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Abstract
The Heterogeneous Fleet Capacitated Vehicle Routing Problem with Time Windows and Three-
Dimensional Loading Constraints (3L-HFCVRPTW) combines the aspects of 3D loading, het-
erogeneous transport with capacity constraints and time windows for deliveries. It is the first
formulation that comprises all these aspects and takes its inspiration from a practical problem
of distributing daily fibre board deliveries faced by our industry partner. Given the shape of
the goods to transport, the delivery vehicles are customised and their loading constraints take a
specialised form. This study introduces the problem and its constraints as well as a specialised
procedure for loading the boards. The loading module can be called during or after the route
optimisation. In this initial work, we apply simple local search procedures to the routing prob-
lem to two data sets obtained from our industry partner and subsequently employ the loading
module to place the deliveries on the vehicles. Simulated Annealing outperforms Iterated Local
Search, suggesting that the routing problem is multimodal, and operators that shift deliveries
between routes appear most beneficial.

Keywords: Vehicle Routing Problem, Time Windows, 3-Dimensional Loading Constraints, Local

Search, Simulated Annealing

1 Introduction

The VRP has been widely researched in the optimisation literature over the last 40 years. More
recently, vehicle routing has been combined with container loading [3], where the objective is
to find the shortest route given constraints posed by the 3-dimensional shapes of the goods

Procedia Computer Science

Volume 51, 2015, Pages 2257–2266

ICCS 2015 International Conference On Computational Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2015
c© The Authors. Published by Elsevier B.V.

2257

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.382&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.382&domain=pdf


to deliver. Since 2006, a number of studies have addressed this problem with the inclusion
of capacity constraints, loading constraints or time windows. None of the approaches to date
include all three aspects.

Generally, the 3D container loading problem is formulated as a placement of rectangular
objects within a rectangular space. Recently, a problem of distributing wooden boards has been
introduced in a study by Doerner et al. [6]. The boards have to be placed on pallets and are
modular in the sense that they cover one or two pallets at a time. The problem that is faced
by our industry partner is potentially more complex, as thousands of sizes of fibre boards and
laminates are kept in stock. Fortunately, the boards delivered on a daily basis are most often
comprised of four sizes only. The trucks’ loading areas are flat surfaces with slots for support
poles which keep the stacks of boards in place. The deliveries of individual customers are first
bundled into one or more packs which can be stacked. In general, larger boards have to be
placed under smaller boards. A strict LIFO order is mandatory: All packs belonging to a single
customer have to be on top of their respective stacks when the truck arrives at the customer’s
site.

The loading optimiser also has to consider back-to-front and side-to-side balance constraints
to maintain road safety throughout the each route. A customised fleet of three types of vehicles
and restricted drop-off times with some customers make further demands on the optimisation
algorithm.

Our industry partner wishes to maximise the number of deliveries made during a single
day. Customers who order by a certain time are guaranteed next-day delivery. If the available
fleet cannot distribute the deliveries within the ten daily working hours allowed for each driver,
external contractors have to be engaged.

This paper describes and formalises the problem as well as introduces a loading algorithm
based on a depth-first tree search. The loading module is tested after a route optimisation
procedure implemented as a simulated annealing (SA) approach, which is compared to an
alternative based on iterative local search (ILS), where both approaches use varied combinations
of local search operators. Feasible results are compared in terms of the overall delivery time for
all items to be distributed on the day.

2 Existing Work

The Capacitated Vehicle Routing Problem (CVRP) is a shortest path problem that has been
the topic of a considerable number of studies, the most relevant of which have been included
in a comprehensive overview by Toth and Vigo [16] in 2002. Professionals in industry are
most often faced with both the CVRP and the secondary problem of placing delivery items in
the vehicle, which can be seen as a form of the classical combinatorial problem of bin packing.
Cagan, Shimada and Yin [4] have presented a survey of algorithms for three-dimensional packing
problems. Since the problem is NP-hard, it is often solved to acceptable quality using a heuristic.
The most sophisticated exact algorithm known today [9] is able to solve problems with up to
135 customer drop-offs.

The integrated problem of CVRP and three-dimensional load construction (3L-CVRP) has
only been considered by researchers very recently. In all cases, the problem is described in
terms of fitting three-dimensional rectangular boxes into a cubic space. The seminal work was
presented by Gendreau et al. [10] in 2006. Their approach adapts the bottom left algorithm [1]
and the touching perimeter algorithm [12] to the packing problem using a taboo list.

Solutions proposed to the 3L-CVRP include the approach by Tarantilis, Zachariadis and
Kiranoudis [15], who devised six heuristics for the placement of the rectangular boxes in a
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vehicle, an interesting approach by Duhamel, Lacomme and Toussaint [7] who proposed an
algorithm that combines all tours, perturbs them and splits them up into routes again, as well
as an Ant Colony Optimisation approach by Fuellerer et al. [8]. Bortfeldt [2] shifts orders
between routes with the goal of minimising the number of vehicles.

Many of these approaches [10, 18, 6, 17] create their initial solutions based on the ‘savings
algorithm’ by Clarke and Wright [5], which was adapted for ACO by Reimann, Doerner and
Hartl [14], a method that also made part of Fuellerer et al.’s work [8]. Toth and Vigo [16]
developed Clarke and Wright’s algorithm into a multi-start randomised savings procedure.

All approaches to 3L-CVRP known to date include a local search procedure, the most
sophisticated use a combination of relocations of orders within and between routes as well as
swaps within and between routes [15, 2], and taboo lists are commonly used to avoid repeating
local search moves [10, 15, 8, 6] Moura and Oliveira [13] also consider time windows, whereas
Wei, Zhang and Lim [18] optimise the problem with a heterogeneous fleet; in the combination
of 3L-HFCVRPTW, the problem does not seem to have been addressed as yet.

One of the two known loading problems with similar loading constraints as in the current
work was published by Doerner et al. [6], where a company distributes wooden chipboards to
manufacturers. This multi-pile (MP) loading problem has to accommodate only four types of
boards which fit on standard pallets. The vehicles can fit one pallet’s width and three pallets
along the length of the truck. The weight capacity is not needed since the boards are not heavy
enough to reach the bounds at full volume, and the width can be ignored because all boards
are at most as wide as a pallet. Items can span more than one pile. For a feasibility estimation
the authors propose a recursive algorithm that determines the maximal height needed by a
combination of the deliveries of a pair of customers. The VRP is solved using the savings
algorithm [5] with a taboo list and a 4-opt local search. A second formulation uses the savings
heuristic as part of an ACO solution construction approach in which the pheromone values
describe the usefulness of customer i following customer j in a route. A penalty value is added
to the objective function for excess height of the piles. The authors observe that larger problems
with more than 75 deliveries are better solved using ACO.

Tricoire et al. [17] further investigated the MP loading problem and devised an exact al-
gorithm for constructing a load for a single route. A variable neighbourhood search (VNS) is
applied after an initial solution has been constructed using the savings algorithm [5]. One of
the perturbations is the exchange of segments of routes while preserving the order, another is
2-opt. An exact branch-and-cut algorithm is also applied to the problem. A comparison of
the VNS with the approaches of Doerner et al. [6] concluded in favour of the VNS, which finds
better solutions in 90% of the cases. Running the branch-and-cut algorithm for 24 hours did
not lead to significant improvements in the result quality.

3 Description of 3L-HFCVRPTW

The primary aim of the paper is to formalise a variation of the 3L-HFCVRPTW that is faced
in practice by our Australian industry partner. The subsidiary of a large building company
manufactures and distributes particle boards, medium density fibre boards and high pressure
laminates. These stock keeping units (SKUs) exist in many colours and sizes and are used
as building material for doors, kitchen cabinets and similar. The company has a distribution
center (DC) in major Australian cities (Melbourne, Adelaide, Brisbane). This work captures
the distribution problem faced by the Melbourne DC (MDC).

The MDC is equipped with three types of custom-made delivery trucks. Customers are
guaranteed next-day delivery if they order by 4pm, after which the deliveries are planned and
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the trucks loaded for the next day. Ideally, the company would not have to hire external delivery
capacity, although this could not always be avoided in the past. Truck drivers must not work
more than 10 hours a day. If they return to the MDC in time, they can take another load and
service another route if they can do so without exceeding their working hours.

Customer orders can include one or more boards of the same size. All boards of the same
size, regardless of type, are bundled into a pack to be delivered to the customer. If a customer
orders different sizes, several packs have to be created with supports and cover sheets, then
added in LIFO order to a suitable stack on the truck. The load has to be balanced back-to-
front (60% – 40%) and side-to-side (70% – 30%).

The problem at hand can formally be described as a complete graph G (V,E) where V rep-
resents a set of customers V = {0, ..., n}, 0 denotes the MDC and {1, ..., n} represent customers.
The vertices are connected by edges E = {eij : i �= j and i, j ∈ V }.

Objective Function: Each edge is associate with a travel distance cij expressed in minutes.
Melbourne traffic is heavy on certain roads and fluctuates greatly during the day, hence distances
do not reflect the problem accurately. The assumption cij = cji is a simplification made for this
first formulation. Eq. 1 expresses the summation of the cost; eij takes the value 0 if the edge
between customers i and j is not used, 1 otherwise. Position 0 denotes the MDC and connects
to twice as many customers as there are routes. Waiting times δi only apply when the truck
arrives before the start of the time window of customer i.

f(x) =

n∑

i=0

n∑

j=0,j �=i

eijcij +

n∑

i=1

δi (1)

3.1 Routing Constraints

The routes must start and end at the MDC and obey possible time windows (including the
limit on a driver’s total working hours).

Service times: Depending on the availability of a forklift on site, and the number of packs to
be delivered, customer drop-offs may take between 5 and 25 minutes, considered as the service
time si. This is relevant for the satisfaction of constraints but can be ignored as irrelevant in
the objective function.

Time windows: The MDC carries out all its daily deliveries between 7:00 and 17:00 hours
and all customers must have been serviced and the trucks returned within this time interval. For
most customers, the delivery time window is identical with this. In some cases, the customer
may have the ability to receive deliveries only at particular times. To accommodate these
restrictions, we have to assume time windows as follows. A customer k whose time window
twk = tek−tsk is shorter than the delivery interval of the MDC must be serviced according to the
constraint in Eq. 2, which expresses that all travel ci,i+1 and service times si of the customers
{0...k− 1} in route rx combined have to be greater than or equal to the start time of customer
k’s time windows start time tsk and smaller than the end time tek reduced by the service time
sk of customer k. It is assumed that the load has to be unloaded before the end of the time
window, and that an early arrival incurs a waiting time δ which adds to the objective value of
the solution.
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tsk − δ ≤
k−1∑

i=0,i∈rx

ci,i+1 + si ≥ tek − sk (2)

3.2 Loading Constraints

The loading constraints are multifaceted: The boards have to be stacked so that each board is
supported, the load is balanced after each drop-off and the overall capacity of the truck is not
exceeded.

Fleet: The MDC is equipped with a fleet of three types of specialised trucks – eight 8tn
trucks, nine 12tn trucks and one 20tn semitrailer, each with a flat loading surface and spaces
for dividers, which keep stacks of packs of boards apart. Each stack must be stabilised with a
dividing pole in its front, which sets boundaries to the possible placements of the stacks of the
boards. The trucks can be unloaded from both sides, which are covered by tarpaulins during
transit.

Weight: Each customer i requires a supply of mik items, whose total weight di is known.
The deliveries carried by a truck must not exceed its weight limit.

Layout: Each item has a length lik, a width wik and a height (or thickness) 3mm <= hik >=
25mm. In general, the weight constraint is tighter than the volume constraint, but naturally
there are combinations of board sizes that cannot be accommodated on a truck. Split deliveries
are not permitted. The SKUs that form part of a customer’s deliveries have to be divided into
stacks of a suitable size. Naturally, the widths and lengths of the SKUs in a stack must not
reach beyond the loading surface of the truck, and the layout of the stacks must permit the
addition of dividing poles between all stacks. Dividers can be inserted into slots on the loading
surface.

Stacks are formed by grouping SKUs of similar sizes. Variations in sizes within the same
stack are possible, subject to the following rules:

1. The first board in a stack defines the base size of the stack.

2. The subsequent boards can be larger than the base size if they

(a) do not exceed the dimensions of the truck;

(b) do not exceed the base size by more than half in either direction.

3. Boards higher in the stack can be smaller than the base size if

(a) they are the topmost boards, or covered by smaller boards only;

(b) they are covered by two-thirds of the length and/or width of a larger board.

A customer’s SKUs are grouped into packs before being added to a stack. To speed up the
drop-offs, a minimal number of packs per customer is desirable. At most, there are as many
packs per customer as there are stacks. The packs are stacked strictly in LIFO order.
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Load Balance: A balanced load ought to be maintained after each drop-off. Ideally, the rear
axle (rear half of the loading area) carries 60% of the load weight. Loading the rear half of the
truck with up to 60% of the maximum weight capacity of the truck before adding any weight to
the front half is considered a tight constraint which must not be violated. A 70%-30% left/right
balance is considered a reasonable limit for load distribution, but this is not always maintained.
If a customer’s SKUs are of a size that permits them to occupy only one stack, they are bundled
into a single pack to save time.

4 Algorithmic Approaches

4.1 Route Optimisation

Since the aim is to find an acceptable solution that can be implemented in practice while further
improvements are being sought, Iterated Local Search (ILS) and Simulated Annealing (SA) are
applied in the first instance to 3L-HFCVRPTW. Both ILS and SA are simple local search
methods which start from an initial solution and then iteratively move from one solution to a
neighbouring one.

Initially, an empty route is created with a truck picked from a list ordered by capacity
(smallest first) and customer deliveries are chosen uniformly randomly and assigned to this
route. This is repeated as long as the weight constraint of the truck is not exceeded. Assign-
ments are also rejected if the time window constraint is violated. When no further customer
can be added, a new route is created. This process is repeated until all customers have been
assigned to a route.

Neighbourhood Operators: The ILS and SA approaches share the same neighbourhood
operators, which are 2-opt, OR-opt and Shift/Mutate:

• 2-opt chooses two deliveries randomly within a route and transposes them.

• OR-opt selects a delivery from a route and moves it to a different location in the same
route.

• Shift selects a random customer delivery to move to a different route.

The algorithms are comprised of one ‘large’ move (Shift) and one ‘small’ one (either 2-opt or
OR-opt) at a time. The feasibility of the solution is maintained throughout the neighbourhood
search process.

4.1.1 Iterated Local Search

The local search algorithm used here is simple ILS which chooses the orders to reassign uniformly
randomly and accepts the move if it entails a fitness improvement. It uses one attempt per
iteration. The stopping criterion is a predefined number of iterations.

4.1.2 Simulated Annealing

SA is one of the predominant heuristic approaches used to address the VRP problem. A recent
application by Kokubugata and Kawashima [11] addresses a similar problem as the one faced by
our industry partner, city logistics. In this case, SA starts from an initial solution. SA always
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accepts an improving local search move but applies a probability of acceptance to deteriorating
moves. The probability P of accepting a worse solution is calculated using Eq. 3

P = exp
−(f(x′)−f(x))

t (3)

where f(x) is the fitness of the current solution and f(x′) the solution after the proposed change
and t is the current temperature. The pseudocode of SA is shown in Algorithm 1.

Algorithm 1: Simulated Annealing for Route Optimisation

1 x← random initial solution ;
2 ti ← initial temperature ;
3 tk ← final temperature ;
4 r ← cooling rate ;
5 while ti > tk do
6 x′ ← apply neighbourhood operator to x;
7 calculate f(x′) ;

8 if random[0, 1] < exp
−(f(x′)−f(x))

t then
9 x′ ← x ;

10 ti+1 ← r ∗ ti ;
11 i← i+ 1 ;

4.2 Loading Heuristic

A specialised heuristic had to be devised to accommodate boards in the customised vehicles.
The loading module receives a permutation of customer orders prescribed by the outcome of
the routing algorithm. Each customer’s order consists of boards of different lengths and widths
(the thicknesses are ignored at this stage). The boards are grouped into batches according to
length and width.

Once all sizes have been determined, a preliminary layout on the bottom of the truck
including the number of ‘rows’ of stacks is decided. Because all parts of a customer delivery
have to be accessible from either side of the truck, a row can have one or two stacks abreast. A
rough estimate of the expected stack weights decides where the stacks are placed on the truck.

A depth-first search creates a tree structure that places batches into packs which are placed
on stacks. The search proceeds in layers where one layer comprises the packs needed to include
one customer’s items. If a pack placement leads to an invalid solution given the constraints
outlined in section 3.2 and the heights of the stacks, it is removed and possibly re-packed before
another placement on stacks is attempted. If none of the possible placements succeeds, the
algorithm backtracks to remove further customer layers before rebuilding the layers again. The
recursive backtracking procedure is exhaustive and only viable due to the relative homogeneity
of the board sizes and the fact that the choices of alternative packs are limited by the number
of stacks.

When the stacks have been created, the algorithm checks whether the dimensions of the
stacks actually allow them to be placed on the loading surface considering the positions of the
dividers.
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Algorithm 2: Algorithm for loading module

Data: open customer orders o, truck layout T
Result: order configuration on truck C

1 o← ∅ ; // Closed customer orders

2 e← ∅ ; // Stack of visited tree nodes

3 s← EstimateRequiredStacks(o, T );
4 C ← InitialiseConfiguration(s, T );
5 while ‖o‖ > 0 do
6 if ‖p‖ > 0 then
7 C ← AddPack(C, PopLeft(Peek(e))) ; // Advance.

8 a← PopLeft(o);
9 c← Push(c, a);

10 b← CreateBatches(a);
11 p← GenerateMultichoosePermutations(s, b);
12 p← FilterImpossiblePermutations(C, p);
13 p← SortPermutationsByHeuristicDesc(C, p);
14 e← Push(e, p);

15 if ‖e‖ > 0 then
16 C ← RemoveLastPack(C) ; // Backtrack.

17 PopRight(e);
18 o← Push(o, PopRight(c));

19 else
20 Abort() ; // No complete solution could be found.

5 Experimental Settings

Two initial data sets (L1 and L2) were collected from order sheets obtained from our industry
partner, each of them describing the orders of a single day. One data set contained 158 customer
orders, the other 130. The customer locations were obtained in the form of GPS coordinates.
The sizes ordered were 1800x3600mm, 1200x3600mm, 1800x2400mm and 1200x2400mm with
thicknesses between 3mm and 25mm. About 20 customers in each set had time windows of 1hr
– 7hrs, all others could be visited at any time during the day.

The data sets were optimised using ILS and SA followed by the load optimisation. All trials
were repeated 30 times. The algorithms used a single initial solution, allowing an equal number
of function evaluations for the improvements. At each iteration, one of the operators is chosen
with equal probability. SA makes the change permanent depending on the temperature-based
probability. ILS applies only improving changes.

SA starts from an initial temperature of tk = 100 and applies a cooling rate of r = 0.99
which is applied after each iteration. These settings were found optimal during preliminary
trials.

6 Results and Discussion

The combinations of 2-opt and Shift as well as OR-opt and Shift were applied with both
algorithms, denoted ILS 2-opt/Shift, ILS OR-opt/Shift, SA 2-opt/Shift and SA OR-opt/Shift.
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Table 1: The best and mean fitnesses and standard deviations of the 30 runs of ILS and SA
with two combinations of neighbourhood operators and the number of changes the algorithms
made to the solution.

L1 L2
Operator Best Avg Stdev # Changes Best Avg Stdev # Changes
2-opt/Shift 3130 3435 180 1263 2213 2530 193 1285

ILS OR-opt/Shift 3149 3492 186 1047 2212 2472 153 1091
2-opt/Shift 3076 3340 159 2396 1974 2291 152 2666

SA OR-opt/Shift 2964 3343 196 2085 1989 2331 160 1995

The results are presented in Table 1. The best results are shown in bold font.

The results are shown in total delivery time in minutes. They seem to indicate that the
search landscape is multimodal and too complex to solve optimally with a simple local search
algorithm. SA clearly outperforms local search by admitting deteriorating moves. Given an
equal number of function evaluations, SA expectedly makes more changes than ILS. Transposi-
tion (2-opt) moves appear more beneficial than repositioning moves. Intuitively, repositioning a
single order may not lead to a fitness improvement if the recipient of the neighbouring delivery
is far from the repositioned order, but would ideally be placed elsewhere in the route. A trans-
position (2-opt) move can overcome such a situation, which makes it less prone to entrapment
in local optima.

However, in the case of the larger problem L1, the best solution was found by the OR-opt
move. This may indicate that the OR-opt move can still have benefits when the solution is
close to the - local or global - optimum already. To take advantage of this move, however, it has
to be integrated in a meaningful way with the 2-opt and Shift moves. When used on its own,
the high standard deviation shows that its quality fluctuates greatly, again pointing towards
entrapment in local optima.

7 Conclusion and Further Work

The 3L-HFCVRPTW formulation presented here is based on a practical problem faced in in-
dustry with very specific loading constraints. The initial optimisation approach introduced here
forms the basis for possible further optimisation. The 2-opt operator appears most efficient at
intra-route optimisation. Inter-route optimisation relies on the Shift operator which repositions
a single delivery in a different route. More sophisticate operators have to be devised which may
use transpositions. It may be beneficial to use a - perhaps distance-based - heuristic to choose
the deliveries to swap/reposition.

The algorithm did not check whether a route solution would lead to a feasible load before
the end of each trial. Every optimum found turned out to be feasible when submitted to the
loading module. This is a positive surprise as it leaves much opportunity for route optimisation.
Whereas the loading constraints are very tight in theory, the practical data sets appear to leave
plenty of opportunities for optimisation.

In this initial approach we did not attempt to perform restarts after the end of the local
optimisation performed by ILS/SA. In the future, we may encounter infeasible solutions and
it may be helpful to have a second best solution at hand for this case. Therefore, restarts are
not only an opportunity to escape local optima but also a way to enforce robustness with an
algorithm that is to be used in practice.
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