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Abstract: IEC 61850 is one of the most prominent communication standards adopted by the smart
grid community due to its high scalability, multi-vendor interoperability, and support for several
input/output devices. Generic Object-Oriented Substation Events (GOOSE), which is a widely used
communication protocol defined in IEC 61850, provides reliable and fast transmission of events for the
electrical substation system. This paper investigates the security vulnerabilities of this protocol and
analyzes the potential impact on the smart grid by rigorously analyzing the security of the GOOSE
protocol using an automated process and identifying vulnerabilities in the context of smart grid
communication. The vulnerabilities are tested using a real-time simulation and industry standard
hardware-in-the-loop emulation. An in-depth experimental analysis is performed to demonstrate
and verify the security weakness of the GOOSE publish-subscribe protocol towards the substation
protection within the smart grid setup. It is observed that an adversary who might have familiarity
with the substation network architecture can create falsified attack scenarios that can affect the
physical operation of the power system. Extensive experiments using the real-time testbed validate
the theoretical analysis, and the obtained experimental results prove that the GOOSE-based IEC
61850 compliant substation system is vulnerable to attacks from malicious intruders.

Keywords: smart grid; cybersecurity; substation protection; IEC 61850; GOOSE protocol; publish-
subscribe communication

1. Introduction

The smart grid has transformed the centrally controlled power system to a fast and
massively connected cyber-physical system. While the synergy of a vast number of cyber-
physical entities has allowed the smart grid to be much more effective and sustainable in
meeting the growing global energy challenges, it has also brought with it a large number
of vulnerabilities resulting in breaches of data integrity, confidentiality, and availability.
Moreover, it affects a range of unintentional technical issues [1,2] and security vulnerabil-
ities [3,4]. As a consequence, it is critical to analyze the vulnerabilities of the smart grid
and identify mitigation techniques [3,5,6]. According to the National Institute of Standards
and Technology (NIST) [7], failing to analyze cybersecurity vulnerabilities can lead to the
compromise and improper functioning of the physical power system. A cyber criminal or
a threat actor can exploit these vulnerabilities, which may lead to malfunctions in energy
systems [8], operational failures in both communications equipment, as well as physical d
vices, and may even trigger a cascading failure.

To ensure the protection of the smart grid Substation Automation System (SAS) and
for reliable message transfer, various communication protocols are being used, which
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include Modbus/Modbus Plus, Distributed Network Protocol 3 (DNP3), IEC 60870, IEC
61850, and IEEE C37.118. Owing to its provision for security, high scalability, multi-vendor
interoperability, and support for various Input/Output (I/O) devices, IEC 61850 [9–14]
has become the de facto standard for substation communication within the smart grid.
The Generic Object Oriented Substation Events (GOOSE) is one of the key communication
protocols defined in IEC 61850, which provides a reliable and fast transmission of data and
commands between intelligent devices within a substation and between substations.

The recent state-of-the-art works have identified some limitations of IEC 61850. For
example, an insecure IEC 61850-based communication infrastructure may allow attackers to
gain access, establish communications, and retain a constant presence within a network [15].
To overcome this limitation and provide cybersecurity objectives even across the other
communication protocols, the IEC 62351 [4,16] standard was developed. Typically, IEC
62351 Part 6 [16] is the security standard for the IEC 61850 protocol (namely, GOOSE,
Sampled Value (SV), and Manufacturing Message Specification (MMS) specifications.
However, due to the end-to-end latency requirements of the GOOSE protocol and the
constrained computation capabilities of Intelligent Electronic Devices (IEDs) in a smart
grid, it is often not feasible to apply the required security measures. For instance, within
an SAS, the IEC 61850 Edition 2 communication standard requires that the end-to-end
timing requirement of the GOOSE message publication and subscription be within 4 ms
considering a 60 Hz frequency power system for a trip command [17], which cannot be
guaranteed when high-end encryption is implemented on top of the existing IEDs. For this
reason, several IEC 61850-compliant vendors have not yet implemented encryption over
their IEDs as the overhead of the encryption algorithm might already incur more than the
maximum threshold of the end-to-end IED latency. Consequently, many implementations
of the GOOSE protocol remain vulnerable to attacks from intelligent attackers from within
and outside the network [12].

Part 6 of the IEC 62351 security standard recommends the use of the asymmetric
cryptography-based Hash Message Authentication Code (HMAC) scheme using the RSA
digital signature to ensure the basic security requirements of the GOOSE protocol. However,
the study in this paper demonstrates the vulnerability of the GOOSE protocol with and
without the HMAC for authentication and SHA256 for hash function. Finally, the impact
of the cyberattack on the smart grid is demonstrated through analytical approaches and
experiments based on real-time simulation.

1.1. Contribution

This paper investigates the vulnerabilities of the IEC 61850 GOOSE protocol both with
and without the IEC 62351 Part 6 security standard. The investigation analyzes how an
adversary can compromise the operation of the power grid by identifying and exploiting
the flaws of IEC 61850. Specifically, this paper has the following contributions:

1. A rigorous verification is made of the GOOSE protocol using both automatic
and manual security analysis using Scyther. There are various automated security claim
verification tools whose detailed reviews can be found in [18,19] . Scyther [18,20] has
a number of advantages including its effectiveness for different attack cases, support
for multiple protocols, its operational semantics of security protocols, etc. Although
other security verification techniques can also be used, in this article, the Scyther tool is
utilized where a rigorous security verification of the GOOSE protocol is found using both
automatic and manual security analysis. In particular, it is found that the secrecy of the
user-defined parameters of the GOOSE protocol, e.g., IED settings, flag, and data, are at
risk. Furthermore, the protocol’s data flow is constructed using Scyther’s trace patterns
(Sections 4 and 6).

2. The characterization and completeness of roles for identifying the possibilities of
masquerading publishers/subscribers in generating an attack are performed. For exam-
ple, an adversary can pretend to be a publisher and broadcast a GOOSE message to the
Supervisory Control and Data Acquisition (SCADA) control center.
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3. We develop an experimental testbed using a real-time hardware-in-the-loop (HIL)
emulation for the co-simulation of the power system components and the ICT infrastructure,
which reflect a realistic smart grid operation. Using the experimental testbed, it is verified
that the identified GOOSE parameter settings in Section 4 are indeed vulnerable to falsified
attacks, thus highlighting the weakness of the GOOSE protocol in terms of security.

1.2. Organization

Section 2 briefly discusses the related work. Section 3 provides some background
on the existing communication standards used in the substation systems focusing on the
IEC 61850 and GOOSE protocol. Section 4 mathematically defines the security properties
evaluated by Scyther in the automatic claim verification process of the GOOSE protocol.
The implementation of the proposed experimental framework and data flow is discussed in
Section 5. The experimental validation of GOOSE’s vulnerabilities is presented in Section 6
followed by Section 7, where a falsified attack is generated and its impact on energy system
demonstrated. Finally, the paper is concluded in Section 8. Table 1 lists the abbreviations
used in this article.

Table 1. List of abbreviations.

Abbreviation Description Abbreviation Description

CB Circuit Breaker NIST National Institute of Standards
and Technology

DNP3 Distributed Network Protocol 3 PDU Protocol Data Unit
DoS Denial of Service Pub Publishing

GOOSE Generic Object-Oriented
Substation Event SAS Substation Automation System

HIL Hardware-In-the-Loop SCADA Supervisory Control and Data
Acquisition

HMAC Hashed Message Authentication
Code SHA Secure Hash Algorithm

IEC International Electrotechnical
Commission SPDL Security Protocol Description

Language
IED Intelligent Electronic Device Sub Subscribing
LAN Local Area Network SV Sampled Value
MAC Media Access Control TTL Time To Live

MMS Manufacturing Message
Specification WAN Wide Area Network

2. Related Work

In this section, existing literature related to the security issues of IEC 61850 and
the GOOSE protocol in particular, the drawbacks of the related literature, and a concise
comparison with our proposed scheme are presented.

The deployment of IEC 61850 has been one of the key transformations in the SAS to
fulfill some of the requirements by providing the integration of protection, measurement,
monitoring, and control applications via a common communication protocol. However,
security issues for the substation based on the IEC 61850 communication standard have
come under scrutiny. Especially, IEC 61850’s interconnectivity over a LAN or WAN makes
the substation system the main target for intelligent cyberattacks [21]. Hussain et al. [4]
provided a thorough overview of the security threats, potential cyberattacks, and security
requirements for IEC 61850. Further, the major security flaws of IEC 61850 were reported
in [22] as the delay of GOOSE messages and emerging cyberattacks due to the interoper-
ability of IEC 61850 (e.g., via the TCP/IP stack). Thus, there is still a need to analyze the
effect of the power system operation if the communication protocol is exploited.
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IEC 61850 is vulnerable to a number of attacks, including password cracking, Denial
of Service (DoS), and eavesdropping [12]. Similarly, the researchers in [23] presented a
taxonomy of various cyberattacks including DoS attack, man-in-the-middle attack, replay
attack, injection attack, spoofing, and eavesdropping against IEC 61850-based communi-
cation protocols. There have been few research papers [12,24,25] that have demonstrated
LAN-based cyberattacks against the GOOSE protocol. The authors in [24] showed a Layer
2-based spoof attack against the GOOSE protocol. They conducted network traffic capture
for GOOSE frames using Scapy. Kush et al. [25] proposed GOOSE poisoning over a
subscribing IED. They demonstrated the attack by exploiting a vulnerability in GOOSE to
effectively cause a hijack of the communication channel. In this work, by injecting attack
traffic, their implementation resulted in a DoS attack by denying the authorized publisher’s
traffic access to the subscriber. Similarly, an experimental testbed of cyberattack against
substation protection was implemented in [26].

Although some existing research works, as explained above, demonstrated attacks
against the GOOSE protocol, no research so far has shown a comprehensive vulnerability
analysis of the GOOSE communication protocol based on both theoretical claims, as well as
experimental simulations. Following the recommendation by Part 6 of IEC 62351 to use the
HMAC scheme, the authors in [27] implemented the SHA256 authentication mechanism
for the GOOSE protocol. Our paper studies the inherent vulnerabilities of the GOOSE
communication protocol within a substation environment considering with and without
the IEC 62351 security standard. A systematic vulnerability analysis is conducted to fully
investigate the exploitation of the GOOSE protocol. In addition, a falsified trip command
injection attack against the weaknesses identified demonstrates that GOOSE is vulnerable
to certain types of protocol level attacks. Table 2 provides a comparison of our proposed
system with previous research. Therefore, we believe that our research can be an essential
input for the technical specification of the IEC 62351 security standard.

Table 2. Comparison of our proposed system with previous works.

Comparison Attributes Our Proposed System Previous Works

Communication flow of the
GOOSE protocol

Considered comprehensive
publish-subscribe communication flow

with experimentation over IEDs
Considered in [4,22,24,28]

HIL-based cyber-physical testbed for IEC
61850 security

Used OPAL RT-based HIL testbed for
GOOSE-based IEC 6850 security

Used real-time digital simulator-based
testbed environment for the MMS-based

IEC 61850 security in [29]; in [30], IEC
61850 security was investigated using the

OpenIEC61850-based testbed

Cyberattack scenario and impact analysis

Generated falsified trip command
injection based on the HIL experimental
testbed and investigated its impact on the

substation network

Attack against protection in the
substation and the impact considered in

[26], GOOSE poisoning against
subscribing IEDs in the substation

considered in [25], and spoof attack
against the GOOSE protocol considered

in [24]

Security claim verification for the
GOOSE protocol

Considered Scyther for security
claim verification Not considered

IEC 62351 security for the
GOOSE protocol

Considered with and without IEC 62351
security using SHA256 for the

communication flow and GOOSE
vulnerability analysis

Not considered
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3. Background: Communication Standards for Substation Protection

Various communication standards are being used in the smart grid substation systems
including Modbus, Modbus Plus, DNP3 (based on IEC 60870-5), IEC 61850, and IEEE
C37.118. Reports [31,32] show that chronologically, Modbus has been used since the late
1970s, and DNP3 has been used since the 1990s. While IEC 60870-6 was introduced in
2000 [32] and has been in use since then, IEC 61850 and IEEE C37.118 are relatively the
latest of all communications standards [4]. These communication standards differ from one
another in a number of factors, including protocol profile, communication medium (serial,
Ethernet, WAN), mode of communication (client-server, peer-to-peer, publish-subscribe,
unicast, multicast), communication bandwidth, multi-vendor inter-operability, support
for security, etc. [10,14,31,32]. When moving from the older communication standard
to the latest one, several communication criteria are improved, such as communication
bandwidth, baud rate, scalability, support for several analog/digital devices, multi-vendor
inter-operability, support for security, etc. (see Figure 1).

Figure 1. Different communication standards for the substation and SCADA systems.

For SAS, IEC 61850 [9–14] has become the preferred communication standard because
of its improved functionality and several communication requirements including scalability,
high bandwidth, multi-vendor interoperability, and security support [4,6,11,22], which also
motivated us to further assess the security vulnerabilities of IEC 61850-based protocols.

3.1. IEC 61850

IEC 61850 offers a wide range of data modeling, which is based on self-describing
information in a system independent of the vendor (i.e., interoperability). The communica-
tion protocols under IEC 61850 support client-server and publish-subscribe communication
models. The IEC 61850 communication standard supports the following communication
protocols: Generic Substation Status Event (defined in IEC 61850 Part 7-2), client-server
model-based MMS (defined in IEC 61850 Part 8-1), SV (defined in IEC 61850 Part 9-2),
and GOOSE (defined in IEC 61850 Part 8-1). The SV (used for the transfer of sampled
values) and GOOSE (used for substation events) protocols are utilized for the transmis-
sion/reception of data in time-critical functions based on a publish-subscribe communica-
tion model. Data transmission/reception in publish-subscribe communication is carried
out asynchronously (in contrast to a synchronization approach in a client-server communi-
cation model) and through multicast communication (i.e., one-to-many and many-to-many).
The multicast communication allows the publisher to send just a single copy of data to the
network, which is then transmitted to all subscribers that have already shown their inter-
est. This will increase the overall performance of data delivery and minimize end-to-end
latency and traffic over the network.
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3.2. GOOSE Protocol

In general, GOOSE messages can be transmitted over a LAN (i.e., for applications
within the substation), or routable GOOSE messages can be multicast over a WAN for
inter-substation applications [33]. This paper focuses on the GOOSE protocol that consists
of the three Open Systems Interconnection layers: physical layer, data link layer, and the
application layer, as defined in IEC 61850 Part 8-1 [10]. It is mainly used for event-based
and time-critical data transfer between unit-level devices (such as a relay) and process-level
devices (such as a circuit breaker), or at the substation level. Each network entity (such as
the IED) that is on the publish-subscribe network communicates with others by sending
data to the shared LAN and receives data asynchronously.

Within a substation, a publishing IED (PubIED) generates a GOOSE message and
sends it to the network via multicast transmission over full-duplex-based Fast Ethernet
and a high-speed switch network. Each PubIED should know all the subscribers to whom
to send the GOOSE data and even the other PubIEDs. Similarly, any IED that wants to
receive a GOOSE message should first subscribe to the network as each subscribing IED
(SubIED) should know the list of all publishers and all other SubIEDs to update their list
of potential publishers or their future subscribers. The main objective is to ensure that
the PubIED is capable of sending GOOSE data when a deviation in an event occurs in the
substation system, and that SubIED(s) subscribes to the transmitted data.

4. Definition of the Security Properties Evaluated by Scyther

This section discusses in detail the tools and technique used for the vulnerability
analysis of the IEC 61850-based GOOSE communication protocol in the publish-subscribe
scenario. IEC 62351 [16] is a de facto security standard for IEC 61850, and thus, the commu-
nication flow of GOOSE as applied to the data flow between the protective/controlling
IEDs has been considered both with and without the compliance of IEC 62351. Due to the
rapid development and evolving nature of technologies and their associated communica-
tion protocols, a large number of security protocols have been developed and deployed in
order to provide secure communication [8]. The analysis of security protocols is becoming
increasingly difficult for manual and analytical techniques like ’Gong–Needham–Yahalom’
(also called the GNY) logic and ’Burrows-Abadi-Needham’ (also called the BAN) logic [18].
Therefore, the formal analysis of the security protocol relies more on an automated falsifi-
cation or verification of such protocols using state-of-the-art tools such as the ProVerif or
AVISPA [34] tools, which have been shown to be effective at finding attacks on protocols
(AVISPA) or establishing the correctness of protocols (ProVerif). One of the improved and
automated security claim verification tools used in the literature is Scyther [18,19,35,36],
which is based on a pattern refinement algorithm, which can provide concise represen-
tations of (infinite) sets of attack traces. In this experiment, Scyther is used to perform
the security analysis of the GOOSE communication protocol. Using the Scyther tool, the
GOOSE protocol is analyzed in three main areas:

• to verify whether the security claims in the protocol description hold or not;
• to automatically generate appropriate security claims for a protocol and verify these;
• to analyze the protocol by performing complete characterization.

In contrast to individual traces, Scyther works based on reasoning about classes of
traces by representing them using trace patterns, which is defined as a partially ordered
and symbolic set of events. In this paper, various Scyther definitions are considered like
trace pattern, complete characterization, algorithm, bound on runs, and completeness for
verification of the security properties in Section 6, as defined below in Definitions 1, 2, 3,
and 4, respectively. These definitions are adapted from [37] and used in Section 6 for the
verification of the security properties of the protocol by analyzing patterns.
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Definition 1 (Trace pattern). Let P be a protocol, and let T P be a trace pattern. Let ES be a set
of explicit trace patterns. The set of traces of the protocol that exhibit the pattern is defined as:

traces(P , (T PE ,→)) = traces(P) ∩ traces(T PE ,→) (1)

Example 1. Let P be a protocol with two events E1, E2 such that E1 ≺ r E2. Let e1 = 〈 inst〉 E1
and e2 = 〈 inst 〉 E2 for some instantiating function, then we have Equation (2) below.

traces(P , ({e1, e2}, {e2→ e1})) = ∅ (2)

This pattern does not occur in the traces of the protocol, because according to the
operational semantics, the events of a single run of any protocol should conform to the
protocol role order.

Definition 2 (Complete characterization). Let P be a protocol, and let T P be a trace pattern.
Let ES be a set of explicit trace patterns. ES is called a complete characterization of the set traces
(P , T P), if and only if Equation (3) is true.

⋃
E∈ES

traces(P , E) = traces(P , T P) (3)

Definition 3 (Characterization algorithm). Given an iterative protocol (like GOOSE) with the
signature as Equation (4):

Algorithm(ψ) : Protocol × Pattern→ P(Pattern) (4)

Given a trace pattern T P and a protocol P , the algorithm yields a set of explicit trace patterns
that represent a complete characterization of the protocol as Equation (5).⋃

E∈ψ(P,TP)

traces(P , E) = traces(P , T P) (5)

Definition 4 (Bound on the number of runs and completeness). For all protocols P, trace
patterns (TPE,→) bound on the number of runs as maximum runs (maxr) and sets of explicit trace
patterns ES, where F stands for false, we have Equation (6).

(ψmaxr(P , (T PE ,→)) = (ES , (F ,→)) −→ ψ(P , (T PE ,→)) = ES (6)

As derived in Equation (6), after termination of the bounded version of the algorithm,
no patterns are deemed contradictory on the basis of having surpassed the maximum
number of runs; the resulting realizable trace patterns represent a complete characterization
of the trace pattern of the protocol. The Scyther simulation tool is built on the principle
and definition presented in Equation (6). Upon initial testing, the Scyther processes the
SPDL code of the protocol to ensure the compliance of the runs and the completeness of
the protocol’s process. Therefore, the Scyther simulation captures all possible behaviors of
the trace pattern.

The experimental validation of the proposed assessment technique is illustrated in
Section 6.

5. Implementation

In this section, the laboratory setup of the substation protection system is discussed
including the equipment used, the configuration of the IEDs, as well as the architecture and
data flows of the communication network. Next, the experimental validation of the claims
proposed in Section 4 is explained. Finally, it is demonstrated with experimental results
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how the injection of falsified information in the GOOSE protocol can cause operational
disorder in the physical power grid.

5.1. Proposed Cyber-Physical Testbed

Figure 2 shows the overall system architecture of the physical model of the power
system, which represents a typical microgrid consisting of an emergency Diesel Generator
(DG), a Double-Fed Induction Generator (DFIG) wind farm, and two load centers. During
grid-connected mode, the microgrid is connected to the main grid through a 220 kV/25 kV
step-down transformer and a mains circuit breaker (CBmain) enabling both grid-connected
and islanded modes of operation.

Figure 2. Architecture of the proposed test system.

To develop the experimental testbed, a real-time co-simulation of the power system
components and ICT infrastructures consisting of communication network elements and
protection IEDs is adopted. Thus, to establish a real-world scenario for the interaction
between power system elements and IEDs within the power protection system, the concept
of HIL using OPAL-RT is adopted to ensure real-time characteristics for the experimen-
tal testbed. The OPAL-RT (OPAL-RT provides the hardware PC/FPGA-based real-time
simulators for testing equipment and Rapid Control Prototyping (RCP) systems. De-
tails can be found at https://www.opal-rt.com/ (accessed on 6 January 2021)) platform
offers real-time simulations and HIL testing facilities for the design, testing, and opti-
mization of physical systems used in a number of industries, including the power grid
for industrial use, as well as academic studies. To simulate the power system operations
of our proposed architecture (Figure 2), a high-performance real-time digital simulator
known as OP5600 (OP5600 is a high performance equipment for real-time simulations
of physical systems for research and industry applications. Details can be found at
https://www.opal-rt.com/simulator-platform-op5600/ (accessed on 6 January 2021) is
used at the Victoria University Zone Substation (VUZS) laboratory [38,39]. Moreover, the
OP5600 chassis supports the IEC 61850 communication standard. Additionally, two work
stations are used as clients to run the IEC 61850-based GOOSE protocol.

https://www.opal-rt.com/
https://www.opal-rt.com/simulator-platform-op5600/
https://www.opal-rt.com/simulator-platform-op5600/
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In parallel with the power system simulation, the power protection system is devel-
oped over a LAN where IEDs from ABB (namely the REF615 (REF615 is a dedicated feeder
IED for protection and control applications from ABB which is compatible with the IEC
61850 communications standard. Details can be found at https://new.abb.com~/products/
REPREF615/ref615 (accessed on 6 January 2021)) relays) are configured to communicate
their data using the IEC 61850 GOOSE messaging service. The data communication be-
tween the real-time simulator and the IEDs in the power protection system is achieved
through a LAN-based network interface card interface on the OPAL-RT chassis where
a LAN-based switch is also utilized. From Figure 2, the LAN for data communication
between IEDs is represented by the red dashed line. Figure 3 shows the actual labora-
tory setup, which includes the CBs and their respective IEDs. Table 3 summarizes the
cyber-physical equipment, tools, and methods used in this experiment.

Figure 3. Practical setup of the proposed test system.

Table 3. Devices, tools, and methods used in the experiment.

Device, Tool, or Method Description

OP5600 Real-time digital simulator
IEC 61850 IEC 61850 protocol card
REF615 Protective and control relay of power lines
Ethernet switch LAN connectivity
SPDL Software tool for security protocol verification
Wireshark Network traffic analysis for GOOSE message sniffing
Eclipse Java IDE for encoding GOOSE data messages

5.2. Data Flow for Communication

Here, the communication flow for the proposed system is demonstrated. During the
experiment, a simulated GOOSE message is used based on OPAL-RT’s real-time simulation
environment. The exchanged data include issuing tripping commands (opening or closing
CBs), interlocking functions, and reading status. The data flow of the GOOSE protocol in
the proposed system has the following steps.

Step 1: In this step, user-defined data are generated. During IED configuration, four kinds
of IED settings are defined (see the GOOSE frame structure in Figure 4). Each setting

https://new.abb.com~/products/REPREF615/ref615
https://new.abb.com~/products/REPREF615/ref615


Sensors 2021, 21, 1554 10 of 20

designates a state or a function of the protective relay and is represented by three bits.
These data are shown in Figure 4 by the Data field. As four SubIEDs are considered, twelve
bits are transmitted to the multicast network by the PubIED.
Step 2: Here, the generated data are sent to the PubIED.
Step 3: The PubIED encodes, maps, and models the data compliant with the IEC 61850
data modeling [13].
Step 4: After the encoding and data modeling in Step 3, the PubIED generates the GOOSE
message. The generated GOOSE data are mapped to the Ethernet data frame, eliminating
headers of the other higher layers of the Open Systems Interconnection model. In this
paper, the GOOSE data frame structure is analyzed following the definitions of the GOOSE
protocol in IEC 61850 Part 8-1 [10,13].
Step 5: The GOOSE frame is published to the LAN-based multicast network.
Step 6: Here, every subscribing IED will receive the message and filter out the message if
the IED’s settings match the received GOOSE message.

Figure 4. GOOSE frame structure.

For the protection application in a smart grid substation system, the IEC 61850 Edition
2 communication standard requires that the end-to-end GOOSE data transfer should be
within 4 ms considering a 60 Hz frequency of the power system for one of the follow-
ing message types: trip, interlocking, inter-trips, and logic discrimination between protection
functions [17].

The data transfer time includes the time taken by the PubIED when encoding, process-
ing, and mapping the generated user signal into the GOOSE dataset, when transmitting
the GOOSE data to the network, and when this GOOSE message is being received and
processed by the SubIEDs. Under the GOOSE model, there is no acknowledgment between
the SubIED and PubIED. Hence, the PubIED ensures the reliability of data delivery to
the SubIED by means of multiple retransmissions, with a variable and decreasing step
until a stable condition is reached as follows. Each GOOSE message in the retransmission
sequence carries a TTL parameter to inform each SubIED of the maximum time to wait
for the next re-transmission. The retransmission time is stopped when a new event occurs
in the substation with an indication of a new incoming GOOSE frame. The state number
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(stateNum) within the GOOSE frame structure identifies whether the GOOSE frame is a
new message or a retransmitted one.

The data flow of the GOOSE protocol is illustrated in Figure 5 and summarized below:

Figure 5. Data flow of the GOOSE protocol without IEC 62351.

1. From the PubIED side:

• The PubIED sends a new GOOSE message to the network. The retransmission timer
is started based on the PubIED’s TTL parameter. Sequence number (seqNum) is set to
zero. It is recommended that the retransmission timer be less than (actually half) of
the TTL value.

• The retransmission time expiration indicates the seqNum is incremented.
• Upon retransmission, a GOOSE message is transmitted, and the next retransmission

interval is used.

2. From the SubIED(s) side:

• SubIED(s) receives a new GOOSE message, then begins a TTL timer.
• The TTL timer expires.
• It will receive another retransmission or a new GOOSE message.

When an IED detects a fault, it sends a GOOSE message to the OPAL-RT (Step 12).
Then, the OPAL-RT will send a trip command to the CB (Step 13).
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6. Experimental Validation of GOOSE’s Vulnerabilities

The aim of this experiment is to identify the possible vulnerabilities and attack trace
patterns of user-defined parameters and roles in an insider attack scenarios of the GOOSE
message exchange protocol. The experiment uses trace patterns to verify the complete
characterization and correctness of the roles involved in the communication as defined in
Section 4. This is important in falsified insider attack scenarios as any roles can act as a
malicious intruder.

6.1. Experimental Setup

The GOOSE protocol description was written in the Security Protocol Description
Language (SPDL) [18] semantics to interpret the communication flow of the protocol in a
Scyther understandable format. As illustrated in Figure 6, the GOOSE communication flow
starts from OP5600 by sending three user-defined parameters below, named the Protocol
Data Unit (PDU), to the publisher.

Figure 6. SPDL flow of the GOOSE protocol without IEC 62351.

• IEDSet: illustrated as the IED settings in Figure 4;
• f lag: detailed in Figure 4;
• data: user-defined data in OP5600 as illustrated in Figure 5.

The publisher prepares the GOOSE message as ENCAP(PDU)GPDU (ENCAP =
Encapsulate), which includes all the header information and the PDU, as illustrated in
Figure 7. For our security analysis, all header information is presented as ENCAP. Addi-
tionally, all header information within the ENCAP are suppressed to make the vulnerability
analysis more focused towards the three user-defined parameters in the context of an in-
sider attack scenario. The publisher then broadcasts the GPDU to all subscribers. In
the next transmission, the subscriber and publisher interchange their roles and transmit
GOOSE messages with the same format, but different user setting values to mimic actual
power system scenarios. In the final transmission, the subscriber updates the SCADA
system based on the received information, as illustrated in Figure 6.
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Figure 7. SPDL flow of the GOOSE protocol with IEC 62351.

In Figure 7, the IEC 61850 security extension, namely IEC 62351, is considered with
respect to the implementation described in Figure 6. The IEC 62351 security extension
uses the HMAC with a digital certificate to verify the authenticity of the GOOSE message.
SHA256 is considered for the implementation of the hashing security extension of Scyther.

Along with the SPDL code to interpret both Figures 6 and 7, the settings presented in
Table 4 were used to configure Scyther. As shown in Table 4, the protocol ran five interaction
and best attack scenarios settings in our simulation. Here, five iterations ensured that
the simulation considered trace patterns throughout the five executions of the protocol.
The settings of the simulation are adjustable based on the need of the actual system. The
proposed method works as an incremental process and a passive plug-in to collect the
pattern of live executions from the actual system. Therefore, there will be very little or no
impact of the proposed method on the actual system.

Table 4. Scyther’s configuration detail for the experiment.

Options Values

Runs 5

Type Type matching

Search pruning Best attack scenarios

Maximum number of patterns per claim 10

Table 5 shows the security claims Alive, Weakagree, Nisynch to prove the correctness
and to determine the complete characterization of the roles [35] and [20]. Furthermore, the
secrecy of user-defined values (flag, data, and IEDSet) is tested in our experiment. The
definition of the Scyther security claims were adapted from [35] and [20].
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Table 5. Security claims for the GOOSE protocol’s communication.

Role(s) Claims Values

Pub and Sub Alive N/A

Pub and Sub Weakagree N/A

Pub and Sub Nisynch N/A

Pub and Sub Niagree N/A

Pub and Sub Secret flag

Pub and Sub Secret IEDSet

Pub and Sub Secret data

6.2. Results and Discussion

The Scyther experiment on the GOOSE publish-subscribe-based protocol reveals some
insight about the vulnerabilities that a smart power system may face from a malicious
insiders. The results are presented in two main categories: role characterization and
security claim verification in Tables 6 and 7, respectively. Moreover, the outcome of the
automated security claim verification is presented in Table 7.

Table 6. Role characterization for correctness and completeness.

Role(s) Status With Security
(WS) No Security (WOS)

OP5600 Reachable(ok) 435 trace patterns 493 trace patterns

Pub Reachable(ok) 972 trace patterns 1069 trace patterns

Sub Reachable(ok) 36 trace patterns 37 trace patterns

Table 7. Auto and manual security claim verification.

Claims Role Involved WS WOS

Secret data Pub 1 attack found 1 attack found

Secret data Sub No attacks No attacks

Secret flag Pub 1 attack found 1 attack found

Secret flag Sub No attacks No attacks

Secret IEDSet Pub 1 attack found 1 attack found

Secret IEDSet Sub No attacks No attacks

As is shown in Table 6, there are many trace patterns relevant to a role, whereas
in a secure protocol, there must be only one trace pattern to ensure the correctness and
completeness of a role [35] and [20]. These excess trace patterns are vulnerabilities that can
be exploited to create falsified attacks. It is important to note that although the security
extension (implementation of IEC 62351) helped to reduce the number of trace patterns,
due to the unencrypted transmissions and multicasting of the same information repeatedly,
there is still a significant number of trace patterns that can be used to falsify the user-
generated data of GOOSE messages by an insider attacker.

It can be seen from Table 7 that most of the automated and manual claims related to
user data have one attack scenario at the publisher’s end as the publisher has the authority
to repeatedly send the same message to a group of subscribers in plain text. At the same
time, user data are less prone to falsified attack at the subscriber’s end as it only reads data
with a standard set of criteria. Furthermore, it is important to note based on our simulation
result that all three roles, namely Alive, Weakagree, Nisynch, and Niagree, failed to comply
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with the four characterization security properties. This is due to the excessive trace patterns
that can be used by inside attackers to exploit all roles involved in the GOOSE message
communication. This can further be confirmed by the result in Figure 8. One of such
attacks, presented in Figure 9, illustrates that an intruder Alice masquerading as a Sub
(Subscriber) can use header information ENCAP by taking advantage of the publisher’s
re-transmissions and thereby fool legitimate subscribers to accept malicious PDU and
GPDU that have been prepared using the attacker’s user-defined values.

Figure 8. GOOSE security verification using Scyther.

Figure 9. Attack on subscriber to compromise the Nisynch security property.

7. Falsified Attack Generation and Impact Analysis

In this section, following the vulnerability analysis of the GOOSE protocol discussed
earlier in Section 4, an insider cyberattack scenario is demonstrated. In this demonstration,
an insider attacker who might have familiarity with the substation network architecture is
considered. In particular, a Layer 2 attack based on MAC spoofing is considered. In other
words, the attacker clones the MAC address (which is a very simple technique in most
operating systems) of the publisher and tries to alter the contents of the GOOSE message.
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First of all, from the attacker’s side, a packet sniffing attack is performed using a
network traffic analyzer called Wireshark (It is an open-source software for network and
communication protocol analysis. Details can be found at https://www.wireshark.org/
(accessed on 6 January 2021)). From the Wireshark packets, the attacker learns some
parameters such as the source and destination MAC addresses and the data content of the
GOOSE frame. Then, the attacker clones the source MAC address to mimic a publisher.
Next, the attacker generates false data, by altering the 12 bit data frame in the user-defined
field of the IED settings. Furthermore, the attacker encodes and publishes the modified
GOOSE message to the LAN-based multicast network where the subscribing IEDs receive
the modified data, even for different re-transmissions. For the experimental setup to encode
GOOSE data messages, Eclipse (a Java-based development environment) was used.

In the implementation phase, the network traffic for both the publisher’s and attacker’s
side is monitored. Figure 10a shows a packet captured via Wireshark for the real network
traffic transmitted by the PubIED. As is shown in Figure 10a, the publisher sends 111-
111-111-111 (all true Boolean values representing the IED settings as explained earlier).
Furthermore, from the attacker’s side, the attack scenario is initiated on CB1, where the
IED settings are manipulated in the GOOSE data message frame and published to the
network. In Figure 10b, the resultant change in CB1’s status from closed (1) before attack to
open (zero) after attack is illustrated. The attack is initiated in CB1 around 29.2s later after
the start of the simulation, shown in Figure 10b, where the circuit breaker trips due to the
falsified command. This is also reflected in the Wireshark packet capture tool, shown in
Figure 10c.

Figure 10. (a) GOOSE message captured before attack, (b) change in CB1 status and (c) GOOSE
message captured after attack.

Finally, from the perspective of power system operation, the resulting effect of the
cyberattack on CB1 is illustrated in Figure 11, where the undesirable operation of CB1
leads to the interruption of the power supply (current) for consumers downstream of the

https://www.wireshark.org/
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distribution network. It can be observed that no current flows after CB1 is tripped due
to the falsified information injected into the GOOSE protocol. Moreover, this can further
induce abnormality in the operation of the power system, causing frequency excursion
and cascading failures. In fact, Figure 12 highlights the cascaded effect of the undesirable
operation of CB1 under the proposed cyberattack scenario, which leads to a large-scale
failure of power system operation.

Figure 11. Disruption in the current measurement after injection attack.
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Figure 12. Frequency excursion after injection attack.

8. Conclusions

IEC 61850 is one of the latest communication standards for power grid substation
networks. IEC 61850 includes various communication protocols, including the GOOSE
protocol. This article assessed the vulnerabilities of the GOOSE protocol, with and without
the IEC 62351 security scheme. To validate the proposed architecture, analytical approaches
and real-time HIL-based simulations are performed. In particular, the complete charac-
terization of the roles of the protocol are performed, and automatic security claims are
verified to showcase the impact of data injection attacks. Both analytical approaches and
HIL-based experimental results demonstrate that the GOOSE publish-subscribe-based
communication of the smart power grid exhibits security vulnerabilities and is prone to
malicious attacks even under the compliance of the IEC 62351 security standard. In the
future, the vulnerabilities and impact of emerging data integrity cyber-physical attacks
against power system operations across inter-substation networks can be investigated
considering the IEEE C37.118 communication standard. In addition to the vulnerability
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and impact analysis of cyberattacks, a comprehensive cyber-physical security solution is
required to deter the investigated security flaws. For example, defense countermeasures
for the cyberattacks against the communication protocols of inside substation networks
and beyond can be proposed.
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18. Hofer-Schmitz, K.; Stojanović, B. Towards formal verification of IoT protocols: A Review. Comput. Netw. 2020, 174, 107233.
[CrossRef]

19. Avalle, M.; Pironti, A.; Sisto, R. Formal verification of security protocol implementations: A survey. Form. Asp. Comput. 2014,
26, 99–123. [CrossRef]

20. Cremers, C.J.; Mauw, S.; de Vink, E.P. Injective synchronisation: An extension of the authentication hierarchy. Theor. Comput. Sci.
2006, 367, 139–161. [CrossRef]

21. Elgargouri, A.; Elmusrati, M. Analysis of cyber-attacks on IEC 61850 networks. In Proceedings of the 2017 IEEE 11th International
Conference on Application of Information and Communication Technologies (AICT), Moscow, Russia, 20–22 September 2017;
pp. 1–4.

22. Elgargouri, A.; Virrankoski, R.; Elmusrati, M. IEC 61850 based smart grid security. In Proceedings of the 2015 IEEE International
Conference on Industrial Technology (ICIT), Seville, Spain, 17–19 March 2015; pp. 2461–2465. [CrossRef]

23. Xu, Y.; Yang, Y.; Li, T.; Ju, J.; Wang, Q. Review on cyber vulnerabilities of communication protocols in industrial control systems.
In Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28
November 2017; pp. 1–6.

24. Hoyos, J.; Dehus, M.; Brown, T.X. Exploiting the GOOSE protocol: A practical attack on cyber-infrastructure. In Proceedings of
the 2012 IEEE Globecom Workshops, Auckland, New Zealand, 20–23 January 2012; pp. 1508–1513.

25. Kush, N.S.; Ahmed, E.; Branagan, M.; Foo, E. Poisoned GOOSE: Exploiting the GOOSE protocol. In Proceedings of the Twelfth
Australasian Information Security Conference (AISC 2014) [Conferences in Research and Practice in Information Technology,
Volume 149], Auckland, New Zealand, 20–23 January 2014; pp. 17–22.

26. Kabir-Querrec, M.; Mocanu, S.; Thiriet, J.M.; Savary, E. A test bed dedicated to the study of vulnerabilities in IEC 61850 power
utility automation networks. In Proceedings of the 2016 IEEE 21st International Conference on Emerging Technologies and
Factory Automation (ETFA), Berlin, Germany, 6–9 September 2016; pp. 1–4.

27. Kim, J.C.; Kim, Y.E.; Kim, T.H. Implementation of Secure GOOSE Protocol using HSM. Appl. Mech. Mater. 2013, 260, 236–241.
[CrossRef]

28. Kriger, C.; Behardien, S.; Retonda-Modiya, J.C. A detailed analysis of the GOOSE message structure in an IEC 61850 standard-
based substation automation system. Int. J. Comput. Commun. Control. 2013, 8, 708–721. [CrossRef]

29. Yang, Y.; Jiang, H.; McLaughlin, K.; Gao, L.; Yuan, Y.; Huang, W.; Sezer, S. Cybersecurity test-bed for IEC 61850 based smart
substations. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015;
pp. 1–5.

30. Tebekaemi, E.; Wijesekera, D. Designing an IEC 61850 based power distribution substation simulation/emulation testbed for
cyber-physical security studies. In Proceedings of the First International Conference on Cyber-Technologies and Cyber-Systems,
Venice, Italy, 9–13 October 2016; pp. 41–49.

31. Fovino, I.N.; Carcano, A.; De Lacheze Murel, T.; Trombetta, A.; Masera, M. Modbus/DNP3 State-Based Intrusion Detection
System. In Proceedings of the 2010 24th IEEE International Conference on Advanced Information Networking and Applications,
Perth, Australia, 20–23 April 2010; pp. 729–736. [CrossRef]

32. Clarke, G.; Reynders, D.; Wright, E. Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems; Newnes: Oxford, UK,
2004.

33. Kanabar, M.; Cioraca, A.; Johnson, A. Wide area protection & control using high-speed and secured routable goose mechanism.
In Proceedings of the 69th Annual Conference for Protective Relay Engineers (CPRE) IEEE, College Station, TX, USA, 4–7 April
2016; pp. 1–6.

34. Ray, B.R.; Chowdhury, M.U.; Abawajy, J.H. Secure object tracking protocol for the Internet of Things. IEEE Internet Things J. 2016,
3, 544–553. [CrossRef]

35. Ray, B.R.; Abawajy, J.; Chowdhury, M.; Alelaiwi, A. Universal and secure object ownership transfer protocol for the Internet of
Things. Future Gener. Comput. Syst. 2018, 78, 838–849. [CrossRef]

36. Cremers, C.; Dehnel-Wild, M.; Milner, K. Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5; Foley, S.N.,
Gollmann, D., Snekkenes, E., Eds.; Computer Security–ESORICS 2017; Springer International Publishing: Cham, Switzerland,
2017; pp. 389–407.

37. Cremers, C.; Mauw, S. Operational Semantics and Verification of Security Protocols; Springer: Berlin/Heidelberg, Germany, 2012.

http://energy.mit.edu/wp-content/uploads/2017/07/Cybersecurity-White-Paper.pdf
http://energy.mit.edu/wp-content/uploads/2017/07/Cybersecurity-White-Paper.pdf
https://webstore.iec.ch/preview/info_iec61850-5%7Bed1.0%7Den.pdf
http://dx.doi.org/10.1016/j.comnet.2020.107233
http://dx.doi.org/10.1007/s00165-012-0269-9
http://dx.doi.org/10.1016/j.tcs.2006.08.034
http://dx.doi.org/10.1109/ICIT.2015.7125460
http://dx.doi.org/10.4028/www.scientific.net/AMM.260-261.236
http://dx.doi.org/10.15837/ijccc.2013.5.329
http://dx.doi.org/10.1109/AINA.2010.86
http://dx.doi.org/10.1109/JIOT.2016.2572729
http://dx.doi.org/10.1016/j.future.2017.02.020


Sensors 2021, 21, 1554 20 of 20

38. Peidaee, P.; Kalam, A.; Shi, J. A Real-Time Simulation Framework for System Protection in Smart Grid Applications. In
Proceedings of the 2018 Australasian Universities Power Engineering Conference (AUPEC), Auckland, New Zealand, 27–30
November 2018; pp. 1–5.

39. Peidaee, P.; Kalam, A.; Moghaddam, M.H. Developing a simulation framework for integrating multi-agent protection system
into smart grids. In Proceedings of the 2017 Australasian Universities Power Engineering Conference (AUPEC), Melbourne,
Australia, 19–22 November 2017; pp. 1–6.


	Introduction
	Contribution
	Organization

	Related Work
	Background: Communication Standards for Substation Protection
	IEC 61850
	GOOSE Protocol

	Definition of the Security Properties Evaluated by Scyther  
	Implementation
	Proposed Cyber-Physical Testbed
	Data Flow for Communication

	Experimental Validation of GOOSE's Vulnerabilities
	Experimental Setup
	Results and Discussion

	Falsified Attack Generation and Impact Analysis
	Conclusions
	References

