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SOME MULTIPLE INTEGRAL INEQUALITIES
VIA THE DIVERGENCE THEOREM

SILVESTRU SEVER DRAGOMIR

(Communicated by J. Pecari¢)

Abstract. In this paper, by the use of the divergence theorem, we establish some inequalities for
functions defined on closed and bounded subsets of the Euclidean space R", n > 2.

1. Introduction

Let dD be a simple, closed counterclockwise curve bounding a region D and f
defined on an open set containing D and having continuous partial derivatives on D. In
the recent paper [4], by the use of Green'’s identity, we have shown among others that
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where |[|-[| , , are the usual Lebesgue norms, we recall that

([ g (6 )|P dxdy) ', p > 1;
Igllp,p =
Sup(x,y)GD ‘g (xvy)| y P =1°°.

Applications for rectangles and disks were also provided in [4]. For some recent
double integral inequalities see [1], [2] and [3].

We also considered similar inequalities for 3 -dimensional bodies as follows, see
[5]. Let B be a solid in the three dimensional space R* bounded by an orientable
closed surface dB. If f: B — C is a continuously differentiable function defined on
a open set containing B, then by making use of the Gauss-Ostrogradsky identity, we
have obtained the following inequality

‘//Bf(n)%)dxdydz—% |://BB (x—a) f(x,y,2)dy Ndz
+//¢93(y_ﬁ)f(x’y’z)dZ/\dx+//aB(Z—Y)f(X,y,Z)dx/\dy]‘

%///B [|a—x|'_3f(g;m) +|ﬁ_y‘3f(;,yy,1) ‘91‘( ,Zy, 2)

=M (a.B.v:.f) (1.3)
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forall o, B, y complex numbers. Moreover, we have the bounds
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+Sup(xyz €B h/ Z| ) 0z Bl

Applications for 3-dimensional balls were also given in [5]. For some triple inte-
gral inequalities see [60] and [9].

Motivated by the above results, in this paper we establish several similar inequali-
ties for multiple integrals for functions defined on bonded subsets of R" (n > 2) with
smooth (or piecewise smooth) boundary dB. To achieve this goal we make use of the
well known divergence theorem for multiple integrals as summarized below.
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2. Some preliminary facts

Let B be a bounded open subset of R” (n > 2) with smooth (or piecewise smooth)
boundary dB. Let F = (Fj,...,F,) be a smooth vector field defined in R”, or at least
in BU dB. Let n be the unit outward-pointing normal of dB. Then the Divergence
Theorem states, see for instance [8]:

/dideV: F-ndA, @.1)
B JB

where 5
. " JF;
divF =V -F =
iv z an
dV is the element of volume in R” and dA is the element of surface area on dB.
If n= (ny,...,ny,), x = (x1,...,x,) € B and use the notation dx for dV we can
write (2.1) more explicitly as

JdF (x L
2/ d :%ABFk(x)nk(x)dA. (2.2)

8xk

By taking the real and imaginary part, we can extend the above equality for com-
plex valued functions Fy, k € {1,...,n} defined on B.

If n =2, the normal is obtained by rotating the tangent vector through 90° (in the
correct direction so that it points out). The quantity ¢tds can be written (dxi,dx,) along
the surface, so that

ndA := nds = (dxp,—dx;)

Here ¢ is the tangent vector along the boundary curve and ds is the element of
arc-length.
From (2.2) we get for B C R? that

JoF b (
/Md dx —|—/ deldxzz/a F (xl,xz)d)cz—/8 F (x1,x2)dxy,
B B B

8)61
(2.3)

which is Green’s theorem in plane.

If n =3 and if dB is described as a level-set of a function of 3 variables i.e.
9B = {x1,x2,x3 € R* | G(x1,x2,x3) = 0}, then a vector pointing in the direction of n
is gradG. We shall use the case where G (x1,x,x3) = x3 — g(x1,x2), (x1,x2) € D,
a domain in R? for some differentiable function ¢ on D and B corresponds to the
inequality x3 < g(x1,x2), namely

B = {(x1,x2,x3) € R? | x3 < g(x1,x2)}-

Then
(_g)q y —8x25 1)

1/2
(o) A (s ral) T
X1 X2

n—
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and
ndA = (— gy, —8&xy, 1) dxidx;.

From (2.2) we get

F F, F
/ 0 1(X1,x2’x3)+3 2 (x1,%2,x3) _|_8 3 (41,02, %3) dx1dxydxs
B 8)(;1 8)62 ax3

——/DF1 (x1,x2,8(x1,X2)) &xy (x17x2)dxldx2_/DFl (x1,%2,8(x1,X2)) 8x, (X1, X2)dx1dx2

+/DF3 (x1,x2,8(x1,x2)) dx1dxy (2.4)

which is the Gauss-Ostrogradsky theorem in space.

3. Identities of interest
We have the following identity of interest:

THEOREM 1. Let B be a bounded open subset of R" (n > 2) with smooth (or
piecewise smooth) boundary dB. Let f be a continuously differentiable function de-
fined in R", or at least in BU dB and with complex values. If oy, Br € C for
ke{l,..,n} with ¥}_, ox =1, then

N df (x) -
/Bf(x)dx—g,l/B(ﬁk—Othk) . dx+k§1/aB(O€kJCk—ﬂk)f(x)nk(x)dA- (3.1

We also have

[ ey = n“/ -0 Bt 25 [ e m s 62

n=

forall v € C, where ke {1,...,n}.

Proof. Let x = (x1,...,x,) € B. We consider

Fr (x) = (akxk_ﬁk)f(x)v ke {17"'7’1}
9§k(x)

and take the partial derivatives to get

dF (x)
8xk

= ockf(x) + ((kak _ﬁk) ag)f:)7 ke {1,...,}’1}.

If we sum this equality over £ from 1 to n we get

= Z i (oxk — Br) o) _ = i oyexi — Br) 8f(x)

8xk
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forall x = (xq,...,x,) € B.
Now, if we take the integral in the equality (3.3) over (xy,...,x,) € B we get

A(ZM )d = d”E/[“"xk_ﬁk M0

By the Divergence Theorem (2.2) we also have

/ (2 ag];k ) dx= Z/ag(akxk — Bi) f (x) ni (x) dA (3.5)

and by making use of (3.4) and (3.5) we get

/f dx+2/[0€kxk—ﬁk ofx } 2/ (ogx = Bre) f (x) i (x) dA

which gives the desired representation (3.1).
The identity (3.2) follows by (3.1) for o = L and B = Ly, ke {1,...n}.
For the body B we consider the coordinates for the centre of gravity

G (XB.1,--,XBn)
defined by
1
Xpr = —— [ xxdx, ke {l,...,n},
7= g s ke {Ln)

where
V(B):= / xdx
B

is the volume of B.

COROLLARY 1. With the assumptions of Theorem 1 we have

n 8 X n
/Bf(x)dx:];/Bak(m—xk) g)fk)dx—kkgi/algak(xk—m)f(x)nk(x)dA
(3.6)

and, in particular,

/Bf(x)dx— - / ka—xk f®) ”k 1/ xk—ka (x)ny (x) dA.
(3.7)

The proof follows by (3.1) on taking B = X, k€ {1,...,n}.
For a function f as in Theorem | above, we define the points
S5 Xk 9 gy

a.
XBofk = 7] Tk kE{l,...,n},
B dx;

provided that all denominators are not zero.
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COROLLARY 2. With the assumptions of Theorem 1 we have
n
[ r@ar=3 [ o(u—spop) £ () ()d (38)
k=1

and, in particular,

[rwar=1 kz | =m002) S (e ()4, (3.9)

The proof follows by (3.1) on taking By = ouxp grx, k € {1,...,n} and observing
that

]Z,I/B(ﬁk—akxk) g;;)dx:];ak/lg(x&af,k—xk) g)ffdx:o.

For a function f as in Theorem | above, we define the points

- JopXef () i (x) dA
S e f () m(x)dA

ke{l,..,n}
provided that all denominators are not zero.

COROLLARY 3. With the assumptions of Theorem 1 we have

_ N N\ 9f )
/Bf(x) dx = ;;/Bak (x937f7k xk) e dx (3.10)
and, in particular,
_ IS af (x)
/Bf(x) dx = Z};/B (xaB.’f,k —xk) o dx. (3.11)

The proof follows by (3.1) on taking B = o4xp sk, k € {1,...,n} and observing
that

kil /33 (ogxx — Bx) f (x) ng (x)dA = 0.

4. Some integral inequalities

We have the following result generalizing the inequalities from the introduction:

THEOREM 2. Let B be a bounded open subset of R" (n > 2) with smooth (or
piecewise smooth) boundary dB. Let f be a continuously differentiable function de-
fined in R", or at least in BU dB and with complex values. If oy, Br € C for
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ke{l,..,n} with ¥}_, ox =1, then

‘/Bf(x)dx—];l/%(akxk—ﬁk)f(x)nk(x)dA

S0y fy 1B — el | 212
) ] R 1/qHaf(x>
<Y [ 1B~ aux —af(x)‘dm Tt Ul = s ) ISl
=i/ Ixg where p, g > 1, %—I—i:l;
Zk lsupx€B|ﬂk_akxk‘H Bxk B.1
We also have
1 n
dx— = / — dA
‘/Bf(x) w2 3 [ e m s wm)
pY 1fB|7k_xk|dxH BXA
" _ qd 1/‘1’
<l2/|7k—xk‘ ZAVIF Sl it (g e dx Bp  (42)
n & Js O n | where p, g > 1, —+— I;
hy lsuprBh/k_xk‘H axk B1

forall y. € C, where k€ {1,...,n}.

Proof. By the identity (3.1) we have

'/Bf(x)dx—];AB(Oﬂkxk—ﬁk)f(x)”k(x)dA
af (x)
8xk d

/ (B — ogexy) 85 ) dx
B Xk

O Xk

<y
k=1
. af (x)

<I;I/B‘(ﬁk_akxk) o ‘dX,

which proves the first inequality in (4.1).
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By Holder’s integral inequality for multiple integrals we have

[

d )
SUDyc g)gk) I |Bi — onxi | dx Jp |Bx — oxi | dx a—)j; e
e qa g\1/4 ([5 1B — ogxe|? dx) /q’
< 3 (B Z2) 7 (B axet?an’e _ ) U |Bi—oun %15,
L1 . L1
wherep,q>l7;+a—l, Wherep,q>1,p+q—1,
_ 9/ | 4 B — af
sup e B — o | 42 ax sup,cs By 1
which proves the last part of (4.1).
COROLLARY 4. With the assumptions of Theorem 2 we have
1 n
dx—— / —XBx dA
Jy = 3 [ ) £ @)
Py lfB|ka_xk|dxH axk B
1/q
1 x 9 1 XBr—X qu H
—E/IW—M £ o 1) 2o Uo7 = D lsp 43
n=h n| where p, g>1, L +1 =1,
Py
hy 1SpreB|ka—xk}H o .
and
1 & af (x
/Bf(x)dx QZE/ }xQB,f;k_xk| &'dx
2k lfB }xaB f’k_xk|dxH BXA -
I DY |xaB f7k—xk}qu)l/qHaf
<- (4.4)
n wherep,q>1,; =1;
2i—1SUPycp }XQB ok —xk|H M ‘B7I~

We also have the dual result:
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THEOREM 3. With the assumption of Theorem 2 we have

< af (x)
‘/Bf(x)dx_kz,l/lg(ﬁk_akxk) o dx

£ 95 00 Xke1 Jom 0%k — Brl [ (x)| dA;

17125, 1 (Sl ok — Bl i (x)|7dA) /9

< oy Xy — ny (x x)|dA <
3 [ lews= Bl Il (olaa < § G oo fon SR

1711581 Zi=1 5uPxea |l owxi — Bl lnx ()11
(4.5)

where

(fog|f (0)[7dA) | p =1,
11135, =

SUupyeop|f (¥), p =

In particular,

d

J(x)
o dx

‘/Bmdx—%kil/lgm—xk)

17158 00 Xim1 Jop 1% — il [ i (x) | A

1
1F lom.p Sy (o 1% — 26l e (x) |4 dA) 4
where p, g > 1, 11—7—1-%:1;

S| -

1 n
<- - dA <
D MESSAARIG

Hf”aB,l Y=15UPeqp [ Ve — x| [ (x)]].
(4.6)

Proof. From the identity (3.1) we have

N af (x)
‘/Bf(x)dX—kzl/B(ﬁk—akxk) ot dx
= kil/%(am = Be) f (x) ni (x) dA| < kgl /33(akxk —Br) f (x) ng (x) dA

< kzl [ Vo —Bo) £ (x)me ()] .

which proves the first inequality in (4.5).
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By Holder’s inequality for functions defined on dB we have

Jonlowxi — Bel Ini (x)|dA || 1 g o5

(fo lowxk — Bel? Ine (x)|7dA) "4 | 1l 55,

oy Xy — dA <
| e = Bel e ()17 (<) where prg > 1, 11— 1

sup,eop |lowxe — Bel Ine ()1 fll 5.1 5

which proves the second part of the inequality (4.5).
We also have:

COROLLARY 5. With the assumptions of Theorem 2 we have
1 & [ e af (x)
x)dx — — / XBr—X dx
/Bf( ) nkg‘l B( Bk~ %) dxi

G 3 [ Il @)

£ 95 e Xk=1Jon X% — x| [ (x) | dA;

S 1/
”f“&B,p zZ:l (faB |xB7k _xk’q |nk (x)|qu) 1 4.7
where p, g > 1, 1%+$: 1;

N
S =

111951 Zizr SuPcean [ [ ok — x| I (x)]]

and

1 n
Jyr x| <5 3 [ benars =l @117 ]

£ 110800 Zh=1 S8 [XB.0 7 4 — Xk | I ()] dA;

1/
||f||aB,p ZZ=1 (faB |x379f7k _xk|q |k (x)|qu) ! (4.8)
where p, g > 1, I%—i—é: 1;

N
S =

||f||aB,1 Yh=1SUPyeon [|XB,8f,k _xk} i (x)|] .

If we take n =2 in Theorem 3, then we get other results from [4], while for n =3
we recapture some results from [5].
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