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Abstract 

Physical activity is the most effective intervention to enhance health and prevent 

chronic diseases, such as obesity, type 2 diabetes, and cardiovascular disease. Studies and 

consortiums have aimed to understand the underlying molecular mechanisms that bring about 

a healthier phenotype with exercise training, and growing evidence suggests that epigenetic 

changes, which are molecular modifications to the DNA, play a large role in regulating exercise 

training adaptations. 

DNA methylation is the most widely studied epigenetic modification in exercise 

training studies, as it has been shown that both acute and maintained exercise (i.e. training)  

induce changes in the DNA methylome and subsequent gene function in human skeletal 

muscle. However, to date, studies identifying skeletal muscle epigenetic adaptations to exercise 

training have not investigated whether there is a sex-specific effect, despite skeletal muscle 

being one of the tissues with the most sex-biased gene expression. 

A majority of the animal and human studies that have guided our understanding of the 

underlying molecular adaptations to exercise training have either included only males or pooled 

males and females together without considering potential sex differences. However, biological 

sex has been identified as a confounding variable across many biological disciplines, and sex-

specific analysis can be critical to the interpretation, validation, reproducibility and 

generalizability of research findings [1]. Thus, the overarching aim of this thesis was to 

investigate the sex-specific epigenome-wide response to exercise training. Sixty-five 

healthy males and females (females n = 20; males n = 45) from the Gene SMART (Skeletal 

Muscle Adaptive Response to Training) study completed four weeks of high-intensity interval 

training (HIIT) to assess sex-specific training-induced DNA methylation changes. This thesis 

involved adding the female cohort to the already existing male cohort, of which most of the 
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participant data was collected prior to the commencement of this thesis. Participants underwent 

a four-week control period prior to commencing the training intervention. To determine 

whether training induced similar changes in physiological fitness in males and females, three 

measurements were assessed – maximum oxygen consumption (VO2max), peak power output 

(PP), and lactate threshold (LT) – at three time points (before control, before and after the HIIT 

intervention). To assess sex differences in DNA methylation and other molecular 

measurements (fibre type proportions and gene expression), skeletal muscle biopsies were 

collected at each time point and analysed with the Illumina HumanMethylation EPIC array.  

In Chapter 3, we have shown that there are 56,813 differentially methylated positions 

(DMPs) in the autosomes of male and female skeletal muscle at rest (false discovery rate [FDR] 

< 0.005), using a large scale meta-analysis of three independent cohorts (Gene SMART, 

FUSION, and GSE38291) comprising 369 individuals. These DMPs were mostly 

hypomethylated in males (94%), and were annotated to 10,240 differentially methylated 

regions (DMRs) and 8,420 differentially methylated genes (DMGs). Gene set enrichment 

analysis (GSEA) revealed enrichment of sex-differential methylation among muscle 

contraction, anatomical structure, and metabolism related pathways. Overlapping DMGs with 

genes known to have sex-biased skeletal muscle expression (differentially expressed genes 

[DEGs] from GTex), revealed a significant enrichment of DEGs among DMGs. We confirmed 

over-representation of DEGs among DMGs with transcriptomic data in an additional cohort 

(FUSION) which was also included in the DNA methylation meta-analysis. Lastly, using 

qPCR, we verified gene expression sex differences of three top genes identified from the 

differential methylation and expression analysis in an additional cohort included in the DNA 

methylation meta-analysis (Gene SMART). 

In Chapter 4, we investigated the underlying biological factors contributing to the 

observed sex differences in basal skeletal muscle DNA methylation. Using a meta-analysis 
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approach in the Gene SMART and FUSION cohorts, we have shown that type I muscle fibre 

proportions were associated with DNA methylation at 16% of sex-biased DNA methylation 

loci. We found that circulating sex hormone levels (estrogen, testosterone, free testosterone, 

and sex hormone-binding globulin) in the Gene SMART cohort were not associated with 

differential methylation at the sex-biased DNA methylation loci. Lastly, we identified that the 

meta-analysis sex-DMPs were enriched for transcription factor binding sites (TFBSs) of 41 

transcription factors (TF) , as previously established by uniform processing of multiple ChIP-

seq data sets, including sex hormone-related androgen (AR), estrogen (ESR1), and 

glucocorticoid (NR3C1) receptors. 

In Chapter 5, after elucidating the basal skeletal muscle DNA methylome sex 

differences and their biological contributors, we investigated whether there are sex differences 

in exercise training-induced DNA methylation changes. First, we found that both males and 

females improved the physiological fitness measurements PP and LT, but not VO2max, in 

response to the HIIT, with no sex differences in the degree of the responses. We identified 

1,261 CpGs whose methylation changed after four weeks of HIIT at a stringent FDR threshold 

< 0.005. We found no sex-specific DNA methylation changes after four weeks of HIIT (sex-

by-training interaction) at a stringent FDR threshold < 0.005. A global examination of all the 

statistical tests performed genome-wide did not reveal an inflation of near zero p-values, 

suggesting that males and females do not differ in their epigenetic response to four weeks of 

HIIT. Given the relatively short training intervention, we then aimed to investigate whether 

there were sex differences in DNA methylation associated with cardiorespiratory fitness 

(CRF), an indicator of lifelong physical activity levels. We found 27,987 DMPs associated 

with CRF (FDR < 0.005), and no sex differences in the association between CRF and DNA 

methylation. 
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The experimental design and meta-analysis of this thesis provided large-scale 

epigenome-wide insight on skeletal muscle epigenetic sex differences, and elucidated the role 

of DNA methylation in exercise training adaptations in both males and females (Chapter 5). 

It yielded a comprehensive understanding of the profound sex-specific skeletal muscle DNA 

methylation and transcriptomic profiles (Chapter 3) and the underlying biological factors 

(Chapter 4) that distinguish male and female skeletal muscle DNA methylomes. Specifically, 

muscle fibre type proportions were associated with sites displaying sex differences in DNA 

methylation; nonetheless, the vast majority of loci that exhibit sex-biased DNA methylation 

differ regardless of sex differences in fibre type proportions. In addition, although circulating 

hormones were not associated with sex-differential DNA methylation, the enrichment of 

hormone-responsive TFBSs suggests that hormones underlie a portion of the DNA methylation 

sex differences in skeletal muscle. However, the influence of other biological factors, such as 

the sex chromosomes, on the sex differences observed in the autosomal DNA methylome 

remains to be determined. Lastly, despite the plethora of sex differences in the skeletal muscle 

DNA methylome at rest, the DNA methylomes of males and females responded similarly to 

exercise training as well as lifelong physical activity. These novel findings shed light on the 

epigenetic response of skeletal muscle to exercise training in healthy males and females. 

Integrating the DNA methylome with downstream -omics, such as transcriptomics, proteomics, 

and metabolomics, will further elucidate the pathways and networks involved in the skeletal 

muscle response to exercise training as well as any sex-specific adaptations. Future studies 

should include males and females in exercise training studies, take sex and other sex-related 

factors into consideration in study design and analysis, as well as integrate other OMIC layers 

to better characterise the skeletal muscle response to exercise training in humans. 
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Chapter 1 : Introduction 

Exercise training induces many physiological adaptations that ultimately promote 

health. It is becoming increasingly evident that there are sex differences in the physiological 

(e.g. metabolic) response to exercise training [2], with the underlying molecular mechanisms 

poorly characterised. Exercise training adaptations are mediated by increased transcription of 

key regulatory, metabolic, and myogenic genes. Epigenetic modifications, particularly DNA 

methylation, are emerging as important crucial events for increased transcription [3]. A handful 

of studies reported changes in DNA methylation patterns after exercise training [4]. 

Nevertheless, the field of exercise epigenetics is relatively new and there remains much to 

elucidate regarding downstream phenotypic changes.  

Skeletal muscle is the largest tissue in the human body and is functionally involved in 

exercise, therefore serving as an ideal tissue to study exercise training adaptations. Several 

studies have identified transcriptome-wide changes in skeletal muscle in response to exercise 

training [5], with a recent meta-analysis reporting differences between males and females [6]. 

Despite skeletal muscle displaying transcriptomic sex differences both at baseline [7-11] and 

in response to exercise training [6], neither sex differences in the skeletal muscle epigenome at 

baseline nor in response to exercise training have been investigated to date. To examine 

whether there is a sex-specific DNA methylome response to exercise training, it was important 

to first understand whether there are sex differences at baseline. Therefore, the aim of the first 

study (Chapter 3) was to determine whether there are baseline epigenomic (i.e. DNA 

methylome) differences between male and female skeletal muscle using a large-scale 

meta-analysis of three independent cohorts.  

The aim of the second study (Chapter 4) was to explore biological factors 

underlying the DNA methylation differences between males and females at baseline, by 
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investigating the effect of fibre type proportions, circulating hormone levels, and 

transcription factors. Lastly, with the understanding of the baseline DNA methylome sex 

differences, we could address whether there are training-induced sex differences. Therefore 

the aim of the third study (Chapter 5) was to investigate whether there is a sex-specific 

response to exercise training in the skeletal muscle DNA methylome. 

Commencing with a literature review (Chapter 2), this thesis further comprises three 

experimental chapters: 

I. Chapter 3: Skeletal muscle methylome and transcriptome integration reveals 

profound sex differences related to muscle function and metabolism. 

II. Chapter 4: Biological factors contributing to DNA methylome sex differences in 

human skeletal muscle. 

III. Chapter 5: Sex-specific DNA methylation in skeletal muscle in response to 

exercise training and lifelong physical activity. 

The main findings of this thesis are summarised with a general discussion (Chapter 6), 

including the limitations of each study presented and recommendations for future research. 
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Chapter 2 : Review of Literature  

This chapter consists of a combination of two review articles, one published in a peer-

reviewed journal [12] and the other under review in a peer-reviewed journal [13]. 
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2.1 Abstract 

In recent years, the interest in personalised interventions such as medicine, nutrition, 

and exercise is rapidly rising to maximise health outcomes and ensure the most appropriate 

treatments. Exercising regularly is recommended for both healthy and diseased populations to 

improve health. However, there are sex-specific adaptations to exercise that often are not taken 

into consideration. While endurance exercise training alters the human skeletal muscle 

epigenome and subsequent gene expression, it is still unknown whether it does so differently 

in men and women, potentially leading to sex-specific physiological adaptations. Elucidating 

sex differences in genetics, epigenetics, gene regulation and expression in response to exercise 

training will have great health implications, as it may drive discovery and deepen the current 

understanding of the health benefits of physical activity in humans. 

2.2 Introduction 

As hunter-gatherers, males and females had different contributions to subsistence in 

society. While there are divergent views of their respective roles among different societies, 

anthropologists agree that there has always been a division of labour between males and 

females. For example, while the indigenous males and females of Paraguay both engaged in a 

high level of activity by traveling great distances and carrying heavy items, males were often 

hunting while women were moving the household and involved in childcare [14, 15]. The roles 

of males and females in society throughout history are correlated with their physiological 

strengths and weaknesses. Sex differences are defined as significant differences in the means 

of a phenotype between biological males and females, as opposed to sexual dimorphisms, 

which are defined as two distinct forms of a trait that differentiate members of the same species 

by their sex (such as ovaries versus testes) [16, 17].  
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As a result of females being significantly under-represented in exercise research [18-

20] our current understanding of exercise physiology is overwhelmingly inferred from cohorts 

solely containing males, or mixed cohorts where potential sex differences have not been 

considered. Yet, it is well-known that males and females display distinct musculoskeletal, 

cardiovascular, molecular, and metabolic features [2]. Compared with females, males tend to 

be taller, heavier, have greater lean body mass and lower fat mass, and have higher proportion 

of fast-twitch (type II) muscle fibres in some muscle groups [21, 22]. During exercise, males 

rely more on carbohydrates (CHO) and proteins, as opposed to females, who rely more on fats 

as a fuel source [23, 24]. There are numerous contributors to these physiological differences 

between the sexes, including sex hormones, genetics, and gene-by-environment interactions 

(e.g., epigenetics) [25]. This narrative literature review will provide comprehensive 

physiological and molecular insights into the basis of sex differences in the response to 

exercise, as well as future directions for research in the field in the era of high-throughput 

technologies and -OMICs.   

2.3 Physiological phenotype 

2.3.1 Endurance-related phenotypes  

Overall, males have higher maximal oxygen uptake (VO2max; absolute and relative to 

both lean and total body mass) than females, even when matched for training levels [26-29]. 

While not without controversy [30], a recent meta-analysis (n = 175; males n = 90; females n 

= 85) concluded that males show a greater increase in VO2max relative to body mass following 

endurance training, regardless of the length of intervention and exercise intensity [31], 

suggesting that between-studies discrepancies might be due to small sample sizes.    

Exercise economy, defined as the amount of energy spent per unit of velocity [32], is a 

common indicator of endurance performance. Sex differences in exercise economy have been 
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reported but largely depend on the type of exercise. In swimming, females generally have more 

suitable technique than males and therefore have better economy relative to body size [33]. In 

endurance running, most studies agree that males and females have comparable running 

economy [34], but some studies found that males may be more economical [35]. Lactate 

threshold is another commonly used measure of endurance performance [36]; it is generally 

described at the exercise intensity in which the increase in lactate is no longer linear, leading 

to an accumulation of lactate [37]. One study, which controlled for the menstrual cycle by 

testing women during anovulation in a relatively small cohort, reported no difference between 

the sexes in the change in lactate threshold (LT2, upper limit of LT) following 10 sessions of 

high intensity-training [38]. Further studies which take menstrual cycle phase into account are 

needed to compare lactate thresholds between the sexes [39], as some [40, 41], but not all [42-

44], report higher blood lactate levels post exercise during the follicular phase signifying less 

efficient lactate clearance.   

2.3.2 Resistance-related phenotypes  

Muscle strength underlies many sex differences in exercise performance. Overall, 

males’ upper and lower body strength is greater than females’ by 157% and 60% relative to 

total body mass, respectively [45]; a trend that is observed in recreationally active [46] and 

trained (matched for training status) [47, 48] males and females. Female lower body strength 

relative to body mass is also greater than relative upper body strength, a phenomenon absent 

in males [45, 49]. Despite these potential differences, males and females increase strength to a 

similar degree following resistance training when expressed in mass-relative terms [50-52], 

and two studies have reported greater gains in females [53-55]. Underpinning resistance 

training-induced increases in muscle size and strength is muscle protein turnover [56], which 

is defined as the balance between muscle protein synthesis and muscle protein degradation. 

When normalised to lean mass, muscle protein synthesis and degradation rates are similar in 
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males and females both at rest [57] and in response to training [58], suggesting that endogenous 

factors prime life-long sex differences in muscle strength that are independent from training. 

2.4 Molecular differences between male and female muscle 

2.4.1 Morphology of skeletal muscle 

 Males and females display inherent differences in muscle fibre type, size and 

distribution. Males have larger fibre cross-sectional area (CSA) that show more type II fibres 

characteristics, whereas females have smaller fibres that show more type I characteristics [59-

61]. Long-term resistance and endurance training alter fibre type proportions and CSA [62]. 

Resistance training increases CSA of type IIa and IIx fibres [63, 64]. Some [52, 54, 65, 66] but 

not all [67] studies found similar increases in muscle CSA in response resistance training 

between the sexes. It has been suggested that the differing findings may be due to resistance 

training targeting upper or lower body. For example, after a 12-week training intervention 

targeting the upper body, males, but not females, significantly increased their muscle CSA [67]. 

  High-intensity sprint training resulted in increased type IIx CSA only in females [68]. 

Endurance training resulted in an increase in type I and decrease type II fibre proportions to a 

similar degree in both males and females [69]. Studies investigating sex differences in fibre 

type shifting with training mostly included small sample sizes (< 10 of each sex); therefore, a 

comprehensive meta-analysis would improve power and consolidate these findings.  

At baseline, there are absolute differences in the proportion of fibre types between 

sexes. Males and females seem to adapt to resistance training to a similar degree, which means 

that any baseline differences remain evident after the intervention. In endurance or resistance 

training, exercise intensity, volume and speed of contraction are not only important for fibre 

type adaptation, but also for sex-specific adaptions.  
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2.4.2 Neuromuscular phenotypes 

  Absolute differences in the a) proportion of fibre types and b) CSA of the fibre between 

sexes result in differences in motor unit activation. Males have larger type II fibres which is 

associated with recruitment of higher threshold motor units (MU) meaning they exhibit higher 

action potential amplitudes and can produce a higher contractile force. In contrast, females 

generally have lower threshold MUs due to the smaller CSA of type II fibres resulting in lower 

action potential amplitudes and produce a lower contractile force. Therefore, males rely on 

lower firing rates to modulate contractile force compared to females [70, 71]. These sex 

difference in neuromuscular activation are important in explaining the apparent differences in 

fatigue between males and females. Most neuromuscular adaptations in response to exercise 

occur due to changes in fibres type proportion and CSA [72].  

Whether there are sex differences in neuromuscular adaptations in response to exercise 

training has not been explored extensively. In response to 10-weeks of endurance cycling, there 

were no differences in neuromuscular adaptations between sexes [70]. No study has 

investigated whether there are sex differences in neuromuscular adaptation in response to 

resistance training. Yet there is some evidence after an acute bout of heavy resistance exercise 

that in males but not females had significant decreases in maximal voluntary neural activation, 

or the capacity of the nervous systems to fully activate skeletal muscle [73-75]. This suggests 

a greater impairment in neuromuscular activation in males compared with females after 

fatiguing exercise [74]. Overall, there may be subtle albeit functionally important sex 

differences in neuromuscular adaptations to various exercise interventions. However, the 

available literature is conflicting, most likely because the adaptations are specific to the 

exercise intensity, velocity, and the targeted muscle groups.  
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2.4.3 Metabolic adaptations 

Sex differences in substrate metabolism during exercise have been well-documented. 

Females have lower respiratory exchange ratio (RER) during endurance exercise [76, 77], 

indicating higher beta oxidation. This is associated with higher adipocyte lipolysis, as well as 

greater intramyocellular lipid content and use [22, 78]. Females also have lower blood glucose 

appearance and disappearance rates, do not increase muscle glycogen content in response to a 

high carbohydrate diet (0%), and may spare glycogen stores in muscle during endurance 

exercise; although the latter has not been consistently reported [22, 76]. During exercise, 

females oxidize less protein compared with males [79-83]. Specifically, females show lower 

oxidation of leucine, an amino acid that plays a central role in intracellular signalling during 

and after exercise [84]. However, the mechanisms underlying the observed sex differences in 

amino acid metabolism are contradicting, likely due to differences in training status of the 

participants, specifically the training volumes and intensities, which effect energy balance [24]. 

Various exercise intensities, types, and durations may all be key in determining sex differences 

in exercise metabolism.  

A seminal study by Carter et al. found no sex differences in the maximal activity of key 

metabolic enzymes involved in β-oxidation, the tricarboxylic acid (TCA) cycle, and the 

electron transport chain (ETC), neither at baseline nor in response to seven weeks of endurance 

exercise [59]. This suggests that differences in substrate metabolism during exercise are not 

due to differences in selected key enzymes within the β-oxidation, TCA and ETC metabolic 

pathways. It remains to be explored whether other enzymes involved in β-oxidation (i.e., long 

chain acyl CoA dehydrogenase, enoyl CoA hydratase, keto-thiolase), or the efficiency of these 

enzymes (Km), as opposed to the commonly measured maximal activity, are different between 

the sexes. 
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Although no sex differences in response to exercise or training have been reported in 

enzymatic activity, studies investigating candidate muscle proteins have consistently found sex 

differences in fat oxidation-related proteins, while the literature regarding CHO metabolism-

related proteins has some inconsistencies. This implies that fat oxidation is regulated during 

endurance exercise and that carbohydrate and protein oxidation follow by metabolic demand 

[24]. There has yet to be a protein-wide (proteomic) study in skeletal muscle aimed at 

investigating potential sex differences either at baseline or in response to exercise. Due to the 

nature and complexity of exercise interventions, sample size is often a limiting factor. Larger 

scale and consortium-based studies [85] are therefore warranted to elucidate sex differences in 

various aspects of exercise training. 
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Figure 2.1. Phenotypic sex differences at baseline and after training. 

 (A) Phenotypic sex differences at baseline in endurance- and strength/power- related factors. Direction 

of arrows indicate which sex generally presents a stronger phenotype. Males denoted by green; females denoted 

by orange. (B) Upwards arrows indicate which sex generally presents a stronger change in phenotype following 

endurance and strength/power training; equal sign indicates an equivalent response to training; question mark 

indicates that the sex differences is inconclusive or has not been thoroughly studied; asterisk means that it is 

dependent on modality of exercise. Males denoted by green; females denoted by orange. 
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2.5 Mechanisms underlying sex differences 

2.5.1 Genetics: the influence of sex chromosomes 

  The sex chromosome complement determines the sexual differentiation of the gonads, 

the sex hormone milieu, and can directly mediate sex differences independent of sex hormones 

[86, 87]. For example, the Y chromosome contains the unique Sex-determining Region Y 

(SRY) gene that plays a major role in development of male gonadal tissues but also influences 

autosomal gene expression in other tissues [88-91]. The non-coding XIST gene on the X 

chromosome controls a female-specific process known as allele dosage compensation in which 

one X chromosome is silenced [92, 93]. However, approximately one-third of all X 

chromosome genes (up to 60) ‘escape’ silencing and remain transcriptionally active in XX cells 

resulting in sex-biased gene expression [86, 88, 89, 91, 93-95]. Finally, the maternal and 

paternal X chromosomes carry distinct genomic imprints that silence the expression of specific 

genes and result in sex-specific differences in gene expression levels [96, 97].  

Altogether, these studies show how the sex chromosome complement can modulate 

autosomal genes with many of these genes involved in critical cellular functions such as energy 

metabolism [86, 91, 98]. Whether the sex chromosome complement modulates the sex 

differences in energy substrate utilisation in response to exercise training, is yet to be 

established [99]. Disentangling the direct effects of sex chromosomes from the effects of sex 

hormones is difficult in humans; the direct effect of the sex chromosomes in exercise 

adaptations has yet to be adequately studied in humans. 

2.5.2 The hormonal environment: the influence of sex hormones 

  The hormonal environment is key for exercise adaptations. Lifelong differences in 

exposure to sex hormones between males and females is determined by the sex chromosome 

complement composition. Sex steroid hormones are primarily ascribed to reproduction, but 
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their importance to non-reproductive functions is becoming more apparent [99, 100], including 

in skeletal muscle [101]. Sex steroid hormones engage through their specific ligand-receptors 

[9, 102, 103] and influence transcription as well as phenotypes in a tissue- and sex- specific 

manner [104-108]. Not only can these receptors be differentially expressed between sexes 

[109], some also show sex-biased gene targeting patterns due to intrinsic differences in sex 

hormone levels [103, 110]. In addition, males and females are different in their gene regulatory 

patterns, meaning that the same genes are often regulated by different transcription factors 

(TFs) or combination of TFs [103]. This can result in differential gene expression or program 

latent sex differences in gene regulation, which may only become apparent under specific 

conditions of age, stress, disease or therapeutic treatments. Males and females may therefore 

be primed to respond differently to physiological stressors [103, 111], such as exercise [2, 10, 

12, 24, 77, 78]. 

The major bioactive sex steroids (testosterone, estradiol and progesterone) derive from 

a common biosynthesis pathway originating from cholesterol and, while mostly produced by 

the gonads, are also synthetized by the adrenal glands and a number of peripheral tissues [101]. 

Both males and females produce androgen hormones (such as testosterone) and ovarian sex 

hormones (such as estrogens and progestogens), however in amounts that can vary by several 

orders of magnitude depending on sex and menopausal status. 

2.5.2.1 Androgen Hormones 

The major androgen hormone, testosterone, exerts its effect through the androgen 

receptor (AR) and is expressed in male and female muscle cells [109, 112]. In both males [113, 

114] and females [115], testosterone directly activates muscle protein synthesis by triggering 

the Akt/mTOR pathway [116]. In males, it may also inhibit muscle protein degradation 

pathways [117, 118] and promote the recruitment of mesenchymal pluripotent stem cells into 
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the myogenic lineage [119], however these effects have not been observed in females [115]. 

Further, while testosterone levels are consistently associated with muscle mass and strength in 

males [120, 121], they are not in females [122], suggesting that females rely on other hormones 

to activate muscle protein synthesis.  

In males, circulating testosterone increases with acute bouts of resistance exercise [109, 

123, 124] but the effects of long-term resistance training are less clear. While hormonal 

changes in response to an acute bout of exercise are more challenging to interpret in females 

due to menstrual variability [125], most studies report no post-resistance exercise surge in 

female testosterone levels [126]. The exercise-induced testosterone response may facilitate the 

activation of muscle protein synthesis in males, possibly by increasing AR content [127]. 

Despite the absence of a post-exercise testosterone peak, the post-exercise upregulation of the 

AR content is faster in females than in males [109], outlining further, intrinsic sex-specific 

differences in exercise response. In contrast, several studies reported short-term increases in 

female testosterone levels after an acute bout of endurance exercise [126], with less conclusive 

and sometimes conflicting data in males [128, 129].  

2.5.2.2 Ovarian Hormones 

Estradiol, an estrogen, and progesterone, a progestogen, are the major bioactive ovarian 

hormones in pre-menopausal females. A few studies investigated the potential role of ovarian 

hormones on muscle and exercise adaptation in females [101, 126, 130], but, potentially owing 

to the low natural concentrations in males, male-specific studies remain scarce. Like 

testosterone, progesterone can activate muscle protein synthesis in post-menopausal females 

[115]. The effects of estrogens on muscle protein synthesis and hypertrophy are less clear. 

Estradiol has no effect on muscle protein turnover in post-menopausal female muscle [115, 

131] but may nevertheless increase muscle mass when combined with resistance exercise [131, 



18 

132]. Ovarian hormones may also help maintain skeletal muscle mass by enhancing the pool 

of satellite cells [133, 134] or increasing the number of force-generating cross-bridges in the 

muscle [135]. Rodent models provide further insights into the sex-specific role of ovarian 

hormones in muscle performance [130]. For example, it is well known that female mice can 

run more than males in running wheels. Ovariectomy and the resulting suppression of ovarian 

sex hormone secretion however abolishes this difference [136]. In humans, the well-known sex 

differences in muscle fatigability and whole-body substrate oxidation have been historically 

attributed to a higher proportion of type I muscle fibres in females [74]. It is becoming evident 

that ovarian sex hormones too are modulating substrate utilisation during exercise [24, 77, 78, 

130]. Males receiving estradiol showed increased fat oxidation and expression levels of the 

associated genes, and decreased CHO and protein oxidation [137]. Similarly, suppression and 

selective sex hormone replacement in females to achieve a high estrogen/low progestogen 

environment decreased CHO oxidation by reducing hepatic glucose production and the use of 

muscle glycogen [138]. Aside from modulating substrate utilisation, the estrogen receptor 

complex can modulate mitochondrial biogenesis and function via regulation of expression of 

mitochondrial proteins (such as PGC1α), ATP production, reactive oxidative species (ROS), 

and antioxidant defences [139, 140], adding to the multiple mechanisms through which ovarian 

hormones may regulate skeletal muscle adaptation in a sex-specific manner. 

Consitt et al. [126] have previously reviewed the ovarian sex hormone response to 

different exercise modalities in females. They concluded that acute endurance and, to a certain 

extent, resistance exercise, may trigger an increase in estradiol concentrations that depend both 

on the exercise intensity and the phase of the menstrual cycle. Very little data are available for 

endurance and resistance training, or for progesterone, and primarily in the context of the 

female athlete amenorrhea [141]. 
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2.5.3 Sex differences in gene expression 

Multiple studies [7-11, 142-144] have analysed sex differences in the skeletal muscle 

transcriptome. These studies found between 60 and 3,000 differentially expressed genes 

between the sexes, depending on the technique utilized. The Genotype-Tissue Expression 

(GTEx) database contains over 1,000 mRNA expression profiles in skeletal muscle and 

identified 13,294 sex-biased genes across all tissues, including 2,866 (2,689 on autosomes) in 

skeletal muscle [9]. To overcome the low statistical power of individual studies investigating 

sex differences in the transcriptomic response to exercise and training, two recent, large-scale 

meta-analyses [5, 6] pooled the results of several studies with different exercise modalities 

(acute and chronic endurance and resistance exercise). One of these meta-analyses investigated 

sex differences, and identified 247 genes (across 43 studies, including 739 individuals) whose 

response to training differed between the sexes and which were primarily involved in chromatin 

organization [6]. More large-scale studies that not only include both males and females, but 

also treat sex as a confounder, are required to elucidate the phenotypic consequences of these 

transcriptomic sex differences in the response to training. A study comparing the skeletal 

muscle transcriptomes of endurance-trained and untrained males and females found that sex 

differences are attenuated in trained individuals, suggesting that training makes the 

transcriptome of males and females more similar [10]. 

2.5.4 Epigenetics: the influence of DNA methylation, histone modifications, and 

miRNAs 

Epigenetic mechanisms allow for an organism to respond to its environment via 

changes in gene expression. Epigenetic modifications can be defined as the structural 

adaptation of chromosomal regions that bring about altered activity states [145, 146]. The main 

types of epigenetic modifications include DNA methylation, histone modifications, and non-

coding RNA including microRNA (miRNA) and long noncoding RNA expression [147]. 
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Epigenetic events up- or down- regulate gene expression and corresponding protein translation, 

resulting in phenotypical and physiological changes [148].  

Epigenetic mechanisms interact with one another to alter the epigenetic state of the 

genome and establish appropriate gene expression patterns. Given their fundamental role in 

developmental biology, these epigenetic processes are often evolutionarily conserved across 

species [149]. Furthermore, their deregulation is associated with diverse developmental 

phenotypes [150]. Genomic imprinting is an epigenetic process that involves the interaction of 

DNA methylation and polycomb group protein (PcG) repression which subsequently regulates 

allele-specific gene expression [151]. We typically inherit two working copies of a gene from 

each parent; however, close to 100 human genes are imprinted [152], meaning that only one 

allele is expressed in a parent-specific manner. These loci are conserved among humans, 

meaning that a maternal locus will always express the inherited maternal allele [97, 153]. 

Imprinted genes are of great medical significance since they are essential for healthy offspring 

development, and imprinting dysregulations may lead to metabolic and neurodevelopmental 

disorders [154, 155].  

PcG proteins are chromatin modifiers which typically belong to one of two distinct 

multi-protein complexes: polycomb repressive complex 1 (PRC1) and 2 (PRC2). Each 

complex has distinct catalytic activities, nevertheless, both are generally associated with 

transcription silencing. PRC1 exhibits ubiquitin ligase activity that targets specific histone 

lysine residues. PRC2 is a methyltransferase that targets a specific histone lysine residue of 

histone. The trimethylated histone is abundant in facultative heterochromatin (transcriptionally 

silenced chromatin). PcG complexes play an important role in gene silencing and regulation, 

and therefore their epigenetic activities are highly involved in mammalian development [150]. 
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The mammalian male and female autosomal epigenomes (DNA methylation, histone 

modifications, and miRNA) display considerable differences in tissues such as human blood, 

saliva and skeletal muscle as well as mouse liver and brain [156-164]. Recently, it was 

suggested that epigenetic modifications influence exercise adaptation [165], and 

comprehensive reviews have described the potential regulatory effects of epigenetic 

modifications in the response to exercise training [146, 154, 165-169]. Epigenetic differences 

may therefore explain some of the sex differences observed in exercise adaptations. Our current 

understanding of exercise adaptations is based on studies that have mostly investigated only 

males or grouped males and females together, and have not taken into consideration the 

potential sex differences in exercise adaptations. Furthermore, there may be sex differences in 

the epigenetic response to exercise. Since epigenetic changes are associated with health and 

disease (i.e., cancer and metabolic disorders) [170, 171], and exercise influences epigenetics, 

epigenetics may be one of the underpinning mechanisms behind the lower disease rate in 

physically active individuals [172]. Therefore, it is important to elucidate the sex differences 

in exercise epigenetics. 

2.5.4.1 DNA methylation 

DNA methylation is the addition by DNA methyltransferase (DNMT) enzymes of a 

methyl group to the 5’ position of a cytosine base. DNA methylation alters protein-protein and 

protein-DNA interactions, affecting chromatin structure and ultimately increasing or 

decreasing transcription [173]. DNA methylation is stable through cell divisions, yet dynamic 

throughout one’s lifetime as it is influenced by environmental stimuli (such as exercise training 

and nutrition) [148, 174]. Previous studies have shown that exercise triggers small (< 10%) and 

widespread DNA methylation changes in skeletal muscle [175, 176]. To date, two studies have 

suggested that there may be sex-specific changes in skeletal muscle DNA methylation 

following exercise, given that sex was a major determinant of variability [176] and that larger 
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effect sizes were observed in females [154], however these potential sex differences were not 

further investigated (discussed below). Exercise epigenetics is a new and exciting research 

field, and we currently have limited knowledge on how epigenetic signals, such as DNA 

methylation, mediate exercise responses.  

A seminal study in 2012 reported lower DNA methylation in specific genes 20 minutes 

after a bout of high-intensity endurance exercise [174], demonstrating the rapid dynamics of 

DNA methylation. Potential sex-specific responses were not investigated in this study. 

However, the rapid demethylation of exercise-responsive genes shows that acute control of 

DNMT activity during exercise is important for this response. In vitro studies suggest that 

DNMT3B is an important regulator of this gene program [177]. Interestingly, DNMT3B 

expression in human liver is significantly higher in females than males [178], although it is 

unclear whether this is also the case in skeletal muscle. While DNMTs are involved in DNA 

methylation, ten-eleven translocation (TET) enzymes are involved in DNA demethylation. 

TET enzymes are expressed in human skeletal muscle [179], and given how recently they were 

discovered, sex differences in skeletal muscle TETs have yet to be investigated. However, one 

study did not find sex differences in TET expression in mouse hippocampal tissue [180]. 

Nonetheless, unravelling the dynamics of DNMTs and TETs in both sexes is warranted to 

reveal the nature of DNA methylation in exercise adaptations.  

A recent study is the first to thoroughly investigate DNA methylation sex differences 

in a skeletal muscle-related human tissue- cultured myoblasts and myotubes (13 men, 13 

women). Genome-wide DNA methylation and gene expression (measured with microarrays) 

were performed on the autosomes and the X chromosomes. Several pathways related to the cell 

cycle and energy, protein and fatty acid metabolism were enriched in females while pathways 

mostly related to cell-cell communication (e.g. transforming growth factor-beta, TGF-beta, 

signalling) were enriched in males. They confirmed the direct DNA methylation effect on gene 
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expression using a luciferase assay. They found sex differences in both DNA methylation and 

gene expression for 40 genes in myoblasts (including LAMP2 and SIRT1), 9 in myotubes 

(KDM6A), and 5 in both myoblasts and myotubes (CREB5, RSP4X, SYAP1, XIST, ZRSR2). 

Furthermore, this study found more DNA methylation differences during cell differentiation in 

females compared to males on the autosomes. These intrinsic differences may contribute to the 

sex-specific differences observed in muscular phenotypes [181]. These findings highlight the 

importance of taking sex into account in biomedical research, as future medicine will further 

benefit from such findings. Furthermore, it reinforces the importance of investigating whether 

sex differences in DNA methylation are also involved in the adaptation to exercise.  

A meta-analysis of 16 studies identified 478 loci across several tissues (307 in skeletal 

muscle) that undergo methylation changes following either acute (one bout) or chronic exercise 

(walking, cycling, and tai-chi). DNA methylation changed to a larger degree (i.e., larger effect 

size) in females than males following exercise, suggesting sex differences in the epigenetic 

response to training [154]. However, the only two studies in the meta-analysis that investigated 

skeletal muscle comprised of only males [174, 182], causing these conclusions to not be 

representative of skeletal muscle tissue. Nevertheless, a sex comparison was not the focus of 

this study, so specific DNA methylation differences between males and females were not 

investigated. Additional studies have found that long-term exercise is associated with changes 

in DNA methylation in human skeletal muscle [175, 176]. After 3 months of one-legged knee 

extensor exercise training in men and women, 4919 loci were differentially methylated in the 

exercised leg, compared with the control leg. Training and sex were identified as major 

determinants of variability in methylation on autosomal DNA. Although sex was treated as a 

confounder, no statistical analysis could performed to determine whether males and females 

differed in their DNA methylation response to exercise because sex and batch were confounded 

in the study design, making it impossible to separate batch effect from sex effect [176].  
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The meta-analysis by Brown also highlights the importance of identifying sex-

differences in exercise-induced methylation of genetically imprinted genes [154]. Five loci that 

underwent DNA methylation changes following training (chronic exercise) were imprinted loci 

(two loci in skeletal muscle)[154], however sex differences in those genes were not 

investigated. No study, to date, has investigated whether there are sex-specific differences in 

DNA methylation changes at imprinted genes following exercise. An editorial on the topic calls 

for exercise studies to investigate the effect of timing and dosage of maternal exercise on 

methylation of imprinted genes in offspring. It is currently hypothesised that the dosage of 

maternal exercise will influence the offspring epigenome in a dose-dependent manner (i.e., 

positive effects at low/moderate doses and negative effects at high doses) [183]. Since exercise 

is a gestational stressor (that leads to epigenetic changes in the gamete) and the susceptibility 

to gestational stressors differs between the sexes [184, 185], it is likely that maternal exercise 

affects the gamete epigenome differently between the sexes.  

2.5.4.2 Histone Modifications 

DNA coils around histone proteins for structural and functional reasons. The amino 

acid residues within histone tails can be modified by acetylation, phosphorylation, methylation, 

ubiquitination, sumoylation, or ADP ribosylation. These modifications alter histone-DNA 

interactions and promote recruitment and access of major transcriptional regulators to DNA. 

[186, 187]. Like many other post-translational modifications, histone modification is a dynamic 

process and controlled by numerous enzymes that both add and remove these post-translational 

modifications. For example, histone acetyltransferases (HATs) add acetyl groups to histone 

lysine residues, which is a common mechanism to induce transcriptional activation. Histone 

acetylation generally neutralises electrostatic interactions between histones and DNA, which 

exposes promoter and gene body regions to transcriptional activators, such as RNA 

polymerase. Conversely, histone deacetylases (HDACs) remove acetyl groups from histone 
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proteins, resulting in transcriptional silencing. The localisation of HATs and HDACs to 

particular chromatin regions is highly dependent on DNA bound transcription factors. Reviews 

have outlined the effect of acute exercise on histone modifications [165, 187, 188]. For 

example, skeletal muscle contractions induce phosphorylation and nuclear export of the class 

IIa HDACs, resulting in the relaxation of chromatin regulatory regions in exercise-related 

genes [189, 190]. Acute exercise typically induces nuclear export of HDACs 4 and 5, causing 

hyperacetylation of some histone residues. This results in increased glucose transporter type 4 

(GLUT4) expression, which supports enhanced energy consumption [191, 192]. Histone 

deacetylation may therefore regulate the response to exercise. Indeed, genetic disruption of the 

class IIa HDAC corepressor complex induces exercise-like transcriptional and metabolic 

adaptive responses [193]. Sex-specific differences in the class IIa HDAC signalling and 

function in response to exercise have been explored in humans, however no differences were 

observed [194]. The effect of sex hormones on sex-specific histone modifications and 

transcriptional responses to exercise is an area that is yet to be explored in any detail. Activated 

estrogen receptors (ERs) regulate gene expression by altering the balance of HAT and HDAC 

enzymes at specific chromatin regions, resulting in increased histone acetylation and 

transcriptional activation [195, 196]. Exercise and ERs regulate a number of common gene 

programs involved in skeletal muscle metabolism [197] but whether there are sex-specific 

differences in the ER responses to exercise has not been established. Sex-specific differences 

in substrate utilisation could also impact on histone acetylation responses, with females having 

a greater reliance on fatty acid oxidation at any particular submaximal power output. It has 

recently emerged that fatty acids play an important role in providing the acetyl-CoA required 

for acetylation reactions, with up to 90% of acetylation at specific histone acetylation marks 

being from carbon derived from fatty acids [198]. The greater reliance on fatty acid oxidation 

for ATP generation in females could suggest that the availability of free acetyl-CoA for 
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acetylation reactions is reduced, which in turn would impact gene expression responses. These 

mechanisms have not yet been investigated in well-controlled studies allowing the analysis of 

sex-specific responses.  

Although histone acetylation is important for transcriptional initiation, a plethora of 

other histone post-translational modifications play a role in transcriptional responses. Beyond 

acetylation, there are no studies that have examined histone modifications in response to 

exercise, yet alone in a sex-specific manner. Understanding the histone modifications evoked 

by exercise will be important for deciphering sex-specific responses to exercise, as well as 

understanding interactions with other epigenetic process such as DNA methylation and how 

they together impact the adaptive response to exercise.  

2.5.4.3 MicroRNAs 

MiRNAs are derived from double-stranded hairpin loops of about 70 nucleotides, 

which are cleaved by Dicer protein into single strands of ~22 nucleotides. These small, 

noncoding RNAs inhibit the translation of specific mRNA targets by either inducing 

degradation of the mRNA transcript or physically inhibiting the access of translational 

machinery to the mRNA, ultimately decreasing the expression levels of the targeted mRNA 

[199-201]. The network dynamics of miRNAs is complex since many miRNAs may work 

together to repress a certain gene and many genes can be regulated by the same miRNA [202]. 

Several reviews have summarised the effects of exercise on miRNA expression [169, 203-205]. 

Briefly, specific miRNAs are upregulated and downregulated with both acute and chronic 

exercise in humans [206-208]. Russell et al. reported an increase in miR-1, -133a, -133b and -

181a, as well as key components of the miRNA biogenesis pathways and a decrease in miR-9, 

-23a, -23b and -31 three hours after a single bout of high-intensity interval endurance exercise 

in human males [207]. Additionally, they found that after 10 days of training, miR-1 and -29b 
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were increased, while miR-31 remained decreased (as in the acute testing) [207]. Using reporter 

assays, this study validated some of the associations of the miRNAs with predicted targets 

HDAC4 and nuclear respiratory factor 1 (NRF1), both of which are regulated during exercise 

and are thought to contribute to exercise adaptive responses [192, 209]. Acute and short-term 

exercise regulate several miRNAs that are potentially involved in the regulation of skeletal 

muscle regeneration, gene transcription, and mitochondrial biogenesis, suggesting that 

miRNAs play a role in exercise adaptation. However, no studies investigated the potential 

differences between males and females in skeletal muscle miRNA activity following exercise. 

One study investigated the differences in muscle-specific miRNAs, termed myomiR (miR), 

between males and females at rest [157]. They found sex differences in two (miR-133a and b) 

of four miRNAs (miR-1, miR-133a, miR-133b, and miR−206) that are crucial for the 

regulation of skeletal muscle development and function and are known to change following 

exercise [157]. One study found sex differences in miRNAs in saliva that changed following 

one bout of long distance running [162]. While those sex-differentially expressed miRNAs are 

inferred to be involved in fatty acid biosynthesis pathways, targets were not validated. Further 

research is therefore needed to determine whether miRNA regulation of gene expression 

contributing to exercise adaptation differs between males and females. 
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Figure 2.2 Molecular mechanisms underlying sex differences at rest and following training. 

(A) Sex-specific molecular mechanisms at rest. Direction of arrows indicate which sex generally presents with 

the higher level. Males denoted by green; females denoted by orange, DE; Differentially Expressed genes; eQTL; 

expression quantitative trait loci. Number of DE genes reflects skeletal muscle tissue from Genotype-Tissue 

Expression (GTEx) database (accessed from GTEx portal on 08/26/2020; n = 803; version 8). (B) Response of 

molecular mechanisms after endurance or resistance training. The arrows indicate the direction of change 

following endurance and strength/power training in each sex; question mark indicates that the response is 

unknown as it has not been thoroughly studied. Males denoted by green; females denoted by orange. 
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2.5.5 Genomics: the influence of genetic variants  

The heritability of VO2max, a strong indicator of endurance performance, is estimated 

to be between ~ 22–57%, meaning that ~22-57% of the variability in VO2max observed in a 

population can be attributed to genetic variation [210]. Completion of the sequencing of the 

human genome in 2001 [211] paved the way for DNA sequencing for identification of specific 

genetic variants correlated with a particular phenotype (e.g., exercise responses/performance 

outcomes). Since then, various genetic variants that may provide an advantage in exercise 

performance have been identified; for a detailed review see references [212, 213]. Identifying 

such genetic variants and their downstream modes of action provide new insight to exercise 

adaptations. However, it is important to note that athletic ability is a complex trait that is 

influenced by many aspects and genetic variants, thus making it challenging to identify variants 

with large effect sizes. Furthermore, common variants typically have small influences on a 

given trait. A thorough review [214], and a recent commentary [212] on sports genetics 

highlights the need for larger sample sizes, and both ethnicity-specific and sex-specific 

analyses to confirm effect sizes of common variants. 

To date, two gene variants associated with exercise phenotypes have been substantially 

replicated in multiple cohorts: alpha-actin-3 (ACTN3 R577X) and angiotensin converting 

enzyme (ACE I/D). Both variants were discovered using the candidate gene approach, which 

is used to find correlations between pre-specified single nucleotide polymorphisms (SNPs) and 

phenotypes. Most studies found associations between exercise response/performance and the 

ACTN3 and ACE I/D variants, however, some studies have not. It has been hypothesised that 

some of the heterogeneity in results is due to sex differences as cohorts are often mixed-sex 

[215].  
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ACTN3 encodes the alpha-actin-3 protein that is expressed in the sarcomere of fast 

glycolytic type II fibres and is important for the generation of explosive power contractions. 

The substitution of an arginine (R) with a stop codon (X) at the 577 amino acid results in 

deficiency of the ACTN3 protein (ACTN3 XX genotype). Most of the studies regarding the 

association between the ACTN3 variant and performance report that the RR genotype or the R 

allele is associated with strength and muscle power [216-218]. Some studies reported sex 

differences in the genotype-phenotype association of the R577X variant [216, 219, 220], for 

example, Shang et al. studied the frequency of RR among endurance athletes and found lower 

frequency of the RR genotype in female endurance athletes compared with controls, but not in 

males (18.6% RR in female endurance athletes (n=250) vs 33.6% RR in control females 

(n=450)) [220]. These findings suggest that the X allele may have an advantageous effect on 

endurance performance in females but not in males. This sex difference could be explained by 

androgen hormones. Specifically, higher testosterone levels in males could contribute to 

performance improvements and reduce the relative influence of the ACTN3 on muscle power, 

but this hypothesis has not been verified experimentally [216, 219, 221]. However, a study of 

486 power athletes and 1,197 controls reported no sex differences in the association of ACTN3 

with performance [217]. Therefore, the R577X polymorphism may be contributing to exercise 

performance differently in males and females, but is not certain at this point. 

 ACE encodes the central component of the renin–angiotensin system (RAS), 

angiotensin converting enzyme, which is expressed in skeletal muscle, cardiac muscle, 

endothelial and kidney epithelial cells [222, 223]. ACE indirectly increases blood pressure by 

causing blood vessels to constrict. The deletion (termed “D allele”) or insertion (termed “I 

allele”) of a 287 base pair fragment at location 17q23.3 is a common variant of the gene. The 

I allele is generally associated with decreased ACE activity and better endurance performance, 

while the D allele is associated with increased ACE activity and improved muscle strength 
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[223-231]. One study on Japanese endurance track athletes found associations between the I 

allele and race distance in men but not in women (12.1% II in short distance male runners vs 

49.3% II in long distance male runners, n=277 athletes) [229]. Also, one study found that the 

D allele is associated with hypertension in young males but not in young females (n=5014, 

randomly selected from population); specifically, in DD men the odds of having hypertension 

increased by a factor of 1.75 compared with II men. Interestingly, this difference was not 

observed between men and women aged 61-79. [232]. Therefore, the ACE I/D genotype-

phenotype association may be sex-dependent, however as previously mentioned, many studies 

either have mixed-sex cohorts [225], only male cohorts [224], or do not have large enough 

sample sizes to detect potential sex-differences [225, 228].  

Genome-wide association studies (GWAS) have emerged as a more effective way to 

determine the contribution of SNPs to a specific trait or phenotype. As opposed to the 

candidate-gene approach that is hypothesis-driven, GWAS are unbiased, hypothesis-free, and 

allow for discovery of novel SNPs and their associated phenotypes. Many exercise GWASs 

adjust their statistical model for sex [233-235]; however, some recent GWASs found sex 

differences in the contribution of particular SNPs to exercise phenotypes [236, 237]. Since 

females may have increased parasympathetic and decreased sympathetic control of heart rate 

in comparison to males, Ramirez et al. studied the association of genotype with the capacity of 

heart rate response during acute exercise. They identified two SNPs that showed sex-specific 

associations with the heart rate response to exercise in ~40,000 individuals. Specifically, one 

locus (HLA-DRB5/HLA-DRB1, rs9270779) was only significant in females (after exercise, 

every additional C allele at rs9270779 was associated with an additional HR change of 0.538 

beats/min) while the other locus (TAF2, rs60717250) was only significant in males (after 

exercise, every additional C allele at rs60717250 was associated with an additional HR change 

of 0.486 beats/min) [237]. However, it is important to note that statistical analyses between the 
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sexes was not performed, in other words, although significance at a given locus was reached in 

one sex and not the other, it does not mean that there was statistical significance between the 

sexes. Another large-scale GWAS (n=195,180) determined the association of 16 SNPs with 

grip-strength and found no sex differences in individual SNP association with the trait; 

however, this study found a stronger association between the 16 SNP genetic score and grip 

strength in males than females (in males every unit increase in genetic score was associated 

with a 0.2 kg increase in grip strength while in women the increase was only 0.13 kg) [236]. 

Therefore, it is particularly important to determine SNP contributions to exercise phenotype in 

a sex-specific manner.  

A recent and comprehensive review on the role of sex in genomics of human complex 

traits brings up important aspects to be taken into consideration in sex-specific genomics. The 

review proposes three models/mechanisms that contribute to the observed phenotypic sex 

differences (in human complex traits, specifically epidemiological studies). The first model 

states that differences in heritability (which SNPs and their effect sizes) contribute to the 

observed sex differences, however, heritability studies estimate that only <5% of the genetic 

basis of complex traits differ between males and females. The second model states that sex 

differences in the sex chromosomes have some associations with disease, but alone are unlikely 

to explain a large proportion of the phenotypic sex differences. Finally, the third model states 

that sex differences in gene-by-environment interactions are indeed common and are more 

likely to contribute to the observed sex differences in complex traits [25]. As previously stated, 

exercise-related phenotypes are complex traits, therefore focusing on the gene-by-

environment, or epigenetic, contribution to sex differences will be important for understanding 

the underlying mechanisms of exercise-related sex differences. 
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2.6 Conclusions 

In humans, there are sex differences in exercise and training responses (Figure 2.1). 

Such differences are underpinned by baseline differences in muscle strength, oxygen 

consumption, fibre type physiology, and exercise economy. The molecular mechanisms 

underlying these contributing factors is complex and include the sex chromosome complement, 

the hormonal milieu, genetics, and epigenetics. To further elucidate molecular adaptations to 

exercise training, future exercise studies should include both male and female participants [17, 

238]. Future studies should not only adjust for sex as a covariate in their statistical analysis, 

but also be carefully designed to account for factors unique to females, such as the menstrual 

cycle, contraception or menopause [55, 239], and/or be statistically powered enough to allow 

for hormone level moderation [55]. Furthermore, conducting comprehensive meta-analyses 

combining several human studies [6], which generally have small sample sizes, would increase 

statistical power and shed light on sex differences related to exercise. Skeletal muscle 

adaptations to exercise training are fibre-type specific [240], and therefore investigating sex 

differences at the single fibre, as well as single-cell (non-muscle cells such as endothelial cells), 

levels will provide a deeper understanding of exercise-related sex-differences. Our group is 

currently conducting the Gene SMART (Skeletal Muscle Adaptive Response to Training) 

study [241], which aims to elucidate sex differences in response to exercise training by 

integrating multiple –OMIC layers in a large cohort of males and females. Taking action now 

will pave the way for a better understanding of the health-promoting molecular changes 
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induced by physical activity and allow the interpretation of previous and future research 

through a sex-specific lens. 

 

 

Figure 2.3 Schematic of exercise-related phenotype and molecular sex differences 

Females exhibit enhanced fatigue-resistance while males have enhanced muscular strength; females tend to have 

higher proportions of type I fibres, and tend to oxidize lipids more than carbohydrates during endurance 

exercise; skeletal muscle transcriptomes differ at baseline and in response to training between the sexes, which 

likely lead to proteomic sex differences; all of the discussed sex differences arise from a combination of inherent 

factors such as differences in sex hormone exposure, sex chromosome complement, and epigenetic 

programming (such as DNA methylation (Me) and transcription factors (TF)). 
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Chapter 3 : Skeletal muscle methylome and transcriptome 

integration reveals profound sex differences related to muscle 

function and substrate metabolism 
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3.1 Introduction 

Sex differences are evident in nearly all complex traits. Various diseases, including but 

not limited to cancer, muscular dystrophy, and COVID-19 [25, 242], display sex differences in 

prevalence, onset, progression, or severity. To improve treatment for such diseases, it is crucial 

to uncover the molecular basis for the sex differences and their consequences on organ 

function. Sexually differentiated traits and phenotypes stem from a combination of factors, 

including genetics (gene variants-by-sex interactions [243], XY chromosome complements [9, 

244-246], genomic imprinting [247]), the hormonal milieu [104, 248], and gene regulation 

[11], with the latter likely contributing the most [25]. 

Recently, a large-scale study from the Genotype-Tissue Expression (GTEx) consortium 

unravelled mRNA expression differences between the sexes that are not driven by sex 

chromosomes, across all tissues. Skeletal muscle was particularly divergent between the sexes, 

as gene expression profiles in this tissue could predict sex with high specificity ≥ 90%, and 

sensitivity ≥ 98% [9]. These transcriptomic differences underpin the numerous physiological 

differences in skeletal muscle between males and females, such as differences in substrate 

metabolism [2, 12, 142]. For example, females oxidise more lipids and less carbohydrates and 

amino acids during endurance exercise, and albeit depending on training status, tend to have a 

higher proportion of type I (slow-twitch) muscle fibres [249], all of which inherently contribute 

to enhanced fatigue-resistance in female skeletal muscle [250]. As such, females exhibit higher 

mRNA and protein levels of lipid oxidation-related genes than males [2]. Interestingly, the top 

gene set corresponding to sex-biased genes in the GTEx study corresponded to targets of the 

epigenetic writer polycomb repressive complex 2 (PRC2) and its associated epigenetic mark 

(H3K27me3). This suggests that the sex-specific deposition of epigenetic marks may be the 

source of sex differences in gene expression. 
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Epigenetics is a system of gene regulation that influences gene expression and is 

modulated by the genetic sequence and environmental stimuli. DNA methylation is currently 

the best-characterised epigenetic modification, and has been shown to differ between males 

and females in various tissues, such as pancreatic islets [251], blood [158, 252], and more 

recently in cultured myoblasts and myotubes [181]. While there is ample evidence for 

transcriptomic sex differences in skeletal muscle [7-9, 11, 142, 143], it is unclear whether sex 

differences exist in the DNA methylome of skeletal muscle tissue, and to what extent. 

Epigenome-wide association studies (EWAS) are ideal for investigating the impact of sex on 

genome-wide DNA methylation when addressing both the basis and translational aspect of sex 

differences. Therefore, we performed a large-scale EWAS meta-analysis to explore sex 

differences in the DNA methylome of human skeletal muscle tissue, using three datasets from 

our own laboratory and open-access databases (n = 369 individuals; 217 males, 152 females). 

We established a list of robust DNA methylation (CpG) sites and regions showing DNA 

methylation differences between males and females, and explored their genomic context. We 

then integrated them with sex-biased gene expression from the GTEx, and inferred the potential 

downstream effects on skeletal muscle function. Lastly, we confirmed our findings with 

transcriptomic data from one cohort used in the meta-analysis and targeted qPCR (FOXO3A, 

ALDH1A1, and GGT7) from another cohort.  

3.2 Results 

3.2.1 Males show profound genome-wide autosomal hypomethylation compared with 

females in human skeletal muscle 

The DNA methylation meta-analysis was conducted on 369 individuals from three 

datasets (217 males, 152 females). We focused exclusively on the 22 autosomes to eliminate 

the confounding effect of sex differences in the sex chromosome complement where X-
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chromosome inactivation takes place exclusively in females. All of the Gene SMART cohort 

individuals were apparently healthy, while the FUSION cohort individuals were either healthy 

or diagnosed with type 2 diabetes mellitus, and the GSE38291 cohort individuals included 

monozygotic twins discordant for type 2 diabetes mellitus (Table 3.1).  

 

Table 3.1 Characteristics of individuals in each data set included in the DNA methylation meta-analysis. 

Statistics shown for differences between males and females. 

We found 56,813 differentially methylated positions (DMPs, single CpG sites) between 

males and females, spread across the 22 autosomes, at a stringent meta-analysis False 

Discovery Rate (FDR) < 0.005 (Figure 3.1, Supplementary table 3.2). Ninety-four percent of 

DMPs were hypomethylated in males compared with females (Figure 3.1A). On average, the 

magnitude of DNA methylation differences between males and females was +2.8% (hyper 

DMPs) and -3.5% (hypo DMPs), with the largest effect sizes reaching +15.2% and -35.7%. In 

each of the three cohorts, participants did not cluster according to sex when including the whole 

autosomal methylome, but they did cluster according to sex when only focusing on the 56,813 
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DMPs (Figure 3.1B), suggesting that sex explained a substantial amount of variance at the 

DMPs.  

 

Figure 3.1 Differentially methylated positions (DMPs) with sex in skeletal muscle.  

(A)Volcano plot of DNA methylation differences between males and females. Each point represents a tested 

CpG (633,645 in total) and those that appear in color are DMPs at a meta-analysis false discovery rate < 0.005; 

red DMPs are hypermethylated in males compared with females; blue DMPs are hypomethylated in males 

compared with females. The x-axis represents the amount of DNA methylation difference between the sexes and 

the y-axis represents statistical significance (higher = more significant). Two DMPs that were present in all 

three studies and showed the largest effect size are labeled with the respective CpG and boxplots of β-values 

from each study appear to the right (hyper DMP) and left (hypo DMP). (B) Principal component analysis plots 

of the methylation values at the DMPs; each point on the graph represents an individual; males denoted in green, 

females denoted in orange. 

Each data set had a unique study design that required adjustment for factors known to 

affect DNA methylation, such as age [253] and type 2 diabetes (T2D) [254]. We adjusted each 

dataset for these factors, but noted that sex was associated with T2D in the FUSION dataset, 
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meaning that male participants from the FUSION cohort more commonly had T2D than 

females. Therefore, it is possible that the sex-related signal capture in this dataset was partially 

confounded by T2D. We repeated the meta-analysis excluding T2D participants from the 

FUSION cohort, but results remained unchanged (Supplementary figure 3.4). This confirms 

that our results are not confounded by T2D. 

Since the effect of DNA methylation on gene expression depends on the genomic 

context, we explored the genomic locations of the DMPs to gain insights into their potential 

function [149]. We compared the distribution of hyper-, hypo-, and non-DMPs among the 

various chromatin states in human skeletal muscle using the Roadmap Epigenomics project 

[255]. DMPs were not randomly distributed in the chromatin states (χ2 p-value < 2.2 x 10-16, 

Figure 3.2A); specifically, hypo DMPs were enriched in enhancers and depleted in 

transcription start sites (Supplementary figure 3.1A), while hyper DMPs were not enriched in 

any chromatin states given their scarcity. It should be noted that the Roadmap Epigenomics 

project characterises both male and female skeletal muscle chromatin states regions, and there 

are 536 regions across 369 unique genes where male and female chromatin states differ (across 

many tissues including skeletal muscle) [256]. Therefore, we performed the chromatin state 

enrichment analysis on both the male and female chromatin state annotation in skeletal muscle, 

which yielded equivalent findings. We next determined whether the DNA methylation sex 

differences are enriched in regions in which the corresponding chromatin state displays sex 

differences. DMPs were indeed enriched in loci whose chromatin states differ between males 

and females: 38.7 % of DMPs vs. 32.4% of non-DMPs are in chromatin states that differ 

between males and females, which means that the odds of a DMP being located in a sex-

differing chromatin state increased by a factor of 1.3 compared with a non-DMP. (OR = 0.76, 

95% confidence interval = 0.75-0.77, Fisher test p-value < 2.2e-16) (Figure 3.2B). DMPs were 
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also enriched in CpG island shores and depleted in CpG islands (χ2 p-value < 2.2e-16) (Figure 

3.2C, Supplementary figure 3.1B). 

 

Figure 3.2 Genomic context of sex-differentially methylated positions. 

 (A) Distribution of hyper/hypo DMPs and non-DMPs with respect to chromatin states (male skeletal muscle 

annotation). Blue is hypomethylated in males and red is hypermethylated in males. Red and blue add up to all of 

the sex-DMPs. Black denotes the rest of the CpG sites from the analysis which are not DMPs. Asterisks 

represent a greater contribution to the significant relationship between DMP status and chromatin state 

(Supplementary figure 3.1A). (B) Distribution of sex-DMPs and non-DMPs at loci whose chromatin states 

differ between male and female skeletal muscle. Purple denotes all DMPs (hypo and hyper combined) and black 

denotes non-DMPs. (C) Distribution of sex-DMPs and non-DMPs in relation to CpG islands. Asterisks 

represent a greater contribution to the significant relationship between DMP status and CpG island location 

(Supplementary figure 3.1B). 

Differentially methylated genes (DMGs) were determined by identifying differentially 

methylated regions (DMRs), as DMRs remove spatial redundancy (CpG sites ~500 bp apart 

are typically highly correlated [257]), and may provide more robust and functionally important 

information than DMPs [258, 259]. We identified 10,240 DMRs (Stouffer, harmonic mean of 

the individual component FDRs (HMFDR), and Fisher p-value < 0.005). These DMRs were 
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annotated to 8,420 unique autosomal genes (including non-coding genes) (Supplementary table 

3.3).  

3.2.2 Genes with sex-biased methylation exhibit sex-biased DNA methylation in human 

skeletal muscle 

To gain insights into the potential downstream effects of sex-biased DNA methylation 

on gene expression, we integrated results from the EWAS meta-analysis of sex with genes 

whose mRNA expression levels are known to differ between males and females. We used 

version 8 of the Genotype-Tissue Expression (GTEx) database which contains 803 RNA-

sequencing profiles in human skeletal muscle (n = 543 males and n = 260 females). There were 

2,689 sex-differentially expressed genes (DEGs) on the autosomes in skeletal muscle (accessed 

from GTEx portal on 08/26/2020). Of the 2,689 DEGs, 973 (~36%) were in common with 

DMGs from our cohorts (Figure 3.3, Supplementary table 3.2), including the gene Gamma-

Glutamyltransferase 7 (GGT7) (Figure 3.5). We confirmed an enrichment of DMRs across 

sex-biased genes (hypergeometric test p-value = 4.6e-13), suggesting that the overlap between 

sex-differentially methylated genes and sex-differentially expressed genes is larger than what 

would be expected by chance alone. To gain insight on the relationship between DNA 

methylation and gene expression of sex-biased genes, we assessed the direction of correlation 

between DMRs that are annotated to either promoter (TssA and TssAFlnk) or enhancer (Enh 

and EnhG) regions and their given gene expression (Figure 3.3C-D). Sixty-two and 59 % of 

DMRs in promoter and enhancer regions, respectively, were inversely correlated with gene 

expression (from GTEx transcriptome data, similar results were yielded with the FUSION 

transcriptome data). The inverse correlation between DNA methylation at both promoter and 

enhancer regions with gene expression was more than would be expected to occur by random 

chance (10,000 random permutations; p-value <0.0001 and p-value = 0.0009, respectively; 

Supplementary figure 3.3). 
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3.2.3 Validation of GTEx sex-biased genes in the cohorts used for methylation analysis 

We sought to confirm the sex-biased gene expression obtained from GTEx in a subset 

of the samples used for methylation analysis since the DMGs and DEGs analyses were obtained 

from different muscle groups (the DMGs of the current study are from the vastus lateralis while 

the GTEx DEGs are from the gastrocnemius). Although both are skeletal muscle tissue from 

the leg, there may be differences in muscle phenotypes in differing muscle groups [260]. 

Analysis of RNA sequencing data from the FUSION cohort revealed 3,751 autosomal genes 

with sex-biased expression (FDR < 0.005). The FDR threshold we chose for the FUSION gene 

expression data was more stringent than the GTEx local false sign rate threshold (lfsr < 0.05), 

yet, ~34% of the genes which were both DEGs in GTEx and DMGs were also DEGs in the 

FUSION cohort, totalling 326 genes (hereinto referred to as `overlapping genes`) (Figure 

3.3A). Given that both the GTEx and FUSION cohorts include participants of relatively older 

ages, we sought to confirm the mRNA levels in the younger cohort in the analysis (the Gene 

SMART) for three genes that displayed sex differences at both the mRNA and DNA 

methylation levels (GGT7, FOXO3, and ALDH1A1) (Figure 3.6, Supplementary table 3.11, 

Supplementary table 3.12).  
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Figure 3.3 Integration of differentially methylated genes and differentially expressed genes.  

(A) Venn diagram of the overlap between differentially methylated genes (DMGs; derived from DMRs), 

differentially expressed genes derived from GTEx (DEGs GTEx), and differentially expressed genes derived 

from FUSION (DEGs FUSION) between males and females. (B) Subset of 12 genes with consistently large 

effect sizes or of biological relevance to skeletal muscle. (C) Correlation between the effect sizes of DMRs in 

enhancer regions and the effect sizes of gene expression of the relative annotated gene (for GTEx sex-biased 

genes). Quadrant percentages indicate the percentage DMRs/DEGs that fall into each quadrant. (D) Correlation 

between the effect sizes of DMRs in promoter regions and the effect sizes of gene expression of the relative 

annotated gene (for GTEx sex-biased genes). Quadrant percentages indicate the percantage DMRs/DEGs that 

fall into each quadrant. 

3.2.4 Gene set enrichment analysis of differentially methylated regions 

We next performed Gene set enrichment analysis (GSEA) on the DMGs, as GSEA 

using epigenomic features may reveal distinct enriched pathways that may not display gene 

expression differences [11, 256]. We performed GSEA on both the DMRs and DMPs (Figure 

3.4). GSEA on the DMRs revealed enrichment of several Gene Ontology (GO) terms, one 

Reactome pathway (“muscle contraction”), but no Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways (Supplementary table 3.10) (FDR < 0.005). However, GSEA on the DMPs 
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revealed enrichment across all three databases (Supplementary tables 3.5, 3.7, and 3.9). Most 

of the enriched GO terms are biological process (BP) terms, many of which relate to anatomical 

structure development as well as many muscle-related processes. Nine-hundred and twenty-

five genes of the 1,407 genes involved in KEGG metabolic pathways were differentially 

methylated, representing many aspects of substrate metabolism (Supplementary figure 3.2), 

although the pathway was only significant when analysing the DMPs.   

  

Figure 3.4 Gene set enrichment analysis of the differentially methylated genes.  
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(A) Selected enriched Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways, and Reactome pathways from GSEA of DMRs and DMPs. (B) Sankey diagram of muscle 

contraction-related pathways across the three GSEA databases tested and genes within those pathways that were 

both differentially methylated and expressed (in GTEx and FUSION) between males and females. Numbers next 

to pathways denote the number of enriched genes in the pathway; numbers next to genes denote the number of 

pathways (from the ones displayed) that the gene belongs to. 

3.2.5 DNA methylation and gene expression of GGT7, FOXO3 and ALDH1A1 

consistently differ between males and females in human skeletal muscle 

Three-hundred twenty-six genes exhibited differential methylation in the meta-analysis 

and differential expression among the GTEx and FUSION cohorts, termed ̀ overlapping genes`. 

Of those genes, we tested three for gene expression levels, GGT7, Forkhead Box O3 (FOXO3), 

and Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1), in the younger cohort 

included in the DNA methylation analysis (Gene SMART) given the effect that age has on 

skeletal muscle gene expression [261]. These three genes showed a large effect size in gene 

expression and DNA methylation, displayed moderate gene expression levels in skeletal 

muscle relative to other tissues, and/or contained numerous DMPs and DMRs (Figure 3.6, 

Supplementary table 3.12). The direction of sex-biased expression was consistent for GGT7 

and ALDH1A1 across GTEx, FUSION, and Gene SMART cohorts (GTEx lfsr < 2.2e-16; 

FUSION FDR= 2.3e-8, Gene SMART p-value= 0.03), while the direction was opposite for 

FOXO3 (FUSION and GTEx FOXO3 expression lower in males, Gene SMART FOXO3 

expression higher in males (GTEx lfsr = 0.01; FUSION FDR= 0.001, Gene SMART p-value= 

0.002)). As a specific example of the extent of sex differences across the different layers of 

analysis, GGT7 displays male-biased expression in skeletal muscle (GTEx lfsr < 2.2e-16; 

FUSION FDR= 1.3e-45, Gene SMART p-value= 0.0003) as well as lower methylation in males 

at DMPs and DMRs annotated to GGT7 (max DMR: Fisher p-value <0.00-15, max beta value 

effect size=-28.5%, mean beta value effect size=-20.4%) (Figure 3.5). 
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Figure 3.5 Differential DNA methylation and expression of GGT7 between males and females.  

(A) UCSC gene track of GGT7. From top to bottom: base pair scale in black, GENCODE gene tracks transcript 

variants in blue, GeneHancer regulatory element annotations in light blue, hyper DMRs tracks in red, hypo 

DMRs tracks in blue. (B) Heatmap of the Gene SMART study (beta values adjusted for all confounders except 

sex) across the 3 CpGs included in the GGT7 hypo DMR selected in blue lines and labeled with mean DMR 

effect size (n=65). Each row represents an individual; green denotes males and orange denotes females; ordered 

by similarity to other individuals. Each column corresponds to a CpG in the DMR, ordered by genomic location 
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and corresponding to 5C. Blue denotes hypomethylation; tred denotes hypermethylation. (C) Distribution of 

DNA methylation (beta values) in males and females, for the three CpGs in the DMR, matching 5B (n = 65). 

(D) GGT7 RNAseq expression (TPM- transcripts per million) in males and females of the GTEx (adapted from 

GTEx portal, n = 803). (E) GGT7 RNAseq expression in the FUSION males and females (FPKM- fragments 

per kilobase of transcript per million) (n = 274). (F) GGT7 qPCR expression in a subset of Gene SMART males 

and females (Arbitrary Units; 2-∆Ct) (n = 25). 

 

Figure 3.6 Gene expression and DNA methylation for FOXO3 and ALDH1A1 across cohorts. 
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 Distribution of FOXO3 expression in males and females from (A) the GTEx (RNA-seq) (B) the FUSION 

cohort (RNA-seq) (C) the Gene SMART cohort (qPCR). Distribution of ALDH1A1 expression in males and 

females from (D) the GTEx (RNA-seq) (E) the FUSION cohort (RNA-seq) (F) the Gene SMART cohort 

(qPCR). Distribution of methylation of CpGs in FOXO3 DMR in males and females from (G) the FUSION 

cohort and (H) the Gene SMART cohort. Distribution of methylation of CpGs in ALDH1A1 DMR in males and 

females from (I) the FUSION cohort and (J) the Gene SMART cohort. 

 

3.3 Discussion 

We conducted a large-scale meta-analysis of DNA methylation differences between 

males and females in skeletal muscle, and integrated them with transcriptomic data. We 

revealed that males display profound genome-wide hypomethylation compared with females. 

We then showed that many sex-biased genes found in GTEx also exhibit sex-biased DNA 

methylation, which was partially confirmed in the FUSION cohort. We then assessed the gene 

expression (qPCR) levels of three genes with large DNA methylation and expression 

differences between the sexes across cohorts, and confirmed the higher gene expression in 

males of GGT7 and ALDH1A1. Finally, we showed that the DMGs are overwhelmingly 

involved in muscle contraction, as well as other metabolic and anatomical structure-related 

pathways. 

We identified 56,813 sex-differentially methylated autosomal sites in skeletal muscle, 

representing ~10% of the tested CpG sites. Similarly, there were 2,689 sex-differentially 

expressed autosomal genes in skeletal muscle as identified using GTEx cohort, representing 

~13% of the expressed genes. In the present study, the overwhelming majority (94%) of the 

DMPs were hypomethylated in males. Interestingly, global autosomal hypomethylation in 

males has been observed in various other tissues [156], including blood [262, 263] and 

pancreatic islets [251]. There are a few possible explanations for the molecular mechanisms at 

the root of these epigenetic differences between the sexes (investigated in Chapter 4). 

Differences in cell type proportions between the sexes may partly explain our findings [263-

265], as type I fibres are hypermethylated compared with type II fibers [266], and as females 
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tend to have a higher proportion of type I fibres than males [249]. Although not well-

understood, the sex chromosome complement may also influence autosomal DNA methylation 

patterns. In cultured fibroblasts, the presence of sex-determining region Y (SRY) is associated 

with lower autosomal methylation levels [88, 89, 267]. Additionally, a higher number of the X 

chromosomes, in the absence of SRY, leads to increased methylation levels at a specific sex-

differentially methylated autosomal region [267]. This could be attributed to allele dosage 

compensation, a female-specific process that silences one of the X chromosomes in a cell [92, 

93]. Approximately one-third of genes ‘escape’ inactivation, remain transcriptionally active in 

XX cells, [93-95], and have been suggested to affect autosomal DNA methylation via their 

histone marks [267, 268]. Moreover, females with Turner syndrome (partially/fully missing 

one X) and monosomy X have lower global methylation than XX females, but higher than XY 

males [269, 270]. Finally, sex hormones may contribute to inherent autosomal sex-specific 

DNA methylation as has been shown in leukocytes [271], but this may only be apparent after 

taking cellular composition into account [272]. The effect of sex hormones on DNA 

methylation in skeletal muscle has yet to be explored.  

The relationship between DNA methylation and gene expression is complex; DNA 

methylation at promoters, enhancers, and 1st exons is generally believed to enhance gene 

silencing, while DNA methylation at gene bodies can sometimes be associated with increased 

gene expression [149, 273-276]. Using a permutation test, we showed that DNA methylation 

differences between the sexes at promoters and enhancers were more often associated with 

lower gene expression than would be expected by chance alone. DNA methylation differences 

between the sexes were also particularly prominent in chromatin states that are known differ 

between males and females. This suggests that DNA methylation differences between males 

and females reflect alterations in chromatin activity, and differential epigenetic states and 

expression are likely functionally connected. In line with this, chromatin states that differ 
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between the sexes have been shown to be enriched for sex-biased genes across various tissues, 

including skeletal muscle [256]. However, it is not yet possible to assess whether the 

relationship reflects correlation or direct causality. There is still debate around whether 

epigenomic features drive regulatory processes or are merely a consequence of transcription 

factor binding [256]. A recent study analysing sex differences in regulatory networks in the 

GTEx database identified that many transcription factors (TF) have sex-biased targeting 

patterns [11]. Further supporting the effect of TF on sex-biased gene expression, another recent 

study also on the GTEx database found enrichment of TF binding sites in the promoters of sex-

biased genes [9].  

We identified 326 genes with consistent differential skeletal muscle DNA methylation 

and expression across 1,172 individuals altogether (369 individuals from three cohorts for 

DNA methylation and 1,077 individuals from two cohorts for gene expression). Although we 

utilized stringent Stouffer, Fisher, and HMFDR thresholds, we did not set an effect size 

threshold, which may be the reason we identified an overwhelming 8,420 sex-differentially 

methylated autosomal genes. Although we found profound global DNA hypomethylation in 

males, of the overlapping genes there were equivalent numbers of genes over- and under-

expressed in males compared with females for both GTEx and FUSION. Indeed, 

hypermethylation is not always associated with decreased gene expression [277]. The 

substantial overlap between differentially methylated genes and differentially expressed genes 

highlights many genes that may be of interest for their roles in muscle-related processes. We 

focused on three of these genes that displayed a large DNA methylation difference between 

males and females, are highly expressed in skeletal muscle, or play a role in skeletal muscle 

function: HDAC4 given its role in neurogenic muscle atrophy [278, 279] and in the response 

to exercise [192]; DEPTOR given its role in muscle glucose sensing which in turn augments 

insulin action [280]; GRB10 given that it is imprinted and has been shown to change in 
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methylation with exercise/training [154]; FOXO3 for its role in ageing, longevity, and 

regulating the cell cycle [281]; ALDH1A1 for its role in aldehyde oxidation and because sex 

differences in skeletal muscle mRNA levels have been reported, suggesting that males might 

be able to metabolise aldehydes (i.e. alcohol) more efficiently than females [142]; and GGT7 

for its role in antioxidant activity [282]. Of these three genes (which were validated across 

GTEx, FUSION, and Gene SMART), FOXO3 and GGT7 have also been reported to exhibit 

differential methylation between male and female myoblasts as well as myotubes [181]. GGT7 

and ALDH1A1 showed consistently higher expression levels in males while FOXO3 showed 

opposite sex-biased expression in the young versus the old cohorts. FOXO3 expression was 

lower in males in the older cohorts (GTEx and FUSION), and higher in males in the younger 

cohort (Gene SMART). Other studies have shown that males have higher FOXO3 expression 

in young skeletal muscle [283] and that elderly females have higher skeletal muscle FOXO3 

expression than younger females [284]. While FOXO3 skeletal muscle gene expression differs 

between males and females, it seems that the direction is opposite in young and old individuals, 

which emphasizes the caution that should be used when interpreting sex differences across a 

large age range of individuals. Interestingly, FOXO3 was hypomethylated in skeletal muscle 

with age in a recent study from our group [285]. The promoter, 1st exon, and gene body of 

GGT7 were hypomethylated in males and males had higher GGT7 expression. GGT7 is highly 

expressed in skeletal muscle and metabolises glutathione, which is a ubiquitous “master 

antioxidant” that contributes to cellular homeostasis. Efficient glutathione synthesis and high 

levels of glutathione-dependent enzymes are characteristic features of healthy skeletal muscle 

and are also involved in muscle contraction regulation [286].  

In conclusion, we showed that the DNA methylation of hundreds of genes differs 

between male and female human skeletal muscle. Integration of the DNA methylome and 

transcriptome, as well as gene expression validation, identify sex-specific genes associated 
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with muscle metabolism and function. Uncovering the molecular basis of sex differences across 

different tissues will aid in the characterization of muscle phenotypes in health and disease. 

The effects of upstream drivers on sex differences in the muscle methylome, such as 

transcription factors, the XY chromosomes, hormones, and cell type differences still need to 

be explored. Molecular mechanisms that display sex differences in skeletal muscle may help 

uncover novel targets for therapeutic interventions.  

3.4 Methods 

3.4.1 Datasets 

We conducted a meta-analysis of three independent epigenome-wide association 

studies (EWAS) of sex including the Gene Skeletal Muscle Adaptive Response to Training 

(SMART) study from our lab [241], the Finland-United States Investigation of NIDDM 

Genetics (FUSION) study from the dbGAP repository (phs000867.v1.p1) [287], and the 

GSE38291 dataset from the Gene Expression Omnibus (GEO) platform [288]. Detailed 

participant characteristics, study design, muscle collection, data preprocessing, and data 

analysis specifications for each study are in Supplementary table 3.1. Briefly, all studies 

performed biopsies on the vastus lateralis muscle, all participants were of Caucasian descent 

(except one individual of mixed Caucasian/aboriginal decent), and included either healthy or 

healthy and T2D individuals aged 18-80 years. The Gene SMART study was approved by the 

Victoria University human ethics committee (HRE13-223) and written informed consent was 

obtained from each participant. NIH has approved our request [#96795-2] for the dataset 

general research use in the FUSION tissue biopsy study.  

3.4.2 DNA Extraction and Methylation Method – Gene SMART study samples 

Genomic DNA was extracted from the samples using the AllPrep DNA/RNA MiniKit 

(Qiagen, 80204) following the user manual guidelines. Global DNA methylation profiling was 
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generated with the Infinium MethylationEPIC BeadChip Kit (Queensland University of 

Technology and Diagenode, Austria). The first batch contained only males and were 

randomised for timepoint and age. The second batch contained males and females and samples 

were scrambled on the chips to ensure randomness when correcting for batch effect (i.e. old 

and young males and females included on each chip across all time points). The genome-wide 

DNA methylation pattern was analysed with the Infinium MethylationEPIC BeadChip array.  

3.4.3 Bioinformatics and statistical analysis of DNA Methylation 

3.5.3.1 Preprocessing 

The pre-processing of DNA methylation data was performed according to the 

bioinformatics pipeline developed for the Bioconductor project [289]. Raw methylation data 

were pre-processed, filtered and normalised across samples. Probes that had a detection p-value 

of > 0.01, located on X and Y chromosomes or cross-hybridising, or related to a SNP frequent 

in European populations, were removed. It is important to note that the list of cross-hybridising 

probes was supplied manually [290] as the list supplied to the ChAMP package was outdated. 

Specifically, there are thousands of probes in the Illumina microarrays that cross-hybridise with 

the X-chromosome and may lead to false discovery of autosomal sex-associated DNA 

methylation [291]. The BMIQ algorithm was used to correct for the Infinium type I and type 

II probe bias. β-values were corrected for both batch and position in the batch using ComBat 

[292].  

3.5.3.2 Statistical analysis 

We adjusted each EWAS for bias and inflation using the empirical null distribution as 

implemented in bacon [293]. Inflation and bias in EWAS are caused by unmeasured technical 

and biological confounding, such as population substructure, batch effects, and cellular 

heterogeneity [294]. The inflation factor is higher when the expected number of true 
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associations is high; it is also greater for studies with higher statistical power [293]. The results 

were consistent with the inflation factors and biases reported in an EWAS in blood [293]. 

Results from the independent EWAS were combined using an inverse variance weighted meta-

analysis with METAL [295]. We used METAL since it does not require all DNA methylation 

datasets to include every CpG site on the HumanMethylation arrays. For robustness, we only 

included CpGs present in at least 2 of the 3 cohorts (633,645 CpGs). We used a fixed effects 

(as opposed to random effects) meta-analysis, assuming one true effect size of sex on DNA 

methylation, which is shared by all the included studies. Nevertheless, Cochran's Q-test for 

heterogeneity was performed to test whether effect sizes were homogeneous between studies 

(a heterogeneity index [I2] > 50% reflects heterogeneity between studies). 

To identify DMPs, we used linear models as implemented in the limma package in R 

[296], using the participants’ ID as a blocking variable to account for the repeated measures 

design (for twin [GSE38291] and duplicate samples [Gene SMART], using 

DuplicateCorrelation). The main sources of variability in methylation varied depending on the 

cohort and were adjusted for in the linear model accordingly. For the Gene SMART study, we 

adjusted the linear models for age, batch (2017 vs 2019), sex, and time point (before and after 

four weeks of high-intensity interval training). For the FUSION study, we adjusted the linear 

models for age, sex, BMI, smoking status, and OGTT status. For the GSE38291 study, we 

adjusted the linear models for age, sex, and diabetes status. All results were adjusted for 

multiple testing using the Benjamini and Hochberg correction [297] and all CpGs showing an 

FDR < 0.005 were considered significant [298]. DMRs were identified using the DMRcate 

package [299]. DMRs with Stouffer, Fisher, and harmonic mean of the individual component 

FDRs (HMFDR) statistics < 0.005 were deemed significant. Effect sizes are reported as mean 

differences in DNA methylation (%) between the sexes. 
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Next, we integrated a comprehensive annotation of Illumina HumanMethylation arrays 

[300] with chromatin states from the Roadmap Epigenomics Project [255] and the latest 

GeneHancer information [301]. DMPs that were annotated to two differing chromatin states 

were removed for simplicity and because there were very few such DMPs. GSEA on KEGG 

and GO databases was performed on DMRs and DMPs using the goregion and gometh 

(gsameth for Reactome) functions in the missMethyl R package [302] [303].  

3.4.4 Integration of DNA Methylation and Gene Expression 

The Genotype-Tissue Expression (GTEx) Project sex-biased data was downloaded 

from the GTEx Portal on 08/26/2020 and filtered for skeletal muscle samples. The enrichment 

of DMG for GTEx DEGs was done by supplying the list of sex-biased genes to the gsameth 

function in the missMethyl R package [302, 303], which performs a hypergeometric test, taking 

into account biases due to the number of CpG sites per gene and the number of genes per probe 

on the EPIC array. Caution should be taken when interpreting the number of DMPs reported 

per DMG. The analysis for direction of correlation between DNA methylation and gene 

expression was performed by randomly shuffling DNA methylation effect sizes and performing 

10,000 permutations to assess how often a negative correlation occurs. This analysis was 

performed for both GTEx and FUSION transcriptome data and yielded similar results; data 

presented reflect results from the integration of differential methylation with differential GTEx 

expression. Significance reported for GTEx sex-biased genes is represented as the local false 

sign rate (lfsr) which is analogous to FDR [304]. GTEx effect sizes are represented as mash 

posterior effect sizes [304], in which positive values indicate male-biased genes and negative 

values indicate female-biased genes. FUSION and Gene SMART gene expression significance 

statistics are represented as FDR and p-value, respectively, and effect sizes as fold changes for 

both cohorts. 
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3.4.5 Validation of top genes with qPCR – Gene SMART study samples 

Skeletal muscle previously stored at –80°C was lysed with the RLT buffer Plus buffer 

(Qiagen) and beta-mercaptoethanol using the TissueLyser II (Qiagen, Australia). DNA was 

extracted using the AllPrep DNA/RNA Mini Kit following the manufacturer guidelines 

(Qiagen, Australia). RNA yield and purity were assessed using the spectrophotometer 

(NanoDrop One, Thermofisher). RNA was reverse transcribed to cDNA using a commercially 

available iScript Reverse Transcriptase supermix (cat #1708841) and C1000 Touch Thermal 

Cycler (Bio-Rad, Hercules, CA, USA). Complementary DNA samples were stored at −20°C 

until further analysis. Quantitative real-time PCR was performed using SYBR Green Supermix 

(Bio-Rad, Hercules, CA) and gene-specific primers (listed in Supplementary table 3.11). 

Primers were either adapted from existing literature or designed using Primer-BLAST 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) to include all splice variants, and were 

purchased from Integrated DNA Technologies. Ten microliter reactions comprised of SYBR, 

and optimised concentrations of forward and reverse primers (Supplementary table 3.11 for 

primer conditions), nuclease free water and 8 ng of cDNA were run in triplicate using an 

automated pipetting system (epMotion M5073, Eppendorf, Hamburg, Germany), with no-

template negative controls on a 384-well plate in a thermo-cycler (QuantStudio 12K Flex 

System, ThermoFisher Scientific, Australia). Gene expression was normalised to the geometric 

mean expression of the two most stable housekeeping genes, as determined by Ref finder, 

TATAA-box binding protein (TPB), and 18s rRNA, which did not differ between sexes 

(Supplementary table 3.11). Data are presented as the fold change in males compared to 

females, using 2-∆∆CT. 

The dataset generated and analysed during the current study are available in the GEO 

repository, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171140. 
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Chapter 4 : Biological factors contributing to sex differences in 

the DNA methylome of human skeletal muscle  

4.1 Introduction 

It is becoming increasingly evident that there are many sex differences that should be 

considered in medical and basic research’ study design, data analyses, results and interpretation 

of findings. Nonetheless, potential sex differences are often not taken into consideration in 

human and animal studies [305]. Many scientific journals now require peer-reviewed papers to 

abide by the sex and gender equity in research (SAGER) guidelines [306], which outline the 

rationale and ways in which sex should be accounted for in research across several disciplines.  

Several studies have identified that there are sex differences in the transcriptome across 

various human tissues, with skeletal muscle being among one of the tissues with the most sex-

biased gene expression [8, 9, 11]. Epigenetic modifications are the main contributors to 

observed, sex-specific phenotypic differences in complex traits and diseases [25]. DNA 

methylation, the most studied form of epigenetic modification, displays sex differences in 

multiple tissues [181, 251, 252, 262] including, in our recent findings, in human skeletal muscle 

(Landen et al. under review; Chapter 3 in thesis). Specifically, we have identified 8,420 genes 

that exhibit DNA methylation differences between males and females in human skeletal 

muscle.  

Potential biological drivers of autosomal DNA methylation sex differences include the 

X and Y chromosomes [88, 89, 307], fibre and cell type proportions [249, 263-265], sex 

hormones [271], and genetic variants [243]. Human skeletal muscle is comprised of three main 

fibre types, slow twitch type 1 fibres (oxidative), fast twitch type 2A fibres (intermediate 

oxidative and glycolytic), and fast twitch type 2X fibres (glycolytic). Besides the less 

frequently occurring hybrid fibres, each fibre type expresses a unique myosin heavy chain 
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isoform [308], and as such, DNA methylation patterns vary between type 1 and 2A fibres [266]. 

Human fibre type proportions show significant variability between individuals. Moreover, 

females matched for age and training status show higher type 1 fibre proportions than males 

[249].  

Males and females are exposed to dimorphic levels of sex steroid hormones throughout 

life, which may result in inherent cellular differences [309]. For instance, estrogen and 

androgen receptors can act as transcription factors (TFs), meaning that when bound by the 

corresponding hormone, they will enter the nucleus, bind specific sites on the DNA 

(transcription factor binding sites (TFBSs), and ultimately alter chromatin accessibility and 

gene expression [310]. Ovarian hormones estrogen and progesterone fluctuate throughout the 

menstrual cycle and effect cellular function accordingly [311]. 

The present study aimed to investigate the intrinsic biological factors (e.g. fibre type, 

circulating sex hormones, and TFBSs) driving sex-specific differences in DNA methylation in 

human skeletal muscle. We assessed type I fibre proportions in 65 healthy human skeletal 

muscle samples from the Gene SMART cohort (45 males and 20 females) and 274 healthy/T2D 

human skeletal muscle samples from the FUSION cohort (159 males and 115 females), and 

investigated whether type I (slow-twitch) fibre proportions were associated with DNA 

methylation at the loci exhibiting sex-biased DNA methylation. To address the intricate 

question of the effect of sex hormone levels on genome-wide autosomal DNA methylation, we 

assessed the impact of blood hormone levels on skeletal muscle DNA methylation patterns and 

whether cyclic ovarian hormone levels in the blood acutely affect DNA methylation patterns 

in females during the early follicular phase. Finally, we investigated whether sex- differentially 

methylated loci are enriched for known imprinted genes and TFBSs, specifically those that 

respond to hormone-related TFs.  
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4.2 Results 

The investigation of intrinsic biological factors was performed on a subset of the 

cohorts used for the meta-analysis in Chapter 3 (data available for each dataset in 

Supplementary Table 4.1). Females in both the Gene SMART and FUSION cohorts had higher 

proportions of type I fibres (Figure 4.1A-B). Gene SMART females had higher estrogen and 

sex hormone-binding globulin (SHBG) levels, as well as lower free testosterone and 

testosterone levels than males (Figure 4.1C, Supplementary figure 4.2C-D).  

 

Figure 4.1 Fibre type distributions (Gene SMART and FUSION) and sex hormone levels (Gene SMART) 

of males and females.  

Percent of type I fibres in the (A) Gene SMART cohort (20 females, 45 males) as determined by 

immunohistochemistry; p-value = 0.0001; 59% in females versus 47% in males. (B) FUSION cohort (115 

females, 159 males) as determined by RNA-seq; p-value = 2.06 x 10-7; 48.6% in females versus 39.9% in 

males. (C) Concentrations of circulating testosterone (nmol/L), free testosterone (pmol/L), sex hormone-binding 

globulin (SHBG) (nmol/L), and estrogen (pmol/L) in males and females from the Gene SMART cohort. 

Includes 20 females and 44 males (missing data for one male included in the DNA methylation analysis) before 

the exercise training intervention. Values are represented as means with standard deviations in parenthesis; t-test 

performed in sex comparison. 

 

 



62 

4.2.1 Muscle fibre type proportions were associated with differential methylation at loci 

exhibiting sex-biased DNA methylation 

Males typically show a greater proportion of type II muscle fibres compared with 

females [249], and type II fibres exhibit hypomethylation compared to type I fibres [266]. 

Therefore, we hypotheise that the observed DNA methylation sex differences, specifically the 

hypomethylation in males, may be a result of differing fibre type distributions between males 

and females. We first estimated type I fibre proportions in the Gene SMART cohort via 

immunohistochemistry (Supplementary figure 4.1B) and the FUSION cohort via RNA-seq (see 

“Methods”). In both the Gene SMART and FUSION cohorts, females had higher proportions 

of type I fibres than males (Figure 4.1A-B). We could not directly add fibre type proportions 

to the linear model as a covariate, since fibre type proportions are not a confounder (i.e. a factor 

that influences both sex and DNA methylation independently), but may be a direct downstream 

effect of sex, in turn affecting DNA methylation. Adding fibre type proportions in the model 

would therefore distort the association between sex and DNA methylation. To overcome this 

issue, we stratified the cohorts by sex, added fibre type proportions to the model as a covariate 

and identified DNA methylation patterns associated with fibre type proportions. We then meta-

analysed the results to find CpGs robustly associated with fibre type proportions across both 

cohorts and all sexes (see “Methods”). We identified 16,275 CpGs associated with fibre type 

proportions (Supplementary figure 4.1A, Supplementary table 4.4). When restricting the 

analysis to the loci exhibiting sex-biased DNA methylation, 8,805 (15.5%) of those were 

associated with fibre type proportions (FDR < 0.005). Effect sizes ranged from -0.28% to 

+0.30% DNA methylation difference per % increase in type I fibre content (Figure 4.2A, 

Supplementary table 4.1).
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Figure 4.2 Fibre type-related DNA methylation loci across sex-biased DNA methylation loci.  

(A) Meta-analysis effect size (x-axis) and meta-analysis significance (y-axis) for the 56,813 tested sex-biased CpGs. Hypomethylated (blue) and hypermethylated (red) point represent 

differentially methylated positions (DMPs) at false discovery rate (FDR) < 0.005. One hyper- and one hypo- DMP which showed the largest effect sizes are labeled with the respective CpG; 

with boxplots of β-values per sex and scatter plots of β-values relative to type I fibre proportion from the Gene SMART (B,C) and FUSION (E,F) cohorts. Females are represented in orange 

and males in green. (D,G) Forest plots for the given CpG, showing effect size and confidence intervals for each sex in each study.
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4.2.2 Circulating sex hormone levels were not associated with methylation at loci 

exhibiting sex-biased DNA methylation 

We then aimed to determine whether circulating sex hormone levels underlie the 

observed DNA methylation sex differences. We analysed estrogen (as estradiol, E2), 

testosterone (T), free testosterone (Free T), and sex-hormone binding globulin (SHBG) levels 

using mass-spectrometry (Free T derived from calculation) of blood serum in males and 

females in the Gene SMART cohort. Males and females significantly differed in all four 

hormone levels (Figure 4.1C, Supplementary figure 4.2C-D). To avoid collinearity with sex, 

we separated males and females for the association between sex-differential DNA methylation 

and circulating hormones. We assessed whether each of the four hormone levels was associated 

with DNA methylation across all of the CpGs and across the sex-DMPs in each sex by adjusting 

the linear model for a given hormone. In both males and females, circulating free testosterone, 

testosterone, estrogen, and SHBG levels were not highly associated with DNA methylation 

(less than five DMPs; FDR < 0.005) of neither all of the CpGs tested nor the sex-DMPs 

previously identified (Supplementary figure 4.3A-B).  

4.2.3 Circulating ovarian hormones are not associated with differential methylation in 

female skeletal muscle 

To limit the potentially confounding effect of fluctuating ovarian hormone levels on 

DNA methylation, female muscle biopsies were collected in the early follicular phase of the 

menstrual cycle (days 1-7) and blood serum were tested for follicle stimulating hormone (FSH), 

luteinising hormone (LH), and progesterone (as well as E2 as previously mentioned). Given 

the intricate fluctuations of the ovarian hormones throughout the menstrual cycle, a principal 

component analysis (PCA) was conducted using the four ovarian hormones and the first two 

principal components (PC) were included in the linear model (see “Methods”; Supplementary 

figure 4.3C). PC1 was not associated with differential methylation of any CpGs, while PC2 
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was associated with methylation of very few (8) CpGs (Supplementary figure 4.3A). This 

suggests that variations in ovarian hormone levels in the early follicular phase did not confound 

our results. Although, the study was designed to minimize the fluctuations of cyclic ovarian 

hormones (FSH, LH, estrogen, progesterone), and not to investigate the effects of cyclic 

hormones on genome-wide methylation. 

4.2.4 Sex-differentially methylated loci are enriched for hormone-related transcription 

factor binding sites and not for imprinted genes 

Given the role of transcription factors (TFs) in regulating chromatin accessibility and 

thus effecting downstream gene expression [312], as well as the recent studies identifying sex 

differences in TF targeting patterns [9, 11]; we next tested whether the meta-analysis DMPs 

were enriched for the experimentally validated binding sites (TFBSs) of 268 TFs from 518 

different cell and tissue types [313, 314]. The DMPs were enriched for the binding sites of 41 

TFs (p-value < 0.005, Figure 4.3, Supplementary table 4.2), including hormone-related TFs 

such as androgen (AR), estrogen (ESR1), and glucocorticoid (NR3C1) receptors.  

DNA methylation is the most important epigenetic modification involved in genomic 

imprinting. Imprinting is the epigenetic marking of the parental genomes with respect to their 

parental origin in an allele-specific manner, and is required for proper gene regulation during 

development and in differentiated tissues [315]. Sex differences in expression levels of 

imprinted genes have been reported in mice embryo [316], suggesting that imprinted genes 

may display sex differences which could underlie sex-biased gene regulation. Therefore, we 

sought to investigate whether genomic imprinting contributes to the observed sex differences 

in DNA methylation. Sex-DMPs were not enriched for the 180 tested imprinted genes 

(imprinted genes across all tissues, accessed from GTEx portal; FDR = 0.4) [300]. 
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Figure 4.3 Bee swarm plot of transcription factors (TFs) corresponding to enriched transcription factor 

binding sites (TFBSs). 

Enrichment of TFBSs (-(log10(p-value) using Fisher’s exact tests) on the y-axis for differentially methylated 

positions (DMPs) according to UniBind [2]. The names of the top 10 enriched TFs are denoted by the colour 

key; brown denotes non-significant TFs. The various data sets for the same TFs are graphed with the 

corresponding colour. 

4.3 Discussion 

We investigated a number of intrinsic, biological factors that may explain the observed 

DNA methylation sex differences in skeletal muscle; including fibre type proportions, blood 

hormone levels, and known transcription factor binding sites. We found that a 16% of sex-

biased DNA methylation loci in skeletal muscle were attributed to fibre type differences. We 

then showed that blood serum estrogen, testosterone, free testosterone, and SHBG levels are 

not associated with sex-differential DNA methylation. Lastly, we report an enrichment of 

TFBSs among the differentially methylated loci, corresponding to 41 known TFs, with top TFs 

responding to sex hormones. 

The large-scale meta-analysis on DNA methylation sex differences we previously 

conducted (Chapter 3 in this thesis) revealed that ~94% of differences displayed 

hypomethylation in males. Our hypotheses as to the factors contributing to the differential 

methylation included, sex differences in fibre type proportions, cell type proportions, exposure 
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to differing levels of sex hormones (the effect on TFBSs as well as other consequences), and 

the X chromosome complement. Assessing the potential contribution of differing cell types 

and X chromosome complement was beyond the scope of this study. As outlined in Chapter 3, 

X chromosome methylation affects certain regions of autosomal methylation, nonetheless the 

impact of differing X chromosome complement on autosomal sex differences across the 

genome has yet to be elucidated.  

We hypothesised that differences in fibre type proportions between sexes may partly 

explain our findings [263, 264, 317], as studies report that type I fibres are hypermethylated 

compared with type II fibres [266], and as females tend to have a higher proportion of type I 

fibres than males [249]. Consistent with this, we observed that females had higher proportions 

of type I muscle fibres than males and that type I fibre content was mostly associated with 

DNA hypermethylation. Importantly, 16% of the loci exhibiting sex-biased DNA methylation 

were also associated with fibre type proportions. This suggests that at those CpGs, differences 

in DNA methylation between the sexes is due to the inherent sex differences in fibre type 

proportions. Nonetheless, the vast majority of the loci that exhibit sex-biased DNA methylation 

(84%; 48,008 CpGs) differ regardless of the sex differences in fibre type proportions. A recent 

study on the FUSION cohort, adjusted for fibre type proportions and found that it explains a 

substantial portion of the variability in DNA methylation for many metabolic phenotypes of 

interest [287]. Skeletal muscle DNA methylation analyses are performed on whole muscle due 

to the cost and technical limitations of isolating muscle cell types. Differing non-muscle cell 

types may be present in a muscle biopsy sample and it is currently unknown how much of the 

muscle DNA methylation profile may actually be representing other cell types [318-320]. 

Bioinformatics deconvolution methods have not yet been developed for bulk skeletal muscle 

DNA methylation. Considering that the DNA methylation differences between cell types are 

large [265], future studies should aim at determining DNA methylation patterns of the different 
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muscle fibre and cell types so that bulk muscle DNA methylation data can be adjusted for the 

appropriate cell and fibre proportions.  

None of the circulating sex hormones were associated with differential methylation 

across all CpGs, nor across the sex-DMPs in males or females. However, the range of each 

hormone within each sex may not be large enough to draw out the effect of varying levels of 

the various sex hormones tested on the methylome. In the current study, hormone levels were 

measured from blood while DNA methylation was measured from skeletal muscle. DNA 

methylation patterns are highly tissue-specific [321, 322] and sex hormone levels in the 

circulation are not necessarily correlated with those intramuscularly. Moreover, intramuscular, 

and not circulating, sex hormone levels may be correlated with muscular function [323, 324]. 

A recent review emphasizes the importance of measuring intramuscular sex hormone levels 

when assessing muscle-related properties in females [325].  

The enrichment of hormone-related TFBS among the sex-DMPs suggests that lifelong 

exposure to differing hormone levels significantly contributes to the observed sex differences 

in skeletal muscle DNA methylation. In Unibind, ChIP-seq data in skeletal muscle was limited 

to one TF (CTCF), so the enrichment of TFBSs among sex DMPs may have limited functional 

significance in skeletal muscle. Nonetheless, many of the TFs that showed strong enrichment 

in the present study, such as AR [326, 327], ESR1 [327], and SMAD3 [6] are expressed in 

skeletal muscle and have important roles in muscle phenotype. Two recent studies leveraging 

the GTEx database identified sex differences in TF targeting patterns across several human 

tissues, including skeletal muscle, which contribute to sex-biased gene regulatory networks 

[11] and gene expression [9]. Differences in sex hormone levels between developing males and 

females are already evident in utero [328], making it challenging to design an experiment in 

humans that disentangles the effect of long-term hormonal exposure from biological sex, and 

other related factors, on cell function. Studies have utilised menopausal females [329] and 
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transgender people [330] receiving hormone replacement therapy (HRT) to investigate the 

influence of long term exposure to sex hormones on various phenotypes and risk of diseases. 

For example, HRT for one postmenopausal monozygotic twin and not the other has positive 

effects on regulation of muscle contraction and myonuclei organization, suggesting that 

estrogen has direct effects on muscle function [331]. Nevertheless, uncovering the genomic 

regions that display sex-differential methylation as well as contain hormone-responsive 

TFBSs, provides insight on which genomic regions, hormones, and TFs are discerning male 

and female skeletal muscle.  

There is an imbalance of males and females included in biological research, and it is 

commonly stated that the fluctuating hormones throughout the female menstrual cycle and the 

variability that this may add to a given study is the main reason for the exclusion of females 

[18, 332]. In the present study, we therefore collected muscle biopsies during the early 

follicular phase (see “Methods”) and assessed whether the hormones that fluctuate are 

associated with DNA methylation in females. There were no associations between the 

individual hormones (LH, FSH, progesterone, estrogen) and methylation in females. Moreover, 

no differential methylation was associated with the first PCA, and very few DMPs with the 

second PCA in females. Therefore, fluctuations in cyclic ovarian hormones during the early 

follicular phase did not affect the skeletal muscle DNA methylome in females. The current 

study was designed to minimise the potential effect of cyclic hormones on DNA methylation, 

and was not purposely designed to disentangle the relationship between the cyclic hormones 

and DNA methylation. To better understand the transient changes in DNA methylation due to 

acute hormonal changes, future studies should include females at every stage of the menstrual 

cycle in order to maximize the range of each hormone. Few studies have assessed the effect of 

cyclic hormones on DNA methylation. For example, Saare et al. found an association between 

menstrual cycle phase and DNA methylation in the endometrium, a tissue highly sensitive to 
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cyclic hormone levels [333]. However, to our knowledge, no study has investigated the effect 

of cyclic hormones on skeletal muscle DNA methylation in any candidate genes or genome-

wide.  

In conclusion, we uncovered important biological factors underlying sex-specific 

skeletal muscle DNA methylation. Uncovering the molecular basis of sex differences across 

different tissues will aid in the characterization of muscle phenotypes in health and disease. 

The effects of other upstream drivers on sex differences in the muscle methylome, such as non-

muscle cell type, the XY chromosomes, and genetic variants still need to be explored. 

Molecular mechanisms that display sex differences in skeletal muscle may help uncover novel 

targets for therapeutic interventions.  

4.4 Methods  

4.4.1 Participants 

The analysis of intrinsic biological factors was performed on the Gene SMART and 

FUSION cohorts utilised in Chapter 3. Detailed participant characteristics, study design, 

muscle collection, data preprocessing, and data analysis specifications for each study are in 

Supplementary table 3.1. Briefly, the portion of the Gene SMART (Skeletal Muscle Adaptive 

Response to Training) study cohort in this analysis included 20 females and 45 males aged 18-

45 years with Caucasian ancestry, apparently healthy, not taking medications, and with a BMI 

of 18-35 [334]. This study was approved by the Human Ethics Research Committee at Victoria 

University (HRE13-223), and all participants provided written informed consent. Each 

participant was given an individualised diet 48 hours prior to the biopsy, according to the 

current Australian National Health & Medical Research Council (NHMRC) guidelines, to 

standardise diet across the participants and minimise the effects of this potentially confounding 

factor (15-20% protein, 50-55% carbohydrates, <30% fat and <10% saturated fat). Participants 
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were asked to abstain from alcohol, caffeine, or any food item not prescribed in the diet was 

during those 48 hours. This thesis involved adding the female cohort to the already existing 

male cohort, of which most of the data was collected prior to the commencement of this thesis. 

The Finland-United States Investigation of NIDDM Genetics (FUSION) study from the 

dbGAP repository (phs000867.v1.p1) [287], included participants aged 20-77 which were 

either healthy or had T2D. 

4.4.2 Controlling for the female menstrual cycle – Gene SMART study samples 

Various contraceptives have different dosage, administration patterns, and different 

hormone combinations causing variability in metabolism and gene expression [117], therefore 

only females not taking any form of hormonal contraceptives were recruited for the Gene 

SMART study. Furthermore, to minimise the effect of fluctuating hormone levels, females 

were required to have a regular menstrual cycle (27-35 days), and all samples were aimed to 

be collected during the early follicular phase (day 1-day 8 of cycle), with few exceptions due 

to logistics. Estrogen, progesterone, follicle stimulating hormone (FSH), and luteinizing 

hormone (LH) were measured in blood serum. Given the intricate fluctuations of the ovarian 

hormones (Supplementary figure 4.2A), these four hormones were combined into a principal 

component (PC) analysis and the first two PCs, which explained the majority of the variability 

(Supplementary figure 4.3C), were both added into the linear model. We assessed whether the 

first two PCs were associated with DNA methylation across all of the CpGs in females. The 

linear model was of the form: 

𝐷𝑁𝐴𝑚 ~ 𝑡𝑖𝑚𝑒 + 𝑎𝑔𝑒 + 𝑃𝐶1 + 𝑃𝐶2 

4.4.3 Blood serum hormones and analysis – Gene SMART study samples 

The hormone assays were completed in the accredited pathology laboratory at Monash 

Health, Australia. Estradiol (E2) and Progesterone assays are competitive binding 
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immunoenzymatic assays performed on the Unicel DXI 800 system (Beckman Coulter). FSH 

assay is based on Microparticle Enzyme Immunoassay (MEIA) and is carried out on the Unicel 

DXI 800 system (Beckman Coulter). The LH and sex-hormone binding globulin (SHBG) 

assays were performed using a sequential two-step immunoenzymatic (“sandwich”) assay 

carried out on a Unicel DXI 800 (Beckman Coulter). Testosterone was measured using the 

HPLC–tandem mass spectrometry method using a liquid sample extraction (AB Sciex Triple 

Quad 5500 liquid chromatography–tandem mass spectrometry). Free testosterone was 

calculated by the Södergard free testosterone calculation (36). One male from the Gene 

SMART cohort had missing hormone levels. For this individual, missing values were imputed 

with the mice package in R [335]. Hormone levels were compared between sexes using 

Welch’s two sample t-test using baseline hormone values.  To investigate whether sex 

hormones are associated with DNA methylation of the sex-DMPs, we included each sex 

hormone as a covariate in a linear model, separately. To avoid collinearity with sex, we 

separated males and females for this portion of the analysis. We assessed whether each of the 

four hormone levels (estrogen, testosterone, free testosterone, SHBG) was associated with 

DNA methylation across all of the CpGs and across the sex-DMPs in each sex by adjusting the 

linear model for a given hormone. The linear models for the association between the sex 

hormones (estrogen, testosterone, free testosterone, and SHBG) and DNA methylation in each 

sex followed the form:  

𝐷𝑁𝐴𝑚 ~  𝑡𝑖𝑚𝑒 +  𝑎𝑔𝑒 +  𝑠𝑒𝑥 ℎ𝑜𝑟𝑚𝑜𝑛𝑒 𝑙𝑒𝑣𝑒𝑙𝑠 +  𝑏𝑎𝑡𝑐ℎ (𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑛 𝑚𝑎𝑙𝑒𝑠)  

4.4.4 Muscle Biopsy 

Muscle biopsies were sampled from the vastus lateralis muscle, using a suction‐

modified Bergström needle, under local anaesthesia of the skin and fascia (1% Xylocaine). The 
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muscle samples were cleaned of excess blood, fat, and connective tissue and then flash-frozen 

in liquid nitrogen and stored in -80ºC (see Chapter 3 “Methods” in the thesis).  

4.4.5 Fibre types: meta-analysis and derivation from immunohistochemistry and RNA-

seq  

To assess whether fibre type proportions differed between males and females in the 

Gene SMART and FUSION cohorts we used a beta regression model [336] using the betareg 

package in R. We then included type I fibre ratio as a covariate in the linear models. Two 

females from the Gene SMART cohort had missing type I fibre proportions. For these two 

individuals missing values were imputed with the mice package in R [335]. Although 

proportions in type II fibres (type IIA and type IIX) and hybrid fibres (combination of the 

differing MHC forms) effect DNA methylation profiles, we only used type I proportions in our 

analysis. This is because the available methods to estimate fibre type proportions in our cohorts 

do not accurately measure hybrid fibres, and moreover, more confidently distinguish between 

type I and type II fibres than between type IIA and type IIX. 

Myosin heavy chain is currently the best available marker for fibre typing [308]. Gene 

SMART muscle sections were frozen in optimum-cutting temperature (OCT) medium by 

holding the sample with OCT in liquid-nitrogen cooled Isopentane until frozen. Samples were 

stored in -80°C until they were sectioned at 8µM with a cryostat. The IHC protocol was 

performed as is described elsewhere [337]. Briefly, sections were blocked in 4% goat serum 

(Invitrogen). Primary antibodies BA-F8 (MHCI), BF-35 (MHCIIA), and 6H1 (MHCIIX) were 

purchased from DSHB, Iowa. Secondary antibodies goat anti-mouse IgG2b 350, goat anti-

mouse IgG1 488, and goat anti-mouse IgM 555 were purchased from Invitrogen. Some samples 

were fixed in 4% paraformaldehyde in PBS for other analyses and for those samples an antigen-

retrieval protocol consisting of a 10 min incubation at 50° C of Proteinase K diluted in milliQ 
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(1:1000) and subsequent 1 min washes was performed before the IHC. Imaging was performed 

on the Olympus BX51. 

To determine type I fibre proportions in the FUSION cohort we followed the validated 

method as performed by the original study on the FUSION cohort [287]. Briefly, we derived 

type I fibre proportions from the RNA-seq expression data (TPMs) for type I (MYH7), type 

IIA (MYH2), and type IIX (MYH1). We calculated the ratio of MYH7 out of the total. We 

then included this ratio in the linear models.  

To determine whether the inherent sex differences in fibre type proportions underlie the 

sex differences in DNA methylation we separated the males and females of the Gene SMART 

and FUSION cohorts and performed a meta-analysis on the four groups (FUSION females, 

FUSION males, Gene SMART females, Gene SMART males). Given that females displayed 

significantly higher type I fibre proportions than males in both cohorts, we could not simply 

include type I fibre content in a linear model performed on a mixed sex cohort as two issues 

would arise: i) collinearity of fibre type with sex ii) differences in fibre type proportions may 

be a downstream effect of sex. Dividing the cohorts by sex, conducting a meta-analysis, and 

selecting the sex-biased DMPs and performing an FDR adjustment among those cites allowed 

us to address whether fibre type proportion is associated with DNA methylation at sex-biased 

DNA methylation loci. The fibre type meta-analysis was performed with the same 

methodology of the sex meta-analysis as described in the “Methods” of Chapter 3; utilising the 

bacon R package and METAL software. The linear model for the association of type I fibre 

proportion and DNA methylation followed the forms: 

A) Gene SMART:  

𝐷𝑁𝐴𝑚 ~ 𝑡𝑖𝑚𝑒 +   𝑎𝑔𝑒 +  𝑡𝑦𝑝𝑒 𝐼 𝑓𝑖𝑏𝑟𝑒 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 (𝑎𝑠 𝑑𝑒𝑐𝑖𝑚𝑎𝑙) +

 𝑏𝑎𝑡𝑐ℎ (𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑛 𝑚𝑎𝑙𝑒𝑠)  
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B) FUSION: 

𝐷𝑁𝐴𝑚 ~𝑎𝑔𝑒 + 𝐵𝑀𝐼 + 𝑠𝑚𝑜𝑘𝑒 𝑠𝑡𝑎𝑡𝑢𝑠 + 𝑜𝑔𝑡𝑡 𝑠𝑡𝑎𝑡𝑢𝑠 +

𝑡𝑦𝑝𝑒 𝐼 𝑓𝑖𝑏𝑟𝑒 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 (𝑎𝑠 𝑑𝑒𝑐𝑖𝑚𝑎𝑙)  

4.4.6 DNA Extraction and Methylation – Gene SMART study samples 

Genomic DNA was extracted from the samples using the AllPrep DNA/RNA MiniKit 

(Qiagen, 80204) following the user manual guidelines. Global DNA methylation profiling was 

generated with the Infinium MethylationEPIC BeadChip Kit (Queensland University of 

Technology and Diagenode, Austria). Males and females of different ages and time points were 

scrambled on the chips to ensure randomness when correcting for batch effect (i.e. old and 

young males and females across all time points included on each chip).  

4.4.7 Bioinformatics Analysis of DNA Methylation 

The pre-processing of DNA methylation was explained in Chapter 3 “Methods.” To 

identify DMPs associated with fibre type and circulating hormone levels, we used linear 

models as implemented in the limma package in R [296], using the participants’ ID as a 

blocking variable to account for the repeated measures design (for twin and duplicate samples, 

using DuplicateCorrelation). Since type I fibre proportion, estrogen, free testosterone, SHBG 

and testosterone levels were significantly different between males and females (Figure 4.1; 

Supplementary figure 4.2C-D), we were unable to avoid collinearity with sex and therefore 

separated the sexes to address these questions as explained above. All tests were adjusted for 

multiple testing using the Benjamini and Hochberg correction [297] and adjusted p-values with 

p < 0.005 were considered significant [298]. Effect sizes are reported as mean differences in 

methylation (%) per percentage increase in type I fibre proportion. The list of imprinted genes 

across all tissues was accessed from GTEx portal. The enrichment of imprinted genes among 

sex-DMPs was performed by supplying the list of imprinted genes to the gsameth function in 
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the missMethyl R package [295, 296], which performs a hypergeometric test, taking into 

account biases due to the number of CpG sites per gene and the number of genes per probe on 

the EPIC array. 

4.4.8 Enrichment of TFBSs 

Enrichment of TFBSs among the identified DMRs was performed using the enrichment 

analysis tool in http://unibind.uio.no/ which utilizes the runLOLA function of the R package 

LOLA [313].  
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Chapter 5 : Sex-specific DNA methylation in human skeletal 

muscle following high intensity interval training and lifelong 

physical activity 

5.1 Introduction 

Regular exercise is one of the most cost-effective and accessible ways to improve and 

maintain health, with evident benefits across many tissues and diseases [338]. Thus, there is 

much interest in understanding how physical activity promotes health at the molecular level 

[339]. Both a single acute bout of exercise and exercise training induce epigenetic changes in 

skeletal muscle, the most energy-demanding tissue during exercise [4]. Various modalities of 

exercise training induce changes in the skeletal muscle methylome [4], transcriptome [340], 

proteome [240], and subsequent physiology [341], ultimately promoting health benefits. 

However, much of our understanding of molecular adaptations to exercise is limited to studies 

where the majority of participants were male or sex was not taken into account [18, 19]. Sex 

modulates myriads of biological processes, and therefore uncovering potential sex differences 

in molecular adaptations to exercise training may improve clinical practice. 

 During endurance exercise, males tend to oxidize more carbohydrates and proteins 

while females tend to oxidize more fatty acids [24]. However, these metabolic differences have 

not been observed at the enzymatic level, as key enzymes involved in β-oxidation, citric acid 

cycle, and electron-transport chain have similar activity levels in males and females, both at 

baseline and in response to endurance training [59]. Strong basal differences in the skeletal 

muscle transcriptome, specifically in metabolic processes, have been observed between the 

sexes [7-9, 11, 143]. Beyond baseline differences between sexes, a recent meta-analysis has 

investigated sex differences in transcriptomic response to training, and found 247 genes 

differentially expressed between the sexes following training. Nonetheless, exercise training 
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studies including males and females are very limited in this meta-analysis, and more studies 

investigating multiple layers of gene regulation are required to better understand the sex 

differences in the molecular response to exercise training. The skeletal muscle methylome is 

responsive to exercise training [340] and displays stark basal differences between the sexes 

[13] (chapter three), but whether it shows different responses to exercise training in males and 

females has yet to be investigated. 

 To address this, we investigated sex differences in physiological (maximum oxygen 

consumption (VO2max), lactate threshold (LT), and peak power output (PP)), and epigenetic 

(genome-wide skeletal muscle DNA methylation) responses to four weeks of high intensity-

interval training (HIIT). We also investigated whether baseline fitness levels, which reflect 

lifelong physical activity trajectories, were associated with similar or distinct DNA methylation 

patterns in males and females. Finally, we investigated the distribution of DNA methylation 

changes in functional regions of the human genome (CpG islands, chromatin states), and 

characterised the putatively affected genes and pathways using statistical enrichment methods. 

5.2 Results 

5.2.1 Four weeks of HIIT lead to small fitness improvements that are similar in both 

sexes 

Twenty females and 45 males from the Gene SMART study completed four weeks of 

HIIT. The three fitness parameters measured before and after training include PP, VO2max, 

and LT. Males had higher absolute values than females for all parameters (Table 5.1, 

Supplementary figure 5.1). Both males and females had VO2max averages (48.6 and 44.1 

mL/min/kg, respectively) slightly above those reported in the healthy general population for 

the corresponding age groups (35-45 for males and 30-40 for females; mL/min/kg) [26]. After 

four weeks of HIIT, both males and females showed substantial improvements in PP and LT, 
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and neither males nor females showed substantial improvements in VO2max or fitness z-scores 

(average of the three fitness parameters, see “Methods”) (Table 5.1, Supplementary figure 5.1). 

There were no sex differences in the degree of response to four weeks of HIIT of any of the 

fitness measurements (time:sex interaction). 

 
Males + females (combined) 

 
PRE 4WP p-value 

(time) 

p-value 

(sex) 

p-value 

(time:sex) 

VO2max (mL/min/kg) 47.18 47.81 0.14 0.015 0.706 

Lactate Threshold 

(watts/kg) 

2.54 2.74 6.93 x 10-12 0.009 0.981 

Peak power (watts/kg) 3.65 3.87 1.14 x 10-12 0.001 0.945 

Fitness z score -0.001 0.005 0.826 0.953 0.961 

Table 5.1 Cardiorespiratory fitness parameters of males and females before and after four week of high-

intensity interval training (HIIT).  

Average values P-values for males, females, and males and females combined were analysed with linear 

regression. 

5.2.2 Four weeks of HIIT lead to small DNAm changes that are similar in both sexes 

We identified 1,261 CpGs whose methylation changed after four weeks of HIIT at a 

stringent false discovery rate (FDR) threshold < 0.005 (Figure 5.1A, Figure 5.2). A majority 

(80%) of the HIIT DMPs were hypermethylated following the HIIT intervention. These DMPs 

clustered into 28 DMRs, which were annotated to 29 distinct genes (Supplementary table 5.1). 

Furthermore, the DMPs were enriched for genes previously reported to display DNA 

methylation and transcriptional changes after three months of leg-extensor training [340] 

(hypergeometric test p-value = 4.6 x 10-7), such as SMAD3, as well as seven Gene Ontology 

(GO) terms, all of which related to skeletal muscle function, such as actin binding, sarcomere, 

and contractile fibre (FDR < 0.005). However, the DMPs were not enriched for any Reactome 

pathways.  
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We found no sex-specific DNA methylation changes after four weeks of HIIT (sex-by-

training interaction) at a stringent false discovery rate (FDR) threshold < 0.005. A global 

examination of all the statistical tests performed genome-wide did not reveal an inflation of 

near zero p-values, suggesting that males and females do not differ in their epigenetic response 

to four weeks of HIIT (Figure 5.1B).  

 

Figure 5.1 Histogram of p-values for DNA methylation for all tested CpGs. 

 (A) P-value histogram for the time point following four weeks of high intensity interval training (HIIT) 

(“4WP”) relative to before the HIIT time point (“PRE”), model DNAm ~ sex + time + batch + age + baseline z. 

(B) P-value histogram for the interaction of sex and the time point following four weeks of HIIT relative to 

before the HIIT time point, model DNAm ~ sex * time + batch + age + baseline z. (C) P-value histogram for the 

control time point (“CON”; one month control period) relative to the PRE time point (before starting the HIIT 

intervention), model DNAm ~ sex + time + batch + age + baseline z. (D) P-value histogram for the interaction 

of sex and baseline fitness z-score, model DNAm ~ time + batch + age + baseline z * sex. (E) P-value histogram 

for baseline fitness z-score, model DNAm ~ time + batch + age + baseline z + sex. (F) P-value histogram for the 
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interaction of baseline fitness z-score and the time point following four weeks of HIIT relative to before the 

HIIT time point, model DNAm ~ sex + batch + age + baseline z * time. 

 

 

Figure 5.2 Differentially methylated positions (DMPs) after four weeks of high-intensity interval training 

(HIIT).  

Volcano plot showing the effect of four weeks of HIIT on the 641,715 tested CpGs. The linear model was 

adjusted for sex, baseline fitness z-score, age, and batch. The 1,261 DMPs at a false discovery rate (FDR) < 

0.005 are displayed in colors, with red dots denoting hypermethylated DMPs, and blue dots hypomethylated 

DMPs. Boxplot on the right represents the DNA methylation levels before and after HIIT of the 

hypermethylated DMP pointed to; boxplot on the left represents the DNA methylation levels before and after 

HIIT of the hypomethylated DMP pointed to. Yellow denotes methylation values at rest before the training 

intervention (“PRE”); purple denotes methylation values at rest after the training intervention (“4WP”). 

 

5.3.3 Cardiorespiratory fitness is associated with distinct DNA methylation signatures 

that are independent of sex  

We then assessed whether baseline levels of cardiorespiratory fitness were associated 

with specific epigenetic signatures in skeletal muscle. We found 64,341 DMPs associated with 

baseline fitness (FDR < 0.005), with moderate-to-large effect sizes (-5.8% to 6.9% DNA 

methylation difference per unit of fitness z-score (Figure 5.1E, Figure 5.3A). Given that 

fitness z-scores ranged from -2.0 to +2.4, a CRF-associated CpG differed up to ~30% between 

a fitter and less fit individual. The DMPs were mostly hypermethylated (74%) in fitter 

individuals, overrepresented outside of CpG islands, in enhancers and in regions flanking 

active promoters, while underrepresented in CpG islands and active promoters (Figure 5.3B-
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C; Supplementary figure 5.2) (Chi2 p-value < 2.2e-16). DMPs clustered into 8,585 

differentially methylated regions (DMRs) located in 6,559 unique genes (Differentially 

Methylated Genes, DMGs) (Supplementary table 5.2), including GRB10 and HDAC4, genes 

which displayed sex-specific DNA methylation at baseline unrelated to CRF (chapter three). 

DMGs were involved in two Reactome pathways (muscle contraction, FDR = 0.0018; 

regulation of lipid metabolism by PPARα, FDR = 0.047) (Supplementary table 5.3), as well as 

several skeletal muscle-related GO terms such as actin filament-based process, myofibril, and 

muscle contraction (Supplementary table 5.4). DMRs were enriched for genes previously 

shown to be differentially expressed in endurance-trained vs untrained muscle [10] 

(hypergeometric test p-value = 4.6 x 10-9), such as MIPEP and CKMT2. We did not detect sex-

specific DNA methylation patterns associated with baseline fitness (sex-by-fitness interaction) 

(Figure 5.1D). To address the potential limitation of differing fitness levels among individuals 

in our cohort, we assessed whether DNA methylation changes were associated with four weeks 

of HIIT and baseline fitness z-scores (time-by-baseline fitness z-score interaction). Although 

we found no significant loci (FDR < 0.005), we did observe an inflation of near zero p-values 

(Figure 5.1F), suggesting that baseline fitness may have affected the degree of training-

induced DNA methylation changes but that we were underpowered to detect it.
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Figure 5.3 Differentially methylated positions (DMPs) associated with baseline fitness z-scores.  

(A) Volcano plot showing the effect of baseline fitness z-score on the 641,715 tested CpGs. The linear model was adjusted for sex, baseline fitness z-score, age, batch, and the sex-by-baseline 

fitness z-score interaction. The 64,341 DMPs at a false discovery rate (FDR) < 0.005 are displayed in colors, with red dots denoting hypermethylated DMPs, and blue dots hypomethylated 

DMPs. Dotplot on the right represents the DNA methylation levels versus baseline fitness z-scores of the hypermethylated DMP pointed to; dotplot on the left represents the DNA methylation 

levels versus baseline fitness z-scores of the hypomethylated DMP pointed to. Orange denotes females and green denotes males. (B) Percentage of DMPs and non-DMPs associated with 

baseline fitness z-scores that are annotated to each chromatin state as determined by the Roadmap epigenome project; colours correspond to A; asterisks denote chromatin states that 

significantly contribute to the chi2 test (Supplementary figure 5.2A). (C) Percentage of DMPs and non-DMPs associated with baseline fitness z-scores that are annotated to CpG islands, 

shores, shelves, and open sea; colours correspond to A and B; asterisks denote island locations that significantly contribute to the chi2 test (Supplementary figure 5.2B).
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5.3 Discussion 

We investigated whether genome-wide DNA methylation in skeletal muscle has a sex-

specific response to HIIT, and whether males and females display distinct DNA methylation 

signatures of baseline cardiorespiratory fitness in muscle. Four weeks of HIIT induced modest 

changes in the DNA methylome with a stringent FDR< 0.005, and we detected no sex-specific 

response. Cardiorespiratory fitness at baseline was associated with widespread DNA 

methylation changes in the muscle methylome, but these were independent of sex. Fitness-

associated genes were involved in biological processes relevant for skeletal muscle function, 

such as muscle contraction and various metabolic pathways. 

 Four weeks might be relatively short training intervention in particular for our 

moderately-trained participants, nonetheless, we detected small overall changes in the muscle 

methylome after HIIT, most of which were hypermethylated. A handful of studies have 

reported DNA methylation changes in skeletal muscle after short-term (< 6 months) resistance 

or endurance exercise training [182, 340, 342]. Conversely to our results, existing studies 

reported equal global fractions of hypo- and hyper- methylation following training [182, 340, 

342]. Two of these studies contained only males [182, 342], and in the only study containing 

females [340], sex was confounded with batch and therefore could not be statistically taken 

into account. Thus, the disparity in fractions of global hyper- and hypo- methylation between 

our study and those in the literature may be due to the inclusion of both sexes and the 

subsequent statistical adjustment. One study failed to detect changes in the muscle methylome 

after HIIT/resistance/combined training [343], but their analysis was restricted to promoters 

and to DNA methylation changes > 5%. In the present study, fitness-related DMPs were 

depleted across active promoters, which is consistent with enrichment reported by Lindholm 

et al. among enhancers, gene bodies, and intergenic regions [340]. In addition, we, as well as 

others [340, 342], detected only modest (<6%) effect sizes with training, suggesting that 
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Robinson et al. were unable to detect exercise-induced changes because of their stringent effect 

size threshold and limited genome coverage. Of the genes associated with differential 

methylation following the HIIT intervention in our study, SMAD3 has recently been shown via 

meta-analysis, as a central regulator in transcriptomic networks in response to acute exercise 

[6]. Altogether this suggests that DNA methylation changes in SMAD3 could underlie its role 

as a regulator of exercise training molecular responses in males and females, however direct 

causality cannot be determined. 

 No study, to date investigated potential sex differences in exercise responses, as the 

abovementioned studies included only a limited number of males and females, or were 

restricted to male participants. The present study was therefore the first to investigate potential 

sex differences in epigenetic response to HIIT in a substantial cohort of males (n = 45) and 

females (n = 20). However, we found no evidence of a sex-specific response to HIIT at the 

epigenetic level, and this is in spite of the marked sex differences in the muscle methylome at 

baseline (chapter three in thesis). Lindholm et al. also reported that muscle methylome 

clustered by sex and training time point, but their DNA methylation assay was performed on 

separate batches for males and females. Batch effects in the Illumina arrays can significantly 

confound results and samples should be strategically positioned as it is often not possible to 

remove technical signal when batches are confounded with variables of interest [344]. Similar 

results were reported at the transcriptional level in a single cohort (12 males and 11 females), 

with no differences between the sexes after training despite baseline differences [340]. 

However, utilizing a meta-analysis (409 males and 310 females) Amar et al. detected sex 

differences in the transcriptomic response to training. Thus, it cannot be excluded that 

additional cohorts could provide sufficient power to detect sex differences in the DNA 

methylome response to training. Altogether, our findings indicate that short-term HIIT alters 
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the male and female skeletal muscle methylomes similarly. However, the paucity of studies on 

the topic means that it is too early to draw any firm conclusions. 

In our cross-sectional sample of healthy individuals, cardiorespiratory fitness (CRF) 

reflects years, if not lifelong patterns of regular physical activity. Individuals with higher CRF 

displayed distinct DNA methylation patterns, with no sex-specific differences. This suggests 

that life-long physical activity induces similar changes in the male and female muscle 

methylome, which is consistent with the lack of sex-specific response to HIIT we observed. 

CRF-associated regions were mostly hypermethylated, and were enriched in enhancers and 

regions flanking active promoters while depleted in active promoters. In contrast, Sailani et al. 

found that lifelong physical activity was associated with promoter hypomethylation in older 

healthy men [345]; discrepancies between our results and theirs may be due to the differences 

in genomic coverage owing to utilization of a different DNA methylation technique 

(sequencing), as well as age and sex of  participants. In a recent study, untrained male and 

untrained female transcriptomes showed more significant differences than trained male and 

trained female transcriptomes, suggesting that endurance training shifts male and female 

transcriptomes to be more similar to one another [10]. Interestingly, genes identified by 

Chapman et al. as differentially expressed with lifelong training were overrepresented among 

the genes that were differentially methylated with CRF in the present study. This indicates that 

exercise training may trigger both DNA methylation and mRNA expression changes at specific 

genes, such as MIPEP and CKMT2, however the direction of causality cannot be concluded.  

MIPEP, mitochondrial intermediate peptidase, is highly expressed in human skeletal 

muscle and plays a critical role in the oxidative phosphorylation system (OXPHOS), the 

oxidation of substrates to generate ATP in the mitochondria [346]. DNA methylation of MIPEP 

was associated with CRF, regardless of sex, and was different between the sexes at baseline 

(chapter three), thus shedding light on a gene highly active in skeletal muscle that retains basal 
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sex differences despite changes with physical activity. CKMT2, creatine kinase S-type, is an 

important factor in myogenesis differentiation as well as plays a central role in energy 

transduction in tissues with large energy demands, such as skeletal muscle, by catalysing the 

transfer of phosphate between ATP and phosphogens such as creatine kinase [347]. CKMT2 

protein levels have been reported to increase following 12 weeks of endurance training in both 

type 1 and type 2 skeletal muscle fibres [240]. In the current study, CKMT2 DNA methylation 

was associated with CRF, but did not exhibit sex differences at baseline, and may be central in 

exercise adaptations in skeletal muscle, regardless of sex. Finally, we found that genes that 

were differentially methylated with CRF were involved in pathways and biological processes 

that are highly relevant to skeletal muscle function during exercise, indicating that years of 

regular exercise training may favourably shape the skeletal muscle DNA methylome so as to 

promote health.   

Participants in our human cohort ranged from sedentary to recreationally active, to 

exceptionally active (one male and one female outliers). This heterogeneity in baseline fitness 

levels may limit our ability to detect changes in the DNA methylome following four weeks of 

HIIT, as changes in physiological and molecular measures may differ in magnitude depending 

on the exercise training history of the individual. To address this potential limitation, we 

assessed whether DNA methylation changes associated with four weeks of HIIT were also 

associated with baseline fitness z-scores (time-by-baseline fitness z-score interaction). 

Although we found no significant loci, the inflation of near zero p-values suggests that there 

may be an association between baseline fitness levels and level of training response but that 

we were underpowered to detect it. In contrast, a heterogeneous cohort might be advantageous 

as it better reflects the general population. 

Short-term exercise training induced less changes in the muscle methylome, while 

CRF, which represents lifelong patterns of physical activity, was associated with marked 
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epigenetic signatures. This suggests that exercise-induced epigenetic changes are dose-

dependent (i.e. training over longer periods of time leads to more pronounced epigenetic 

changes in muscle), and although the current study had a sample size significantly larger than 

previous studies with human muscles (typically n=7-10), larger sample sizes, utilising multi-

site studies and initiatives, and open access data sharing, are required to detect the small shifts 

in the methylome that can be achieved with short-term exercise training.  

 In conclusion, we showed that males and females display similar DNA methylation 

changes in response to four weeks of HIIT as well as in DNA methylation signatures of CRF, 

despite profound differences in muscle DNA methylation at baseline. Genes whose DNA 

methylation was associated with CRF were involved in pathways related to muscle contraction 

and metabolism, suggesting that lifelong physical activity shapes the regulatory landscape of 

entire pathways relevant for muscle function. We uncovered multiple genes whose methylation 

levels were associated with CRF, such as MIPEP and CKMT2. More research is required to 

elucidate sex differences in the DNA methylomic response to exercise training as this study 

was the first and only to date to investigate this question. Furthermore, given the transient and 

rapid nature of chromatin organization changes, this may be an important avenue for future 

exercise physiology research. 

5.4 Methods 

5.4.1 Muscle Biopsy and Blood Sampling 

See chapter 3 and 4 of thesis. Briefly, muscle biopsies were taken from the vastus 

lateralis muscle after an overnight fast. Intravenous blood was drawn immediately after the 

biopsy. Muscle was flash-frozen in liquid nitrogen and stored in -80º C. Biopsies were also 

taken immediately and three hours after the first training session, this portion of the analysis 

was used for research questions not included in this thesis (Hiam et al., unpublished). 
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5.5.2 Study Design and Exercise Protocol 

An overview of the exercise protocol used in the Gene SMART (Skeletal Muscle 

Adaptive Response to Training) study has been previously published [334] (Figure 5.3). The 

training intervention consisted of four weeks of a control period (six of the females and 1 of 

the males had control periods which were analysed for DNA methylation), followed by four 

weeks of high-intensity interval training (HIIT) performed on a cycle ergometer.  

Participants were asked to refrain from strenuous exercise before the testing days. 

Familiarisation graded-exercise (GXT) and VO2max tests were performed prior to starting the 

study. Then, participants were additionally tested at three time points: before the control period, 

before the first training session, and after the training period. Testing at each time point was 

performed in duplicates and the average between two tests was used for analysis unless the 

coefficient of variance was above 10% and in that case the maximum value was used. The peak 

power output (PP) and lactate threshold (LT) were determined from the GXTs. PP, or the 

supramaximal power output, is reported as 105% of the maximum power reached in the last 

stage of the GXT as is commonly used [348]. GXTs were performed on an electronically-

braked cycle-ergometer (Lode-excalibur sport, Groningen, the Netherlands) and consisted of 

4-min stages separated by 30-s rest periods until exhaustion. The test started at 50 and 60 watts 

and was increased by 25 and 30 watts in each subsequent stage, for females and males, 

respectively. Participants that were particularly untrained had lower starting watts and smaller 

increases in watts per stage (20 watt increases each stage; starting at 25 watts). Starting and 

stage-increments watts were determined and adjusted after the familiarization GXT and kept 

consistent for all of the GXTs for that participant throughout the trial. Capillary blood samples 

were taken at rest, after each completed stage, and immediately following exhaustion, and were 

analysed by a YSI 2300 STAT Plus system (Yellow Springs, Ohio, USA). During the GXT the 

LT was calculated by the modified DMAX method, which is determined by the point on the 
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polynomial or exponential regression curve that yields the maximum perpendicular distance to 

the straight line connecting the first increase in lactate concentration above resting value and 

the final lactate point [349]. LT was measured using the modified D-max exponential method 

in the females and the polynomial method in the males. The two methods yielded similar 

results, but the exponential method yielded less variance between two replicated tests and was 

therefore implicated when females began to be recruited for the study. In any case, LT 

measurements are scaled per sex and therefore the differing methods used do not impact 

conclusions. VO2max was obtained following the GXT after resting for seven minutes, as 

VO2max is likely to be achieved following a previous maximum effort, known as priming 

[350]. VO2max was determined using a calibrated Quark CPET metabolic system (COSMED, 

Rome, Italy). Participants wore the Cosmed face mask and we collected VO2 at stationary for 

2 min, while exercising for 3 min at the intensity of the first stage of GXT (25, 60, or otherwise 

determined), and during exercise to exhaustion at 105% of peak watts measured during the last 

stage of the previous GXT. VO2max was considered the highest value in 1 min obtained during 

the test. The HIIT phase commenced 48–72 h after the last baseline exercise test. 

 

Figure 5.3 Gene SMART study design.  

Blue arrows denote graded-exercise testing (GXT) and maximum oxygen consumption (VO2max) testing.; blue 

bars indicate one of the 12 HIIT sessions; cutlery indicate a 48 hour control diet and red arrows denote muscle 

biopsies and blood sampling. 
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Participants performed 12 HIIT sessions over the four weeks (three sessions/week). All 

training sessions were completed on an electronically braked cycle ergometer (Velotron, Racer 

Mate Inc, Seattle, USA) and were preceded by a five minute warm up. Each session consisted 

of six to twelve two minute intervals performed at different resistances. The training resistances 

for each participant were calculated according to the LT and PP determined via the GXTs. 

Specifically, 40, 50, 60, and 70 % were used in the following equation to determine training 

load:  

𝐿𝑇 + 40% ∗ (𝑃𝑃 − 𝐿𝑇) 

The training intensity and duration (number of two minute repetitions) became progressively 

higher and longer throughout the 12 sessions, with the last session being a tapering session 

approaching the final GXTs and VO2max tests. Muscle biopsies, blood sampling, GXTs and 

training sessions were separated by a minimum of 48h to avoid overtraining and acute training 

effects.  

 We combined the physiological fitness measurements (PP, VO2max, and LT) to obtain 

a comprehensive representation of cardiorespiratory fitness. This fitness z-score was calculated 

by averaging all of the z scores of each physiological measurement, which were each scaled 

per sex. The calculation for each z score:  

𝑍 =  
𝑥 − 𝜇

𝜎
 

𝑍 = z score 

𝑥 = observed value 

𝜇 = mean of the sample 

 𝜎  = standard deviation of the sample 

 

Each measurement was scaled separately because of the differing units of each measurement. 

Measurements were scaled per sex given the significant differences in all three measurements 
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between the sexes (absolute and relative to body size). The sex comparison of physiological 

measurements and z-scores, before and after the intervention, were analysed using a linear 

model of the form: 

𝑃ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 (𝑧 𝑠𝑐𝑜𝑟𝑒, 𝑃𝑃, 𝑉𝑂2𝑚𝑎𝑥, 𝐿𝑇)~𝑠𝑒𝑥 + 𝑡𝑖𝑚𝑒 + 𝑎𝑔𝑒 

 

 5.5.3 Controlling for diet  

As explained in the “Methods” in Chapter 4, each participant was provided with 

individualised, pre-packaged meals for the 48 h prior to the resting muscle biopsies. The energy 

content of the provided meals was calculated using the Mifflin St-Jeor equation and each 

participant’s body mass (BM), height and age [351]. The content of the diets were constructed 

based on the current National Health and Medical Research Council (NHMRC) guidelines. 

Participants were provided with a post-training and post-testing snack consisting of protein (0.3 

g·kg−1 BM) and carbohydrates (0.3 g·kg−1 BM) [352]. Participants were asked to refrain from 

alcohol and caffeine during the dietary control period, which is 48 h prior to each resting 

biopsy. Outside of the dietary-control period they were asked to continue with their normal 

exercise and dietary habits. 

5.5.4 Participants and control of confounders 

Females with a regular menstrual cycle (26-35 days)[353] not taking hormonal 

contraceptives were recruited in order to obtain a homogenous cohort, as different 

contraceptives have different dosage, administration patterns, and different hormone 

combinations causing variability in metabolism and gene expression [354]. For consistency 

and to control for the potential effects of hormonal fluctuations during the female menstrual 

cycle, all biopsies were performed during the early follicular phase (days 1-7 of cycle).  
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Participants (total of six females and one male) served as their own controls as they 

underwent four weeks of a control period prior to starting the training, this was done in order 

to assess whether DNA methylation fluctuates with regular lifestyle (diet, sleep, exercise, etc.) 

in the absence of the exercise training intervention (Figure 5.2C). 

5.5.5 DNA Extraction and Methylation  

As described in the “Methods” of Chapters 3 and 5, Genomic DNA was extracted from 

the samples using the AllPrep DNA/RNA MiniKit (Qiagen, 80204) following the user manual 

guidelines. Global DNA methylation profiling was generated with the Infinium 

MethylationEPIC BeadChip Kit (Queensland University of Technology and Diagenode, 

Austria). The first batch contained only males and were randomised for timepoint and age. The 

second batch contained males and females and samples were scrambled on the chips to ensure 

randomness when correcting for batch effect (i.e. old and young males and females across all 

time points included on each chip). The genome-wide DNA methylation pattern was analysed 

with the Infinium MethylationEPIC BeadChip array.  

5.5.6 Bioinformatics Analysis 

Pre-processing was performed as described in “Methods” of Chapters 3 and 4. We 

adjusted the EWAS for bias and inflation using the empirical null distribution as implemented 

in bacon [293]. Inflation and bias in EWAS are caused by unmeasured technical and biological 

confounding, such as population substructure, batch effects, and cellular heterogeneity [294]. 

The inflation factor is higher when the expected number of true associations is high; it is also 

greater for studies with higher statistical power [293]. The results were consistent with the 

inflation factors and biases reported in an EWAS in blood [293].  

To identify DMPs, we used linear models as implemented in the limma package in R 

[296], using the participants’ ID as a blocking variable to account for the repeated measures 
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design. All results were adjusted for multiple testing using the Benjamini and Hochberg 

correction [297] and all CpGs showing an FDR < 0.005 were considered significant for the 

association of DNA methylation with baseline fitness [298]. When no DMPs were detected at 

FDR < 0.005, we examined the histogram of p-values to evaluate whether results were truly 

negative or whether we were underpowered. CRF-associated DMRs were identified using the 

DMRcate package [299]. DMRs with Stouffer, Fisher, and harmonic mean of the individual 

component FDRs (HMFDR) statistics < 0.005 were deemed significant. Effect sizes are 

reported as mean differences in DNA methylation beta values (%). 

We integrated a comprehensive annotation of Illumina HumanMethylation arrays [300] 

with chromatin states from the Roadmap Epigenomics Project [255] and the latest GeneHancer 

information [301]. Baseline fitness-DMPs that were annotated to two differing chromatin states 

were removed for simplicity and because there were very few such DMPs. GSEA on Reactome 

and GO databases was performed on DMRs using the goregion (for GO) and gsameth (for 

Reactome) functions in the missMethyl R package [302] [303].  

The linear models used to address the DNA methylation questions in this chapter 

include:  

(A) Effect of four weeks of HIIT:  

𝐷𝑁𝐴𝑚 ~ 𝑠𝑒𝑥 +  𝑡𝑖𝑚𝑒 +  𝑏𝑎𝑡𝑐ℎ +  𝑎𝑔𝑒 +  𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑧  

(B) Interaction of sex and time following four weeks of HIIT:  

𝐷𝑁𝐴𝑚 ~ 𝑠𝑒𝑥 ∗  𝑡𝑖𝑚𝑒 +  𝑏𝑎𝑡𝑐ℎ +  𝑎𝑔𝑒 +  𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑧  

(C) Effect of control month: 

 𝐷𝑁𝐴𝑚 ~ 𝑠𝑒𝑥 +  𝑡𝑖𝑚𝑒 +  𝑏𝑎𝑡𝑐ℎ +  𝑎𝑔𝑒 +  𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑧   

(D) Interaction of sex and baseline fitness z-score:  
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𝐷𝑁𝐴𝑚 ~ 𝑡𝑖𝑚𝑒 +  𝑏𝑎𝑡𝑐ℎ +  𝑎𝑔𝑒 +  𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑧 ∗  𝑠𝑒𝑥  

(E) Effect of baseline fitness:  

𝐷𝑁𝐴𝑚 ~ 𝑡𝑖𝑚𝑒 +  𝑏𝑎𝑡𝑐ℎ +  𝑎𝑔𝑒 +  𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑧 +  𝑠𝑒𝑥  

(F) Interaction of baseline fitness and time following four weeks of HIIT:  

𝐷𝑁𝐴𝑚 ~ 𝑠𝑒𝑥 +  𝑏𝑎𝑡𝑐ℎ +  𝑎𝑔𝑒 +  𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑧 ∗  𝑡𝑖𝑚𝑒  
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Chapter 6 : General discussion, contribution to knowledge, 

limitations, and future research 

6.1 General discussion 

Although medical research aimed at enhancing health is constantly on the rise, physical 

activity remains the most effective way to improve health and prevent various diseases. 

Advancing the understanding of gene regulation in skeletal muscle of both males and females 

following exercise training provides new, comprehensive, and valuable insights to discover 

new therapeutic treatment targets, as well as to inform and improve future biomedical research. 

In Chapter 1, we introduced the general outline of each chapter. In Chapter 2 we 

discussed the sex differences associated with exercise training by summarising the existing 

literature on the genetic, epigenetic, molecular, phenotypic, and structural sex differences in 

skeletal muscle. There is convincing evidence that skeletal muscle displays a plethora of sex 

differences across various levels from genotype to phenotype, both at baseline and in response 

to exercise training. Despite the current knowledge on skeletal muscle sex differences, 

however, the underlying molecular mechanisms remain largely unexplored. There is a large 

body of evidence suggesting that sex differences in skeletal muscle might exist at the epigenetic 

level, as epigenetic sex differences have been observed in other tissues [158, 251, 252], and 

there are many transcriptomic sex differences in skeletal muscle [7-11, 142]. Given the 

evidence, we recommend that more research be undertaken to elucidate whether there are sex 

differences in the molecular response to exercise training. 

The overall aim of this thesis was to investigate whether there are sex-specific DNA 

methylation changes associated with four weeks of high intensity exercise training. To explore 

this, the thesis was separated into three experimental chapters: 
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I. Do baseline (‘pre-training’) DNA methylation patterns differ between male and 

female skeletal muscle? (Chapter 3) 

Several studies have identified a plethora of sex differences in the skeletal muscle 

transcriptome [7-11, 142, 143], suggesting that sex differences in muscle phenotypes have a 

molecular basis; however, these mechanisms are poorly understood. In Chapter 3 we showed 

that the skeletal muscle DNA methylome displays profound differences between males and 

females, and that the sex-differentially methylated regions were enriched for genes with known 

sex-biased expression, suggesting that differential methylation and expression are functionally 

linked. Additionally, differentially methylated regions were enriched for substrate metabolism, 

as well as muscle contraction pathways. This is corroborated by results from transcriptomic 

studies, which report that skeletal muscle female-biased genes are enriched for pathways 

involved in fatty acid metabolism while male-biased genes are enriched for pathways involved 

in protein catabolism [143]. Together, these findings suggest that the observed phenotypic 

skeletal muscle sex differences, such as substrate metabolism and contractility, are associated 

with DNA methylation patterns in human muscle.  

II. Which biological factors underlie the basal DNA methylation sex differences? 

(Chapter 4) 

To explore the influence of biological factors (e.g., fibre type distribution, circulating 

and lifelong exposure to hormones) on the observed sex-specific DNA methylation patterns, 

we assessed the association between these factors and regions that exhibited sex-specific DNA 

methylation. Sex differences in fibre type proportions and sex hormones have been thought to 

contribute to many of the sex differences in muscle phenotypes, such as metabolism [2, 355]. 

In Chapter 4, the lack of association between circulating sex hormones (estrogen, testosterone, 

free testosterone, and SHBG) and DNA methylation at the sex-DMPs in each sex (analysed 

separately) suggests that acute levels of sex hormones do not explain the sex differences in 
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DNA methylation. Rather, the lifelong exposure to sex hormones and their cumulative 

molecular effects likely influence DNA methylation and bring about sex-differential 

methylation, as sex-differentially methylated regions were enriched for hormone-responsive 

TFBSs (for TFs estrogen, androgen, and glucocorticoid receptors). The literature partially 

corroborates that gene regulation differs between the sexes due to hormone-related TFs; one 

study found that sex-biased gene expression across many tissues is enriched for hormone-

responsive TFBSs [9], while another using the same data found that those same sex-biased 

genes were not enriched for hormone-related TF binding motifs across multiple tissues. 

Nonetheless, both of these studies find large differences between the sex-specific regulatory 

networks of differing tissues, highlighting the importance of elucidating the effect of sex and 

the implicated biological factors in each independent tissue [11]. Lastly, given the differing 

methylation profiles of differing fibre types [266, 287], we analysed muscle fibre type 

proportions and treated type I fibre proportion as a covariate in the linear model. These results 

revealed that type I fibre proportion is associated with DNA methylation at several CpG sites, 

which were primarily hypermethylated, as has been corroborated in the literature [266]. 

Furthermore, since females (in our study and as reported in the literature [249]) tend to have 

higher type I fibre proportions, and the majority of sex-specific DNA methylation displayed 

hypermethylation in females, it was of great interest to determine whether the profound 

hypermethylation in females across the genome was owing to the hypermethylation patterns of 

type I fibres. Despite this, fibre type proportion was associated with 16% sex-specific 

methylation sites, suggesting that the vast majority of differences in genome-wide methylation 

in males and females is not an artefact of the higher type I proportions observed in females. 

Altogether, the results from this chapter reveal that circulating hormone levels do not explain 

the sex differences in skeletal muscle DNA methylation, although lifelong hormone exposure 

and subsequent gene regulatory action do partially explain them. 
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III. Are there sex differences in the DNA methylome response to exercise training? 

(Chapter 5) 

A handful of studies have reported that exercise training induces changes to the skeletal 

muscle DNA methylome which are then associated with gene expression and protein changes 

[4, 138, 297, 301]. However, these results either included males only or did not account for sex 

in their statistical model and pooled males and females together. In this thesis, by training males 

and females, and treating sex as a confounder, it was possible to investigate whether there are 

sex differences in the DNA methylome response to training. We found that four weeks of HIIT 

elicited small DNA methylation changes with no differential methylation between the sexes 

with training. This agrees with the literature as exercise training induces relatively small but 

widespread changes in DNA methylation [4]. One study on the transcriptomic response to 

training did not find any sex differences [314]; however, a meta-analysis on the transcriptomic 

response to exercise training reports sex differences in 247 genes after training [6]. This 

example from the literature emphasizes the strength of meta-analyses, especially in 

investigating healthy individuals in which the effect of the intervention may be relatively small 

and thus, require a larger sample size to detect significance. Unfortunately, we were not able 

to conduct a meta-analysis of the interaction of sex and training in muscle because the only 

other study that included females arranged male and female samples on separate batches [297]. 

This makes it impossible to disentangle sex effect from batch effect, which is reported to be 

substantial in DNA methylation arrays [303].  Findings from this chapter suggest that fitter 

individuals have different DNA methylation patterns than less fit individuals at rest, and that 

these DNA methylation patterns are similar between males and females. These findings are in 

line with what is currently known about the molecular profiles of trained and untrained 

individuals; a recent study comparing the transcriptomes of trained and untrained individuals 

reported that the differences between trained males and females were reduced when compared 
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to the differences between untrained males and females [10]. Altogether, the findings from this 

chapter indicate that lifelong fitness alters the DNA methylome considerably, and does so 

similarly in males and females, while a four week training intervention alters the DNA 

methylome slightly, and does so similarly in males and females. Nonetheless, replication 

studies as well as larger sample sizes are needed to further explore the question of whether 

training induces different DNA methylation changes between male and female skeletal muscle. 

6.2 Contribution to knowledge  

The work of this thesis has significantly contributed to the body of knowledge by 

showing, for the first time, that the human skeletal muscle DNA methylome displays profound 

differences between males and females, and identifying thousands of genes that display sex-

differential methylation. Furthermore, by leveraging the GTEx database, we identified 

hundreds of genes with both sex-differential expression and DNA methylation in skeletal 

muscle. By integrating genome-wide sex-biased DNA methylation and expression in skeletal 

muscle, we shed light on distinct molecular sex differences in skeletal muscle. We then showed 

that intrinsic biological factors, such as fibre type proportions and hormone-related 

transcription factor activity, are associated with DNA methylation sex differences. Lastly, we 

performed the first comparison of male and female skeletal muscle methylomes i) after exercise 

training and ii) with lifelong patterns of physical activity, and find that both four weeks of HIIT 

and lifelong physical activity modifies the methylome similarly between the sexes.  

Collectively, this work provides multiple important contributions to the literature. It 

exemplifies a tightly-controlled human exercise training study that included both males and 

females, in which the results were not greatly confounded by ovarian hormone fluctuations, 

the common justification for studies to research only males [18]. It provides a comprehensive 

picture of the genes distinguishing male and female skeletal muscle. Additionally, it contributes 

to the general growing knowledge on biological sex differences, an aspect of biology 
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commonly overlooked and understudied – which addressed can drive discovery and not 

addressed can lead to undesired ramifications and misinterpretation of results [1, 25, 356, 357]. 

Furthermore, it provides a more thorough understanding of the exercise training-induced 

molecular changes that occur in humans, with greater potential for future discovery of key 

pathways and genes involved. 

6.3 Limitations 

We endeavoured to minimise shortcomings as much possible in our study design and 

research methodologies. Nevertheless, as with every human exercise study, there are inevitable 

research limitations. In this section, I will highlight the most important limitations I have 

encountered during my PhD research. 

One limitation was the lack of control of the participants’ lifestyle outside of the lab 

(e.g., diet, sleep, physical activity), which may confound the effect of training and affect the 

DNA methylome. To mitigate these effects, we limited the effect on molecular analyses by 

providing participants with consistent 48-hour diets (according to the NHMRC guidelines) and 

required them to refrain from strenuous physical activity for 48 hours prior to biopsies, as well 

as to fast 12 hours before the muscle biopsy. We also performed the muscle biopsies 

consistently at the same time of the day to mitigate the influence of circadian cycles. 

There were limitations related to the participants which reduced broad applicability of 

our findings to the general cohort. Given the reported effect of ethnic groups on DNA 

methylation [358], we limited our analysis to Caucasian individuals in order to obtain a 

homogenous cohort to increase power to detect significant differences. This means that our 

results are less applicable to other ethnic groups. Furthermore (again, to achieve a more 

homogenous cohort to increase power) we included only females not taking hormonal 
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contraceptives, which reduces the applicability of our results across the whole female 

population.  

Importantly, we recruited participants of varying fitness levels, ranging from rather 

sedentary to moderately trained (VO2max: 29 to 70.5 for males and 29.5 to 67.1 for females; 

mL/kg/min); this could either pose as a limitation or an advantage. It may be a limitation as 

individuals who were already training may have not been as affected by the HIIT intervention, 

therefore displaying less epigenetic differences, making it harder to detect the effect of training. 

Although DNA methylation exercise training studies have most commonly used FDR 

thresholds of 0.05 [359] [340, 342], we preferred to be more stringent (FDR < 0.005). On the 

other hand, including individuals across different fitness and training levels makes the 

conclusions of this thesis more applicable to the general population. Another limitation in 

detecting changes with training was the length of the intervention. Our training sessions were 

high-intensity and we applied progressive stimuli. However, we hypothesise that a substantial 

remodelling of the skeletal muscle methylome might be more detectable with a training 

intervention longer than four weeks. 

Another limitation was the use of a bulk muscle sample and not being able to take 

differing cell populations into consideration. Bulk tissue contains other cell types which display 

differing DNA methylation patterns [263-265]. Bulk skeletal muscle may contain endothelial, 

immune, mesenchymal stem, satellite, and fibroadipogenic progenitor cells, as well as pericytes 

and fibroblasts [319]. There is currently no deconvolution algorithm established to extract cell 

type proportions from DNA methylation data, as is available for blood [360] and saliva [361]. 

We attempted to address this limitation by measuring fibre type proportions, as muscle fibres 

also display differing methylation profiles [266]. Although myosin heavy chain is currently the 

best available marker for fibre typing [308], this approach still had a few limitations. It has 

been reported that the variability in fibre proportions between different muscle pieces within 
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the same biopsy and between different samplings of the same muscle is diminished when 

counting 150 muscle fibres, representing the most accurate estimation of fibre proportions 

(when utilising IHC) [362]. We attempted as much as possible to count at least 150 fibres per 

sample, but this was not always achieved. Nevertheless, we only included data that had at least 

100 fibres, as that has been the recommendation from the literature until recently [362, 363]. 

In addition, we only investigated the associations with type I fibre proportions. Accounting for 

differing distributions of type IIA, type IIX, and hybrid fibres would further elucidate the role 

of fibre type proportions in skeletal muscle DNA methylation and associated sex differences.  

One of the limitations with regards to the hormone-related analysis was that we 

measured circulating hormone levels as opposed to intramuscular hormone levels. We were 

recently made aware (after analysing blood hormone levels) of the lack of association between 

blood and intramuscular hormone levels [325]. Given that we assessed DNA methylation in 

skeletal muscle, it may have been more relevant to measure intramuscular hormone levels. 

Furthermore, given the sexually dimorphic nature of the sex hormones, we had a problem of 

collinearity with sex in our linear model (similar problem to fibre type proportions), therefore 

we split the males and females for this portion of the analysis. Given the relatively small range 

of sex hormone levels within healthy individuals of the same sex, the effect of circulating sex 

hormones may not have been detectable in our cohort. Lastly, the enrichment of TFBSs from 

the Unibind ChIP-seq database mostly contained data from other tissues besides skeletal 

muscle. It has been reported that differential gene expression is differentially targeted by TFs, 

depending on the tissue. Therefore, relying on TF data that has been curated from different 

tissues than skeletal muscle is not ideal for the investigation included in this thesis. Altogether, 

in the investigation of the biological factors underlying the DNA methylation baseline sex 

differences (Chapter 2), it was challenging to conclude the basis of DNA methylation sex 

differences with confidence. 
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6.4 Future research 

Often research projects provide insights that lead to more new questions. To inform 

future research, I will highlight some of the research areas which this thesis has shed light on, 

and that if explored, may provide interesting and valuable findings: 

I. Integration of findings with other –omics layers to reveal phenotypic effects 

The DNA methylation patterns observed in males and females both in response to 

exercise training and lifelong physical activity are only one piece of the story. To deeply 

investigate whether there are sex differences in the molecular adaptations to exercise training 

and the downstream ramifications of epigenetic differences, other –omics layers should be 

integrated. The field would benefit greatly from integrating the transcriptome, the 

proteome/phosphoproteome, miRNAs, histone modifications, chromatin accessibility, and 

transcription factor binding, among others. Integrating these skeletal muscle-specific -omics 

layers will provide several layers of information and more statistical power, which will drive 

discovery of sex-specific pathways. Given the time allocated for my PhD I did not have time 

to integrate multiple –omics layers with my exercise training data. In the last few months of 

my PhD, the meta-analysis of the skeletal muscle transcriptomic response to training was 

published [6]. I hope to integrate my findings from Chapter 5 with this powerful meta-analysis 

to reveal whether the transcriptomic sex differences Amar et al. observed following training 

can be observed at the DNA methylation level, shedding light on the molecular mechanisms at 

play.  

Also, while we did integrate the DNA methylation findings at baseline with other 

published transcriptome data (Chapter 3), it would be even more powerful to integrate these 

findings with other available skeletal muscle –omic data using a meta-analysis approach. 

Lastly, the findings from this thesis would be strengthened by analyzing the DNA methylome 
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results with skeletal muscle-specific TFBSs, as this thesis utilised the currently available data 

on TFBSs, which is derived from other tissues.  

II. Meta-analysis of DNA methylation sex differences across several tissues 

This thesis focused on skeletal muscle; however, during the preparation of this thesis 

multiple excellent quality studies have brought my attention to the sex differences in gene 

regulation across several tissues [9, 11]. Integrating sex-biased epigenetic gene regulation 

across several tissues will provide greater insight which may be relevant to more research 

fields. Furthermore, although skeletal muscle is the largest tissue functionally involved during 

exercise, exercise training also effects peripheral tissues, such as adipose tissue [364], which 

then engage in cross-talk with other tissues in the body [365] and ultimately results in enhanced 

health. Thus, future research should investigate the effect that exercise training has on various 

tissues besides skeletal muscle. 

III. The effect of sex hormones on gene regulation and phenotype 

It is understood that sex hormones influence physiology and pathophysiology, both 

genomically and non-genomically [366]. Genomically, sex hormones can bind receptors which 

then function as TFs and affect transcription. Non-genomically, sex hormones affect molecular 

function, for example, estrogen effects vascular function acutely and in the longer term. 

Elucidating the multitude of effects that sex hormones have on systemic function will greatly 

contribute to our understanding of physiology in both healthy and diseased populations. 

However, it is often challenging to disentangle the effect of sex hormones and biological sex, 

as some sex hormones display sexual dimorphism (limitation from Chapter 4). For that reason, 

the field would gain useful knowledge from experiments designed to separate the effect of sex 

from the effect of sex hormones. A recent study has been able to investigate the effect of sex 

on gene regulation in cultured cells without the acute effect of sex hormones on molecular 

function [181]; nonetheless, lifelong exposure to differing sex hormone levels and their effect 
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on gene regulation, which could be retained in cell culture, poses a more challenging question 

to address. We propose an idea, which if ethically feasible, would address this question. 

Comparing the epigenomes of embryonic stem cells from XX and XY embryos would 

eliminate the effect of lifelong exposure to sex hormones and more simply address the effect 

of biological sex on the epigenome. Another way to address the effect of long-term exposure 

to sex hormones is to compare the epigenomes of individuals undergoing hormone replacement 

therapy, a project which our lab is currently undertaking. Although in this study design the 

effects of life long exposure to hormones (especially during developmental life stages) likely 

cannot be totally reversed, the effects of exposure to sex hormones over a long period of time 

can nonetheless be investigated in vivo. 

IV. The effect of the sex chromosomes on molecular and physical sex differences 

The X and Y chromosomes are inherent drivers of many observed sex differences. To 

elucidate the multitude of effects they exert on molecular and physical characteristics, their 

effect on autosomal genes should be explored. By studying individuals with sex chromosome 

complement disorders, studies have found that sex chromosomes affect DNA methylation at 

specific autosomal genes; however, this has not yet been fully explored on a genome-wide 

scale. Also, to more thoroughly understand biological sex differences, the effect of X-

chromosome inactivation needs to be further explored. There is a need for novel bioinformatics 

methods to compare the sex differences in DNA methylation of the X chromosome as it is 

currently bioinformatically challenging. given the unequal dosage between males and females 

[25]. The field of biological sex differences would benefit from further research on the X and 

Y chromosomes and their impact on gene regulation and function. 

V. Sex differences in the effect of gene variants on DNA methylation: methylation 

QTLs 
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Common genetic variants may impact DNA methylation at a specific site. Such loci are 

termed methylation quantitative trait loci (meQTL). Sex differences in meQTLs mean that they 

may act in one sex but not in the other, or they could be shared by both sexes but with differing 

effect sizes, or allelic distributions in males or females. This could ultimately result in differing 

gene expression levels of a specific gene between males and females. Very few studies have 

investigated sex differences in meQTLs; however, many studies have investigated expression 

QTLs (eQTLs), and have reported very few sex-stratified eQTLs. This suggests that the effect 

of genetic variants on DNA methylation and expression are likely not highly sex-stratified and 

do not greatly contribute to sex differences in complex traits [25]. Given this, the time allocated 

for completing this thesis, and the sample size needed to perform such analysis with adequate 

power, we did not investigate the potential sex differences in the effect of genetic variants on 

DNA methylation.  

VI. The effect of cell types  

As previously discussed in Chapter 4 and in the limitations above, there may be non-

muscle cells within a bulk muscle tissue sample which are characterised by differing DNA 

methylation patterns. To confirm that the findings from this thesis are indeed skeletal muscle-

specific, cell sorting and cell-specific DNA methylation would need to be conducted. This is 

not only very costly, but is also very challenging from a methods point of view, as muscle cells 

are multinucleated and are therefore challenging to separate to a single-cell level. Future work 

from our lab is intending to address this limitation both in general and in relation to sex 

differences. 

VII. Larger and more diverse cohorts (meta-analysis) for a longer intervention of 

various exercise training modalities 
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To extend the exercise training findings (Chapter 5) to a larger portion of the 

population, as well as increase power to detect this magnitude of effect sizes, larger and more 

diverse cohorts of males and females are required. This would allow for a more powerful meta-

analysis to be performed. In addition, a longer intervention would bring about larger and more 

detectable effect sizes [154]. Lastly, the effect of various training modalities, not just HIIT, 

would be essential in elucidating the effects of general physical activity across the sexes. 
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Appendix: supplementary figures and tables 

Supplementary figures  

 

Supplementary Figure 3.1 Correlation plots of chi2 tests of genomic locations.  

(A) Correlation plot of the percent contributions to the chi2 test for chromatin states in hyper-, hypo-, and non-

DMPs. This plot is using the male chromatin state annotation in skeletal muscle but the female chromatin state 

annotation revealed equivalent results. Darker blue indicates a greater contribution to the significant relationship 

between DMP status and chromatin state. (B) Correlation plot of the percent contributions to the chi2 test for 

CGI status of hyper-, hypo-, and non-DMPs. Darker blue indicates a greater contribution to the significant 

relationship between DMP status and CGI status. 
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Supplementary Figure 3.2 Differentially methylated genes within the KEGG metabolic pathways map (hsa01100). 

 Genes and components of the pathways which display differential methylation between males and females at baseline are outlined in black, KEGG GSEA using DMPs. 
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Supplementary Figure 3.3 Distribution of the 10,000 random permutations for a negative correlation between DNA methylation and gene expression. 

 (A) Histogram of 10,000 random permutations of DMRs annotated to promoter regions and correlation with GTEx gene expression. Effect sizes of DMRs were randomly 

shuffled and the resulting correlation with gene expression is plotted. Red dashed line indicated the real percentage of promoter DMRs that are negatively correlated with 

gene expression. (B) Histogram of 10,000 random permutations of DMRs annotated to enhancer regions and correlation with GTEx gene expression. Effect sizes of DMRs 

were randomly shuffled and the resulting correlation with gene expression is plotted. Red dashed line indicated the real percentage of enhancer DMRs that are negatively 

correlated with gene expression. 
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Supplementary Figure 3.4 Comparison of results from the full meta-analysis and from a meta-analysis 

excluding T2D participants in FUSION. 

Each point is one of the 56,813 differentially methylated positions (DMPs) discovered in the full meta-analysis. 

To compare results from the full and partial meta-analysis we plotted the effect size (B value percentages) in the 

full meta-analysis (x-axis) against the effect size of the partial meta-analysis (y-axis). To show whether DMPs 

remained significant in the partial meta-analysis, we coloured points according to the false discovery rate (FDR) 

in the partial meta-analysis. 
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Supplementary Figure 4.1 Fibre type proportion analysis.  

(A) Differentially methylated positions (DMPs) with type I fibre proportion across all CpGs conducted with a 

meta-analysis of males and females, separately, from the Gene SMART and FUSION cohorts. Volcano plot of 

DNA methylation changes per percent increase in type I fibre content (expressed at percentage of beta value). 

Each point represents a tested CpG (665,904 in total) and those that appear in color are DMPs at a false 

discovery rate < 0.005; red DMPs are hypermethylated in type I fibres; blue DMPs are hypomethylated in type I 

fibres. The x-axis represents the amount of DNA methylation difference with increasing type I fibre content and 

the y-axis represents statistical significance (higher = more significant). (B) Fibre type Immunohistochemistry 

myosin heavy chain staining of skeletal muscle section. Example of cross-sectional fibres of one participant. 

Blue fibres indicate type I, green indicate type IIa, and red indicate type IIx; cell membrane staining in red. A 

minimum of 100 fibres counted per person for approximation of fibre type proportions.
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Supplementary Figure 4. 2 Circulating hormone levels of males and females in the Gene SMART study. 

Correlation between hormones levels in (A) females and (B) males. Blue hues indicate a positive correlation and 

red hues indicate a negative correlation. Hormone levels measures from blood serum; FSH- follicle stimulating 

hormone, LH- luteinising hormone, Free T- free testosterone (calculated from sex hormone binding globulin and 

testosterone levels), estrogen- estradiol 2. Circulating (C) estrogen and (D) free testosterone levels in Gene 

SMART males and females. 
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Supplementary Figure 4. 3 Association between DNA methylation and circulating hormones in males and females from the Gene SMART study.  

Each Epigenome-wide association study (EWAS) was corrected for with BACON in R [1], as labelled “corrected.” The uncorrected quantile-quantile (QQ) plots correspond 

to the unadjusted p-values from the EWAS. QQ plots are not showing a separation of the observed from the expected when all points are on or near the middle line between 

the x-axis and the y-axis; meaning that not many P values are more significant than expected under the null hypothesis. (A) QQ plots of all CpGs in DNA methylation 

analysis in females for the four hormones (estrogen, testosterone, free testosterone, and SHBG) and the first two principal components of the ovarian hormones (from follicle 

stimulating hormone, leutinizing hormone, estrogen, and progesterone). (B) QQ plots of all CpGs in DNA methylation analysis in males for the four hormones (estrogen, 

testosterone, free testosterone, and SHBG). (C) Contributors to the dimensions of the principal component analysis (PCA) of the ovarian hormones in females used in the 

linear model in A. Larger circle indicates a larger contribution to the given dimension of the PCA.  
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Supplementary Figure 5. 1 Boxplots of fitness before and after four weeks of high-intensity interval training (HIIT) in males and females.  

(A) Relative VO2max (mL/min/kg) in males and females. (B) Relative lactate threshold (LT) (watts in which LT was reached/kg) in males and females. (C) Relative peak 

power (PP) (watts/kg) in males and females. (D) Fitness z scores in males and females. Green denotes males; orange denotes females. 
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Supplementary Figure 5.2 Correlation plots of residuals from the chi2 test for baseline fitness-DMPs 

enriched among the differing (A) Roadmap Epigenome project chromatin states and (B) CpG island 

locations. 

Blue denotes enrichment and red denotes depletion. 
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Supplementary tables  

Supplementary tables which contained several rows are presented as screen shots for ease of viewing the thesis. Full length 

supplementary tables can be provided upon request. 

Supplementary table 3.1- Study descriptions. Description of participants, study design, muscle collection, and data preprocessing/analysis. 
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Supplementary table 3.2- sex-DMPs. Differentially methylated positions between males and females in the meta-analysis FDR < 0.005. Corresponding chromosome, 

genomic location, annotated genes, male and female chromatin states from the Roadmaps Epigenomics Project, and genes annotated by GeneHancer. Positive effect 

size indicates higher DNA methylation in males compared to females. 
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Supplementary table 3.3- sex-DMRs. Differentially methylated regions between males and females in the meta-analysis Stouffer, HMFDR, and Fisher <0.005. 

Corresponding chromosome, genomic location, width of DMR, number of CpGs in DMR, statistics (Stouffer, Harmonic mean false discovery rate (HMFDR), and 

Fisher statistic), maximum and mean DMR effect sizes, and annotated genes. Positive effect size indicates higher DNA methylation in males compared to females. 
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Supplementary table 3.4- Overlapping genes. Genes which displayed sex-biased gene expression in GTEx and FUSION as well as sex-biased DNA methylation 

(according to DMRs) in the meta-analysis. Corresponding chromosome, ensemble gene ID, gene name, GTEx mash posterior effect size, GTEx local false sign rate 

threshold, FUSION mRNA fold change, FUSION mRNA FDR, and number of DMPs per gene. Positive effect sizes indicate higher DNA methylation or expression 

in males compared to females. 
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Supplementary table 3.5- GO (sex-DMPs). Gene Ontology terms identified with GSEA using the differentially methylated positions. Type of GO term- biological 

process (BP), molecular function (MF), and cellular component (CC), name of GO term, N represents the total number of genes in the GO term, DE represents the 

number of differentially methylated genes in the GO term, and SigGenesInSet are the differentially methylated genes in the GO term. 
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Supplementary table 3.6- GO (sex-DMRs). Gene Ontology terms identified with GSEA using the differentially methylated regions. Type of GO term- biological 

process (BP), molecular function (MF), and cellular component (CC), name of GO term, N represents the total number of genes in the GO term, DE represents the 

number of differentially methylated genes in the GO term, and SigGenesInSet are the differentially methylated genes in the GO term. 
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Supplementary table 3.7- KEGG (sex-DMPs). Kyoto Encyclopedia of Genes and Genomes pathways identified with GSEA using the differentially methylated 

positions. Description of KEGG pathway, N represents the total number of genes in the KEGG pathway, DE represents the number of differentially methylated 

genes in the KEGG pathway, and SigGenesInSet are the differentially methylated genes in the KEGG pathway. 
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Supplementary table 3.8- KEGG (sex-DMRs). Kyoto Encyclopedia of Genes and Genomes pathways identified with GSEA using the differentially methylated 

regions. Description of KEGG pathway, N represents the total number of genes in the KEGG pathway, DE represents the number of differentially methylated 

genes in the KEGG pathway, and SigGenesInSet are the differentially methylated genes in the KEGG pathway. 
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Supplementary table 3.9- Reactome (sex-DMPs). Reactome pathways identified with GSEA using the differentially methylated positions associated with sex. 

Description of Reactome pathway, N represents the total number of genes in the Reactome pathway, DE represents the number of differentially methylated genes 

in the Reactome pathway, and SigGenesInSet are the differentially methylated genes in the Reactome pathway. 
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Supplementary table 3.10- Reactome (sex-DMRs). Reactome pathways identified with GSEA using the differentially methylated regions. Description of Reactome 

pathway, N represents the total number of genes in the Reactome pathway, DE represents the number of differentially methylated genes in the Reactome pathway, 

and SigGenesInSet are the differentially methylated genes in the Reactome pathway. 
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Supplementary table 3.11- PCRs. Results from qPCR of GGT7, FOXO3, and ALDH1A1 in Gene SMART cohort. Blank cells indicate sample that had a standard 

deviation of greater than 1 Ct between triplicates. Housekeeping genes tested are Cyclophillin, 18s rRNA, and TBP. Primer sequences and PCR conditions used. 
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Supplementary table 3.12- Gene expression and DNA methylation differences between males and females for three genes across the cohorts used in the analysis. 

 
Gene expression effect size between 
males and females 

Mean effect size of DMR showing 
largest effect size (% DNA 
methylation difference between 
males and females)   

GTEx 
(MASH 
posterior 
effect 
size)  

FUSION 
(Fold 
change)  

Gene SMART (Fold 
change) 

GGT7 0.81 1.6 3.0 -20.4 

FOXO3 -0.04 -0.2 3.4 -1.9 

ALDH1A1 0.33 0.4 2.0 -10 
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Supplementary table 4.1- Data available for each of the datasets included in the DNA methylation meta-analysis. Immunohistochemistry (IHC); sex hormone-

binding globulin (SHBG), free testosterone (Free T), testosterone (T), estradiol (E2) 

 DNA 

methylation 

mRNA expression Fibre proportions Circulating 

hormones 

FUSION EPIC Transcriptomics 

(RNA-seq) 

Derived from RNA-

seq 

x 

Gene 

SMART 

EPIC 3 genes (qPCR) Derived from IHC SHBG, Free 

Testosterone, 

Testosterone, 

Estradiol 

GSE38291 27K x x x 
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Supplementary table 4.2- List of transcription factors (TFs) included in analysis for enrichment of transcription factor binding sites (TFBSs) among differentially 

methylated positions (DMPs). The current UniBind database tests a total of 268 unique TFs from 518 different cell types. 
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Supplementary table 4.3- List of differentially methylated positions (DMPs) associated with type I fibre content (FDR < 0.005) across the sex-DMPs. Corresponding 

chromosome, genomic location, annotated genes, and genes annotated by GeneHancer. Positive effect size indicates higher DNA methylation in type I fibres 

compared to type II fibres. 
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Supplementary table 4.4- List of differentially methylated positions (DMPs) associated with type I fibre content (FDR < 0.005) across all tested CpGs. 

Corresponding chromosome, genomic location, annotated genes, and genes annotated by GeneHancer. Positive effect size indicates higher DNA methylation in type 

I fibres compared to type II fibres. 
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Supplementary table 5.1- List of differentially methylated regions (DMRs) associated with training (time) with sex as a covariate (FDR < 0.05). Corresponding 

chromosome, genomic location, annotated genes, and genes annotated by GeneHancer. Positive effect size indicates higher DNA methylation in post four weeks of 

HIIT compared to pre. 
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Supplementary table 5.2- List of differentially methylated regions (DMRs) associated with cardiorespiratory fitness (CRF) with sex as a covariate (FDR < 0.005). 

Corresponding chromosome, genomic location, annotated genes, and genes annotated by GeneHancer. Positive effect size indicates higher DNA methylation with 

higher fitness z-score compared to lower. 
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Supplementary table 5.3- Reactome (CRF-DMRs). Reactome pathways identified with GSEA using the differentially methylated regions associated with 

cardiorespiratory fitness (CRF). Description of Reactome pathway, N represents the total number of genes in the Reactome pathway, DE represents the number of 

differentially methylated genes in the Reactome pathway, and SigGenesInSet are the differentially methylated genes in the Reactome pathway. 
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Supplementary table 5.4- GO (CRF-DMRs). Gene Ontology terms identified with GSEA using the differentially methylated regions associated with 

cardiorespiratory fitness (CRF). Type of GO term- biological process (BP), molecular function (MF), and cellular component (CC), name of GO term, N represents 

the total number of genes in the GO term, DE represents the number of differentially methylated genes in the GO term, and SigGenesInSet are the differentially 

methylated genes in the GO term. 
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