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Activity selection is critical for the smart environment and Cyber-Physical Systems (CPSs) that can provide timely and intelligent
services, especially as the number of connected devices is increasing at an unprecedented speed. As it is important to collect labels
by various agents in the CPSs, crowdsourcing inference algorithms are designed to help acquire accurate labels that involve high-
level knowledge. However, there are some limitations in the algorithm in the existing literature such as incurring extra budget for
the existing algorithms, inability to scale appropriately, requiring the knowledge of prior distribution, difficulties to implement
these algorithms, or generating local optima. In this paper, we provide a crowdsourcing inference method with variational
tempering that obtains ground truth as well as considers both the reliability of workers and the difficulty level of the tasks and
ensure a local optimum. The numerical experiments of the real-world data indicate that our novel variational tempering
inference algorithm performs better than the existing advancing algorithms. Therefore, this paper provides a new efficient

algorithm in CPSs and machine learning, and thus, it makes a new contribution to the literature.

1. Introduction

L.1. Research Background. Crowdsourcing refers to the prac-
tice whereby a company or organization outsources the tasks
that used to be performed by employees to the crowds of
nonspecific Internet agents. The wide use of the Internet
enables crowdsourcing to make use of the wisdom of crowds
as a cheap, fast, and convenient method. Therefore, crowd-
sourcing is much more powerful than traditional methods,
especially in the fields of computer vision, natural language
processing, environmental protection [1, 2], etc.

In recent years, the development of embedded comput-
ing and wireless communications has enabled the CPSs to
become an important research and industrial field. A CPS
is often designed as a cooperative network, consisting of sen-
sors, actuators, and controllers [3-6]. In many applications,
such as object identification, traffic management, and smart

health, CPSs need to extract information and process data
in a large scale, a task that is difficult or unable to accomplish
at one single device [7, 8]. Therefore, crowdsourcing is
important for CPSs to combat the above limitations [9-11].

However, existing CPS crowdsourcing also has disadvan-
tages: for instance, (1) sometimes, agents can be unreliable,
or there may be attackers or spammers who aim to corrupt
the system; therefore, it is intuitive to assign the same tasks
to multiple workers; (2) the difficulty levels of the tasks can
vary a lot that if the workers are not properly rewarded, they
may choose only the easy tasks, thus degrading the system;
(3) it is also critical to allocate tasks to the right kind of
workers in order to improve the efficiency and quality of the
answers. However, when there is no longer a need to improve
the quality of the collected data, we need to improve the com-
puting algorithm to better extract the useful information from
the data. Therefore, it is very important to implement
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inference algorithms to extract information from the data and
deal with the above three disadvantages, the procedure of
which is called crowdsourcing inference problem.

1.2. Related Work. In many fields, such as human pose esti-
mation and smart medical, crowdsourcing inference has
become a useful and cost-effective method to denote a
large quantity of data. The existing crowdsourcing infer-
ence algorithms can be classified into four categories,
including the weighted majority voting (WMV) method,
the statistical method, new kind of inference tools, and
variational method.

The first way to obtain ground truth is by majority voting
(MV) or WMV, assigning different workers’ different weight
according to their expertise or reliability [12-15]. The limita-
tion of MV is that it regards all workers to be equally and eas-
ily subject to attacks. In contrast to MV, WMYV is intuitively
more efficient, and all other inference algorithms can be
treated as a kind of WMV, so it is meaningless to discuss
the limitations of WMV since the situation varies accord-
ingly. In general, the weight of workers should be assigned
according to their reliability; therefore, some researchers
use qualification test or hidden test to determine the weight
of workers [16]. However, this approach is highly dependent
on a rich budget and the cooperation of workers.

Another way is to use a statistical method, for example,
maximum likelihood estimation (MLE) and expectation
maximization (EM). Expectation maximization (EM) is a
well-established way to compute the hyperparameters and
ground truth in the process of implementing MLE. EM first
makes some initial guess on the hyperparameters, then com-
putes expectations under these hyperparameters, and repeats
this process until convergence is reached. This process can be
treated as an iterative decoding process, so EM is convenient
and easy to understand [16-18]. However, EM may result in
local optima and is challenging to scale.

Therefore, some researchers turn to a new kind of infer-
ence tools, including the widely used back-propagation
(BP) and mean filed method (MF) [19]. These algorithms
can be effective, as well as can guarantee local optimality
and sometimes can guarantee global optimality. However,
standard BP requires the knowledge of prior distribution,
and in reality, it is difficult to implement due to the process
of passing messages in the form of sufficient statistics. MF
is the approximation approach that maximizes energy func-
tional over the approximate distribution, which is easy to
compute. However, MF may lose valuable information and
fail to capture the dependency property of posterior
distribution.

An efficient way to avoid the above disadvantages is
to use variational method. For example, Liu et al’s [20]
variational inference algorithm (VMP) performs extremely
well with good worker distribution prior. In tasks of
crowdsourcing inference, Hoffman et al. [21] have formu-
lated it into a stochastic variational inference problem.
Liu et al. [22] also formulated the crowdsourcing infer-
ence problem into a variational inference model. Cai
et al. [23] proposed a crowdsourcing prediction algorithm
using variation inference. In summary, variational infer-
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ence (VI) translates inference problem into an optimiza-
tion problem with multiple local optimum. However,
using the tempering technique, we can curb this to some
extent. Intuitively, VI objective uses high-entropy varia-
tional distribution to replace data-proper variational dis-
tribution. By tempering, we can punish low-entropy
distributions and loose this restraint gradually to reach
distributions that fit the data.

1.3. Motivation. In view of the problems of the existing liter-
ature in this area of CPS crowdsourcing inference algorithms
discussed above, the main objectives of this paper are to
model the CPS crowdsourcing inference problem into a mes-
sage passing algorithm, i.e., our novel variational tempering
inference algorithm (VTI), and to study the performance
error bound of this algorithm.

As a popular sampling as well as computing method,
Markov Chain Monte Carlo (MCMC) has proved its effi-
ciency in the field of CPSs and big data, due to its ability
to deal with large amount of data, and simplifies the gra-
dient computation [24]. Variational tempering (VT) is an
extension of MCMC. Therefore, in VTI, we introduce
global temperature. We then implement the traditional
VI method to compute the gradient of it in each iteration
and further update it in the next iteration, until the algo-
rithm reaches convergence, which is also similar to the
way that we treat tasks’ answers as a distribution as well
as worker reliability.

After researching into the existing works, we borrow the
idea of VT and solve the problem of crowdsourcing inference
by considering worker reliability and task difficulty. There
are few papers in the literature considering task difficulty
level. The reason we are considering task difficulty level in
this paper is that we can assign tasks in a more efficient
way [25], infer the ground truth more accurately [26, 27],
and reward workers by means of incentives [28] etc. There-
fore, the main objective of this paper is to obtain task ground
truth by making the best use of worker reliability and task
difficulty. The specific tasks we will perform in this paper
are the following: (1) Model the crowdsourcing inference
problem into a message passing algorithm. (2) Study the per-
formance error bound of our novel variational tempering
inference algorithm (VTI). (3) Use real data to simulate the
probability error of VTIL

1.4. Contributions. The main contribution of this paper is a
new algorithm to CPS crowdsourcing inference. Based on
variational analysis and the property of exponential family,
a kind of probabilistic graphical model, we try to solve
crowdsourcing inference problem in CPSs. First, we infer
the ground truth by considering worker reliability. Being dif-
ferent from previous works, we then hypothesize that tasks
have different difficulty levels and use this as a parameter to
eliminate the same worker constraint.

Therefore, the contributions of the paper are listed as
follows:

(1) Formulate the CPS crowdsourcing inference problem
into a message passing algorithm
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(2) Study the performance error bound of the proposed
variational tempering inference algorithm (VTI)

(3) Use real data to simulate the probability error of VTI.
In general cases, VTI performs better than other
algorithms

In this paper, we first review CPS crowdsourcing infer-
ence and variational tempering in Section 1. We then
define the background assumptions of the inference model
in Section 2. Thereafter, we derive our algorithm stepwise
and show the procedure of how we obtain the results in
Sections 3 and 4. We show the results of our algorithm
in comparison with others in Section 5. Our VTI algo-
rithm requires less constraint on worker prior and task
difficulty level and performs better than the existing infer-
ence algorithms. In the end, Section 6 presents the conclu-
sion of this study.

2. Preliminaries

In this part, we describe the mathematical notations of
VTIL Assuming in the crowdsourcing network, there are
M workers and N tasks. Suppose that each task has the
value of {+1}, and we use z; to denote the true label
of it, ie, z;€{*1}. We then denote ./, as worker s
neighbor set, i.e., the indexes of tasks that worker j takes.
Likewise, .#; task is neighbor set, ie. the indexes of
workers that task i is assigned to. Le {041} is the
label matrix, and L;; € {1} is worker j's answer or label
to task i, and L;=0 means there is no link between
worker j and task i. The goal of our VTI is to get the
ground truth and difficulty level of task i as well as the
reliability of worker j.

We use q; = prob[L;; =z;],i € //; to denote the reliability
of worker j and d; = prob[L;; = z,], j € M to denote the diffi-
culty level of task i. Note that g and d are two separate factors,
so the calculation of q does not involve d, and the calculation
of d does not involve g. However, they both influence the label
of each task. In addition, when g; = 1, worker j produces 100%

right answers. g; = 1/2 can be tricky since the worker may be a

spammer or just submits random answers that contain no use-
ful information. However, if g; < 1/2, the worker’s answers can
be made use of by just reverting its answer matrix. Further, we
assume each worker is independent, and its reliability is drawn
from the same distribution with hyperparameter 0,. We
assume different tasks are also independent, drawn from the
distribution with hyperparameter 0,.

It is reasonable to study cases when there are fewer spam-
mers and attackers in the system; therefore, we assume E[g ;

|6,] > 1/2. We use beta prior for worker reliability p(q; | 6,)

o q?l_l(l - qj)ﬁf1 [29].

In Liu et al’s work [22], the authors treat the crowd-
sourcing issue as a graphical inference problem, of which
they first use Bayesian theory to reduce the objective func-
tion and then use variational inference to compute

p(=4d1L.6) o [T p(q;10) [To(d: 16T p(Ly 24, 4;)

jeM] i€[N] et
=TTe(a.16) 4 (1-4.)" T p(d;16,),
Aelato (o) Tl

(1)

where y; =[] is the number of answers given by

worker j and ¢; =}, ”, I[L;;=z] is the number of correct

answers worker j gives. It follows that the value of z with
the minimum error probability is

z; = argmax, p(z; | L, 0) wherep(z; | L, 0)
-y J J 2 q.d|L,6)dgdd @)
dJq

ZINi

Note that variable z is discrete and g is continuous,
and 0={0,,0,}. Because the joint probability depends
on both ¢q and z, it is intractable to calculate p(z,q|L,0)
directly. We can take a detour and take the integration
over gq;, resulting in a marginal posterior over z.

peILO)=

Jp(z, q,d | L,0)dqdd
dJq

= ljlp(q]- | Gl)p(df 16,)q; (1 - qj)yj_cjdqdd

je[m) 070

dé ( m)H‘P; Z/V
(3)

of which y,(z /V]_) is the local factor of worker j, ie., the
summation of all tasks taken by worker j; ¢,(z ) is the

local factor of task i, ie., the summation of all workers
take task i. Here, we also assume that y; on 0, and L
are independent, and ¢, on 8, and L are independent.
Further, we use Markov random field assumption to
model p(z|L,0) and treat the task assignment graph as
a factor graph, of which variable nodes are task nodes,
and factor nodes are worker nodes [30, 31]. We use
m;_,; to denote the messages passing from tasks to workers

and m;_; to denote the messages passing from workers to
tasks. Messages are initialized as independent Gaussian
distribution or other suitable distribution. We then update
them iteratively until convergence. To put it in a simple
way, the messages are equivalent to the ground truth com-
bined with all relevant factors. Therefore, b;(z;) is the
belief of the tasks, i.e., the intermediate estimated ground
truth of the tasks. Therefore, the updating equations can
be formulated as follows:
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From workers to tasks : ]t:ll Z v; (z v ) H ml”i]
2o i'el
Calculating the beliefs : b (z;) o H mii(z;)
JeM;

(4)

Note that tasks can have binary or multiple dimension
labels, and in this case, m or m, ,; can instead be

i—j j—i
vectors.

3. System Model

In this section, we introduce our VTI and then form its der-
ivations. We use label aggregation problem as an example to
study crowdsourcing problem, and since others can be trans-
formed to a label model easily, we use label aggregation to
show VTT algorithm. Intuitively, we use log error rate to indi-
cate the performance of our algorithm and the comparison
criteria between existing inference algorithms. Further, the
convergence rate and speed are also important criteria for
inference problems.

In VTI, we add the task difficulty d to improve infer-
ence efficiency. At first, we can use d to help compute
worker reliability g and then use both d and g to predict
ground truth z. In general, there are three advantages
when task requestors take into account of the task diffi-
culty level. First, worker reliability parameter will be more
valid if task difficulty is included to compute it. The rea-
son is simple: more difficult tasks require workers with
more expertise [32, 33]. Second, task difficulty is useful
when assigning tasks and can reduce the task time and
budget to some extent. Third, it is useful to consider task
difficulty when compensating workers, which in turn can
sustain the crowdsourcing system. Surely, it is important
to consider cases where workers have no incentive to com-
plete a task as soon as possible and may always submit
completed tasks in the last minute. Some workers might
even submit a random label in a short time. Therefore, a
good difficulty level indicator should be able to deal with
those situations.

First, we denote worker js reliability as q={q;:j€[
M]}, task difficulty as d={d,;:i€[N]}, and the true
answer of tasks z={z; : i € [N]}. Therefore, the joint prob-
ability of worker reliability, task difficulty, ground truth,
and conditioned on the answer matrix L and 0 is as Equa-
tion (1).

3.1. Assumptions and ELBO Formation. In VTI, we use a
three-layered graphical model to show the causal relationship
of the parameters. In this model, all data points share global
variables, while each local hidden variable belongs to each
data point. As defined above, we denote L = L, as observed
variables (label vector of the tasks), z =z, as local hidden
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= [ay B,) ’

FIGURE 1: Probability graphical model of VTIL

values, and 0 as global hidden values. The joint density of
the model is

N
p(g-d:2 L) =p(q.d10) [ p(z5 L; 1 d. q) (5)
i=1

Figure 1 illustrates the graphical model of VTL.

Computing the posterior inference is the primary task of
variational inference. Therefore, our main task is to estimate
the ground truth of every task according to collected answers,
which is p(6, z | L), the conditional probability of hidden vari-
ables (ground truth), and global hidden variables (data distribu-
tion), given observations (collected answers from the
crowdsourcing system). However, it is often the case that this
conditional probability is difficult or computing-intensive to
solve. So it is intuitive for us to resort to approximation methods.

V1 is the method of using a family of distributions that is
easy to compute to approximate the desired objective poste-
rior distribution. The direct way is to minimize the KL diver-
gence between the posterior distribution and the
approximate distribution, which is also a function of the
hyperparameters. Thus, the computing process is to solve
the optimum of a functional, which is called variational anal-
ysis. In the domain of machine learning (ML), this is called
the procedure of solving evidence lower bound (ELBO) in
terms of a variational parameter.

Z(v)=E,flogp(q. d, 2, L)] - E,flog g(q. d, z[v)]  (6)
of which q=4(q,d,z|v) is the variational distribution we
choose to approximate the true joint distribution p(g, d, z |
L). The detailed derivation of Equation (6) can be found in
Appendix.

Assuming that the Bayesian network of our crowdsour-
cing inference model is fully factored, i.e., each worker and
task are independent, and using the chain rule to extend
the joint probability, we have

q@dzlv)=q(qIh) [[ a1 ¢)ad1 L) (7)
of which v is the general notation of the variational parame-
ter, A, is the global variational variable for g, A, is the global
variational variable for d, A = (A, 1,), and ¢ is local varia-
tional variable. VI optimizes Equation (2) using a gradient
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or coordinate ascent. To better find local optimum, we use
variational inference with tempering.

As mentioned before, the procedure of tempering can
promote the performance of the optimization process by
curbing multioptimum. Therefore, we apply it in our VTI.
Using T > 1 to denote the global temperature, the joint prob-
ability becomes

p(zL1g,d)""p(q16,)p(d |6,)

plgdzL|T)= T

(8)

of which
«(T) = jp(z, L1 d)""p(q)0,)p(d | 6,)dLdzdgdd.  (9)

Applying Equation (8) in (6), we reach the tempered
ELBO.

Z4(h¢5T) =E,[logp(q16,) + E,[log p(d | 6,)]
~E,[log q(q.d | )]
) iEq[logP(L; z1q.d)] (10)

—E,[log p(z; | ¢;)]-

Note that the standard tempering method starts from
high temperature and gradually reduces it, taking little
account of the influence of data at first, reaching a high-
entropy solution, and then slowly makes use of the data or
evidence, and reaching a distribution more resembling the
data.

Now, we discuss why tempering is effective. The 1st and
3rd terms of Equation (10) are the expected log prior and
the log-likelihood. By maximizing these terms, it can result
in hidden variables that can better explain the data. The
2nd and 4th terms combined are the variational distribution
entropy. Since entropy is convex, it can act as a regularizer
which distributes into a hidden variable’s configuration.
With smaller 1/T, we obtain a small likelihood of ground
truth and smooth entropy distribution. By decreasing T
gradually, our variational distribution puts more and more
weight on observed data. According to Mandt et al. [34],
there are two types of tempering method, one method tem-
pers both likelihood and prior, and the other method tempers
only the likelihood. The latter has no problem of gradient
stuck during iteration.

This paper discusses gradient-based tempering. As simi-
lar to a regular optimization problem, if the tempering is
too slow, the algorithm will converge too fast and never reach
the global optimum. If we temper too fast, on the other hand,
we may skip the global optimum. Since it is difficult to find
the proper schedule, we put our emphasis on learning data
sequence adaptively. We use variational tempering, a method
learning temperature schedule. In variational tempering, we
introduce temperature as an auxiliary variable. Therefore, if
the temperature is 1, it will degenerate to the original varia-

tional inference. We consider finite discrete temperature,
for example, 1 =T, < T, < ---<T,,, which allows us to com-
pute partition function beforehand.

3.2. Objective Function. It is easy to derive that p(L,z,q,d, y

)=p(L,z,q,d | y)p(y). Given p(y) = [["_, ', the tempered
joint of task difficulty, worker reliability, ground truth and
worker labels can be written as

N
l/Ty (11)

p(Lz g dly)=

i

i=1

of which T), is a temperature related to y. Thus, the model

becomes
ym
l/T
p(Lizilg.d '") .

(12)

The objective of VTI is to maximize the above joint prob-
ability. By further using the chain rule of Bayesian theory, we
obtain

p(L,z,q,d,y) =

m=1 m i=1

ool (21

qzly)a(gdINalyly)  (13)

of which r denotes the variational parameter for the temper-
ature. Therefore, we obtain the tempered ELBO of VTL

p(zqdyly,Ay)=

Zr(M ¢ T)=E,log p(q)] + E,[log p(d)] + E,[log p(y)]
- E,[log 9(q)] - E,[log q(d))]
-, l;j g ([Eq[log p(Liz; 19 d)])
-k, [log C(Ty)}
- i E,llog q(z;)] - E,[log q(y)]-
. (14)

Therefore, we can maximize this tempered ELBO, instead
of optimizing the objective function directly, to obtain
ground truth z and hidden parameters g, d.

3.3. Local Temperature. In real practice, often the data would
arrive one at a time, or sometimes it is difficult to compute a
huge amount of data point at once, so we use the incremental
method, which computes each data point as soon as it arrives.
This method can simplify the computation and show the
influence of each data point to the whole network. Therefore,
we can treat the potential or log value of each data point as
the local factor. And instead of computing the global temper-
ature at once, we can calculate their local temperature in a
similar way. The algorithm is also more scalable to future
data. Just like heat flows through the network with thermal
conductivity, we can treat the potential or temperature of
each local data that passes through the data network. Using



t; to denote the local temperature, the joint probability of task
labels, ground truth, hyperparameter, and temperature
becomes

p(L,z.q,d,t) ccp(q. d

::]z

I[ptozlad) pe)]. (13)

i=1

We can see from the above equation that adding the tem-
perature parameter reduces the weight of the global hidden
value and data, i.e., the weight of the ground truth and the
task labels. In this way, the resulted distribution of the tasks
will have higher entropy. Note that we no longer have to cal-
culate the partition function since there is a o in the equa-
tion. By adjusting the local temperature, we can obtain a
more desired outcome. For instance, outliers can be best
demonstrated by higher temperature, while lower tempera-
ture can give us the main situation of the data.

4. VTI Algorithms

In this section, we introduce the main part of VIL. We
assume that the prior distributions, i.e., the worker prior
and the task prior, and the distribution of parameters of the
task prior and the worker prior are all from the exponential
family [21], which has the following formulation.

p(a.d160) = h(q.d) exp {0"t(q. d) - a,(0) }.

P Li1 ) =h(z, L) exp {(q.d)"t(z L) ~ (g, d) },

(16)
of which t(g, d) and t(z,, L;) are sufficient statistics of global
and local data points, of which a,(6) and a,(q, d) are corre-
sponding log normalizers.

Treating the objective function as a function of the global
variational parameter, we obtain

ZLr(A¢;T)=
oA T) = argmax¢ij3T (}L, ¢;sT

Zr(Ab ¢ T); T),
) (17)

According to Hoffman, the tempered ELBO is

1 T
Lr(M¢sT)=E, [?] E, [;1 (L2 e)} Vaa,(\)
Yy
~A'V,a,(A) +ay(A)
~E,[log C(T,)] - E,[log q(»)]-

(18)

4.1. Take-Home Equation. According to Hoffman, the tem-
pered ELBO’s natural gradient with respect to the global var-
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Initialize Ay, T, g, dg» L, $ii» Po

Output: z, q, d
for each label L;; do
Update local variational parameter:
b= (I/T)[Eq[”ll(zi,—y L, q,d)].
end for
Update global variational parameter:
A=E,n,(L, % 6)]
A=A +p(A=-4,)
until convergence
Output: q; = prob[L;; =z,],i € J;
d;=prob[L;=z],j € M,
z;=sign [q;L;l,j € M,

AvrGoriTaM 1. VTL

iational parameter is

V6L T) =, [fyg(L, z, 6)} -

A= E, [ng(L, zZ, 9)} ,

of which 77, (L, z,0) = (a; + YN, t(z L), B, + N).

A=A+ p(A-1,). (20)

In the first step, we estimate 1 and then update it with A,
with decreasing learning rate p,. By dividing the expectation
of the sufficient statistics, we can reduce the variance of the
gradients.

We then optimize tempered ELBO. And the local varia-
tional update, i.e., the main body of VTI, is

1
9= 7E [m(zi-» Li» - d) ] (21)

of which, #; is the local variational parameter and is also the
natural parameter of the exponential family distribution p(
z;; 1 L, z;_j, 9, d). Therefore, we can compute #; by construct-
ing the exponential family distribution p(z;; | L; z;_;, 9, d),
since L;, z; _; is known, and g, d is initialized.

Therefore, VTI can be summarized in Algorithm 1.

4.2. Analysis. In this part, we analyze the performance guar-
antee of VTI. To allocate the tasks to different workers, we
use a bipartite graph algorithm, of which the left degree of
the graph [ refers to how many workers are needed for one
task, and the right degree of the graph r refers to how many
tasks are allocated to one worker at one time period. Intui-
tively, the error rate e is dependent on /,7, g, and d. By the
definition of g;, we can see that the effective information pro-

vided by worker j can be measured by g, =[2q; - 1|; there-
fore, the expectation of effective information provided by
one worker is g, =E[|2q; = 1]]. Let [=]-land 7=r-1,u,



Wireless Communications and Mobile Computing

= [E[ij - 1], U, = [E[zdi - 1]7 u=ulu,, g, = [EHZdi _ 1”’ and
9=9,/9, Define p} =2g/u*(g*InrA) ™" + (34 1/glF)1 -
(UGN 11 = (117F).

For g?I7 > 1, let p?, =lim_, . p7 such that

(3 + (1/g77)>9277.
ex

We can then arrive at the following error bound.

P =

Theorem 1. Suppose n tasks are distributed to m workers,
forming a l, r bipartite graph. If the worker reliability distribu-
tion and task difficulty distribution satisfy u; > 0, u, > 0, and

g > 1/(I7), the k-th estimates of VTI can achieve

lim sup L i P (zi #Z <{Lif}(i,j)e5)) > (), (23)

m—oco M i=1

Theorem 2. According to Theorem 1, we assume n tasks are
distributed to m workers, forming a I,r bipartite graph. If
the worker reliability distribution and task difficulty distribu-

tion satisfy u; > 0, u, > 0, and g > 1/(I7), the k-th estimates of
VTI can achieve

1 & 2
lim sup lim sup — ZI P (zi +7Z; ({Lij}(i,j)eE)) > e 9(20%)

k—o00 m—00

(24)

The implication of this theorem is that the error rate is

upper bounded by e'82°%). Notice that the temperature
parameter only affects the convergence and has no effect on
error bound. We present the proof of Theorem 1 in Appendix.

4.3. Discussion. We developed a variational inference algo-
rithm with tempering, which is scalable, and can analyze
large amount of data by complex probabilistic graphical
models. The main idea is to optimize the variational objective
using stochastic optimization. By repeatedly sampling the
data, it can estimate the natural gradient with noise. By intro-
ducing tempering into the objective function, we can simplify
the computation complexity and improve convergence rate
of the iteration. With VTI, we can easily apply label aggrega-
tion modeling to various kinds of pattern recognition and
classification problem. Furthermore, VTT can be generalized
to more settings as it opens the door for several research
directions. Here, we analyze VII’s complexity and how to
interpret its results.

First, VTII has the same runtime with majority voting,
which is O(ml).

Second, the assumption of conjugate priors is necessary.
Conjugate prior plays an important role in variational infer-
ence. It enables the form of the posterior probability to
resemble the prior probability, which simplifies Bayesian
analysis to a large extent. Taking VTI for example, the worker
and task prior are Gaussian, and their posteriors are also

Gaussian. Using conjugate prior assumption, the inference
model can be easily extended to different kinds of distribu-
tion that belong to the exponential family.

Third, the mean-field assumption is also necessary. By
approximating the true parameters of the prior distribu-
tion with a distribution that is not restricted, we can
reduce computation and solve complex probabilistic
graphical models.

Fourth, our VTI can establish good performance
under different distributions of q; and d;. Furthermore,

VTI is robust to different initialization, i.e., almost every
starting point can result in a unique solution. The reason
for this robustness is that VTI computes the energy of
the objective function and will surely decrease with each
iteration.

5. Experiments and Results

In this section, we will assess seven advancing algorithms on
real datasets for the experiments of our algorithm. First, the
experimental setup is introduced, and then, the convergence
performance of the collected crowdsourcing inference algo-
rithm is analyzed. Finally, we make comparison of the error
rate of VT with the existing algorithms.

5.1. Experimental Setup. We use Amazon Mechanical Turk
datasets (Data: https://github.com/musegoduci/variational-
inference-for-crowdsourcing) to show the comparative
results of the inference algorithms. The Amazon Mechan-
ical Turk is a binary dataset, of which 0 means a worker
identifies no target in a task, and 1 means the worker
identifies target in a task. Note that the data need to be
centralized before processing. We use bipartite assignment
graph algorithm to generate the initial answer matrix for
the simulation. Some notations are listed in Table 1. It
should be noted that KOS (Karger, Oh, and Shah’s itera-
tive learning algorithm for crowdsourcing inference [29])
is a message passing-based algorithm, and we first identify
the reliability of each worker by some data sample and
then implement MLE to estimate the test sample’s ground
truth. However, BP, VMP, NMP (Liu et al.’s novel crowd-
sourcing inference method [22]), and VTI assume a prob-
ability distribution of worker prior and task prior and then
solve the hyperparameters of the distribution, leading to a
MLE estimation of the ground truth.

5.2. Convergence. In this part, we analyze the convergence
behavior of VTI. Note that the overall executing time for an
inference algorithm depends on how long it takes to iterate
once, as well as on how many times it will iterate. Since the
normalizing constants can be precomputed in advance, the
executing time of one iterate depends only on the calculation
of the natural gradient, which gives faster convergence than
others. Therefore, VII can converge in seconds. Further-
more, we use subsampling to obtain the natural gradient of
the data, which is computationally economical in each itera-
tion. Therefore, VTT possesses advantageous computational
performance.
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TaBLE 1: Notations and settings.

Parameter Commentate Value

I Degree of tasks 5

y Degree of workers 5

N Number of tasks 1000

M Number of workers 1000

Ly Worker j's label toward task i

q; Worker j's reliability

d, Task i's difficulty

z; Task i's ground truth

0, Hyperparameter of worker reliability’s distribution

0, Hyperparameter of task difficulty’s distribution

[@15 By] Worker prior [0.5,1]

[, B,] Task prior [0.4,0.6]

€ Convergence tolerance 1076

-0.5
N
-1 $
=
g -15-
L
0'0 \e\‘
1S)
s -2
-2.5 \
-3 T T T T T T T T
0 5 10 15 20 25 30 35 40 45
Iterations
—— KOS —e— BP-Beta (2, 1)
—— MV VMP
—o— EM-Beta (1,1) —— NMP
EM-Beta (2,1) —— VTI

—o— BP-Beta(1,1)

Ficure 2: Convergence rate comparison.

From Figure 2, we can show that our VTI has a faster
converge rate than KOS, MV, EM, and VMP. It is straight
forward to know that this phenomenon is inherent. The rea-
son is that VTT computes both the task difficulty and worker
reliability simultaneously and reduces error in both direc-
tions. Furthermore, how fast KOS can converge depends on
whether and how the ground truth is centered. If the degree
of the bipartite graph is low, BP may not even converge.
VMP and NMP all have rather good convergence perfor-
mance because they, like VTI, are both based on the mean-
field variational method.

5.3. Error Rate. In this research, we make comparison of VTI
with MV, EM, KOS, VMP, and NMP.

In Figure 3, we simulate the performance of VTI with
fixed right degree. Intuitively, the log error rate is positively
correlated to the left degree, i.e., the quantity of tasks each
worker takes. From the figure, we find that VTT has better
performance under these settings.

In Figure 4, we simulate the performance of VTI with
fixed left degree. Intuitively, the log error rate is positively
correlated to the right degree, i.e., the quantity of workers
each task takes. From the figure, we find that VTT has better
performance under these settings. In Figure 5, we simulate
the performance of VTI with fixed left and right degrees.
Intuitively, the log error rate is positively correlated to both
the degrees. From the figure, we find that VTT has better per-
formance under these settings.

To sum up, it can be seen from Figures 3-5 that our
VTI can achieve a slightly higher error rate, which proves
that the inference algorithm often performs better when
considering both the reliability of workers and task diffi-
culty. And this algorithm can also ensure finding a local
optimum.

6. Conclusion

In this paper, we solve the problem of cyber physical system
crowdsourcing inference using variational inference with
tempering. Our VTI considers not only the worker reliability,
but also the task difficulty, which makes VTI adaptable to
more complex probabilistic graphical model. With the tem-
pering procedure, the iteration process can reach a smoother
local optimum and better demonstrate the relationship of
balancing the influence of single data point and global varia-
tional parameter. The results are promising in reality and
insightful in the field of statistical inference. Therefore, the
paper contributes to the research of finding efficient



Wireless Communications and Mobile Computing
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_3 T T T T T
0 5 10 15 20 25 30
1 (fixedy =5)
—— KOS —e— BP-Beta (2, 1)
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—o— EM-Beta (1,1) —— NMP

EM-Beta (2,1) —+ VTI
—o— BP-Beta(1,1)

FIGURE 3: Comparison with fixed number of tasks per worker.
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F1GURE 4: Comparison with fixed number of workers per task.

algorithms in CPSs. Promising directions in future include
formulating the inference problem in a more general back-
ground and exploring the connection of variational inference
with all other inference and estimation algorithms.

7. Limitations of VTI

VTI suffers from a few limitations just like other varia-
tional inference algorithms. First, VTI relies on the
assumption of the worker prior and difficulty level prior.
It is applicable only to CCEF model. Second, VTI assumes
that each worker has the same reliability towards different
kinds of questions. Although it is capable of dealing with
cases when different tasks are categorized into different

Log-error

-3 T T T T T
2 4 6 8 10 12 14
y(y=D
—— KOS —o— BP-Beta (2, 1)
—o— MV VMP
—e— EM-Beta(1,1) —— NMP
EM-Beta (2,1) —+ VTI

—o— BP-Beta(1,1)

FIGURE 5: Comparison with the same worker and task degree.

classes, VTI can become extremely complex doing so.
Third, VTI has the same cold start issue with other varia-
tional inference algorithms. In this paper, we initialize
worker reliability and task difficulty uniformly and com-
pute it batch by batch. However, it is also difficult to
achieve a computable bipartite graph if in practice, the
answers of different tasks arrive at different rate.

Appendix
A. Derivation of Equation (6)

In this part, we show how to obtain Equation (6). Jensen’s
inequality is used in the 3rd step.

log p(L) =log Jp(q, d, z,L)dzdqdd

4(qd, 2| v)
=lo vd,z, Ly ———
gjp(q T

R p(g.d.z L)

~los (Eq L(%MIV)D

>E, [log p(q.d,z, L)] - E, [log q(q,d,z|v)]| = Z(v).
(A1)

dzdqdd

B. Proof of Theorem 1

Proof. Because of the local nature of crowdsourcing, we
can treat it as a repetition coding and analyze its bit
error bound in a similar way. In this case, we repeat each
bit r times. By symmetry, we can assume all t;'s are +1.
For any of the m tasks, (1/m)Y,,P(t; #1;) <P(z} <0),
where zF is the estimated answer after k-th iteration.
Modeling the probabilistic graphical model of VTI as a

bipartite graph and each node with its neighbor can be
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treated as a regular tree. Intuitively, we have the follow-
ing equality:

lim P(z?sO) :]P(z/\kso). (B.1)

m—00

In order to analyze the performance guarantee of
VTI, we can borrow the idea in Chernoff bound [35].

It follows that P(xAk >0) < E[¢™]; therefore, 1— P(xAF
>0) > E[e™], ie, P(xA*<0)>E[e™]. Define 0;=2
(A NS + 2INF(3 g7 + 1) ((PInrn) ™) (1 = (11 PInen) )
(1-(1/g°T7)), and p, = ul(2Inrn)¥, and variable z with
mean ¢ and variance o will be a sub-Gaussian distribu-
tion, and E[e'z] < ¢4 (127X | Therefore,

P(x/\k < 0) <E [e’\x/\k} < e i/ (21n7), (B.2)

This, finishes the proof.

Data Availability
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