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Abstract: Acacia mangium is a widely grown tree species across the forests in Brunei Darussalam,
posing a threat to the existence of some native species in Brunei Darussalam. These species produce
large quantities of lignocellulosic biomass from the tree parts comprising the phyllodes, trunk,
bark, twigs, pods, and branches. This study examined the thermochemical characteristics and
pyrolytic conversion behavior of these tree parts to assess the possibility of valorization to yield
bioenergy. Proximate, ultimate, heating value, and Fourier Transform Infrared Spectroscopy (FTIR)
analyses were performed to assess the thermochemical characterization, while thermogravimetric
analysis was conducted to examine the pyrolytic degradation behavior. Proximate analysis revealed
a moisture content, volatile, fixed carbon, and ash contents of 7.88–11.65 wt.%, 69.82–74.85 wt.%,
14.47–18.31 wt.%, and 1.41–2.69 wt.%, respectively. The heating values of the samples were reported
in a range of 19.51–21.58 MJ/kg on a dry moisture basis, with a carbon content in the range of
45.50–50.65 wt.%. The FTIR analysis confirmed the heterogeneous nature of the biomass samples
with the presence of multiple functional groups. The pyrolytic thermal degradation of the samples
occurred in three major stages from the removal of moisture and light extractives, hemicellulose and
cellulose decomposition, and lignin decomposition. The bio-oil yield potential from the biomass
samples was reported in the range of 40 to 58 wt.%, highlighting the potential of Acacia mangium
biomass for the pyrolysis process.

Keywords: Acacia mangium; Brunei Darussalam; invasive species; biomass characterization; thermo-
gravimetric analysis

1. Introduction

The search for substitute energy resources is growing as fossil fuel resources are
rapidly diminishing, and the awareness of environmental pollution is increasing [1–3].
Energy is one of the most vital commodities of present life, with its demand growing
constantly. The vast majority of the energy requirements are being met through fossil fuels.
The interest in finding alternative energy resources is increasing as emphasis has been
placed on energy recovery from solar, tidal, wind, and biomass resources [4–7]. These
resources are renewable and sustainable, but the energy density and economic recovery of
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energy from these sources are the real challenges [8]. Biomass is an abundant renewable
energy resource available globally with benefits over other resources because the pyrolytic
transformation of biomass produces biofuels in solid, liquid, and gaseous states [9,10].
Pyrolysis is a thermochemical conversion technique wherein biomass feedstock is heated
at high temperatures in an oxygen-free environment. The properties of pyrolysis yields are
influenced greatly by the properties of the biomass and the process parameters maintained
through the conversion of biomass. Therefore, comprehensive knowledge of the physico-
chemical properties and the thermal degradation behavior of the feedstock is a prerequisite
to the valorization of biomass [11,12].

Acacia mangium (AM) are exotic tree species introduced to Brunei Darussalam in the
early 1990s for forestry plantations and to provide timber for the furniture industry [13,14].
AM is indigenous to Australia and is categorized as a fast-growing species. This species
has been recognized as invasive and is posing threats to the biodiversity of Brunei by
endangering some local species, such as Karangas, in the country, which are on the edge
of depletion and has negative impacts on the soil properties [15–17]. AM species are
abundantly available throughout the forests of Brunei, and vast amounts of biomass can
be harvested from its tree parts to offer sustainable feedstock to produce biofuels in the
country. Brunei is heavily reliant on fossil resources to meet its energy requirements and
committed to shift a major share of energy production from fossils to renewable resources
under the country’s policy document “Vision Brunei 2035” [14].

The thermochemical characteristics study of the biomass is a widely practiced prereq-
uisite prior to its valorization as it provides first-hand information regarding the energy
potential, viability of feedstock, process parameters design, and environmental sustain-
ability [18–20]. Griffin et al. reported the global aspects of using Australian acacias for
multiple applications including pulp and paper, soil applications, solid wood products,
and fuel applications and the anticipated future trends [21]. Chemetova et al., reported
the characterization of mature and juvenile plant tissues for the sustainable valorization
of biomass from Acacia melanoxylon [21] while Ferreira et al. reported on the potential of
Acacia dealbata as a raw material to produce bioethanol [21]. Titiloye et al. presented a
study on the thermochemical characterization of the agricultural residues in West Africa to
produce bioenergy [22]. Hernandez et al. employed the thermochemical characterization
study to report the feasibility of biofuel production from waste banana peduncle [23]
while Singh et al. reported on the widespread characterization via the application of
proximate analysis, ultimate analysis, and compositional analysis of various indigenous
lignocellulosic biomasses to assess the bioenergy production potential [24]. Kan et al. re-
viewed the influence of the properties of biomass and process parameters on the properties
of the pyrolysis products to show the significance of thermochemical characterization
studies [25]. Furthermore, several other studies by Garcia et al. [26], Odetoye et al. [27],
Abdullah et al. [28], and Naik et al. [29] have also reported on the biofuel characteristics of
several types of biomass for potential valorization via thermochemical conversion routes.

In line with the efforts of the Brunei government, this study aimed at the evaluation
of the suitability and potential of AM biomass to harvest bioenergy via the application
of thermochemical routes especially the pyrolysis process. To the best of the authors’
knowledge, there are no reports on assessing the thermochemical characterization and
pyrolytic conversion behavior of individual tree parts of AM trees in Brunei Darussalam.
This study is expected to provide a useful dataset for the beneficial management of biomass
from AM species in Brunei Darussalam via a thermochemical conversion route particularly
for the application of the pyrolysis process to produce bio-oil and biochar for bioenergy
and other value-added applications.

2. Materials and Methods

The samples were collected from the AM trees growing in the forest within the
premises of Gadong, Brunei Darussalam, including the biomass from phyllodes, trunk, bark,
twigs, pods, and branches. The samples were dried under ambient atmospheric conditions
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for 10 days and then crushed using the ASTM E 1757-01. The crushed biomass was sieved
through the 60 mesh sieve to retain the uniform particle size. The samples were carefully
packed in plastic bags to avoid cross mixing and contamination. Proximate analysis,
ultimate analysis, and heating value analysis were performed to study the thermochemical
characterization of the biomass samples. The moisture content in the biomass samples
was determined according to the ASTM E871-82 procedure while the volatile matter
and ash content were determined following the ASTM method D3175-07 and ASTM
method D3174-04, respectively. The fixed carbon content in the biomass samples was
determined by calculating the difference of moisture, volatile, and ash content from 100.
The ultimate analysis of the biomass samples was performed to determine the carbon,
hydrogen, nitrogen, and sulfur content in the samples using a CHNS Analyzer (model
Flash EA 1112 Series) from CE Instruments, Thermo-Quest, Italy. The oxygen content was
determined by calculating the difference using Equation (1).

Oxygen content (wt. %) = 100 − (C + H + N + S) (1)

The heating values of the samples were determined using a model C-200 calorimeter
(P.A. Hilton Ltd. United Kingdom) following the procedure given in ASTM D 5468-02. The
FTIR analysis was performed using an FTIR spectroscopic analyzer from Perkin Elmer. The
spectra were recorded at the scan rate of 8 at the step size of 1 cm−1 in the 600 to 4000 cm−1

range. Further detailed procedures and equations about the proximate analysis, ultimate
analysis, and heating value analysis are provided as Supplementary Data. The pyrolytic
degradation behavior of the biomass samples was studied by means of thermogravimetric
analysis (TGA and DTG) in the range of 50 ◦C to 900 ◦C at a heating rate of 25 ◦C/min
under a constant supply of 99.99% nitrogen using a thermogravimetric analyzer, model
TGA-7, Perkin Elmer, United States of America (USA). A precisely measured quantity (5 g)
of each sample was used to heat under pyrolysis conditions in the heating chamber of the
thermogravimetric analyzer to evaluate the biomass decomposition patterns and study the
pyrolytic degradation behavior.

3. Results and Discussion
3.1. Proximate Analysis

Table 1 lists the proximate analysis of the AM biomass samples. Proximate analysis is
important for determining the potential and suitability of biomass and provides the infor-
mation about the moisture, volatile matter, fixed carbon and ash contents. The moisture
content in biomass plays a vital role in selecting an appropriate conversion process and has
a significant effect on the properties of biofuels produced from pyrolysis especially bio-oil
in terms of its heating value, viscosity, stability, homogeneity, and density [30]. A higher
amount of moisture in biomass reduces the heating temperature in the reactor during the
thermochemical processes because they involve endothermic reactions that can disturb the
overall energy balance of the process [31,32].

The moisture content also affects the storage, handling, and transport of biomass
feedstock. Generally, moisture content of less than 15% in biomass is preferred for the
conversion via pyrolysis process [33]. The moisture in the AM biomass was reported
to be in the range of 7.88 to 11.65 wt.%, with the lowest value reported in the pods
and the highest value reported in the trunk which showed a good perspective for the
use of this biomass as the feedstock of the pyrolysis process to produce bio-oil more
efficiently [34,35]. Charusiri reported the moisture contents in paper mill residue biomass
of 6.07%, which was lower than that reported in the phyllodes, bark, trunk twigs, and
branches but comparable to pods biomass [36]. Marsoem and Irawati reported a moisture
content of 13.3%, 11.2%, and 13.0% in the bottom, middle, and top tree parts of the black
wattle (Acacia Auriculiformis), respectively, presenting comparable values to the trunk, twigs,
and branch biomass reported in the present study [37]. Moreover, the moisture content
in the AM biomass was comparable to other biomass studies from forest residues, woody
biomass, and industrial waste assessed for bioenergy production reported [27,38,39].
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Table 1. Proximate analysis and calorific values of the samples.

Sample MC
(wt.%)

VM
(wt.%)

FC
(wt.%)

Ash
(wt.%)

HHV
(MJ/kg)

Phyllodes 9.06 ± 0.17 70.52 ± 0.45 18.31 ± 0.09 2.11 ± 0.16 21.16

Trunk 11.65 ± 0.15 69.82 ± 0.39 16.71 ± 0.18 1.82 ± 0.19 19.51

Bark 9.78 ± 0.09 73.35 ± 0.29 15.45 ± 0.10 1.42 ± 0.18 21.50

Twigs 10.29 ± 0.12 74.85 ± 0.56 14.47 ± 0.10 1.41 ± 0.14 20.87

Pods 7.88 ± 0.11 73.80 ± 0.35 15.63 ± 0.13 2.69 ± 0.29 21.58

Branches 9.98 ± 0.10 72.39 ± 0.19 15.38 ± 0.10 2.25 ± 0.20 21.26
MC: moisture contents, VM: volatile matter, FC: Fixed Carbon, HHV: Higher heating values.

Volatile matter is the fraction of biomass that transforms into vapors during the py-
rolysis process and condense to produce bio-oil and non-condensable gaseous products.
The vapors include mainly hydrocarbons, hydrogen, carbon monoxide, carbon dioxide,
and tars present in the biomass. A higher fraction of the volatile matter in the biomass
feedstock indicates its ease of conversion and disintegration through pyrolytic conver-
sion [29]. Moreover, a feedstock with a greater volatile fraction tends to yield greater
percentages of bio-oil [40]. On the other hand, the correlation between the volatile matter
in biomass with the heating value is complicated because a higher percentage of volatile
matter cannot ensure a superior heating value as some of the volatile matter constituents
are non-combustible fractions, such as CO2 and H2O [41]. The volatile matter in AM
biomass samples was reported in the range of 72.39–76.52 wt.% with the lowest value
reported in phyllodes biomass showing a higher tendency of phyllodes biomass to produce
biochar among the samples from AM biomass. Whereas the highest fraction of the volatile
matter was reported in the pod biomass indicating its tendency to produce higher yields
of bio-oil among the samples. Usually, volatile matter content in biomass feedstocks is
ranged between 60 to 85 % and from this perspective the AM biomass was reported to have
the better potential to produce bio-oil via pyrolysis process and syngas via gasification
process [19,42]. Furthermore, the volatile matter in the AM was found to be higher than in
the pine cone heart biomass (66%), Cocoa beans husk (69%), and Miscanthus (45%) while it
was found to be in good comparison with the Pine cone leaf biomass (75.9%), Wheat straw
(76%) and Holm oak branch chips (75.9%) [38] and other biomass and residues studied
for energy conversion, such as leaf litter, paper mills residues, eucalyptus hybrid, and
A. auriculiformis [18,36,43].

Ash content in biomass is a non-combustible component comprising of inorganic
minerals and is generally categorized into three groupings, including the water-soluble,
soluble in organic solvents, and pure compounds [44]. The ash content significantly
influences the quality of products formed during the thermochemical transformation. Its
higher percentage in feedstock results in severe technical challenges, such as slag formation,
product quality deterioration, corrosion problems, and increased processing costs [45].
Lower ash content is highly favorable for the biomass to use as a pyrolysis feedstock.
The ash content in the AM biomass was in the lower range (1.41 to 2.69 wt.%), making it
promising from a bioenergy perspective. The ash content in the AM biomass samples was
lower than the values reported by Akhtar et al., 2015 for mango, ashoka and poplar leaf
litter biomass, which were in the range of 3.70 to 9.46 % [18]. A study on Acacia nilotica
reported an ash content of 7.3% [46]. Kumar et al., 2011 and Charusiri, 2015 reported
an ash content of 0.30% and 9.32% in the biomass from A. auriculiformis and paper mills
residues, respectively [36,43]. The differences in ash content among the different biomass
feedstock in the literature and current study were attributed to the variations in the soil and
environmental effects, which affect the ash content and properties of the biomass [19]. The
feedstock with a high ash percentage usually entails the system of ash elimination before
processing [47]. The highest and lowest ash percentage among the AM biomass samples
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was reported from the pods and twigs biomass, respectively. Besides, a small fraction of
ash in biomass could impart a positive effect during pyrolysis processing by providing
some catalytic activity for the improved conversion of biomass to products.

The fixed carbon content is the fraction of biomass that usually does not decompose
during pyrolytic conversion and contributes to biochar production. The fixed carbon
content in the AM samples was reported to be in the range of 14.47–18.31 wt.%. The
phyllodes biomass showed the highest fixed carbon content highlighting its potential for
the higher yields of biochar, which was reconfirmed from the volatile matter content as
well. The twigs biomass had the lowest fixed carbon content but the highest percentage of
volatile matter, reconfirming its potential for producing higher yields of bio-oil from the
pyrolysis process.

3.2. Ultimate Analysis

Table 2 lists the results of the ultimate analysis, and other relevant properties of AM
biomass samples. This analysis is also of fundamental importance for biomass before its
use in the conversion process. The carbon, hydrogen, and oxygen content are the most
important contents regarding its fuel value. In contrast, the nitrogen and sulfur content
are essential from an environmental emissions perspective. The carbon content in the AM
biomass samples was reported in the range of 45.50–50.65 wt.% with the highest and lowest
value reported for the pods and trunk biomass, respectively. The carbon content in samples
could be attributed to the relevant heating values of the biomass samples. Carbon, oxygen,
and hydrogen are the principal elements present in the plant biomass as building blocks
of the major constituents, including cellulose, hemicellulose, and lignin. They constitute
approximately 90% of the total mass of the plants [48]. The content fractions of these
elements in biomass are influenced by the growing conditions of the plants, and these
constituents have significant effects on the pyrolytic behaviors of the biomass and the
products produced [48]. A higher fraction of carbon and hydrogen content and a lower
fraction of oxygen content in the biomass are preferred and result in the better properties
of biofuels [49]. The hydrogen content in AM biomass was reported to be in a range of
5.26–6.01 wt.% with the highest and lowest values reported in phyllodes and bark biomass,
respectively. While oxygen content in the biomass was reported to be in the range of 43.11–
48.27 wt.% with the lowest and highest values reported in the twigs and trunk biomass,
respectively. The highest percentage of carbon content in the pods biomass resulted in the
maximum heating value amongst the samples studied while the lowest carbon and highest
oxygen content in the trunk biomass could be attributed to its lowest heating value among
all the samples studied.

Table 2. Ultimate analysis and other related properties.

Biomass
Sample C (%) H (%) N (%) S (%) O * (%) O/C H/C Empirical

Formula

Phyllodes 48.95 ± 0.63 6.01 ± 0.14 1.72 ± 0.04 0.20 ± 0.01 43.12 ± 0.54 0.66 1.47 CH1.47N0.12O0.66

Trunk 45.50 ± 0.59 5.68 ± 0.06 0.49 ± 0.01 0.06 ± 0.01 48.27 ± 0.34 0.79 1.50 CH1.50N0.04O0.79

Bark 47.74 ± 0.27 5.26 ± 0.10 0.94 ± 0.02 0.04 ± 0.00 43.11 ± 0.24 0.68 1.32 CH1.32N0.06O0.68

Twigs 47.08 ± 0.10 5.44 ± 0.07 0.65 ± 0.01 0.01 ± 0.00 46.82 ± 0.36 0.75 1.39 CH1.39N0.04O0.75

Pods 50.65 ± 0.04 5.36 ± 0.01 1.14 ± 0.01 0.16 ± 0.01 45.60 ± 0.21 0.68 1.27 CH1.27N0.08O0.68

Branches 48.09 ± 0.61 5.66 ± 0.03 0.48 ± 0.01 ND 45.77 ± 0.36 0.71 1.41 CH1.41N0.03O0.71

C: Carbon, H: Hydrogen, N: Nitrogen, S: Sulfur, O: Oxygen * Calculated by difference, ND = Not detected.

The nitrogen and sulfur content in the biomass feedstock is considered very important
from the environmental emissions perspectives and the lower percentages of these elements
are highly preferred. The nitrogen content was reported in the range of 0.48–1.72 wt.%
with the highest and lowest values reported in phyllodes and branch biomass, respectively,
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while the sulfur content was also reported in a very low range of 0.01–0.2 wt.%. The
sulfur and nitrogen content in biomass can produce SOx and NOx in the biofuels, which
cause severe environmental pollution and requires additional treatment procedures if the
concentration of these elements exceeds the allowable limits. As per the World Health
Organization (WHO) guidelines, the concentration of SO2 up to 500 µg/m3 should not
be exceeded over the average period of 10 min exposure while for the NO2 at short-term,
concentrations exceeding 200 µg/m3 can cause significant inflammation of the airways [50].
A comparatively higher percentage of nitrogen in the phyllodes than the biomass from
other parts could be attributed to the nitrogen-fixing capabilities of these trees that allow
them to thrive in deprived soil [51].

Figure 1 presents the Van-Krevelen diagram of the AM biomass samples used in this
study along with the other solid fuels, including wood residues (rubber woods, white
mulberry, and black wattle) [52,53], torrefied camphorwood biomass blended with caster
cake biomass at 300 ◦C, 270 ◦C, and 240 ◦C [54], coals of different origins [55], and pyrolyzed
anthracite and untreated anthracite [55]. The H/C and O/C ratios help to identify the
nature and biofuel potential of the fuels as a higher H/C value indicates higher potential.
In contrast, a higher O/C value indicates a lower heating value and volatile content in
biomass [56]. The ultimate analysis of the samples used in this study was in agreement
with the results of different lignocellulosic biomass researched for bioenergy production
via thermochemical routes [19,29,38,57,58]. The lower nitrogen and sulfur concentrations
were very encouraging from an environmental pollution perspective.

Figure 1. Van-Krevelen diagram of the biomass samples in this study with a comparison to other solid fuels.

3.3. Heating Value (HHV) Analysis

The HHV is a parameter for biomass selection that provides direct information about
the energy value as a feedstock for pyrolysis and is defined as the total heat produced by
the burning of a specific amount of biomass [59]. The HHV specifies the amount of energy
content enclosed by specific biomass, and it is often termed as the calorific value. The
HHV of the AM biomass samples was reported in the range of 19.51 MJ/kg–21.58 MJ/kg
on a moisture dry basis. Among the biomass samples, the highest and lowest HHV was
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reported from the pods and trunk, respectively, which could be reasoned from the higher
percentage of carbon and the lowest moisture content in the pods and vice versa. The
biomass from twigs showed an HHV of 20.87 MJ/Kg regardless of the highest volatile
matter content reported among the biomass samples used in this study. This reconfirmed
that a higher percentage of volatile matter does not guarantee a higher HHV as discussed in
the above section. This probably can be attributed to the high fractions of non-combustible
components, such as CO2 and H2O, in the volatile matter and the higher oxygen value.

The HHV of the AM biomass samples was higher than the HHV reported from
Malaysian local tree species (Sentang and Sesendok), which had an HHV of 16.84 MJ/kg
and 16.95 MJ/Kg, respectively [60]. Moreover, the HHV reported in the present study were
in good agreement with the forest biomass residues and woody biomass, including chips
of the Chestnut tree, Eucalyptus bark, Cypress fruit biomass, Alder, and Hazelnut chips
reported by García et al. [26], as well as oil palm, Euphorbia rigida, Sesame stalk, Acacia
nilotica, A. auriculiformis, and palm kernel cake [43,46,61,62]. The difference in the HHV
among the AM samples could be reasoned from the variation in the moisture content,
carbon, hydrogen, and oxygen contents. Overall HHV analysis of the AM biomass samples
highlighted its decent potential for energy conversion.

3.4. Fourier Transform Infrared Analysis (FTIR)

The FTIR spectra of the biomass samples from AM are shown in Figure 2 while
Table 3 presents the analysis of the peaks attained from the FTIR spectra based on the
literature [18,20,29,63,64].

Figure 2. FTIR spectra of (a) phyllodes (b) trunk (c) bark (d) twig, (e) pod, and (f) branch biomass
samples.

The heterogeneous nature of the AM biomass was confirmed by the identification of
multiple functions present in the cellulose, hemicellulose, and lignin components of the
samples. The functional groups including the O-H stretching in the Phenols, and alcohols
(border peaks) were attained in the range of 3399–3423 cm−1, while the alkanes/primary
amines or alkanes and acids or aliphatic H–C–H stretching peaks were attained in the
range of 2914–2928 cm−1. The C = O, C = C, H–O–H stretching and deformation was
observed in the trunk, twigs, and branch biomass while Aromatic C=C ring stretching in
all the samples was reported in the range of 1623 –1638 cm−1. The aromatic C–C stretching,
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deformation of C–H was observed in all the AM samples except pod biomass in the range
of 1438–1449 cm−1. The C–H deformation in hemi-cellulose and cellulose was observed in
the range of 1342–1373 cm−1 in all the samples. Aromatic C–O stretching was observed in
the range of 1028–1072 cm−1 while the peaks in the range of 833–846 cm−1 were associated
with the aromatic rings stretching and vibrations.

Table 3. Functional groups detected in the biomass samples by FTIR spectroscopy.

Phyllodes Trunk Bark Twigs Pods Branches Functional Group

3403 3423 3399 3423 3404 3423 Phenols, and alcohols (broader peaks)

2921 2914 2918 2914 2928 2918 Alkanes/primary amines or Alkanes and
acids/Aliphatic H–C–H stretching

- 1732 - 1728 - 1732 C = O, C = C, H–O–H

1630 1638 1623 1628 1630 1637 Aromatic C=C ring stretching

1441 1446 1449 1438 - 1441 aromatic C–C stretching, Deformation of C–H

1349 1342 1353 1346 1373 1355 C–H deformation in Hemicellulose and cellulose

- 1248 - - - 1246 Esters or ethers

1034 1053 1028 1056 1072 1059 Aromatic C–O stretching

838 846 842 839 833 835 Aromatic C-H out of plane bending vibration

3.5. Thermal Analysis (TGA and DTG Study)

The thermal analysis is a commonly used technique to examine the pyrolytic charac-
teristics of biomass feedstock and helps to understand the degradation behavior during
thermochemical conversion processes. The degradation of biomass samples was studied in
the temperature range of 50 ◦C to 900 ◦C at a heating rate of 25 ◦C/min using TGA. Figure 3
presents the pyrolytic curves (TGA and DTG) attained from the AM biomass samples.
Several studies have described the examination of the degradation behavior of various
feedstocks using the TGA technique [65,66]. The pyrolytic curves of the biomass from
phyllodes and pods showed that the main decomposition took place between 150 ± 10
and 600 ± 10 ◦C, while for the biomass from the trunk, bark, twigs, and branches it was
reported in the range of 150 ± 10 and 500 ± 10 ◦C. For all the biomass samples, decom-
position was reported to be occurring in three major stages, covering the abstraction of
moisture and light volatiles, main volatilization zone, and long-tailed slow decomposition
of biomass. Table 4 lists the temperature ranges reported from the biomass decomposition
of samples in this study. The first stage of weight loss from phyllodes, trunk, and pods
biomass occurred between 50 and 140 ± 10 ◦C, while it was between 50 and 100 ± 10 ◦C
for bark, twigs, and branches biomass. The second stage, which was regarded as the main
de-volatilization stage corresponding to the decomposition of hemicellulose and cellu-
lose components for the trunk, bark, twigs, and branch biomass, was observed between
200 ±10 ◦C and 450 ± 20 ◦C while it was between 200 ±10 ◦C and 600 ± 20 ◦C for the
phyllodes and pods biomass. During the major de-volatilization stage, the decomposition
of most of the volatile matter in the biomass took place, which contributes in the yield
of bio-oil during pyrolysis. Under this stage of disintegration, the temperature ranges of
220 ± 20 ◦C to 310 ± 20 ◦C and 315 ± 20 ◦C to 450 ± 20 ◦C were attributed to the hemi-
cellulose and cellulose decomposition respectively for the trunk, bark, twigs, and branch
biomass [67]. The biomass degradation resultant from the hemicellulose and cellulose
components was found to be in good comparison with the temperature ranges reported for
the different cellulosic biomasses from Canada, studied for energy potential [29].
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Figure 3. TGA and DTG curves of (a) phyllodes (b) trunk (c) bark (d) twigs, (e) pods, and (f) branch biomass under the
pyrolytic degradation.

For the phyllodes and pods biomass, the temperature range between 220 ± 20 ◦C to
400 ± 20 ◦C was attributed to the hemicellulose decomposition, while the range 400 ± 20 to
600 ± 20 ◦C was attributed to the decomposition of cellulose components [67]. The weight
loss from the main decomposition stage for all the samples was reported in the range 40
to 58 wt.% indicating a good potential for the production of bio-oil from the pyrolysis
process and was also in good agreement with previously reported studies [68,69]. The
lowest weight loss among all the samples was reported from the phyllodes biomass, which
contained the highest fixed carbon content and high ash content, possibly resulted in the
lower conversion of biomass to volatiles [40]. The prolonged main decomposition stage
of phyllodes and pods biomass until a higher temperature up to 600 ± 20 ◦C indicated a
comparatively lower prospective of these biomass samples to produce bio-oil compared
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to the other biomass samples from AM. Furthermore, comparatively larger energy inputs
would be required for the conversion of phyllodes and pods biomass. The slight and lower
variant slopes of the curves after decomposing the hemicellulose and cellulose constituents
highlighted the slow and continual degradation of the lignin components up to 900 ◦C.
The phenomenon of dynamic disintegration of the main constituents of biomass during
the pyrolytic conversion of biomass has been reported on [70,71]. Moreover, the pyrolytic
degradation behavior of the AM biomass samples was comparable to the TGA and DTG
analysis of other lignocellulosic biomasses studied for bioenergy production, including oil
palm and pinewood biomass [29,72].

Table 4. The temperature ranges reports during the pyrolytic degradation studies.

Sample 1st Stage (◦C) 2nd Stage (◦C) 3rd Stage (◦C)

Phyllodes 50 to 140 ± 10 200 ± 10 to 600 ± 20 Up to 900

Trunk 50 to 100 ± 10 200 ±10 to 450 ± 20 Up to 900

Bark 50 to 100 ± 10 200 ±10 to 450 ± 20 Up to 900

Twigs 50 to 100 ± 10 200 ±10 to 450 ± 20 Up to 900

Pods 50 to 140 ± 10 200 ±10 to 600 ± 20 Up to 900

Branches 50 to 100 ± 10 200 ±10 to 450 ± 20 Up to 900

4. Conclusions

The pyrolytic conversion and thermochemical characteristics of the AM tree biomass
in Brunei Darussalam were studied. The ash content, volatile matter, and moisture con-
tent in the samples were reported in the range of 1.41 to 2.69 wt.%, 69.82 to 74.85 wt.%,
and 7.88 to 11.65 wt.%, respectively. The ultimate analysis reported the carbon, hydro-
gen, and oxygen contents in the range of 45.50 to 50.65 wt.%, 5.26 to 6.01 wt.%, and
43.11 to 48.27 wt.%, respectively. The heating values of the samples were reported to be
19.51 MJ/kg to 21.58 MJ/kg. The FTIR analysis confirmed the heterogeneous nature of the
biomass samples with the presence of multiple functional groups. The thermochemical
properties of the samples stated the suitability as a biomass feedstock for the pyrolysis
process to produce biofuels. The thermal analysis under pyrolytic conditions reported the
peak decomposition of biomass in the ranges of 150 ± 10 to 500 ± 10 ◦C for the trunk, bark
twigs and branches biomass and 150 ± 10 to 600 ± 10 ◦C for the biomass from phyllodes
and pods. The weight loss during the major biomass decomposition of the samples was
reported in the range of 40 to 58 wt.%. Based on the analyses results, the study established
a better potential of trunk, bark, twigs, and branch biomass to produce higher yields of
bio-oil as well as phyllodes and pods biomass to produce a higher yields of biochar.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su13095249/s1, detailed procedures used for the proximate analysis, ultimate analysis, and
heating value analysis.
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