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Abstract: Let f be an operator monotonic function on I and A, B ∈ SAI (H) , the class of all selfadjoint op-
erators with spectra in I. Assume that p : [0, 1] → R is non-decreasing on [0, 1]. In this paper we obtained,
among others, that for A ≤ B and f an operator monotonic function on I,

0 ≤
1∫

0

p (t) f ((1 − t)A + tB) dt −
1∫

0

p (t) dt
1∫

0

f ((1 − t)A + tB) dt

≤ 14 [p (1) − p (0)] [f (B) − f (A)]

in the operator order.
Several other similar inequalities for either p or f is di�erentiable, are also provided. Applications for power
function and logarithm are given as well.

Keywords: Operator monotonic functions, Integral inequalities, Čebyšev inequality, Grüss inequality, Os-
trowski inequality

MSC: 47A63, 26D15, 26D10.

1 Introduction
Consider a complexHilbert space (H, 〈·, ·〉). Anoperator T is said to bepositive (denotedby T ≥ 0) if 〈Tx, x〉 ≥ 0
for all x ∈ H and also an operator T is said to be strictly positive (denoted by T > 0) if T is positive and
invertible. A real valued continuous function f (t) on (0,∞) is said to be operator monotone if f (A) ≥ f (B)
holds for any A ≥ B > 0.

In 1934, K. Löwner [7] had given a de�nitive characterization of operator monotone functions as follows:

Theorem 1. A function f : (0,∞)→ R is operator monotone in (0,∞) if and only if it has the representation

f (t) = a + bt +
∞∫
0

t
t + s dm (s)

where a ∈ R and b ≥ 0 and a positive measure m on (0,∞) such that
∞∫
0

dm (s)
t + s < ∞.
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We recall the important fact proved by Löwner and Heinz that states that the power function f : (0,∞)→ R,
f (t) = tα is an operator monotone function for any α ∈ [0, 1] .

In [3], T. Furuta observed that for αj ∈ [0, 1] , j = 1, ..., n the functions

g (t) :=

 n∑
j=1

t−αj

−1 and h (t) =
n∑
j=1

(
1 + t−1

)−αj

are operator monotone in (0,∞).
Let f (t) be a continuous function (0,∞)→ (0,∞). It is known that f (t) is operator monotone if and only

if g(t) = t/f (t) =: f *(t) is also operator monotone, see for instance [3] or [8].
Consider the family of functions de�ned on (0,∞) and p ∈ [−1, 2] \ {0, 1} by

fp (t) :=
p − 1
p

(
tp − 1
tp−1 − 1

)
and

f0 (t) :=
t

1 − t ln t,

f1 (t) :=
t − 1
ln t (logarithmic mean).

We also have the functions of interest

f−1 (t) =
2t
1 + t (harmonic mean), f1/2 (t) =

√
t (geometric mean).

In [2] the authors showed that fp is operator monotone for 1 ≤ p ≤ 2.
In the same category, we observe that the function

gp (t) :=
t − 1
tp − 1

is an operator monotone function for p ∈ (0, 1], [3].
It is well known that the logarithmic function ln is operator monotone and in [3] the author obtained that

the functions
f (t) = t (1 + t) ln

(
1 + 1

t

)
, g (t) = 1

(1 + t) ln
(
1 + 1

t
)

are also operator monotone functions on (0,∞) .
Let f be an operator monotonic function on an interval of real numbers I and A, B ∈ SAI (H) , the class

of all selfadjoint operators with spectra in I. Assume that p : [0, 1] → R is non-decreasing on [0, 1]. In this
paper we obtain, among others, that for A ≤ B and f an operator monotonic function on I,

0 ≤
1∫

0

p (t) f ((1 − t)A + tB) dt −
1∫

0

p (t) dt
1∫

0

f ((1 − t)A + tB) dt

≤ 14 [p (1) − p (0)] [f (B) − f (A)]

in the operator order.
Several other similar inequalities for either p or f is di�erentiable, are also provided. Applications for

power function and logarithm are given as well.

2 Main Results
For two Lebesgue integrable functions h, g : [a, b]→ R, consider the Čebyšev functional:

C (h, g) := 1
b − a

b∫
a

h(t)g(t)dt − 1
b − a

b∫
a

h(t)dt 1
b − a

b∫
a

g(t)dt. (2.1)
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It is well known that, if h and g have the same monotonicity on [a, b] , then

1
b − a

b∫
a

h(t)g(t)dt ≥ 1
b − a

b∫
a

h(t)dt 1
b − a

b∫
a

g(t)dt, (2.2)

which is known in the literature as Čebyšev’s inequality.
In 1935, Grüss [4] showed that

|C (h, g)| ≤ 14 (M − m) (N − n) , (2.3)

provided that there exists the real numbers m, M, n, N such that

m ≤ h (t) ≤ M and n ≤ g (t) ≤ N for a.e. t ∈ [a, b] . (2.4)

The constant 1
4 is best possible in (2.1) in the sense that it cannot be replaced by a smaller quantity.

Let f be a continuous function on I. If (A, B) ∈ SAI (H) , the class of all selfadjoint operators with spectra
in I and t ∈ [0, 1] , then the convex combination (1 − t)A + tB is a selfadjoint operator with the spectrum in I
showing that SAI (H) is a convex set in the Banach algebraB (H) of all bounded linear operators on H. By the
continuous functional calculus of selfadjoint operator we also conclude that f ((1 − t)A + tB) is a selfadjoint
operator inB (H) .

For A, B ∈ SAI (H) , we consider the auxiliary function ϕ(A,B) : [0, 1]→ B (H) de�ned by

ϕ(A,B) (t) := f ((1 − t)A + tB) . (2.5)

For x ∈ H we can also consider the auxiliary function ϕ(A,B);x : [0, 1]→ R de�ned by

ϕ(A,B);x (t) :=
〈
ϕ(A,B) (t) x, x

〉
= 〈f ((1 − t)A + tB) x, x〉 . (2.6)

Theorem 2. Let A, B ∈ SAI (H) with A ≤ B and f an operator monotonic function on I. If p : [0, 1] → R is
monotonic nondecreasing on [0, 1] , then

0 ≤
1∫

0

p (t) f ((1 − t)A + tB) dt −
1∫

0

p (t) dt
1∫

0

f ((1 − t)A + tB) dt (2.7)

≤ 14 [p (1) − p (0)] [f (B) − f (A)] .

If p : [0, 1]→ R is monotonic nonincreasing on [0, 1] , then

0 ≤
1∫

0

p (t) dt
1∫

0

f ((1 − t)A + tB) dt −
1∫

0

p (t) f ((1 − t)A + tB) dt (2.8)

≤ 14 [p (0) − p (1)] [f (B) − f (A)] .

Proof. Let 0 ≤ t1 < t2 ≤ 1 and A ≤ B. Then

(1 − t2)A + t2B − (1 − t1)A − t1B = (t2 − t1) (B − A) ≥ 0

and by operator monotonicity of f we get

f ((1 − t2)A + t2B) ≥ f ((1 − t1)A + t1B) ,

which is equivalent to

ϕ(A,B);x (t2) = 〈f ((1 − t2)A + t2B) x, x〉
≥ 〈f ((1 − t1)A + t1B) x, x〉 = ϕ(A,B);x (t1)
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that shows that the scalar function ϕ(A,B);x : [0, 1] → R is monotonic nondecreasing for A ≤ B and for any
x ∈ H.

If we write the inequality (2.2) for the functions p and ϕ(A,B);x we get

1∫
0

p (t) 〈f ((1 − t)A + tB) x, x〉 dt ≥
1∫

0

p (t) dt
1∫

0

〈f ((1 − t)A + tB) x, x〉 dt,

which can be written as〈 1∫
0

p (t) f ((1 − t)A + tB) dt

 x, x
〉
≥
〈 1∫

0

p (t) dt
1∫

0

f ((1 − t)A + tB)

 dtx, x
〉

for x ∈ H, and the �rst inequality in (2.7) is obtained.
We also have that

〈f (A) x, x〉 = ϕ(A,B);x (0) ≤ ϕ(A,B);x (t) = 〈f ((1 − t)A + tB) x, x〉
≤ ϕ(A,B);x (1) = 〈f (B) x, x〉

and
p (0) ≤ p (t) ≤ p (1)

for all t ∈ [0, 1] .
By writing Grüss’ inequality for the functions ϕ(A,B);x and p, we get

0 ≤
1∫

0

p (t) 〈f ((1 − t)A + tB) x, x〉 dt −
1∫

0

p (t) dt
1∫

0

〈f ((1 − t)A + tB) x, x〉 dt

≤ 14 [p (1) − p (0)] [〈f (B) x, x〉 − 〈f (A) x, x〉]

for x ∈ H and the second inequality in (2.7) is obtained.

A continuous function g : SAI (H) → B (H) is said to be Gâteaux di�erentiable in A ∈ SAI (H) along the
direction B ∈ B (H) if the following limit exists in the strong topology ofB (H)

∇gA (B) := lim
s→0

g (A + sB) − g (A)
s ∈ B (H) . (2.9)

If the limit (2.9) exists for all B ∈ B (H) , then we say that g is Gâteaux di�erentiable in A and we can write
g ∈ G (A) . If this is true for any A in an open set S from SAI (H) we write that g ∈ G (S) .

If g is a continuous function on I, by utilising the continuous functional calculus the corresponding
function of operators will be denoted in the same way.

For two distinct operators A, B ∈ SAI (H) we consider the segment of selfadjoint operators

[A, B] := {(1 − t)A + tB | t ∈ [0, 1]} .

We observe that A, B ∈ [A, B] and [A, B] ⊂ SAI (H) .

Lemma 1. Let f be a continuous function on I and A, B ∈ SAI (H) , with A ≠ B. If f ∈ G ([A, B]) , then the
auxiliary function ϕ(A,B) is di�erentiable on (0, 1) and

ϕ′
(A,B) (t) = ∇f(1−t)A+tB (B − A) . (2.10)

In particular,
ϕ′
(A,B) (0+) = ∇fA (B − A) (2.11)

and
ϕ′
(A,B) (1−) = ∇fB (B − A) . (2.12)
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Proof. Let t ∈ (0, 1) and h ≠ 0 small enough such that t + h ∈ (0, 1). Then

ϕ(A,B) (t + h) − ϕ(A,B) (t)
h = f ((1 − t − h)A + (t + h) B) − f ((1 − t)A + tB)

h (2.13)

= f ((1 − t)A + tB + h (B − A)) − f ((1 − t)A + tB)
h .

Since f ∈ G ([A, B]) , hence by taking the limit over h → 0 in (2.13) we get

ϕ′
(A,B) (t) = lim

h→0

ϕ(A,B) (t + h) − ϕ(A,B) (t)
h

= lim
h→0

f ((1 − t)A + tB + h (B − A)) − f ((1 − t)A + tB)
h

= ∇f(1−t)A+tB (B − A) ,

which proves (2.10).
Also, we have

ϕ′
(A,B) (0+) = lim

h→0+

ϕ(A,B) (h) − ϕ(A,B) (0)
h

= lim
h→0+

f ((1 − h)A + hB) − f (A)
h

= lim
h→0+

f (A + h (B − A)) − f (A)
h

= ∇fA (B − A)

since f is assumed to be Gâteaux di�erentiable in A. This proves (2.11).
The equality (2.12) follows in a similar way.

Lemma 2. Let f be an operator monotonic function on I and A, B ∈ SAI (H) , with A ≤ B, A ≠ B. If f ∈
G ([A, B]) , then

∇f(1−t)A+tB (B − A) ≥ 0 for all t ∈ (0, 1) . (2.14)

Also
∇fA (B − A) , ∇fB (B − A) ≥ 0. (2.15)

Proof. Let x ∈ H. The auxiliary function ϕ(A,B);x is monotonic nondecreasing in the usual sense on [0, 1] and
di�erentiable on (0, 1) , and for t ∈ (0, 1)

0 ≤ ϕ′
(A,B);x (t) = lim

h→0

ϕ(A,B),x (t + h) − ϕ(A,B),x (t)
h

= lim
h→0

〈
ϕ(A,B) (t + h) − ϕ(A,B) (t)

h x, x
〉

=
〈
lim
h→0

ϕ(A,B) (t + h) − ϕ(A,B) (t)
h x, x

〉
=
〈
∇f(1−t)A+tB (B − A) x, x

〉
.

This shows that
∇f(1−t)A+tB (B − A) ≥ 0

for all t ∈ (0, 1) .
The inequalities (2.15) follow by (2.11) and (2.12).

The following inequality obtained by Ostrowski in 1970, [9] also holds

|C (h, g)| ≤ 18 (b − a) (M − m)
∥∥g′∥∥∞ , (2.16)

provided that h is Lebesgue integrable and satis�es (2.4) while g is absolutely continuous and g′ ∈ L∞ [a, b] .
The constant 1

8 is best possible in (2.16).
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Theorem 3. Let A, B ∈ SAI (H) with A ≤ B, f be an operator monotonic function on I and p : [0, 1] → R
monotonic nondecreasing on [0, 1] .

(i) If p is di�erentiable on (0, 1) , then

0 ≤
1∫

0

p (t) f ((1 − t)A + tB) dt −
1∫

0

p (t) dt
1∫

0

f ((1 − t)A + tB) dt (2.17)

≤ 18 sup
t∈(0,1)

p′ (t) [f (B) − f (A)] .

(ii) If f ∈ G ([A, B]) , then

0 ≤
1∫

0

p (t) f ((1 − t)A + tB) dt −
1∫

0

p (t) dt
1∫

0

f ((1 − t)A + tB) dt (2.18)

≤ 18 [p (1) − p (0)] sup
t∈(0,1)

∥∥∇f(1−t)A+tB (B − A)∥∥1H .
Proof. Let x ∈ H. If we use the inequality (2.16) for g = p and h = ϕ(A,B);x , then

0 ≤
1∫

0

p (t) 〈f ((1 − t)A + tB) x, x〉 dt −
1∫

0

p (t) dt
1∫

0

〈f ((1 − t)A + tB) x, x〉 dt

≤ 18 sup
t∈(0,1)

p′ (t) [〈f (B) x, x〉 − 〈f (A) x, x〉] ,

for any x ∈ H, which is equivalent to (2.17).
If we use the inequality (2.16) for h = p and g = ϕ(A,B);x then by Lemmas 1 and 2

0 ≤
1∫

0

p (t) 〈f ((1 − t)A + tB) x, x〉 dt −
1∫

0

p (t) dt
1∫

0

〈f ((1 − t)A + tB) x, x〉 dt (2.19)

≤ 18 [p (1) − p (0)] sup
t∈(0,1)

〈
∇f(1−t)A+tB (B − A) x, x

〉
,

for any x ∈ H, which is an inequality of interest in itself.
Observe that for all t ∈ (0, 1) ,〈

∇f(1−t)A+tB (B − A) x, x
〉
≤
∥∥∇f(1−t)A+tB (B − A)∥∥ ‖x‖2

for any x ∈ H, which implies that

sup
t∈(0,1)

〈
∇f(1−t)A+tB (B − A) x, x

〉
≤ sup
t∈(0,1)

∥∥∇f(1−t)A+tB (B − A)∥∥ 〈1Hx, x〉 (2.20)

for any x ∈ H.
By making use of (2.19) and (2.20) we derive

0 ≤
1∫

0

p (t) 〈f ((1 − t)A + tB) x, x〉 dt −
1∫

0

p (t) dt
1∫

0

〈f ((1 − t)A + tB) x, x〉 dt

≤ 18 [p (1) − p (0)] sup
t∈(0,1)

∥∥∇f(1−t)A+tB (B − A)∥∥ 〈1Hx, x〉
for any x ∈ H, which is equivalent to (2.18).



178 | Silvestru Sever Dragomir

Another, however less known result, even though it was obtained by Čebyšev in 1882, [1], states that

|C (h, g)| ≤ 1
12
∥∥h′∥∥∞ ∥∥g′∥∥∞ (b − a)2 , (2.21)

provided that h′, g′ exist and are continuous on [a, b] and
∥∥h′∥∥∞ = supt∈[a,b]

∣∣h′ (t)∣∣ . The constant 1
12 cannot

be improved in the general case.
The case of euclidean norms of the derivative was considered by A. Lupaş in [5] in which he proved that

|C (h, g)| ≤ 1
π2
∥∥h′∥∥2 ∥∥g′∥∥2 (b − a) , (2.22)

provided that h, g are absolutely continuous and h′, g′ ∈ L2 [a, b] . The constant 1
π2 is the best possible.

Using the above inequalities (2.21) and (2.22) and a similar procedure to the one employed in the proof of
Theorem 3, we can also state the following result:

Theorem 4. Let A, B ∈ SAI (H) with A ≤ B, f be an operator monotonic function on I and p : [0, 1] → R
monotonic nondecreasing on [0, 1] . If p is di�erentiable and f ∈ G ([A, B]) , then

0 ≤
1∫

0

p (t) f ((1 − t)A + tB) dt −
1∫

0

p (t) dt
1∫

0

f ((1 − t)A + tB) dt (2.23)

≤ 1
12 sup

t∈(0,1)
p′ (t) sup

t∈(0,1)

∥∥∇f(1−t)A+tB (B − A)∥∥1H
and

0 ≤
1∫

0

p (t) f ((1 − t)A + tB) dt −
1∫

0

p (t) dt
1∫

0

f ((1 − t)A + tB) dt (2.24)

≤ 1
π2

 1∫
0

[
p′ (t)

]2 dt
1/2 1∫

0

∥∥∇f(1−t)A+tB (B − A)∥∥2 dt
1/2

1H ,

provided the integrals in the second term are �nite.

3 Some Examples
We consider the function f : (0,∞)→ R, f (t) = −t−1 which is operator monotone on (0,∞) .

If 0 < A ≤ B and p : [0, 1]→ R is monotonic nondecreasing on [0, 1] , then by (2.7)

0 ≤
1∫

0

p (t) dt
1∫

0

((1 − t)A + tB)−1 dt −
1∫

0

p (t) ((1 − t)A + tB)−1 dt (3.1)

≤ 14 [p (1) − p (0)]
(
A−1 − B−1

)
.

Moreover, if p is di�erentiable on (0, 1) , then by (2.17) we obtain

0 ≤
1∫

0

p (t) dt
1∫

0

((1 − t)A + tB)−1 dt −
1∫

0

p (t) ((1 − t)A + tB)−1 dt (3.2)

≤ 18 sup
t∈(0,1)

p′ (t)
(
A−1 − B−1

)
.

The function f (t) = −t−1 is operator monotonic on (0,∞), operator Gâteaux di�erentiable and

∇fT (S) = T−1ST−1
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for T, S > 0.
If p : [0, 1]→ R is monotonic nondecreasing on [0, 1] , then by (2.18) we get

0 ≤
1∫

0

p (t) dt
1∫

0

((1 − t)A + tB)−1 dt −
1∫

0

p (t) ((1 − t)A + tB)−1 dt (3.3)

≤ 18 [p (1) − p (0)] sup
t∈(0,1)

∥∥∥((1 − t)A + tB)−1 (B − A) ((1 − t)A + tB)−1
∥∥∥1H

for 0 < A ≤ B.
If p is monotonic nondecreasing and di�erentiable on (0, 1) , then by (2.23) and (2.24) we get

0 ≤
1∫

0

p (t) dt
1∫

0

((1 − t)A + tB)−1 dt −
1∫

0

p (t) ((1 − t)A + tB)−1 dt (3.4)

≤ 1
12 sup

t∈(0,1)
p′ (t) sup

t∈(0,1)

∥∥∥((1 − t)A + tB)−1 (B − A) ((1 − t)A + tB)−1
∥∥∥1H

and

0 ≤
1∫

0

p (t) dt
1∫

0

((1 − t)A + tB)−1 dt −
1∫

0

p (t) ((1 − t)A + tB)−1 dt (3.5)

≤ 1
π2

 1∫
0

[
p′ (t)

]2 dt
1/2 1∫

0

∥∥∥((1 − t)A + tB)−1 (B − A) ((1 − t)A + tB)−1
∥∥∥2 dt

1/2

1H ,

for 0 < A ≤ B.
We note that the function f (t) = ln t is operator monotonic on (0,∞) .
If 0 < A ≤ B and p : [0, 1]→ R is monotonic nondecreasing on [0, 1] , then by (2.7) we have

0 ≤
1∫

0

p (t) ln ((1 − t)A + tB) dt −
1∫

0

p (t) dt
1∫

0

ln ((1 − t)A + tB) dt (3.6)

≤ 14 [p (1) − p (0)] (ln B − lnA) .

Moreover, if p is di�erentiable on (0, 1) , then by (2.17) we obtain

0 ≤
1∫

0

p (t) ln ((1 − t)A + tB) dt −
1∫

0

p (t) dt
1∫

0

ln ((1 − t)A + tB) dt (3.7)

≤ 18 sup
t∈(0,1)

p′ (t) (ln B − lnA) .

The ln function is operator Gâteaux di�erentiable with the following explicit formula for the derivative
(cf. Pedersen [10, p. 155]):

∇ lnT (S) =
∞∫
0

(s1H + T)−1 S (s1H + T)−1 ds (3.8)

for T, S > 0.
If p : [0, 1]→ R is monotonic nondecreasing on [0, 1] , then by (2.18) we get

0 ≤
1∫

0

p (t) ln ((1 − t)A + tB) dt −
1∫

0

p (t) dt
1∫

0

ln ((1 − t)A + tB) dt (3.9)

≤ 18 [p (1) − p (0)] sup
t∈(0,1)

∥∥∥∥∥∥
∞∫
0

(s1H + (1 − t)A + tB)−1 (B − A) (s1H + (1 − t)A + tB)−1 ds

∥∥∥∥∥∥1H
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and if p is di�erentiable on (0, 1) , then

0 ≤
1∫

0

p (t) ln ((1 − t)A + tB) dt −
1∫

0

p (t) dt
1∫

0

ln ((1 − t)A + tB) dt (3.10)

≤ 1
12 sup

t∈(0,1)
p′ (t) sup

t∈(0,1)

∥∥∥∥∥∥
∞∫
0

(s1H + (1 − t)A + tB)−1 (B − A) (s1H + (1 − t)A + tB)−1 ds

∥∥∥∥∥∥1H
for 0 < A ≤ B.
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