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Abstract 

The ability to synthesize dual-track road elevation profiles enables the multi-axial motion (heave, pitch 

and roll) of road vehicles to be simulated and investigated.  It is important that the synthesized elevation 

profiles along two wheel tracks, namely kerb-side and driver-side, retain the random and nonstationary 

character of real roads. The paper introduces a novel method for synthesizing dual-track longitudinal 

pavement elevation profiles that retain the important statistical characteristics of measured elevation 

data. Using road profile data from some 400 km of asphalted roads, it was found that variations in the 

roughness of a single track are well described by the three-parameter Weibull probability distribution 

function. The location and shape parameters of the distribution were shown to be largely independent 

to road roughness, leaving the scale parameter as the main index to define the roughness distribution. 

This led to the creation of a new roughness classification scheme that better represents the roughness 

range encountered on sealed asphalt roads in modern road networks. The relationship between the 

driver-side and kerb-side tracks was investigated by analysing the ratio of the roughness and the 

coherence function between the track profiles. The distributions of the roughness ratio and the 

coherence function were both found to be independent of overall road roughness and well-defined by 

the three-parameter Weibull distribution. In the novel method, a random sequence of roughness values 

for the kerb-side track of the synthesized road is generated with a linear congruential generator from 

the Weibull distribution, according to the proposed classification. The roughness level of the driver-

side track is set according to the distribution function of the driver-side to kerb-side roughness ratio. 

The elevation Power Spectral Density (PSD) functions of the kerb-side and driver-side tracks are 

correlated using the coherence function which is also made to vary randomly along the synthesized 

road. Short stationary segments of the elevation signals are then synthesized from the kerb-side and 

driver-side PSD functions and concatenated to create two parallel track elevation profiles that are truly 

nonstationary and emulate the natural (random) fluctuations in road roughness and dual track coherence 

that are found to exist on real roads.   

 

Keywords: nonstationary, road synthesis, multi-axial, vehicle simulation, IRI 

  

mailto:matthew.lamb@vu.edu.au


INTRODUCTION 

Numerical simulation and laboratory-based testing are becoming an increasingly important aspect of 

ground vehicle design and evaluation [1]. They enable vehicles to be designed to withstand the stresses 

associated with dynamic interaction between the vehicle and the uneven road surface, to maintain 

sufficient forces between the tyres and the road surface ensuring control of the vehicle and to achieve 

suitable ride conditions for the occupants and cargo. The usefulness of the simulations relies heavily 

upon the accurate synthesis of the environmental loads applied to the vehicle, particularly road 

unevenness [1]. 

Longitudinal road unevenness (profiles) have long been recognized to be random and are generally 

represented by an elevation power spectral density (PSD) function [2-4].  Artificial longitudinal road 

profiles can be synthesized by combining the desired PSD functions with a corresponding (uniformly-

distributed) random phase spectrum using, for instance, the inverse Fourier transform.  This approach 

invariably produces a random signal that conforms to the Gaussian distribution in accordance with the 

central limit theorem.  This is acceptable when the aim is to create a statistically stationary (constant 

root-mean-square) road profile signal.  However, in reality, such roads do not exist as the localized 

roughness varies (randomly) long the length of the road.  It is, therefore, desirable to synthesize realistic 

road profiles that include these natural variations in roughness.  Such an approach was first broached 

by Rouillard et al. [5] who treated the longitudinal road profile as a nonstationary process and used a 

random amplitude modulation function to stochastically alter the root-mean-square (rms) level of the 

synthesized road profile in accordance with a statistical distribution of the spatial acceleration rms level.  

Nonstationary road profile synthesis was also addressed by Steinwolf et al. [6] and Abdullah et al. [7] 

but these were limited to the insertion of bumps into single-track road elevation data using wavelet 

analysis. The main limitation of this work is that it is restricted to single-track profile synthesis and does 

not address how a second, parallel track is to be synthesized.  This is important if the response of 

complete vehicles is to be investigated whether numerically or physically using multi-post road 

simulators.  

Several authors have presented studies related to the synthesis of stationary dual wheel-track excitation 

records [8 - 14] with the vast majority using the coherence function, 2
lr, between the driver-side and 

kerb-side wheel-tracks to synthesize partially correlated dual track data. Typically, a zero average phase 

difference is assumed between the driver-side and kerb-side wheel-tracks allowing the coherence 

function to be used as the frequency response function between the driver-side to kerb-side wheel-tracks 

for the correlated portion of the signal [8, 9, 11, 12, 14]. By using the coherence function as the 

frequency response function, the energy in the second signal is suppressed at the shorter wavelengths 

creating a distortion to the shape of the PSD. This is clearly shown by [12] and needs to be accounted 

for by adding a non-correlated component to the second signal [8, 12, 14]. This process is most clearly 

demonstrated by Long [14] as illustrated in Figure 1.  

 



 

Figure 1: Method for generating correlated dual wheel-track data [14]. 

 

One limitation of the process is that it does not account for any difference in roughness that may exist 

between the driver-side and kerb-side wheel-tracks. Furthermore, despite each of the methods 

implementing the coherence function to generate the partially correlated tracks, there is no consensus 

on a suitable coherence model. Although an isotropic assumption is recommended in ISO 8608 [4], it 

is now broadly accepted that the classic view of roads as an isotropic surface, first proposed by Dodds 

and Robson [3] then by Kamash and Robson [15], is not adequate [16].  Bogsjö [17] validated coherence 

models using large road profile records and compared the coherence of measured profiles with the 

isotropic model. The results showed the isotropic assumption to be inaccurate.  A single-parameter 

exponential model was proposed and was found to accurately describe the coherence spectra of all 20 

roads analyzed. Múčka [18] presents a comprehensive overview of the evolution of the various 

coherence functions that aim at characterizing parallel wheel tracks and found the model proposed by 

Ammon and Bormann (cited in [18]) to be the most accurate. Unfortunately, the work by Múčka was 

undertaken on roads of insufficient length. Lamb and Rouillard [19] compared the various models 

presented by Múčka and found the models of Ammon and Bormann (cited in [18]) and Bogsjö [17] to 

be accurate. The advantage of the model proposed by Bogsjö is that it can be described using a single 

(other than measured wheel track) parameter, b1, as shown in equation (1) 
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Where n is the spatial frequency in cycles per metre,  the angular spatial frequency in radians per 

metre,  the track width in metres and b1 an arbitrary constant. 

Lamb and Rouillard [19] investigated the driver-side and kerb-side wheel track relationship further to 

show that the coherence function varies along the length of the road and should be treated as a 

nonstationary process.  Lamb and Rouillard successfully modelled both the variation in road roughness 

and the coherence function parameter, b1, using the Weibull distribution. Analysis of these variations 

showed that showed that the distribution of the nonstationary coherence function is independent to the 

roughness level, this is important with regards to the simulation process.  

The findings by Lamb and Rouillard demonstrate a further limitation to existing dual wheel-track 

synthesis methods as none of them consider the road roughness nor the relationship between the kerb-

side and driver-side wheel tracks as being nonstationary. The aim of this paper is to develop an easy-



to-implement dual wheel track synthesis procedure which allows for the generation of nonstationary 

longitudinal profiles that are representative of real roads. 

METHOD 

The research undertaken by Lamb and Rouillard [19] has provided an indication of typical roughness 

distributions, a suitable coherence function model and a descriptor of the variation in the coherence 

function along the length of the road. The finding that the road roughness levels and variations in the 

coherence function are independent is also significant as it allows their randomisation to be set 

independently using the associated statistical distribution functions. The work by Lamb and Rouillard 

is extended here to allow for the simulation of nonstationary dual track data. Specifically this requires 

methods to:  

1. Set the nominal roughness for the road to be simulated 

2. Set the roughness variation (distribution) for each wheel track  

3. Set coherence relationship between the driver-side and kerb-side wheel tracks. 

4. Create the nonstationary dual wheel track profiles 

Setting nominal roughness 

Typically, overall road roughness is defined using the PSD function of a measured road and is classified 

in accordance with the ISO-8608 standard [4]. The ISO-8608 standard provides classifications ranging 

from very smooth (class A) to extremely rough (class H) over eight distinct classes according to (2): 
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, where: 

 
dG is the displacement PSD (m3/rad) 

   is the angular spatial frequency (rad/m) 

 
o is the reference angular spatial frequency (1 rad/m in the standard) 

 w is the PSD fitting exponent (w = 2 according to the standard)1 

Each road class represents a band of roughness levels which are defined using a geometrical scale as 

shown in Table 1 (for w = 2).   

Table 1: ISO-8608 road class degrees of roughness [4] 

Road 

class 

 

Gd(o) [10-6 m3/rad] 

Lower 

limit 

Mean Upper 

limit  

A - 1 2 

B 2 4 8 

C 8 16 32 

D 32 64 128 

E 128 256 512 

F 512 1024 2048 

G 2048 4096 8192 

                                                      
1 Arguments for different values for the spectral exponent, w, and for different spectral shape are numerous but, 

as this is not the focus of this paper, the simple spectral model as contained in ISO 8608 will be used here. 



H 8192 16384 32768 

o=1 rad/m 

Research has shown [20] has shown that, for modern, sealed road networks, the majority of roads fall 

between class A and C making the use of the ISO class approach for characterising and synthesizing 

sealed roads for modern road networks rather coarse and imprecise. A popular alternative for the 

definition of road roughness is the international road roughness index (IRI) [21-23] which is not only 

able to provide an overall roughness for an entire road, but also near-instantaneous (or short distance) 

estimates along the segment of road. This approach provides the added advantage of not only being 

useful for estimating the overall (average) roughness of the road, but also the distribution of the road 

roughness along its length. One limitation of the approach is that it does not provide information on the 

spectral character of the road surface. 

Since both classification indices are widely used, there has been a number of works published on the 

relationship (3) between the two techniques [24 - 26]. Specifically, work by Kropáč and Múčka [25] 

has shown that, when w = 2, 

  6=2.21 /10 /d oIRI G m km            (3) 

This relationship has been tested and validated by the authors using synthesized stationary roads. Other 

authors, including Pawar et. al [26] have also tested and approved the conversion.  

Modelling roughness variations 

The concept of modelling and synthesizing more realistic road elevation data by introducing random 

fluctuations in roughness along the length of the road was first introduced by Rouillard et al. [5].  

Rouillard et al. used a random amplitude modulation function to stochastically alter the level of a single 

synthesized wheel-track according to an offset Rayleigh distribution. Lamb and Rouillard [19] extended 

on this work in an attempt to classify the roughness of dual wheel-track road elevation data. Through 

the analysis of a wide variety of sealed roads (approximately 400 km in total) in Australia2, Lamb and 

Rouillard showed the roughness distribution for three groupings of roads which may be considered as 

typical low, moderate and high roughness based on their overall IRI values. The data used in their study 

included 19 independent elevation data sets (totaling approximately 400 km) measured using an inertial 

profilometer along a wide variety of sealed asphalted roads across the state of Victoria in Australia. 

Table 2 lists the details of each elevation data set used by Lamb and Rouillard including an estimate of 

their overall roughness which is described using IRI.  Each data set was measured across a track width 

of 1.5 m.  

Table 2. Validation data set details [19]. 

Road Name Road Type 
Length 

[km] 

IRI [m/km] 

Kerb-side Driver-side Mean 

Princes Hwy East (1A) Metro. Highway 22.9 1.7 1.7 1.7 

Princes Hwy East (2A) Metro. Highway 20.3 1.5 1.4 1.5 

Princes Hwy East (3A) Metro. Highway 3.3 1.7 1.6 1.7 

Princes Hwy East (3B) Metro. Highway 3.4 2.3 1.8 2.1 

Murray Valley Hwy (4A) Country Highway 47.7 1.9 1.7 1.8 

                                                      
2 The authors acknowledge VicRoads, Australia for supplying road elevation data. 



Murray Valley Hwy (4B) Country Highway 43.8 1.6 1.4 1.5 

South Gippsland Hwy (3A) Country Highway 11.3 2.3 2.0 2.2 

South Gippsland Hwy (3B) Country Highway 21.8 2.6 2.1 2.4 

South Gippsland Hwy (3C) Country Highway 15.0 3.1 2.6 2.9 

Midland Hwy Country Highway 14.0 3.3 3.2 3.3 

South Gippsland Hwy (5B) Country Highway 60.8 3.6 3.3 3.5 

Daylesford - Malmsbury Rd Country Road 25.4 4.0 3.3 3.7 

Northern Hwy Country Highway 5.0 4.1 3.8 4.0 

Lismore - Skipton Rd Country Road 32.6 4.2 3.7 4.0 

Bendigo - Maryborough Rd Country Road 22.3 4.3 3.8 4.1 

Wiltshire Lane Country Road 2.3 4.2 4.1 4.2 

Pyrenees Hwy Country Highway 12.4 4.8 4.2 4.5 

Timboon - Port Campbell Rd Country Road 8.0 6.3 4.3 5.3 

Euroa - Mansfield Rd Country Road 8.3 6.1 5.0 5.6 

 

In order to quantify and statistically analyse variations in roughness along the length of the road 

(nonstationarity) - and taking into account the longest relevant wavelength - data sets of considerable 

lengths are needed. Therefore, to enable such analysis, a number of records listed in Table 2 were 

concatenated to produce longer records. Lamb and Rouillard [19], grouped roads of similar average 

roughness levels together and four roads were created according to their nominal (IRI) roughness.  

Road 1: Roads with a mean IRI of 2.1 or less (141.5 km) 

Road 2: Roads with a mean IRI of between 2.2 and 3.6 (123.5 km) 

Road 3: Roads with a mean IRI of 3.7 or more (116.8 km) 

Road 4: Entire data set (381.8 km) 

Prior to concatenating the records, a high-pass filter (fourth order Butterworth set at 1/33 m-1) was 

applied to each segment in order to ensure that the long wavelength errors, that are inherent to inertial 

profilometers [27], were removed from the data.  

The data used by Lamb and Rouillard included roads with average IRI values ranging from 1.5 m/km 

to 6 m/km, which according to available literature [20, 28], covers the expected range for sealed roads. 

The IRI distribution for the kerb-side (left in this case) wheel track for 100 m segments is shown in 

Figure 2.  



 

Figure 2: Typical distributions (probability density function) of road roughness (IRI) (edited 

from [19]). 

Lamb and Rouillard modelled the distributions using the three parameter Weibull function (4) [29]:   
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, where: 

 The location parameter, xo, represents the lower bound of the distribution  

 The shape parameter, , influences the overall shape of the function 

 The scale parameter,, sets the breadth of the distribution. 

 

The influence of these three parameters is shown graphically in Figure 3. 
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Figure 3 Parameter influence on the Weibull distribution: (a): Location parameter; (b) Shape 

parameter; (c): Scale parameter. 

Use of the Weibull function allows the (nonstationary) roughness of each road type to be easily 

characterised using only three parameters. These IRI distribution functions, or any distribution function 

measured by the user, can be exploited to simulate the nonstationary road elevation profiles by using a 

suitable random number generator.  From Figure 2 it can be seen that for the three roads (low, moderate 

and high overall roughness), both the location and the shape parameters vary little in comparison with 

the scale parameter regardless of overall roughness. In an attempt to simplify the model, the location 

and shape parameters were fixed to match the respective means (namely xo = 0.625 and  = 2.20) and 

the Weibull distribution was re-fitted to extract the corresponding scale parameters.  Adjusting the scale 

while holding shape and location constant alters the breadth of the fit. In addition, since the area under 

the model is a constant (one), the maximum value of the probability density will alter. This makes the 

scale parameter a very useful tool for adjusting the model to suit the roughness range. 

The results, shown in Figure 4, reveal that no significant difference is produced when the model is 

simplified to a single parameter (scale).  This is significant as it affords the use of a single index to 

completely describe the roughness (in this case IRI) distribution of any road.   

  

 

 

Figure 4: Comparison of the best-fitting Weibull distributions (probability density function) with 

fixed (xo = 0.625 and  = 2.20) and variable location and shape parameters. 

The statistical properties of the distribution can be determined mathematically using the three Weibull 

parameters. This is particularly useful as it allows the user to set the scale parameter to achieve the 

desired mean IRI according to (5) [29], provided that the shape and location parameters have already 

been set. If the shape and location are set to the values used in Figure 4 (i.e. xo = 0.625 and  = 2.20), 

the required shape parameter can be calculated using the simple linear function provided in (6).  
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Equations (6) and (3) can be used to relate the distributions to the more familiar ISO standards allowing 

users to determine an equivalent (at least in terms of the mean) nonstationary road or (6) can be used 

alone for any desired mean IRI. Selecting an appropriate mean IRI requires knowledge of the type of 

roads to be simulated and their anticipated roughness levels. According to an extensive global survey 

of IRI levels on a wide range of roads [20, 28] it is rare for new and rehabilitated roads to have mean 

IRI values exceeding 3 m/km and in-service roads (which Múčka [20] defines as existing roads) to 

exceed 8 m/km. Furthermore, according to Múčka [20], the high roughness levels tend to be more 

prevalent for sorter segments (200 m or less).  Mean IRI values of 3 to 8 m/km correspond to the mean 

roughness for roads of ISO class A to C according to ISO 8608 as illustrated in Figure 2. The 

distributions shown in Figure 2 also show that, with the exception of very smooth roads (ISO class A), 

roads are not limited to one ISO class with the variation in IRI increasing with an increase in mean IRI. 

A new scheme for classifying modern roads is proposed to reflect this. The proposed method is based 

on the existing ISO classifications which are used to set the overall mean and equation (6) to set the 

breadth of the roughness distribution. In order to afford better differentiation of roughness, the ISO 

class band scheme was modified to include intermediate bands. The corresponding values of IRI range, 

Gd(o) and the Weibull scale parameter of these bands are shown in Table 3. In this roughness 

classification scheme, the lower and upper limits for the IRI are extracted from the Weibull distribution 

and are fixed to xo and the 98th percentile (P98) respectively.  This means that as overall roughness of a 

road increases, so does the upper limit and, therefore, the range of IRI values.  This is significantly 

different to the ISO classification scheme used for stationary analysis which treats each roughness band 

as exclusive to the adjacent bands.  The distributions corresponding to Table 3 are presented in Figure 

5 which compares each band of the new classification method with roads 1 to 3 of Lamb and Rouillard 

[19].  

 

Table 3. Proposed roughness classification for modern, sealed, road networks. 

Roughness 

class 

 

IRI [m/km] Gd(o) [10-6 m3/rad]  

[m/km] 

 
Lower 

limit (xo) 

Mean Upper 

limit (P98) 

Lower 

limit 

Mean Upper 

limit (P98) 

0A 

0.625 

1.56 2.61 

0.08 

0.50 1.39 1.06 

AA 2.21 3.96 1.00 3.21 1.79 

AB 3.13 5.88 2.00 7.08 2.82 

BB 4.42 8.61 4.00 15.18 4.29 

BC 6.25 12.44 8.00 31.69 6.35 

CC 8.84 17.89 16.00 65.53 9.28 

  Note: For all roughness classes xo = 0.625 and  = 2.20. 



 

Figure 5: Road roughness distributions for proposed classifications presented in Table 3 with 

roads 1, 2 and 3 representing the low, moderate and high roughness roads analysed by Lamb and 

Rouillard [19]. 

 

Setting modulated roughness of second wheel-track 

It is reasonable to assume that the roughness of the driver-side and kerb-side tracks are not equal for 

corresponding segments along the road. The relationship between driver-side and kerb-side track 

roughness is investigated here using the same set of dual track elevation data (roads 1 to 4) used by 

Lamb and Rouillard [19]. In order to determine the relationship between the driver-side to kerb-side 

wheel-track roughness ratio of the segment IRI for each track was recorded. This was achieved by 

calculating the instantaneous IRI values corresponding to each data point in roads 1-4 and applying a 

100 m moving average filter before calculating the ratio of the segment IRI of the wheel-tracks. The 

resulting probability density functions from the analysis are presented in Figure 6 where they are 

compared to the closest-fitting three-parameter Weibull distribution. Interestingly, the roughness ratio 

for all cases range from approximately 50% to 150%.  The roughness distribution for road 4 (all data) 

is overlaid on each distribution for comparison purposes. The results show that, for sealed asphalt roads, 

there is a correlation between the driver-side and kerb-side track roughness with a typical ratio of driver-

side roughness to kerb-side roughness of between 0.85 and 0.90. It is also clear that there is no 

significant variation in the distribution as a function of overall roughness (IRI) and the Weibull fit of 

all data (i.e. road 4) adequately represents the full range of roads. This allows one distribution (described 

by only three parameters) to be used to modulate the ratio of driver-side to kerb-side wheel-track 

roughness to generate realistic, nonstationary dual track elevation profiles. This is achieved by 

generating a random value of the ratio of driver-side to kerb-side wheel-track roughness in accordance 

with the Weibull distribution (Figure 6) and multiplying that value by the roughness of the kerb-side 

wheel-track to obtain the roughness on the driver-side wheel track. One limitation to the results is that 

they are all gathered from a single track width of 1.5 m.  This is seen as a minor limitation as the track 

width of most vehicles falls between 1.5 m and 2 m.  It must also be noted that the roads used in this 

analysis are all sealed asphalt roads. Further analysis is required for other road types such as Portland 



Cement Concrete pavements which may have less variation between the driver-side and kerb-side 

wheel-tracks. 

 

 

Figure 6: Probability density functions for ratio of driver-side to kerb-side wheel-track IRI. 

 

Coherence relationship between the driver-side and kerb-side wheel tracks 

Although the magnitude of the wheel-track roughness is correlated along the length of the data segment, 

the overall correlation function varies with spatial frequency. As discussed in the introduction, the most 

common approach for simulating dual wheel-track data is to use the coherence function between the 

driver-side and kerb-side wheel-tracks to establish the correlated and non-correlated portions of the 

signal. Lamb and Rouillard [19] found that the coherence function can be described by a single variable, 

b1, in accordance with (1).  By analysing the wheel-track data in short segments along the length of the 

road, Lamb and Rouillard were able to reveal the nonstationary nature of the coherence function and 

the distribution of b1 for sealed asphalt roads of any roughness (Figure 7). This distribution can be used 

to randomise the coherence function, which when combined with the technique presented by Long [14] 

can be used to generate realistically correlated, nonstationary dual wheel-track elevation data.  

 



 

Figure 7: Probability density function of the exponent of the driver-side to kerb-side wheel-track 

coherence function [19]. 

 

Overall synthesis process 

The discussions thus far have shown that three parameters describe the nonstationarity of road elevation 

profiles. Namely, these are the kerb-side track IRI, the driver-side to kerb-side track IRI ratio and the 

coherence function parameter, b1. Statistical distributions for these parameters have all been 

characterised using the three parameter Weibull distribution.  For the latter two cases, the Weibull 

function is fixed as the distributions were found not to vary significantly with road roughness (IRI), 

whereas the kerb-side track IRI distribution varies with the mean IRI and can be fully described by the 

scale parameter determined using (6).  

The scheme for creating nonstationary dual-track longitudinal elevation profiles is discussed here and 

is based on the repeated generation of stationary dual track profile segments which are concatenated to 

produce a dual-track profile of the desired length.  For each stationary segment, the IRI ratio and 

coherence between the driver-side and kerb-side tracks vary according to statistical distributions 

presented in Figures 6 and 7 respectively. The overall synthesis process is shown in Figure 8 and 

requires the following as its inputs: 

 The desired kerb-side track IRI distribution by setting the mean IRI (from which the Weibull 

scale parameter is calculated - equation 6) in accordance with Table 3 to simulate a road of the 

desired nominal roughness. 

 The dual track length to be synthesized 

 The length of (stationary) segments 

 The wheel track (nominally 1.5 m) 

 

Once the inputs have been selected, the dual track profile for each stationary segment is generated and 

concatenated until the desired number of segments has been reached.  It is important to note that each 

dual track segment will have different kerb-side and driver-side track roughness levels and driver-side 



to kerb-side track coherence functions resulting in an overall nonstationary process that faithfully 

represents the random variation as exhibited by real roads.   

 

 

Figure 8.  Nonstationary, dual track synthesis flowchart. 

 

Explanatory notes for the flow chart shown in Figure 8 are given below: 

1 The IRI level of the kerb-side track segment is randomly generated from the Weibull distribution 

of the IRI (equation 4) using a suitable linear congruential generator (such as the wblrnd function 

in Matlab® and applying an offset to represent the location parameter, xo) [30]. 

2 The IRI level of the corresponding driver-side track is randomly generated from driver-side to 

kerb-side wheel track IRI ratio distribution (three parameter Weibull model with xo= 0.36,  = 

2.93 and =0.61) as shown in Figure 6 using the same technique as in step 1. 

3 The kerb-side track segment elevation spectrum, based on the ISO 8608 model, is generated using 

equations (2) and (3). 

4 The corresponding dual track coherence parameter, b1 for the segment is randomly generated 

from the parameter distribution (three parameter Weibull model with xo= 1.78,  = 2.11 and 

 = 3.04) as shown in Figure 7 using the same technique as in step 1. 

5 The coherence function for the segment is generated using equation (1). 

6 The driver-side track correlated segment elevation spectrum is generated from the product of the 

kerb-side track elevation spectrum and the coherence function (spectrum) and adjusted for the 

driver-side to kerb-side track IRI ratio. 

7 The driver-side track uncorrelated segment elevation spectrum is produced from the product of 

the kerb-side track elevation spectrum and the incoherence (1 - lr
2) function (spectrum) and 

adjusted for the driver-side to kerb-side track IRI ratio. 

8 The kerb-side track and correlated driver-side track elevation spectra are combined with a single 

uniformly-distributed random phase spectrum to produce the kerb-side track and correlated 



driver-side track random elevation profiles for the segment respectively by using the inverse 

Fourier transform. 

9 The uncorrelated driver-side track elevation spectrum is combined with a separate uniformly-

distributed random phase spectrum to produce the uncorrelated driver-side track random 

elevation profile for the segment by using the Inverse Fourier transform. 

10 The segment driver-side track elevation profile is obtained by summing the correlated and 

uncorrelated elevation profiles. 

11 Both track segments are continually concatenated ensuring that discontinuities are eliminated by 

application of an appropriate windowing function (such as the Tukey window) to each 

synthesized segment. 

Results 

For the purpose of demonstrating the functionality of the algorithm, results for a rough road conforming 

to the distribution of road 3 of Lamb and Rouillard [19] were produced. The Weibull parameters were 

taken directly from Figure 2 which happens to closely match the distribution of roughness class BB. 

Alternatively a desired mean IRI can be set and the scale parameter calculated using equation 6 or the 

values from Table 3 can be applied directly. 

The length of each segment was set to 100 m and the total number of segments to be synthesized was 

set to 250 (resulting in a 25 km long road). The wheel track was set to 1.5 m. The results are presented 

in Figure 9 and include the mean (indicated by the vinculum) and range of each parameter used to 

synthesize the dual track road profile.  These include the roughness parameter Gd(o), the coherence 

parameter b1, the kerb-side track IRI and the driver-side to kerb-side track IRI ratio. The roughness 

variation for each segment is evident in Figure 9(a), as is the (partial) correlation between the kerb-side 

and driver-side tracks.  

The results in Figure 9(b) show that the average synthesized kerb-side track PSD (red line) is in good 

agreement with the target average PSD (black line).  The grey dashed lines represent the range of the 

target PSD.  

From Figure 9(c) it can be seen that agreement between the overall coherence function of the 

synthesized road (red line) and the overall target coherence function (black line) is also good. Again, 

the grey dashed lines represent the range of the target coherence function.  

The variations in road roughness for the driver-side and kerb-side synthesized wheel tracks conform to 

the respective statistical distributions as shown in Figure 9(d) and Figure 9(e). The distributions from 

the synthesized elevation profiles are represented by the red bars whereas the target distributions as 

represented by the solid black line. 

  



 

Figure 9: Example synthesis for rough roads using road 3 [19] IRI distribution. (a): synthesised 

elevations; (b): average and range of elevation PSD of kerb-side track; (c):average and range of 

coherence function; (d): kerb-side track IRI distribution; (e): driver-side to kerb-side track IRI ratio 

distribution. 

 

Figure 10 shows a 100 m section straddling two adjacent segments to reveal the synthesised elevation 

data. The results show a correlation between the two tracks which decreases in strength as the 

wavelength is reduced which is a result of the driver-side to kerb-side track coherence function. Minor 

differences in the roughness of the two tracks is also evident, especially for the second 50 m section, 

which is a result of the independently-modulated driver-side to kerb-side IRI ratio. A smooth transition 

between adjacent segments is also evident and is achieve through the application of the Tukey window 

function. 

 



 

 

Figure 10: 100 m section showing details of the synthesized dual-track elevation profiles. 

Conclusions 

A novel method for synthesizing nonstationary dual wheel track longitudinal pavement elevation 

profiles was introduced.  The longitudinal elevation signals are synthesized in a sequence of stationary 

segments and include independent random variations in road roughness and spectral content along the 

length of the wheel tracks.  These stationary segments are concatenated to produce nonstationary dual 

track elevation data. 

The variation in roughness of the kerb-side wheel track is defined by the three-parameter Weibull 

distribution with two fixed parameters (location and shape) thus affording simplicity for describing the 

distribution of road roughness with scale parameter alone.   This was used to create a new roughness 

classification scheme to better represent the roughness range encountered on sealed roads in modern 

road networks.  A random sequence of roughness values for the kerb-side track of the synthesized road 

is generated with a linear congruential generator from the Weibull distribution.  The Weibull 

distribution was also used to describe the distribution of the road segment roughness ratio between two 

parallel wheel tracks.  One interesting outcome of the paper is that this relationship appears independent 

of overall road roughness. This relationship is used to create the random sequence of roughness values 

for the driver-side track segments. The coherence function relating the two parallel wheel tracks is also 

made to vary randomly in accordance with previous findings [19].  This is achieved with the use of the 

Weibull model which describes the statistical distribution of the coherence parameter, b1. For each 

stationary road segment, a different coherence function is used based on the random generation of the 

coherence parameter.   

Results from the application of the new synthesis approach show that it is capable of producing dual 

wheel track elevation profiles that are nonstationary and replicate the natural (random) variations in 

road roughness and parallel track coherence that are found to exist on real roads.   

Further work related to this research could include the analysis of the roughness ratio distribution and 

the dual track coherence variations for non-asphalt roads.  Further, one alternative approach to 

characterising the relationship between the parallel tracks is to analyse the lateral road gradient as a 

single variable. 
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