E-08	1.00E-08

chr12	chr11	chr11	chr12	chr4	chr12	chr1	chr5	chr6	chr4	chr9
1.22E+08	20022424	1923931	1.21E+08	85827620	52192001	2.26E+08	1.25E+08	46325278	1.24E+08	91197388
1.22E+08	20023092	1924737	1.21E+08	85827886	52193025	2.26E+08	1.25E+08	46326400	1.24E+08	91197869
1309	669	807	428	267	1025	230	834	1123	686	482
12	6	σ	J	7	œ	4	σ	œ	J	ω
Shore	Open sea	Shelf; Shore	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shelf
Flanking Active TSS; Enhancers	Weak transcription; Enhancers	Genic enhancers	Flanking Active TSS	Active TSS	Flanking Active TSS; Enhancers	Active TSS	Active TSS; Flanking Active TSS	Enhancers	Flanking Active TSS; Active TSS	Enhancers
RP13-941N14.1; KDM2B	NAV2	TNNT3	RP11-173P15.7	ARHGAP24	KRT80; KRT7	RP11-145A3.1	RP11-436H11.5; ZNF608	RCAN2	LINC01091	NFIL3, ENSG00000273381
0.016787	0.02263	0.024867	0.020466	0.017476	0.026347	0.023279	0.022003	0.023523	0.021543	0.024022
0.002081	0.015253	0.02363	0.015781	0.01278	0.013773	0.021161	0.013545	0.013964	0.018237	0.021982
5.12E-08	3.73E-08	1.46E-09	6.43E-08	9.25E-10	5.88E-07	2.71E-09	1.22E-07	1.08E-08	1.25E-09	3.06E-09
0.003376	0.001396	0.003235	0.000842	0.004197	0.000494	0.000714	0.001082	0.000488	0.001914	0.000307
2.72E-08	2.70E-08	2.51E-08	2.31E-08	2.29E-08	2.18E-08	1.99E-08	1.98E-08	1.77E-08	1.76E-08	1.76E-08

chr5	chr1	chr11	chr10	chr20	chr2	chr6	chr2	chr3
72179283	44617031	1.11E+08	1.3E+08	32031070	47040667	1.68E+08	2.02E+08	71542904
72179638	44618195	1.11E+08	1.3E+08	32032042	47041312	1.68E+08	2.02E+08	71544153
356	1165	578	225	973	646	1196	913	1250
4	7	4	3	10	ω	10	4	6
Open sea	Shore; Island	Open sea	Shelf	lsland; Shore	Open sea	Shore; Island	Open sea	Open sea
Weak Repressed PolyComb; Flanking Bivalent TSS/Enh	Bivalent Enhancer; Bivalent/Poised TSS; Weak Repressed PolyComb	Quiescent/Low; Weak transcription	Enhancers	Enhancers	Enhancers; Flanking Active TSS	Weak Repressed PolyComb; Flanking Active TSS	Enhancers	Flanking Active TSS; Weak transcription
MAP1B	RNF220	POU2AF1	EBF3	RP1-310013.7; CCM2L	AC093732.1; TTC7A	MLLT4-AS1; MLLT4	AC007358.1	FOXP1; MIR1284
0.024015	0.018887	0.029775	0.027627	0.016892	0.0365	0.017644	0.041744	0.021369
0.021536	0.013237	0.024109	0.024257	0.008712	0.028456	0.01092	0.026993	0.015015
4.29E-09	4.06E-08	3.19E-09	5.48E-09	2.46E-07	5.04E-09	8.94E-06	5.35E-09	6.11E-08
0.00095	0.00468	0.001521	0.000394	0.004151	0.000395	0.002306	0.000571	0.001377
3.73E-08	3.40E-08	3.23E-08	3.13E-08	2.98E-08	2.88E-08	2.86E-08	2.78E-08	2.74E-08
				1			1	
--	-----------------------------	------------------------	--------------------------------------	------------------------	----------------------------------	---	--	-----------------
chr7	chr1	chr1	chr1	chr7	chr8	chr11	chr13	chr5
1.43E+08	1.11E+08	1.57E+08	63621778	2614016	63469933	1890316	1.1E+08	1.49E+08
1.43E+08	1.11E+08	1.57E+08	63623365	2614485	63471021	1891264	1.1E+08	1.49E+08
1628	1757	1365	1588	470	1089	949	573	721
12	7	6	7	л	7	U	4	ω
Shore; Island	Open sea	Shelf; Open sea	Open sea	Open sea	Open sea	Open sea	Shore; Island	Open sea
Weak transcription; Enhancers; Flanking Active TSS; Active TSS	Enhancers; Quiescent/Low	Flanking Active TSS	Enhancers; Flanking Active TSS	Flanking Active TSS	Enhancers; Weak transcription	Genic enhancers; Transcr. at gene 5' and 3'; Flanking Active TSS	Flanking Bivalent TSS/Enh; Enhancers	Genic enhancers
TMEM139; AC073342.12; CASP2	CHI3L2; DENND2D	RP11-284F21.8	PGM1	IQCE	RP11-45K10.2; CTD- 3046C4.1	PRR33; LSP1	COL4A2	
-0.015	0.026265	0.022488	0.023244	0.021312	0.023902	0.02083	-0.02457	0.043958
-0.00718	0.016186	0.015465	0.017697	0.015054	0.01843	0.01318	-0.02013	0.033539
1.21E-05	1.73E-07	8.13E-09	1.51E-08	4.43E-09	5.86E-09	2.95E-07	5.92E-09	7.94E-09
0.004445	0.000534	0.004041	0.004724	0.001488	0.00399	0.00136	0.000835	0.000335
5.17E-08	5.07E-08	5.05E-08	5.00E-08	4.51E-08	4.42E-08	4.20E-08	4.10E-08	4.02E-08

chr9	chr7	chr3	chr6	chr11	chr19	chr1	chr1	chr15	chr13	chr3
1.37E+08	1545722	1.26E+08	1.56E+08	1.31E+08	5953394	1.52E+08	1.55E+08	1.01E+08	35470722	1.29E+08
1.37E+08	1546419	1.26E+08	1.56E+08	1.31E+08	5954033	1.52E+08	1.55E+08	1.01E+08	35472439	1.29E+08
1528	869	323	1141	1202	640	835	1488	930	1718	1132
4	œ	ω	6	4	3	6	6	4	9	J
Shelf	Shore	Open sea	Shore; Island	Open sea	Open sea	Open sea	Open sea	Open sea	Island; Shore	Shore; Island
Enhancers; Genic enhancers	Weak transcription	Enhancers	Weak Repressed PolyComb	Enhancers; Flanking Active TSS	Enhancers	Flanking Active TSS; Enhancers	Flanking Active TSS; Enhancers	Weak Repressed PolyComb	Bivalent/Poised TSS; Active TSS	Flanking Bivalent TSS/Enh; Bivalent Enhancer
NOTCH1; INPP5E, SEC16A, NOTCH1; NALT1	TMEM184A			C11orf44	FUT5, NDUFA11	RORC	KCNN3; ADAR, KCNN3	RP11-424119.1	NBEA	KIAA1257; EFCC1
-0.01725	-0.01276	0.026658	0.021439	0.031503	0.030937	-0.01926	0.021505	0.023537	0.030293	-0.02226
-0.014	-0.00926	0.023689	0.013578	0.023258	0.025341	0.003135	0.015573	0.018564	0.014774	-0.01707
9.40E-09	1.63E-08	1.37E-08	4.18E-09	5.81E-09	1.02E-08	1.24E-08	1.04E-08	1.12E-08	4.40E-08	2.02E-08
0.001216	0.004318	0.000215	0.002101	0.00185	0.000443	0.001412	0.003935	0.00038	0.002582	0.000241
7.14E-08	6.16E-08	6.03E-08	5.98E-08	5.81E-08	5.46E-08	5.45E-08	5.37E-08	5.33E-08	5.33E-08	5.32E-08

chr17	chr17	chr3	chr2	chr11	chr7	chr6	chr17	chr12	chr14
75557488	35063716	1.23E+08	28664656	665385	28279723	1.13E+08	40551466	51820334	55412327
75557801	35063834	1.23E+08	28665638	665813	28280056	1.13E+08	40552556	51821257	55413018
314	119	695	983	429	334	635	1091	924	692
4	ω	б	4	б	J	л	б	U	4
Shore	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shore; Island	Shore
Enhancers	Active TSS; Flanking Active TSS	Bivalent Enhancer	Enhancers; Flanking Active TSS	Enhancers; Flanking Active TSS	Weak Repressed PolyComb	Quiescent/Low	Flanking Active TSS; Enhancers	Bivalent Enhancer; Flanking Bivalent TSS/Enh; Bivalent/Poised TSS	Flanking Active TSS; Quiescent/Low
TSEN54, LLGL2	RFFL; RAD51L3-RFFL		ENSG00000230730; AC074011.2	DEAF1; RP11-754B17.1	AC005017.2	RP1-124C6.1		FIGNL2	ATG14
0.02225	0.019143	0.018845	0.028256	0.022234	0.027292	0.024356	0.024586	0.018158	0.030716
0.018377	0.017185	0.013018	0.018721	0.018605	0.024278	0.015801	0.014668	0.015669	0.020759
2.29E-08	1.92E-08	7.79E-09	1.06E-08	6.54E-09	6.54E-09	1.04E-06	3.94E-08	6.12E-09	1.36E-07
0.000477	0.000589	0.003593	0.001791	0.003618	0.003642	0.000515	0.001482	0.003163	0.000511
1.15E-07	1.03E-07	9.78E-08	9.34E-08	9.23E-08	9.20E-08	8.55E-08	8.44E-08	8.33E-08	7.23E-08

chr7	chr1	chr4	chr4	chr7	chr8	chr1	chr2	chr3	chr2	chr12
194718	2.08E+08	7046331	95524678	1.52E+08	8461263	2.35E+08	1.05E+08	1.84E+08	96895406	1.29E+08
196129	2.08E+08	7047198	95525025	1.52E+08	8462044	2.35E+08	1.05E+08	1.84E+08	96895991	1.29E+08
1412	873	868	348	617	782	266	1181	1579	586	749
Q	4	U	4	4	л	ω	6	12	4	4
Shore; Island	Open sea	Shelf	Open sea	Open sea	Open sea	Open sea	Shore	Shelf; Open sea	Open sea	Open sea
Flanking Active TSS; Transcr. at gene 5' and 3'	Transcr. at gene 5' and 3'; Active TSS	Flanking Active TSS; Transcr. at gene 5' and 3'	Quiescent/Low	Enhancers; Flanking Active TSS	Weak Repressed PolyComb	Enhancers	Flanking Active TSS; Active TSS	Flanking Active TSS; Transcr. at gene 5' and 3'	Enhancers	Flanking Active TSS
AC093627.12; FAM20C	C1orf132	RP11-367J11.2; TADA2B	UNC5C	PRKAG2	CTA-398F10.2		FHL2	EIF4G1; EIF2B5	FAM178B	SLC15A4
0.022522	0.022623	0.025427	0.01975	0.021315	0.020854	0.024502	0.030968	0.020179	0.028361	0.022248
0.013848	0.016638	0.018274	0.018075	0.019008	0.015162	0.023826	0.020349	0.008822	0.022314	0.018952
7.51E-07	2.12E-08	8.72E-09	1.89E-08	1.28E-08	2.76E-07	2.36E-08	2.66E-06	5.99E-08	1.33E-08	1.20E-08
0.003087	0.000897	0.00409	0.001582	0.002439	0.001152	0.00063	0.00114	0.004628	0.001967	0.002364
1.33E-07	1.32E-07	1.31E-07	1.30E-07	1.26E-07	1.24E-07	1.24E-07	1.22E-07	1.22E-07	1.22E-07	1.18E-07

chr2	chr6	chr14	chr9	chr22	chr3	chr6	chr14	chr3	chr11	chr1
1.87E+08	1.59E+08	23407920	1.31E+08	29062548	1E+08	1.66E+08	1.05E+08	15634421	10899262	1.55E+08
1.87E+08	1.59E+08	23408985	1.31E+08	29062734	1E+08	1.66E+08	1.05E+08	15635130	10899638	1.55E+08
726	810	1066	378	187	1022	505	646	710	377	669
9	σ	4	2	4	σ	л	J	2	ω	6
Shore; Island	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shore	Open sea	Open sea	Open sea; Shelf
Quiescent/Low; Active TSS	Enhancers; Flanking Active TSS; Active TSS	Enhancers	Enhancers	Enhancers	Active TSS; Flanking Active TSS	Repressed PolyComb	Flanking Bivalent TSS/Enh; Bivalent Enhancer	Enhancers	Flanking Active TSS	Flanking Active TSS; Enhancers
ZSWIM2	SYTL3	МҮН6	FAM78A		CMSS1; FILIP1L	PDE10A	CRIP2; ENSG00000257270	HACL1; BTD	CTD-2003C8.2; ZBED5- AS1	PBXIP1; PYGO2
0.020667	0.02273	-0.0184	0.022912	0.021639	0.021103	0.020972	0.019302	0.031467	0.02595	0.025817
0.010316	0.018502	-0.01457	0.021301	0.019545	0.020133	0.014239	0.015321	0.027603	0.019151	0.016337
4.08E-07	2.35E-08	1.84E-08	6.44E-08	2.93E-08	1.06E-08	3.31E-08	1.60E-08	5.12E-08	3.01E-08	9.51E-08
0.000458	0.002784	0.002429	7.99E-05	0.001524	0.004872	0.00158	0.002838	8.30E-05	0.000418	0.001036
1.74E-07	1.73E-07	1.73E-07	1.70E-07	1.68E-07	1.57E-07	1.48E-07	1.46E-07	1.39E-07	1.34E-07	1.34E-07

chr4	chr3	chr2	chr4	chr17	chr5	chr19	chr14	chr4	chr19
15478782	11136299	2.25E+08	15233582	57605040	91314459	15264471	21034713	94584095	3387812
15479644	11137111	2.25E+08	15234506	57606327	91314604	15264638	21035361	94584194	3388322
863	813	598	925	1288	146	168	649	100	511
4	œ	4	4	4	З	œ	4	З	4
Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shore; Island
Weak transcription; Flanking Active TSS	Weak Repressed PolyComb; Bivalent Enhancer; Flanking Active TSS	Enhancers	Enhancers; Weak transcription	Flanking Active TSS	Enhancers; Quiescent/Low	Genic enhancers	Weak transcription	Weak transcription	Enhancers; Flanking Active TSS
CC2D2A	HRH1	CUL3	RP11-665G4.1	MSI2; RP11-118E18.4	LUCAT1; RP11- 213H15.4		RNASE13; NDRG2; TPPP2	PDLIM5	NFIC
0.021547	0.019672	0.024566	0.021611	0.023586	0.028254	0.019817	0.032294	0.025859	0.021405
0.013818	0.011111	0.017238	0.01726	0.017819	0.020299	0.014169	0.027887	0.024602	0.016725
5.95E-08	2.61E-06	4.75E-08	3.36E-08	3.14E-08	4.72E-08	2.02E-08	2.30E-08	3.26E-08	1.86E-08
0.000481	0.000764	0.000626	0.001512	0.001031	0.000473	0.004243	0.001731	0.000815	0.002497
2.37E-07	2.34E-07	2.26E-07	2.18E-07	2.17E-07	2.14E-07	1.86E-07	1.80E-07	1.75E-07	1.75E-07

chr1	chr8	chr13	chr3	chr22	chr3	chr8	chr15	chr10	chr22
14929350	54469633	77740659	50303132	42695616	1.43E+08	1.44E+08	29676891	69416095	35685653
14929984	54470340	77742014	50303861	42695746	1.43E+08	1.44E+08	29677515	69417657	35685869
635	708	1356	730	131	928	850	625	1563	217
4	ი	8	6	4	л	4	5	10	4
Open sea	Shore; Island	Open sea	Shelf; Open sea	Shore; Shelf	Open sea	Shore; Island	Shore; Shelf	Open sea	Open sea
Repressed PolyComb	Repressed PolyComb; Bivalent Enhancer; Flanking Bivalent TSS/Enh	Quiescent/Low	Flanking Active TSS	Flanking Active TSS	Quiescent/Low	Genic enhancers; Transcr. at gene 5' and 3'	Repressed PolyComb	Repressed PolyComb; Weak Repressed PolyComb	Flanking Active TSS
KAZN	RP11-53M11.5	SLAIN1	HYAL1	A4GALT	SLC9A9; RP13-635I23.3	ZC3H3, EEF1D, PLEC; PLEC	RP11-680F8.1	TACR2	RP1-41P2.7
0.021979	0.018145	0.026495	-0.04032	0.017962	0.022195	0.035193	0.019716	0.023227	0.047308
0.018836	0.012093	0.016627	-0.02488	0.01738	0.018117	0.020176	0.014897	0.011386	0.031278
4.65E-08	2.14E-07	6.27E-06	1.74E-08	2.99E-08	6.33E-08	9.65E-08	1.02E-07	1.53E-07	2.85E-08
0.001721	0.002101	0.004961	0.004545	0.00289	0.00138	0.000409	0.001078	0.004636	0.002708
3.39E-07	3.32E-07	3.01E-07	2.75E-07	2.75E-07	2.69E-07	2.69E-07	2.69E-07	2.65E-07	2.58E-07

chr1	chr12	chr8	chr11	chr1	chr2	chr16	chr8	chr7	chr22
77888095	15984267	60853950	10454694	2.04E+08	1816396	1043822	1745054	1.01E+08	41176919
77889980	15984533	60854509	10455428	2.04E+08	1817328	1044812	1745849	1.01E+08	41177171
1886	267	560	735	77	933	991	796	1598	253
13	ω	ω	б	2	4	4	4	11	U
Shore; Island	Open sea	Open sea	Shelf; Open sea	Shelf	Open sea	Open sea	Open sea	Shore; Island	Open sea
Active TSS; Flanking Active TSS	Weak transcription	Enhancers	Flanking Active TSS; Enhancers	Enhancers	Enhancers; Flanking Active TSS	Repressed PolyComb; Bivalent Enhancer	Weak transcription; Enhancers	Flanking Active TSS; Active TSS; Flanking Bivalent TSS/Enh	Genic enhancers
NEXN-AS1; NEXN	DERA	СНD7	AMPD3; AMPD3, CTR9		MYT1L		CLN8	SLC12A9; TRIP6; MIR6875	
0.024558	-0.02426	0.025646	0.019396	0.031517	0.020398	0.022128	0.02672	0.01596	0.020016
0.007658	-0.01824	0.020543	0.016759	0.028322	0.016508	0.015528	0.019397	0.008716	0.018316
9.28E-06	9.85E-08	7.92E-08	4.15E-08	1.54E-07	4.89E-08	7.16E-08	6.08E-08	0.000145	2.69E-08
0.004009	0.000599	0.001162	0.004277	0.00013	0.002362	0.000861	0.001503	0.001913	0.004771
4.43E-07	4.20E-07	4.15E-07	4.11E-07	4.02E-07	4.01E-07	3.87E-07	3.67E-07	3.53E-07	3.42E-07

chr2	chr16	chr2	chr5	chr6	chr4	chr10	chr11	chr11	chr7	chr13
1.59E+08	2766723	1.79E+08	39219132	6320090	40334237	29369729	33912476	61879486	6015885	95311122
1.59E+08	2767978	1.79E+08	39220046	6321194	40335425	29370183	33912833	61880659	6016686	95311712
461	1256	212	915	1105	1189	455	358	1174	802	591
5	8	ω	4	Q	œ	4	ω	л	ω	2
Open sea	Island; Shore	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea
Weak Repressed PolyComb	Strong transcription; Genic enhancers	Quiescent/Low	Active TSS; Enhancers; Weak transcription	Bivalent/Poised TSS; Repressed PolyComb	Enhancers; Quiescent/Low	Bivalent Enhancer	Enhancers	Strong transcription; Enhancers	Genic enhancers; Transcr. at gene 5' and 3'	Quiescent/Low
DAPL1	SRRM2	AC093911.1	FYB	F13A1	CHRNA9		LM02	FADS3; MIR6746	AIMP2; SNORA42	RNY3P8
0.017613	0.022218	0.020111	0.026676	0.024668	0.028189	0.024368	0.023377	0.018674	0.021023	0.030658
0.01333	0.013206	0.019447	0.016661	0.011421	0.013665	0.018998	0.017759	0.011765	0.018669	0.028887
1.96E-06	7.32E-06	9.68E-08	3.47E-06	3.21E-07	1.06E-06	7.37E-08	1.39E-07	3.55E-07	9.74E-08	2.02E-07
0.00113	0.004294	0.001228	0.000447	0.002071	0.000557	0.001612	0.000381	0.001312	0.000854	6.03E-05
5.36E-07	5.20E-07	5.01E-07	4.98E-07	4.93E-07	4.78E-07	4.77E-07	4.69E-07	4.68E-07	4.63E-07	4.53E-07

chr8	chr17	chr5	chr3	chr7	chr2	chr6	chr2	chr15	chr12
1.25E+08	18951103	41794070	52830677	1.43E+08	46844978	1.1E+08	2.31E+08	81225199	1.32E+08
1.25E+08	18951416	41795039	52831900	1.43E+08	46845767	1.1E+08	2.31E+08	81225416	1.32E+08
903	314	970	1224	718	790	730	1266	218	911
ω	4	6	4	4	5	σ	ω	л	и
Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shore; Island
Enhancers; Flanking Active TSS	Bivalent Enhancer; Flanking Bivalent TSS/Enh	Quiescent/Low; Enhancers	Genic enhancers; Flanking Active TSS	Weak Repressed PolyComb	Quiescent/Low; Enhancers	Active TSS; Flanking Active TSS; Enhancers	Enhancers	Flanking Active TSS; Active TSS	Repressed PolyComb
RP11-1082L8.4	SLC5A10	OXCT1	ITIH4; RP5-966M1.6	C7orf34	LINC01119	DDO		IL16	RP13-977J11.9
0.019339	0.024188	0.025817	0.021344	0.02015	-0.02665	0.029658	0.023412	0.018484	0.016758
0.017563	0.019943	0.013493	0.017451	0.015715	-0.01401	0.015225	0.01974	0.014863	0.01221
1.29E-07	6.68E-08	3.37E-06	1.07E-07	6.98E-08	8.66E-08	3.97E-05	1.14E-07	1.57E-07	6.99E-08
0.000694	0.003397	0.000726	0.000952	0.002859	0.003722	0.00093	0.000933	0.001882	0.003724
5.76E-07	5.65E-07	5.63E-07	5.60E-07	5.55E-07	5.51E-07	5.50E-07	5.40E-07	5.39E-07	5.37E-07

chr14	chr10	chr7	chr17	chr9	chr11	chr3	chr13	chr17	chr7
1.03E+08	95273414	1.5E+08	15264590	14779578	12743761	31703702	1.13E+08	50101874	7535911
1.03E+08	95273913	1.5E+08	15265859	14780006	12744890	31705097	1.13E+08	50102094	7537160
932	500	365	1270	429	1130	1396	1537	221	1250
5	3	ω	м	4	4	8	Q	4	σ
Open sea	Open sea	Open sea	Shore; Shelf	Open sea	Open sea	Open sea	Open sea; Shelf	Open sea; Shelf	Open sea
Transcr. at gene 5' and 3'	Flanking Active TSS	Flanking Bivalent TSS/Enh; Bivalent Enhancer	Flanking Active TSS; Weak transcription	Flanking Active TSS	Enhancers	Weak transcription; Enhancers	Weak transcription; Enhancers	Flanking Active TSS	Flanking Active TSS; Quiescent/Low
CDC42BPB	PDLIM1	GIMAP8; GIMAP6	RP11-849N15.1; PMP22	FREM1	TEAD1	OSBPL10; OSBPL10- AS1	ATP11A; ATP11A-AS1	PDK2; RP5-875H18.4	COL28A1
0.019954	-0.03075	-0.01908	0.022143	0.02313	0.022357	0.017505	0.024919	0.017652	0.027426
0.016386	-0.0251	-0.01658	0.014737	0.0213	0.018823	0.011528	0.011009	0.015939	0.012752
6.86E-08	1.45E-07	1.46E-07	2.45E-07	7.95E-08	8.05E-08	2.22E-06	1.93E-05	9.83E-08	1.11E-06
0.004299	0.001019	0.00097	0.001235	0.003146	0.003115	0.004556	0.001674	0.002348	0.000972
6.84E-07	6.81E-07	6.80E-07	6.76E-07	6.49E-07	6.48E-07	6.27E-07	6.26E-07	5.90E-07	5.83E-07

chr12	chr21	chr11	chr18	chr3	chr5	chr11	chr15	chr1	chr1
6376206	42467221	69466908	58255889	54358471	37668652	78063290	55916651	2.02E+08	1033661
6378510	42467579	69467528	58257655	54359479	37668707	78063997	55917307	2.02E+08	1034444
2305	359	621	1767	1009	56	708	657	1066	784
14	ω	4	4	4	2	4	ω	ω	Л
Open sea	Open sea	Open sea; Shelf	Island; Shore	Open sea	Open sea	Open sea	Open sea	Open sea	Island
Enhancers; Flanking Active TSS	Flanking Active TSS	Weak Repressed PolyComb; Enhancers	Active TSS	Enhancers	Enhancers	Enhancers; Flanking Active TSS	Active TSS	Enhancers; Flanking Active TSS	Bivalent/Poised TSS; Bivalent Enhancer; Flanking Bivalent TSS/Enh
LTBR; SCNN1A		AP000439.5	NEDD4L		WDR70	KCTD14; NDUFC2- KCTD14; THRSP	NEDD4	SHISA4; IPO9	AGRN
0.028352	0.021717	-0.01836	0.025109	0.022844	0.026885	0.025716	0.021256	0.024708	0.019881
0.012513	0.017821	-0.01098	0.020563	0.02124	0.026534	0.019709	0.019092	0.02027	0.01534
0.002726	1.96E-07	3.68E-07	1.24E-07	1.23E-07	2.99E-07	8.41E-08	1.69E-07	1.68E-07	1.58E-07
0.002998	0.000796	0.00177	0.002022	0.001411	0.000206	0.004306	0.00087	0.00098	0.002574
9.25E-0	8.55E-07	8.52E-07	8.50E-07	7.80E-07	7.74E-07	7.58E-07	7.49E-07	7.31E-07	7.01E-07

chr15	chr18	chr12	chr2	chr17	chr8	chr3	chr8	chr1	chr15	chr8	chr22
67915470	22176620	1.24E+08	1.28E+08	29138560	1.21E+08	1.22E+08	98399462	2.23E+08	99438780	23573310	35895682
67915812	22177506	1.24E+08	1.28E+08	29139755	1.21E+08	1.22E+08	98400034	2.23E+08	99439378	23573395	35895702
343	887	259	332	1196	600	601	573	700	599	86	21
ω	U	4	ω	ω	4	6	ω	4	σ	ω	ω
Open sea	Shore; Island	Shore	Open sea	Open sea	Shore	Open sea	Open sea	Open sea	Open sea	Shore	Open sea
Enhancers	Repressed PolyComb	Enhancers; Flanking Active TSS	Enhancers	Transcr. at gene 5' and 3'; Flanking Active TSS	Weak transcription	Active TSS	Repressed PolyComb; Bivalent Enhancer	Enhancers	Enhancers	Enhancers	Flanking Active TSS
CALML4	GATA6; RP11- 627G18.2	NCOR2	МҮО7В	MYO18A; RP11- 321A17.4	RP11-713M15.2; SNTB1	FBXO40			ENSG00000259341		RBFOX2
0.022232	0.020722	-0.01745	-0.02445	0.018911	0.037523	0.017046	0.022184	0.024242	-0.02217	0.017244	0.026519
0.017915	0.012699	-0.01638	-0.01958	0.016496	0.027047	0.012351	0.018845	0.017863	-0.01838	0.016304	0.02378
3.35E-07	6.64E-07	1.49E-07	3.14E-07	2.44E-07	1.75E-07	2.32E-07	2.23E-07	1.37E-07	1.33E-07	2.18E-07	1.93E-07
0.000406	0.003891	0.003361	0.000561	0.001256	0.00235	0.002413	0.001146	0.003096	0.003619	0.001175	0.001273
1.16E-06	1.16E-06	1.15E-06	1.14E-06	1.11E-06	1.07E-06	1.05E-06	1.03E-06	9.83E-07	9.81E-07	9.75E-07	9.32E-07

chr2	chr1	chr5	chr10	chr18	chr17	chr17	chr22	chr18	chr11	chr1	chr7
2.41E+08	1.6E+08	5658422	1.19E+08	62610374	82871151	78224526	27124391	49726418	33892540	2256322	2760561
2.41E+08	1.6E+08	5658528	1.19E+08	62611214	82871727	78224873	27124826	49726587	33893098	2257587	2761613
191	468	107	1346	841	577	348	436	170	559	1266	1053
ω	U	2	6	4	4	J	2	2	ω	л	5
Shore	Open sea	Open sea	Shore	Open sea	Shore; Island	Open sea	Open sea	Open sea	Open sea	Open sea	Shelf; Shore
Flanking Active TSS	Repressed PolyComb	Flanking Active TSS; Enhancers	Enhancers	Enhancers; Flanking Active TSS; Flanking Bivalent TSS/Enh	Genic enhancers	Bivalent Enhancer	Repressed PolyComb	Weak transcription	Weak transcription	Enhancers; Flanking Active TSS	Flanking Active TSS; Enhancers
SNED1	SLAMF9		NANOS1		ZNF750; TBCD	BIRC5			LMO2	SKI	GNA12; AMZ1
0.022027	0.028498	0.025857	0.028397	0.015102	-0.01591	0.019798	0.018801	0.036265	0.036737	0.022168	0.017095
0.018981	0.019286	0.024096	0.018353	0.012873	-0.01495	0.017211	0.018111	0.034169	0.028273	0.007271	0.014209
3.01E-07	1.60E-06	5.40E-07	4.80E-07	7.25E-07	1.87E-07	1.34E-07	4.91E-07	4.77E-07	2.47E-07	5.43E-05	1.47E-07
0.001304	0.001287	0.00017	0.004219	0.00085	0.002622	0.004853	0.000244	0.000241	0.001537	0.002734	0.003329
1.32E-06	1.29E-06	1.29E-06	1.27E-06	1.26E-06	1.25E-06	1.25E-06	1.24E-06	1.21E-06	1.20E-06	1.19E-06	1.18E-06

chr1	chr2	chr2	chr16	chr17	chr16	chr8	chr17	chr14	chr7
44642882	96898763	23563717	20408899	77834635	67346330	686370	47847521	64806680	1567509
44643009	96898944	23564799	20409393	77834717	67347295	687467	47848237	64806902	1568150
128	182	1083	495	83	966	1098	717	223	642
ω	4	ω	4	2	ω	4	4	4	б
Open sea	Open sea	Shore; Shelf	Open sea	Open sea	Open sea	Shore; Island	Island	Open sea	Shelf; Shore
Genic enhancers; Transcr. at gene 5' and 3'	Enhancers	Enhancers; Flanking Active TSS	Quiescent/Low	Flanking Active TSS	Quiescent/Low	Weak Repressed PolyComb; Bivalent Enhancer; Flanking Bivalent TSS/Enh	Bivalent Enhancer; Repressed PolyComb	Enhancers	Genic enhancers
TMEM53; RNF220	FAM178B	KLHL29	ACSM5		LRRC36	ERICH1; ERICH1, ENSG00000254207	SP6	SPTB	PSMG3; PSMG3-AS1
0.029615	0.021259	0.028465	0.019346	0.024124	-0.01799	0.026244	0.015796	0.023799	0.020499
0.022977	0.017904	0.021853	0.017391	0.022215	-0.01187	0.020934	0.012944	0.014943	0.01648
3.30E-07	2.28E-07	4.94E-07	2.28E-07	5.58E-07	3.48E-07	3.57E-07	2.20E-07	3.51E-06	2.48E-07
0.001836	0.003292	0.000499	0.003166	0.000287	0.001147	0.002484	0.001832	0.000855	0.004881
1.60E-06	1.60E-06	1.58E-06	1.52E-06	1.43E-06	1.40E-06	1.39E-06	1.36E-06	1.35E-06	1.33E-06

chr1	chr21	chr12	chr17	chr1	chr11	chr3	chr22	chr2	chr16	chr11
1.46E+08	27423296	26523845	12549740	2.23E+08	35083330	12350680	42770132	2.02E+08	4052291	34346323
1.46E+08	27423301	26523915	12549962	2.23E+08	35084102	12351521	42770340	2.02E+08	4053531	34346845
750	6	71	223	792	773	842	209	298	1241	523
J	2	2	4	7	ω	4	ω	U	10	ω
Shelf	Open sea	Open sea	Open sea	Shore	Open sea	Open sea	Island; Shore	Open sea	Open sea	Open sea
Active TSS; Weak transcription	Weak transcription	Active TSS	Quiescent/Low	Flanking Active TSS; Enhancers	Enhancers; Flanking Active TSS	Quiescent/Low	Flanking Bivalent TSS/Enh	Weak Repressed PolyComb	Enhancers; Flanking Active TSS	Enhancers; Flanking Active TSS
HFE2	AP001604.3	ITPR2	LINC00670	TLR5; RP11-239E10.2	CD44	PPARG			ADCY9	АВТВ2
0.024006	0.021515	0.024618	0.021089	0.02647	0.031978	0.025086	0.01453	-0.01772	0.026359	0.021959
0.018165	0.021256	0.023873	0.017384	0.012686	0.02346	0.016606	0.013696	-0.01276	0.013676	0.020122
2.44E-07	7.59E-07	7.57E-07	2.55E-07	1.07E-05	5.50E-07	0.000376	3.58E-07	6.02E-07	1.07E-05	4.34E-07
0.002993	0.000331	0.000334	0.004102	0.00186	0.00072	0.000531	0.001648	0.003674	0.00385	0.000838
1.93E-06	1.92E-06	1.92E-06	1.87E-06	1.77E-06	1.72E-06	1.70E-06	1.67E-06	1.65E-06	1.64E-06	1.64E-06

chr16	chr17	chr7	chr16	chr7	chr7	chr17	chr11	chr6	chr9	chr10
48393926	80858842	4714870	65071677	93043169	1.51E+08	83081449	6362750	43016552	35673720	78248477
48394104	80859683	4715709	65072381	93043700	1.51E+08	83081943	6363069	43016956	35674002	78248879
179	842	840	705	532	897	495	320	405	283	403
З	4	6	4	4	4	4	4	4	4	ω
Open sea	Shore	Shelf	Open sea	Shore; Island	Shore; Island	Island; Shore	Open sea	Shelf	Shore	Open sea
Flanking Active TSS	Genic enhancers; Enhancers; Flanking Active TSS	Flanking Active TSS	Flanking Active TSS; Enhancers	Weak Repressed PolyComb; Active TSS; Quiescent/Low	Flanking Bivalent TSS/Enh; Bivalent Enhancer	Flanking Bivalent TSS/Enh	Enhancers; Flanking Active TSS	Flanking Active TSS	Enhancers; NA	Active TSS
SIAH1	RPTOR	FOXK1	CDH11		NOS3; ATG9B; KCNH2, ENSG00000244151, ATG9B	METRNL	SMPD1; RP11- 304C12.3	KLHDC3	CA9; ARHGEF39	LINC00856
0.020604	0.019699	0.02479	0.020719	0.021365	0.016214	0.017415	0.019957	0.014919	0.018627	0.019978
0.020153	0.014869	0.013652	0.018591	0.014335	0.012767	0.013872	0.017346	0.013598	0.015955	0.017714
4.45E-07	5.16E-07	0.001188	2.81E-07	1.31E-05	3.33E-07	7.66E-07	4.37E-07	3.07E-07	2.64E-07	4.52E-07
0.002184	0.001711	0.00125	0.004806	0.001509	0.003607	0.002021	0.002215	0.003033	0.00449	0.001406
2.16E-06	2.13E-06	2.13E-06	2.13E-06	2.13E-06	2.08E-06	2.06E-06	2.04E-06	2.04E-06	2.02E-06	1.96E-06

chr9	chr2	chr9	chr14	chr18	chr2	chr17	chr7	chr19	chr1
1.12E+08	1.02E+08	1.3E+08	75453464	10122233	55133707	81036657	1.4E+08	45216940	93614126
1.12E+08	1.02E+08	1.3E+08	75453494	10122237	55134173	81037741	1.4E+08	45217817	93614812
74	835	733	31	J	467	1085	576	878	687
2	σ	4	2	2	ω	σ	ω	σ	σ
Open sea	Open sea	Island; Shore	Open sea	Open sea	Open sea	Shore	Open sea	Shore; Island	Open sea
Enhancers	Flanking Active TSS; Weak transcription	Active TSS; Flanking Active TSS	Flanking Active TSS	Flanking Active TSS	Flanking Active TSS	Enhancers; Flanking Active TSS	Flanking Active TSS; Quiescent/Low	Repressed PolyComb; Bivalent Enhancer	Active TSS; Flanking Active TSS
RNU6-710P	AC007271.3	C9orf78; USP20	JDP2			BAIAP2	SLC37A3	EXOC3L2; MARK4	BCAR3
0.020678	0.022305	0.020304	0.024402	0.027992	0.019507	0.024491	0.019735	0.019755	0.0195
0.019227	0.014935	0.01277	0.023152	0.026219	0.016929	0.014721	0.018981	0.013261	0.012997
9.19E-07	1.23E-05	0.000111	9.02E-07	8.82E-07	5.53E-07	4.74E-07	7.52E-07	7.63E-06	7.52E-06
0.000338	0.002375	0.000938	0.000329	0.000364	0.001315	0.003735	0.000834	0.002279	0.003354
2.29E-06	2.28E-06	2.27E-06	2.24E-06	2.23E-06	2.22E-06	2.21E-06	2.21E-06	2.20E-06	2.18E-06

chr14	chr8	chr1	chr13	chr6	chr12	chr5	chr17	chr2	chr12	chr11	chr16
1.04E+08	60865205	2.46E+08	24223994	1.7E+08	1.31E+08	4772860	77477261	1.05E+08	49912331	69545633	2036844
1.04E+08	60865728	2.46E+08	24224101	1.7E+08	1.31E+08	4773383	77477987	1.05E+08	49913102	69546198	2037930
206	524	255	108	521	76	524	727	582	772	566	1087
ω	4	ω	ω	4	2	4	б	л	л	4	4
Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Island; Shore
Repressed PolyComb	Flanking Active TSS; Enhancers	Weak Repressed PolyComb	Enhancers	Flanking Bivalent TSS/Enh; Bivalent Enhancer	Weak Repressed PolyComb	Quiescent/Low	Enhancers; Flanking Active TSS	Flanking Active TSS	Weak Repressed PolyComb	Repressed PolyComb	Transcr. at gene 5' and 3'
	CHD7	KIF26B	SPATA13; RP11- 307N16.6			CTD-2161F6.3; RP11- 44503.2	Sep-09	AC012360.6; FHL2	RP11-70F11.8; RP11- 70F11.11		SLC9A3R2
0.020467	0.018599	0.021592	-0.0188	0.01573	0.020686	0.027664	0.022495	0.028596	0.023123	0.018685	-0.0202
0.016253	0.016769	0.014265	-0.01576	0.014281	0.01837	0.020705	0.015019	0.015709	0.016042	0.015475	-0.01334
6.34E-07	3.64E-07	6.81E-07	6.93E-07	4.18E-07	9.62E-07	3.36E-07	2.82E-06	3.57E-07	5.22E-06	5.01E-07	4.12E-07
0.001408	0.004862	0.000762	0.000992	0.002811	0.000365	0.004496	0.003054	0.004809	0.003514	0.003229	0.003194
2.55E-06	2.55E-06	2.48E-06	2.47E-06	2.43E-06	2.41E-06	2.38E-06	2.38E-06	2.37E-06	2.37E-06	2.36E-06	2.36E-06

chr2	chr5	chr8	chr17	chr6	chr14	chr15	chr14	chr2	chr10	chr2
98726221	59124371	1.44E+08	49013675	41053229	59354509	90047250	63273520	3459786	1.24E+08	2.23E+08
98727530	59124582	1.44E+08	49014158	41053421	59355009	90048122	63274303	3460395	1.24E+08	2.23E+08
1310	212	1201	484	193	501	873	784	610	922	130
σ	2	4	4	ω	ω	ω	ω	4	2	2
Open sea; Shelf	Open sea	Open sea	Island	Open sea	Open sea	Open sea	Open sea	Shore; Shelf	Shelf; Shore	Open sea
Weak transcription; Enhancers	Enhancers	Transcr. at gene 5' and 3'; Genic enhancers	Repressed PolyComb	Active TSS	Enhancers	Enhancers	Enhancers; Quiescent/Low	Flanking Active TSS	Enhancers; Flanking Active TSS	Enhancers
MGAT4A	PDE4D; ENSG00000247345	DGAT1; GS1- 393G12.12	IGF2BP1; RP11- 501C14.6	APOBEC2; OARD1	DAAM1	ZNF710	RHOJ	TRAPPC12	ΟΑΤ	ACSL3
-0.01332	0.037877	0.015675	0.01736	0.018957	0.04032	0.01864	0.022725	0.027158	0.033197	0.023488
-0.01104	0.03477	0.013909	0.01565	0.016548	0.029479	0.017192	0.01774	0.022657	0.033012	0.022827
5.72E-07	1.46E-06	4.86E-07	4.87E-07	5.70E-07	6.27E-07	5.46E-07	7.62E-07	6.53E-07	1.08E-06	1.02E-06
0.002663	0.000105	0.003476	0.003443	0.002079	0.001697	0.002386	0.00065	0.00307	0.000295	0.000382
2.85E-06	2.74E-06	2.72E-06	2.71E-06	2.67E-06	2.64E-06	2.64E-06	2.63E-06	2.62E-06	2.60E-06	2.56E-06

chr1	chr3	chr8	chr1	chr2	chr17	chr17	chr6	chr17	chr17	chr2	chr10
59359972	46612162	38937699	1.15E+08	98564920	67520629	48627655	57313796	1405321	78862165	2.39E+08	1.02E+08
59360381	46612430	38938627	1.15E+08	98565315	67520660	48628663	57314239	1405380	78862341	2.39E+08	1.02E+08
410	269	929	196	396	32	1009	444	60	177	198	6
4	3	ω	4	ω	2	6	5	З	3	З	2
Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shore	Open sea	Open sea	Open sea	Open sea	Open sea
Enhancers	Weak Repressed PolyComb; Enhancers	Flanking Active TSS	Active TSS; Flanking Active TSS	Genic enhancers	Flanking Active TSS	Repressed PolyComb	Enhancers; Weak transcription	Flanking Active TSS	Enhancers	Flanking Active TSS	Weak transcription
	TDGF1	PLEKHA2	RP4-666F24.3	INPP4A	PITPNC1	нохв-АS4; нохв7; нохв9	PRIM2			HDAC4	C10orf76
0.02651	0.027523	0.016899	0.022204	-0.01943	0.027944	0.020269	0.023502	0.022539	0.021932	0.027311	-0.01759
0.015651	0.017877	0.013959	0.012877	-0.01607	0.023013	0.013967	0.012283	0.02062	0.016829	0.017657	-0.01354
1.50E-06	0.000173	6.54E-07	8.81E-07	9.38E-07	1.19E-06	1.23E-06	4.46E-06	6.12E-07	9.56E-07	8.32E-07	1.15E-06
0.001833	0.000212	0.002437	0.00167	0.001158	0.000391	0.002564	0.002041	0.002336	0.000985	0.000965	0.000393
3.15E-06	3.14E-06	3.10E-06	3.05E-06	3.02E-06	2.96E-06	2.95E-06	2.94E-06	2.90E-06	2.89E-06	2.88E-06	2.85E-06

chr9	chr10	chr6	chr16	chr1	chr10	chr2	chr22	chr6	chr3	chr2	chr4
1.29E+08	6204983	1.12E+08	1537608	2.07E+08	95288894	17880051	20476214	1.34E+08	1.22E+08	2.2E+08	1.85E+08
1.29E+08	6205137	1.12E+08	1537808	2.07E+08	95289852	17880304	20476367	1.34E+08	1.22E+08	2.2E+08	1.85E+08
330	155	189	201	1202	959	254	154	16	453	179	307
2	2	ω	ω	6	ω	ω	ω	2	4	ω	4
Open sea	Shore	Open sea	Shore; Island	Open sea	Shore	Shore	Open sea	Open sea	Open sea	Open sea	Open sea
Flanking Active TSS	Flanking Active TSS	Flanking Active TSS	Transcr. at gene 5' and 3'	Genic enhancers	Active TSS; Flanking Active TSS	Flanking Active TSS	Weak transcription	Enhancers	Quiescent/Low; Enhancers	Enhancers	Flanking Active TSS
CCBL1	PFKFB3		TMEM204; IFT140	PFKFB2; C4BPB	PDLIM1	KCNS3	RNY1P9; KLHL22	SGK1	SLC15A2		ACSL1
0.031277	0.043525	0.022871	-0.0186	-0.03422	-0.02892	0.032798	0.022787	0.025887	0.024025	0.020776	0.021081
0.03101	0.042521	0.020124	-0.01596	-0.0117	-0.02625	0.026551	0.019217	0.02332	0.017459	0.019265	0.015705
1.49E-06	1.48E-06	8.70E-07	8.52E-07	0.000192	8.08E-07	9.51E-07	7.90E-07	1.41E-06	1.21E-06	8.14E-07	5.68E-07
0.000468	0.00046	0.001961	0.001696	0.000261	0.002026	0.001456	0.001884	0.00031	0.002912	0.001277	0.002516
3.70E-06	3.67E-06	3.66E-06	3.60E-06	3.56E-06	3.55E-06	3.49E-06	3.37E-06	3.32E-06	3.28E-06	3.27E-06	3.18E-06

chr16	chr8	chr3	chr10	chr12	chr5	chr12	chr3	chr1	chr7	chr10	chr17
85309674	1.03E+08	1.95E+08	1.3E+08	1.25E+08	1.5E+08	1.32E+08	1.7E+08	54390361	229224	73888767	56834495
85310043	1.03E+08	1.95E+08	1.3E+08	1.25E+08	1.5E+08	1.32E+08	1.7E+08	54390837	229599	73889098	56835107
370	565	417	1165	750	217	218	272	477	376	332	613
4	4	σ	4	2	2	ω	ω	4	4	2	ω
Open sea	Shore	Open sea	Open sea	Open sea	Open sea	Open sea	Shore	Shore; Island	Shelf; Shore	Open sea	Island
Flanking Active TSS	Enhancers; Flanking Active TSS	Active TSS; Flanking Active TSS	Bivalent Enhancer	Enhancers	Enhancers; Genic enhancers	Strong transcription	Repressed PolyComb	Flanking Active TSS	Flanking Active TSS	Flanking Active TSS	Flanking Active TSS
	GASAL1; KB-1732A1.1	XXYLT1; XXYLT1-AS2; RN7SL36P			ARHGEF37	RP13-820C6.2; EP400		SSBP3	AC145676.2; FAM20C		C17orf67; DGKE
0.020688	0.028632	-0.02478	0.019793	0.023976	0.024837	-0.01701	0.022748	0.02706	0.017009	0.027964	-0.02494
0.017039	0.017761	-0.01528	0.017204	0.020736	0.024712	-0.01298	0.015299	0.017894	0.015267	0.022587	-0.01766
6.60E-07	2.05E-05	8.22E-07	7.83E-07	2.07E-06	1.97E-06	9.29E-07	1.83E-06	1.20E-06	6.16E-07	1.70E-06	8.72E-07
0.004529	0.000913	0.00299	0.003057	0.00015	0.000166	0.00181	0.000685	0.002816	0.00419	0.000257	0.001981
4.21E-06	4.10E-06	4.07E-06	4.01E-06	3.99E-06	3.92E-06	3.89E-06	3.86E-06	3.86E-06	3.82E-06	3.79E-06	3.72E-06

chr6	chr10	chr3	chr17	chr6	chr17	chr2	chr19	chr18	chr3	chr4	chr10
1.11E+08	78543724	1.6E+08	596390	1.59E+08	1783332	10493768	13002640	77058445	1.95E+08	1.48E+08	3500435
1.11E+08	78544084	1.6E+08	596691	1.59E+08	1784053	10494047	13003078	77058858	1.95E+08	1.48E+08	3500793
807	361	119	302	233	722	280	439	414	185	173	359
4	2	ω	2	ω	4	ω	ω	4	2	2	ω
Shelf	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shore	Island; Shore	Open sea	Open sea	Open sea
Weak transcription; Enhancers	Enhancers	Quiescent/Low	Enhancers	Weak Repressed PolyComb	Flanking Active TSS; Enhancers	Weak Repressed PolyComb	Active TSS; Flanking Active TSS	Enhancers	Weak transcription	Enhancers	Flanking Active TSS
RNU6-960P; SLC16A10		IL12A-AS1	VPS53	RP1-111C20.3	SMYD4		NFIX	MBP	XXYLT1		RP11-482E14.1
0.028425	0.020624	0.025295	-0.02067	0.026509	0.026398	0.015042	0.016656	0.016454	0.035066	0.030684	0.023329
0.019911	0.018129	0.019932	-0.02048	0.019878	0.015891	0.012417	0.014448	0.014621	0.029393	0.028112	0.019978
3.23E-06	1.89E-06	1.73E-06	1.88E-06	3.29E-06	1.03E-05	1.02E-06	9.53E-07	6.87E-07	1.77E-06	1.92E-06	1.43E-06
0.002073	0.000535	0.000522	0.000532	0.00048	0.001942	0.002391	0.002645	0.003695	0.000492	0.0003	0.00111
4.66E-06	4.66E-06	4.66E-06	4.64E-06	4.63E-06	4.62E-06	4.53E-06	4.38E-06	4.37E-06	4.36E-06	4.33E-06	4.24E-06

chr1	chr1	chr14	chr14	chr7	chr16	chr17	chr17	chr1	chr12	chr5
8590958	67653059	1.05E+08	51368570	29019484	15607603	4902635	55732959	2.02E+08	1.06E+08	1.07E+08
8591171	67653215	1.05E+08	51368591	29019892	15608562	4903611	55733451	2.02E+08	1.06E+08	1.07E+08
214	157	006	22	409	960	977	493	2054	7	352
2	2	9	2	2	7	8	ω	10	2	3
Open sea	Open sea	Shore; Island	Open sea	Open sea	Open sea	Shore	Open sea	lsland; Shore	Open sea	Open sea
Quiescent/Low	Enhancers	Flanking Active TSS	Enhancers	Enhancers	Genic enhancers; Enhancers	Enhancers; Flanking Active TSS	Enhancers; Flanking Active TSS	Bivalent/Poised TSS; Flanking Bivalent TSS/Enh	Enhancers	Enhancers; Quiescent/Low
RERE		PACS2; BRF1	RP11-255G12.2	CPVL	C16orf45; CTB- 193M12.1; KIAA0430	CHRNE; C17orf107	TMEM100	NAV1	ENSG00000257890	CTC-254B4.1
0.023858	0.028729	0.022159	0.021406	0.037389	0.022195	0.022768	0.022205	0.015605	0.022351	0.022932
0.021279	0.022935	0.010082	0.020906	0.030298	0.016187	0.010547	0.02083	0.009327	0.021217	0.019942
2.31E-06	2.16E-06	0.000512	2.01E-06	2.91E-06	1.39E-06	1.92E-06	1.09E-06	2.27E-05	1.93E-06	1.36E-06
0.000277	0.000373	0.003207	0.000512	0.00011	0.002331	0.004383	0.002219	0.004347	0.000524	0.000959
5.00E-06	4.98E-06	4.93E-06	4.90E-06	4.85E-06	4.81E-06	4.76E-06	4.76E-06	4.75E-06	4.73E-06	4.69E-06

chr21	chr10	chr1	chr12	chr8	chr16	chr17	chr4	chr6	chr5	chr1	chr2
32494806	1.29E+08	1.51E+08	1.09E+08	23450435	67184680	63838472	1.56E+08	1.51E+08	1.73E+08	10787483	33069855
32495240	1.29E+08	1.51E+08	1.09E+08	23450652	67185690	63839369	1.56E+08	1.51E+08	1.73E+08	10788085	33070070
435	51	459	116	218	1011	898	208	53	534	603	216
4	З	U	σ	2	œ	σ	ω	ω	2	ω	2
Open sea	Open sea	Open sea	Open sea	Open sea	Island; Shore	Shelf	Open sea	Open sea	Open sea	Open sea	Open sea
Weak transcription	Weak Repressed PolyComb	Transcr. at gene 5' and 3'; Genic enhancers	Enhancers	Enhancers	Flanking Active TSS	Flanking Active TSS	Quiescent/Low	Enhancers	Enhancers; Flanking Active TSS	Enhancers	Enhancers
EVA1C		TMOD4; VPS72	SELPLG, SSH1, CORO1C		EXOC3L1; KIAA0895L	SMARCD2	TDO2	MTHFD1L	ERGIC1	CASZ1	LTBP1
0.02246	-0.01522	0.023729	0.038545	0.024802	0.017374	0.01862	0.023788	0.021967	0.019524	0.027383	0.025291
0.014179	-0.01377	0.014835	0.022287	0.024133	0.008168	0.012162	0.020111	0.018256	0.018339	0.021575	0.022274
2.23E-06	1.17E-06	1.75E-06	1.86E-06	2.23E-06	0.001664	2.48E-05	1.28E-06	1.15E-06	2.27E-06	1.23E-06	2.80E-06
0.002511	0.003105	0.00389	0.003687	0.000487	0.001446	0.001389	0.002049	0.002665	0.000327	0.002218	0.000144
5.44E-06	5.43E-06	5.42E-06	5.35E-06	5.34E-06	5.31E-06	5.24E-06	5.20E-06	5.18E-06	5.10E-06	5.08E-06	5.06E-06

chr3	chr2	chr13	chr18	chr2	chr17	chr11	chr16	chr11	chr10
1.53E+08	84807215	20702093	76528076	2.37E+08	81052248	64313685	58115434	1930583	1.03E+08
1.53E+08	84807641	20703222	76528624	2.37E+08	81052511	64314401	58116112	1931447	1.03E+08
127	427	1130	549	318	264	717	679	865	583
2	З	7	4	2	4	σ	ω	ω	2
Open sea	Open sea	Shore; Island	Open sea	Open sea	Island	Shelf	Open sea	Shore; Shelf	Open sea
Quiescent/Low	Weak Repressed PolyComb	Active TSS; Flanking Active TSS	Bivalent Enhancer; Flanking Bivalent TSS/Enh	Bivalent Enhancer	Flanking Active TSS	Flanking Active TSS; Transcr. at gene 5' and 3'	Genic enhancers; Strong transcription	Enhancers; Flanking Active TSS	Enhancers
	DNAH6	RP11-172H24.4; IL17D	LINCOO908		BAIAP2	ESRRA; AP001453.1	CTB-134F13.1; CFAP20	TNNT3	ARL3; NFKB2, SFXN2, WBP1L, BORCS7
0.020564	0.02064	0.023675	0.020691	0.020787	-0.01666	0.020208	-0.01925	0.029477	0.030881
0.01987	0.016524	0.011161	0.01455	0.020779	-0.01285	0.014563	-0.01664	0.02561	0.026389
2.43E-06	2.48E-06	0.003242	1.48E-06	2.31E-06	1.24E-06	5.94E-06	1.40E-06	2.22E-06	2.70E-06
0.000527	0.000927	0.00194	0.004123	0.000521	0.004423	0.004	0.001778	0.000552	0.000219
5.83E-06	5.78E-06	5.64E-06	5.63E-06	5.57E-06	5.55E-06	5.52E-06	5.52E-06	5.45E-06	5.45E-06

chr2	chr7	chr13	chr15	chr7	chr5	chr2	chr1	chr21	chr4	chr3
2.16E+08	77281890	50222708	72752611	50595721	1.43E+08	1.13E+08	1.65E+08	29327046	7250595	64067137
2.16E+08	77282211	50222988	72752685	50596006	1.43E+08	1.13E+08	1.65E+08	29327340	7250859	64067712
6	322	281	75	286	91	303	202	295	265	576
2	2	2	2	2	ω	6	2	ω	ω	3
Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea
Enhancers	Enhancers	Flanking Active TSS	Weak transcription; Strong transcription	Weak transcription	Enhancers	Quiescent/Low	Flanking Active TSS	Genic enhancers	Enhancers; Flanking Active TSS	Quiescent/Low; Enhancers
LINC00607		DLEU1	ADPGK	GRB10	ARHGAP26	IL1A	PBX1	BACH1	SORCS2	PRICKLE2-AS1
0.02323	0.020568	0.02107	0.022582	0.030811	0.02573	0.020404	0.022416	0.024719	0.01984	0.020327
0.023042	0.020259	0.018983	0.020065	0.026889	0.023174	0.012268	0.021293	0.022445	0.014653	0.015606
2.70E-06	2.72E-06	2.83E-06	2.71E-06	2.76E-06	1.46E-06	4.18E-06	2.45E-06	1.32E-06	1.31E-06	2.14E-06
0.000629	0.000594	0.000453	0.00049	0.000421	0.002343	0.004886	0.000616	0.00287	0.002939	0.000787
6.57E-06	6.57E-06	6.53E-06	6.37E-06	6.30E-06	6.16E-06	6.01E-06	6.01E-06	5.94E-06	5.92E-06	5.87E-06

chr1	chr12	chr11	chr1	chr1	chr15	chr17	chr2	chr13	chr16
1.72E+08	1.19E+08	315907	12540198	9438284	40926066	8868629	9741275	20142498	2028822
1.72E+08	1.19E+08	317045	12540717	9439274	40926153	8869101	9741879	20143457	2029656
130	623	1139	520	991	88	473	605	960	835
2	ω	4	ω	ω	ω	4	ω	σ	6
Open sea	Open sea	Island; Shore	Shore; Island	Open sea	Island	Open sea	Open sea	Island; Shore	Shore; Shelf
Quiescent/Low	Flanking Active TSS; Transcr. at gene 5' and 3'; Active TSS	Bivalent/Poised TSS; Active TSS	Flanking Active TSS	Enhancers; Flanking Active TSS	Flanking Bivalent TSS/Enh	Weak Repressed PolyComb	ZNF genes & repeats; Weak transcription	Bivalent Enhancer; Repressed PolyComb	Flanking Active TSS
DNM3	RP11-64B16.4; HSPB8			RNA5SP40		PIK3R6	RNU4-73P	GJA3	SLC9A3R2
0.021688	0.025933	-0.01992	0.016874	0.025918	0.014581	0.023176	0.023226	-0.02078	-0.01611
0.020512	0.02213	-0.01601	0.014278	0.023643	0.012489	0.013678	0.015883	-0.01271	-0.00988
3.46E-06	1.65E-06	1.39E-06	1.64E-06	3.07E-06	1.62E-06	7.57E-06	5.94E-05	6.30E-06	1.58E-05
0.000325	0.003002	0.004998	0.002825	9668000.0	0.00256	0.002574	0.000382	0.001829	0.003849
7.31E-06	7.29E-06	7.12E-06	7.09E-06	6.88E-06	6.84E-06	6.79E-06	6.78E-06	6.76E-06	6.59E-06

chr8	chr3	chr1	chr1	chr4	chr3	chr10	chr5	chr16	chr16	chr21
18886935	52518669	2.07E+08	9539007	1211570	1.88E+08	1.03E+08	1.35E+08	85187140	88194650	46055904
18887210	52519416	2.07E+08	9540661	1212361	1.88E+08	1.03E+08	1.35E+08	85187269	88195173	46056481
276	748	652	1655	792	615	739	517	130	524	578
ω	J	J	Q	л	ω	2	ω	2	3	3
Open sea	Open sea	Shore	Shore; Island	Shore; Island	Shore	Open sea	Open sea	Open sea	Open sea	Open sea
Bivalent/Poised TSS; Repressed PolyComb	Flanking Active TSS; Active TSS; Weak transcription	Enhancers	Enhancers; Flanking Active TSS; Active TSS	Genic enhancers	Active TSS	Enhancers; Flanking Active TSS	Strong transcription	Enhancers	Flanking Active TSS	Bivalent Enhancer; Flanking Bivalent TSS/Enh
PSD3	STAB1	RASSF5; EIF2D	SLC25A33	CTBP1; CTBP1-AS	BCL6		C5orf66; H2AFY		RP11-863P13.2; LA16c- 444G7.2	COL6A1, MCM3AP- AS1; AP001476.3; DSTNP1
0.016557	0.023354	0.015951	-0.01892	0.022136	0.019479	0.039957	0.02453	0.023894	0.021235	0.021297
0.014662	0.01501	0.012568	-0.00709	0.014977	0.017242	0.037477	0.019273	0.023067	0.019355	0.02035
1.81E-06	2.89E-05	2.18E-05	3.11E-05	9.75E-06	2.33E-06	3.49E-06	1.81E-06	3.21E-06	1.65E-06	2.30E-06
0.003337	0.003973	0.003614	0.003335	0.002254	0.001481	0.000427	0.002741	0.000632	0.003595	0.001507
8.09E-06	8.09E-06	8.04E-06	8.01E-06	7.98E-06	7.85E-06	7.77E-06	7.73E-06	7.69E-06	7.57E-06	7.32E-06

chr16	chr14	chr11	chr1	chr8	chr14	chr20	chr3	chr5	chr7	chr13
89443286	1.01E+08	628301	1.09E+08	37520757	1.05E+08	60062860	10468830	31737827	2149730	1.06E+08
89443351	1.01E+08	629522	1.09E+08	37521021	1.05E+08	60062913	10469268	31738229	2149852	1.06E+08
66	1069	1222	497	265	481	54	439	403	123	423
2	4	л	2	4	4	2	2	ω	ω	4
Open sea	Shore; Island	Shore	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shelf	Shore
Enhancers	Flanking Bivalent TSS/Enh; Bivalent Enhancer; Bivalent/Poised TSS; Repressed PolyComb	Flanking Active TSS	Flanking Active TSS	Flanking Active TSS; Enhancers	Bivalent Enhancer; Flanking Bivalent TSS/Enh	Flanking Active TSS	Flanking Active TSS	Quiescent/Low	Genic enhancers	Strong transcription
RNU6-430P; ANKRD11		SCT	SORT1	RP11-150012.1	C14orf180; TMEM179	C20orf197	ATP2B2	RP11-5N11.3; PDZD2		EFNB2
0.020555	0.017629	0.027466	0.021092	0.026698	0.017605	0.022999	0.02307	0.021416	0.021615	-0.02303
0.019835	0.012655	0.012123	0.020542	0.019135	0.012826	0.020121	0.019408	0.020908	0.019281	-0.01637
3.65E-06	2.58E-05	0.00172	3.87E-06	2.18E-06	2.76E-06	4.12E-06	3.52E-06	1.79E-06	1.79E-06	3.26E-06
0.000725	0.002314	0.000839	0.000436	0.003639	0.002779	0.000282	0.000562	0.003622	0.003556	0.000549
8.80E-06	8.69E-06	8.66E-06	8.54E-06	8.50E-06	8.45E-06	8.22E-06	8.21E-06	8.16E-06	8.12E-06	8.11E-06

The epigenetic basis of variable response to exercise training

chr17	chr2	chr3	chr19	chr7	chr3	chr8	chr10	chr11	chr4
848046	2.38E+08	50111873	2627323	98245946	1.78E+08	1.02E+08	1.19E+08	71478338	1.84E+08
849257	2.38E+08	50112726	2628033	98246189	1.78E+08	1.02E+08	1.19E+08	71478970	1.84E+08
1212	426	854	711	244	526	51	636	633	780
ω	4	ω	4	4	4	2	ω	σ	σ
Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea
Enhancers	Enhancers; Flanking Active TSS	Genic enhancers	Enhancers; Flanking Active TSS	Genic enhancers; Weak transcription	Enhancers	Quiescent/Low	Bivalent Enhancer	Genic enhancers; Strong transcription	Repressed PolyComb; Weak Repressed PolyComb
NXN	LRRFIP1		TLE2, GNG7; GNG7; DOT1L, SPPL2B, GADD45B	TECPR1		NCALD		NADSYN1	ENPP6
-0.01709	0.017845	0.023789	0.018918	-0.01377	-0.04319	0.023445	0.027876	-0.01777	0.020661
-0.01412	0.015387	0.021126	0.014978	-0.01197	-0.0214	0.022166	0.019825	-0.00929	0.012347
2.30E-06	3.61E-06	2.09E-06	1.50E-06	1.83E-06	0.000234	3.79E-06	2.32E-06	0.000774	1.12E-05
0.002934	0.001625	0.003684	0.004831	0.002633	0.0002	0.000624	0.001963	0.002056	0.003041
9.47E-06	9.43E-06	9.36E-06	9.20E-06	9.13E-06	9.08E-06	8.90E-06	8.88E-06	8.84E-06	8.84E-06

chr17	chr2	chr11	chr19	chr12	chr14	chr5	chr4	chr6	chr15	chr3
2212502	2.38E+08	61627650	8334234	57868799	1.05E+08	76607571	61933366	1.34E+08	72228008	3665168
2212925	2.38E+08	61628719	8335318	57869085	1.05E+08	76607874	61933804	1.34E+08	72228817	3665183
424	334	1070	1085	287	776	304	439	276	810	16
2	2	ω	ω	ω	4	б	ω	ω	4	2
Open sea	Open sea	Open sea	Island	Shelf	Shelf	Open sea	Open sea	Open sea	Shore	Open sea
Flanking Active TSS	Active TSS	Flanking Active TSS; Enhancers	Flanking Bivalent TSS/Enh; Bivalent Enhancer; Bivalent/Poised TSS	Enhancers; Flanking Active TSS	Flanking Active TSS	Quiescent/Low	Quiescent/Low	Enhancers; Flanking Active TSS	Flanking Active TSS; Enhancers	Quiescent/Low
SMG6; AC090617.1	RAB17	RPLPOP2; DAGLA	KANK3; ELAVL1	AVIL, CTDSP2	PACS2	CTD-2236F14.1; IQGAP2	LPHN3	SGK1	РКМ	
0.021076	0.016684	-0.03729	0.023431	0.021339	0.02303	0.018677	0.023672	0.023785	0.025478	0.027771
0.020215	0.016682	-0.02054	0.018933	0.020365	0.016841	0.010979	0.01815	0.020811	0.0149	0.025792
4.37E-06	4.57E-06	6.23E-05	6.20E-06	2.33E-06	1.68E-06	7.02E-06	5.67E-06	3.30E-06	3.54E-06	4.51E-06
0.000832	0.000628	0.000156	0.001181	0.003774	0.004896	0.002931	0.00061	0.001949	0.000654	0.000385
1.05E-05	1.05E-05	1.05E-05	1.05E-05	1.03E-05	1.02E-05	1.02E-05	1.01E-05	1.00E-05	9.57E-06	9.49E-06

The epigenetic basis of variable response to exercise training

chr19	chr11	chr1	chr2	chr14	chr12	chr20	chr15	chr5	chr1	chr22
3383484	1.12E+08	1.84E+08	37318412	89206064	47837341	603047	62843130	1.49E+08	9443989	17165198
3383727	1.12E+08	1.84E+08	37318524	89206587	47837353	603360	62843841	1.49E+08	9444369	17165372
244	356	687	113	524	13	314	712	159	381	175
ω	4	4	4	ω	2	2	л	2	2	4
Shore	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea
Transcr. at gene 5' and 3'	Flanking Active TSS	Enhancers	Enhancers	ZNF genes & repeats	Enhancers	Enhancers; Flanking Active TSS	Weak transcription	Active TSS; Flanking Active TSS	Enhancers; Weak transcription	Weak transcription
NFIC	ALG9; RP11-108O10.8			FOXN3			TLN2; RP11-1069G10.1	MIR143HG; IL17B		CECR5-AS1; CECR5
0.019738	0.022227	-0.01418	0.026375	0.031506	0.029472	-0.01706	0.023225	-0.03278	0.042945	0.019087
0.015963	0.019106	-0.01054	0.020325	0.020872	0.027204	-0.01631	0.014913	-0.02565	0.036176	0.014597
3.68E-06	2.11E-06	9.32E-06	3.41E-06	0.001603	4.58E-06	4.49E-06	9.60E-05	5.72E-06	5.19E-06	1.03E-05
0.001981	0.003906	0.003108	0.003009	0.000396	0.00076	0.000844	0.003684	0.000272	0.000387	0.002822
1.11E-05	1.11E-05	1.10E-05	1.10E-05	1.09E-05	1.08E-05	1.08E-05	1.08E-05	1.07E-05	1.07E-05	1.06E-05

ortif7211960721148068459000
77213902722140068453Open sea: Finking Active TSSFinking Active SPA00236400192012.54E-06000392011.12E-051.18E-081.18E-084.912Shore, SundFinking Active TSSGOPC, DC3LD10.0210950.0173724.67E-060.0008621.13E-051.18E-081.18E-081.18E-08SHO2Open SunEnhancersRNU6-83DP0.031210.0210950.0173724.67E-060.0008621.13E-051.18E-081.E40854437856442Open SunEnhancersRNU6-83DP0.031210.0210950.018425.41E-050.0004481.15E-05544372554437856442Open SunFinking Active Sun2.144.30.0219540.019350.014650.0004481.15E-05544372554437856443Shore, SunFinking Active TSS Enhancers7.84C1; UL40.0219540.011932.59E-060.0014551.16E-05664376766433986323Shore, SunFinking Active TSS EnhancersRAC1; UL40.0212440.0212410.202312.59E-060.0014551.16E-051.01E-08654776766433986323Shore, SunFinking Active TSS EnhancersRAC1; UL40.0212440.0212410.202310.017613.35E-060.0023611.16E-051.01E-086547767654378674-111875Gene TSS EnhancersRAC1; UL40.021
732146008453Open StepicEnhancers; TSS002364500132012.54E-06000392011.27E-051.18E-084912Skore; ShandTSSGOPC; DCBLD100210950.0175724.67E-060.0008621.13E-051.18E-085082Open SaneEnhancersFinaking ActiveGOPC; DCBLD10.0137210.027068.94E-060.0008621.14E-051.19E-085082Open SaneEnhancersRNU6-330P0.0135320.0134525.41E-060.000481.15E-051.19E-086412Open SaneFinaking ActiveZNF4230.0135430.0134525.41E-060.0004481.15E-051.5023061.743SoreBialent EnhancerZNF4230.0125630.0134525.1E-060.0014531.16E-051.5023066843SoreFinaking ActiveZNF14-446.10.0125430.0125433.5E-060.004581.16E-051.01E-086892Open SaneFinaking ActivePC11-4446.10.0212440.0127534.95E-060.0017631.16E-051.01E-086892Open SaneFinaking ActivePC11-4446.10.0212440.0127544.95E-060.0017631.16E-052.37E-08753Open SaneFinaking ActivePC11-4446.10.0127540.0137554.95E-060.0017631.16E-052.37E-08753Open SaneFinaking ActivePC1
84.3Open sea stanking ActiveFranking ActiveGOPC, DCBLD1OD23645OD192012.54E-66OD03939112E-054412Shore; seaFlanking Active seaGOPC, DCBLD1OD105020.0115724.67E-0600008621.13E-055082Open seaFlanking Active seaRNU6-830P0.0139340.0139340.01393545.41E-060.0000501.14E-056472Open seaFlanking Active seaSNF47SNF470.0139340.01393540.01393540.0004181.14E-05743Open seaFlanking Active TSS, EnhancersTRAK1; UIK40.0125680.011932.59E-060.0031451.16E-058473Open seaFlanking Active TSS, EnhancersACTN30.0213410.0125680.017613.53E-060.00031451.16E-058573Open seaFlanking Active TSS, EnhancersRP11-44M6.10.0213410.0210954.04E-060.00073611.16E-058573Open seaFlanking Active seaFS1-44M6.10.0213420.0214524.04E-060.001591.16E-05753Open seaFlanking Active seaFS1-44M6.10.0213420.0134255.51E-060.001591.15E-058973Open seaFlanking Active seaFS1-44M6.10.0213420.0134255.51E-060.001591.15E-05998SeaOpen seaFlanking Active sea
3 Open sea; Sheft Enhancers; Fianking Active 6OPC, DCBLD1 0023045 0019201 2.54E-06 0003949 112E-05 2 Shore: Flanking Active GOPC, DCBLD1 0021095 0.017572 4.57E-06 0.000862 1.13E-05 2 Open sea Enhancers RNU6-830P 0.033721 0.025076 8.94E-06 0.000405 1.14E-05 2 Open sea Enhancers RNU6-830P 0.01354 0.018452 5.41E-06 0.000405 1.14E-05 2 Open sea Flanking Active ZNF423 0.01354 0.018452 5.41E-06 0.000418 1.15E-05 3 Shore: Bivalent Enhancer ZNF423 0.012568 0.01193 2.59E-06 0.003145 1.16E-05 3 Shore: Flanking Active TRAK1; ULK4 0.012568 0.01761 3.53E-06 0.002361 1.16E-05 3 Sheft TSS, Enhancers TRAK1; ULK4 0.012164 0.021031 4.35E-06 0.002361 1.16E-05 <t< td=""></t<>
Open sea; sea; thef Enhancers; thef COC3645 OD2301 2.54E-06 OD03949 1.12E-05 Shore; Island Flanking Active GOPC; DCBLD1 0.021095 0.017572 4.67E-06 0.000862 1.13E-05 Open Enhancers GOPC; DCBLD1 0.021095 0.017572 4.67E-06 0.000862 1.13E-05 Open Enhancers RNU6-830P 0.019354 0.018452 5.41E-06 0.000448 1.14E-05 Shore; Flanking Active ZNF423 0.021799 -0.01418 2.82E-06 0.003145 1.16E-05 Shore; Flanking Active TRAK1; ULK4 0.012568 0.01761 3.53E-05 1.16E-05 Shore; Flanking Active ACTN3 0.021246 0.021095 4.93E-06 0.002361 1.16E-05 Shore; Flanking Active RP11-44M6-1 0.021241 0.022031 4.93E-06 0.002361 1.18E-05 Open Flanking Active PGS1 0.021244 0.021095 4.04E-06 0.001708 1.19E-05 <
Enhancers; Fianking Active GOPC; DCBLD1 0.023645 0.019201 2.54E-06 0.003949 1.12E-05 Flanking Active GOPC; DCBLD1 0.021095 0.017572 4.67E-06 0.000862 1.13E-05 Flanking Active GOPC; DCBLD1 0.031721 0.026706 8.94E-06 0.000862 1.13E-05 Enhancers RNU6-830P 0.031721 0.026706 8.94E-06 0.000105 1.14E-05 Enhancers RNU6-830P 0.019354 0.018452 5.41E-06 0.000448 1.15E-05 Enhancers RNU6-830P 0.01779 -0.01418 2.82E-06 0.003145 1.16E-05 Flanking Active TRAK1; ULK4 0.017561 0.15E-05 0.116E-05 Flanking Active RP11-44M6.1 0.021244 0.01761 3.53E-06 0.000361 1.16E-05 Flanking Active RP11-44M6.1 0.021244 0.021095 4.04E-06 0.0001708 1.19E-05 Flanking Active PGS1 0.021244 0.018726 5.51E-06 0.0001708 1.19E-05
GOPC: DCBLD1 0.023645 0.019201 2.54E-06 0.003949 1.12E-05 GOPC: DCBLD1 0.021095 0.017572 4.67E-06 0.000862 1.13E-05 RNU6-830P 0.019354 0.018452 5.41E-06 0.000048 1.13E-05 RNU6-830P 0.019354 0.018452 5.41E-06 0.000048 1.13E-05 ZNF423 0.022613 0.020869 1.73E-05 3.65E-05 1.16E-05 TRAK1; UK4 0.012568 0.01193 2.59E-06 0.003145 1.16E-05 ACTN3 0.021244 0.020231 4.93E-06 0.0002861 1.18E-05 PGS1 0.0212844 0.018726 5.51E-06 0.001559 1.19E-05 AP000282.2 0.016493 0.014882 4.60E-06 0.000993 1.20E-05
0.023645 0.019201 2.54E-06 0.003949 1.12E-05 0.021095 0.017572 4.67E-06 0.000862 1.13E-05 0.031721 0.026706 8.94E-06 0.000105 1.14E-05 0.019354 0.018452 5.41E-06 0.000448 1.15E-05 0.029613 0.020869 1.73E-05 3.65E-05 1.14E-05 0.01779 -0.01418 2.82E-06 0.003145 1.16E-05 0.012568 0.01761 3.53E-06 0.002361 1.16E-05 0.021244 0.0200231 4.93E-06 0.001708 1.19E-05 0.021244 0.018726 5.51E-06 0.001559 1.19E-05 0.022844 0.018726 5.51E-06 0.001559 1.19E-05 0.0216493 0.014882 4.60E-06 0.000993 1.20E-05
0.0192012.54E-060.0039491.12E-050.0175724.67E-060.0008621.13E-050.0267068.94E-060.0001051.14E-050.0184525.41E-060.0004481.15E-050.0184525.41E-060.0031451.16E-050.014182.82E-060.0031451.16E-050.017613.53E-060.0023611.16E-050.0202314.93E-060.0023611.18E-050.0210954.04E-060.0015591.19E-050.0148824.60E-060.0009931.20E-05
2.54E-06 0.003949 1.12E-05 4.67E-06 0.000862 1.13E-05 8.94E-06 0.000105 1.14E-05 5.41E-06 0.0003145 1.14E-05 5.41E-06 0.003145 1.16E-05 2.82E-06 0.003145 1.16E-05 2.59E-06 0.002361 1.16E-05 3.53E-06 0.002361 1.16E-05 4.04E-06 0.001708 1.19E-05 5.51E-06 0.001559 1.19E-05 4.60E-06 0.000993 1.20E-05
0.0003949 1.12E-05 0.0000862 1.13E-05 0.000105 1.14E-05 0.000448 1.15E-05 0.003145 1.16E-05 0.003145 1.16E-05 0.00418 1.16E-05 0.0002361 1.16E-05 0.0002361 1.16E-05 0.0002361 1.19E-05 0.0001708 1.19E-05 0.0001559 1.19E-05 0.000993 1.20E-05
1.12E-05 1.13E-05 1.14E-05 1.16E-05 1.16E-05 1.16E-05 1.16E-05 1.18E-05 1.19E-05 1.19E-05 1.20E-05

chr5	chr17	chr3	chr2	chr22	chr2	chr2	chr7	chr17	chr11	chr8	chr16
1.8E+08	7026434	51962780	1.97E+08	50304118	2.24E+08	1.62E+08	29146884	44087064	2827079	1.3E+08	11781949
1.8E+08	7027027	51964034	1.97E+08	50304990	2.24E+08	1.62E+08	29147402	44087131	2827261	1.3E+08	11782588
590	594	1255	74	873	641	10	519	68	183	227	640
З	4	Q	ω	ω	2	2	ω	ω	2	2	6
Open sea	Shelf	Open sea; Shelf	Open sea	Shelf; Shore	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea
Genic enhancers	Enhancers	Flanking Active TSS	Enhancers	Enhancers; Flanking Bivalent TSS/Enh	Quiescent/Low	Quiescent/Low	Flanking Active TSS	Genic enhancers	Flanking Active TSS	Weak Repressed PolyComb	Enhancers
LOC101928445	BCL6B	RP11-155D18.12; PCBP4	CCDC150	PLXNB2; DENND6B, PLXNB2	SERPINE2	DPP4	CPVL; CHN2	ASB16; ASB16-AS1, HDAC5	KCNQ1		ZC3H7A
0.034457	-0.01749	0.01684	0.019739	0.020234	0.022818	0.025136	0.01928	0.018997	-0.01508	0.018665	0.0151
0.021568	-0.01243	0.008703	0.016946	0.018562	0.0214	0.024213	0.018961	0.01691	-0.01476	0.01811	0.010301
1.60E-05	6.96E-06	0.001111	5.16E-06	2.92E-06	6.93E-06	5.63E-06	2.79E-06	3.14E-06	5.14E-06	5.12E-06	2.07E-05
0.000675	0.003215	0.004824	0.001129	0.004179	0.000289	0.000632	0.004314	0.002626	0.000816	0.000829	0.004072
1.34E-05	1.31E-05	1.31E-05	1.29E-05	1.29E-05	1.27E-05	1.26E-05	1.25E-05	1.22E-05	1.22E-05	1.21E-05	1.21E-05
chr7	chr3	chr10	chr17	chr20	chr17	chr4	chr14	chr7	chr17	chr15	
-----------------	---------------------------------------	---	--	-------------	-----------------------------------	---	-------------	----------------------------	--------------------	-------------	
1E+08	1.52E+08	1.27E+08	47852032	23091858	15463271	3500653	99809399	1.56E+08	35868129	67199884	
1E+08	1.52E+08	1.27E+08	47852666	23092241	15464312	3500847	99810133	1.56E+08	35869018	67200202	
629	181	345	635	384	1042	195	735	410	068	319	
12	2	ω	Z	2	ω	ω	ω	4	ω	2	
Open sea	Open sea	Shore	Shore	Open sea	Open sea	Island	Open sea	Open sea	Open sea	Open sea	
Genic enhancers	Active TSS; Flanking Active TSS	Repressed PolyComb; Bivalent Enhancer	Bivalent Enhancer; Repressed PolyComb	Enhancers	Flanking Active TSS; Enhancers	Strong transcription; Genic enhancers	Enhancers	Weak Repressed PolyComb	Quiescent/Low	Enhancers	
	MBNL1	FAM196A; DOCK1	SP6		TVP23C-CDRT4; CDRT4	DOK7	EML1		AC015849.2; HEATR9	IQCH; AAGAB	
0.020416	0.02564	0.026421	0.015635	0.023796	0.017251	-0.01713	0.025217	0.018775	0.014717	0.0278	
0.00944	0.022659	0.018368	0.01017	0.021722	0.014818	-0.01426	0.02283	0.015379	0.013407	0.02486	
1.19E-05	6.85E-06	3.86E-06	1.96E-05	5.91E-06	3.31E-06	3.49E-06	4.77E-06	9.87E-06	3.31E-06	5.72E-06	
0.004356	0.000492	0.002434	0.002303	0.000913	0.003652	0.003394	0.001211	0.003672	0.003731	0.000921	
1.43E-05	1.43E-05	1.41E-05	1.41E-05	1.40E-05	1.39E-05	1.38E-05	1.37E-05	1.37E-05	1.37E-05	1.36E-05	

chr16	chr16	chr7	chr10	chr6	chr10	chr12	chr1	chr17	chr3	chr1	chr3
66926447	88956980	77840107	71597897	42820288	3107567	80714210	45913184	42324705	45139601	1.54E+08	1.88E+08
66927152	88957224	77840259	71598664	42821314	3107659	80714254	45913506	42325247	45139881	1.54E+08	1.88E+08
706	245	153	768	1027	93	45	323	543	281	582	476
ω	3	2	ω	7	3	ω	ω	ω	3	2	2
Shore	Open sea	Open sea	Open sea	Open sea	Shore	Shelf	Open sea	Open sea	Open sea	Open sea	Open sea
Flanking Active TSS; Enhancers	Bivalent Enhancer	Flanking Active TSS	Enhancers	Enhancers; Flanking Active TSS	Flanking Active TSS	Active TSS	Flanking Active TSS; Active TSS	Genic enhancers	Enhancers	Flanking Active TSS; Active TSS	Flanking Active TSS
RRAD; PLEKHG4	CBFA2T3	PHTF2	CDH23	GLTSCR1L	PFKP		MAST2		RNU5B-3P, CDCP1	S100A16	Lbb
0.025006	0.017719	0.032344	0.020177	0.022045	0.01847	0.01679	0.023305	0.025455	0.032431	0.023647	0.022478
0.015625	0.015468	0.029005	0.017501	0.014492	0.015837	0.013214	0.018696	0.017466	0.02995	0.021897	0.020633
7.87E-06	3.45E-06	6.57E-06	8.31E-06	6.86E-05	3.48E-06	7.10E-06	3.47E-06	7.75E-06	3.82E-06	6.01E-06	6.42E-06
0.000663	0.00444	0.00079	0.000691	0.003883	0.004276	0.000888	0.00384	0.000929	0.003191	0.000978	0.000674
1.52E-05	1.51E-05	1.50E-05	1.50E-05	1.50E-05	1.50E-05	1.48E-05	1.46E-05	1.45E-05	1.44E-05	1.43E-05	1.43E-05

chr2	chr12	chr1	chr8	chr6	chr15	chr13	chr13	chr12	chr2
1.09E+08	26287716	6084493	41770718	1.56E+08	31223546	1.12E+08	1.06E+08	1.18E+08	12314004
1.09E+08	26288353	6085070	41771033	1.56E+08	31223923	1.12E+08	1.06E+08	1.18E+08	12314258
511	638	578	316	6	378	153	284	507	255
4	З	2	2	2	4	ω	ω	ω	З
Island; Shore	Open sea	Open sea	Shelf	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea
Flanking Active TSS	Flanking Active TSS	Bivalent Enhancer; Repressed PolyComb	Enhancers	Quiescent/Low	Flanking Active TSS; Flanking Bivalent TSS/Enh	Weak Repressed PolyComb; Repressed PolyComb	Weak Repressed PolyComb; Flanking Active TSS; Quiescent/Low	Active TSS; Flanking Active TSS	Enhancers
SH3RF3-AS1; SH3RF3	SSPN; RP11-283G6.4; RP11-283G6.5	KCNAB2	ANK1		RP11-16E12.1; RP11- 16E12.2			TAOK3	AC096559.1
-0.03775	0.019093	0.025667	0.0202	0.024936	-0.03101	-0.01557	0.01677	0.017518	-0.02111
-0.02346	0.015836	0.021491	0.018986	0.024748	-0.02029	-0.01434	0.014464	0.01528	-0.01726
0.000667	3.79E-06	7.58E-06	6.90E-06	6.58E-06	0.000103	3.76E-06	3.74E-06	5.77E-06	3.81E-06
0.001298	0.003864	0.000526	0.000789	0.001013	0.002226	0.003942	0.003632	0.000918	0.003532
1.60E-05	1.58E-05	1.58E-05	1.57E-05	1.56E-05	1.55E-05	1.55E-05	1.54E-05	1.53E-05	1.53E-05

chr1	chr19	chr19	chr17	chr18	chr6	chr14	chr1	chr19	chr11	chr7
1.81E+08	33507464	3384855	81867804	11857270	1.7E+08	1E+08	12618348	34594568	2839758	1.49E+08
1.81E+08	33507691	3385006	81869021	11857784	1.7E+08	1E+08	12619299	34594771	2839973	1.49E+08
663	228	152	1218	515	629	742	952	204	216	771
3	2	2	4	2	ω	ω	б	ω	2	3
Open sea	Open sea	Shelf	Shore; Island	Open sea	Open sea	Open sea	Island; Shore	Open sea	Open sea	Open sea
Enhancers; Flanking Active TSS	Weak transcription	Enhancers	Genic enhancers	Active TSS; Flanking Active TSS	Bivalent Enhancer	Enhancers; Flanking Active TSS; Transcr. at gene 5' and 3'	Active TSS; Flanking Active TSS	Flanking Active TSS	Weak transcription	Genic enhancers; Transcr. at gene 5' and 3'
	PEPD			RP11-78A19.4; GNAL	LOC102724511	SLC25A29	DHRS3; RP11- 474021.5	SCGB2B2	KCNQ1	CUL1
0.022441	-0.02707	0.019172	0.016326	0.023049	0.019736	0.01832	-0.02256	0.019299	-0.01717	0.023634
0.017444	-0.02131	0.01694	0.011871	0.019037	0.018763	0.014702	-0.01547	0.018094	-0.01466	0.021156
4.77E-06	8.43E-06	7.60E-06	4.80E-06	7.74E-06	4.81E-06	7.93E-06	4.57E-06	3.89E-06	6.91E-06	4.12E-06
0.003323	0.00053	0.000833	0.004638	0.00067	0.002993	0.001229	0.003729	0.004168	0.000985	0.003631
1.75E-05	1.73E-05	1.72E-05	1.72E-05	1.69E-05	1.68E-05	1.68E-05	1.64E-05	1.63E-05	1.63E-05	1.62E-05

chr14	chr18	chr15	chr4	chr1	chr12	chr12	chr20	chr17	chr12	chr4	chr19
1.05E+08	57754714	37015183	1.41E+08	11176208	1918638	95611884	49604596	45291362	1.01E+08	1.85E+08	30450950
1.05E+08	57754775	37015311	1.41E+08	11176589	1918989	95611999	49605305	45291381	1.01E+08	1.85E+08	30451188
245	62	129	367	382	352	116	710	20	672	37	239
2	ω	ω	ω	ω	ω	2	ω	2	ω	2	З
Shelf	Open sea	Open sea	Shore	Open sea	Open sea	Open sea	Open sea	Open sea	Island	Open sea	Island
Enhancers	Weak transcription; Enhancers	Quiescent/Low	Quiescent/Low	Flanking Active TSS	Enhancers	Quiescent/Low	Weak Repressed PolyComb	Flanking Active TSS	Repressed PolyComb; Bivalent/Poised TSS	Genic enhancers	Bivalent/Poised TSS
	ATP8B1; RNU6-742P	MEIS2	RNF150	MTOR		PGAM1P5		МАРЗК14	ANO4	ACSL1	ZNF536
0.023974	0.024668	0.021087	0.018286	0.020615	0.02559	-0.01692	0.017074	0.026482	-0.02281	0.024695	0.024406
0.022742	0.023108	0.020535	0.017314	0.018889	0.01928	-0.01477	0.015141	0.023065	-0.01692	0.023933	0.018066
8.10E-06	4.41E-06	4.28E-06	4.48E-06	4.74E-06	8.62E-06	1.04E-05	4.09E-06	8.57E-06	5.42E-06	7.40E-06	5.05E-06
0.001062	0.004644	0.004756	0.004168	0.003405	0.001268	0.000305	0.004936	0.000556	0.002684	0.001096	0.002118
1.90E-05	1.87E-05	1.84E-05	1.84E-05	1.83E-05	1.80E-05	1.79E-05	1.79E-05	1.77E-05	1.77E-05	1.76E-05	1.75E-05

chr12	chr11	chr16	chr5	chr16	chr11	chr6	chr11	chr15	chr2	chr10
54463247	73263014	22915788	3225741	31129361	57293252	1.51E+08	1.3E+08	96234445	1.09E+08	7552064
54463636	73263109	22916263	3226351	31130331	57293438	1.51E+08	1.3E+08	96234507	1.09E+08	7552501
390	96	476	611	971	187	724	934	63	133	438
2	3	2	ω	ω	2	2	ω	2	ω	2
Open sea	Shore	Shore	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea
Quiescent/Low; Enhancers	Weak Repressed PolyComb	Weak Repressed PolyComb	Weak Repressed PolyComb	Transcr. at gene 5' and 3'; Strong transcription	Enhancers	Weak Repressed PolyComb	Enhancers	Quiescent/Low	Flanking Active TSS	Bivalent Enhancer; Enhancers
RP11-753H16.3; GTSF1; RP11-753H16.5	P2RY6	HS3ST2		KAT8; RP11-388M20.2	APLNR, SSRP1, TNKS1BP1	PLEKHG1	LOC646383	RP11-759A24.3; RP11- 327J17.1; NR2F2-AS1	SH3RF3	ттн5
0.029624	0.021936	0.026329	0.018505	0.022611	0.025254	0.024256	0.021089	0.027328	0.017641	0.017175
0.022938	0.019376	0.020987	0.015588	0.017372	0.021719	0.004876	0.005658	0.024096	0.015927	0.016425
1.05E-05	5.52E-06	9.34E-06	4.90E-06	1.61E-05	8.58E-06	8.78E-06	1.42E-05	9.99E-06	4.84E-06	8.53E-06
0.000591	0.003671	0.000943	0.004906	0.00068	0.001108	0.000916	0.001342	0.000512	0.003915	0.000849
2.14E-05	2.13E-05	2.11E-05	2.08E-05	2.04E-05	2.01E-05	1.99E-05	1.99E-05	1.98E-05	1.96E-05	1.91E-05

chr20	chr8	chr10	chr8	chr17	chr1	chr8	chr19	chr4	chr4	chr1
52494415	48557214	60911377	1.23E+08	50117135	2.13E+08	85350373	15116407	83548409	6886310	2.05E+08
52494553	48557907	60911469	1.23E+08	50118330	2.13E+08	85351032	15116879	83548716	6886423	2.05E+08
139	694	93	281	1196	263	660	473	308	114	202
2	2	2	ω	6	2	ω	2	2	2	2
Open sea	Shore	Open sea	Open sea	Shore; Island	Open sea	Open sea	Shelf	Open sea	Open sea	Open sea
Quiescent/Low	Bivalent Enhancer; Repressed PolyComb	Genic enhancers	Weak transcription	Flanking Active TSS; Enhancers	Repressed PolyComb; Weak Repressed PolyComb	Flanking Active TSS	Genic enhancers	Flanking Active TSS	Flanking Active TSS	Weak transcription; Enhancers
RP5-1022J11.2; LINC01524	SNAI2; RP11-770E5.1; RP11-567J20.2	RHOBTB1	RP11-557C18.4	SAMD14		CA1	ILVBL	AGPAT9		DSTYK; LOC101929459, DSTYK
0.02199	0.022714	0.032409	0.022252	0.022049	0.017963	0.018358	-0.01099	0.022416	0.017349	0.0186
0.021449	0.019682	0.030369	0.021616	0.01121	0.016577	0.017645	-0.00944	0.021172	0.015922	0.018355
9.61E-06	1.04E-05	9.58E-06	5.75E-06	4.94E-05	9.72E-06	5.22E-06	1.12E-05	9.47E-06	9.16E-06	9.27E-06
0.001214	0.000779	0.001147	0.003568	0.003809	0.001004	0.004822	0.000504	0.001036	0.00122	0.001077
2.25E-05	2.25E-05	2.23E-05	2.22E-05	2.22E-05	2.21E-05	2.18E-05	2.18E-05	2.17E-05	2.16E-05	2.14E-05

chr14	chr17	chr17	chr1	chr7	chr16	chr8	chr3	chr17	chr2	chr3
68088932	20086408	57899131	2.05E+08	35716028	80174131	48789744	58627495	78278661	1.52E+08	42090817
68089272	20086988	57899160	2.05E+08	35716664	80174704	48789782	58627760	78278774	1.52E+08	42091498
341	581	30	109	637	574	39	266	114	55	682
2	4	2	2	ω	ω	2	ω	2	2	7
Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea
Enhancers	Enhancers; Weak transcription	Flanking Active TSS	Weak Repressed PolyComb	Quiescent/Low; Active TSS; Flanking Active TSS	Quiescent/Low	Quiescent/Low	Bivalent Enhancer	Enhancers	Enhancers	Genic enhancers; Transcr. at gene 5' and 3'; Flanking Active TSS
	SPECC1	CUEDC1		AC018647.3	RP11-525K10.3		FAM107A	RP11-219G17.4	NEB	TRAK1
0.0245	-0.02045	0.018557	0.02634	0.020299	0.021784	-0.02008	0.016218	0.01974	0.023903	0.025089
0.02078	-0.01266	0.016401	0.024875	0.016701	0.019156	-0.01521	0.014022	0.017367	0.023812	0.01355
1.07E-05	0.000112	1.06E-05	9.83E-06	7.71E-06	1.12E-05	9.82E-06	5.75E-06	9.80E-06	9.97E-06	1.89E-05
0.000999	0.002347	0.000883	0.001264	0.00176	0.001873	0.00124	0.004491	0.001234	0.001102	0.003542
2.40E-05	2.38E-05	2.32E-05	2.31E-05	2.31E-05	2.31E-05	2.30E-05	2.30E-05	2.30E-05	2.29E-05	2.29E-05

chr2	chr21	chr3	chr3	chr14	chr6	chr3	chr16	chr22	chr7	chr16	chr12
2.33E+08	43732301	1.7E+08	62179360	97977813	1.39E+08	1.96E+08	1794925	50013985	30225892	27245447	1.19E+08
2.33E+08	43732452	1.7E+08	62179590	97978669	1.39E+08	1.96E+08	1795458	50014000	30226620	27246008	1.19E+08
1187	152	219	231	857	142	313	534	16	729	562	642
л	2	2	2	σ	ω	ω	5	2	2	2	2
Open sea	Shelf	Open sea	Open sea	Open sea	Open sea	Open sea	Shelf	Shore	Open sea	Open sea	Open sea
Enhancers	Flanking Active TSS	Quiescent/Low	Quiescent/Low; Enhancers	Enhancers; Flanking Active TSS	Genic enhancers	Flanking Active TSS	Weak transcription	Repressed PolyComb	Flanking Active TSS	Enhancers	Enhancers; Flanking Active TSS
ATG16L1, DGKD	PDXK	LRRC31	PTPRG	LINC01550	TXLNB; RP1-225E12.3		IGFALS; SPSB3	IL17REL		ENSG00000259940, NSMCE1; KDM8	RP11-64B16.3
0.030465	0.022127	0.023574	0.037252	0.01697	0.027918	0.02136	0.020148	0.019629	0.02251	0.021589	0.028348
0.002569	0.020972	0.022551	0.032409	0.011544	0.020981	0.015012	0.010084	0.016165	0.020132	0.019062	0.020547
6.74E-06	1.09E-05	1.10E-05	1.07E-05	0.001078	6.10E-06	8.71E-06	1.69E-05	1.26E-05	1.03E-05	1.04E-05	1.55E-05
0.002287	0.001218	0.00108	0.001204	0.003865	0.004475	0.002434	0.004347	0.000548	0.001303	0.001183	0.000276
2.52E-05	2.52E-05	2.49E-05	2.48E-05	2.48E-05	2.47E-05	2.45E-05	2.44E-05	2.44E-05	2.43E-05	2.41E-05	2.40E-05

chr10	ch	С	0	0				<u> </u>	-	-
	r6	hr16	thr7	chr21	chr13	chr11	chr5	shr11	chr10	chr12
1.03E+08	1.7E+08	84643251	55109488	45051091	1.12E+08	1907884	1.42E+08	58575523	44380540	2999058
1.03E+08	1.7E+08	84643744	55109929	45051539	1.12E+08	1908260	1.42E+08	58576317	44380713	2999448
103	666	494	442	449	20	377	129	795	174	391
2	ω	2	2	ω	ω	6	2	ω	2	З
Shelf; Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shelf; Shore	Shelf	Open sea
Transcr. at gene 5' and 3'; Flanking Active TSS	Bivalent Enhancer; Flanking Bivalent TSS/Enh; Bivalent/Poised TSS	Enhancers	Enhancers	Enhancers	Weak Repressed PolyComb	Enhancers; Weak transcription	Bivalent Enhancer	Flanking Active TSS; Enhancers	Enhancers	Enhancers; Flanking Active TSS
TRIM8		KLHL36	EGFR			LINC01150		LPXN	CXCL12	TEAD4
0.024889	-0.02167	0.018448	0.027704	0.024152	0.018361	-0.01681	0.016304	0.022497	0.026044	0.01876
0.020537	-0.01616	0.016745	0.025131	0.015499	0.014954	-0.01021	0.015674	0.013163	0.022479	0.013486
1.21E-05	1.31E-05	1.14E-05	1.28E-05	7.08E-06	1.08E-05	4.95E-05	1.10E-05	0.004854	1.13E-05	6.49E-06
0.000981	0.001449	0.001183	0.0007	0.003827	0.001022	0.003336	0.001325	0.000457	0.001131	0.004643
2.66E-05	2.63E-05	2.62E-05	2.61E-05	2.61E-05	2.60E-05	2.58E-05	2.58E-05	2.57E-05	2.57E-05	2.57E-05

chr3	chr1	chr7	chr7	chr11	chr10	chr3	chr14	chr13	chr12	chr8	chr11
58571725	1.66E+08	2638298	24477794	1.32E+08	90921156	30631966	51360592	28322019	47755416	22927942	1.26E+08
58572052	1.66E+08	2638613	24477868	1.32E+08	90921324	30632457	51360699	28323283	47756079	22928860	1.26E+08
328	357	316	75	413	169	492	108	1265	664	919	23
ω	2	2	2	2	2	2	ω	б	ω	4	2
Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shelf	Open sea	Open sea
Weak transcription	Flanking Active TSS; Enhancers	Flanking Active TSS	Enhancers	Enhancers; Active TSS	Enhancers	Enhancers	Quiescent/Low	Quiescent/Low; Weak transcription	Enhancers; Flanking Active TSS	Flanking Active TSS	Enhancers
RP11-475O23.2; FAM107A	RP11-28001.2	ттүнз	MPP6	NTM	ANKRD1		RP11-255G12.2; LINC00640	FLT1	ENDOU, RAPGEF3; RAPGEF3; SLC48A1	PEBP4	RP11-680F20.4; RP11- 680F20.5
-0.0153	0.021391	0.018287	0.020145	0.023658	0.024517	0.035573	-0.01297	-0.01517	-0.01642	0.019605	-0.01157
-0.00472	0.020767	0.01475	0.013941	0.019164	0.022864	0.032767	-0.01042	-0.01144	-0.01396	0.015145	-0.00912
1.58E-05	1.21E-05	1.21E-05	1.20E-05	1.73E-05	1.29E-05	1.19E-05	8.21E-06	2.96E-05	6.97E-06	1.57E-05	1.18E-05
0.001625	0.001403	0.001403	0.001406	0.000354	0.000962	0.001353	0.002771	0.003732	0.004093	0.003816	0.001119
2.83E-05	2.83E-05	2.82E-05	2.81E-05	2.81E-05	2.81E-05	2.77E-05	2.75E-05	2.71E-05	2.70E-05	2.68E-05	2.66E-05

chr6	chr4	chr15	chr16	chr14	chr9	chr5	chr11	chr2	chr4	chr14	chr9
87725593	1.06E+08	72785635	716395	72476752	1.22E+08	56409541	12066598	1.58E+08	11625011	1.01E+08	1.34E+08
87725796	1.06E+08	72785851	716402	72476831	1.22E+08	56409768	12066928	1.58E+08	11625526	1.01E+08	1.34E+08
204	70	217	œ	80	748	228	331	114	516	417	285
2	2	2	2	2	4	2	4	2	ω	4	ω
Open sea	Open sea	Shore	Shore	Open sea	Shore; Island	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea
Enhancers	Active TSS	Enhancers	Flanking Bivalent TSS/Enh; Bivalent Enhancer	Flanking Active TSS	Flanking Active TSS; Active TSS	Quiescent/Low; Enhancers	Enhancers	Flanking Active TSS	Quiescent/Low	Bivalent Enhancer	Bivalent Enhancer; Flanking Bivalent TSS/Enh
AKIRIN2	INTS12; RP11-45L9.1; GSTCD	ADPGK	MSLN; METRN	RGS6	DAB2IP		ENSG00000254991	ACVR1	RP11-281P23.2		TMEM8C
0.027757	0.01884	0.029715	0.015187	0.021503	0.01416	0.021992	0.022397	0.026238	-0.01908	0.017331	0.015758
0.024903	0.01732	0.023757	0.014817	0.02106	0.012982	0.020698	0.014407	0.020688	-0.0171	0.013643	0.014126
1.28E-05	1.27E-05	1.58E-05	1.25E-05	1.25E-05	6.54E-06	1.24E-05	6.07E-05	1.44E-05	8.54E-06	1.18E-05	7.56E-06
0.00144	0.001442	0.000531	0.001433	0.001396	0.004605	0.001427	0.003925	0.000682	0.003736	0.00357	0.004391
2.98E-05	2.97E-05	2.93E-05	2.91E-05	2.91E-05	2.90E-05	2.89E-05	2.88E-05	2.87E-05	2.86E-05	2.86E-05	2.83E-05

chr1	chr4	chr1	chr4	chr10	chr14	chr3	chr5	chr5	chr16	chr6
6637972	23877869	8880001	37908629	72089058	75409675	13480760	54455662	1.8E+08	85616767	1.09E+08
6638396	23878341	8880400	37908651	72089867	75409975	13481239	54456302	1.8E+08	85616915	1.09E+08
425	473	400	23	810	301	480	641	339	149	105
2	2	2	2	σ	2	4	ω	ω	ω	2
Open sea	Open sea	Shore	Open sea	Shore	Open sea	Shore	Open sea	Open sea	Shore	Open sea
Genic enhancers	Enhancers	Enhancers	Flanking Active TSS	Flanking Bivalent TSS/Enh; Repressed PolyComb	Enhancers	Flanking Active TSS	Active TSS	Strong transcription; Weak transcription	Flanking Active TSS	Enhancers
DNAJC11		LOC102724552	TBC1D1	SPOCK2		HDAC11-AS1; HDAC11	HSPB3	RP11-1379J22.2; RUFY1	GSE1	ARMC2
0.020181	0.023609	0.024917	0.028111	0.017598	0.030388	0.019894	0.02543	-0.01798	0.018514	0.021723
0.017547	0.022174	0.020417	0.025629	0.007632	0.026845	0.014302	0.022897	-0.01083	0.016139	0.019354
1.40E-05	1.45E-05	3.10E-05	1.38E-05	1.17E-05	1.47E-05	0.000116	1.02E-05	1.46E-05	1.07E-05	1.32E-05
0.001294	0.00109	0.000146	0.001342	0.002854	0.000939	0.003965	0.001993	0.002202	0.002983	0.001222
3.18E-05	3.18E-05	3.18E-05	3.16E-05	3.14E-05	3.12E-05	3.10E-05	3.10E-05	3.08E-05	3.00E-05	2.99E-05

chr1	chr1	chr17	chr18	chr1	chr8	chr10	chr3	chr9	chr17	chr7
94544120	1.54E+08	78173130	3526389	2.37E+08	2043703	45181549	1.29E+08	34255095	62895427	73893873
94544513	1.54E+08	78173521	3526903	2.37E+08	2045041	45181592	1.29E+08	34255150	62895789	73894525
394	992	392	515	16	1339	44	269	56	363	653
2	J	ω	2	2	13	2	2	2	ω	2
Shelf	Open sea	Shelf; Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea
Weak Repressed PolyComb	Flanking Active TSS	Flanking Active TSS	Flanking Active TSS	Quiescent/Low	Bivalent Enhancer; Flanking Bivalent TSS/Enh; Active TSS; Flanking Active TSS	Quiescent/Low	Enhancers	Flanking Active TSS	Weak Repressed PolyComb	Enhancers
	S100A2	SYNGR2	DLGAP1	RYR2	MYOM2	RP11-445N18.5	IFT122; RPL32P3	KIF24		
0.018566	0.027334	0.021147	0.024882	0.021602	0.019741	0.025806	0.032713	0.017594	0.018377	0.017191
0.018287	0.014544	0.017197	0.020802	0.017881	0.007793	0.019719	0.027528	0.017565	0.017409	0.016643
1.47E-05	0.000185	9.24E-06	1.60E-05	1.57E-05	0.003304	1.50E-05	1.44E-05	1.43E-05	8.43E-06	1.38E-05
0.001512	0.003018	0.00459	0.000925	0.001004	0.003638	0.001244	0.00151	0.001413	0.004911	0.001494
3.40E-05	3.40E-05	3.39E-05	3.36E-05	3.36E-05	3.36E-05	3.34E-05	3.33E-05	3.28E-05	3.24E-05	3.21E-05

chr1 61 chr12 1.: chr11 18 chr11 87	chr1 61 chr12 1.: chr11 18	chr1 61 chr12 1.:	chr1 61		chr15 82	chr17 87	chr19 30	chr22 30	chr17 22	chr13 45	chr1 2.3
77/8/		41078	31E+08	606589 (805973 {	07631 {	373959	292348	14514	207042 4	31E+08
	8779080	1841246	1.31E+08	61606795	82806459	8708293	30374578	30292404	2214852	45207467	2.31E+08
	359	169	233	207	487	663	620	57	339	426	122
	2	2	2	2	ω	2	2	2	2	2	2
	Open sea	Open sea	Open sea	Open sea	Shelf	Open sea	Shore	Shelf	Open sea	Open sea	Open sea
	Flanking Active TSS; Enhancers	Transcr. at gene 5' and 3'	Repressed PolyComb	Enhancers	Active TSS; Weak transcription	Weak Repressed PolyComb	Weak Repressed PolyComb	Genic enhancers	Flanking Active TSS	Flanking Active TSS; Enhancers	Weak Repressed PolyComb
	ST5; RP11-318C2.1	TNNI2			FSD2		ZNF536	CASTOR1	SMG6	GTF2F2	
	0.02114	0.029506	0.01964	0.024919	0.020475	0.018961	-0.02224	-0.01285	0.024451	0.024305	0.021577
0 012000	0.018823	0.026257	0.016838	0.019568	0.018821	0.015847	-0.02116	-0.0121	0.021969	0.022259	0.019974
3.09E-05	1.63E-05	1.55E-05	1.52E-05	1.73E-05	1.07E-05	1.51E-05	1.53E-05	1.57E-05	1.55E-05	1.52E-05	1.52E-05
1000	0.001209	0.001456	0.001549	0.000831	0.003896	0.001564	0.001339	0.001145	0.001212	0.001353	0.001326
ס בעב־Uב	3.58E-05	3.54E-05	3.51E-05	3.51E-05	3.49E-05	3.49E-05	3.46E-05	3.44E-05	3.44E-05	3.43E-05	3.43E-05

chr6	chr17	chr11	chr6	chr1	chr2	chr1	chr17	chr20	chr2	chr13	chr13
3848008	59428129	65559061	22147852	1.85E+08	47193314	59056471	74430329	63208639	2.38E+08	1.11E+08	50387291
3849583	59428235	65559684	22148508	1.85E+08	47193727	59057478	74430700	63209099	2.38E+08	1.11E+08	50387534
1576	107	624	657	541	414	1008	372	461	117	570	244
23	2	4	ω	2	2	ω	ω	л	2	ω	2
Shore; Island	Open sea	Shore	Open sea	Open sea	Open sea	Open sea	Shore; Island	Open sea	Open sea	Shelf	Open sea
Weak transcription; Enhancers;	Enhancers	Enhancers	Flanking Active TSS; Enhancers	Weak transcription; Enhancers	Enhancers	Enhancers	Flanking Active TSS	Genic enhancers	Flanking Active TSS	Flanking Active TSS; Enhancers	Active TSS
RP11-420L9.4; FAM50B	YPEL2	LTBP3; POLA2	NBAT1; CASC15	FAM129A			GPRC5C		TRAF3IP1	CARS2	DLEU1
0.017902	0.050097	0.025801	0.027012	0.041251	0.033051	0.019787	0.016146	0.020458	0.024916	0.01824	0.025647
0.007307	0.033719	0.013332	0.013817	0.024185	0.029665	0.016312	0.01489	0.012518	0.022429	0.015731	0.021842
0.00257	3.18E-05	0.000988	0.003505	1.89E-05	1.62E-05	3.92E-05	1.02E-05	7.85E-05	1.58E-05	1.03E-05	1.82E-05
0.003753	0.000208	0.001762	0.000691	0.000766	0.001528	0.001578	0.004074	0.003444	0.001606	0.004529	0.000797
3.72E-05	3.72E-05	3.70E-05	3.70E-05	3.70E-05	3.70E-05	3.69E-05	3.68E-05	3.66E-05	3.65E-05	3.64E-05	3.63E-05

chr6	chr9	chr12	chr2	chr3	chr5	chr19	chr12	chr8	chr1	chr5	
1524258	1.28E+08	1.11E+08	2.01E+08	1.31E+08	1.46E+08	19501496	1.05E+08	76680521	63592508	1.73E+08	
1524382	1.28E+08	1.11E+08	2.01E+08	1.31E+08	1.46E+08	19502355	1.05E+08	76680822	63593377	1.73E+08	
125	549	404	109	15	202	860	32	302	870	79	
2	2	2	2	2	2	6	2	ω	11	2	
Island; Shore	Open sea	Shelf	Open sea	Open sea	Open sea	Island; Shore	Open sea	Shore	Shore; Island	Open sea	
Flanking Bivalent TSS/Enh; Bivalent/Poised TSS	Transcr. at gene 5' and 3'	Flanking Active TSS	Weak transcription	Enhancers	Quiescent/Low	Strong transcription	Enhancers	Active TSS	Flanking Active TSS; Active TSS	Weak transcription	Flanking Active TSS; Active TSS
	ENG	рртс7	CFLAR-AS1; RNU7-45P; CFLAR		PRELID2	GATAD2A		ZFHX4-AS1; ZFHX4	ITGB3BP; PGM1		
-0.02545	-0.01623	0.022027	0.032773	0.032328	0.025223	-0.01373	0.023672	0.027454	0.028591	0.025492	
-0.0251	-0.01501	0.021178	0.03063	0.02542	0.024126	-0.00779	0.022912	0.015472	0.00855	0.022519	
1.80E-05	1.71E-05	1.70E-05	1.67E-05	1.65E-05	1.65E-05	0.001057	1.76E-05	0.000224	0.00334	1.61E-05	
0.001229	0.001569	0.001506	0.001547	0.001645	0.001631	0.001467	0.001112	0.000521	0.002429	0.001634	
3.91E-05	3.90E-05	3.87E-05	3.82E-05	3.82E-05	3.81E-05	3.79E-05	3.77E-05	3.77E-05	3.76E-05	3.72E-05	

chr8	chr17	chr4	chr5	chr15	chr1	chr1	chr22	chr14	chr8	chr2
2512607	45092282	24245162	60487207	67131113	15326739	15158849	49039838	22547337	13514622	1.76E+08
2512628	45092974	24245362	60488380	67131376	15326950	15159370	49039884	22547384	13514981	1.76E+08
22	693	201	1174	264	212	522	47	48	360	845
2	2	2	л	2	ω	ω	2	ω	4	ω
Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shelf; Open sea	Open sea	Open sea	Open sea	Shore
Weak Repressed PolyComb	Genic enhancers; Enhancers	Enhancers; Flanking Active TSS	Quiescent/Low	Enhancers; Flanking Active TSS	Repressed PolyComb	Enhancers	Weak Repressed PolyComb	Enhancers	Active TSS; Quiescent/Low	Enhancers; Weak transcription
AC133633.2	NMT1		PART1_2; PDE4D; PART1; PART1_1	SMAD3	RP3-467K16.2; FHAD1	TMEM51		C14orf93, PRMT5, RBM23, DAD1; MMP14, ABHD4, TRAC, LOC105370399	DLC1	
0.019536	0.02313	0.023537	0.018257	0.019201	0.0227	-0.01423	0.016387	0.017045	0.017918	0.023619
0.019503	0.022574	0.021147	0.010535	0.015117	0.015579	-0.01259	0.015198	0.014453	0.013391	0.015918
1.79E-05	2.05E-05	2.00E-05	0.000764	1.77E-05	1.44E-05	1.37E-05	1.72E-05	1.16E-05	1.61E-05	9.77E-05
0.001685	0.000893	0.000934	0.00339	0.00158	0.00181	0.003324	0.001642	0.004313	0.004209	0.000641
4.12E-05	4.11E-05	4.06E-05	4.05E-05	4.02E-05	3.97E-05	3.97E-05	3.95E-05	3.94E-05	3.91E-05	3.91E-05

The epigenetic basis of variable response to exercise training

chr14	chr13	chr3	chr2	chr10	chr8	chr3	chr15	chr9	chr11	chr19	chr22	chr2
21036930	1.13E+08	50230610	47063248	69494692	1.24E+08	1.95E+08	22952898	1.14E+08	3614550	12997340	49658645	1.28E+08
21037338	1.13E+08	50230826	47063834	69494943	1.24E+08	1.95E+08	22953235	1.14E+08	3614870	12997402	49658758	1.28E+08
409	41	217	587	252	47	264	338	287	321	63	114	533
2	З	З	2	ω	ω	З	З	2	2	2	З	4
Open sea	Shelf	Shelf	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shore	Open sea	Open sea
Enhancers	Bivalent Enhancer	Quiescent/Low	Enhancers	Weak transcription	Quiescent/Low	Enhancers	Enhancers	Flanking Active TSS	Flanking Active TSS; Enhancers	Transcr. at gene 5' and 3'	Bivalent Enhancer	Weak Repressed PolyComb
	MCF2L	GNAI2	TTC7A	TSPAN15	ANXA13	FAM43A, XXYLT1-AS2; XXYLT1		COL27A1	TRPC2	NFIX	C22orf34	RNA5SP103
0.024509	-0.01255	0.020998	0.028499	0.029042	-0.01574	-0.01747	0.022506	0.019255	0.021838	0.019893	-0.01875	0.027586
0.02409	-0.01114	0.014761	0.02381	0.022021	-0.01481	-0.01314	0.017511	0.019096	0.019089	0.01875	-0.0158	0.017314
2.37E-05	1.36E-05	1.26E-05	2.23E-05	2.04E-05	1.65E-05	2.26E-05	1.28E-05	1.88E-05	1.88E-05	1.89E-05	2.21E-05	0.000885
0.000783	0.00365	0.004052	0.000871	0.001739	0.001706	0.002087	0.004022	0.001661	0.001597	0.001514	0.001663	0.00178
4.49E-05	4.40E-05	4.38E-05	4.37E-05	4.35E-05	4.35E-05	4.34E-05	4.33E-05	4.29E-05	4.26E-05	4.25E-05	4.22E-05	4.18E-05

chr6	chr17	chr6	chr4	chr19	chr2	chr7	chr15	chr11	chr2	chr3	chr8
2743696	10549533	32054692	75034904	18002775	82007178	25359490	67148563	1.12E+08	2.07E+08	1.41E+08	29315089
2743829	10549943	32054864	75034927	18002794	82007321	25360419	67148728	1.12E+08	2.07E+08	1.41E+08	29315480
134	411	173	24	20	144	930	166	808	361	76	392
2	4	ω	2	Ν	2	л	2	2	ω	2	4
Open sea	Open sea	Open sea	Open sea	Shore	Open sea	Open sea	Open sea	Shore	Open sea	Open sea	Open sea
Flanking Active TSS	Active TSS; Weak transcription	Weak transcription	Quiescent/Low	Repressed PolyComb; Weak Repressed PolyComb	Quiescent/Low	Quiescent/Low	Enhancers	Enhancers	Enhancers	Enhancers	Flanking Active TSS; Active TSS
MYLK4	МҮНАЅ; МҮН2	TNXB	PARM1; RP11-44F21.2	ARRDC2	AC079896.1	RP5-978112.1	SMAD3	C11orf52	ENSG00000240440; AC007879.7	PXYLP1	AC084262.2
0.027562	0.025832	0.019908	0.018843	-0.01483	0.024073	0.026227	0.025854	0.028583	0.025892	0.022715	-0.03203
0.025791	0.016958	0.016947	0.016601	-0.01466	0.021434	0.019069	0.021989	0.026329	0.017451	0.021957	-0.01785
2.06E-05	0.000104	1.47E-05	2.13E-05	2.07E-05	2.11E-05	1.70E-05	2.01E-05	2.00E-05	0.000147	2.01E-05	3.99E-05
0.001866	0.002231	0.003104	0.001423	0.001585	0.001419	0.004658	0.001634	0.00164	0.001133	0.001559	0.002969
4.72E-05	4.71E-05	4.69E-05	4.66E-05	4.63E-05	4.62E-05	4.61E-05	4.54E-05	4.53E-05	4.52E-05	4.51E-05	4.50E-05

			1					1			
chr1	chr8	chr2	chr2	chr14	chr15	chr10	chr1	chr2	chr8	chr20	chr7
1.62E+08	66559958	1.48E+08	1.73E+08	1.02E+08	40103274	3825439	26790569	1.89E+08	1.3E+08	62242208	1.51E+08
1.62E+08	66560257	1.48E+08	1.73E+08	1.02E+08	40103711	3826143	26791216	1.89E+08	1.3E+08	62242376	1.51E+08
304	300	57	105	97	438	705	648	57	149	169	625
2	2	2	ω	2	2	З	2	2	2	2	л
Open sea	Open sea	Open sea	Shore	Shore	Open sea	Open sea	Shelf	Open sea	Open sea	Shelf	Shore; Island
Flanking Active TSS; Enhancers	Enhancers	Weak transcription	Repressed PolyComb	Enhancers	Flanking Active TSS	Flanking Active TSS	Enhancers	Enhancers	Enhancers; Flanking Active TSS	Genic enhancers	Weak transcription
OLFML2B		ACVR2A	RAPGEF4; RAPGEF4- AS1	WDR20	BMF		RPS6KA1, ARID1A, ZDHHC18, PIGV	COL5A2		OSBPL2	AGAP3
0.018581	0.021895	0.035506	0.021705	0.023108	0.018679	0.021408	-0.02055	0.022376	0.017945	-0.01869	0.016308
0.017279	0.021818	0.030201	0.018089	0.020548	0.016641	0.014916	-0.01849	0.020786	0.012192	-0.01792	-0.00202
2.77E-05	2.15E-05	2.16E-05	1.42E-05	2.13E-05	2.15E-05	1.69E-05	2.36E-05	2.18E-05	2.13E-05	2.14E-05	0.000113
0.0007	0.001909	0.001828	0.004726	0.001899	0.00179	0.003639	0.001139	0.001612	0.001796	0.001684	0.004272
4.96E-05	4.93E-05	4.93E-05	4.91E-05	4.89E-05	4.89E-05	4.87E-05	4.87E-05	4.86E-05	4.84E-05	4.82E-05	4.82E-05

chr5	chr19	chr17	chr12	chr16	chr15	chr5	chr4	chr17	chr9	chr17	chr22
1.43E+08	13016574	75635379	4025162	67993864	60650349	75539060	1.86E+08	79837112	1.34E+08	40511176	29074220
1.43E+08	13017058	75635704	4025373	67994036	60650467	75539066	1.86E+08	79837883	1.34E+08	40511579	29075111
359	485	326	212	173	119	7	267	772	328	404	892
2	З	ω	2	ω	2	2	2	3	2	2	σ
Open sea	Shelf	Shelf	Open sea	Shore	Open sea	Open sea	Open sea	Shore	Shelf	Open sea	Island; Shore
Enhancers	Enhancers; Flanking Active TSS	Flanking Active TSS	Weak Repressed PolyComb	Flanking Active TSS	Enhancers	Weak transcription	Enhancers	Flanking Bivalent TSS/Enh	Enhancers	Enhancers; Flanking Active TSS	Flanking Active TSS; Enhancers
ARHGAP26; ARHGAP26-AS1	NFIX	RECQL5; SMIM5	RP11-320N7.2	DUS2; DPEP2		RNU7-175P; POLK		CBX4			KREMEN1; Chr22- 38_28785274- 29006793.1
0.023599	0.019927	0.017739	0.01977	-0.01785	0.025672	0.022877	0.01976	0.021135	0.021834	0.025145	0.023072
0.020934	0.017661	0.012641	0.018908	-0.01458	0.021639	0.021815	0.019597	0.015368	0.018692	0.024284	0.012304
2.56E-05	1.41E-05	1.82E-05	2.21E-05	2.59E-05	2.23E-05	2.20E-05	2.21E-05	6.32E-05	2.34E-05	2.18E-05	4.62E-05
0.001063	0.004994	0.003943	0.001923	0.002871	0.001681	0.001843	0.001768	0.001766	0.00133	0.001852	0.00411
5.14E-05	5.10E-05	5.08E-05	5.07E-05	5.05E-05	5.00E-05	5.00E-05	5.00E-05	4.99E-05	4.98E-05	4.97E-05	4.97E-05

chr6	chr14	chr3	chr16	chr20	chr6	chr10	chr9	chr15	chr5	chr10	chr22
52552057	68583691	32003665	57635813	57714607	1.68E+08	1.3E+08	23672395	81374329	1.43E+08	34628593	42688972
52552239	68583840	32004153	57636460	57714640	1.68E+08	1.3E+08	23672726	81374505	1.43E+08	34628640	42688978
183	150	489	648	34	607	49	332	177	366	48	7
ω	2	2	Ν	2	4	ω	4	4	2	2	2
Open sea	Open sea	Open sea	Open sea	Shelf	Open sea	Shelf	Open sea	Open sea	Open sea	Open sea	Shelf
Flanking Active TSS	Flanking Active TSS	Quiescent/Low	Bivalent Enhancer; Flanking Bivalent TSS/Enh	Flanking Active TSS	Flanking Active TSS	Weak Repressed PolyComb	Quiescent/Low	Weak Repressed PolyComb	Enhancers	Enhancers	Flanking Active TSS
TRAM2	RAD51B	OSBPL10	GPR56		RP11-351J23.2		RP11-315114.2	TMC3			
0.017262	0.017625	0.017943	-0.01672	0.021611	0.015255	0.020712	0.025542	0.020539	0.024614	0.017932	0.018448
0.014121	0.01696	0.017663	-0.0154	0.020484	0.011912	0.018412	0.016385	0.014001	0.024597	0.01604	0.017531
1.96E-05	2.58E-05	2.77E-05	2.41E-05	2.41E-05	2.24E-05	1.61E-05	0.000142	0.000734	2.54E-05	2.29E-05	2.25E-05
0.004233	0.001479	0.001109	0.00201	0.001944	0.003672	0.004599	0.002831	0.00126	0.001252	0.001901	0.001955
5.58E-05	5.55E-05	5.54E-05	5.49E-05	5.48E-05	5.42E-05	5.38E-05	5.31E-05	5.29E-05	5.29E-05	5.22E-05	5.16E-05

chr9	chr14	chr9	chr5	chr4	chr5	chr16	chr2	chr14	chr13	chr2	chr20
77731753	91244402	87010519	1.13E+08	60865354	35853501	11105285	2.18E+08	92600465	31982662	2.1E+08	33423411
77732188	91244820	87010831	1.13E+08	60865465	35854446	11105334	2.18E+08	92600676	31982669	2.1E+08	33423726
436	419	313	285	112	946	50	298	212	8	54	316
ω	ω	2	2	2	ω	2	3	2	2	2	2
Open sea	Open sea	Shore	Open sea	Open sea	Open sea	Open sea	Island	Open sea	Open sea	Open sea	Open sea
Enhancers; Weak transcription	Flanking Bivalent TSS/Enh; Bivalent Enhancer	Weak Repressed PolyComb	Enhancers	Quiescent/Low	Quiescent/Low	Flanking Active TSS	Repressed PolyComb	Enhancers; Weak Repressed PolyComb	Quiescent/Low	Flanking Active TSS	Flanking Active TSS
GNAQ	CTD-2547L24.3; GPR68	CDC20P1; RP11- 276H19.2			IL7R	CLEC16A	RUFY4	RIN3		LANCL1-AS1	SNTA1
0.025548	0.013814	-0.02103	0.026709	0.023798	0.019806	0.016706	-0.02587	0.021285	0.021677	0.029019	0.019004
0.019082	0.013144	-0.01755	0.020261	0.020307	0.008096	0.016424	-0.01742	0.019159	0.020001	0.025457	0.0168
1.92E-05	2.02E-05	3.07E-05	2.90E-05	2.65E-05	2.85E-05	2.54E-05	1.81E-05	2.48E-05	3.32E-05	2.53E-05	3.42E-05
0.003731	0.004255	0.000952	0.001148	0.001684	0.001529	0.002003	0.004556	0.002044	0.000653	0.00178	0.000588
5.89E-05	5.87E-05	5.84E-05	5.82E-05	5.81E-05	5.76E-05	5.76E-05	5.75E-05	5.66E-05	5.63E-05	5.63E-05	5.59E-05

chr11	chr1	chr1	chr7	chr17	chr13	chr10	chr7	chr2	chr14	chr16	chr10
69089348	1.54E+08	22652487	55056808	13544347	1.11E+08	33559129	22812277	1.06E+08	64118175	12265402	1.04E+08
69089482	1.54E+08	22653245	55057148	13544535	1.11E+08	33559316	22812715	1.06E+08	64118264	12265439	1.04E+08
135	53	759	341	189	906	188	439	571	06	88	555
4	2	7	2	2	6	2	2	2	2	2	2
Open sea	Shore	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shelf	Open sea
Genic enhancers	Flanking Active TSS	Repressed PolyComb	Enhancers	Quiescent/Low	Flanking Active TSS; Enhancers	Weak Repressed PolyComb	Active TSS	Enhancers	Active TSS	Enhancers	Flanking Active TSS
TPCN2	RP11-350G8.5; IL6R	C1QB	EGFR	MIR548H3; HS3ST3A1	ARHGEF7		томмт	ENSG00000235522	ESR2; SYNE2	62XNS	SH3PXD2A
0.017952	0.017028	0.025111	0.030079	0.023148	0.022615	0.024873	0.021281	0.018801	0.022604	0.023859	0.018493
0.012681	0.015441	0.010105	0.022846	0.020437	0.008968	0.019465	0.021148	0.017942	0.021243	0.023816	0.01721
0.000217	2.73E-05	0.00024	3.20E-05	2.67E-05	0.00396	3.75E-05	2.62E-05	2.62E-05	3.35E-05	2.64E-05	2.60E-05
0.000517	0.001945	0.003297	0.000964	0.001998	0.001955	0.000578	0.002117	0.002072	0.000774	0.001914	0.00204
6.14E-05	6.10E-05	6.07E-05	6.05E-05	6.01E-05	6.00E-05	5.98E-05	5.97E-05	5.96E-05	5.94E-05	5.92E-05	5.90E-05

chr2	chr1	chr20	chr13	chr9	chr10	chr2	chr2	chr3	chr7	chr7	chr12
85433373	99852264	50009899	79988753	1.28E+08	72637518	1.29E+08	2.17E+08	99938421	51034325	1.17E+08	92466271
85434439	99852664	50010083	79988892	1.28E+08	72637577	1.29E+08	2.17E+08	99938749	51034431	1.17E+08	92466311
1067	401	185	140	71	60	1008	370	329	107	30	41
σ	2	2	2	2	2	ω	2	З	2	2	2
Open sea; Shelf	Shore; Shelf	Island	Open sea	Shore	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea
Enhancers; Flanking Active TSS	Active TSS	Bivalent/Poised TSS	Quiescent/Low	Weak transcription	Flanking Active TSS	Flanking Active TSS; Enhancers	Flanking Active TSS	Enhancers	Enhancers	Weak transcription	Flanking Active TSS
TGOLN2, CAPG; SH2D6; Y_RNA	AGL			PTRH1	HMGN2P34	AC079586.1		FILIP1L		MET	RP11-693J15.4; RP11- 693J15.5
0.021666	0.023463	0.016851	0.021838	0.0268	0.017284	0.025557	0.014681	0.025421	0.016891	0.037115	0.020996
0.01231	0.022208	0.015373	0.019719	0.02513	0.016271	0.018636	0.0142	0.020091	0.016539	0.035565	0.020995
0.000309	2.82E-05	2.92E-05	2.77E-05	2.81E-05	2.80E-05	2.10E-05	2.85E-05	2.47E-05	2.73E-05	2.74E-05	2.87E-05
0.003906	0.002101	0.001783	0.002171	0.002014	0.002079	0.002943	0.001785	0.003339	0.002164	0.002039	0.00156
6.38E-05	6.38E-05	6.38E-05	6.31E-05	6.31E-05	6.31E-05	6.27E-05	6.24E-05	6.24E-05	6.22E-05	6.18E-05	6.14E-05

chr16	chr7	chr17	chr22	chr17	chr7	chr22	chr6	chr13	chr15	chr19	chr12
81431820	45978411	81656987	49963114	79080009	503809	35615357	35061134	48595650	84752380	13001547	1.11E+08
81432262	45978831	81657433	49963616	79080275	503871	35616173	35061371	48596083	84753168	13001634	1.11E+08
443	421	447	503	267	63	817	238	434	789	88	442
2	ω	Л	ω	2	2	4	2	2	4	2	2
Open sea	Open sea	Open sea	Island; Shore	Open sea	Open sea	Open sea	Open sea	Open sea	Shelf; Open sea	Island	Open sea
Enhancers; Quiescent/Low	Enhancers	Enhancers; Weak transcription	Transcr. at gene 5' and 3'	Genic enhancers	Flanking Active TSS	Transcr. at gene 5' and 3'	Genic enhancers	Quiescent/Low	Enhancers; Flanking Active TSS; NA	Transcr. at gene 5' and 3'; Flanking Active TSS	Enhancers
CMIP	AC073115.6	PDE6G	PIM3	ENGASE	PDGFA	MB	ANKS1A		RP11-7M10.2; ZNF592	NFIX	
0.02211	0.022616	-0.01906	-0.02618	-0.0186	0.022045	0.024049	-0.01611	0.01885	0.021206	0.01809	0.027356
0.018576	0.012479	-0.01061	-0.01926	-0.01811	0.021235	0.01606	-0.01338	0.015279	0.014004	0.016819	0.023821
3.25E-05	3.15E-05	4.68E-05	2.81E-05	2.95E-05	3.15E-05	3.30E-05	2.88E-05	4.20E-05	5.37E-05	2.88E-05	2.91E-05
0.001377	0.001252	0.004001	0.002125	0.001908	0.001424	0.004594	0.002088	0.000559	0.002256	0.00195	0.001807
6.65E-05	6.60E-05	6.58E-05	6.58E-05	6.52E-05	6.52E-05	6.51E-05	6.47E-05	6.46E-05	6.42E-05	6.40E-05	6.39E-05

chr13	chr17	chr1	chr22	chr3	chr20	chr15	chr5	chr17	chr16	chr12	chr19
1.13E+08	80773379	54273095	41862283	11633232	57374619	40063493	3325580	3879609	2031192	1.02E+08	35405335
1.13E+08	80773426	54273502	41862533	11633850	57374900	40064228	3326529	3880053	2031444	1.02E+08	35405575
198	48	408	251	619	282	736	950	445	253	56	241
2	2	2	2	ω	3	ω	4	2	2	2	З
Shelf	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shore; Island	Open sea	Shelf	Shore	Open sea
Weak Repressed PolyComb	Flanking Active TSS	Flanking Active TSS	Enhancers	Flanking Active TSS	Genic enhancers	Enhancers	Weak Repressed PolyComb; Bivalent/Poised TSS	Enhancers	Genic enhancers	Flanking Active TSS; Active TSS	Weak Repressed PolyComb
ATP11AUN	RPTOR	SSBP3	ENSG00000184068, CENPM; MEI1, SREBF2	VGLL4	RBM38	SRP14-AS1; SRP14		CAMKK1	SLC9A3R2	RP11-285E23.2; CHPT1	LINC01531
-0.01722	0.024857	0.017797	0.023058	0.025156	-0.01555	0.017629	0.019962	0.028139	-0.02248	0.019549	0.015232
-0.01475	0.018778	0.015953	0.022126	0.002984	-0.01171	0.013495	0.012754	0.021969	-0.02023	0.017261	0.010858
4.15E-05	4.26E-05	3.08E-05	3.11E-05	2.31E-05	0.000106	4.96E-05	0.000633	3.00E-05	3.00E-05	3.01E-05	0.00012
0.000747	0.000687	0.002263	0.002073	0.003168	0.001902	0.001484	0.004187	0.002274	0.002247	0.002194	0.001727
6.99E-05	6.96E-05	6.95E-05	6.92E-05	6.92E-05	6.91E-05	6.85E-05	6.82E-05	6.82E-05	6.80E-05	6.78E-05	6.73E-05

chr7	chr3	chr1	chr17	chr18	chr6	chr2	chr5	chr7	chr6	chr6	chr5
46969296	1.68E+08	43270618	83087618	9824696	1.5E+08	43269073	1.43E+08	30920093	1.33E+08	43890847	1.22E+08
46969667	1.68E+08	43270719	83087904	9824959	1.5E+08	43269503	1.43E+08	30920802	1.33E+08	43891003	1.22E+08
372	390	102	287	264	16	431	18	710	230	157	230
4	ω	2	ω	2	2	ω	2	U	U	ω	2
Open sea	Open sea	Shelf	Shelf; Shore	Open sea	Shore	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea
Quiescent/Low	Flanking Active TSS; Active TSS	Repressed PolyComb	Bivalent Enhancer	Enhancers	Flanking Active TSS	Flanking Active TSS	Flanking Active TSS	Enhancers; Flanking Active TSS	Quiescent/Low	Weak Repressed PolyComb	Quiescent/Low
AC004901.1; AC004870.4	RP11-298021.6; RP11- 298021.7	EBNA1BP2; TMEM125	METRNL	PPP4R1; RAB31, VAPA	RAET1E-AS1; LRP11	THADA	NR3C1	RP5-877J2.1; AQP1	VNN1		CTC-441N14.4; ZNF474
0.023329	-0.01386	0.014753	0.018618	0.029654	0.019918	0.027911	0.022831	-0.01925	0.022188	-0.01404	0.019521
0.015855	-0.01307	0.014522	0.014938	0.026436	0.017011	0.014823	0.020963	-0.01103	0.015993	-0.00947	0.017884
4.24E-05	2.79E-05	3.19E-05	3.17E-05	3.24E-05	3.78E-05	0.000367	3.74E-05	9.82E-05	0.000529	2.07E-05	3.11E-05
0.003929	0.003148	0.002307	0.003418	0.002039	0.001091	0.001278	0.00109	0.001205	0.004455	0.004898	0.002306
7.22E-05	7.22E-05	7.21E-05	7.19E-05	7.16E-05	7.16E-05	7.14E-05	7.10E-05	7.10E-05	7.08E-05	7.05E-05	7.04E-05

chr2	chr2	chr5	chr5	chr8	chr8	chr16	chr2	chr11	chr6	chr10
2.16E+08	1.27E+08	1.77E+08	74316056	1E+08	1.25E+08	46649731	1.73E+08	73215917	90286386	73859661
2.16E+08	1.27E+08	1.77E+08	74316377	1E+08	1.25E+08	46649814	1.73E+08	73216786	90286395	73859741
57	465	1283	322	47	224	84	533	870	10	81
2	4	Q	2	2	ω	2	ω	5	2	2
Open sea	Shore	Island; Shore	Open sea	Open sea	Open sea	Open sea	Shore	Shelf; Shore	Open sea	Open sea
Enhancers	Enhancers; Flanking Active TSS	Genic enhancers; Transcr. at gene 5' and 3'	Enhancers	Enhancers	Quiescent/Low	Flanking Active TSS	Weak Repressed PolyComb	Enhancers; Flanking Active TSS	Enhancers	Genic enhancers
LINC00607	GYPC	PDLIM7; RP11- 1334A24.6			RP11-1082L8.2; LINC00964	RP11-93014.1	CDCA7; AC092573.2	ENSG00000215841; RP11-800A3.2	BACH2	
0.016372	-0.01879	0.026653	0.029139	0.018577	0.015734	0.016401	0.025412	0.023525	0.028044	0.019524
0.015411	-0.01328	0.008738	0.024722	0.018259	0.013383	0.013862	0.014139	0.015164	0.024005	0.016226
3.37E-05	2.01E-05	0.000231	4.05E-05	3.60E-05	3.99E-05	3.50E-05	0.000101	0.000338	5.10E-05	3.72E-05
0.00216	0.004116	0.002357	0.001023	0.001569	0.001042	0.001647	0.00201	0.004345	0.000513	0.001241
7.48E-05	7.48E-05	7.46E-05	7.46E-05	7.45E-05	7.42E-05	7.35E-05	7.33E-05	7.29E-05	7.29E-05	7.28E-05

chr12	chr11	chr20	chr18	chr8	chr21	chr20	chr1	chr2	chr7	chr22	chr11
5480277	2600042	38211883	58998847	1.03E+08	38156969	48828894	41724648	1.72E+08	1.3E+08	23149811	62555743
5480526	2600134	38211942	58999006	1.03E+08	38157033	48829047	41724863	1.72E+08	1.3E+08	23150041	62556309
250	93	60	160	296	65	154	216	71	716	231	567
2	2	2	2	2	2	2	2	2	2	2	2
Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shore	Open sea	Open sea	Open sea	Open sea	Open sea
Weak Repressed PolyComb	Quiescent/Low	Enhancers	Flanking Active TSS	Quiescent/Low	Weak Repressed PolyComb	Flanking Active TSS	Enhancers	Quiescent/Low	Weak transcription	Bivalent Enhancer	Flanking Active TSS
NTF3	KCNQ1		ΟΑϹΥLΡ	BAALC; BAALC-AS1	KCNJ15; DSCR8	PREX1; RP5-906C1.1		AC104088.1	CEP41	RAB36	АНИАК
0.022981	-0.02269	0.020451	0.018092	0.022235	0.020116	-0.01359	-0.01366	0.018307	0.022555	-0.01995	0.022897
0.019765	-0.02126	0.019674	0.01757	0.016928	0.019854	-0.01046	-0.01107	0.018218	0.020324	-0.01664	0.01855
3.77E-05	4.10E-05	3.49E-05	4.37E-05	4.78E-05	3.95E-05	3.72E-05	3.48E-05	3.47E-05	3.50E-05	3.71E-05	5.14E-05
0.001802	0.001255	0.00246	0.000998	0.000755	0.001262	0.00158	0.00199	0.001985	0.001906	0.001477	0.000546
7.98E-05	7.92E-05	7.88E-05	7.88E-05	7.84E-05	7.69E-05	7.69E-05	7.57E-05	7.57E-05	7.56E-05	7.55E-05	7.49E-05

chr10	chr1	chr2	chr13	chr2	chr5	chr19	chr12	chr10	chr1	chr17	chr13
11757636	1.57E+08	1.28E+08	1.09E+08	2E+08	91182898	2546878	1.14E+08	71757002	36320683	48972527	1.13E+08
11757667	1.57E+08	1.28E+08	1.09E+08	2E+08	91183125	2547068	1.14E+08	71757199	36321754	48972593	1.13E+08
32	381	421	235	113	228	191	39	198	1072	67	135
2	2	2	2	2	2	ω	2	2	л	2	2
Open sea	Shelf; Shore	Shore; Shelf	Open sea	Shelf	Open sea	Shore	Open sea	Open sea	Shore; Island	Open sea	Open sea
Enhancers	Flanking Active TSS	Flanking Bivalent TSS/Enh	Active TSS	Enhancers	Enhancers	Flanking Active TSS	Repressed PolyComb	Enhancers; Flanking Active TSS	Flanking Bivalent TSS/Enh	Bivalent Enhancer	Strong transcription
	ARHGEF11		LINC00370	SPATS2L		GNG7	LINC01234	C10orf54; CDH23	SH3D21		PCID2
0.017634	0.016465	0.015224	-0.02773	0.030207	0.026888	-0.01725	0.020543	0.024064	0.014538	0.014209	-0.01293
0.016789	0.015812	0.014413	-0.02519	0.023955	0.021309	-0.00918	0.018564	0.022925	0.008685	0.013292	-0.01222
3.79E-05	4.07E-05	4.33E-05	3.77E-05	3.66E-05	5.04E-05	8.12E-05	3.70E-05	3.59E-05	0.004973	3.59E-05	4.52E-05
0.002168	0.001568	0.001233	0.002165	0.002505	0.000775	0.002424	0.002171	0.002481	0.003909	0.002373	0.000958
8.30E-05	8.28E-05	8.25E-05	8.25E-05	8.24E-05	8.23E-05	8.16E-05	8.11E-05	8.09E-05	8.09E-05	8.04E-05	8.01E-05

chr12	chr16	chr10	chr1	chr5	chr18	chr1	chr8	chr22	chr21	chr17	chr7
1.24E+08	89370038	1.02E+08	1.55E+08	68292357	1075646	59597955	1.27E+08	42887707	39984634	75695607	898067
1.24E+08	89370429	1.02E+08	1.55E+08	68292556	1075732	59598025	1.27E+08	42887713	39985036	75695911	898312
394	392	30	523	200	87	71	50	7	403	305	246
2	2	2	л	ω	2	2	2	2	2	2	2
Open sea	Open sea	Open sea	Island	Shelf	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shore
Enhancers	Enhancers	Transcr. at gene 5' and 3'	Flanking Active TSS	Active TSS; Flanking Active TSS	Quiescent/Low	Enhancers	Quiescent/Low	Strong transcription	Weak Repressed PolyComb	Genic enhancers	Genic enhancers
		ACTR1A	RP11-540D14.8; EFNA4; ADAM15	PIK3R1	RP11-78F17.1		RP11-89K10.1	PACSIN2		SAP30BP	ADAP1
-0.01567	0.021588	0.026373	0.013145	0.021527	0.021198	0.035698	0.018125	-0.01502	0.020309	0.028292	-0.01721
-0.01483	0.018976	0.019455	0.009236	0.015908	0.020141	0.031208	0.016859	-0.01172	0.020108	0.021893	-0.01597
3.92E-05	3.85E-05	4.20E-05	5.58E-05	4.24E-05	4.71E-05	3.84E-05	4.06E-05	3.83E-05	5.67E-05	3.76E-05	3.80E-05
0.002332	0.002526	0.001661	0.00456	0.002779	0.001076	0.002402	0.00185	0.002308	0.000625	0.002328	0.002187
8.66E-05	8.62E-05	8.60E-05	8.59E-05	8.58E-05	8.54E-05	8.54E-05	8.54E-05	8.45E-05	8.44E-05	8.34E-05	8.32E-05

chr8	chr12	chr10	chr2	chr5	chr2	chr10	chr21	chr5	chr5	chr7	chr10
1.03E+08	68374164	43878470	2E+08	1.32E+08	75605957	69337570	25944348	1.25E+08	56298326	1.11E+08	1.22E+08
1.03E+08	68374404	43878941	2E+08	1.32E+08	75606369	69337978	25944452	1.25E+08	56298790	1.11E+08	1.22E+08
341	241	472	66	386	413	409	105	295	465	349	143
2	2	2	2	2	2	J	2	2	ω	2	ω
Shore	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea
Flanking Active TSS	Enhancers	Enhancers	Active TSS; Flanking Active TSS	Enhancers; Weak transcription	Repressed PolyComb	Enhancers	Weak transcription	Weak transcription; Active TSS	Enhancers; Quiescent/Low	Quiescent/Low	Enhancers
SLC25A32; DCAF13	RP11-81H14.2	LINC00840	SPATS2L	AC034220.3		HK1	APP; RNU6-123P		RNU6ATAC2P	IMMP2L	
0.01588	0.02706	-0.01846	0.014637	-0.01885	0.019254	0.025599	0.01817	0.022313	0.016894	0.023516	0.018631
0.013837	0.02602	-0.01777	0.013556	-0.01668	0.017541	0.012978	0.016411	0.019368	0.014159	0.017199	0.014883
4.08E-05	4.30E-05	4.02E-05	4.02E-05	4.13E-05	5.14E-05	0.000236	3.92E-05	4.05E-05	5.56E-05	4.88E-05	0.000201
0.002657	0.001945	0.002643	0.002645	0.002223	0.000979	0.004879	0.002569	0.002177	0.003262	0.001035	0.00191
9.15E-05	9.06E-05	9.04E-05	9.02E-05	8.97E-05	8.94E-05	8.93E-05	8.80E-05	8.79E-05	8.79E-05	8.71E-05	8.70E-05

chr5	chr8	chr1	chr15	chr16	chr2	chr2	chr11	chr3	chr19	chr2	chr2
61312603	1.1E+08	59574129	36601747	648071	2.19E+08	10427623	75572935	72995661	39935055	48107460	2.41E+08
61312699	1.1E+08	59574185	36601764	648634	2.19E+08	10427716	75573597	72995895	39935703	48107477	2.41E+08
97	39	57	18	564	86	94	663	235	649	18	289
2	2	2	2	ω	2	2	4	2	4	2	2
Open sea	Open sea	Open sea	Open sea	Shore	Open sea	Shore	Open sea	Shore	Open sea	Open sea	Shelf
Repressed PolyComb	Quiescent/Low	Heterochromatin	Flanking Active TSS	Flanking Active TSS	Active TSS	Strong transcription; Repressed PolyComb	Genic enhancers	Enhancers	Repressed PolyComb	Flanking Active TSS	Enhancers; Flanking Active TSS
		FGGY	C15orf41	WDR90; MSLN; FAM195A; AL022341.3	PLCD4			PPP4R2	FCGBP	AC079807.4	AC104809.3
0.019777	0.019699	0.027978	0.02192	0.013565	0.02115	0.02403	0.024527	0.022006	0.018263	-0.01893	0.021773
0.017593	0.018361	0.023667	0.021884	0.011548	0.019933	0.019281	0.015711	0.020977	0.010258	-0.01829	0.01979
4.29E-05	4.35E-05	4.29E-05	4.21E-05	3.41E-05	4.23E-05	4.26E-05	5.87E-05	4.22E-05	0.001182	4.11E-05	5.08E-05
0.002448	0.002216	0.002357	0.002592	0.004997	0.002489	0.002372	0.004891	0.002397	0.001126	0.002646	0.001128
9.44E-05	9.38E-05	9.37E-05	9.37E-05	9.36E-05	9.35E-05	9.33E-05	9.29E-05	9.27E-05	9.25E-05	9.21E-05	9.20E-05

chr5	chr2	chr8	chr12	chr1	chr1	chr19	chr11	chr6	chr8	chr8
1.41E+08	96833004	48583484	2841197	59198509	2.03E+08	48630163	46710825	1.48E+08	1.05E+08	1.43E+08
1.41E+08	96833164	48583830	2841221	59198757	2.03E+08	48630389	46711235	1.48E+08	1.05E+08	1.43E+08
557	161	347	25	249	19	227	411	37	351	52
ω	2	ω	2	2	2	4	2	2	2	2
Shelf	Open sea	Open sea	Open sea	Open sea	Open sea	Island	Open sea	Open sea	Open sea	Shore
Weak transcription	Transcr. at gene 5' and 3'	Enhancers	Weak transcription	Flanking Active TSS; Enhancers	Flanking Bivalent TSS/Enh	Genic enhancers; Transcr. at gene 5' and 3'	Enhancers	Quiescent/Low	Quiescent/Low	Flanking Active TSS
PCDHGC4; PCDHGB5; PCDHGA6; PCDHGA12; PCDHGC5; PCDHGB6; PCDHGA7; PCDHGB7; PCDHGA7; PCDHGB7; PCDHGA1; PCDHGB1;	CNNM3; ANKRD23	LOC101929268	ITFG2	RP11-470E16.2; HSD52	PRELP	SPACA4; SPHK2; DBP		SASH1	ZFPM2	ZC3H3
0.023756	0.017647	0.020788	0.023633	0.021062	0.01944	0.022011	0.014638	0.026499	0.021351	0.022717
0.012921	0.017361	0.016406	0.015866	0.019956	0.015959	0.015595	0.0128	0.024511	0.018408	0.019843
0.000571	4.45E-05	4.73E-05	5.36E-05	5.22E-05	4.78E-05	0.000155	4.83E-05	4.41E-05	5.85E-05	4.62E-05
0.00053	0.002695	0.003298	0.001209	0.001315	0.001789	0.003348	0.001576	0.002203	0.000839	0.001798
0.0001	9.90E-05	9.81E-05	9.79E-05	9.78E-05	9.76E-05	9.65E-05	9.57E-05	9.49E-05	9.48E-05	9.47E-05
chr10	chr8	chr8	chr7	chr17	chr7	chr1	chr10	chr11	chr16	
------------------------	---------------	------------------------	------------------------------------	-------------	------------------------	-------------	------------------------	---	------------------------	--
78409107	1.21E+08	76778263	74643391	78058139	44635251	25686375	69505882	1.19E+08	70692045	
78409114	1.21E+08	76778345	74643699	78058199	44635425	25686489	69506153	1.19E+08	70692160	
∞	56	83	309	61	175	115	272	800	116	
2	2	2	2	2	2	ω	2	ω	2	
Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shore	Open sea	
Flanking Active TSS	Quiescent/Low	Flanking Active TSS	Flanking Active TSS; Active TSS	Enhancers	Flanking Active TSS	Enhancers	Flanking Active TSS	Transcr. at gene 5' and 3'; Flanking Active TSS	Flanking Active TSS	
LINC00856	SNTB1	ZFHX4		TNRC6C	OGDH		TSPAN15	SLC37A4	VAC14	PCDHGA2; PCDHGB2; PCDHGA3; PCDHGB3; PCDHGA4; PCDHGA10; PCDHGC3; PCDHGB4; PCDHGA5; PCDHGA11
0.017391	-0.01141	0.024096	0.017256	0.025936	0.022839	0.021849	0.027989	0.022867	0.01699	
0.015608	-0.01115	0.020793	0.014	0.023925	0.019084	0.01644	0.025873	0.016553	0.015557	
4.71E-05	5.01E-05	4.63E-05	4.64E-05	4.68E-05	4.56E-05	6.05E-05	4.62E-05	5.41E-05	4.55E-05	
0.002637	0.001965	0.0028	0.002561	0.002423	0.002765	0.001919	0.002502	0.002232	0.002624	
0.000104	0.000103	0.000103	0.000102	0.000102	0.000102	0.000102	0.000101	0.000101	0.000101	

chr7	chr9	chr8	chr1	chr8	chr6	chr10	chr6	chr10	chr6	chr17	chr2
77467609	1.32E+08	76403811	51744831	80965359	1.67E+08	1.25E+08	16334043	12784787	1.6E+08	28722538	2.42E+08
77467649	1.32E+08	76403980	51744916	80965950	1.67E+08	1.25E+08	16334815	12784834	1.6E+08	28722637	2.42E+08
41	369	170	86	592	367	336	773	48	312	100	117
2	З	2	2	ω	ω	2	2	2	2	2	2
Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shelf	Shelf
Quiescent/Low	Enhancers	Flanking Active TSS; Active TSS	Enhancers	Enhancers; Weak transcription	Weak Repressed PolyComb	Flanking Active TSS	Enhancers	Quiescent/Low	Quiescent/Low	Genic enhancers	Genic enhancers
	RAPGEF1; POMT1	LINC01109; RP11- 706J10.2		ZNF704	TTLL2	FAM53B; RP11-12J10.3		CAMK1D		RAB34, ENSG00000264577; RPL23A, NEK8	
0.015806	0.021672	0.020568	0.029147	0.016778	0.020509	0.01983	0.021654	0.023874	0.020052	0.019715	0.021877
0.014306	0.014589	0.02027	0.02263	0.012168	0.015104	0.015566	0.020215	0.022408	0.018492	0.015685	0.019285
5.01E-05	0.000773	6.04E-05	5.05E-05	4.60E-05	8.78E-05	5.39E-05	6.98E-05	4.96E-05	4.71E-05	7.64E-05	4.69E-05
0.002754	0.001062	0.001293	0.002466	0.00256	0.002638	0.00166	0.000766	0.002266	0.002808	0.000607	0.002825
0.00011	0.00011	0.00011	0.000109	0.000108	0.000106	0.000106	0.000106	0.000105	0.000105	0.000105	0.000104

chr4	chr9	chr10	chr10	chr12	chr8	chr4	chr11	chr15	chr21	chr4	chr3
1.5E+08	86983466	618778	50527562	94651698	1E+08	1644222	1559606	76995420	27954824	1.4E+08	1.24E+08
1.5E+08	86983876	619053	50527579	94651969	1E+08	1644451	1559870	76995564	27954849	1.4E+08	1.24E+08
120	411	276	18	272	183	230	265	145	26	200	137
З	2	2	2	2	2	Э	2	З	2	2	2
Open sea	Open sea	Open sea	Open sea	Shore	Open sea	Island	Shore; Shelf	Open sea	Open sea	Open sea	Open sea
Quiescent/Low	Enhancers	Flanking Active TSS	Weak transcription	Quiescent/Low	Enhancers	Weak transcription	Transcr. at gene 5' and 3'	Weak Repressed PolyComb	Quiescent/Low	Flanking Active TSS; Enhancers	Enhancers
RNU6-1230P		DIP2C	SGMS1	TMCC3	KB-173C10.2	FAM53A	DUSP8	PSTPIP1	AJ006995.3	MAML3; LOC101927516	
0.019109	0.020168	0.020115	0.024683	0.023061	0.019876	0.023655	0.015712	0.012568	0.022531	0.018921	0.01843
0.0138	0.019612	0.019931	0.022423	0.016656	0.019063	0.018041	0.014482	0.010764	0.022063	0.018556	0.016022
0.000103	5.45E-05	5.31E-05	5.22E-05	5.71E-05	5.14E-05	7.43E-05	5.32E-05	4.34E-05	5.01E-05	5.16E-05	7.14E-05
0.002237	0.002461	0.002735	0.002849	0.001888	0.002951	0.002326	0.002449	0.004712	0.002969	0.002547	0.000859
0.000117	0.000116	0.000116	0.000115	0.000115	0.000114	0.000114	0.000114	0.000113	0.000112	0.000112	0.000112

chr16	chr9	chr22	chr10	chr14	chr5	chr17	chr12	chr13	chr20	chr1	chr19
58551242	1979163	38260882	49134035	31881117	1.4E+08	41309077	19205288	30466986	25686679	27567374	19232280
58551630	1979254	38261261	49134099	31881221	1.4E+08	41309460	19205354	30467083	25686830	27567413	19232725
389	92	380	65	105	295	384	67	86	152	40	446
2	2	2	2	2	2	4	2	2	2	2	4
Open sea	Open sea	Open sea	Shore	Open sea	Island; Shore	Open sea	Open sea	Shore	Open sea	Shore	Open sea
Weak transcription; Genic enhancers	Weak transcription	Enhancers	Repressed PolyComb	Enhancers	Flanking Active TSS	Flanking Bivalent TSS/Enh; Repressed PolyComb	Quiescent/Low	Enhancers	Enhancers	Flanking Active TSS	Repressed PolyComb
CNOT1	RP11-443B9.1	TMEM184B	FAM170B-AS1; FAM170B			KRTAP16-1	PLEKHA5	HMGB1		AHDC1	NCAN; RNU6-1028P
0.030257	0.021767	0.019831	0.019652	0.022491	0.017091	0.01705	0.023393	0.019044	0.017827	0.018898	0.022837
0.026319	0.019242	0.017899	0.018967	0.019646	0.01458	0.011719	0.020009	0.016688	0.017241	0.016524	0.016441
5.57E-05	5.69E-05	5.56E-05	5.45E-05	6.04E-05	6.90E-05	0.000102	6.95E-05	5.54E-05	5.55E-05	5.32E-05	4.69E-05
0.002911	0.002588	0.002801	0.003106	0.00188	0.001201	0.002519	0.001152	0.002583	0.002525	0.003068	0.004457
0.000122	0.000122	0.000121	0.000121	0.00012	0.00012	0.000119	0.000119	0.000119	0.000119	0.000118	0.000118

<u>c</u>		<u>c</u>	0	<u>c</u>	c	0	0	<u>c</u>	<u>c</u>	0	0
7	hr22	hr13	hr17	hr17	hr15	hr20	hr8	hr16	hr19	hr17	hr20
933233	17563693	49352172	1987438	75468360	47185637	4835440	1.28E+08	17343062	13009740	70661257	35854367
933776	17564044	49352177	1987572	75468481	47185713	4835551	1.28E+08	17343185	13010172	70661421	35854474
544	352	6	135	122	77	112	614	124	433	165	108
4	2	2	2	2	2	2	2	3	2	2	2
Open	Open sea	Open sea	Open sea	Open sea	Shore	Open sea	Open sea	Open sea	Shore	Open sea	Open sea
Enhancers; Weak	Flanking Active TSS	Quiescent/Low	Enhancers	Flanking Active TSS	Bivalent Enhancer	Enhancers	Enhancers	Weak transcription	Transcr. at gene 5' and 3'	Quiescent/Low	Weak transcription
NXN	SLC25A18	CAB39L		KIAA0195	SEMA6D		PVT1; TMEM75	ХҮГТТ	NFIX		Y_RNA; PHF20
0.028024	0.020419	0.021989	0.021962	0.019129	0.019095	0.022907	0.014957	0.026268	0.018761	0.021675	0.034475
0.016585	0.01763	0.021647	0.020485	0.01782	0.01792	0.016251	0.014831	0.022092	0.016176	0.018975	0.031477
0.000822	6.30E-05	6.06E-05	5.72E-05	5.95E-05	5.59E-05	0.000115	7.48E-05	4.86E-05	5.53E-05	5.82E-05	5.51E-05
0.001604	0.001992	0.002297	0.002878	0.002377	0.003144	0.000429	0.001043	0.002846	0.00308	0.002393	0.003104
0.000127	0.000126	0.000126	0.000125	0.000125	0.000124	0.000123	0.000123	0.000123	0.000122	0.000122	0.000122

chr22	chr1	chr3	chr1	chr1	chr3	chr1	chr2	chr15	chr17	chr17
30308828	1.1E+08	1.97E+08	50176465	2.05E+08	72339292	2.3E+08	1.45E+08	62076071	45431051	7994144
30309078	1.1E+08	1.97E+08	50176768	2.05E+08	72339460	2.3E+08	1.45E+08	62076132	45431061	7994378
251	184	291	304	538	169	46	982	62	11	235
2	2	2	ω	2	2	2	4	2	2	2
Open sea	Open sea	Open sea	Open sea	Open sea; Shelf	Open sea	Open sea	Shore; Shelf	Open sea	Island	Shelf
Enhancers	ZNF genes & repeats	Strong transcription	Enhancers	Enhancers	Active TSS; Flanking Active TSS	Enhancers	Active TSS	Quiescent/Low	Flanking Bivalent TSS/Enh	Weak Repressed PolyComb
MTMR3, CCDC157		SENP5		RP11-383G10.5; TMCC2		GALNT2	ZEB2;ZEB2-AS1; ZEB2_AS1_3; ZEB2_AS1_4		ARHGAP27	
-0.02062	0.017929	0.026658	0.030106	0.022906	0.013986	0.019108	0.02155	0.018993	0.016502	-0.0163
-0.016	0.017186	0.025084	0.018599	0.016242	0.013641	0.018838	0.012937	0.017995	0.01594	-0.01557
0.000136	6.01E-05	6.37E-05	0.000284	7.41E-05	5.82E-05	6.24E-05	0.001539	5.91E-05	5.77E-05	5.88E-05
0.000389	0.003143	0.002349	0.001059	0.001304	0.003202	0.002309	0.00126	0.002967	0.00314	0.002851
0.000133	0.000132	0.000132	0.000131	0.00013	0.000129	0.000129	0.000129	0.000129	0.000128	0.000128

chr10	chr1	chr16	chr5	chr19	chr6	chr13	chr17	chr10	chr12	chr20
11242584	6097998	4213891	1.78E+08	50500724	22297860	94480981	44502060	72086689	53600857	36828071
11242638	6098630	4214353	1.78E+08	50500872	22297916	94481084	44502283	72087099	53601369	36828097
55	633	463	151	149	57	104	224	411	513	27
2	ω	2	2	2	2	2	2	2	ω	2
Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shore	Shore; Island	Open sea	Open sea
Enhancers	Weak transcription; Strong transcription	Flanking Active TSS; Enhancers	Flanking Active TSS	Active TSS	Quiescent/Low	Quiescent/Low	Flanking Active TSS; Active TSS	Weak Repressed PolyComb; Bivalent/Poised TSS	Weak transcription; Enhancers	Genic enhancers
CELF2	KCNAB2	SRL	FAM193B		RP3-404K8.2; PRL	DCT	GPATCH8	SPOCK2	ATF7; RP11-793H13.10	
0.021264	0.017333	0.020572	0.02497	0.018531	-0.01362	0.016102	0.013605	-0.01442	0.03192	0.019749
0.020425	0.005104	0.015179	0.020981	0.017417	-0.01232	0.015262	0.013172	-0.01326	0.019317	0.017935
6.70E-05	0.000119	0.00013	7.64E-05	6.30E-05	7.66E-05	6.38E-05	6.78E-05	0.000312	0.000101	6.07E-05
0.002821	0.002621	0.000486	0.001576	0.003298	0.001483	0.002875	0.002157	0.000146	0.001538	0.003178
0.000142	0.000142	0.000141	0.00014	0.000139	0.000138	0.000137	0.000136	0.000136	0.000135	0.000134

chr17	chr5	chr11	chr10	chr1	chr9	chr3	chr16	chr11	chr1	chr16	chr9
41187011	1.78E+08	86151563	1.03E+08	15412235	86127383	51568104	10832346	66909096	33874923	85586367	97529896
41187024	1.78E+08	86151773	1.03E+08	15412334	86127496	51568189	10832445	66909162	33874966	85586637	97530008
14	261	211	16	100	114	86	100	67	44	271	113
2	2	2	2	2	2	2	3	2	2	2	2
Open sea	Shore	Open sea	Shore	Shore	Open sea	Open sea	Open sea	Open sea	Open sea	Island	Open sea
Repressed PolyComb	Flanking Active TSS; Enhancers	Enhancers	Flanking Active TSS	Bivalent Enhancer	Enhancers	Enhancers	Quiescent/Low	Enhancers	Weak Repressed PolyComb	Flanking Active TSS	Enhancers
AC006070.12	FAM193B; RP11- 1277A3.3		NT5C2	EFHD2	GOLM1			PC	CSMD2; CSMD2-AS1		TMOD1; LOC105376168
0.024909	0.025059	0.017126	0.025849	-0.0168	0.022328	0.017874	0.029275	-0.02867	0.018669	0.01432	0.018658
0.023165	0.023428	0.011104	0.025274	-0.01559	0.019172	0.016099	0.018718	-0.02247	0.018581	0.013689	0.015989
7.31E-05	6.95E-05	9.70E-05	7.23E-05	7.91E-05	6.64E-05	6.78E-05	9.07E-05	6.57E-05	6.54E-05	6.47E-05	6.57E-05
0.002659	0.003117	0.001027	0.002496	0.001745	0.003444	0.002909	0.001936	0.003264	0.003296	0.003391	0.00311
0.000152	0.00015	0.000149	0.000148	0.000148	0.000147	0.000145	0.000144	0.000144	0.000143	0.000143	0.000143

chr269200112692003652542OpenEnhancersFinhancersRP11-I4D221;0.0286740.0288770chr36444393064443233942ShoreRepressedRP11-I4D221;0.0286740.0286740.0288770chr11156639981566400472OpenEnhancersRP11-I4D221;0.0176080.0167527chr11151E+081.51E+081.51E+081.51E+082OpenTranscr, at gene 5'IYSMD1; SCNM10.0171780.0167587chr111.51E+081.51E+081.51E+082.102SeaActive TSSPCAT19-0.01315-0.01315-0.012779chr1341500832415010412102ShoreFinhancersRISG00002546020.0180540.0167587chr14157641040576412772383OpenFinhancersRISG00002546020.01315-0.012779chr1314685291746874922.13ShoreFinhancersRISG00002546020.0164520.0132279chr2138499772384995788774SeaShoreFinhancersSIC27A10.0164520.0132379chr31.16E+081.16E+081.16E+082.072ShoreActive TSSTRPS10.0173950.0160457chr41.16E+081.16E+082.012782ShoreShoreActive TSSASCC1; ANAPC160.0122563 <th></th>												
69200112692003652542Open seaEnhancersPall-L4D22.1;0.0241080.0208251644393064443233942Shore PalyCombRepressed PalyCombRP11.4D22.1;0.0286740.028570.0167523156639981566400472Open seaEnhancers and 3'I/SMD1;SCNM10.0171780.0167523315164081.5164084612Open seaActive TSS tesPCAT19-0.01315-0.012775349870234995788774Open seaFlanking Active TSSSIC27A10.0164520.0164520.0133275349870234995788774Open seaVeak Repressed PolyCombSIC1-0.0172-0.01720.0138240345957041.16E+082.032.072Shore seaActive TSSTRPS10.0139260.0160450345957057221842928542.0ShoreActive TSSTRPS10.0139350.0160450345957057221842929542.0ShoreShoreActive TSSTRPS10.0127660.012056 <t< td=""><td>chr10</td><td>chr8</td><td>chr8</td><td>chr21</td><td>chr19</td><td>chr11</td><td>chr19</td><td>chr1</td><td>chr11</td><td>chr3</td><td>chr2</td><td>chr6</td></t<>	chr10	chr8	chr8	chr21	chr19	chr11	chr19	chr1	chr11	chr3	chr2	chr6
692003652542Open seaEnhancersFR11-14D22.1; PR(KLE20.0241080.020825;644442233942Shore PolyCombRP11-14D22.1; PR(KLE20.0286740.02857(644442233942Open seaRepressed PolyCombRP11-14D22.1; PR(KLE20.0286740.028877(1566400472Open seaTranscr. at gene 5' seaLYSMD1; SCNM10.0176080.016752;1.51E+0842Open seaActive TSSPCAT19-0.01315-0.01277;415010412102Open seaActive TSSPCAT19-0.0180150.011854;576412772383Open seaShore seaFlanking Active PolyCombSLC27A10.0164520.013327;384995788774Open seaWeak Repressed PolyCombSTC10.01723-0.01254;384995782072Open seaMeak Repressed PolyCombSTC1; ANAPC160.0173950.016452;1.16E+082072Shore ShelfActive TSSTRPS10.0127630.012645;722184296942Shore ShelfShore ShelfTRPS10.0225630.0225630.022563722184296942Shore ShelfShore ShelfTRPS10.0225630.0225630.022563	72217736	1.16E+08	23855036	38498702	17468529	57641040	41500832	1.51E+08	15663998	64443930	69200112	1.49E+08
2542OpenEnhancers0.0241080.02825;3942ShoreRepressedRp11-14D22.1;0.0286740.02857(3942OpenEnhancersRP11-14D22.1;0.0286740.02857(72OpenEnhancersRP11-14D22.1;0.017080.01855(462OpenTranscr. at gene 5'LYSMD1; SCNM10.0171780.016752;2102OpenActive TSSPCAT19-0.01315-0.01277;2133OpenEnhancersUBE2L6; ENSG00002546020.0164520.013327;2133ShoreFlanking ActiveSLC27A10.0164520.013327;2132OpenWeak RepressedERG-0.012760.015834;2072ShoreActive TSSTRPS10.0173950.016453;6942Shore;EnhancersASCC1; ANAPC160.0225630.02284	72218429	1.16E+08	23855248	38499578	17468749	57641277	41501041	1.51E+08	15664004	6444323	69200365	1.49E+08
2 Open sea Enhancers 0.024108 0.02807 0.02807 0.02807 0.02807 0.02857 0.01758 2 2 Open Transer.at gene 5' LYSMD1; SCNM1 0.017178 0.016752 0.01277 9 3 Open Enhancers UBE216; 0.018015 0.011854 0.011327 9 3 Shore Flanking Active SLC27A1 0.016452 0.013327 9 2 Open <td< td=""><td>694</td><td>207</td><td>213</td><td>877</td><td>221</td><td>238</td><td>210</td><td>46</td><td>7</td><td>394</td><td>254</td><td>151</td></td<>	694	207	213	877	221	238	210	46	7	394	254	151
Open sea Enhancers 0.024108 0.02825 ; Shore Repressed PolyComb RP11-14D22.1; 0.028674 0.02857 0 Open Enhancers PRICKLE2 0.017608 0.017608 0.016752 ; Open Transcr. at gene 5' LYSMD1; SCNM1 0.017178 0.016758 ; ; Open Transcr. at gene 5' LYSMD1; SCNM1 0.017178 0.016758 ; ; Open Active TSS PCAT19 -0.01315 -0.01277 ; ; Sea Enhancers UBE2L6; 0.016452 0.018015 0.011854 ; Open Flanking Active SLC27A1 0.016452 0.01327 ; ; Shore Flanking Active SLC27A1 0.016452 0.0132327 ; ; Shore PolyComb SLC27A1 0.016452 0.0132327 ; ; ; Shore PolyComb SLC27A1 0.011854 0.011325 ; ;	2	2	2	4	ω	ω	2	2	2	2	2	ω
Enhancers 0.024108 0.020825 i Repressed RP11-14D22.1; 0.028674 0.02857 i PolyComb PRICKLE2 0.017608 0.02857 i i Enhancers VSMD1; SCNM1 0.017108 0.016752 i i i Transcr. at gene 5' LYSMD1; SCNM1 0.017178 0.016752 i i i Active TSS PCAT19 -0.01315 -0.01277 g i	Shore; Shelf	Shore	Open sea	Open sea	Shore	Open sea	Open sea	Open sea	Open sea	Shore	Open sea	Open sea
RP11-14D22.1; 0.028674 0.028674 0.02857 C PRICKLE2 0.017608 0.017608 0.016752 7 LVSMD1; SCNM1 0.017178 0.016752 7 PCAT19 -0.01315 -0.016758 7 UBE2L6; 0.018015 0.011854 6 SLC27A1 0.016452 0.013327 9 STC1 0.019206 0.015834 6 TRPS1 0.017395 0.016045 7 ASCC1; ANAPC16 0.022563 0.020284 0	Enhancers	Active TSS	Weak Repressed PolyComb	Weak Repressed PolyComb	Flanking Active TSS	Enhancers	Active TSS	Transcr. at gene 5' and 3'	Enhancers	Repressed PolyComb	Enhancers	Enhancers; NA; Flanking Active TSS
0.024108 0.020825 7 0.028674 0.02857 0 0.017608 0.016752 7 0.0177608 0.016752 7 0.017178 0.016752 7 0.0118015 -0.011854 7 0.016452 0.011854 7 0.016452 0.0113327 9 0.019206 0.015834 7 0.017395 0.016045 7 0.017395 0.016045 7 0.0122563 0.020284 7	ASCC1; ANAPC16	TRPS1	STC1	ERG	SLC27A1	UBE2L6; ENSG00000254602	PCAT19	LYSMD1; SCNM1		RP11-14D22.1; PRICKLE2		
0.020825 0.016752 0.016752 -0.016758 -0.011854 0.011854 0.0113327 9 0.0113327 9 0.0113327 9 0.011854 0.0113327 9 0.011025 0 0.0116045 7 0.020284 0	0.022563	0.017395	0.019206	-0.0172	0.016452	0.018015	-0.01315	0.017178	0.017608	0.028674	0.024108	0.022564
	0.020284	0.016045	0.015834	-0.01025	0.013327	0.011854	-0.01277	0.016758	0.016752	0.02857	0.020825	0.015572
7.28E-05 7.15E-05 7.27E-05 7.27E-05 1.000145 1.000145 1.000462 1.000462	0.000105	7.41E-05	0.000102	0.000462	9.32E-05	0.000145	9.30E-05	7.27E-05	7.15E-05	0.000101	7.28E-05	7.18E-05
0.002835 0.001021 0.003226 0.002974 0.002974 0.001335 0.001335 0.001335 0.0013381 0.0013381 0.0013381 0.001053	0.001053	0.003229	0.001098	0.002033	0.004427	0.003381	0.001335	0.002974	0.003226	0.001021	0.002835	0.002165
0.000153 0.000154 0.000155 0.000155 0.000156 0.000158 0.000158 0.000158 0.000158 0.000159 0.000159 0.000159	0.00016	0.000159	0.000159	0.000158	0.000158	0.000158	0.000156	0.000155	0.000155	0.000154	0.000153	0.000152

chr8	chr8	chr13	chr5	chr3	chr10	chr6	chr11	chr17	chr3	chr17	chr13
1.43E+08	23922727	66666112	1.42E+08	1.5E+08	1.2E+08	2750898	67416074	48555602	8593207	1713340	21672930
1.43E+08	23922838	66666351	1.42E+08	1.5E+08	1.2E+08	2751167	67416144	48555918	8593670	1713807	21673074
27	112	240	44	61	59	270	71	317	464	468	145
2	2	2	2	2	2	2	2	ω	2	2	2
Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shore	Shore	Open sea	Shelf; Shore	Shore
Repressed PolyComb	Quiescent/Low	Quiescent/Low	Weak Repressed PolyComb	Enhancers	Flanking Active TSS	Weak transcription	Flanking Bivalent TSS/Enh	Repressed PolyComb	Enhancers	Transcr. at gene 5' and 3'	Flanking Bivalent TSS/Enh
		PCDH9			BAG3	MYLK4	CARNS1; PPP1CA	HOXB3; HOXB-AS3; HOXB-AS2		MIR22HG	FGF9
0.01824	0.02267	0.024759	0.013558	0.019123	0.016721	0.025479	0.015044	0.013766	0.022418	0.015158	-0.02416
0.017302	0.020533	0.021838	0.011868	0.018827	0.014418	0.022856	0.013192	0.011294	0.020501	0.012694	-0.0224
9.28E-05	0.000101	9.28E-05	0.000116	7.65E-05	8.68E-05	7.54E-05	7.52E-05	7.70E-05	8.33E-05	7.62E-05	8.76E-05
0.001805	0.001377	0.001715	0.000939	0.003506	0.002051	0.003612	0.003582	0.004711	0.002266	0.003128	0.00173
0.00017	0.000169	0.000167	0.000167	0.000166	0.000166	0.000165	0.000165	0.000164	0.000164	0.000162	0.00016

chr6	chr20	chr4	chr12	chr12	chr1	chr10	chr6	chr19	chr3	chr15	chr1
1.7E+08	51507390	20883458	1.24E+08	1.05E+08	13800912	97540346	1.64E+08	46466574	1.16E+08	90596636	8016612
1.7E+08	51507594	20883918	1.24E+08	1.05E+08	13801296	97540766	1.64E+08	46466661	1.16E+08	90597015	8016745
33	205	461	170	152	385	421	36	88	107	380	134
2	2	4	2	2	3	2	2	ω	2	2	2
Open sea	Open sea	Open sea	Shore	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea
Flanking Active TSS	Enhancers	Quiescent/Low	Enhancers	Quiescent/Low	Enhancers	Enhancers	Active TSS	Weak transcription	Quiescent/Low	Enhancers	Enhancers
		KCNIP4		CHST11				PNMAL1	LSAMP	CTD-3065B20.2; CRTC3; IQGAP1, CRTC3	PARK7, ENSG00000238290
0.020192	0.025458	0.0254	0.021087	-0.02362	0.034574	0.027342	0.022354	0.018123	0.020011	0.026257	0.022874
0.019491	0.019896	0.014929	0.020885	-0.01983	0.021583	0.018438	0.019022	0.014923	0.017241	0.023863	0.01884
8.07E-05	0.000117	0.001281	8.24E-05	0.000106	0.000485	0.001023	8.49E-05	8.47E-05	8.26E-05	8.18E-05	0.000113
0.003554	0.001053	0.002876	0.003034	0.001311	0.002376	8.42E-05	0.002579	0.00367	0.002855	0.002937	0.001061
0.000175	0.000174	0.000174	0.000173	0.000172	0.000172	0.000171	0.000171	0.000171	0.000171	0.000171	0.00017

									1		
chr1	chr1	chr19	chr20	chr1	chr3	chr1	chr22	chr16	chr3	chr16	chr14
1.6E+08	1.81E+08	10636465	11687564	2.27E+08	1.22E+08	10541052	37904593	67260796	66004072	24819696	55383991
1.6E+08	1.81E+08	10636651	11687576	2.27E+08	1.22E+08	10541521	37904743	67260995	66004226	24819813	55384082
127	288	187	13	466	32	470	151	200	155	118	92
2	З	З	2	2	2	3	2	2	ω	2	2
Shelf	Shore; Island	Island	Shore	Open sea	Open sea	Open sea	Shore	Open sea	Open sea	Open sea	Open sea
Flanking Active TSS	Flanking Active TSS	Strong transcription	Enhancers	Enhancers	Quiescent/Low	Enhancers; Genic enhancers	Enhancers	Enhancers	Weak transcription; Enhancers	Strong transcription	Enhancers
	KIAA1614-AS1; RP11- 46A10.5	SLC44A2	RP11-268G13.1	ІТРКВ	SLC15A2				MAGI1; Y_RNA	CTD-2515A14.1; TNRC6A	ATG14
0.016747	0.01999	0.011834	0.015132	-0.01994	0.030496	-0.01613	0.020883	0.018791	-0.01348	0.018096	0.022348
0.015898	0.012424	0.008187	0.013943	-0.01773	0.026718	-0.01315	0.019977	0.016501	-0.01063	0.017733	0.019541
8.45E-05	0.002367	0.000188	8.64E-05	8.49E-05	8.32E-05	9.98E-05	8.17E-05	9.18E-05	0.000334	8.93E-05	8.02E-05
0.003813	0.00086	0.002246	0.003255	0.003344	0.003596	0.003188	0.003821	0.002272	0.001666	0.002375	0.003706
0.000184	0.000184	0.000183	0.000182	0.00018	0.00018	0.00018	0.000179	0.000178	0.000176	0.000176	0.000175

chr10	chr3	chr8	chr4	chr3	chr14	chr17	chr5	chr19	chr2	chr1	chr13
1.27E+08	66406175	1760271	7646812	1.85E+08	60204305	9958394	79561426	11035027	1540579	2.02E+08	1.11E+08
1.27E+08	66406373	1760280	7647327	1.85E+08	60204322	9958829	79561677	11035343	1540701	2.02E+08	1.11E+08
27	199	10	516	226	18	436	252	317	123	259	46
2	ω	2	4	2	2	2	2	ω	ω	2	2
Open sea	Open sea	Shelf	Shore	Shore	Open sea	Open sea	Open sea	Shore	Island	Open sea	Open sea
Weak Repressed PolyComb	NA; Transcr. at gene 5' and 3'	Weak Repressed PolyComb	Repressed PolyComb	Flanking Active TSS	Flanking Active TSS	Repressed PolyComb	Enhancers; Quiescent/Low	Strong transcription; Genic enhancers	Flanking Bivalent TSS/Enh	Flanking Active TSS	Enhancers
C10orf90	LRIG1	CLN8	SORCS2	MAGEF1		GAS7	CMYA5	SMARCA4	TPO	LMOD1	ARHGEF7
0.020469	0.019664	0.020428	-0.01627	0.017336	0.019867	-0.02074	0.02461	0.022089	0.018363	0.0184	-0.02319
0.017192	0.014779	0.020186	-0.01146	0.015306	0.01497	-0.015	0.020286	0.015692	0.013571	0.017828	-0.02077
0.000107	0.000116	8.68E-05	0.000429	0.000105	0.000101	0.000148	0.000112	0.000111	8.41E-05	8.46E-05	8.45E-05
0.001985	0.004963	0.003942	0.002321	0.001812	0.002001	0.000784	0.00145	0.002716	0.004311	0.003837	0.003824
0.000196	0.000193	0.00019	0.000189	0.000187	0.000187	0.000187	0.000185	0.000185	0.000185	0.000185	0.000184

chr2	chr2	chr11	chr22	chr8	chr16	chr17	chr4	chr1	chr6	chr10	chr12
1.5E+08	1.73E+08	66337330	31223915	28374596	49560570	1423098	1.28E+08	1.46E+08	11851660	33134012	1.23E+08
1.5E+08	1.73E+08	66337676	31224026	28374658	49560791	1423552	1.28E+08	1.46E+08	11851701	33134213	1.23E+08
291	130	347	112	63	222	455	30	27	42	202	223
З	2	2	2	2	2	ω	2	2	2	2	2
Open sea	Shore	Shelf	Open sea	Open sea	Open sea	Open sea	Open sea	Shore	Open sea	Open sea	Shore
Quiescent/Low	Enhancers	Genic enhancers	Enhancers	Weak transcription	Flanking Active TSS	Enhancers	Enhancers	Flanking Active TSS	Flanking Active TSS	Weak transcription	Flanking Active TSS
RNU6-601P; AC144449.1	MAP3K20	RIN1	PLA2G3; RNF185, LIMK2, SFI1	FBXO16; ZNF395	ZNF423	RP11-818024.3; CRK	LOC100507487	CH17-270A2.1; CH17- 270A2.2; POLR3GL; ANKRD34A			PITPNM2
0.021298	0.018136	0.027189	0.019191	0.025007	0.027669	0.026927	0.015245	0.014228	0.021616	0.021398	-0.01473
0.016252	0.017639	0.022004	0.018995	0.024664	0.02245	0.014875	0.011665	0.012518	0.018543	0.016506	-0.01364
0.000278	9.46E-05	0.000135	0.000141	9.41E-05	9.42E-05	0.00171	9.33E-05	9.80E-05	0.000125	0.00036	0.000105
0.002911	0.004105	0.001249	0.001118	0.003984	0.003945	0.000158	0.004074	0.003236	0.001359	0.00025	0.002131
0.000206	0.000206	0.000205	0.000205	0.000204	0.000203	0.000203	0.000203	0.000203	0.000198	0.000197	0.000196

chr16	chr21	chr4	chr14	chr2	chr1	chr16	chr16	chr7	chr1	chr2
82995451	42684839	76987273	53367879	2.06E+08	87154587	84933874	1543212	55150870	11484395	1.56E+08
82995809	42685363	76987816	53368295	2.06E+08	87154799	84933978	1543555	55151397	11484431	1.56E+08
359	525	544	417	144	213	105	344	528	37	201
3	З	3	3	2	2	2	3	3	2	2
Open sea	Shore; Island	Open sea	Open sea	Shore	Shelf	Open sea	Shore	Open sea	Shelf	Shore
Quiescent/Low	Flanking Bivalent TSS/Enh; Repressed PolyComb; Weak Repressed PolyComb	Quiescent/Low	Quiescent/Low	Repressed PolyComb	Quiescent/Low	Flanking Active TSS	Enhancers	Enhancers; Genic enhancers	Bivalent Enhancer	Flanking Active TSS
CDH13	PDE9A	Sep-11	AL163953.3	NRP2	LINC01140; RP5- 105215.2	RP11-254F19.3	IFT140; TELO2, TMEM204, JPT2		PTCHD2	GPD2
-0.01649	0.021025	0.030908	0.019864	-0.01308	0.019193	0.014093	-0.02017	0.022271	0.017447	0.022299
-0.01324	0.016814	0.008876	0.015682	-0.01264	0.01594	0.013996	-0.01322	0.021231	0.016086	0.020381
0.000185	0.000441	0.00061	9.73E-05	0.000108	0.000111	9.94E-05	0.000114	0.000113	0.000102	0.000103
0.004222	0.002935	0.000842	0.004958	0.00285	0.002531	0.00401	0.002248	0.003937	0.003415	0.002956
0.000217	0.000217	0.000216	0.000215	0.000214	0.000214	0.000214	0.000213	0.000212	0.000211	0.000207

chr19	chr8	chr2	chr4	chr14	chr4	chr21	chr17	chr17	chr8	chr1	chr13	chr10
37931977	1.3E+08	2.16E+08	71231225	22815308	2067941	41142441	81919437	39192393	1863593	11839579	97429927	1.03E+08
37932328	1.3E+08	2.16E+08	71231255	22815349	2068022	41142502	81919630	39192419	1863608	11839885	97430098	1.03E+08
352	845	467	31	42	82	62	194	27	16	307	172	130
ω	6	2	2	2	ω	2	ω	2	2	3	2	2
Open sea	Open sea	Shore	Open sea	Open sea	Shelf	Open sea	Shore	Open sea	Open sea	Shore	Shelf	Open sea
Flanking Active TSS	Quiescent/Low	Weak Repressed PolyComb	Flanking Active TSS	Flanking Bivalent TSS/Enh	Bivalent Enhancer	Enhancers	Genic enhancers	Transcr. at gene 5' and 3'	Bivalent Enhancer	Strong transcription	Active TSS	Flanking Active TSS; Enhancers
SIPA1L3	GSDMC	XRCC5	SLC4A4	SLC7A7		LINC00323		CACNB1	ARHGEF10	CLCN6; NPPA-AS1		SUFU
0.020698	0.022594	0.017195	0.021372	0.015447	0.020101	0.017391	0.019796	0.020388	0.019291	-0.01739	0.022458	0.027516
0.01296	0.005942	0.015678	0.018053	0.015093	0.012841	0.015038	0.010415	0.019381	0.01615	-0.00907	0.022091	0.023028
0.000339	0.000351	0.000108	0.000113	0.000109	0.001934	0.00011	0.001455	0.000105	0.00014	0.001201	0.000102	0.000126
0.00315	0.002639	0.004422	0.003437	0.003894	0.002226	0.003324	0.002598	0.003851	0.001499	0.001903	0.004297	0.001898
0.000236	0.000234	0.000233	0.000233	0.000231	0.000227	0.000225	0.000223	0.000223	0.000223	0.000222	0.000222	0.00022

chr2	chr2	chr1	chr18	chr8	chr11	chr5	chr19	chr3	chr10	chr4	chr20
85578497	2.39E+08	2.08E+08	76487228	1.28E+08	1.29E+08	1.07E+08	1254066	1.88E+08	1.22E+08	1.39E+08	17962759
85578507	2.39E+08	2.08E+08	76487276	1.28E+08	1.29E+08	1.07E+08	1254435	1.88E+08	1.22E+08	1.39E+08	17963050
11	357	107	49	252	815	343	370	361	44	24	292
2	2	2	2	2	U	2	2	4	2	2	2
Open sea	Open sea	Shore	Shelf	Open sea	Island; Shore	Open sea	Island	Open sea	Shore	Shore	Open sea
Flanking Active TSS	Flanking Active TSS	Enhancers; Flanking Active TSS	Enhancers	Enhancers	Flanking Bivalent TSS/Enh; Repressed PolyComb; Weak Repressed PolyComb	Enhancers	Transcr. at gene 5' and 3'	Weak transcription	Enhancers	Active TSS	Enhancers
VAMP8	HDAC4	CD46	ZNF516				MIDN	ГЬЬ		NDUFC1; NAA15	MGME1
0.020488	0.018421	-0.02229	0.024938	0.019235	0.022744	0.017651	-0.01491	0.026523	0.021466	0.012918	0.020359
0.019527	0.017248	-0.02042	0.02327	0.016443	0.009548	0.013797	-0.00988	0.011211	0.02146	0.009542	0.019883
0.000128	0.000132	0.00023	0.000123	0.000154	0.000478	0.000344	0.000993	0.000888	0.000113	0.000221	0.000288
0.004211	0.003382	0.000797	0.003953	0.00183	0.004085	0.000409	0.000146	0.000212	0.004115	0.000716	0.000481
0.000268	0.000264	0.000257	0.000256	0.000255	0.000254	0.000247	0.000244	0.000242	0.000241	0.000239	0.000239

chr1	chr17	chr2	chr5	chr2	chr5	chr2	chr9	chr19	chr17	chr14
2.07E+08	10698421	2.07E+08	1.39E+08	67260597	5572436	39505104	1.35E+08	35449271	62706422	90674934
2.07E+08	10698716	2.07E+08	1.39E+08	67260660	5572514	39505310	1.35E+08	35449959	62707000	90675488
160	296	542	579	64	79	207	26	689	579	555
2	3	4	2	2	2	2	2	5	ω	2
Shore	Shore	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shore; Shelf	Open sea
Active TSS	Active TSS; Flanking Active TSS	Enhancers; Quiescent/Low	Flanking Active TSS; Enhancers	Enhancers	Bivalent Enhancer	Flanking Active TSS; Enhancers	Bivalent Enhancer	Bivalent Enhancer; Repressed PolyComb	Bivalent Enhancer	Flanking Active TSS; Enhancers
YOD1; PFKFB2; C4BPB	SCO1; ADPRM		SIL1	AC023115.2		AC007246.3		FFAR2	MARCH10; RP11- 156L14.1	TTC7B; RP11-661G16.1
-0.02242	0.024608	-0.01844	0.019961	0.015868	0.015479	-0.02216	0.021244	-0.01512	-0.01613	0.020786
-0.02145	0.016646	-0.01016	0.018746	0.015205	0.012389	-0.01908	0.019835	-0.0094	-0.01043	0.018365
0.000131	0.001177	0.000424	0.000136	0.000136	0.00022	0.000185	0.000126	0.000573	0.001537	0.000132
0.004721	0.002238	0.004055	0.003582	0.003573	0.000991	0.001411	0.004764	0.004174	0.002771	0.003733
0.000279	0.000279	0.000279	0.000273	0.000273	0.000271	0.000271	0.000271	0.00027	0.00027	0.000269

			<u> </u>	<u> </u>							
chr2	chr6	chr15	chr11	chr3	chr11	chr1	chr4	chr10	chr6	chr16	chr2
1.22E+08	90135884	65612375	19201969	1.28E+08	1.19E+08	2.04E+08	7872246	4514848	1.59E+08	11024846	44944200
1.22E+08	90136132	65612754	19202087	1.28E+08	1.19E+08	2.04E+08	7872568	4514921	1.59E+08	11025543	4494443
144	249	380	119	96	523	10	323	74	31	869	244
2	2	ω	2	2	ω	2	3	2	2	ω	2
Open sea	Open sea	Shore	Open sea	Open sea	Shelf	Shore	Open sea	Open sea	Shore	Open sea	Island
Enhancers	Enhancers	Enhancers	Active TSS	Genic enhancers	Flanking Active TSS; Enhancers	Bivalent Enhancer	Flanking Active TSS; Enhancers	Enhancers	Enhancers	Genic enhancers; Strong transcription	Flanking Bivalent TSS/Enh; Bivalent Enhancer
	BACH2	SLC24A1; VWA9; DENND4A, INTS14	CSRP3; RP11-428C19.4		USP2; RNF26	ETNK2	AFAP1	RNU6-163P		CLEC16A; RPL7P46	SIX3; SIX3-AS1
0.026726	0.018485	0.021705	0.019651	-0.01548	0.017523	0.019342	0.019528	-0.01605	-0.01304	-0.01663	-0.01316
0.020079	0.018073	0.013921	0.017893	-0.01436	0.012842	0.017776	0.014581	-0.01547	-0.01236	-0.01018	-0.01295
0.000515	0.000249	0.000825	0.000143	0.000136	0.00025	0.000133	0.000245	0.000138	0.000141	0.002072	0.00013
0.00036	0.000974	0.002065	0.003932	0.004944	0.001094	0.004937	0.004895	0.004043	0.003598	0.001625	0.004863
0.000295	0.000294	0.000292	0.000291	0.000291	0.000285	0.000285	0.000285	0.000284	0.000282	0.000281	0.00028

chr16	chr3	chr2	chr5	chr1	chr9	chr5	chr8	chr17	chr6	chr2	chr12
52258420	1.78E+08	3040964	1.73E+08	2.11E+08	1.09E+08	1.61E+08	1.42E+08	77467777	1.46E+08	1.36E+08	51024884
52258458	1.78E+08	3041558	1.73E+08	2.11E+08	1.09E+08	1.61E+08	1.42E+08	77467901	1.46E+08	1.36E+08	51025380
39	512	595	10	396	330	177	257	125	85	53	497
2	4	4	2	4	ω	2	ω	ω	2	2	2
Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shore	Open sea	Shore
Quiescent/Low	Enhancers	Repressed PolyComb; Bivalent Enhancer	Genic enhancers	Repressed PolyComb	Flanking Active TSS; Transcr. at gene 5' and 3'	Repressed PolyComb	Repressed PolyComb	Enhancers	Quiescent/Low	Weak Repressed PolyComb	Active TSS
RP11-142G1.1; CASC22	LINCO0578	LINC01250		RD3	PTPN3			Sep-09	RP3-466P17.2; EPM2A; RP3-466P17.1		SLC11A2
0.019761	0.018594	0.016939	-0.01612	0.018246	-0.02188	0.012583	0.020403	-0.01733	0.020424	0.019733	0.028071
0.018578	0.011614	0.010502	-0.01511	0.013633	-0.01433	0.012453	0.015915	-0.01039	0.019708	0.01285	0.017552
0.000151	0.000316	0.002367	0.000145	0.000365	0.001033	0.000142	0.000141	0.000186	0.000142	0.000278	0.000518
0.004892	0.003	0.002929	0.004693	0.003958	0.002962	0.004989	0.004281	0.003412	0.004581	0.000827	0.00036
0.000318	0.000305	0.000305	0.000305	0.000304	0.000304	0.000304	0.0003	0.000299	0.000298	0.000297	0.000296

chr10	chr15	chr3	chr1	chr10	chr13	chr5	chr2	chr2	chr6	chr3
84244638	65101694	1.51E+08	2.35E+08	43859152	41463164	80713769	1.09E+08	2.32E+08	1.05E+08	1.02E+08
84244903	65101724	1.51E+08	2.35E+08	43859397	41463296	80713848	1.09E+08	2.32E+08	1.05E+08	1.02E+08
266	31	320	364	246	133	80	7	70	230	219
ω	2	2	ω	2	2	ω	2	2	2	2
Open sea	Shore	Open sea	Shelf	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea	Shore
Weak Repressed PolyComb; Bivalent Enhancer; Flanking Bivalent TSS/Enh	Strong transcription	Quiescent/Low	Flanking Active TSS	Weak transcription	Weak Repressed PolyComb	Weak transcription	Enhancers	Enhancers; Weak transcription	Active TSS	Flanking Active TSS
RGR	UBAP1L	IGSF10		LINC00840	RGCC	MSH3	SH3RF3	AC105461.1; DIS3L2	BVES-AS1; POPDC3	NXPE3
0.016583	0.011079	0.019222	0.022351	-0.01722	-0.01536	-0.01278	-0.01231	0.019606	0.021714	0.021188
0.011288	0.010124	0.016132	0.008789	-0.01176	-0.01404	-0.01041	-0.01099	0.018964	0.020814	0.013336
0.00025	0.000178	0.000198	0.000697	0.000291	0.000193	0.000299	0.000157	0.000166	0.000159	0.001654
0.003217	0.003537	0.002449	0.000405	0.001008	0.002364	0.004643	0.004638	0.003659	0.004186	0.000158
0.000346	0.000342	0.000338	0.000335	0.000333	0.000329	0.000327	0.000325	0.000325	0.000323	0.000321

chr5	chr10	chr8	chr18	chr6	chr9	chr14	chr4	chr9	chr6	chr1	chr14	chr19
68683789	30116214	37625939	37486041	1.26E+08	1.37E+08	50233397	1.19E+08	1.23E+08	1.39E+08	7051067	1.04E+08	6721004
68683964	30116398	37625978	37486418	1.26E+08	1.37E+08	50233577	1.19E+08	1.23E+08	1.39E+08	7051255	1.04E+08	6721015
176	185	40	378	282	53	181	47	145	49	189	152	12
2	2	2	2	2	2	2	2	2	2	4	2	2
Open sea	Open sea	Open sea	Shore	Shore	Island	Shore	Open sea	Open sea	Open sea	Open sea	Open sea	Open sea
Quiescent/Low	Weak Repressed PolyComb	Flanking Active TSS	Bivalent Enhancer	Flanking Active TSS; Active TSS	Bivalent Enhancer	Enhancers	Enhancers	Weak transcription	Flanking Active TSS	Repressed PolyComb	Strong transcription	Weak Repressed PolyComb
	KIAA1462	RP11-150012.4	CELF4	RP11-624M8.1; HEY2	SEC16A, NOTCH1			MIR600HG; STRBP	NHSL1	CAMTA1	RP11-73M18.6; KLC1	G
0.024682	0.019875	0.020589	0.0152	0.01851	-0.01731	0.022479	0.02273	0.026226	0.020996	0.01942	-0.01226	0.016124
0.017727	0.017784	0.013188	0.011784	0.015115	-0.01327	0.020679	0.020643	0.021862	0.019225	0.011213	-0.01209	0.016067
0.00069	0.000273	0.000352	0.000421	0.000212	0.000352	0.000197	0.000227	0.000223	0.000215	0.000909	0.000247	0.000171
0.000532	0.002227	0.001287	0.000941	0.003614	0.001096	0.00424	0.002662	0.002638	0.002659	0.004828	0.001788	0.004838
0.00043	0.000423	0.000419	0.000416	0.000396	0.000393	0.000387	0.000386	0.00038	0.00037	0.000366	0.000365	0.000354

chr3	chr18	chr7	chr3	chr5	chr8	chr5	chr1	chr5	chr11	chr17
51955352	77101857	1.35E+08	1.94E+08	1.46E+08	42378397	1.76E+08	1.78E+08	1464125	1.18E+08	41027222
51955675	77102083	1.35E+08	1.94E+08	1.46E+08	42378736	1.76E+08	1.78E+08	1464224	1.18E+08	41027507
324	227	56	666	356	340	360	255	100	440	286
2	2	2	00	2	ω	2	2	З	2	3
Shore	Open sea	Open sea	Shelf; Shore	Shore	Open sea	Open sea	Open sea	Shore	Open sea	Open sea
Flanking Active TSS	Flanking Active TSS	Quiescent/Low	Flanking Bivalent TSS/Enh; Bivalent Enhancer	Quiescent/Low; Active TSS	Weak Repressed PolyComb	Weak Repressed PolyComb; Bivalent Enhancer	Active TSS	Strong transcription	Weak transcription; ZNF genes & repeats	Repressed PolyComb
GPR62; RP11- 155D18.13	MBP	CALD1	LINCO0887	SH3RF2	DKK4	HRH2	RP4-798P15.3; SEC16B	LPCAT1	TMPRSS4-AS1; TMPRSS4	KRTAP1-5
0.017409	0.026622	-0.01845	0.018419	0.0219	0.029352	0.025528	0.026658	0.016897	0.027203	0.021964
0.013792	0.022371	-0.01789	0.008438	0.016539	0.018989	0.016718	0.017025	0.011526	0.023761	0.013617
0.000364	0.000265	0.000245	0.003976	0.000802	0.001206	0.000434	0.001085	0.000408	0.000334	0.000289
0.001724	0.003437	0.004406	0.003311	0.000527	0.004331	0.001053	0.00036	0.004965	0.00162	0.002834
0.00048	0.000469	0.000468	0.000468	0.000467	0.000449	0.000446	0.000443	0.000441	0.000441	0.000436

chr2	chr19	chr10	chr2	chr14	chr5	chr8	chr2	chr19	chr8	chr20
23030200	40283949	1.3E+08	29064056	1E+08	1.39E+08	1.33E+08	2.38E+08	49832849	1.23E+08	63454275
23030682	40283958	1.3E+08	29064238	1E+08	1.39E+08	1.33E+08	2.38E+08	49833525	1.23E+08	63454497
483	10	259	183	337	26	51	66	677	123	223
ω	2	4	2	ω	2	2	2	2	2	2
Open sea	Shore	Open sea; Shelf	Open sea	Open sea	Open sea	Open sea	Shore	Open sea	Open sea	Island
Weak Repressed PolyComb	Flanking Active TSS	Weak transcription	Flanking Active TSS; Enhancers	Genic enhancers	Enhancers	Quiescent/Low	Flanking Active TSS	Genic enhancers; Flanking Active TSS	Flanking Active TSS; Enhancers	Bivalent Enhancer
AC016768.1	AKT2; MIR641	EBF3	C2orf71	RP11-638l2.2; YY1	SLC23A1, PROB1	TG	PER2	MED25	DERL1; RP11-557C18.3	KCNQ2; ENSG00000226390, RTEL1
-0.01447	0.014035	0.020317	0.024348	0.020312	0.021791	0.021552	0.022318	0.018402	0.020877	0.008223
-0.0085	0.012834	0.012165	0.015954	0.013014	0.017563	0.017854	0.018989	0.016162	0.01717	0.005735
0.000512	0.000295	0.001093	0.001493	0.001079	0.00034	0.00033	0.000284	0.000556	0.000249	0.000286
0.001595	0.00395	0.00262	0.00036	0.00132	0.002466	0.002524	0.003594	0.000898	0.00477	0.003037
0.000534	0.000531	0.000527	0.000521	0.000517	0.000516	0.000509	0.000501	0.000488	0.000484	0.000481

chr16	chr3	chr3	chr4	chr3	chr15	chr15	chr16	chr20	chr2	chr2	chr10	chr1
88392209	1.08E+08	45996449	1173620	1.2E+08	71547190	51738321	85912744	50111526	2.19E+08	1.05E+08	11012060	2.27E+08
88392260	1.08E+08	45996483	1173925	1.2E+08	71547307	51738548	85912823	50111575	2.19E+08	1.05E+08	11012279	2.27E+08
52	114	35	306	311	118	228	80	50	97	314	220	36
2	4	2	ω	ω	2	4	2	2	3	ω	2	2
Shore	Shore	Shore	Shore	Open sea	Open sea	Shore	Open sea	Shore	Open sea	Open sea	Open sea	Open sea
Enhancers	Active TSS	Flanking Active TSS	Enhancers	Active TSS	Enhancers	Flanking Active TSS	Repressed PolyComb	Flanking Active TSS	Flanking Active TSS; Enhancers	Weak transcription	Enhancers	Genic enhancers
	CD47	FYCO1	SPON2; ENSG00000273179	POPDC2; COX17		LYSMD2	IRF8	UBE2V1; TMEM189- UBE2V1	DNPEP; AC053503.4	AC012360.4; TGFBRAP1	CELF2; RP1-251M9.3	PSEN2
-0.02217	-0.01874	0.023385	0.018421	0.019282	0.018233	0.026375	0.020922	0.015768	0.01962	-0.01136	0.023676	-0.01151
-0.01987	-0.01195	0.020509	0.010933	0.014693	0.014127	0.015335	0.01727	0.009815	0.015348	-0.00596	0.022377	-0.01111
0.000427	0.000463	0.000497	0.004762	0.000421	0.00044	0.000536	0.000814	0.000767	0.000303	0.003197	0.000323	0.000424
0.004244	0.002775	0.002646	0.004735	0.004199	0.002791	0.003354	0.000876	0.00091	0.004299	0.000237	0.003172	0.001722
0.000727	0.000726	0.000702	0.000696	0.00068	0.000653	0.000651	0.000613	0.000602	0.000588	0.000565	0.000536	0.000535

chr6	chr4	chr10	chr5	chr1	chr1	chr1	chr16	chr1	chr18	chr1	chr2	chr14
1.12E+08	16627950	48288107	1.4E+08	1.55E+08	9872766	2E+08	977356	33306430	48942675	1.6E+08	1.75E+08	1.03E+08
1.12E+08	16628209	48288495	1.4E+08	1.55E+08	9872967	2E+08	977382	33306545	48942843	1.6E+08	1.75E+08	1.03E+08
175	260	389	513	86	202	76	27	116	169	119	44	237
2	2	2	2	2	2	2	2	2	2	2	2	2
Open sea	Open sea	Open sea	Shelf	Shore	Open sea	Shore	Shelf	Shore; Island	Open sea	Shore	Open sea	Shelf
Active TSS	Quiescent/Low	Enhancers; Quiescent/Low	Genic enhancers	Bivalent/Poised TSS	Enhancers	Repressed PolyComb	Flanking Bivalent TSS/Enh	Bivalent Enhancer	Flanking Active TSS	Flanking Active TSS	Enhancers	Genic enhancers
	LDB2		CXXC5, PSD2	TDRD10; SHE	CTNNBIP1	NR5A2	RP11-161M6.2; LMF1	RP11-415J8.3	SMAD7	RP11-536C5.7; AL121987.1; PEA15	AC018890.6; CHRNA1	
0.019519	0.016645	0.017796	0.018047	-0.01532	0.018832	0.016318	0.014703	-0.01838	0.033653	0.018025	0.024482	0.020918
0.01471	0.016638	0.012654	0.013587	-0.013	0.016921	0.012305	0.01431	-0.01301	0.022023	0.014788	0.018511	0.015667
0.001601	0.000943	0.002113	0.000595	0.000564	0.000474	0.001397	0.00045	0.000709	0.000706	0.000469	0.000545	0.000585
0.001204	0.002187	0.000753	0.003245	0.003362	0.004827	0.000776	0.004843	0.001657	0.001643	0.003618	0.002517	0.00213
0.001077	0.001027	0.000966	0.000861	0.000838	0.000818	0.000787	0.000786	0.000753	0.000748	0.000746	0.000739	0.00073

chr10	chr9	chr8	chr1	chr11	chr17	chr4	chr11	chr17	chr4	chr17	chr7
45453573	35909377	9615197	12745799	72812839	82239483	1.4E+08	69001410	39165636	1.15E+08	917640	4689321
45454163	35909468	9615273	12746078	72812982	82239880	1.4E+08	69001545	39165774	1.15E+08	917698	4689474
591	92	77	280	144	398	138	136	139	349	59	154
2	ω	2	ω	2	ω	2	2	2	5	2	3
Open sea	Open sea	Open sea	Open sea	Shore	Shore	Shelf	Shelf	Island	Open sea	Open sea	Open sea
Weak transcription; Enhancers	Flanking Active TSS	Enhancers	Quiescent/Low	Flanking Active TSS	Genic enhancers	Enhancers	Bivalent Enhancer	Flanking Active TSS; Enhancers	Quiescent/Low	Enhancers	Enhancers
RP11-67C2.2	LINC00961		C1orf158	ATG16L2	CSNK1D; SLC16A3	MAML3	MRPL21, MRGPRD, ENSG00000261625; IGHMBP2	RP5-906A24.1; ARL5C	NDST4	NXN	
0.020565	-0.01915	0.018408	0.017687	0.018715	0.012359	-0.02133	0.014935	0.018311	0.020431	-0.02115	0.027302
0.014886	-0.01266	0.012658	0.010918	0.012728	0.011632	-0.01695	0.013284	0.013291	0.011942	-0.0159	0.017589
0.002933	0.001698	0.00288	0.002796	0.003672	0.001497	0.000913	0.000787	0.00152	0.001364	0.001555	0.001998
0.001554	0.003125	0.001525	0.003357	0.001077	0.003899	0.004304	0.004926	0.001579	0.002126	0.001383	0.001701
0.001738	0.00172	0.001703	0.001675	0.001579	0.001522	0.001305	0.001222	0.001201	0.001184	0.001139	0.001094

	chr5	chr9	chr5	chr10
	1.39E+08	1.35E+08	1.39E+08	1.33E+08
	1.39E+08	1.35E+08	1.39E+08	1.33E+08
	493	62	86	302
	2	2	2	2
Tahle 5 1	Open sea	Open sea	Open sea	Shore
Significant DMR	Enhancers	Repressed PolyComb	Enhancers	Weak Repressed PolyComb
ssenciated with haseli		FCN2		CFAP46
me z-score	0.020266	-0.01473	0.018799	0.021565
	0.014972	-0.01061	0.01656	0.017096
	0.004555	0.001843	0.003237	0.001929
	0.002069	0.004128	0.001994	0.003626
	0.002584	0.00211	0.002104	0.002058

Table 5.1. Significant DMRs associated with baseline z-score.

GO term ID	Ontology	Name	Number of genes in GO term	Number of genes differentially methylated in GO term	P-value	FDR
GO:003 0029	BP	actin filament- based process	771	290	3.36E-11	3.79E-07
GO:004 3292	CC	contractile fiber	232	103	2.67E-11	3.79E-07
GO:000 3012	BP	muscle system process	452	163	4.80E-10	2.71E-06
GO:003 0016	CC	myofibril	221	97	4.40E-10	2.71E-06
GO:003 0036	BP	actin cytoskeleton organization	675	253	2.79E-09	1.26E-05
GO:003 0017	CC	sarcomere	201	87	8.82E-09	3.32E-05
GO:000 6936	BP	muscle contraction	350	125	8.07E-08	0.000228
GO:000 7015	BP	actin filament organization	412	160	7.48E-08	0.000228
GO:000 3779	MF	actin binding	414	165	2.39E-07	0.0006
GO:001 5629	CC	actin cytoskeleton	492	180	5.28E-07	0.001193
GO:000 6941	BP	striated muscle contraction	168	67	1.72E-06	0.003538

 Table 5.2. Gene Set Enrichment Analyses (GSEA) of significant CpGs associated with baseline z-score fitness using the Gene Ontology (GO) data set.

Figure 5.3. Distribution of fitness-related differentially methylated regions (DMRs) and non-DMRs in functional regions of the genome.

A: Distribution in chromatin states from male skeletal muscle from the Roadmap Epigenomics Project²⁰⁶ B: distribution with respect to CpG islands (b), shore = \pm 2kb from the CpG island, shelf = \pm 2-4 kb from the CpG island, open sea = > 4kb from a CpG island. The grids under chromatin state distribution and next CpG island distribution represent the residuals from the χ 2-test, with the size of the circles being proportional to the cell's contribution; red indicates an enrichment of the DMR category in the functional region, while blue indicates a depletion of the DMR category in the functional region.

5.3.2 Few DNA methylation changes following 4 weeks of HIIT

We then investigated the effect of HIIT on the muscle methylome. After 4 weeks of HIIT we found 568 DMPs (FDR < 0.005), 69.9% of which were hypomethylated (**Figure 5.4**), and 17 DMRs, all of which were hypomethylated (**Table 5.3**).

The distribution of DMRs in chromatin states was different from that of all tested CpGs ($\chi 2$ -test p-value < 2.2 x 10⁻¹⁶, **Figure 5.5**). There was a clear under-representation of DMRs around quiescent (i.e. silent) regions, at enhancers and in bodies of actively transcribed genes, and an over-representation at active TSS, bivalent TSS and regions actively repressed by PolyComb proteins. DMRs were over-represented at CpG island and in open sea, while under-represented in CpG island shores ($\chi 2$ -test p-value < 2.2 x 10-16, **Figure 5.5**).

We found 25 unique genes that showed at least one DMR after 4 weeks of HIIT (**Table 5.3**). However, no enrichment for any GO or KEGG term was identified (FDR <0.05).

The colours pink and blue highlighted in each participant represent timepoint with PRE = Pink and 4WP = Blue.

chr6 chr19 chr6 chr8 chr1 chr19 Chromosome 10555448 2540908 15504612 22588970 1.72E+08 1070688 Position start (hg38) 10556289 2541105 15505228 22589667 1.72E+08 1071208 Position end (hg38) 842 617 869 914 Length of DMR 198 521 (base pairs) ∞ ω S 4 9 7 No. of CpGs in DMR Shore; Island Open sea Island Open sea Open sea Open sea position CpG island Flanking Active TSS Active TSS; Active TSS Active TSS; Active TSS Flanking Flanking Enhancer Bivalent PolyComb; Active TSS Flanking Active TSS Repressed Enhancers; Chromatin state in skeletal muscle male PDLIM2; AC037459. DNM3; DNM3OS; MIR199A2 4 GCNT2 GNG7 JARID2 HMHA1 Annotated gene(s) -0.024 -0.02559 -0.02886 -0.03654 -0.02838 -0.02281m effect Maximu size in DMR -0.02103-0.02374-0.01333 -0.02483 -0.02915 -0.01279 size in DMR Mean effect 5.42E-08 2.12E-09 5.81E-09 6.26E-08 2.40E-12 1.39E-08 Stouffer score 0.001773 0.003421 0.004938 0.00467 0.000469 0.000504 mean of the component individual Harmonic FDRs 3.55E-08 3.62E-07 3.28E-08 7.32E-08 1.10E-10 comparison 1.36E-08 multiple statistic Fisher

The epigenetic basis of variable response to exercise training

chr7	chr11	chr1	chr16	chr17	chr1	chr15
1537339	64759767	54781466	17972550	7019612	39633108	42457137
1537379	64760373	54781734	17972582	7020206	39633697	42457686
41	607	269	33	595	590	550
ω	∞	ω. L	ى س	S	6	6
Shore	Open sea	Island	Open sea	Shelf; Shore	Open sea	Open sea
Active TSS; Flanking Active TSS	Transcr. at gene 5' and 3'; Flanking Active TSS	Flanking Bivalent TSS/Enh; Bivalent Enhancer	Enhancers	Active TSS; Flanking Active TSS	Enhancers; Flanking Active TSS	Active TSS; Flanking Active TSS
MAFK	PYGM	TTC22		RP11- 589P10.7; MIR497HG	ENSG0000 0225903; RP1- 144F13.3; HEYL	ZNF106
-0.03612	-0.02988	-0.04137	-0.02882	-0.0295	-0.02578	-0.01853
-0.03288	-0.01704	-0.03322	-0.01981	-0.01747	-0.01993	-0.01552
4.76E-06	8.26E-06	3.45E-06	1.00E-06	4.55E-07	2.54E-05	4.38E-07
0.004227	0.003068	0.001634	0.001874	0.0043	0.003982	0.004049
1.97E-05	1.74E-05	1.14E-05	4.19E-06	3.69E-06	2.27E-06	1.77E-06

	chr5	chr16	chr12	chr19
	1.39E+08	75238746	57736071	39307840
	1.39E+08	75238805	57736399	39307922
	104	60	329	83
	2	2	دى	N
Tak	Island	Shelf	Island	Island
b 5 3 DMD and	Active TSS; Flanking Active TSS	Flanking Active TSS	Flanking Bivalent TSS/Enh; Bivalent Enhancer	Repressed PolyComb
How A woolre of	PROB1	BCAR1	AGAP2; NEMP1, AGAP2	LRFN1
	-0.04145	-0.01856	-0.03032	-0.03026
	-0.03959	-0.01707	-0.01898	-0.02683
	7.84E-05	6.73E-05	0.00011 4	4.35E-05
	0.002964	0.00339	0.002309	0.002536
	0.000165	0.000148	0.000133	9.60E-05

Table 5.3. DMKs after 4 weeks of HILL.

Figure 5.5. Distribution of hypomethylated, differentially methylated regions (DMRs) and non-DMRs in functional regions of the genome.

A: Distribution in chromatin states from male skeletal muscle from the Roadmap Epigenomics Project19 B: distribution with respect to CpG islands (b), shore = $\pm 2kb$ from the CpG island, shelf = $\pm 2-4 kb$ from the CpG island, open sea = > 4kb from a CpG island. The grids under chromatin state distribution and next CpG island distribution represent the residuals from the χ 2-test, with the size of the circles being proportional to the cell's contribution; red indicates an enrichment of the DMR category in the functional region, while blue indicates a depletion of the DMR category in the functional region.
5.3.3 Significant DMPs at baseline and after 4 weeks of HIIT

We then overlapped fitness-related DNA methylation at baseline, and exerciseinduced DNA methylation. We hypothesised that if exercise-induced DNA methylation changes underpin physiological adaptations to exercise training, DNA methylation at fitness-related DMPs would shift in a direction consistent with higher fitness levels. For instance, if CpG_x shows hypermethylation in individuals with higher fitness levels, DNA methylation at this CpG should *increase* following four weeks of HIIT. We found only five overlapping DMPs between baseline fitness and exercise training (cg14936543 – *AGBL1*, cg01466031 – *BCAR3*, cg09869357 - No annotated gene, cg25874123 – *MYOM1* and cg01383128 – *FZD5*). Surprisingly, DNA methylation levels at these CpGs decreased after 4 weeks of training, yet they were all hypermethylated with higher baseline fitness levels (**Figure 5.6**).

Figure 5.6. A: Heatmap of effect sizes for DMPs at baseline fitness and after 4 weeks of HIIT. The purple colours represent higher levels of hypomethylation and yellow represents higher levels of hypermethylation. B: Dot plot of the five intersected DMPs.

Each point represents a different participant, the darker the colour of the points the higher fitness z-score is.

5.4 Discussion

We conducted an EWAS of aerobic fitness and exercise training in human skeletal muscle in 46 healthy males who underwent 4 weeks of HIIT. We uncovered distinct DNA methylation signatures of high aerobic fitness at baseline, which target genes related to skeletal muscle structure and function. Subsequently, we investigated the effect of 4 weeks of HIIT on the methylome but found only few changes, with no clear affected pathway. Finally, we overlapped CpGs both associated with baseline fitness and showing changes following exercise training. We found surprisingly little overlap, and the few CpGs in common (n=5) presented exercise-induced shifts inconsistent with higher fitness levels.

A meta-analysis of 12 studies totalling n = 3,880 individuals assessed global DNA methylation levels in blood in relation to physical activity levels, and reported that higher fitness levels tend to be associated with higher DNA methylation levels²⁰⁷. In line with what has been observed in blood, we found that higher levels of aerobic fitness are associated with higher levels of methylation in human skeletal muscle. We have also identified a large number of genes showing altered DNA methylation with baseline fitness. One genomic region of no less than 12 DMPs over a distance of ~2kb (chr3:187735074-187737217) was hypermethylated near BCL6 Transcription Repressor (*BCL6*). Interestingly, higher mRNA expression of this gene in muscle was previously associated with low VO_{2max} levels (Spearman's = -0.42, p-value=0.008)²⁰⁸. Another interesting region located near *CD93* (chr20:23086306-23087581, 12 CpGs, 1276 bp) was hypomethylated, suggesting higher expression of *CD93*. Depletion of *CD93* plasma in mice is associated with poor metabolic control²⁰⁹, suggesting a positive effect of higher fitness on metabolism.

While baseline fitness was mostly associated with increased DNA methylation levels, we only found decreased DNA methylation levels following 4 weeks of HIIT. This is surprising, as following exercise training, we expected a shift of the muscle methylome towards a profile that is typical of fitter individuals. Furthermore, we found very little overlap between fitness-related and exercise-induced differentially methylated genes. None of the four genes in common (*BCAR3*, *FZD5*, *MYOM1* and *AGBL1*) presented a clear link to exercise. However, other studies have described potential pathways affected by these genes that might regulate skeletal muscle function. For example, the BCAR3

gene has been previously described to have a functional role in the signalling pathway of insulin and IGF-1²¹⁰. FZD5 encoded receptors for the Wnt5A ligand, and was linked to muscle mass regulation via the mTOR pathway²¹¹. Recent study suggest that the FZD5 gene is associated with sarcopenia-related hypermethylation in CpG islands²¹². MYOM1 encodes the structural myomesin-1 protein, which is expressed in muscle cells and is stabilizing the three-dimensional conformation of thick filament²¹³. A decrease MYOM1 gene expression was associated with diabetic skeletal muscle atrophy²¹⁴, and therefore exercise is a potential form of prevention of this condition, although this hypothesis remains to be tested. Finally, AGBL1 is a metallocarboxypeptidase that mediates deglutamylation of targeted proteins and has been previously associated with corneal dystrophy and endothelial dystrophy, and its role in skeletal muscle is completely unknown²¹⁵. Further studies utilizing mendelian randomization and epigenome editing are warrant to investigate the causality between DNA methylation and exercise responses.

The length of the exercise intervention (4 weeks) might have been too short to generate a profound change in the DNA methylation status of genes important for exercise training. Another potential explanation for such a low overlap has to do with unmeasured confounders: DNA methylation signatures of higher fitness levels may actually be reflecting other lifestyle factors or anthropometric measures that typically associate with higher fitness levels (e.g. a healthier diet). Furthermore, a limitation of the present study was the inability to include a control group in the analyses of DNA methylation, and therefore any changes in the methylation cannot be attributed to an effect of exercise per se in the absence of a no-exercise comparison. Finally, it should be noted that we only assessed one type of exercise training (HIIT) and other exercise modalities may show more consistent associations with higher aerobic fitness.

In summary, we have confirmed that baseline fitness is associated with distinct skeletal muscle DNA methylation profiles, but these signatures were surprisingly inconsistent with the DNA methylation changes induced by exercise training. Future studies should focus on applying longer exercise interventions, with larger sample sizes via multi-site collaborations and consortia, to establish the effects of exercise in the methylome.

Chapter 6. Individual DNA methylation response to exercise training

6.1 Introduction

There is growing evidence that exercise shapes the muscle methylome. A seminal study in 2012 demonstrated that the promoter regions of key genes involved in exercise response are strongly hypomethylated immediately after strenuous exercise and become re-methylated at 3 hours post exercise²². Further studies have shown that exercise training induces changes in the methylation status of pivotal genes involved in muscle function, thus possibly modelling a long-lasting advantageous expression pattern for increased trainability^{56,216–219}. However, all these studies have been focused on *group* level changes and *individual* DNA methylation responses have not been investigated. Yet, it is essential to uncover how each individual uniquely responds to exercise training to develop personalised regimes and to understand individual differences in physiological adaptations to training. To do so, within-subject variability in response to exercise must be accounted for, but it requires specific study designs that are rarely implemented. In a recent publication by Bajpeyi et al.¹²², participants performed a single bout of exercise and were divided into responders and non-responders based on their levels of methylation at an important regulatory region in $PGC-1\alpha$. High-responders showed nucleosome repositioning after the exercise bout, along with a significant decrease in intramyocellular lipid content.

Thus, the aim of the current study was to investigate individual responses to HIIT, using the unique design of the Gene SMART study. We took advantage of the repeated intervention, and repeated testing on a subset of individuals (n = 19 for the repeated intervention and n = 16 for the longer intervention with repeated testing) to see whether the DNA methylation response to an exercise stimulus could be individual-specific (i.e. trainability).

6.2 Methods

6.2.1. Participants

The study design has been described in detail in <u>Chapter 3.</u> Out of a sub-set of 20 participants from the 4-week Gene SMART (Skeletal Muscle Adaptive Responses to Training) intervention¹³⁶, 16 completed a repeated intervention of 12 weeks of HIIT. From the 20 initially recruited participants, **19 completed 4 weeks of HIIT** (1 dropout), **of these 18 completed 8 weeks** (1 dropout), **and 16 completed the full 12-weeks of HIIT** (**Repeated testing**) (1 dropout and 1 exclusion due to inconsistent results (i.e. duplicate tests provided more than 10% difference)).

Participants were apparently healthy, moderately trained men (VO_{2max} 35– 60 mL·min⁻¹·kg⁻¹), aged 18 to 45 years old. The study was approved by the Victoria University Human Ethics Committee (HRE13-223) and written informed consent was obtained from each participant. Participants were excluded from the study if they had a past history of definite or possible coronary heart disease, significant chronic or recurrent respiratory condition, significant neuromuscular, major musculoskeletal problems interfering with ability to cycle, uncontrolled endocrine and metabolic disorders, or diabetes requiring insulin and other therapies¹³⁶.

6.2.2. Study design

Participants from the Gene SMART study¹³⁶ completed 4 weeks of HIIT, followed by a washout period of \geq 12 months; participants that agreed to return for a follow up repeated the 4-week HIIT intervention. Two graded Exercise Tests (GXTs) were conducted at each time point to determine peak power output (W_{peak}), the lactate threshold (LT) and maximal oxygen consumption (VO_{2max}) (Figure 6.1).

HIIT – first intervention (4 weeks)

Participants trained 3 times/week under supervision. All training sessions were completed on an electronically braked cycle ergometer (Velotron, Racer Mate Inc, Seattle, USA) and were preceded by a 5-min warm up at 50 W. Each session consisted of six to twelve 2-min intervals performed at different intensities ranging from 40 to 70% of $(W_{peak} - LT)$ above LT and interspersed by 1-min recovery periods (work-to-rest ratio of 2:1).

HIIT – second intervention (4 weeks)

After a washout of at least 1 year, participants repeated the HIIT described above. A total of 16 participants completed the repeated intervention and were used for the analyses.

HIIT – repeated testing (12 weeks)

Participants were tested at baseline and after 4 weeks, 8 weeks, and 12 weeks of HIIT. To ensure progression, training intensity was re-adjusted every 4 weeks based on the newly determined Peak Power output (W_{peak}) and Lactate Threshold (LT) from the Graded Exercise Test (GXTs). These tests also allowed monitoring individual progress of participants for the longitudinal analysis of training adaptations. To increase accuracy in measurement and to reduce biological day-to-day variability in participants' performance, physiological measures of fitness (W_{peak} , LT, and VO_{2max}) were assessed from two GXTs conducted at each time point (Figure 5.1).

First vs Second Intervention - 4 weeks of HIIT in each intervention

Second Intervention - Total of 12 weeks of HIIT

Figure 6.1. Study design

6.2.3. Muscle biopsies, DNA extraction and DNA methylation analyses and pre-processing

A detailed report of how muscle biopsies, DNA extraction and DNA methylation analyses and how DNA methylation data was pre-processed are detailed in <u>Chapter 5</u>.

6.2.4. Statistical analyses

We estimated individual DNA methylation response to exercise training using two study designs: in the first one, we focused on the repeated intervention (**Figure 6.1 First vs Second Intervention**). In this design, each individual was profiled for DNA methylation patterns before and after four weeks of HIIT twice (i.e. repeated intervention). This allowed us to estimate how consistent individual response to four weeks of HIIT was (i.e. whether individuals responded similarly to HIIT after the first and the second intervention at the DNA methylation level). The *limma* package that is traditionally used for differential DNA methylation analysis does not allow extracting random effects, which are the measures of interest in this study, since we focus on individual response. Therefore, we used linear mixed models using the *lmerTest* package ⁴⁸; DNA methylation at each CpG was regressed against timepoint (before or after 4 weeks of HIIT), intervention (1st or 2nd intervention), with the addition of age and batch as covariates.

DNA methylation

- = Timepoint + Intervention + Age + Batch
- + random intercept + random slope

The *Timepoint* coefficient represents DNA methylation changes that are shared between all participants after 4 weeks of HIIT; the *Intervention* coefficient accounts for baseline DNA methylation differences that may be present between the 1st and 2nd intervention; the *random intercept* accounts for differences in baseline DNA methylation between individuals, and the *random slope* represents the subject-by-training interaction, that is, the individual response to four weeks of HIIT at the DNA methylation level.

In the second study design, we focused on the repeated testing over 12 weeks of HIIT (**Figure 6.1 Second Intervention**). In this design, each participant was profiled for DNA methylation patterns in skeletal muscle at regular intervals over the course of 12

weeks of HIIT (at baseline, after 4 weeks of HIIT, after 8 weeks, and after 12 weeks). This unique design is another way to investigate individual response to HIIT at the DNA methylation level since it is possible to build individual DNA methylation progress curves and estimate whether some individuals show exceptionally high (or low) improvements. We used linear mixed models using the *lmerTest* package⁴⁸. DNA methylation at each CpG was regressed against timepoint (baseline, after 4 weeks, after 8 weeks or after 12 weeks), with the addition of age as covariate. Batch was not included as a covariate in this model as all DNA methylation samples were profiled on batch #2.

DNA methylation = Timepoint + Age + random intercept + random slope

The *Timepoint* coefficient represents DNA methylation changes that are shared between all participants after 12 weeks of HIIT; the *random intercept* accounts for differences in baseline DNA methylation between individuals, and the *random slope* represents the subject-by-training interaction, that is, the individual response to 12 weeks of HIIT at the DNA methylation level. All CpGs associated with the random slope at FDR < 0.005 were considered DMPs. We used the *ggplot2*¹⁴⁸, *ggpubr*¹⁴⁷, *complexHeatmaps*¹⁹⁹, and *FactorMiner*²⁰⁰ packages for data visualisation.

6.3 Results

6.3.1 No individual DNA methylation response after 4 weeks of HIIT

We identified only one CpG showing consistent, individual response after both interventions (cg11260483, p-value: 3.22000e-10, adj.p-value: 0.00022) (**Figure 6.2**). This DMP is located in the chr11:12010278-12010280 and annotated to the *DKK3* gene.

Figure 6.2. Significant CpG presenting consistent individual response after a repeated HIIT intervention of 4 weeks.

6.3.2 No individual DNA methylation response to 12 weeks of HIIT

We applied mixed modelling to identify *individual* DNA methylation response to 12 weeks of HIIT. As we profiled individual DNA methylation patterns at regular intervals (at baseline, after 4 weeks of HIIT, after 8 weeks and after 12 weeks), we could fit a random slope to the model to estimate the individual DNA methylation trajectory over the training program, which corresponds to trainability. We did not identify any CpG that showed individual response to training (adjusted p-value <0.005). To estimate whether this lack of results reflects a true lack of individual response to HIIT at the epigenetic level, we looked at the histogram and quantile-quantile (Q-Q) plot of all p-values for the random effects across all tested CpGs (**Figure 6.3**). The Q-Q plot is used to assess the number and magnitude of observed associations between CpGs and the trait under study (here, individual response to training, or trainability), compared with the association statistics expected under the null hypothesis of no association²²⁰. The Q-Q

plot for the random effect is highly unusual and suggests either heteroscedasticity (i.e. large residuals)²²¹, or that individual effects are smaller than expected by the model.

Figure 6.3. A: p-values for random effect (i.e. trainability, individual response). B: Quantile-Quantile plot of p-values for individual response.

6.4 Discussion

For the first time, we investigated DNA methylation changes at the individual level following exercise training, by combining two recommended approaches in the field of personalised training response (i.e. repeated intervention and repeated testing during the intervention)⁵. We found no evidence for a consistent, individual response to 4 or 12 weeks of HIIT at the DNA methylation level in healthy young males.

Only one CpG was associated with consistent individual response after both interventions (cg11260483, p-value: 3.22000e-10, adj.p-value: 0.00022). This DMP is located in the chr11:12010278-12010280 and is annotated to the DKK3 gene. DKK3 is a secreted glycoprotein belonging to the dickkopf (DKK) family²²². Unlike other members of the DKK family, the pathway involving DKK3 remains to be elucidated. Given its increased level in circulating blood in aged population it was speculated that DKK3 play

a role in age related diseases²²³.Furthermore, DKK3 has been suggested to influence myogenesis, and in mice increased expression of DKK3 is associated with muscle atrophy²²³. Although only one CpG located in this gene consistently changed after exercise interventions, this gene appears to be a great candidate for further investigation of causality between DNA methylation and exercise response. Further studies focusing on this gene are therefore warrant.

This is the first study to investigate epigenetics in the context of individual response to exercise. By using a repeated intervention (i.e. two HIIT interventions of 4 weeks interspaced by at least 1 year of wash out) and a repeated testing approach (i.e. tests at multiple timepoints during the course of 12 weeks), we aimed to separate between-from within-subject variability in training response, and to obtain a robust estimate of individual epigenetic response to HIIT. Although DNA methylation changes are highly dynamic²²⁴, they can also accumulate overtime if the environmental stimulus is sustained²²⁵. For example, DNA methylation decreased immediately after exercise and re-methylation occurred a few hours later, but not fully back to baseline levels²², supporting the idea that DNA methylation changes may be accumulated after repeated training sessions. To our surprise, we found no consistent changes in DNA methylation within the same individuals after HIIT.

Emerging evidence suggests that environmental stimuli such as exercise lead skeletal muscle to retain molecular information to be primed for future plasticity, following encounters with the same stimulus²¹. To date, only one study has investigated muscle memory in response to exercise using a resistance intervention approach¹²³. Although this is an interesting topic of research, our study design was not aimed to investigate muscle memory. Trainability is the consistent response of an individual to training. In other words, it is an individual inherent capacity for response that does not depend on previous exposure to a stimulus. Muscle memory refers to how exposure to a stimulus (exercise, in utero programming, etc.) "primes" the muscle to responds later, it is not an inherent capacity to respond. For example, genetics would influence trainability, but genetics would not influence muscle memory as genetics is an innate characteristic, it is not an "exposure". The long wash out period, in the present study, was purposely chosen to avoid any carry over effects that could influence (i.e. muscle memory). Future studies with multiple timepoints should be conducted to investigate how long muscle exhibits an epigenetic memory in response to exercise.

Individual changes in the muscle methylome appeared much more variable within the same individual than we expected, and this may have hindered our ability to detect consistent, robust individual responses to HIIT. Larger cohorts and/or longer training programs with regular assessments would provide greater statistical power to detect these individual responses. We cannot dismiss the possibility that larger samples sizes might still not be sufficient to capture individual changes at the methylome level, as there are many unwanted sources of variability that introduce noise in the DNA methylation signal. We attempted to reduce any acute influence on the muscle methylome by sampling muscle biopsies in the fasted state at the same time of the day for all participants, following a 48h control diet, but we did not control sleep and other social stresses that may have influenced DNA methylation patterns. Finally, DNA methylation from muscle biopsies highly depends on the relative proportions of different cell types (i.e. type I and type II fibres, endothelial cells, leucocytes) that may vary between different pieces of muscle taken at adjacent sites on the leg. A deconvolution of the DNA methylation signal from the different cell types may help reduce noise in the data and build a more accurate profile of individual DNA methylation changes in muscle.

Chapter 7. Overall discussion, limitations, and future directions

7.1 Discussion

The benefits of exercise are well established^{27,98,226–232}, yet most exercise studies focus on responses at the group level, and little has been done to address the reality of individual response to exercise training^{2,5,9,10,35,38,40,43}. For the first time, we have combined **robust statistical methods** with an **innovative and comprehensive exercise trial design** in order to discriminate between- and within-subject variability in exercise response at both the **physiological** and **molecular** (i.e. mitochondrial and epigenetic) level.

We first painted a comprehensive picture of all statistical methods that can be used to estimate individual response to an exercise intervention. Then, we implemented two of these methods to identify individual response to exercise training. We also showed that the mitochondrial respiration technique in permeabilised human muscle we had considered as a molecular outcome was too unreliable to be used in the present thesis and requires a larger sample size due to significant between-samples variability. We successfully quantified individual responses to 12 weeks of HIIT at the physiological level using repeated testing at regular intervals over the course of the intervention, with some participants showing greater fitness improvements than average and others showing lower improvements. However, we did not identify individual responses to 4 weeks of HIIT, as individuals showed highly inconsistent responses to the two interventions. In both designs, we failed to identify individual responses at the molecular level (i.e. mitochondrial and DNA methylation measures), as within-subject variability (i.e. the variability in response within each person after the same stimulus) was large. As a result, the signal-to-noise ratio (i.e. the relative magnitude of true individual response and within-subject variability) was very low, which hindered our ability to detect individual molecular response to HIIT. Finally, we found that baseline DNA methylation patterns were significantly associated with baseline aerobic fitness levels and exercise triggered changes in the methylome that were consistent with previous reports^{22,219}. However, to our surprise such changes in DNA methylation after exercise occurred in the opposite

direction to those observed in fitter individuals, who presented more global hypermethylation, while changes after exercise were all hypomethylated. Next, we intersected the results and only 5 DMPs were the same for both baseline and intervention changes, which in part could explain why we saw different directions on DNA methylation at baseline and after 4 weeks of HIIT (i.e. DMPs are related to different pathways and mechanisms).

Reducing technical variability in the phenotype of interest is important to increase our ability to detect subtle changes, and therefore to increase power. In the early stages of this PhD, we wanted to ensure we would be able to detect potentially small differences in individual responses in molecular traits, so we quantified the technical variability of one of the molecular techniques we were planning to use. We were surprised to find that a popular method to measure mitochondrial function in skeletal muscle (i.e. mitochondrial respiration) showed very large technical variability. There was a high correlation between measurements from the two chambers (R>0.7 p<0.001) for all complexes, but the TEM was large (7.9 - 27 pmol·s-1·mg-1; complex dependent), and the CV was > 15% for all complexes. We performed statistical simulations of a range of effect sizes at 80% power and found that 75 participants (with duplicate measurements) are required to detect a 6% change in mitochondrial respiration after an intervention, while for interventions with 11% effect size, ~24 participants are sufficient. The high variability in respiration suggests that the typical sample sizes in exercise studies may not be sufficient to capture exercise-induced changes. While we could not pinpoint the exact reason for the high variability in this technique, we suspect that there is a high margin of error for technicians to properly separate the muscle fibre before permeabilization. For this reason we chose not to use this technique in this PhD project as our sample size was too small (n = 20) to overcome the technical variability of this method. Instead, we decided to use another approach where several mitochondrial markers are analysed and then combined into a comprehensive mitochondrial health index (MHI). This functional MHI has been recently proposed in blood by mathematically integrating biochemical enzymatic activities and mtCN into a single score, which may represent an optimized measure of mitochondrial functional capacity¹³⁵. This method successfully captured a reduction in mitochondrial health in blood as a result of chronic psychological stress¹³⁵. During the 12-week HIIT intervention, the mitochondrial enzyme maximal activity and therefore the MHI were highly variable, and no consistent changes were observed at either

the group or individual level. This was surprising given that mitochondrial content and function are upregulated by exercise^{126–128}. To ensure that the variance was not due to technical variability, we removed any duplicate results that presented a variance >10%. However, it is known that enzyme activity is highly dynamic and the timeframe in which enzymes are fired may vary both within as well as between subjects¹⁵². In addition, we cannot rule out the potential involvement of other enzymes in similar pathways, or the fact that enzyme Km and not the maximal activity could be different between people¹⁵³; however, these hypotheses remain to be tested. Furthermore, due to the nature of skeletal muscle (i.e. multi-nucleated) we could not account for cell number as suggested by Picard *et al.* The multi-nucleated nature of skeletal muscle promotes the possibility that each myonucleus differs in transcriptional rates and is independently regulated and distinctive from the others, to the extent that local differences in skeletal muscle (i.e. two pieces of same biopsy) might be present following exercise^{9,154,155}; this would potentially explain part of the variability observed between and among measures.

Researchers usually focus on the *average* response to an intervention to determine its overall efficacy in the general population²³³. However, variability in response is commonly observed between individuals, and the term "non-responder" has sometimes been used^{7,52,234} to refer to individuals who have failed to present positive changes in a specific outcome²³⁵. However, such terminology may promote the erroneous perception that exercise maybe not be collectively beneficial²³⁴. This perception has serious implications from a public health viewpoint, given that exercise is well-known to promote numerous health benefits²³⁶. Exercise affects virtually all tissues via myriads of different pathways (e.g. activation of *BDNF* in the brain, leading to greater cognitive function²³⁷), and likely provides health benefits even if improvements at the physiological level are not visible with exercise testing²³⁶. However, we propose that the hasty classification of individuals into "responders" and "non-responders" may also stem from the lack of consideration for how inconsistent a response may be within a given individual. Why label an individual a "non-responder" if we cannot provide a robust prediction as to how this individual will respond to a given exercise intervention^{234,238}? The paucity of studies on individual response to training is a major hindrance to the development of exercise training programs that are tailored to the individual ("personalised medicine"). In addition, most studies ignore the existence of within-subject variability, which leads to an erroneous classification of individuals into responders or non-responders²³⁴. Within-

subject variability is well known and routinely accounted for in pharmacology²³⁹ and dietetics²⁴⁰. It ensures that the individual response to a drug or to a certain food is robust and predictable within the same individual. In exercise physiology, within-subject variability is often ignored because it is tedious to measure repeating an exercise training program of a few weeks or a few months is both time- and resource-consuming. In addition, an exercise training program may remodel the muscle substantially to introduce a form of muscle memory (i.e. "carry-over effect") that would modulate the way participants respond to a future intervention. In this thesis, we took on this challenge by repeating a relatively short intervention (4 weeks of HIIT) after a long wash out of at least one year (to limit this carry-over effect), and we estimated how consistent the response to four weeks of HIIT was within a given individual. We also implemented another study design that could estimate within-subject variability at a lower cost and within a shorter time frame by repeatedly measuring the desired outcome at regular intervals during the exercise training program. This clever study design allows multiple sampling per participant and discriminates individual responses (i.e. the slope of the progress curve) from within-subject variability (i.e. the spread of individual measurements around the slope). Using this approach, we were able to isolate all sources of variability and identify consistent responses at the individual level for all physiological measures of aerobic fitness (W_{peak} , LT and VO_{2max}). With this approach, we accurately labelled individuals as "better" or "worse" responders than the average participant.

Finally, we investigated the roles of DNA methylation in response to exercise, as well as its influence on individual measures of fitness. DNA methylation changes were observed at the group level, but no consistent changes were found at the individual level. Several DMPs and DMRs were associated with W_{peak} , LT and VO_{2max} . Significant enriched pathways were also identified for both W_{peak} and LT, but not for VO_{2max} , indicating that our sample size might still be small for analysis on the relationship between DNA methylation and VO_{2max} . No consistent changes in DNA methylation were observed after a repeated intervention, and baseline methylation values did not influence physiological changes in response to exercise. This seems to indicate that cell memory of DNA methylation changes in response to exercise is not long-lasting and might be erased, and therefore one year of wash out period was too long to detect any epigenetic memory in skeletal muscle.

The repeated intervention approach is rather novel in exercise studies, and only one study to our knowledge has applied this methodology, albeit not aimed at exercise response⁴⁷. Using the supplementary files of this study we were able to extract the data and compare responses for some variables analysis between first and second intervention. Surprisingly a poor correlation between interventions was observed. These findings matched our observations after a repeated intervention, whereby we did not observe a consistent response in the same participants. This indicates that aspects outside of the intervention's control (i.e. diet, training history, between-session recovery, sleep, etc.) might have a large influence at the individual level, and the same adaptative state is likely not to be the same as the initial intervention²³⁴. Thus, this type of approach may yield better results if applied to variables that do not present large variable aspects, such as genetics.

When we transitioned to the molecular level, our initial expectation was that trainability would be identified by the repeated testing approach, as we observed at the physiological level. However, at the molecular level (i.e. mitochondrial and fibre type measures) intra-individual variability was very large, and trainability could not be identified. As previously mentioned, exercise modifies many pathways and mechanisms, and we hypothesise that the variability observed may be due to compensatory mechanisms occurring in response to the intervention applied. Furthermore, our sample size was rather small, and due to the large variability observed it is likely that we might have been underpowered. Finally, it has been recently reported that intra-biopsy variability can also lead to large noise and thus contribute to the lack of significant results⁹.

Sources of variability can also be observed at the experimental level. A recent study reported a large intra-biopsy variability was large and results from different portions of same muscle biopsy did not correlate. Furthermore, substantial intra-individual variability was noted at baseline for gene expression even after accounting for experimental variability and between visits⁹. Within our own experiments, we have also observed a large variability between duplicate samples of same muscle biopsy when performing mitochondrial respiration^{124,241}. Such findings led us to perform a detailed analysis of the technique and calculate TE_M for the estimation of minimal effect size or sample size necessary to be confident in the results. Our study was the first to provide guidelines (i.e. sample size or effect size) to future studies aiming to use mitochondrial

respiration as a phenotype of interest. Studies such as this are important, so false positives or low confidence studies may highlight their limitations or reconsider their study design before experiments are completed.

DNA methylation has been shown to be modulated by exercise, and to be involved in the process of cell memory. However, only four studies to date have investigated DNA methylation genome-wide in skeletal muscle in response to exercise^{25–27,123}. Furthermore, investigations were based only at the group level and no associations between DNA methylation and exercise-induced physiological markers were included. For the first time we have investigated DNA methylation at the individual level in association with physiological markers and as a mechanism of cell memory after a long wash-out period. However, based on our findings, we were underpowered for most analyses. We have shown change in the methylome in the present study. However, changes present very small effect sizes and thus it is necessary to acquire large cohorts to identify robust and replicable methylation changes in response to exercise at both the individual and the group level. In addition, we observed very clear DNA methylation patterns associated with physiological variables independently of time, indicating that such patterns are a result of years of training, and to detect shifts in DNA methylation in skeletal muscle we either need to have large cohorts or long interventions (i.e. >1 year). Our findings suggest that no DNA methylation patterns consistently observed after a second intervention, indicating that change in DNA methylation might have been lost after such a long washout period. These results strengthen the notion that exercise must be continuously applied throughout life to have long-lasting benefits, and when it is stopped, adaptations and health benefits are likely to be lost¹²¹. Finally, epigenetic modifications are not restricted to DNA methylation changes as highlighted in the introduction of this thesis, and histone modifications as well as microRNA changes should also be further investigated. In fact, these modifications are likely to occur in synchrony and affect each other, leading to a complex network of changes resulting in exercise adaptations.

7.2 Limitations and future directions

The main limitation of our study was the small number of participants that agreed to come back for the repeated and longer intervention. This caused us to be underpowered for most of our analyses, and after adjusting for multiple testing most of our results were

not significant. While we could detect signals in response to exercise, larger cohorts are needed to overcome noise-to-ratio and achieve significance.

Our cohort was composed of only male participants, and therefore sex differences have not been accounted for. Furthermore, our experiments at the molecular level were all conducted utilising different pieces of same biopsy. It has been shown that intra-biopsy variability is large, and this could potentially explain the lack of relationship between experiments. Futures studies should aim to include males and females to account for sex differences, and if possible, use the same muscle piece for all analyses to avoid additional sources of variability.

Based on our findings, we suggest future studies implementing the repeated testing approach should be considered the "gold standard" for identification of individual trainability at the physiological level. This has important implications for personalised training, as it shifts the focus from the group level and can confidently classify true response to exercise for each individual.

Exercise response involves many pathways and mechanisms, and thus future interventions should combine not only epigenetic markers, but also others such as proteomics and transcriptomics, and integrate findings to achieve a broader understanding of molecular changes in response to exercise. Furthermore, many compensatory mechanisms may occur at once in response to exercise stimulus. Thus, future studies should also aim to investigate molecular networks that are activated at the individual level in response to exercise.

References

- 1. Hawley, J. A., Hargreaves, M., Joyner, M. J. & Zierath, J. R. Review Integrative Biology of Exercise. *Cell* **159**, 738–749 (2014). doi: 10.1016/j.cell.2014.10.029
- Bouchard, C. & Rankinen, T. Individual differences in response to regular physical activity. *Med. Sci. Sports Exerc.* 33, S446–S451 (2001). doi: 10.1097/00005768-200106001-00013
- Timmons, J. A. *et al.* Human muscle gene expression responses to endurance training provide a novel perspective on Duchenne muscular dystrophy. *FASEB J.* 19, 750–760 (2005). doi: 10.1096/fj.04-1980com
- 4. Mann, T. N., Lamberts, R. P. & Lambert, M. I. High responders and low responders: factors associated with individual variation in response to standardized training. *Sports Med.* 44, 1113–1124 (2014). doi: 10.1007/s40279-014-0197-3
- Hecksteden, A. *et al.* Individual response to exercise training a statistical perspective. *J. Appl. Physiol.* **118**, 1450–1459 (2015). doi: 10.1152/japplphysiol.00714.2014
- 6. Atkinson, G. & Batterham, A. M. True and false interindividual differences in the physiological response to an intervention. *Exp. Physiol.* **100**, 577–588 (2015). doi: 10.1113/EP085070
- 7. Bouchard, C. *et al.* Familial resemblance for VO2max in the sedentary state: the HERITAGE family study. *Med. Sci. Sports Exerc.* **30**, 252–258 (1998).
- 8. Islam, H. & Gurd, B. J. Exercise response variability: Random error or true differences in exercise response? *Exp. Physiol.* **105**, 2022–2024 (2020).
- 9. Islam, H. *et al.* Repeatability of exercise-induced changes in mRNA expression and technical considerations for qPCR analysis in human skeletal muscle. *Exp. Physiol.* **104**, 407–420 (2019). doi:10.1113/EP087401
- Hecksteden, A., Pitsch, W., Rosenberger, F. & Meyer, T. Repeated testing for the assessment of individual response to exercise training. *J. Appl. Physiol.* 124, 1567–1579 (2018). doi:10.1152/japplphysiol.00896.2017
- Hood, D. A., Memme, J. M., Oliveira, A. N. & Triolo, M. Maintenance of Skeletal Muscle Mitochondria in Health, Exercise, and Aging. *Annu. Rev. Physiol.* 81, 19–41 (2019). doi: 10.1146/annurev-physiol-020518-114310
- Granata, C., Oliveira, R. S. F., Little, J. P., Renner, K. & Bishop, D. J. Training intensity modulates changes in PGC-1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. *FASEB J.* **30**, 959–970 (2016). doi: https://doi.org/10.1096/fj.15-276907
- 13. Daussin, F. N. et al. Effect of interval versus continuous training on

cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* **295**, R264–72 (2008). doi: 10.1152/ajpregu.00875.2007

- Christensen, P. M. *et al.* A short period of high-intensity interval training improves skeletal muscle mitochondrial function and pulmonary oxygen uptake kinetics. *J. Appl. Physiol.* **120**, 1319–1327 (2016). doi:10.1152/japplphysiol.00115.2015
- 15. Vincent, G. *et al.* Changes in mitochondrial function and mitochondria associated protein expression in response to 2-weeks of high intensity interval training. *Front. Physiol.* **6**, 1–9 (2015). doi: 10.3389/fphys.2015.00051
- Jacobs, R. A. *et al.* Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. *J. Appl. Physiol.* 115, 785–93 (2013). doi: 10.1152/japplphysiol.00445.2013
- 17. Walsh, B., Tonkonogi, M. & Sahlin, K. Effect of endurance training on oxidative and antioxidative function in human permeabilized muscle fibres. *Pflugers Arch. Eur. J. Physiol.* (2001). doi:10.1007/s004240100538
- Wibom, R. & Hultman, E. ATP production rate in mitochondria isolated from microsamples of human muscle. *Am. J. Physiol* 259, E204–E209 (1990). doi:10.1152/ajpendo.1990.259.2.E204
- Cardinale, D. A. *et al.* Reliability of maximal mitochondrial oxidative phosphorylation in permeabilized fibers from the vastus lateralis employing highresolution respirometry. *Physiol. Rep.* 6, e13611 (2018). doi: 10.14814/phy2.13611
- Alvarez-Romero, J., Voisin, S., Eynon, N. & Hiam, D. Mapping Robust Genetic Variants Associated with Exercise Responses. *International Journal of Sports Medicine* 42, 3–18 (2021). doi:10.1055/a-1198-5496
- Sharples, A. P., Stewart, C. E. & Seaborne, R. A. Does skeletal muscle have an 'epi'-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise. *Aging Cell* 15, 603–616 (2016). doi:10.1111/acel.12486
- 22. Barrès, R. *et al.* Acute exercise remodels promoter methylation in human skeletal muscle. *Cell Metab.* **15**, 405–411 (2012). doi: 10.1016/j.cmet.2012.01.001
- 23. Denham, J., O'Brien, B. J., Harvey, J. T. & Charchar, F. J. Genome-wide sperm DNA methylation changes after 3 months of exercise training in humans. *Epigenomics* **7**, 717–731 (2015). doi: 10.2217/epi.15.29
- 24. Rönn, T. *et al.* A Six Months Exercise Intervention Influences the Genome-wide DNA Methylation Pattern in Human Adipose Tissue. *PLoS Genet.* **9**, e1003572 (2013). doi: https://doi.org/10.1371/journal.pgen.1003572
- 25. Nitert, M. D. *et al.* Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. *Diabetes* **61**, 3322–3332 (2012). doi: 10.2337/db11-1653

- Lindholm, M. E. *et al.* An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. *Epigenetics* 9, 1557–1569 (2014). doi: 10.4161/15592294.2014.982445
- Robinson, M. M. *et al.* Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans. *Cell Metab.* 25, 581–592 (2017). doi: 10.1016/j.cmet.2017.02.009
- Rowlands, D. S. *et al.* Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in Type 2 diabetic obesity. *Physiol. Genomics* 46, 747–765 (2014). doi: 10.1152/physiolgenomics.00024.2014
- Bouchard, C. *et al.* Adverse metabolic response to regular exercise: Is it a rare or common occurrence? *PLoS One* 7, e37887 (2012). doi: 10.1371/journal.pone.0037887
- Thalacker-Mercer, A. *et al.* Cluster analysis reveals differential transcript profiles associated with resistance training-induced human skeletal muscle hypertrophy. *Physiol. Genomics* 45, 499–507 (2013). doi: 10.1152/physiolgenomics.00167.2012
- 31. Pérusse, L. *et al.* Familial aggregation of submaximal aerobic performance in the HERITAGE Family study. *Med. Sci. Sport. Exerc.* **33**, 597–604 (2001). doi: 10.1097/00005768-200104000-00014
- 32. Weatherwax, R. M., Harris, N. K., Kilding, A. E. & Dalleck, L. C. The incidence of training responsiveness to cardiorespiratory fitness and cardiometabolic measurements following individualized and standardized exercise prescription: study protocol for a randomized controlled trial. *Trials* 17, 601 (2016). doi: https://doi.org/10.1186/s13063-016-1735-0
- 33. Bonafiglia, J. T. *et al.* Inter-Individual Variability in the Adaptive Responses to Endurance and Sprint Interval Training: A Randomized Crossover Study. *PLoS One* **11**, e0167790 (2016). doi: https://doi.org/10.1371/journal.pone.0167790
- Scharhag-Rosenberger, F., Walitzek, S., Kindermann, W. & Meyer, T. Differences in adaptations to 1 year of aerobic endurance training: individual patterns of nonresponse. *Scand. J. Med. Sci. Sports* 22, 113–118 (2012). doi: 10.1111/j.1600-0838.2010.01139.x
- 35. Hopkins, W. G. Individual responses made easy. *Journal of Applied Physiology* (1985) **118**, 1444–1446 (2015). doi: 10.1152/japplphysiol.00098.2015
- Hopkins, W. G., Hawley, J. A. & Burke, L. M. Design and analysis of research on sport performance enhancement. *Med. Sci. Sports Exerc.* 31, 472–485 (1999). doi: 10.1097/00005768-199903000-00018
- Guyatt, G. H., Juniper, E. F., Walter, S. D., Griffith, L. E. & Goldstein, R. S. Interpreting treatment effects in randomised trials. *BMJ* 316, 690–693 (1998). doi: 10.1136/bmj.316.7132.690
- 38. Williamson, P. J., Atkinson, G. & Batterham, A. M. Inter-Individual Responses

of Maximal Oxygen Uptake to Exercise Training: A Critical Review. *Sports Med.* **47**, 1501–1513 (2017). doi: https://doi.org/10.1007/s40279-017-0680-8

- 39. Aiken, L. S., West, S. G. & Reno, R. R. *Multiple regression: testing and interpreting interactions*. (Sage Publications, 1991).
- 40. Voisin, S., Jacques, M., Lucia, A., Bishop, D. J. & Eynon, N. Statistical Considerations for Exercise Protocols Aimed at Measuring Trainability. *Exerc. Sport Sci. Rev.* **47**, 37–45 (2019). doi:10.1249/JES.000000000000176
- Joyner, M. J. & Lundby, C. Concepts About V O2max and Trainability Are Context Dependent. *Exerc. Sport Sci. Rev.* 46, 138–143 (2018). doi: 10.1249/JES.00000000000150
- 42. Senn, S. Mastering variation: variance components and personalised medicine. *Stat. Med.* **35**, 966–977 (2016). doi: 10.1002/sim.6739
- 43. Ross, R. *et al.* Precision exercise medicine: Understanding exercise response variability. *Br. J. Sports Med.* **53**, 1141–1153 (2019).
- 44. Davidsen, P. K. *et al.* High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. *J. Appl. Physiol.* 110, 309–317 (2011). doi: 10.1152/japplphysiol.00901.2010
- Katch, V. L., Sady, S. S. & Freedson, P. Biological variability in maximum aerobic power. *Med. Sci. Sports Exerc.* 14, 21–25 (1982). doi: 10.1249/00005768-198201000-00004
- Åkerstedt, T. & Wright, K. P. Sleep Loss and Fatigue in Shift Work and Shift Work Disorder. *Sleep Med. Clin.* 4, 257–271 (2009). doi: 10.1016/j.jsmc.2009.03.001
- 47. Lindholm, M. E. *et al.* The Impact of Endurance Training on Human Skeletal Muscle Memory, Global Isoform Expression and Novel Transcripts. *PLOS Genet.* **12**, e1006294 (2016). doi: https://doi.org/10.1371/journal.pgen.1006294
- Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. ImerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 82 (2017). doi:10.18637/jss.v082.i13
- 49. Hendy, A. M. & Lamon, S. The Cross-Education Phenomenon: Brain and Beyond. *Front. Physiol.* **8**, 297 (2017). doi: 10.3389/fphys.2017.00297
- 50. Selected body measurements of children 6-11 years. *Vital Health Stat. 11.* 1–48 (1973).
- 51. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-137. https://CRAN.R-project.org/package=nlme (2018).
- 52. Montero, D. & Lundby, C. Refuting the myth of non-response to exercise training: 'non-responders' do respond to higher dose of training. *The Journal of Physiology* **595**, 3377–3387 (2017). doi:10.1113/JP273480
- 53. Ross, R., de Lannoy, L. & Stotz, P. J. Separate Effects of Intensity and Amount of Exercise on Interindividual Cardiorespiratory Fitness Response. *Mayo Clin.*

Proc. 90, 1506–1514 (2015). doi: 10.1016/j.mayocp.2015.07.024

- 54. Sisson, S. B. *et al.* Volume of exercise and fitness nonresponse in sedentary, postmenopausal women. *Med. Sci. Sports Exerc.* **41**, 539–545 (2009). doi: 10.1249/MSS.0b013e3181896c4e
- 55. Wang, G. *et al.* The Future of Genomic Research in Athletic Performance and Adaptation to Training. *Medicine and Sport Science* **61**, 55–67 (2016). doi: 10.1159/000445241
- Voisin, S., Eynon, N., Yan, X. & Bishop, D. J. Exercise training and DNA methylation in humans. *Acta Physiol.* 213, 39–59 (2015). doi: 10.1111/apha.12414
- 57. Bird, A. Perceptions of epigenetics. *Nature* **447**, 396–398 (2007). doi: https://doi.org/10.1038/nature05913
- 58. Weinhold, B. Epigenetics: the science of change. *Environ. Heal. Perspect.* **114**, 160–167 (2006). doi: 10.1289/ehp.114-a160
- 59. Rooney, J. Further Thoughts on Mercury, Epigenetics, Genetics and Amyotrophic Lateral Sclerosis. *Neurodegener Dis* **6**, 523–524 (2011). doi:10.1159/000324518
- van Dijk, S. J., Molloy, P. L., Varinli, H., Morrison, J. L. & Muhlhausler, B. S. Epigenetics and human obesity. *Int. J. Obes. (Lond).* **39**, 85–97 (2015). doi: 10.1038/ijo.2014.34
- 61. Waddington, C. H. Genetic Assimilation of the Bithorax Phenotype. *Evolution* (*N. Y*). **10**, 1–13 (1956). doi: https://doi.org/10.1111/j.1558-5646.1956.tb02824.x
- 62. Alberts, B. *et al. Molecular Biology of the Cell, Sixth Edition*. (Taylor & Francis Group, 2014).
- 63. Ptashne, M. Epigenetics: Core misconcept. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 7101–7103 (2013). doi: https://doi.org/10.1073/pnas.1305399110
- 64. Katan-Khaykovich, Y. & Struhl, K. Dynamics of global histone acetylation and deacetylation in vivo: rapid restoration of normal histone acetylation status upon removal of activators and repressors. *Genes Dev.* **16**, 743–752 (2002). doi: 10.1101/gad.967302
- Radman-Livaja, M., Liu, C. L., Friedman, N., Schreiber, S. L. & Rando, O. J. Replication and Active Demethylation Represent Partially Overlapping Mechanisms for Erasure of H3K4me3 in Budding Yeast. *PLoS Genet* 6, e1000837 (2010). https://doi.org/10.1371/journal.pgen.1000837
- Ringrose, L. & Paro, R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. *Development* 134, 223–232 (2007). doi: 10.1242/dev.02723
- 67. Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. *Nat Rev Genet* **17**, 487–500 (2016). doi: https://doi.org/10.1038/nrg.2016.59
- 68. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. *Nat. Genet.* **33**, 245–254

(2003). https://doi.org/10.1038/ng1089

- 69. Li, E. & Zhang, Y. DNA methylation in mammals. *Cold Spring Harb. Perspect. Biol.* **6**, a019133 (2014). doi: 10.1101/cshperspect.a019133
- Nan, X. *et al.* Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. *Nature* 393, 386–389 (1998). doi: 10.1038/30764
- Ohm, J. E. *et al.* A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. *Nat. Genet.* 39, 237–242 (2007). doi: 10.1038/ng1972
- 72. Schlesinger, Y. *et al.* Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. *Nat. Genet.* **39**, 232–236 (2007). doi: 10.1038/ng1950
- Gal-Yam, E. N. *et al.* Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. *Proc. Natl. Acad. Sci. U. S. A.* 105, 12979–12984 (2008). doi: https://doi.org/10.1073/pnas.0806437105
- Strunnikova, M. *et al.* Chromatin inactivation precedes de novo DNA methylation during the progressive epigenetic silencing of the RASSF1A promoter. *Mol Cell Biol* 25, 3923–3933 (2005). doi:10.1128/MCB.25.10.3923– 3933.2005
- 75. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. *Nature Reviews Genetics* **13**, 484–492 (2012). doi: https://doi.org/10.1038/nrg3230
- Pacis, A. *et al.* Gene activation precedes DNA demethylation in response to infection in human dendritic cells. *Proc. Natl. Acad. Sci. U. S. A.* 116, 6938–6943 (2019). doi: https://doi.org/10.1073/pnas.1814700116
- Guibert, S. & Weber, M. Functions of DNA Methylation and Hydroxymethylation in Mammalian Development. *Curr. Top. Dev. Biol.* 104, 47–83 (2013). doi: 10.1016/B978-0-12-416027-9.00002-4
- Bentley, G. A., Lewit-Bentley, A., Finch, J. T., Poljarxy, A. D. & Roth, M. Crystal Structure of the Nucleosome Core Particle at 16A Resolution. *J. Mol. Biol.* 55–75 (1984). doi:10.1038/38444
- 79. McGee, S. L. & Hargreaves, M. Histone modifications and exercise adaptations. *J. Appl. Physiol.* **110**, 258–63 (2011). doi: 10.1152/japplphysiol.00979.2010
- Zhang, T., Cooper, S. & Brockdorff, N. The interplay of histone modifications writers that read. *EMBO Rep.* 16, 1467–1481 (2015). doi: 10.15252/embr.201540945
- Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. *Cell Res.* 21, 381–395 (2011). doi: https://doi.org/10.1038/cr.2011.22
- 82. Bonasio, R., Tu, S. & Reinberg, D. Molecular Signals of Epigenetic States. *Science.* **330**, 612–616 (2010). doi: 10.1126/science.1191078

- Peschansky, V. J. & Wahlestedt, C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. *Epigenetics* 9, 3–12 (2014). doi: 10.4161/epi.27473
- Huang, B. & Zhang, R. Regulatory non-coding RNAs: Revolutionizing the RNA world. *Mol. Biol. Rep.* 41, 3915–3923 (2014). doi: https://doi.org/10.1007/s11033-014-3259-6
- 85. Hussain, M. U. Micro-RNAs (miRNAs): Genomic organisation, biogenesis and mode of action. *Cell and Tissue Research* **349**, 405–413 (2012). doi: 10.1007/s00441-012-1438-0
- Widmann, M., Nie
 ß, A. M. & Munz, B. Physical Exercise and Epigenetic Modifications in Skeletal Muscle. *Sport. Med.* 49, 509–523 (2019). doi:10.1007/s40279-019-01070-4
- Fraga, M. F. *et al.* Epigenetic differences arise during the lifetime of monozygotic twins. *Proc Natl Acad Sci U S A.* **102**, 10–15 (2005). doi: https://doi.org/10.1073/pnas.0500398102
- 88. Bell, J. T. & Spector, T. D. A twin approach to unraveling epigenetics. *Trends in Genetics* **27**, 116–125 (2011). doi:10.1016/j.tig.2010.12.005
- McClay, J. L. *et al.* High density methylation QTL analysis in human blood via next-generation sequencing of the methylated genomic DNA fraction. *Genome Biol.* 16, 291 (2015). doi: https://doi.org/10.1186/s13059-015-0842-7
- 90. Hannon, E. *et al.* Methylation QTLs in the developing brain and their enrichment in schizophrenia risk loci. *Nat. Neurosci.* **19**, 48 (2015). doi: 10.1038/nn.4182
- 91. Banovich, N. E. *et al.* Methylation QTLs Are Associated with Coordinated Changes in Transcription Factor Binding, Histone Modifications, and Gene Expression Levels. *PLoS Genet* 10, e1004663 (2014). doi: https://doi.org/10.1371/journal.pgen.1004663
- 92. van Dongen, J. *et al.* Genetic and environmental influences interact with age and sex in shaping the human methylome. *Nat. Commun.* **7**, 11115 (2016). doi: https://doi.org/10.1038/ncomms11115
- Coffey, V. G. & Hawley, J. a. The Molecular Basis of Training Adaptation. Sport. Med. 37, 737–763 (2007). doi: 10.2165/00007256-200737090-00001
- 94. Hargreaves, M. Exercise and Gene Expression. *Progress in Molecular Biology* and Translational Science 135, 457–469 (2015). doi: 10.1016/bs.pmbts.2015.07.006
- 95. Bishop, D. J., Granata, C. & Eynon, N. Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content? *Biochim. Biophys. Acta - Gen. Subj.* 1840, 1266–1275 (2014). doi: 10.1016/j.bbagen.2013.10.012
- 96. Soci, U. P. R. *et al.* Exercise training and epigenetic regulation: Multilevel modification and regulation of gene expression. *Advances in Experimental Medicine and Biology* **1000**, 281–322 (2017). doi: 10.1007/978-981-10-4304-8_16

- 97. Landen, S. *et al.* Genetic and epigenetic sex-specific adaptations to endurance exercise. *Epigenetics* **14**, 523–535 (2019). doi: https://doi.org/10.1080/15592294.2019.1603961.
- McGee, S. L., Fairlie, E., Garnham, A. P. & Hargreaves, M. Exercise-induced histone modifications in human skeletal muscle. *J. Physiol.* 587, 5951–5958 (2009). doi: 10.1113/jphysiol.2009.181065
- 99. Nielsen, S. *et al.* Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. *J. Physiol.* **588**, 4029–4037 (2010). doi: 10.1113/jphysiol.2010.189860
- 100. Ringholm, S. *et al.* Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle. *Am. J. Physiol. Endocrinol. Metab.* **301**, E649–58 (2011). doi: 10.1152/ajpendo.00230.2011
- Russell, A. P. *et al.* Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. *J. Physiol.* 591, 4637–4653 (2013). doi: 10.1113/jphysiol.2013.255695
- 102. Rivas, D. A. *et al.* Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling. *FASEB J.* 28, 4133–4147 (2014). doi: 10.1096/fj.14-254490
- 103. D'Souza, R. F. *et al.* Acute resistance exercise modulates microRNA expression profiles: Combined tissue and circulatory targeted analyses. *PLoS One* 12, e0181594 (2017). doi: https://doi.org/10.1371/journal.pone.0181594
- 104. Fyfe, J. J., Bishop, D. J., Zacharewicz, E., Russell, A. P. & Stepto, N. K. Concurrent exercise incorporating high-intensity interval or continuous training modulates mTORC1 signaling and microRNA expression in human skeletal muscle. *Am. J. Physiol. - Regul. Integr. Comp. Physiol.* **310**, R1297–R1311 (2016). doi: https://doi.org/10.1152/ajpregu.00479.2015
- 105. Keller, P. *et al.* A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype. *J. Appl. Physiol.* **110**, 46–59 (2011). doi: 10.1152/japplphysiol.00634.2010
- Zhang, T. *et al.* Improved knee extensor strength with resistance training associates with muscle specific miRNAs in older adults. *Exp. Gerontol.* 62, 7–13 (2015). doi: 10.1016/j.exger.2014.12.014
- Mueller, M. *et al.* Different molecular and structural adaptations with eccentric and conventional strength training in elderly men and women. *Gerontology* 57, 528–538 (2011). doi: 10.1159/000323267
- D'Souza, R. F. *et al.* MicroRNAs in muscle: Characterizing the powerlifter phenotype. *Front. Physiol.* 8, 1–12 (2017). doi: 10.3389/fphys.2017.00383
- Chen, J.-F. *et al.* The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. *Nat. Genet.* 38, 228–233 (2006). doi: 10.1038/ng1725
- 110. Sun, X. *et al.* MicroRNA-181b improves glucose homeostasis and insulin sensitivity by regulating endothelial function in white adipose tissue. *Circ. Res.*

118, 810-821 (2016). doi: 10.1161/CIRCRESAHA.115.308166

- Mercatelli, N. *et al.* MiR-23-TrxR1 as a novel molecular axis in skeletal muscle differentiation. *Sci. Rep.* 7, 7219 (2017). doi: https://doi.org/10.1038/s41598-017-07575-0
- Brunet-Vega, A. *et al.* Variability in microRNA recovery from plasma: Comparison of five commercial kits. *Anal. Biochem.* 488, 28–35 (2015). doi:10.1016/j.ab.2015.07.018
- Whiley, P. J. *et al.* Comparison of mRNA splicing assay protocols across multiple laboratories: Recommendations for best practice in standardized clinical testing. *Clin. Chem.* **60**, 341–352 (2014). doi:10.1373/clinchem.2013.210658
- 114. Russell, A. P. & Lamon, S. Exercise, Skeletal Muscle and Circulating microRNAs. *Prog. Mol. Biol. Transl. Sci.* 135, 471–496 (2015). doi: 10.1016/bs.pmbts.2015.07.018
- 115. Ogasawara, R. *et al.* MicroRNA expression profiling in skeletal muscle reveals different regulatory patterns in high and low responders to resistance training. *Physiol. Genomics* 48, 320–324 (2016). doi: 10.1152/physiolgenomics.00124.2015
- 116. Zacharewicz, E. *et al.* Identification of MicroRNAs linked to regulators of muscle protein synthesis and regeneration in young and old skeletal muscle. *PLoS One* **9**, e114009 (2014). doi:10.1371/journal.pone.0114009
- 117. McLean, C. S. *et al.* Gene and microRNA expression responses to exercise; relationship with insulin sensitivity. *PLoS One* **10**, e0127089 (2015). doi:10.1371/journal.pone.0127089
- 118. Russell, A. P. *et al.* Striated muscle activator of Rho signalling (STARS) is reduced in ageing human skeletal muscle and targeted by miR-628-5p. *Acta Physiol.* **220**, 263–274 (2017). doi: 10.1111/apha.12819
- Hodson, N. & Philp, A. The Importance of mTOR Trafficking for Human Skeletal Muscle Translational Control. *Exercise and Sport Sciences Reviews* 47, 46–53 (2018). doi:10.1249/JES.000000000000173
- 120. Krist, B., Florczyk, U., Pietraszek-Gremplewicz, K., Józkowicz, A. & Dulak, J. The role of miR-378a in metabolism, angiogenesis, and muscle biology. *International Journal of Endocrinology* 2015, 281756 (2015). https://doi.org/10.1155/2015/281756
- Alibegovic, A. C. *et al.* Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men. *Am. J. Physiol. Endocrinol. Metab.* 299, 752–763 (2010). doi: 10.1152/ajpendo.00590.2009
- 122. Bajpeyi, S. *et al.* Skeletal Muscle PGC1alpha -1 Nucleosome Position and -260nt DNA Methylation Determine Exercise Response and Prevent Ectopic Lipid Accumulation in Men. *Endocrinology* 158, 2190–2199 (2017). doi: 10.1210/en.2017-00051
- 123. Seaborne, R. A. et al. Human Skeletal Muscle Possesses an Epigenetic Memory

of Hypertrophy. Sci. Rep. 8, 1898 (2018). doi: https://doi.org/10.1038/s41598-018-20287-3

- Robinson, M. M. *et al.* Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans. *Cell Metab.* 25, 581–592 (2017). doi: 10.1016/j.cmet.2017.02.009
- 125. Jacques, M. *et al.* Mitochondrial respiration variability and simulations in human skeletal muscle: The Gene SMART study. *FASEB J.* 34, 2978–2986 (2019). doi:10.1096/fj.201901997RR
- 126. Schapira, A. H. V. *et al.* Mitochondrial Complex I Deficiency in Parkinson's Disease. J. Neurochem. 54, 823–827 (1990). doi:10.1111/j.1471-4159.1990.tb02325.x
- 127. Gegg, M. E. & Schapira, A. H. V. Mitochondrial dysfunction associated with glucocerebrosidase deficiency. *Neurobiol. Dis.* **90**, 43–50 (2016). doi:10.1016/j.nbd.2015.09.006
- Bai, R. & Higgs, J. D. Mitochondrial disorders. In *Molecular Pathology in Clinical Practice: Second Edition* (ed. Leonard, D.) 139–160 (Springer, 2016). doi:10.1007/978-3-319-19674-9_10
- Chen, H. & Chan, D. C. Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. *Hum. Mol. Genet.* 18, R169–176 (2009). doi:10.1093/hmg/ddp326
- Holloszy J, Oscai LB, Don IJ, M. P. Mitochondrial citric acid cycle and related enzymes: Adaptive response to exercise. *Biochem Biophys Res Comm* 40, 1368– 1373 (1970). doi: 10.1016/0006-291x(70)90017-3
- Spina, R. J. *et al.* Mitochondrial enzymes increase in muscle in response to 7-10 days of cycle exercise. *J. Appl. Physiol.* 80, 2250–2254 (1996). doi: 10.1152/jappl.1996.80.6.2250
- Wyckelsma, V. L. *et al.* Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training. *Journal of Physiology* 595, 3345–3359 (2017). doi: 10.1113/JP27395
- 133. MacInnis, M. J. *et al.* Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work. *J. Physiol.* **595**, 2955–2968 (2017). doi:10.1113/JP272570
- 134. Giordano, C. *et al.* Efficient mitochondrial biogenesis drives incomplete penetrance in Leber's hereditary optic neuropathy. *Brain* 137, 335–353 (2014). doi:10.1093/brain/awt343
- Yu-Wai-Man, P. *et al.* OPA1 mutations cause cytochrome c oxidase deficiency due to loss of wild-type mtDNA molecules. *Hum. Mol. Genet.* 19, 3043–3052 (2010). doi:10.1093/hmg/ddq209
- 136. Picard, M. *et al.* A Mitochondrial Health Index Sensitive to Mood and Caregiving Stress. *Biol. Psychiatry* **84**, 9–17 (2018). doi:

10.1016/j.biopsych.2018.01.012

- 137. Yan, X. *et al.* The Gene SMART study: Method, Study Design, and Preliminary Findings. *BMC Genomics* 18, 821 (2017). doi: https://doi.org/10.1186/s12864-017-4186-4
- Larsen, S. *et al.* Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. 14, 3349–3360 (2012). doi: 10.1113/jphysiol.2012.230185
- Krishnan, K. J., Bender, A., Taylor, R. W. & Turnbull, D. M. A multiplex realtime PCR method to detect and quantify mitochondrial DNA deletions in individual cells. *Anal. Biochem.* 370, 127–129 (2007). doi:10.1016/j.ab.2007.06.024
- 140. Eigendorf, J. *et al.* High intensity high volume interval training improves endurance performance and induces a nearly complete slow-to-fast fiber transformation on the mRNA level. *Front. Physiol.* **9** (2018). doi: https://doi.org/10.3389/fphys.2018.00601
- Bloemberg, D. & Quadrilatero, J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. *PLoS One* 7, e35273 (2012). doi: 10.1371/journal.pone.0035273
- 142. Dalleck, L. C., Haney, D. E., Buchanan, C. A. & Weatherwax, R. M. Does a Personalised Exercise Prescription Enhance Training Efficacy and Limit Training Unresponsiveness? a Randomised Controlled Trial. J. Fit. Res. 5, 15–27 (2016). https://research.usc.edu.au/discovery/fulldisplay/alma99450921602621/61USC_I NST:ResearchRepository
- 143. Rosseel, Y. Lavaan: An R package for structural equation modeling. *J. Stat. Softw.* **48** (2012). doi:10.18637/jss.v048.i02
- 144. van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. *J. Stat. Softw.* **45** (2011). doi:10.18637/jss.v045.i03
- 145. Robitzsch, A., Grund, S. & Henke, T. miceadds: Some additional multiple imputation functions, especially for mice. R package version 2.8-24. https://CRAN.R-project.org/package=miceadds (2017)
- 146. Wickham, H. & Francois, R. dplyr: A Grammar of Data Manipulation. R Packag. version 0.4.2. https://CRAN.R-project.org/package=dplyr (2015).
- 147. Wickham, H and Bryan, J. readxl: Read Excel files. R package version 1.3.1. https://CRAN.R-project.org/package=readxl (2019).
- 148. Kassambara, A. ggpubr: 'ggplot2' Based Publication Ready Plots. R package version 0.1.7. https://CRAN.R-project.org/package=ggpubr (2018).
- 149. Ginestet, C. ggplot2: Elegant Graphics for Data Analysis. J. R. Stat. Soc. Ser. A (Statistics Soc.) 174, 245–246 (2011). doi: https://doi.org/10.1111/j.1467-985X.2010.00676_9.x
- 150. Mengel-From, J. *et al.* Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly. *Hum.*

Genet. 133, 1149-1159 (2014). doi:10.1007/s00439-014-1458-9

- Dolcini, J. *et al.* Mitochondria and aging in older individuals: An analysis of DNA methylation age metrics, leukocyte telomere length, and mitochondrial DNA copy number in the VA normative aging study. *Aging* (Albany, NY). 12, 2070–2083 (2020). doi:10.18632/aging.102722
- 152. Benjamin M. Davis, Glen F. Rall, M. J. S. Does increased prescribed exercise alter non-exercise physical activity/energy expenditure in healthy adults? A systematic review. *Clinical Obesity.* **176**, 139–148 (2017). doi: 10.1111/cob.12040.
- 153. Prouteau, M. & Loewith, R. Regulation of cellular metabolism through phase separation of enzymes. *Biomolecules* **8**, 160 (2018). doi:10.3390/biom8040160
- 154. Carter, S. L., Rennie, C. D., Hamilton, S. J. & Tarnopolsky, M. A. Changes in skeletal muscle in males and females following endurance training. *Can. J. Physiol. Pharmacol.* **79**, 386–392 (2001). doi:10.1139/cjpp-79-5-386
- 155. Flück, M., Däpp, C., Schmutz, S., Wit, E. & Hoppeler, H. Transcriptional profiling of tissue plasticity: Role of shifts in gene expression and technical limitations. *Journal of Applied Physiology* **99**, 397–413 (2005). doi:10.1152/japplphysiol.00050.2005
- 156. Puntschart, A. *et al.* Expression of fos and jun genes in human skeletal muscle after exercise. *Am. J. Physiol. Cell Physiol.* **274,** C129–C137 (1998). doi:10.1152/ajpcell.1998.274.1.c129
- 157. Egan, B. & Zierath, J. R. Review Exercise Metabolism and the Molecular Regulation of Skeletal Muscle Adaptation. *Cell Metab.* 17, 162–184 (2012). doi: 10.1016/j.cmet.2012.12.012
- 158. Granata, C., Jamnick, N. A. & Bishop, D. J. Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. *Sport. Med.* 48, 1809–1828 (2018). doi: 10.1007/s40279-018-0936-y
- 159. Timmons, J. A. *et al.* Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. *J. Appl. Physiol.* **108**, 1487–1496 (2010). doi: 10.1152/japplphysiol.01295.2009
- 160. Zoladz, J. A. *et al.* MYHC II content in the vastus lateralis m. quadricipitis femoris is positively correlated with the magnitude of the non-linear increase in the VO2 / power output relationship in humans. *J. Physiol. Pharmacol.* 53, 805–821 (2002). http://www.jpp.krakow.pl/journal/archive/12 02/pdf/805 12 02 article.pdf
- 161. Majerczak, J., Nieckarz, Z., Karasinski, J. & Zoladz, J. A. Myosin heavy chain composition in the vastus lateralis muscle in relation to oxygen uptake and heart rate during cycling in humans. *J. Physiol. Pharmacol.* **65**, 217–227 (2014). https://pubmed.ncbi.nlm.nih.gov/24781731/
- 162. Mitchell, E. A., Martin, N. R. W., Bailey, S. J. & Ferguson, R. A. Critical power is positively related to skeletal muscle capillarity and type i muscle fibers in endurance-trained individuals. *J. Appl. Physiol.* **125**, 737–745 (2018). doi:10.1152/japplphysiol.01126.2017

- 163. Nederveen, J. P. *et al.* Variability in skeletal muscle fibre characteristics during repeated muscle biopsy sampling in human vastus lateralis. *Appl. Physiol. Nutr. Metab.* 45, 368–375 (2020). doi:10.1139/apnm-2019-0263
- 164. Murach, K. A. *et al.* Fiber typing human skeletal muscle with fluorescent immunohistochemistry. *Journal of Applied Physiology* **127**, 1632–1639 (2019). doi:10.1152/japplphysiol.00624.2019
- Čapková, M. *et al.* Activities of cytochrome c oxidase and citrate synthase in lymphocytes of obese and normal-weight subjects. *Int. J. Obes.* 26, 1110–1117 (2002). doi:10.1038/sj.ijo.0802055
- Katyare, S. S. & Howland, J. L. Enhanced oxidative metabolism in liver mitochondria from genetically obese mice. *Arch. Biochem. Biophys.* 188, 15–20 (1978). doi:10.1016/0003-9861(78)90349-1
- 167. Kappler, L. C. C. Method development for valid high resolution profiling of mitochondria and Omics investigation of mitochondrial adaptions to excess energy intake and physical exercise. (Eberhard Karls Universität Tübingen, Tübingen, 2018).
- Kuznetsov, A. V. *et al.* Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. *Nat. Protoc.* 3, 965–976 (2008). doi:10.1038/nprot.2008.61
- 169. Pesta, D. & Gnaiger, E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. In *Mitochondrial Bioenergetics. Methods in Molecular Biology (Methods and Protocols)* (ed. C. Palmeira, A. Moreno) 25–58 (Humana Press, 2012). doi:10.1007/978-1-61779-382-0_3
- 170. Granata, C., Oliveira, R. S. F., Little, J. P., Renner, K. & Bishop, D. J. Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle. *FASEB J.* 30, 3413–3423 (2016). doi: 10.1096/fj.201500100R
- 171. Montero, D. *et al.* Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training. *J. Physiol.* (2015). doi:10.1113/JP270250
- 172. Irving, B. A. *et al.* Combined training enhances skeletal muscle mitochondrial oxidative capacity independent of age. *J. Clin. Endocrinol. Metab.* **100**, 1654–1663 (2015). doi:10.1210/jc.2014-3081
- Leckey, J. J. *et al.* High dietary fat intake increases fat oxidation and reduces skeletal muscle mitochondrial respiration in trained humans. *FASEB J.* 32, 2979– 2991 (2018). doi: 10.1096/fj.201700993R
- Robach, P. *et al.* Hypoxic training: Effect on mitochondrial function and aerobic performance in hypoxia. *Med. Sci. Sports Exerc.* 46, 1936–1945 (2014). doi: 10.1249/MSS.00000000000321
- 175. Brandao, C. F. C. *et al.* Physical training, UCP1 expression, mitochondrial density, and coupling in adipose tissue from women with obesity . *Scand. J. Med. Sci. Sports* 29, 1699–1706 (2019). doi:10.1111/sms.13514

- 176. Goedecke, J. H. *et al.* An exercise intervention to unravel the mechanisms underlying insulin resistance in a cohort of black south african women: Protocol for a randomized controlled trial and baseline characteristics of participants. *J. Med. Internet Res.* 18, e75 (2018). doi:10.2196/resprot.9098
- 177. Gatterer, H. *et al.* Exercise performance, muscle oxygen extraction and blood cell mitochondrial respiration after repeated-sprint and sprint interval training in hypoxia: A pilot study. *J. Sport. Sci. Med.* **17**, 339–347 (2018).
- Hedges, C. P. *et al.* Peripheral blood mononuclear cells do not reflect skeletal muscle mitochondrial function or adaptation to high-intensity interval training in healthy young men. *J. Appl. Physiol.* **126**, 454–461 (2019). doi:10.1152/japplphysiol.00777.2018
- 179. Tsai, H. H. *et al.* Exercise Training Alleviates Hypoxia-induced Mitochondrial Dysfunction in the Lymphocytes of Sedentary Males. *Sci. Rep.* 6, 35170 (2016). doi:10.1038/srep35170
- Dantas de Lucas, R. *et al.* Increased platelet oxidative metabolism, blood oxidative stress and neopterin levels after ultra-endurance exercise. *J. Sports Sci.* 32, 22–30 (2014). doi:10.1080/02640414.2013.797098
- Carvalho, B. S. & Irizarry, R. A. A framework for oligonucleotide microarray preprocessing. *Bioinformatics* 26, 2363–2367 (2010). doi: 10.1093/bioinformatics/btq431
- 182. McHale, C. M. *et al.* Global gene expression profiling of a population exposed to a range of benzene levels. *Environ. Health Perspect.* **119**, 628–634 (2011). doi:10.1289/ehp.1002546
- 183. Kitchen, R. R. et al. Correcting for intra-experiment variation in Illumina BeadChip data is necessary to generate robust gene-expression profiles. BMC Genomics 11, 134 (2010). doi:10.1186/1471-2164-11-134
- 184. Dohlmann, T. L., Hindsø, M., Dela, F., Helge, J. W. & Larsen, S. High-intensity interval training changes mitochondrial respiratory capacity differently in adipose tissue and skeletal muscle. *Physiol. Rep.* 6, e13856 (2018). doi: 10.14814/phy2.13857
- 185. Boushel, R. *et al.* Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. *Diabetologia* 50, 790–796 (2007). doi: 10.1007/s00125-007-0594-3
- 186. Larsen, S. *et al.* The best approach: Homogenization or manual permeabilization of human skeletal muscle fibers for respirometry? *Anal. Biochem.* 446, 64–68 (2014). doi: 10.1016/j.ab.2013.10.023
- Vincent, G. *et al.* Changes in mitochondrial function and mitochondria associated protein expression in response to 2-weeks of high intensity interval training. *Front. Physiol.* 6, 1–8 (2015).
- 188. Doerrier, C. *et al.* High-resolution fluorespirometry and oxphos protocols for human cells, permeabilized fibers from small biopsies of muscle, and isolated mitochondria. *Methods Mol Biol* **1782**, 31–70 (2018). doi: 10.1007/978-1-4939-7831-1_3

- Larsen, F. J. *et al.* High-intensity sprint training inhibits mitochondrial respiration through aconitase inactivation. *FASEB J.* 30, 417–427 (2016). doi: https://doi.org/10.1096/fj.15-276857
- 190. Porter, C., Reidy, P. T., Bhattarai, N., Sidossis, L. S. & Rasmussen, B. B. Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle. *Med. Sci. Sports Exerc.* 47, 1922–1931 (2015). doi: 10.1249/MSS.0000000000605
- 191. Konopka, A. R. *et al.* Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. *Aging Cell* 18, e12880 (2019). doi: 10.1111/acel.12880
- 192. Whitham, M. & Febbraio, M. A. The ever-expanding myokinome: Discovery challenges and therapeutic implications. *Nat Rev Drug Discov* 15, 719–729 (2016). doi:10.1038/nrd.2016.153
- 193. Howlett, K. F. & McGee, S. L. Epigenetic regulation of skeletal muscle metabolism. *Clin. Sci.* **130**, 1051–1063 (2016). doi: 10.1042/CS20160115
- 194. Denham, J., O'Brien, B. J., Harvey, J. T. & Charchar, F. J. Genome-wide sperm DNA methylation changes after 3 months of exercise training in humans. *Epigenomics* 7, 717–731 (2015). doi: 10.2217/epi.15.29
- 195. Nitert, M. D. *et al.* Impact of an Exercise Intervention on DNA Methylation in Skeletal Muscle From First-Degree Relatives of Patients With Type 2 Diabetes. *Diabetes* 61, 3322–3332 (2012). doi:10.2337/db11-1653
- 196. Morris, T. J. *et al.* ChAMP: 450k Chip Analysis Methylation Pipeline. *Bioinformatics* **30**, 428–430 (2014). doi: 10.1093/bioinformatics/btt684
- 197. Zhou, W., Laird, P. W. & Shen, H. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. *Nucleic Acids Res.* **45**, e22 (2017). doi: 10.1093/nar/gkw967
- 198. Du, P. *et al.* Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. *BMC Bioinformatics* **11**, 587 (2010). https://doi.org/10.1186/1471-2105-11-587
- 199. Smyth, G. K. Limma: linear models for microarray data. In *Bioinformatics and Computational Biology Solutions Using R and Bioconductor* (ed. R. Gentleman *et al.*) 397–420 (Springer, 2005). doi:10.1007/0-387-29362-0_23
- 200. Peters, T. J. *et al.* De novo identification of differentially methylated regions in the human genome. *Epigenetics & Chromatin* **8**, 1–16 (2015). https://doi.org/10.1186/1756-8935-8-6
- Phipson, B., Maksimovic, J. & Oshlack, A. missMethyl: an R package for analyzing data from Illumina's HumanMethylation450 platform. *Bioinformatics* 32, 286–288 (2016). doi: 10.1093/bioinformatics/btv560
- 202. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. *Bioinformatics* 32, 2847–2849 (2016). doi:10.1093/bioinformatics/btw313
- 203. Lê, S., Josse, J. & Husson, F. FactoMineR : An R package for multivariate

analysis. J Stat Softw 25, 1-18 (2008). doi: 10.18637/jss.v025.i01

- 204. Guo, S. *et al.* Identification of methylation haplotype blocks AIDS in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma DNA. *Nat. Genet.* **49**, 635–642 (2017). doi:10.1038/ng.3805
- 205. Schlosberg, C. E., VanderKraats, N. D. & Edwards, J. R. Modeling complex patterns of differential DNA methylation that associate with gene expression changes. *Nucleic Acids Res.* **45**, 5100–5111 (2017). doi:10.1093/nar/gkx078
- 206. Vanderkraats, N. D., Hiken, J. F., Decker, K. F. & Edwards, J. R. Discovering high-resolution patterns of differential DNA methylation that correlate with gene expression changes. *Nucleic Acids Res.* 41, 6816–6827 (2013). doi:10.1093/nar/gkt482
- 207. Romanoski, C. E., Glass, C. K., Stunnenberg, H. G., Wilson, L. & Almouzni, G. Epigenomics: Roadmap for regulation. *Nature* **518**, 314–316 (2015). doi:10.1038/518314a
- 208. Fishilevich, S. *et al.* GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. *Database* 2017, bax028. (2017). doi:10.1093/database/bax028
- 209. Roadmap Epigenomics Consortium, Kundaje A. *et al.* Integrative analysis of 111 reference human epigenomes. *Nature* 518, 317–330 (2015). doi: https://doi.org/10.1038/nature14248
- Boyne, D. J. *et al.* Physical activity, global DNA methylation, and breast cancer risk: A systematic literature review and meta-analysis. *Cancer Epidemiology Biomarkers and Prevention* 27, 1320–1331 (2018). doi:10.1158/1055-9965.EPI-18-0175
- 211. Parikh, H. *et al.* Molecular correlates for maximal oxygen uptake and type 1 fibers. *Am. J. Physiol. Endocrinol. Metab.* **294**, E1152–E1159 (2008). doi:10.1152/ajpendo.90255.2008
- Strawbridge, R. J. *et al.* Soluble CD93 is involved in metabolic dysregulation but does not influence carotid intima-media thickness. *Diabetes* 65, 2888–2899 (2016). doi:10.2337/db15-1333
- 213. Sanchis-Gomar, F. *et al.* Physical exercise as an epigenetic modulator. Eustress, the 'positive stress' as an effector of gene expression. *Strength Cond. J.* **25**, 66–67 (2003). doi: 10.1519/JSC.0b013e31825bb594
- 214. Denham, J., Marques, F. Z., Brien, B. J. O. & Charchar, F. J. Exercise : Putting Action into Our Epigenome. *Sports Medicine* 44, 189–209 (2014). doi:10.1007/s40279-013-0114-1
- 215. Ehlert, T., Simon, P. & Moser, D. A. Epigenetics in Sports. *Sport. Med.* **43**, 93–110 (2013). doi: 10.1007/s40279-012-0012-y
- 216. Jacques, M. *et al.* Epigenetic changes in healthy human skeletal muscle following exercise– a systematic review. *Epigenetics* **14**, 633–648 (2019). doi:10.1080/15592294.2019.1614416

- Pearson, T. A. & Manolio, T. A. How to interpret a genome-wide association study. *JAMA - J. Am. Med. Assoc.* 299, 1335–1344 (2008). doi:10.1001/jama.299.11.1335
- Barton, S. J., Crozier, S. R., Lillycrop, K. A., Godfrey, K. M. & Inskip, H. M. Correction of unexpected distributions of P values from analysis of whole genome arrays by rectifying violation of statistical assumptions. *BMC Genomics* 14, 161 (2013). doi:10.1186/1471-2164-14-161
- 219. Edwards, J. R., Yarychkivska, O., Boulard, M. & Bestor, T. H. DNA methylation and DNA methyltransferases. *Epigenetics and Chromatin* **10**, 23 (2017). https://doi.org/10.1186/s13072-017-0130-8
- 220. Rider, C. F. & Carlsten, C. Air pollution and DNA methylation: Effects of exposure in humans. *Clinical Epigenetics* 11, 131 (2019). doi:10.1186/s13148-019-0713-2
- 221. Cornish, A. K., Broadbent, S. & Cheema, B. S. Interval training for patients with coronary artery disease: A systematic review. *Eur. J. Appl. Physiol.* **111**, 579– 589 (2011). doi: 10.1007/s00421-010-1682-5
- 222. Milanović, Z., Sporiš, G. & Weston, M. Effectiveness of High-Intensity Interval Training (HIT) and Continuous Endurance Training for VO2max Improvements: A Systematic Review and Meta-Analysis of Controlled Trials. *Sport. Med.* 45, 1469–1481 (2015). doi: 10.1007/s40279-015-0365-0
- 223. LaMonte, M. J. *et al.* Cardiorespiratory fitness is inversely associated with the incidence of metabolic syndrome: A prospective study of men and women. *Circulation* 112, 505–512 (2005). doi: 10.1161/CIRCULATIONAHA.104.503805
- 224. Grazioli, E. *et al.* Physical activity in the prevention of human diseases: role of epigenetic modifications. *BMC Genomics* 18, 802 (2017). doi: https://doi.org/10.1186/s12864-017-4193-5
- 225. Gremeaux, V. *et al.* Exercise and longevity. *Maturitas* **73**, 312–317 (2012). doi: 10.1016/j.maturitas.2012.09.012
- 226. Prather, H., Spitznagle, T. & Hunt, D. Benefits of exercise during pregnancy. *PM R* **4**, 845–850 (2012). doi: 10.1016/j.pmrj.2012.07.012
- 227. Neufer, P. D. *et al.* Understanding the Cellular and Molecular Mechanisms of Physical Activity-Induced Health Benefits. *Cell Metabolism* **22**, 4–11 (2015). doi: 10.1016/j.cmet.2015.05.011
- 228. Mann, T. 'Mean response' disregards the importance of individual variation. South African J. Sport. Med. 23, 30 (2011). doi:10.17159/2078-516x/2011/v23i1a532
- Montero, D. & Lundby, C. Refuting the myth of non-response to exercise training: 'non-responders' do respond to higher dose of training. *J. Physiol.* 595, 3377–3387 (2017). doi:10.1113/JP273480
- 230. Pickering, C. & Kiely, J. Do Non-Responders to Exercise Exist—and If So, What Should We Do About Them? *Sport. Med.* **49**, 1–7 (2019). doi:10.1007/s40279-
018-01041-1

- 231. Booth, F. W. & Laye, M. J. The future: Genes, physical activity and health. *Acta Physiologica* **199**, 549–56 (2010). doi:10.1111/j.1748-1716.2010.02117.x
- 232. Garber, C. E. *et al.* Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. *Med. Sci. Sports Exerc.* 43, 1334–59 (2011). doi:10.1249/MSS.0b013e318213fefb
- 233. De la Rosa, A. *et al.* Long-term exercise training improves memory in middleaged men and modulates peripheral levels of BDNF and Cathepsin B. *Sci. Rep.* **9**, 3337 (2019). doi:10.1038/s41598-019-40040-8
- 234. Bouchard, C. Genomic predictors of trainability. *Exp. Physiol.* **97**, 347–352 (2012). doi: 10.1113/expphysiol.2011.058735
- 235. Senn, S. Individual response to treatment: is it a valid assumption? *BMJ* **329**, 966–8 (2004). doi: 10.1136/bmj.329.7472.966
- Zeevi, D. *et al.* Personalized Nutrition by Prediction of Glycemic Responses. *Cell* 163, 1079–1094 (2016). doi: 10.1016/j.cell.2015.11.001
- 237. Djafarzadeh, S. & Jakob, S. M. High-resolution Respirometry to Assess Mitochondrial Function in Permeabilized and Intact Cells. *J. Vis. Exp.* **120**, 54985 (2017). doi:10.3791/54985

Appendix: Included Publications

Macsue Jacques, Danielle Hiam, Jeffrey Craig, Romain Barrès, Nir Eynon & Sarah Voisin (2019) Epigenetic changes in healthy human skeletal muscle following exercise– a systematic review, Epigenetics, 14:7, 633-648, DOI: 10.1080/15592294.2019.1614416

The full-text of this article is subject to copyright restrictions, and cannot be included in the online version of the thesis.

Voisin, Sarah1; Jacques, Macsue1; Lucia, Alejandro2,3; Bishop, David J.1,4; Eynon, Nir1,5 Statistical Considerations for Exercise Protocols Aimed at Measuring Trainability, Exercise and Sport Sciences Reviews: January 2019 - Volume 47 - Issue 1 - p 37-45 doi: 10.1249/JES.000000000000176

The full-text of this article is subject to copyright restrictions, and cannot be included in the online version of the thesis.

1	Implementation of multiple statistical and exercise training methods to measure
2	trainability
3	
4	Macsue Jacques ¹ , Shanie Landen ¹ , Javier Alvarez Romero ¹ , Xu Yan ¹ , Danielle Hiam ¹ , Nir
5	Eynon ^{1, 2*#} , Sarah Voisin ^{1*}
6	*Co-senior authors
7	¹ Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.
8	² Murdoch Children's Research Institute, Melbourne, Australia
9	
10	# Corresponding Author:
11	Associate Professor Nir Eynon
12	Institute for Health and Sport (iHeS),
13	Victoria University
14	PO Box 14428
15	Melbourne, VIC 8001, Australia.
16	Tel: (61-3) 9919 5615, Fax: (61-3) 9919 5532,
17	E-mail: <u>Nir.Eynon@vu.edu.au</u>
18	
19	
20	
21	
22	

Jacques, M., Landen, S., Alvarez Romero, J., Yan, X., Garnham, A., Hiam, D., Siegwald, M., Mercier, E., Hecksteden, A., Eynon, N., & Voisin, S. (2021). Individual physiological and mitochondrial responses during 12 weeks of intensified exercise. Physiological Reports, 9, e 14962. https://doi.org/10.14814/phy2.14962

1	Individual physiological and mitochondrial responses during 12 weeks of intensified
2	exercise
3	Running title: Physiological and molecular adaptations in muscle
4	Macsue Jacques ¹ , Shanie Landen ¹ , Javier Alvarez Romero ¹ , Xu Yan ¹ , Andrew Garnham ¹ ,
5	Danielle Hiam ¹ , Mélina Siegwald ³ , Emma Mercier ³ , Anne Hecksteden ⁴ , Sarah Voisin ^{1*} , Nir
6	Eynon ^{1, 2*#}
7	*Co-senior authors
8	¹ Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.
9	² Murdoch Children's Research Institute, Melbourne, Australia
10	³ Rennes Agrocampus Ouest, Rennes, France
11	⁴ Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
12	# Corresponding Author:
13	Associate Professor Nir Eynon
14	Institute for Health and Sport (iHeS),
15	Victoria University
16	PO Box 14428
17	Melbourne, VIC 8001, Australia.
18	Tel: (61-3) 9919 5615, Fax: (61-3) 9919 5532,
19	E-mail: Nir.Eynon@vu.edu.au
20	
21	
22	

23 Abstract

Aim: Observed effects of exercise are highly variable between individuals, and subject-bytraining interaction (i.e. individual response) is often not estimated. Here, we measured mitochondrial (citrate synthetase, cytochrome-c oxidase, succinate dehydrogenase and mitochondrial copy-number), performance markers (W_{peak}, LT and VO_{2peak}), and fibre type proportions/expression (Type I, Type IIa and Type IIx) in multiple time points during 12-week of High-Intensity Interval Training (HIIT) to investigate effects of exercise at the individual level.

Methods: 16 young (Age: 33.1±9.0 years), healthy men (VO_{2peak} 35–60 mL·min⁻¹·kg⁻¹ & BMI:
26.4±4.2) from the Gene SMART study completed 12-week of progressive HIIT. Performance
markers and muscle biopsies were collected every 4-week. We used mixed-models and
bivariate growth-models to quantify individual response and to estimate correlations between
variables.

Results: All performance markers exhibited significant (Wpeak 0.56±0.33 p=0.003, LT 36 0.37±0.35 p=0.007, VO_{2peak} 3.81±6.13 p=0.02) increases overtime, with subject-by-training 37 interaction being present (CI: Wpeak 0.09-0.24, LT 0.06-0.18, VO2peak 0.27-2.32). All other 38 measurements did not exhibit significant changes. Fibre type IIa proportions at baseline was 39 significantly associated with all physiological variables (p<0.05), and citrate synthetase & 40 cytochrome-c oxidase levels at baseline and overtime (i.e. intercept & slope) presented 41 significant covariance (p<0.05). Finally, low-correlations between performance and 42 mitochondrial markers were observed. 43

44 Conclusion: We identified a significant subject-by-training interaction for the performance 45 markers. While for all other measures within-subject variability was too large and 46 interindividual differences in training efficacy could not be verified. Changes in measurements 47 in response to exercise were not correlated, and such disconnection should be further 48 investigated by future studies.

49 Key words: VO_{2peak}, training variability, mitochondria, exercise

- 50
- 51
- 52

53 Introduction

Exercise training leads to many physiological adaptations, such as increased maximal 54 oxygen uptake (VO_{2max}) as well as molecular adaptations, such as mitochondrial biogenesis 55 (1). The magnitude of these adaptations depends on the duration, intensity, volume, and type 56 of exercise training (2). Although the benefits of exercise are well described, large inter-57 individual variability in the observed responses to well standardized exercise training is 58 59 consistently reported (3-7), for all exercise-related phenotypes (5), independently of the 60 intervention duration (7). Furthermore, gross measures of variability in response to exercise interventions, commonly measured by pre-post approaches are not a conclusive representation 61 62 of individual response (6). Individual response (also known as subject-by-training interaction) 63 relies on the assumption that consistent training changes occur for each individual (6,8-10). 64 However, we and others, have shown that measuring individual response for any given variable is more complex than previously assumed, and exercise studies often fail to robustly measure 65 66 it (6-8,11-14).

The key to quantifying individual responses is to isolate sources of variation in exercise 67 training responses by first quantifying the magnitude of variation in training response, given 68 69 that if subject-by-training interaction is low assessing response of individuals is futile; and only then quantifying individual responses (15). In exercise studies, two stances are commonly 70 71 observed as sources of variation: 1) day-to-day or biological variability (i.e. sleep, nutrition, 72 etc), and 2) statistical variance such as random error. In order to isolate such sources of 73 variation and obtain true effects of exercise training specific study designs and methods 74 (8,11,13) have been proposed. With the reference standard being a replicated cross-over design, and repeated testing measuring gradual adaptations at consecutive timepoints being a relative 75 substitute. To date, one study to our knowledge has implemented the repeated testing design 76 solely for VO_{2max} measurement (11), and no molecular markers have been investigated thus 77 78 far.

Among the many molecular changes that are led by exercise (i.e. fibre type switch, glucose uptake, etc.), the mitochondria is known to be heavily regulated by exercise training (16–19). The mitochondrion is responsible for energy production to the cells, and mitochondrial deficiency can lead to both physical and psychological disorders (20–23). Exercise studies often rely on isolated mitochondrial markers measures; however, one human cell contains multiple copies of mitochondria and consequently mitochondrial DNA (mtDNA). MtDNA

encodes critical components of the respiratory complexes and is necessary for ATP production. 85 86 An increase in mtDNA copy number (mtCN) does not necessarily equate with an increase in mitochondrial capacity and could simply be a consequence of compensatory mechanisms (i.e. 87 88 reduction in mitochondrial quality and elevated mitochondrial content) (24,25). Thus, mitochondrial markers measured in isolation do not provide the full picture of mitochondrial 89 health (26). Combining measures of mitochondrial content and quality is essential to access 90 mitochondrial health. A functional index of mitochondrial health in blood has been recently 91 proposed (Mitochondrial Health Index), by mathematically integrating biochemical enzymatic 92 93 activities and mtCN into a single score, that may represent an optimized measure of mitochondrial functional capacity (26). This method successfully captured a reduction in 94 mitochondrial health in blood as a result of chronic psychological stress (26). However, this 95 approach has not been explored in skeletal muscle, either in the basal state, or following a 96 chronic physiological stimulus, such as exercise training. Furthermore, variability across 97 mitochondrial measures has been overlooked, and no study to date has thoroughly investigated 98 the efficacy of training on mitochondrial markers or estimated subject-by-training interaction 99 100 by the mitochondria.

Therefore, our aim was to use a repeated testing approach to estimate individual response for performance and molecular measures and to investigate the relationship between measurements changes overtime as a response to a 12-week HIIT intervention. We hypothesised that measuring multiple physiological and molecular components at regular intervals would allow to account for sources of variability and identification of true individual responses to exercise for performance as well as molecular measures, and by using a bivariate growth model we will also find associations between different markers in response to training.

108

109 Results

- 110 Individual responses to 12 weeks of HIIT training are evident at the physiological level but
- 111 not at the molecular level.
- 112 The exercise training triggered a positive physiological adaptation in a dose-response (i.e.
- 113 overtime) manner (p<0.05 for all physiological variables, Table 1, Figure 2 & fixed effects
- 114 Supplementary Table 1).

116	As we used a repeated testing approach, we were able to estimate within-subject variability
117	between multiple segments during the training period (Supplementary Table 1 - random
118	effects). We separated trainability from within-subject variability (and random error) that
119	correspond to the error surrounding the segmental changes of the slope. We were able to
120	delineate individual response, meaning each participant responded differently to the
121	intervention, with some participants showing rapid and large increases in fitness, while others
122	showed slower improvements (Figure 2). For example, in Figure 3 the highest responder
123	presented a VO_{2peak} slope change of +3.34, while the lowest responder presented a slope of -
124	2.29.
125	We did not detect any change in MHI (Figure 4) or mitochondrial markers in isolation
125	(Complementary Figure 1) at side the array of the individual level following 12 courses of
126	(Supplementary Figure 1) at either the group or the individual level following 12 weeks of
127	HIIT (Supplementary Table 2). Of note, mtCN was strongly associated with age in all models
128	(p<0.005) (Supplementary Table 2), which is in accordance with the literature (40,41).
129	Next, we investigated whether the training led to changes in fibre type distributions and
130	whether those changes were associated with physiological or molecular changes
131	(Supplementary table 2&3). First, we tested whether fibre type proportion (as a percentage
132	of number of fibres that were counted) and expression of myosin heavy chains (MHC) were
133	correlated. Fibre type proportion and MHC expression presented small but significant
134	correlation (Supplementary Figure 2). We did not detect any shifts in fibre type percentage
135	distributions or MHC expression after 12 weeks of HIIT at either the group or individual
136	level (p-value >0.05) (Figure 5, Supplementary Table 3). However, the proportions of
137	types I and IIa, but not IIx, were associated with physiological markers (W_{peak} , LT and
138	VO _{2peak} , p<0.05) (Supplementary Table 3). Finally, fibre type proportion and expression

139 were not associated with any of the mitochondrial markers after adjusting p-values (p>0.05,

- 140 data not shown).
- 141 Relationship between physiological and mitochondrial variables bivariate latent growth
 142 models

143 To understand the relationship between changes in molecular variables and changes in 144 physiological variables, we built a bivariate latent growth model. Table 2 summarises the interaction between each bivariate model. As expected, Wpeak, LT & VO2peak were correlated 145 146 at baseline, which means that participants with high W_{peak} at baseline also had high LT and VO_{2peak} at baseline (p<0.05). A similar correlation was observed between baseline CS and COX 147 (p=0.049). W_{peak} and LT showed similar increases over time across participants (p=0.05), but 148 VO_{2peak} did not present any correlations with the other performance measurements. However, 149 no other associations were observed between physiological and mitochondrial measures. 150 Finally, participants with higher baseline CS displayed smaller changes in COX following 151 training (p=0.042), and vice versa, participants with higher baseline COX had smaller changes 152 153 in CS following training (p=0.026) (Table 2).

154 Discussion

In the present study, we provided a comprehensive analysis of changes in performance, 155 mitochondrial, and fibre type profiles of 16 young to middle aged men, at three time points 156 157 throughout a 12-week HIIT intervention. We found that performance measurements improved 158 more consistently than molecular (mitochondrial) measurements during the 12-week HIIT 159 intervention. While there were clear changes in performance at the group level and we were 160 able to establish individual response to exercise, we were unable to do so with the other markers 161 as they were highly variable both within and between participants. Type I and IIa fibres were associated with physiological variables (W_{peak}, LT and VO_{2peak}). In our growth model no 162

significant associations were found between intercepts and slopes withing same parameters,
which means that baseline fitness did not influence magnitude of change for any physiological,
molecular or fibre type related measurement. Finally, changes at the physiological level were
not associated with changes at the molecular level.

167 Repeated measures during exercise interventions (i.e. testing participants at multiple 168 timepoints), constitute a cost-effective approach to estimate individual exercise responses 169 (6,8,11). Using this method, we could detect individual response for W_{peak}, LT and VO_{2peak}, 170 and identified individuals who responded better (or poorer) to the training than the group average. This methodology could therefore be the standard for studies aiming at uncovering 171 172 any exercise related phenotype/measure at the individual level, since it has successfully isolated sources of variability providing a true trainability estimate. However, due to the lack of a 173 control group, separating within-subject variability and random error was not captured (6). 174

We have assessed, for the first time in skeletal muscle, a comprehensive mitochondrial health 175 "score", MHI, originally assessed in blood (26). Although biologically relevant, mitochondrial 176 177 markers measured in isolation are hard to interpret as compensatory mechanisms may be occurring among variables. Thus, the novel MHI measurement integrating biochemical and 178 molecular mitochondrial measures, aims to obtain higher sensitivity to mitochondrial responses 179 as it accounts for any relationship between variables (26). During the 12-week HIIT 180 181 intervention, the mitochondrial enzyme maximal activity and therefore the MHI were highly 182 variable, and no consistent changes were observed at either the group or individual level. This was surprising given that mitochondrial content and function are upregulated by exercise (16-183 18). To ensure that the variance was not due to technical variability, we removed any duplicate 184 185 results that presented a variance >10%. However, it is known that enzyme activity is highly 186 dynamic and the timeframe in which enzymes are fired may vary both within as well as between 187 subjects (42). We cannot rule out the potential involvement of other enzymes in similar

188 pathways, or enzyme Km and not the maximal activity could be different between people (43), but these hypothesis remains to be tested. Furthermore, due to the nature of skeletal muscle 189 (i.e. multi-nucleated) we could not account for cell number as suggested by Picard et al. The 190 multi-nucleated characteristic of skeletal muscle promotes the possibility that each myonuclear 191 192 differ in transcriptional rates and are independently regulated and distinctive from each other, to the extent that local differences in skeletal muscle (i.e. two pieces of same biopsy) might be 193 194 present following exercise (44-46), and thus potentially explaining part of the variability 195 observed between and among measures.

196 Adaptive mechanisms that improve muscle function and enhance response to exercise are 197 initiated at the transcriptional level (46,47). However, apart from correlational observations there is no direct evidence linking changes in mRNA expression to training induced adaptations 198 (46,48,49). Here, we investigated whether fibre type gene expression was associated with fibre 199 200 type composition. The proportions of fibre type have been previously reported to be associated with different modalities of exercise (50-52). For example, a high proportion of type I fibres 201 are beneficial to endurance athletes as they are slow twitch, oxidative and relatively more 202 resistant to fatigue. We found significant associations between the proportions of type I and IIa 203 204 fibres with physiological markers. Fibre type I was positively associated with LT and VO_{2peak} while fibre type IIa was negatively associated with all physiological measurements (Wpeak, LT 205 206 and VO_{2peak} (p<0.05). However, neither fibre type composition nor MHC mRNA expression significantly changed with 12-weeks of HIIT at either the group or individual level. It is 207 208 recommended that for better accuracy a minimum of 150 fibres to be used for estimation of 209 fibre type proportions (35), and these guidelines were followed whenever possible (i.e. large 210 enough sample) in our study, and the absolutely minimum number of fibres considered was 211 100. However, even though we were careful to reduce variability within the data whenever 212 possible, it is possible that the large noise to ratio observed by these techniques might have

213 hindered any significant changes in our cohort (53). Further, we hypothesise that, the apparent lack of association between composition and expression may be due to the confounding 214 influence of random error (i.e. technical error of measurement and/or biological variability) 215 (46). A recent study investigating repeatability of exercise-induced changes, has shown a large 216 217 intra-biopsy variation, most like to due to slight changes in the site for sampling, for fibre type distribution as well as gene expression (46), this could potentially explain the poor correlation 218 219 observed between our results for fibre type composition and expression, and even the 220 mitochondrial enzyme analysis.

221 Growth models allowed testing as to whether an individual who started with higher baseline 222 values had lower improvements after training, without suffering from the statistical artefact of regression to the mean that often plagues exercise training studies (7). To achieve this, slope 223 factors within each system were regressed on the corresponding intercepts to control for any 224 false associations (i.e. regression to the mean) (54). We found that baseline values did not affect 225 the rate of change of any of the physiological or molecular variables (p>0.05). Although we 226 227 have conducted a power analyses for our models and our sample size is sufficient to detect with a confidence of 80% we could not derive the power of covariance between intercepts and slopes 228 229 and therefore we are unsure on the certainty of this measure. New studies with repeated testing and larger sample sizes should further investigate this hypothesis. We also hypothesised that 230 231 changes at the physiological level are a consequence of changes at the molecular level, and therefore physiological changes should be associated with changes molecular changes. 232 233 Surprisingly, only W_{peak} and LT changed similarly over time, meaning that changes in most 234 variables were independent from one another, and improvement in one variable did not 235 necessarily mean improvement in another variable. Finally, we found an interesting 236 relationship between CS and COX. CS and COX levels were correlated at baseline, and 237 baseline CS values were associated with changes in COX and vice versa. CS activity is closely

238 associated with mitochondrial content, while COX activity is strongly associated with mitochondrial oxidative phosphorylation capacity (26,29). CS activity influences the oxidation 239 of substrates in some respirations protocols, and complex IV is part of the mitochondrial 240 substrate oxidation (29), which could potentially explain the relationship observed in our 241 242 results. COX/CS ratio has been previously reported to be a biochemical marker of mitochondrial dysfunction related to obesity in blood (55). An increase of this ratio (i.e. energy-243 244 coupled substrate oxidation) could potentially lead to increase of ATP synthesis which in turn 245 may be channelled toward lipid formation (56). Based on our results exercise might be acting 246 as a regulator of CS/COX ratio, which might represent an important mechanism regulating 247 adipocyte formation and reducing the risk of obesity. This is an important finding, that needs 248 to be further explored and validated.

In summary, the repeated testing approach applied here could detect subject-by-training 249 250 interaction for the performance markers. However, we could only estimate trainability for physiological measures of fitness, while mitochondrial markers were highly variable both 251 between and within participants over time. We also reported a low correlation between 252 physiological and molecular markers of fitness. Further studies utilizing the repeated testing 253 254 approach in larger cohorts are needed in order to clarify the relationship between molecular and physiological responses to training. Furthermore, future studies should also include a 255 256 control group for the same length in order to obtain a clear measure of random error, and then use this to normalise the effects of training. Finally, variability between and within variables 257 258 might due to compensatory molecular mechanisms, and other associations might be occurring such as the one reported here by CS/COX, however further studies in the field are necessary to 259 260 elucidate such networks.

261

262 Methods

263 Participants

A subset of 20 participants from the Gene SMART (Skeletal Muscle Adaptive Responses to Training) study 4-week training intervention (27) were recruited to complete a second intervention of 12 weeks. Sixteen of those 20 participants completed the full 12-weeks of HIIT (3 dropouts and 1 exclusion due to pre-intended criterion (i.e. duplicate tests provided more than 10% difference)). 19 completed 4 weeks (1 dropout), and 18 completed 8 weeks (1 dropout).

Participants were apparently healthy, moderately trained men (VO_{2peak} 35-60 mL·min⁻¹·kg⁻¹), 270 271 aged 18 to 45 years old (Supplementary table 1). The study was approved by the Victoria 272 University human ethics committee (HRE13-223) and written informed consent was obtained 273 from each participant. Participants were excluded from the study if they had a past history of 274 definite or possible coronary heart disease, significant chronic or recurrent respiratory 275 condition, significant neuromuscular, major musculoskeletal problems interfering with ability 276 to cycle, uncontrolled endocrine and metabolic disorders or diabetes requiring insulin and other therapies (27). 277

278 Study design

Participants were tested at baseline and after 4 weeks, 8 weeks, and 12 weeks of HIIT. To 279 280 ensure progression, training intensity was re-adjusted every 4 weeks based on the newly determined peak power output (Wpeak) and lactate threshold (LT) from the graded exhaustive 281 282 exercise test (GXTs). These tests also allowed for the monitoring of individual participant progress for the longitudinal analysis of training adaptations. To increase accuracy in 283 284 measurement and to reduce biological day-to-day variability in participants' performance, 285 physiological measures of fitness (W_{peak} , LT, and VO_{2peak}) were assessed from two GXTs, at a maximum of 2 days apart, conducted at each time point (Figure 1). Muscle biopsies were taken 286

¹¹

48h after performance tests from each cycle. LT was determined using the modified d-max
method (28). More details on testing criteria and participants have been described elsewhere
(27).

290 Muscle biopsies

A controlled diet for 48 h prior to the muscle biopsies was provided to the participants, 291 292 according to the guidelines of the Australian National Health & Medical Research Council 293 (NHMRC). Muscle biopsies were taken using a Bergstrom needle by an experienced medical 294 doctor from the vastus lateralis muscle of the participants' following local anaesthesia (2mL, 295 1% Lidocaine (Lignocaine)). The needle was inserted in the participant leg and manual suction 296 was applied for muscle collection. Care was taken not to contaminate the muscle samples with 297 local anaesthetic during the biopsy. Excess blood, fat and fibrosed tissue was gently removed from biopsy if any. A piece of the muscle was immediately frozen in liquid nitrogen and stored 298 in -80 degrees, and another piece was imbedded in optimum cutting temperature compound 299 (O.C.T.), and then snap frozen and stored in -80 for immunology analyses. Muscle biopsies 300 301 were collected at four timepoints (pre, 4W, 8W and 12W) for comprehensive analyses of mitochondrial markers, including: citrate synthase, succinate dehydrogenase, mitochondrial 302 303 copy number, cytochrome oxidase and fibre type composition (Figure 1). Due to dropouts 304 previously described, all statistical analyses are based on 16 participants.

305 Molecular analyses and immunohistochemistry

306 Succinate Dehydrogenase Activity (Complex II activity)

307 We utilised the succinate dehydrogenase (SDH) activity assay kit (Colorimetric) (#ab228560)

- 308 to measure maximal enzyme activity. Muscle was lysed according to the kit's protocol and
- 309 15ul of muscle lysate was used in each reaction (well). Assay was performed in duplicates. The
- 310 assay kit is able to detect less than 0.1mU SDH activity in muscle samples. Protocol was

- 311 followed according to kit user guide. SDH activities (mU/mg of tissue) were averaged and if
- CV > 10% for the duplicate results then values were removed.
- 313 Cytochrome C Oxidase Activity (Complex IV activity)
- 314 We utilised the assay kit (#ab239711) to measure maximal cytochrome C oxidase activity
- 315 (COX). Muscle was lysed using the SDH buffer from the kit described above and 10ul of lysate
- 316 was used for each reaction (well). The activity of the enzyme was determined colorimetrically
- 317 in triplicates according to the kit user guide. COX results were averaged and if CV >10% for
- the triplicate then divergent results were removed. COX results are presented as mol/h/kg of
- 319 protein. Protein was quantified using the bicinchoninic acid assay (BCA).
- 320 Citrate Synthase Activity

The most commonly used measurement of mitochondrial content is the maximal citrate synthase (CS) enzyme activity (14,29). Small pieces of tissue were lysed in an ice-cold buffer (KH₂PO₄ & K₂HPO₄) using a TissueLyser II (Qiagen, Hilden, Germany). Protein concentration was assessed using the BCA. Total CS activity (mol/h/kg of protein) was measured in triplicates (30°C, pH 7.5) using standard spectrophotometric assays. Values that presented a CV > 10% between triplicated samples were removed.

327 Mitochondrial DNA Copy Number

Mitochondrial DNA copy number also reflects the content of mtDNA, and it is usually associated with mitochondrial gene stability and mitochondrial biogenesis (26). Mitochondrial copy number (mtCN) was determined in quadruplicates using multiplex qPCR. This method allows for simultaneous amplification of a mitochondrial (ND1) and a nuclear (RNAseP) amplicon to verify their relative abundance (26,30). The sequences for the ND1 amplicon (IDT) are as follows:

334 Forward primer (300nM), 5'CCCTAAAACCCGCCACATCT3'; Reverse primer (300nM):

3355'GAGCGATGGTGAGAGCTAAGGT3';andProbe(100nM):3365'FAMCCATCACCCTCTACATCACCGCCC-TAMRA3'. We utilised the RNAseP assay kit337(Thermofisher Scientific #4403328). Taqman Universal Mastermix (Thermofisher #4304437)338was used and the assay ran on a QuantStudioTM 7 Flex Real-Time PCR System. The average339CV for mtCN Cts was 1.02%. Data was manually curated and in cases in which samples yielded340a standard deviation > 0.3, the divergent sample was removed.

341 Mitochondrial Health Index (MHI)

342 We calculated MHI as was previously reported in blood (26), using the following equation:

343
$$MHI = \left[\frac{Energy\ production\ capacity}{Mitochondrial\ content}\right]$$

344
$$= \left[\frac{Compex II (SDH) + Complex IV(COX)}{CS + mtDNAcn}\right] * 100$$

345 Fibre Typing (immunohistochemistry), and Expression (RT-PCR)

Exercise is known to affect fibre type composition, area and expression (31,32). Shifts in fibre type composition might not be achieved so easily in human interventions, however changes in myosin heavy chain expression patterns might occur even after short interventions (33). Thus, in our study we have measured both parameters to see whether trainability is observed in either measurement.

Immunofluorescence analyses of muscle fibre types were performed on muscle tissue sections imbedded in optimum cutting temperature compound (O.C.T.). Primary and secondary antibodies information have been previously described (34). Briefly, muscle tissue was sectioned at ~8 μ m, and sections were then incubated for blocking with 10% goat serum for one hour. Primary antibodies in 10% goat serum (ThermoFisher #50062Z) (1:25) were used to

356 incubate slides overnight in the dark at 4°C. Primary antibody was then removed, and slides 357 washed 3x5min in ddH2O. Secondary antibodies in 10% goat serum (1:500) were then used to incubate slides for two hours in the dark. Slides were washed 3x5 min in ddH2O and then 358 stained with wheat germ agglutin (WGA) for 10 min in the dark (10ug/ml). Slides were then 359 360 washed once in ddH2O and mounted with PBS for imaging. Fibre type distribution was quantified using Fiji software and values are presented in percentage distribution. We have 361 362 attempted where possible to keep our fibre counts above 150 as previously suggested (35), and 363 a minimum of 100 fibres was considered the lowest threshold for analyses.

RT-PCR for MHCs was performed on muscle tissue that was flash frozen in liquid nitrogen. 364 365 RNA was extracted using the AllPrep DNA/RNA FFPE Kit (#80234 Qiagen). 10 ng of RNA was then diluted into 50ul and reverse transcription was conducted using the iScriptTM Reverse 366 Transcription Supermix for RT-qPCR (Bio-Rad) with a thermomixer. Primers for myosin 367 heavy chain I, IIa and IIx used for this experiment have been described elsewhere (33). RT-368 PCR was conducted using the QuantumStudio-7 (Bio-Rad). MRNA expression levels were 369 370 quantified by real-time PCT using SYBR green fluorescence. Cycle threshold (Ct) values were 371 normalized to a housekeeping gene, Cycl1. Samples were analysed in triplicates and data was 372 manually curated. In cases where samples yielded a standard deviation > 0.4, the divergent sample was removed. 373

374

375 Statistical Analyses

- 376 Responses to training at the group level and individual level (subject-by-training interaction)
- 377 We utilised a linear mixed model (using the lmer package in R (36)) of the form:
- 378 Outcome = timepoint + random intercept (ID) + random slope (ID x Timepoint)

379 where outcome was either physiological measures of fitness (W_{peak} or LT or VO_{2peak}) or a mitochondrial marker (CS activity, mtCN, SDH, COX) or a fibre type (Type I, Type IIa or 380 Type IIx), timepoint was a numeric variable (0, 4, 8 or 12 weeks). The fixed effect for 381 "timepoint" estimates whether there were changes in outcome at the group level over time (i.e. 382 383 mean slope). The random intercept accounts for baseline differences in outcome between individuals, and the random slope assesses whether there are significant differences in how 384 385 individuals change in outcome with time (subject-by-training interaction, or trainability). The 386 individual segmental changes between the different timepoints estimates within-subject 387 variability.

388 Next, we used bivariate latent growth curve models (using the package Lavaan in R (37)) to test whether changes in physiological measurements were correlated with changes in molecular 389 markers (i.e. correlation between slopes). A complete explanation of this method can be found 390 in the supplementary files. Due to limited muscle there were missing data points therefore 391 multiple imputations using the mice package was used to impute these missing values (38), and 392 results were pooled from all imputed iterations for both mixed models as well as parallel growth 393 models with miceadds package (39). All analyses were performed using the R software version 394 395 4.0.2.

396 Acknowledgements

We would like to thank Dr Andrew Philip, from the Garvan Institute, Sydney, Australia for his contribution revising this paper and adding of suggestions. Results of this study are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation, and statement that results of the present study do not constitute endorsement by ACSM.

- 401 Conflict of Interest
- 402 The authors have no conflict of interests to declare.

403 Authors Contributions

404	The contribution from each author were as follows: MJ, NE, XY - conception or design of the
405	work;

MJ, SL, JA, MS, EM, SV, AG - acquisition, analysis or interpretation of data for the work; MJ, SL, JA, XY, AG, DH, MS, EM, AH, SV, NE - drafting the work or revising it critically for important intellectual content. We confirm that all authors: approved the final version of the manuscript, agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved, and all persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.

413 Funding

We are grateful for the support of the Australian National Health & Medical Research Council
(NHMRC) via Nir Eynon's Career Development Fellowship (APP1140644) & Sarah Voisin's
Early Career Research Fellowship (APP11577321). We also thank the Australian Research

417 Council (ARC) for supporting the Gene SMART study (DP190103081).

418

419 **References**

- Coffey VG, Hawley J: The Molecular Basis of Training Adaptation. Sport Med.
 2007;37(9):737–63.
- 422 2. Hawley JA, Hargreaves M, Joyner MJ, Zierath JR: Review Integrative Biology of
 423 Exercise. Cell. 2014;159(4):738–49.
- 424 3. Bouchard C, Rankinen T: Individual differences in response to regular physical

425		activity. Med Sci Sports Exerc. 2001;33(6):S446-51.
426	4.	Timmons JA, Larsson O, Jansson E, Fischer H, Gustafsson T, Greenhaff PL, et al:
427		Human muscle gene expression responses to endurance training provide a novel
428		perspective on Duchenne muscular dystrophy. FASEB J. 2005;19(7):750-60.
429	5.	Mann TN, Lamberts RP, Lambert MI: High responders and low responders: factors
430		associated with individual variation in response to standardized training. Sports Med.
431		2014 Aug;44(8):1113–24.
432	6.	Hecksteden A, Kraushaar J, Scharhag-Rosenberger F, Theisen D, Senn S, Meyer T:
433		Individual response to exercise training - a statistical perspective. J Appl Physiol.
434		2015;118(12):1450–9.
435	7.	Atkinson G, Batterham AM: True and false interindividual differences in the
436		physiological response to an intervention. Exp Physiol. 2015 Jun;100(6):577-88.
437	8.	Voisin S, Jacques M, Lucia A, Bishop DJ, Eynon N: Statistical Considerations for
438		Exercise Protocols Aimed at Measuring Trainability. Exerc Sport Sci Rev. 2018;1.
439	9.	Thalacker-Mercer A, Stec M, Cui X, Cross J, Windham S, Bamman M: Cluster
440		analysis reveals differential transcript profiles associated with resistance training-
441		induced human skeletal muscle hypertrophy. Physiol Genomics. 2013 Jun;45(12):499-
442		507.
443	10.	Joyner MJ, Lundby C: Concepts About VO2max and Trainability Are Context
444		Dependent. Exerc Sport Sci Rev. 2018 Jul;46(3):138-43.
445	11.	Hecksteden A, Pitsch W, Rosenberger F, Meyer T: Repeated testing for the assessment
446		of individual response to exercise training. J Appl Physiol. 2018 Jun 1;124(6):1567-
447		1579.

448	12.	Williamson PJ, Atkinson G, Batterham AM: Inter-Individual Responses of Maximal
449		Oxygen Uptake to Exercise Training: A Critical Review. Sports Med. 2017
450		Aug;47(8):1501–13.
451	13.	Ross R, Goodpaster BH, Koch LG, Sarzynski MA, Kohrt WM, Johannsen NM, et al:
452		Precision exercise medicine: Understanding exercise response variability. Br J Sports
453		Med. 2019;53(18):1141–53.
454	14.	Jacques M, Kuang J, Bishop DJ, Yan X, Alvarez-Romero J, Munson F, et al:
455		Mitochondrial respiration variability and simulations in human skeletal muscle: The
456		Gene SMART study. FASEB J. 2020; Feb;34(2):2978-2986.
457	15.	Senn S: Statistical pitfalls of personalized medicine. Nature. 2018; Nov:563(7733)619-
458		621.
459	16.	Holloszy J, Oscai LB, Don IJ MP: Mitochondrial citric acid cycle and related
460		enzymes: Adaptive response to exercise. Biochem Biophys Res Comm.
461		1970;40(6):1368–73.
462	17.	Spina RJ, Chi MM, Hopkins MG, Nemeth PM, Lowry OH, Holloszy JO:
463		Mitochondrial enzymes increase in muscle in response to 7-10 days of cycle exercise. J
464		Appl Physiol. 1996;80(6):2250–4.
465	18.	Wyckelsma VL, Levinger I, McKenna MJ, Formosa LE, Ryan MT, Petersen AC, et al:
466		Preservation of skeletal muscle mitochondrial content in older adults: relationship
467		between mitochondria, fibre type and high-intensity exercise training. Vol. 595,
468		Journal of Physiol. 2017. p. 3345–59.
469	19.	Bishop DJ, Granata C, Eynon N: Can we optimise the exercise training prescription to
470		maximise improvements in mitochondria function and content? Biochim Biophys Acta

- 471 Gen Subj. 2014;1840(4):1266–75.
- 472 20. Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD: Mitochondrial
- 473 Complex I Deficiency in Parkinson's Disease. J Neurochem. 1993;60:288-91.
- 474 21. Gegg ME, Schapira AHV: Mitochondrial dysfunction associated with
- 475 glucocerebrosidase deficiency. Neurobiol Dis. 2016; Jun;90:43-50.
- 476 22. Bai R, Higgs JD: Mitochondrial disorders. In: Molecular Pathology in Clinical
 477 Practice: Second Edition. 2016.
- 478 23. Chen H, Chan DC: Mitochondrial dynamics-fusion, fission, movement, and
- 479 mitophagy-in neurodegenerative diseases. Hum Mol Genet. 2009; Oct
- 480 15;18(R2):R169-76.
- 481 24. Giordano C, Iommarini L, Giordano L, Maresca A, Pisano A, Valentino ML, et al:
- 482 Efficient mitochondrial biogenesis drives incomplete penetrance in Leber's hereditary
 483 optic neuropathy. Brain. 2014; Feb;137(Pt 2):335-53.
- 484 25. Yu-Wai-Man P, Sitarz KS, Samuels DC, Griffiths PG, Reeve AK, Bindoff LA, et al:

485 OPA1 mutations cause cytochrome c oxidase deficiency due to loss of wild-type

486 mtDNA molecules. Hum Mol Genet. 2010; Aug 1;19(15):3043-52.

- 487 26. Picard M, Prather AA, Puterman E, Cuillerier A, Coccia M, Aschbacher K, et al: A
- 488 Mitochondrial Health Index Sensitive to Mood and Caregiving Stress. Biol Psychiatry.
 489 2018;84(1):9–17.
- 490 27. Yan X, Eynon N, Papadimitriou ID, Kuang J, Munson F, Tirosh O, et al. The Gene
- 491 SMART study: Method, Study Design, and Preliminary Findings. BMC Genomics.
 492 2017; Nov 14;18 (Suppl 8):821.
- 493 28. Faude O, Kindermann W, Meyer T: Lactate threshold concepts: How valid are they?

494		Sport Med. 2009;39(6):469–90.
495	29.	Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Schroder HD, et al:
496		Biomarkers of mitochondrial content in skeletal muscle of healthy young human
497		subjects. 2012;14:3349-60.
498	30.	Krishnan KJ, Bender A, Taylor RW, Turnbull DM: A multiplex real-time PCR method
499		to detect and quantify mitochondrial DNA deletions in individual cells. Anal Biochem.
500		2007; Nov 1;370(1):127-9.
501	31.	Taaffe DR, Marcus R: Dynamic muscle strength alterations to detraining and
502		retraining in elderly men. Clin Physiol. 1997; May;17(3):311-24.
503	32.	Campos GER, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, et al:
504		Muscular adaptations in response to three different resistance-training regimens:
505		Specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;Nov;8(1-
506		2):50-60.
507	33.	Eigendorf J, May M, Friedrich J, Engeli S, Maassen N, Gros G, et al: High intensity
508		high volume interval training improves endurance performance and induces a nearly
509		complete slow-to-fast fiber transformation on the mRNA level. Front Physiol.
510		2018;May 29;9:601.
511	34.	Bloemberg D, Quadrilatero J: Rapid determination of myosin heavy chain expression
512		in rat, mouse, and human skeletal muscle using multicolor immunofluorescence
513		analysis. PLoS One. 2012;7(4).
514	35.	Nederveen JP, Ibrahim G, Fortino SA, Snijders T, Kumbhare D, Parise G: Variability
515		in skeletal muscle fibre characteristics during repeated muscle biopsy sampling in
516		human vastus lateralis. Appl Physiol Nutr Metab. 2020; Apr;45(4):368-375.

517	36.	Kuznetsova A, Brockhoff PB, Christensen RHB. ImerTest Package: Tests in Linear
518		Mixed Effects Models . J Stat Softw. 2017.
519	37.	Rosseel Y: Lavaan: An R package for structural equation modeling. J Stat Softw.
520		2012.
521	38.	van Buuren S, Groothuis-Oudshoorn K: mice: Multivariate imputation by chained
522		equations in R. J Stat Softw. 2011.
523	39.	Robitzsch A, Grund S, Henke T.:Package "miceadds." R J. 2019.
524	40.	Mengel-From J, Thinggaard M, Dalgård C, Kyvik KO, Christensen K, Christiansen L:
525		Mitochondrial DNA copy number in peripheral blood cells declines with age and is
526		associated with general health among elderly. Hum Genet. 2014;Sep;133(9):1149-59.
527	41.	Dolcini J, Wu H, Nwanaji-Enwerem JC, Kiomourtozlogu MA, Cayir A, Sanchez-
528		Guerra M, et al: Mitochondria and aging in older individuals: An analysis of DNA
529		methylation age metrics, leukocyte telomere length, and mitochondrial DNA copy
530		number in the VA normative aging study. Aging. 2020; Feb 2;12(3):2070-2083.
531	42.	Prouteau M, Loewith R. Regulation of cellular metabolism through phase separation of
532		enzymes. Biomolecules. 2018 Dec 3;8(4):160.
533	43.	Carter SL, Rennie CD, Hamilton SJ, Tarnopolsky MA: Changes in skeletal muscle in
534		males and females following endurance training. Can J Physiol Pharmacol. 2001;
535		May;79(5):386-92.
536	44.	Flück M, Däpp C, Schmutz S, Wit E, Hoppeler H: Transcriptional profiling of tissue
537		plasticity: Role of shifts in gene expression and technical limitations. Journal of
538		Applied Physiology. 2005 Aug;99(2):397-413.
539	45.	Puntschart A, Wey E, Jostarndt K, Vogt M, Wittwer M, Widmer HR, et al: Expression

540		of fos and jun genes in human skeletal muscle after exercise. Am J Physiol - Cell
541		Physiol. 1998 Jan;274(1):C129-37.
542	46.	Islam H, Edgett BA, Bonafiglia JT, Shulman T, Ma A, Quadrilatero J, et al:
543		Repeatability of exercise-induced changes in mRNA expression and technical
544		considerations for qPCR analysis in human skeletal muscle. Exp Physiol. 2019
545		Mar;104(3):407-420.
546	47.	Egan B, Zierath JR.: Review Exercise Metabolism and the Molecular Regulation of
547		Skeletal Muscle Adaptation. Cell Metab. 2012;17(2):162-84.
548	48.	Granata C, Jamnick NA, Bishop DJ: Training-Induced Changes in Mitochondrial
549		Content and Respiratory Function in Human Skeletal Muscle. Sport Med.
550		2018;48(8):1809–28.
551	49.	Timmons JA, Knudsen S, Rankinen T, Koch LG, Sarzynski M, Jensen T, et al: Using
552		molecular classification to predict gains in maximal aerobic capacity following
553		endurance exercise training in humans. J Appl Physiol. 2010;108(6):1487-96.
554	50.	Zoladz JA, Duda K, Karasinski J, Majerczak J, Kolodziejski L, Korzeniewski B:
555		MYHC II content in the vastus lateralis m. quadricipitis femoris is positively
556		correlated with the magnitude of the non-linear increase in the VO2/power output
557		relationship in humans. J Physiol Pharmacol. 2002 Dec;53(4 Pt 2):805-21.
558	51.	Majerczak J, Nieckarz Z, Karasinski J, Zoladz JA: Myosin heavy chain composition in
559		the vastus lateralis muscle in relation to oxygen uptake and heart rate during cycling in
560		humans. J Physiol Pharmacol. 2014 Apr;65(2):217-27.
561	52.	Mitchell EA, Martin NRW, Bailey SJ, Ferguson RA: Critical power is positively
562		related to skeletal muscle capillarity and type i muscle fibers in endurance-trained

563		individuals. J Appl Physiol. 2018 Sep 1;125(3):737-745.
564	53.	Murach KA, Dungan CM, Kosmac K, Voigt TB, Tourville TW, Miller MS, et al: Fiber
565		typing human skeletal muscle with fluorescent immunohistochemistry. Journal of
566		Applied Physiology. 2019 Dec 1;127(6):1632-1639.
567	54.	Wright AGC, Pincus AL, Lenzenweger MF: A parallel process growth model of
568		avoidant personality disorder symptoms and personality traits. Personal Disord
569		Theory, Res Treat. 2013 Jul;4(3):230-8.
570	55.	Čapková M, Houštěk J, Hansíková H, Hainer V, Kunešová M, Zeman J. Activities of
571		cytochrome c oxidase and citrate synthase in lymphocytes of obese and normal-weight
572		subjects. Int J Obes. 2002 Aug;26(8):1110-7.
573	56.	Katyare SS, Howland JL. Enhanced oxidative metabolism in liver mitochondria from
574		genetically obese mice. Arch Biochem Biophys. 1978 May;188(1):15-20.
575		
576		
577		
578		
579		
580		
581		
582		
583		

	Longitudinal Intervention (12 weeks)								
	Pre	4WP	8WP	12WP	∆(4WP- Pre	∆(8WP- Pre	Δ(12WP- Pre		
Ν	20	19	18	16	19	18	16		
Age (years)	33.1±9. 0	-	-	-	-	-	-		
BMI (kg.m-2)	26.4±4. 2	-	-	26.4±3. 8	-	-	-		
Wpeak (W/kg)	3.48±0. 97	3.76±0. 96	3.88±0. 95	4.06±0. 94	0.27±0.1 6	0.40±0.2 4	0.56±0.33		
LT (W/kg)	2.38±0. 74	2.63±0. 79	2.71±0. 76	2.76±0. 70	0.27±0.2 2	0.33±0.3 2	0.37±0.35		
VO2max (mL.min- 1.kg-1)	51.0±1 0.6	53.1±1 0.3	54.5±1 1.1	55.3±1 0.7	1.76±3.0 4	3.36±5.8 3	3.81±6.13		

Table 1: Group characteristics with Delta Changes. Values are presented as mean \pm SD.

	Covariates								
	Interc	ept & Inte	ercept	Slope & Slope			Intercept & Slope		
	Estim	Std.	P-	Estim	Std.	P-	Estim	Std.	P-
Variable	ate	Error	Value	ate	Error	Value	ate	Error	Value
							-		
W _{peak} & LT	0.57	0.21	0.006	0.01	0.006	0.05	0.009	0.04	0.83
W _{peak} &									
VO _{2peak}	7.45	2.72	0.006	0.06	0.06	0.34	-0.11	0.54	0.84
W _{peak} & CS	0.92	0.73	0.21	0.002	0.02	0.08	-0.16	0.22	0.48
W _{peak} &									
COX	0.45	0.36	0.22	-0.02	0.05	0.76	0.14	0.41	0.78
W _{peak} &									
SDH	1.96	2.22	0.38	0.13	0.14	0.34	76.87	43.99	0.08

W _{peak} &				-					
mtCN	0.18	0.41	0.67	0.002	0.02	0.89	0.02	0.17	0.93
W _{peak} &							-		
MHI	0.42	0.29	0.16	0.03	0.04	0.48	0.006	0.03	0.85
LT &									
VO _{2peak}	6.03	2.26	0.008	0.12	0.14	0.39	-0.25	0.49	0.62
LT & CS	0.75	0.61	0.22	0.04	0.05	0.41	-0.15	0.19	0.42
							-		
LT & COX	0.54	0.32	0.09	0.02	0.09	0.83	0.004	0.34	0.99
LT & SDH	1.99	1.86	0.28	0.06	0.26	0.83	-0.59	0.94	-0.08
LT & mtCN	0.32	0.99	0.32	0.05	-0.79	0.44	0.19	-0.82	0.42
LT & MHI	0.23	1.16	0.25	0.008	-0.16	0.87	0.04	0.13	0.89
VO _{2peak} &									
CS	3.78	8.11	0.64	0.88	0.76	0.25	-1.48	2.58	0.57
VO _{2peak} &									
cox	3.35	3.83	0.38	-1.59	1.40	0.26	3.69	4.57	0.42
VO _{2peak} &									
SDH	13.69	22.65	0.55	1.02	1.51	0.49	-7.74	12.25	0.53
VO _{2peak} &									
mtCN	1.17	4.78	0.81	0.25	0.68	0.72	-2.10	2.95	0.49
VO _{2peak} &									
MHI	2.65	2.93	0.37	-0.07	0.22	0.77	0.29	0.79	0.72
CS & COX	2.87	1.46	0.05	0.91	0.79	0.25	-3.58	1.76	0.04
CS & SDH	6.97	8.45	0.41	0.88	1.45	0.54	76.87	48.17	0.11

CS & mtCN	0.49	1.44	0.73	0.08	0.14	0.58	-0.49	0.46	0.29
COX &									
SDH	6.79	4.47	0.13	-1.03	2.24	0.65	-0.53	4.72	0.91
COX &									
mtCN	0.09	0.06	0.13	-0.13	0.09	0.19	-0.09	0.07	0.19
SDH &				-					
mtCN	-0.09	0.37	0.80	0.006	0.07	0.93	0.29	0.22	0.19

Table 2: Bivariate growth models: The Intercept & Intercept informs if variables have similar baseline values,
 Slope & Slope informs if variables have similar rate of changes, and Intercept & Slope informs if baseline values

589 of one variable affects the rate of change of the other variable.

590

Figure 1: Individual changes (i.e. subject-by-training interaction) in physiological measures (W_{peak} , LT, and VO_{2peak}) after 4, 8 and 12 weeks of HIIT. Each participant is represented by a different colour. Red squares

represent mean values for each variable in each timepoint.

594

595 Figure 2: Example of subject by training interaction and comparison between whole body and molecular markers.

596 The box plots represent individual confidence intervals for changes in VO_{2peak} . Confidence interval: response 597 estimate $\pm 1.96 \text{ x SD}$ of segmental changes.

Figure 3: Individual changes in mitochondrial health index (MHI) for each 4-week segment up to 12 weeks. Each
 participant is represented by an individual colour.

Figure 4: Distribution of fibre type separated by timepoint. Although minor changes are observed in the
 distribution overtime, those were not significant for either fibre type proportion or expression following 4, 8 and
 ueeks of HIIT. Cycle threshold (Ct).

603 Figure 5: Study design. Tests and muscle biopsies were interspaced by 48 hours.

604

605

606

607 Supplementary Files

608 <u>Individual and Parallel Growth models</u>. Raw means were graphed in order to verify trajectory 609 of each variable. We estimated single and parallel Latent Growth Models (LGM) in R using 610 the lavaan package (27). Before conduction the parallel LGMs we performed analyses in the 611 individual variables to establish best model fit. Linear, quadratic, and piecewise models were 612 estimated as appropriate for each variable to ensure best fit (CFI >0.95, SRMR <0.08 and chi-</p>

613 square p-value >0.05). A careful evaluation of the resulting parameter estimates indicates that 614 all variances were positive and resulting parameter estimates were plausible (e.g., no Heywood 615 cases). Once best fitting single models were estimated we progressed to conduct the parallel 616 analyses. A figure bellow provides a conceptual diagram of the estimated models with the 617 tracks branded as reference. The loadings for the timepoints measurements on the slope factor were fixed to 0.0 for the pre timepoint, thereby setting the start of the study as the intercept. Of 618 most interest in this study is the covariance between the slope factors (i.e., growth rates), 619 indicating the degree to which change in physiological and molecular markers are associated 620 621 with each other (Track B in Figure 2). The estimated relationship between intercepts (Track A) captures the cross-sectional association between markers at the start of the study. The estimated 622 623 growth models included a series of important covariates. First, slope factors within each system were regressed on the corresponding intercepts in order to control for any spurious association 624 in the relationship between the growth factors (e.g., regression to the mean; Track C and D). 625 Once this was verified slopes and intercepts were allowed to covary in order to investigate if 626 baseline measures (intercept) affected the rate of change of participants (slope). When 627 628 appropriate (i.e. better fit for the model) age was included as a covariate of the trajectories of 629 change by regressing the latent growth factors on each. Age of entry was included to account 630 for potentially important individual heterogeneity in development at the outset of the study 631 because standard LGMs treat all individuals as starting at the same time. Finally, we tested whether initial status on markers had an effect on the rate of change in the other after controlling 632 for the above-mentioned covariates (Track E and F). Individual models were required because 633 attempts to estimate a model with growth in all variables simultaneously led to problems with 634 specification (i.e., negative residual variances), which is not uncommon in very large structural 635 636 models (28).

638 Conceptual diagram of parallel latent growth model.

639 Circles represent the latent variables; squares represent the manifest variables measured at each

of the five timepoints. T1-T4: Timepoints Pre, 4WP, 8WP and 12WP; Single headed arrows

641 denote regression paths, double headed arrows denote covariances; Track A: Covariance

between Intercept 1 and 2; Track B: Covariance between Slope 1 and 2; Track C: Slope 1

643 regressed on Intercept 1; Track D: Slope 2 regressed on Intercept 2; Track E: Covariance

between Slope 2 and Intercept 1; Track F: Covariance between Slope 1 and Intercept 2.

645

646

Supplementary Figure 1: Individual changes in Citrate Synthase (CS), the Cytochrome-C Oxidase(COX),
 Succinate Dehydrogenase (SDH), Mitochondrial Copy Number (mtCN), and Mitochondrial Health Index (MHI)
 for each 4 weeks up to 12 weeks.

653 Supplementary Figure 2: Fibre type % and expression correlations

Fixed	Effects	- Group L	evel	Randor	n Effect Lev	ts - Individ vel	ual	Confi dence Interv als
Varia ble	Esti mate	Standar d error	p- valu e	Variable	Vari ance	Standar d error	p- valu e	(2.5% - 97.5%)

12		10	101 - T	č		0 (A	6 - O	6		a
	W _{peak} (W/kg)	Time point	0.16	0.04	0.00 03	ID x Timepoi nt	0.02	0.14	0.00 05	0.09 – 0.24
						Residual	0.14	0.12		
0	LT (W/kg)	Time point	0.12	0.03	0.00 07	ID x Timepoi nt	0.00 9	0.09	0.05	0.06 - 0.18
		2. 0				Residual	0.02 7	0.16		
200 C	VO _{2max} (mL/min/kg)	Time point	1.39	0.51	0.01 48	ID x Timepoi nt	3.81	1.95	0.00 02	0.27 - 2.32
						Residual	4.54	2.13		

Supplementary Table 1: Results from linear mixed model for physiological variables: Variable ~ Timepoint +
 random intercept (ID) + random slope (ID x Timepoint). Where Variable = Measurement value, Timepoint = PRE
 -4WP - 8WP - 12WP. Fixed effects represent changes at the group level, while random effects represent changes

658 at the individual level (trainability)

659

	Fixe	ed Effects	- Group Lev	el	Random Effects - Individual Level					
	Variabl	Estim	Standard	p-	Variable	Varian	Standard	p-		
	e	ate	error	value	,	ce	error	value		
CS	Timepo int	0.32	0.27	0.24	ID x Timepoint	0.52	0.45	0.25		
	Age	0.03	0.07	0.66	Residual	1.81	0.28			
co x	Timepo int	0.09	0.19	0.65	ID	0.42	8.32	0.96		

	Age	-0.002	0.027	0.93	Residual	1.40	0.19	
SD H	Timepo int	1.62	1.42	0.25	ID	4.7	2.34	0.06
	Age	-0.25	0.22	0.25	Residual	11.54	1.23	
mtC N	Timepo int	311.24	263.18	0.24	ID	775.16	535.21	0.15
	Age	130.09	41.25	0.002	Residual	2232.5	248.25	
MH I	Timepo int	21.19	35.67	0.56	ID x Timepoint	6671	81.68	0.096
	Age	4.11	4.65	0.88	Residual	68412	261.56	

Supplementary Table 2: Results from linear mixed model for mitochondrial measures. Linear mixed model:
 Variable ~ Timepoint + random intercept (ID) + random slope (ID x Timepoint). Where Variable = Measurement
 value, Timepoint = PRE - 4WP - 8WP - 12WP. Fixed effects represent changes at the group level, while random
 effects represent changes at the individual level (trainability)

664

	E	vad Effacta - G	roup Lava	1	Random Effects - Individual			
	FL	xeu Ellecis - O	Toup Leve	1	Level			
	Varia	Regression	Standar	p-	Variable	Vari	Standar	p-
	ble	coefficient	d error	ue	v arrable	ance	d error	ue
Fibre Type I %	Time point	-0.97	1.27	0.4 5	ID x Timepoi nt	2.67	1.64	0.7 9
	W _{peak}	4.67	2.41	0.0 7	Residua 1	94.8 3	9.74	

	Time point	-0.88	1.19	0.4 7	ID x Timepoi nt	0.91	0.95	0.8 3
	LT	6.39	2.77	0.0 3	Residua 1	96.3 8	9.82	
	Time point	-0.85	0.21	0.4 6	ID x Timepoi nt	0.26	0.51	0.9 4
	VO _{2p} eak	0.58	0.21	0.0 1	Residua 1	93.3 2	9.66	
Fibre Type IIa %	Time point	1.86	1.36	0.1 8	ID x Timepoi nt	0.84	0.92	0.7 9
	W _{peak}	-6.03	1.91	0.0 05	Residua 1	127. 62	11.29	
	Time point	1.86	1.17	0.1 2	ID x Timepoi nt	0.39	0.62	0.9 1
	LT	-5.66	2.71	0.0 5	Residua 1	94.5 1	9.72	
	Time point	1.81	1.14	0.1	ID x Timepoi nt	0.29	0.54	0.9 3
	VO _{2p} eak	-0.5	0.19	0.0 2	Residua 1	94.0 2	9.69	

Fibre Type IIx %	Time point	-0.98	4.46	0.1 96	ID x Timepoi nt	1.01	0.91	0.2 7
	Wpeak	0.43	1.22	0.7 22	Residua 1	5.86	0.70	
	Time point	-0.94	0.78	0.2	ID x Timepoi nt	0.98	0.92	0.2 9
	LT	-0.31	1.45	0.8 3	Residua 1	5.87	0.71	
	Time point	-0.89	0.78	0.2 5	ID x Timepoi nt	0.97	0.89	0.2 7
	VO _{2p} eak	-0.07	0.11	0.5 5	Residua 1	5.83	0.70	
Fibre Type I (log expression)	Time point	-0.005	0.09	0.9 5	ID x Timepoi nt	0.00	0.06	0.9 5
	W _{peak}	-0.005	0.11	0.9 6	Residua 1	0.53	0.73	
	Time point	-0.007	0.08	0.9 3	ID x Timepoi nt	0.00	0.06	0.9 6
	LT	0.003	0.14	0.9 8	Residua 1	0.53	0.73	

	Time point VO _{2p}	-0.01	0.08	0.8 7 0.6	ID x Timepoi nt Residua	0.00 1 0.53	0.04	0.9 8
Fibre Type IIa (log expression)	eak Time point	0.12	0.11	1 0.3 2	l ID x Timepoi nt	0.02	0.15	0.8 9
	W _{peak}	-0.18	0.14	0.2	Residua 1	0.88	0.94	
	Time point	0.12	0.11	0.3	ID x Timepoi nt	0.02	0.14	0.8 8
	LT	-0.29	0.17	0.1 1	Residua 1	0.87	0.93	
	Time point	0.10	0.11	0.3 6	ID x Timepoi nt	0.01	0.11	0.9 7
	VO _{2p} eak	-0.02	0.01	0.2 5	Residua 1	0.91	0.95	
Fibre Type IIx (log expression)	Time point	-0.05	0.16	0.7 6	ID x Timepoi nt	0.03	0.18	0.5 7
	W _{peak}	0.23	0.03	0.4 6	Residua 1	1.55	1.24	

Time point	-0.02	0.15	0.9 0	ID x Timepoi nt	0.03	0.16	0.6 5
LT	0.09	0.36	0.7 9	Residua 1	1.57	1.25	
Time point	-0.02	0.15	0.8 7	ID x Timepoi nt	0.03	0.17	0.6 2
VO _{2p} eak	0.01	0.03	0.6 3	Residua 1	1.56	1.25	

665 Supplementary Table 3: Results from linear mixed model for fibre type measures. Linear mixed model: Variable

⁶⁶⁶ ~ Timepoint + random intercept (ID) + random slope (ID x Timepoint). Where Variable = Measurement value,
 ⁶⁶⁷ Timepoint = PRE - 4WP - 8WP - 12WP. Fixed effects represent changes at the group level, while random effects
 ⁶⁶⁸ represent changes at the individual level (trainability)

669

 Received: 5 August 2019
 Revised: 9 December 2019
 Accepted: 15 December 2019

 DOI: 10.1096/fi.201901997RR

Mitochondrial respiration variability and simulations in human skeletal muscle: The Gene SMART study

Macsue Jacques¹ | Jujiao Kuang¹ | David J. Bishop¹ | Xu Yan¹ | Javier Alvarez-Romero¹ | Fiona Munson¹ | Andrew Garnham¹ | Ioannis Papadimitriou¹ | Sarah Voisin¹ | Nir Eynon^{1,2}

¹Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia ²Murdoch Children's Research Institute, Melbourne, Victoria, Australia

Nir Evnon, Institute for Health and Sport

Melbourne, VIC 8001, Australia.

Nir Eynon, Grant/Award Number: NHMRC CDF#APP1140644; Sarah

Voisin, Grant/Award Number: NHMRC

Email: Nir.Eynon@vu.edu.au

Funding information

CDF#APP115777321

(iHeS), Victoria University, PO Box 14428,

Correspondence

Abstract

Mitochondrial respiration using the oxygraph-2k respirometer (Oroboros) is widely used to estimate mitochondrial capacity in human skeletal muscle. Here, we measured mitochondrial respiration variability, in a relatively large sample, and for the first time, using statistical simulations, we provide the sample size required to detect meaningful respiration changes following lifestyle intervention. Muscle biopsies were taken from healthy, young men from the Gene SMART cohort, at multiple time points. We utilized samples for each measurement with two technical repeats using two respirometer chambers (n = 160 pairs of same muscle after removal of low-quality samples). We measured the Technical Error of measurement (TE_M) and the coefficient of variation (CV) for each mitochondrial complex. There was a high correlation between measurements from the two chambers (R > 0.7 P < .001) for all complexes, but the TE_M was large (7.9-27 pmol s⁻¹ mg⁻¹; complex dependent), and the CV was >15% for all complexes. We performed statistical simulations of a range of effect sizes at 80% power and found that 75 participants (with duplicate measurements) are required to detect a 6% change in mitochondrial respiration after an intervention, while for interventions with 11% effect size, ~24 participants are sufficient. The high variability in respiration suggests that the typical sample sizes in exercise studies may not be sufficient to capture exercise-induced changes.

KEYWORDS

exercise, intervention, mitochondria, OXPHOS, oxygen consumption

Abbreviations: ATP, adenosine triphosphate; CI, complex I, electron input through CI; CV, coefficient of variation; CI_P, oxidative phosphorylation (OXPHOS) capacity (P) through CI; ETS, electron transport system; CI+CII, convergent electron input through CI and CII CI+CII_E, capacity (E) through CI; CI+CII_E, complex II (CII) linked respiration; E, ETS capacity; ETS, measurement of electron transport system; FCCP, p-trifluoromethoxyphenyl-hydrazone; Gene SMART, genes and skeletal muscle adaptive response to training; Inv-RCR, inverse of respiratory control ratio (CIL/CI+II_P); L, leak respiration; LCR, leak control ratio (CIL/CI+II_E); OXPHOS, oxidative phosphorylation; P, oxphos capacity; PCR, phosphorylation control ratio (CI+II_P/CI+II_E); ROX, residual oxygen consumption; SCR, substrate control ratio at constant P (CIP/CI+II_P); TCA, tricarboxylic acid; TE_M, technical error of measurement.

Sarah Voisin and Nir Eynon are Co-senior authorship.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2020 The Authors. The FASEB Journal published by Wiley Periodicals, Inc. on behalf of Federation of American Societies for Experimental Biology

The FASEB Journal. 2020;00:1-9.

wileyonlinelibrary.com/journal/fsb2

1 | INTRODUCTION

The mitochondrion is a membrane-enclosed organelle found in eukaryotic cells. With its five specialized complexes, it produces adenosine triphosphate (ATP) and thus constitutes the powerhouse of the cell.¹ ATP is produced during oxidative phosphorylation (OXPHOS) via the tricarboxylic acid (TCA) cycle inside the mitochondrial matrix, and via the electron transport system (ETS) along the inner mitochondrial membrane.² Mitochondrial respiration measured by maximal oxygen consumption in skeletal muscle fibers, is currently the primary way of assessing mitochondrial capacity.^{3,4} The most common method in human skeletal muscle uses fibers permeabilized by saponin.^{5,6} Using a combination of different substrates, this technique is able to mimic the processes (ie, TCA cycle and ETS) occurring within the mitochondrion.

Regular exercise has a beneficial effect on mitochondrial function.7 Endurance exercise training improves mitochondrial respiration,8-13 with high-intensity exercise training leading to larger improvements (up to 40%)^{8,10-12} than moderate continuous exercise training (up to 20%).14,15 However, changes in mitochondrial respiration using permeabilized muscle fibers following exercise training have been assessed in relatively small sample sizes, typically within a range of n = 8-15,¹⁶ and without assessing respiration changes in a control group.¹⁷ Mitochondrial respiration values, as well as improvements in mitochondrial respiration following exercise training are also quite variable between studies. 3,10,14,16,18,19 For example, Irving et al¹⁸ observed a ~1.5-fold change in mitochondrial respiration after moderate intensity endurance training (n = 34), while Robach et al²⁰ did not observe any change after a similar intervention (n = 17). Mitochondrial respiration capacity in human exercise intervention studies is not exclusive to skeletal muscle samples. Although such investigations are less common, different studies have measured respiration capacity in adipose tissue, 21,22 and blood cells (including lymphocytes and platelet).²³⁻²⁶

Tests run in duplicates (or more) enable researchers to capture technical variability, and/or biological day-to-day variability within participants.¹⁷ The typical error of measurement (TE_M), also called "within-subject standard deviation," provides an estimate of such variability.¹⁷ In the only study to date investigating the reliability of mitochondrial respiration measurement,³ the TE_M between two fiber bundles from the same biopsy was 10.5 pmol s⁻¹ mg⁻¹ in the maximal oxidative phosphorylation (OXPHOS) and the coefficient of variations (CVs) were worryingly high (15.2% between two fiber bundles, 23.9% between legs, and 33.1% at different time points).³ More studies are required to confirm whether such variability is consistently high, but, more importantly, this technical variability needs to be put into perspective with typical mitochondrial respiration changes

following interventions (eg, exercise training interventions). The qualifiers "high" and "low" variability only make sense when compared with the magnitude of the intervention-induced changes, which will determine how likely we are to detect those changes.

Therefore, the aim of the present study was to investigate the reliability of mitochondrial respiration measurements in human *vastus lateralis* muscle using large number of duplicate fiber bundles (160 pairs) collected from a range of participants at different time points. We correlated mitochondrial respiration values between two chambers containing bundles of same muscle sample for complexes CI_P, CI + CII_P and CI + CII_E, and calculated the TE_M and the CV between experiments. Using the estimated TE_M and CV, we performed simulations to determine the minimum number of participants required to detect meaningful mitochondrial respiration changes of various effect sizes following a hypothetical intervention, at 80% power.

2 | MATERIALS AND METHODS

2.1 | Participants

Participants were from the Genes and Skeletal Muscle Adaptive Response to Training (Gene SMART) cohort. The full study methodology has been previously described elsewhere.²⁷ 68 apparently healthy, Caucasian men (age = 31.4 ± 8.2 years old; BMI = 25.2 ± 3.2 kg/m²) participated in the study and signed a written informed consent. Participants were excluded if they had any preexisting heart condition, health issues, and/or preexisting injury that could potentially impair exercise capacity. The study was approved by the Human Ethics Research Committee at Victoria University (HRE13-223).

2.2 | Muscle biopsies

A controlled diet for 48 hours prior to the muscle biopsies was provided to the participants, according to the guidelines of the Australian National Health & Medical Research Council (NHMRC). Muscle biopsies were taken by an experienced medical doctor from the *vastus lateralis* muscle of the participants' dominant leg, following local anesthesia (2 mL, 1% Lidocaine (Lignocaine)). The needle was inserted in the participant leg and manual suction was applied for muscle collection. Care was taken not to contaminate the muscle samples with local anesthetic during the biopsy. Approximately 2-6 mg of muscle was then immediately placed in ice-cold BIOPS for determination of mitochondrial respiration in two individual chambers (duplicates).

JACQUES ET AL.

2.3 | Mitochondrial respiration

Immediately after each biopsy (within max 30 minutes of collection), 2-6 mg of muscle fibers were mechanically separated using pointed forceps under a binocular microscope in 2-mL ice-cold biopsy preservation solution on ice (BIOPS, 2.77 mM CaK2EGTA, 7.23 mM K2EGTA, 5.77 mM Na2ATP, 6.56 mM MgCl2•6H2O, 20 mM Taurine, 15 mM Na₂Phosphocreatine, 20 mM Imidazole, 0.5 mM Dithiothreitol, and 50 mM K⁺-MES at pH 7.1).⁶ Permeabilization of the plasma membrane occurred in the same solution with 50 µg/ml of saponin (Sigma-Aldrich, St Louis, USA) for 30 minutes rotating on ice. This was followed by rinsing the muscle fibers for 3×7 minutes in mitochondrial respiration medium (MiR05, 0.5 mM EGTA, 3 mM MgCl₂•6H₂O, 60 mM K-lactobionate, 20 mM Taurine, 10 mM KH₂PO₄, 20 mM Hepes, 110 mM sucrose, and 1 g/L bovine serum albumin at pH 7.1)⁶ on ice. Mitochondrial respiration was measured in duplicates in washed muscle fibers (between 1 and 3 mg wet weight of muscle fibers/chamber) in MiR05 at 37°C using the high-resolution Oxygraph-2k (Oroboros, Innsbruck, Austria), with additional substrates. Oxygen concentration (mM) and flux (pmol \times s⁻¹ \times mg⁻¹) were recorded using DatLab software. Reoxygenation by direct syringe injection of O2 was necessary to maintain O2 levels between 275 and 450 mM and to avoid potential oxygen diffusion limitation. A substrate-uncoupler-inhibition tritation sequence was used. The following substrates were added (final concentration): malate (2 mM) and pyruvate (5 mM) were added to measure the LEAK respiration (L) through Complex I (CI) (CI_L), followed by MgCl₂ (3mM) and ADP (5 mM) to measure oxidative phosphorylation (OXPHOS) capacity (P) through CI (CI_P), followed by succinate (10 mM) to measure P through CI + Complex II (CII) linked respiration (CI + CII_P).²⁸ This respiration state represents the maximal respiratory capacity in the respirometer chamber.²⁸ Cytochrome c (10 µM) was used to test the integrity of the outer mitochondrial membrane, in this step if the respiration increased >10% when cytochrome c was added, values from that chamber were removed due to a damaged membrane. A series of steps (steps of 0.5 µM) p-trifluoromethoxyphenylhydrazone (FCCP) titrations followed for measurement of electron transport system (ETS) capacity (E) through CI + CII (CI + CII_E). Antimycin (3.75 μ M) was added to block the activity of complex III and to measure the residual oxygen consumption (ROX) indicative of non-mitochondrial oxygen consumption. Substrate and coupling control ratios were calculated from the different titration steps obtained from the protocol used.7 A background calibration for the Oroboros machine was performed every 3 months, and air calibrations were performed before each experiment. The results were pasted into the excel spreadsheet supplied by the manufacturer (Oroboros). If air calibrations

presented more than 5% deviation in the results, membranes were changed, and new background calibration was done. Instrument backgrounds were performed in MiR05, and oxygen levels were at 450 nmol/mL. Highly variable graphs are indicative of poor quality, as shown on the O2K software, were removed.

2.4 | Citrate synthase activity

Intrinsic changes in the mitochondria can be determined by quantitative measurements of specific markers. Such measurements can estimate the content of the mitochondria and are commonly used to normalize global measurements of mitochondrial function. The most commonly used measurement is the citrate synthase (CS) enzyme activity.²⁹ Thus, we have normalized our results by CS activity.

Complete enzyme extractions, from small pieces of frozen tissues, were performed in an ice-cold buffer ($KH_2PO_4 \& K_2HPO_4$) using a TissueLyser II (Qiagen, Hilden, Germany). Protein concentration was assessed using the bicinchoninic acid assay. Total citrate synthase (CS) activity was measured (30°C, pH 7.5) using standard spectrophotometric assays. CS activity is presented in international units (IU).

2.5 | Statistical analyses

We calculated three different metrics to show the reliability of mitochondrial respiration measurements. First, we calculated the correlation between duplicates from the two chambers, for each complex, using non-parametric Spearman's test to downweight the influence of outliers, and a stringent *P* value < .005 for significance. Then, we calculated the within-subject standard deviation, also called typical (or technical) error of measurement (TE_M)¹⁷:

$$\mathrm{TE}_{\mathrm{M}} = \frac{\sqrt{\sum_{1}^{n} (x_{i1} - x_{i2})^2}}{2n},$$

where n is the number of pairs of duplicates and x is the respiration measurement.

We calculated the coefficient of variability (CV) estimated by:

 $CV = 100 \times \frac{TE_M}{\mu}$, where μ is the mean respiration across all duplicates and all samples. While TE_M is expressed in the units of mitochondrial respiration (pmol s⁻¹ mg⁻¹), CV is a percentage.

Lastly, we performed simulations based on the TE_M for the CI + CII_P and CI + CII_E respiration values. We simulated increases of 1%-50% in mitochondrial respiration in each participant after a hypothetical intervention and estimated the

sample size (number of participants) required to detect this change at 80% power.

All analyses were performed using the R software.

3 | RESULTS

3.1 | Large technical error in mitochondrial respiration measurement

Two fiber bundles from the same muscle biopsy were run simultaneously in two chambers totaling 160 duplicate pairs after removal of results that indicated damaged membrane (ie, cyt-c increased >10%). Respiration measurements were correlated between chambers ($R \ge 0.71-0.75$, P < .005 for all) (Figure 1). Yet when compared with correlations obtained for gene expression data (generally R > 0.9),^{30,31} the correlation values obtained here are rather low.

The poor correlation between chambers was consistent with high TE_M and CV estimates for all complexes (Table 1), as all complexes showed a CV \geq 15%. When reporting the Flux Control Ratios (FCRs), to account for lab-to-lab variability,⁷ the TE_M and CV estimates were also significantly elevated, with some reaching more than 100%.

Mean ± SD CV (%) Chamber 1 Chamber 2 TEM CI_P (pmol s⁻¹ mg⁻¹) 82.9 ± 30.6 85.1 ± 28.7 14.9 17.5 $CI + CII_P (pmol s^{-1} mg^{-1})$ 123.1 ± 39.0 123.0 ± 36.0 19.0 15.3 $CI + II_E (pmol s^{-1} mg^{-1})$ 154.9 ± 48.8 150.6 ± 44.1 15.9 24.4 LCR $(CI_L/CI + II_E)$ 0.09 ± 0.07 0.08 ± 0.08 0.04 50.8 PCR (CI + $II_P/CI + II_E$) 0.80 ± 0.12 0.82 ± 0.11 0.07 9.0 RCR (CI + II_P/CI_L) 11.1 ± 31.3 11.6 ± 16.7 22.8 193.7 0.11 ± 0.08 $Inv_RCR (CI_L/CI + II_P)$ 0.11 ± 0.09 0.05 48.6 SCR $(CI_p/CI + II_p)$ 0.67 ± 0.11 0.69 ± 0.08 0.07 10.8

Abbreviations: CI, complex I; CI, electron input through CI; CI+II, convergent electron input through CI and CII; CI+CII, complex I & II; E, ETS capacity; L, leak respiration; Inv-RCR, inverse of respiratory control ratio (CI_L/CI+II_P); LCR, leak control ratio (CI_L/CI+II_P); P, oxphos capacity; PCR, phosphorylation control ratio (CI+II_P/CI+II_P); RCR, respiratory control ratio (CI+II_P/CI_L); SCR, substrate control ratio at constant P (CI_P/CI+II_P); CI+II_P).

FCR were calculated from mass-specific mitochondrial respiration measurements in permeabilized muscle fibers (vastus lateralis).

	Mean \pm SD			
	Chamber 1	Chamber 2	TEM	CV (%)
CI _P */CS**	5.38 ± 1.92	5.60 ± 1.79	1.02	18.5
CI+CII _P */CS**	8.13 ± 2.73	8.24 ± 2.52	1.25	15.2
CI+II _E */CS**	10.35 ± 3.65	10.22 ± 3.32	1.57	15.3

Note: Results based on 128 muscle samples.

*(pmol s⁻¹ mg⁻¹); **(mIU × mg protein⁻¹).

The poor correlation along with high TEM and CV (> 15%) estimates for all complexes was still observed when we normalized mitochondrial respiration with CS activity, (Table 2).

3.2 | Simulations to estimate the sample size required to detect changes in mitochondrial respiration at 80% power

We performed simulations for both the CI + CII_P and CI + II_E respiration values since they are the most commonly reported respiration measurements in the literature, as well as the PCR and SCR ratios. We estimated the sample size required to detect true changes in mitochondrial respiration at 80% power. Since TE_M and CV values for mitochondrial respiration and mitochondrial respiration/CS were similar we have not conducted simulations for the latter. However, we have attached the code for this calculation in the supplementary data.

For the coupled and uncoupled respiration, the minimum sample size required to observe a percentage increase at 80% power is shown on Figure 2. An intervention that increases mitochondrial respiration by 10% at the group level requires

 TABLE 1
 Chamber-specific

 respiration values and FCRs, typical error of
 measurement and coefficient of variation for

 each substrate
 substrate

 TABLE 2
 Chamber-specific

 respiration values normalized by CS
 activity, typical error of measurement, and

 coefficient of variation for each substrate

FIGURE 1 Spearman's correlation between chambers after the addition of (A) oxidative phosphorylation (OXPHOS) capacity (P) through Complex I (CI_P), (B), measure P through CI+Complex II (CII) linked respiration (CI+CII_P), (C) electron transport system (ETS) capacity (E) through CI+CII (CI+CII_E). All values are in pmol s^{-1} mg⁻¹

FIGURE 2 Minimum sample size required to detect increases in mitochondrial respiration (MR) after training at 80% power. A minimum of -55 (CI+CII_P) and -60 (CI+CII_P) pairs of duplicate samples are necessary to detect an increase of 6% in mitochondrial respiration at the group level, at 80% power. An intervention with -20 samples/individuals would require a change of at least 11% in mitochondrial respiration to achieve 80% power for both CI+CII_P and CI+CII_E respiration. Experiments with less than 15 individuals would require a change of at least 13% to achieve 80% power. The triangles represent real effect sizes and sample sizes reported in different studies ^{8,10-12,14,20,35}

FIGURE 3 Minimum sample size required to detect increases (DI) in mitochondrial respiration (MR) ratios after training at 80% power. A minimum of ~26 (PCR) and ~38 (SCR) pairs of duplicate samples are necessary to detect an increase of 5% in mitochondrial respiration at the group level, at 80% power. An intervention with ~20 samples/individuals would require a change of at least 6% and 8% in mitochondrial respiration to achieve 80% power for PCR and SCR ratios, respectively. Experiments with less than 20 individuals would require a change of at least 7%-10% to achieve 80% power. Due to inconsistencies in the literature in which ratios each study calculates we have not included data from published studies in our ratios graph

a minimum of 23 participants to detect changes for CI + CII_P and CI + CII_E at 80% power. Our results suggest that with the typical sample size in exercise training studies (n = 12), only changes of >15% in mitochondrial respiration following training would be detectable at 80% power.

For the PCR and SCR respiration ratios, the minimum sample size required to observe a percentage increase at 80% power is shown on Figure 3. An intervention that increases mitochondrial respiration by 10%, at the group level, requires a minimum of 11 participants to detect changes for PCR ratio and 22 participants for the SCR ratio at 80% power.

We have also simulated percentage increases after hypothetical exercise training intervention in a cohort of 20 individuals (Figure 4A). We observed that an increase of ~11% or more in mitochondrial respiration is necessary for changes to be detected at 80% statistical power if each participant had duplicate respiration measurements. While for ratios (Figure 4B), a minimum of ~6% increase for PCR phosphorylation control ratio (CI + II_P/CI + II_E) and ~7% increase for SCR substrate control ratio at constant P (CI_P/CI + II_P) is required to be detected at 80% power, if each participant had duplicate respiration measurements.

4 | DISCUSSION

In the present study, we reported the TE_M and CV for measurements of mitochondrial respiration for CIp, CI + CII_p,

and CI + CII_E, using the OROBOROS equipment, and in a large sample (n = 160 pairs of duplicate respiration measurements). We also performed statistical simulations to uncover the minimum number of participants required to detect an intervention-induced change in mitochondrial respiration at 80% power. We found a very large variability in all measurements (CV > 15%), suggesting that this measurement may only be appropriate in studies using large sample sizes $(n \ge 55)$ or that detect large effect sizes (>15%). To account for between-lab (lab-by-lab) variability, we have also computed the $\ensuremath{\text{TE}_{M}}\xspace$ and $\ensuremath{\text{CV}}\xspace$ for mitochondrial respiration ratios including: LCR (L/E), PCR (P/E), RCR (P/L), Inv RCR (L/P), and SCR (constant P). Not surprisingly, the TE_M and CV remained >9%, and the statistical simulations suggest a sample size of ≥ 26 is required to achieve 80% power. Mitochondrial respirations values were also normalized by CS activity, but no significant changes in $\ensuremath{\text{TE}_{M}}$ or CVs were observed. In other words, the type of training should be carefully selected to achieve effect sizes in mitochondrial respiration experiments if sample size is a limitation. For example, participants who did sprint interval training (SIT) (n = 9) presented >19% change in mitochondrial respiration after 4 weeks of training, while participants who did only moderate intensity (n = 9)or high intensity interval training (n = 11) did not show any changes in mitochondrial respiration after 4 weeks of training.10 Higher numbers of technical replicates (ie, number of chambers used for the same muscle-here we used two) could potentially lower the TE_M, in which case the required sample size would be lower to detect a given effect size.

Effect size (% increase in mito resp after training)

FIGURE 4 A, Power to detect percentage change in mitochondrial respiration (effect size) after a training intervention with n = 20 participants. A minimum of ~11% increase in mitochondrial respiration is needed to be detected at 80% power for both the CI+CII_P and CI+CII_E, if each participant had duplicate respiration measurements. B, Power to detect percentage change in mitochondrial respiration ratios (effect size) after a training intervention with n = 20 participants. A minimum of ~6% increase for PCR phosphorylation control ratio (CI+II_P/CI+II_E) and ~7% increase for SCR substrate control ratio at constant P (CI_P/CI+II_P) is required to be detected at 80% power, if each participant had duplicate respiration measurements

TE_M includes variability due to machine calibration and human error, and is potentially specific to each research facility.¹⁷ However, Cardinale et al³ recently reported a similarly high CV (15.2%), suggesting that the high variability we observed occurs across research facilities and is intrinsic to the OROBOROS equipment. Permeabilization of muscle pieces involves taking a small piece of muscle (typically 2-6 mg) and placing it in a dish with BIOPS solution; then, a technician uses two pairs of sharp forceps to separate individual fiber bundles.³² Since this process is complicated, it is recommended that the same person performs the procedure in a given study to avoid variability between technicians.33 The degree of fiber separation determines the amount of mitochondria present after the permeabilization, thus affecting the respiration measurements.³³ It is plausible that technicians vary in their ability to efficiently separate fibers, and this could lead to higher respiration values and potentially higher variability as well. Thus, different technical staff/researchers conducting the experiment can explain why experiments are variable. The largest variability in measurements, recently reported by Cardinale et al³ was in experiments conducted by two different technicians working on the same piece of muscle (mean \pm SD =31.3 \pm 7.1 vs 26.3 \pm 8.1 pmol s⁻¹ mg⁻¹ ¹, P = .12). In the present study, some of the experiments were conducted by one technician, and some by another technician (ie, the two technicians never handled the same piece of muscle), which might explain some of the variability we reported. Unfortunately, we are unable to calculate the variability due to technicians in this study as they worked on different muscle samples. It should also be noted that it is common to use creatine in the respiration chambers when working with permeabilized muscle. However, several papers have not used creatine in their experiments and have reported valid and replicable results.^{7,8,10,12}

To the best of our knowledge, the smallest meaningful change in mitochondrial respiration after training or other lifestyle interventions has never been reported, since this is dependent on the overall aim of each study.¹⁰ In the present study, we calculated the minimum number of participants required to detect a change in mitochondrial respiration at 80% power. Our results suggest that with the typical sample size in exercise training studies (n = 12), only changes of >18% in mitochondrial respiration following training would be detectable at 80% power. This means that it would be a challenge to observe true changes in mitochondrial capacity using the OROBOROS technology, since most studies do not report such large increases following exercise training (-9% to 20%).^{18,19,32,34-38} We acknowledge that some of the studies have observed significant changes in mitochondrial respiration without reaching the effect sizes we presented here. This implies that although such studies were significant, the sample sizes were too low to detect the magnitude of changes they reported at 80% power. The simulations presented in this paper provide important information for planning experiments investigating mitochondrial capacity. Future studies can use this data and the code we provided (see Supplementary File 1) as a guide to determine the number of participants required to

detect changes in mitochondrial respiration in their study. Alternatively, if the number of participants is a limitation, then a careful consideration of the exercise intervention duration is recommended, to trigger changes that are large enough to achieve 80% power.

In conclusion, we found very large variability in mitochondrial respiration measurements, reflected by TE_M and CV, and calculated the required sample size necessary for studies aimed at detecting changes in mitochondrial respiration. We recommend that future studies utilizing this method in skeletal muscle would follow the guidelines we provided here to detect significant changes in mitochondrial capacity, following lifestyle interventions. Finally, it should be noted that mitochondrial respiration is only one measure of mitochondrial function. The use of integrative approaches, ^{1,16,32} such as mitochondrial protein expression, mitochondrial content quantification, mitochondrial DNA sequencing, and appropriate statistical methods¹⁷ may allow discoveries in the complex and integrative nature of exercise adaptations^{16,39} as well as strengthen results from mitochondrial respiration measurements.

ACKNOWLEDGMENT

This study was chiefly supported by Nir Eynon's National Health and Medical Research Council, Australia Career Development Fellowship (*NHMRC CDF# APP1140644*), and Sarah Voisin's NHMRC Early Career Fellowship (*APP11577321*). The authors would like to acknowledge Dr Lannie O'Keefe for providing the participant's-controlled diet according to the NHMRC guidelines.

CONFLICT OF INTEREST

The authors have no conflict of interest on the production of this manuscript.

AUTHOR CONTRIBUTIONS

M Jacques performed the experiments, analyzed the data, and drafted the manuscript; J Kuang performed the experiments and revised the manuscript; DJ Bishop revised the manuscript; X Yan participated in the research design and revised the manuscript; J Alvarez-Romero performed the experiments; F Munson, I Papadimitriou; and A Garnham performed and collected the muscle biopsies and revised the manuscript; S Voisin performed the data analyses and assisted in drafting the manuscript; and N Eynon designed the research and assisted in drafting the manuscript.

REFERENCES

- Bishop DJ, Granata C, Eynon N. Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content? *Biochim Biophys Acta – Gen Subj.* 2014;1840:1266-1275.
- Saraste, M. Oxidative phosphorylation at the fin de siecle. Science. 1999;283:1488-1493

- JACQUES ET AL.
- Cardinale DA, Gejl KD, Ortenblad N, Ekblom B, Blomstrand E, Larsen FJ. Reliability of maximal mitochondrial oxidative phosphorylation in permeabilized fibers from the vastus lateralis employing high-resolution respirometry. *Physiol Rep.* 2018;6(4):e13611.
- Wibom R, Hultman E. ATP production rate in mitochondria isolated from microsamples of human muscle. *Am J Physiol.* 1990;259(2 Pt 1):E204-E209. https://doi.org/10.1152/ajpendo. 1990.259.2.E204.
- Kuznetsov AV, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. *Nat Protoc.* 2008;3:965-976. https://doi.org/10.1038/nprot.2008.61.
- Pesta D, Gnaiger E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. *Methods Mol Biol.* 2012;810:25-58. https:// doi.org/10.1007/978-1-61779-382-0_3.
- Granata C, Oliveira RSF, Little JP, Renner K, Bishop DJ. Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle. *FASEB J.* 2016;30:3413-3423.
- Christensen PM, Jacobs RA, Bonne T, Flück D, Bangsbo J, Lundby C. A short period of high-intensity interval training improves skeletal muscle mitochondrial function and pulmonary oxygen uptake kinetics. *J Appl Physiol*. 2016;120:1319-1327. https:// doi.org/10.1152/japplphysiol.00115.2015.
- Daussin FN, Zoll J, Dufour SP, et al. Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol. 2008:295:R264-R272.
- Granata C, Oliveira RSF, Little JP, Renner K, Bishop DJ. Training intensity modulates changes in PGC-1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. *FASEB J*. 2016;30:959-970.
- Jacobs RA, Flück D, Bonne TC, et al. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. *J Appl Physiol.* 2013;115:785-793.
- Vincent G, Lamon S, Gant N, et al. Changes in mitochondrial function and mitochondria associated protein expression in response to 2-weeks of high intensity interval training. *Front Physiol.* 2015;6:1-9.
- Walsh B, Tonkonogi M, Sahlin K. Effect of endurance training on oxidative and antioxidative function in human permeabilized muscle fibres. *Pflugers Arch.* 2001;442:420-425. https://doi. org/10.1007/s004240100538.
- MacInnis MJ, Zacharewicz E, Martin BJ, et al. Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work. J. Physiol. 2017;595:2955-2968. https://doi.org/10.1113/JP272570.
- Montero D, Cathomen A, Jacobs RA, et al. Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training. *J. Physiol.* 2015;593:4677-4688. https://doi.org/10.1113/JP270250.
- Granata C, Jamnick NA, Bishop DJ. Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. Sport Med. 2018;48:1809-1828.
- Voisin S, Jacques M, Lucia A, Bishop DJ, Eynon N. Statistical considerations for exercise protocols aimed at measuring trainability.

JACQUES ET AL.

Exerc Sport Sci Rev. 2019;47:37-45. https://doi.org/10.1249/ JES.0000000000000176.

- Irving BA, Lanza IR, Henderson GC, Rao RR, Spiegelman BM, Sreekumaran NK. Combined training enhances skeletal muscle mitochondrial oxidative capacity independent of age. J Clin Endocrinol Metab. 2015;100:1654-1663. https://doi.org/10.1210/ jc.2014-3081.
- Leckey JJ, Hoffman NJ, Parr EB, et al. High dietary fat intake increases fat oxidation and reduces skeletal muscle mitochondrial respiration in trained humans. *FASEB J.* 2018;32: 2979-2991.
- Robach P, Bonne T, Flück D, et al. Hypoxic training: effect on mitochondrial function and aerobic performance in hypoxia. *Med Sci Sports Exerc.* 2014;46:1936-1945.
- Brandao CFC, de Carvalho FG, Souza AO, et al. Physical training, UCP1 expression, mitochondrial density, and coupling in adipose tissue from women with obesity. *Scand J Med Sci Sports*. 2019;29:1699-1706. https://doi.org/10.1111/sms.13514.
- Goedecke JH, Mendham AE, Clamp L, et al. An exercise intervention to unravel the mechanisms underlying insulin resistance in a cohort of black South African women: protocol for a randomized controlled trial and baseline characteristics of participants. JMIR Res Protoc. 2018;7:e75. https://doi.org/10.2196/resprot.9098.
- de Lucas RD, Caputo F, Mendes de Souza K, et al. Increased platelet oxidative metabolism, blood oxidative stress and neopterin levels after ultra-endurance exercise. J Sports Sci. 2014;32:22-30. https://doi.org/10.1080/02640414.2013.797098.
- Gatterer H, Menz V, Salazar-Martinez E, et al. Exercise performance, muscle oxygen extraction and blood cell mitochondrial respiration after repeated-sprint and sprint interval training in hypoxia: a pilot study. J Sport Sci Med. 2018;17:339-347.
- Hedges CP, Woodhead JST, Wang HW, et al. Peripheral blood mononuclear cells do not reflect skeletal muscle mitochondrial function or adaptation to high-intensity interval training in healthy young men. J Appl Physiol. 2019;126:454-461. https://doi. org/10.1152/japplphysiol.00777.2018.
- Tsai HH, Chang SC, Chou CH, Weng TP, Hsu CC, Wang JS. Exercise training alleviates hypoxia-induced mitochondrial dysfunction in the lymphocytes of sedentary males. *Sci Rep.* 2016;6:35170. https://doi.org/10.1038/srep35170.
- Yan X, Eynon N, Papadimitriou ID, et al. The gene SMART study: method, study design, and preliminary findings. *BMC Genomics*. 2017;18(Suppl 8):821. https://doi.org/10.1186/s12864-017-4186-4.
- Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. *Bioinformatics*. 2010;26:2363-2367.
- Larsen S, Nielsen J, Hansen CN, et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. *J Physiol.* 2012;14:3349-3360.

Kitchen RR, Sabine VS, Sims AH, et al. Correcting for intra-experiment variation in Illumina BeadChip data is necessary to generate robust gene-expression profiles. *BMC Genomics*. 2010;11:134. https://doi.org/10.1186/1471-2164-11-134.

FASEBIOURNAL

- McHale CM, Zhang L, Lan Q, et al. Global gene expression profiling of a population exposed to a range of benzene levels. *Environ Health Perspect.* 2011;119:628-634. https://doi.org/10.1289/ehp. 1002546.
- Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsøe R, Dela F. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. *Diabetologia*. 2007;50:790-796.
- Larsen S, Kraunsøe R, Gram M, Gnaiger E, Helge JW, Dela F. The best approach: homogenization or manual permeabilization of human skeletal muscle fibers for respirometry? *Anal Biochem.* 2014;446:64-68.
- Doerrier C, Garcia-Souza LF, Krumschnabel G, Wohlfarter Y, Mészáros AT, Gnaiger E. High-resolution fluorespirometry and oxphos protocols for human cells, permeabilized fibers from small biopsies of muscle, and isolated Mitochondria. 2018.
- Dohlmann TL, Hindsø M, Dela F, Helge JW, Larsen S. Highintensity interval training changes mitochondrial respiratory capacity differently in adipose tissue and skeletal muscle. *Physiol Rep.* 2018;6:1-11.
- Konopka AR, Laurin JL, Schoenberg HM, et al. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. *Aging Cell*. 2019;18(1):e12880.
- Larsen FJ, Schiffer TA, Ørtenblad N, et al. High-intensity sprint training inhibits mitochondrial respiration through aconitase inactivation. FASEB J. 2016;30:417-427.
- Porter C, Reidy PT, Bhattarai N, Sidossis LS, Rasmussen BB. Resistance exercise training alters mitochondrial function in human skeletal muscle. *Med Sci Sports Exerc*. 2015;47:1922-1931.
- Whitham M, Febbraio MA. The ever-expanding myokinome: discovery challenges and therapeutic implications. *Nat Rev Drug Discov.* 2016.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Jacques M, Kuang J, Bishop DJ, et al. Mitochondrial respiration variability and simulations in human skeletal muscle: The Gene SMART study. *The FASEB Journal*. 2019;00:1–9. https://doi.org/10.1096/fj.201901997RR