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Abstract: Machine learning (ML) is a powerful tool that delivers insights hidden in Internet of Things
(IoT) data. These hybrid technologies work smartly to improve the decision-making process in
different areas such as education, security, business, and the healthcare industry. ML empowers the
IoT to demystify hidden patterns in bulk data for optimal prediction and recommendation systems.
Healthcare has embraced IoT and ML so that automated machines make medical records, predict
disease diagnoses, and, most importantly, conduct real-time monitoring of patients. Individual
ML algorithms perform differently on different datasets. Due to the predictive results varying,
this might impact the overall results. The variation in prediction results looms large in the clinical
decision-making process. Therefore, it is essential to understand the different ML algorithms used
to handle IoT data in the healthcare sector. This article highlights well-known ML algorithms for
classification and prediction and demonstrates how they have been used in the healthcare sector.
The aim of this paper is to present a comprehensive overview of existing ML approaches and their
application in IoT medical data. In a thorough analysis, we observe that different ML prediction
algorithms have various shortcomings. Depending on the type of IoT dataset, we need to choose an
optimal method to predict critical healthcare data. The paper also provides some examples of IoT
and machine learning to predict future healthcare system trends.

Keywords: IoT; ML; health prediction system; classification; prediction; supervised learning

1. Introduction

Health prediction systems help hospitals promptly reassign outpatients to less con-
gested treatment facilities. They raise the number of patients who receive actual medical
attention. A health prediction system addresses the common issue of sudden changes
in patient flows in hospitals. The demand for healthcare services in many hospitals is
driven by emergency events like ambulance arrivals during natural disasters and motor
vehicle accidents, and regular outpatient demand [1]. Hospitals missing real-time data on
patient flow often strain to meet demand, while nearby facilities might have fewer patients.
The Internet of Things (IoT) creates a connection between virtual computers and physical
things to facilitate communication. It enables the immediate gathering of information
through innovative microprocessor chips.

It is worth noting that healthcare is the advancement and preservation of health
through the diagnosis and prevention of disorders. Anomalies or ruptures occurring below
the skin periphery can be analyzed through diagnostic devices such as SPECT, PET, MRI,
and CT. Likewise, particular anomalous conditions such as epilepsy and heart attack can
be monitored [2]. The surge in population and the erratic spread of chronic conditions
has strained modern healthcare facilities. The overall demand for medical resources,
including nurses, doctors, and hospital beds, is high [3]. In consequence, there is a need to
decrease the pressure on healthcare schemes while preserving the quality and standards
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of healthcare facilities [4]. The IoT presents possible measures to decreases the strain
exerted on healthcare systems. For instance, RFID systems are used in medical facilities to
decrease medical expenses and elevate healthcare provision. Notably, the cardiac impulses
of patients are easily monitored by doctors via healthcare monitoring schemes, thus aiding
doctors in offering an appropriate diagnosis [5]. In a bid to offer steady transmission of
wireless data, various wearable appliances have been developed. Despite the advantages
of the IoT in healthcare, both IT experts and medical professionals worry about data
security [6]. Consequently, numerous studies have assessed the integration of IoT with
machine learning (ML) for supervising patients with medical disorders as a measure of
safeguarding data integrity.

The IoT has opened up a new era for the healthcare sector that enables professionals to
connect with patients proactively. The IoT with machine learning evaluates emergency care
demands to make a strategy to deal with the situation during specific seasons. Many outpa-
tient departments face the problem of overcrowding in their waiting rooms [7]. The patients
who visit hospitals suffer from varying conditions, with some requiring emergency medical
attention. The situation is further exacerbated when patients with emergency care needs
have to wait for a lengthy queue. The problem is aggravated in developing countries with
under-staffed hospitals. Many patients commonly return home without receiving medical
treatment due to overcrowding at hospitals.

Yuvaraj and SriPreethaa created a wearable medical sensor (WMS) platform made up
of different applications and utilities [8]. The authors comprehensively analyzed the appli-
cation of WMSs and their advances and compared their performance with other platforms.
The authors discussed the advantages brought about by the applications of these devices
in monitoring the health of patients with conditions such as cardiac arrest and Alzheimer’s
disease. Miotto et al. proposed a monitoring system that relies on a wireless sensor network
(WSN) and fuzzy logic network [9]. Specifically, the researchers integrated micro-electro-
mechanical systems (MEMS) set up with WSN to create a body sensor network (BSN) that
regularly monitors abnormal changes in patients’ health. Notably, the authors developed
a clinical data measuring system using devices such as a microcontroller, pulse, and tem-
perature sensor [10]. Additionally, the proposed system was integrated with base station
appliances to remotely regulate the pulse and temperature of patients as well as convey the
patient’s data to the medical practitioner’s phone. Notably, the system can send an SMS
to both the patient’s relatives and medical experts in emergency scenarios [3]. Therefore,
the patients can acquire a remote prescription from medical practitioners using this system.

Moreover, the IoT application has made it possible for hospitals to monitor the vital
signs of patients with chronic conditions [11,12]. The system uses such information to
predict patient health status in different ways. IoT sensors are placed on the patient’s
body to detect and recognise their activity and to predict the likely health condition.
For example, the IoT sensors system monitors diabetes patients to predict disease trends
and any abnormal status in patients. Through the health prediction system, patients can
receive suggestions of alternative hospitals where they might seek treatment. Those who do
not want to visit other facilities can choose to stay in the same facility but face the possibility
of long waiting queues or returning home without treatment. Rajkomar et al. [13] proposed
a Zigbee Technology-hinged and BSN healthcare surveillance platform to remotely monitor
patients via clinical sensor data. In particular, they utilized standards such as Zigbee IEEE
802.15.4 protocol, temperature signals, spirometer data, heart rate, and electrocardiogram
to assess the health status of patients [14]. The acquired data are then relayed via radio
frequencies and displayed on visual appliances including desktop computers or mobile
devices. Therefore, the proposed platform could monitor attributes of patients including
temperature, glucose, respiratory, EEG (electroencephalogram), ECG (electrocardiogram),
and BP (blood pressure), and relay them to a database via Wi-Fi or GPRS. Once the sensor
data are offered to the Zigbee, they are conveyed to a different network, permitting their
visualization on appliances such as emergency devices and the mobile phones of doctors
and relatives [10]. Accordingly, the integration of IoT with machine learning eases the
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management of healthcare in patients by enhancing the connection between patients
and doctors.

The IoT offers systems for supervising and monitoring patients via sensor networks
made up of both software and hardware. The latter includes appliances such as the
Raspberry Pi board, blood pressure sensors, temperature sensors, and heart rate sensors.
The software process entails the recording of sensor data, data cloud storage, and the eval-
uation of information stored in the cloud to assess for health anomalies [15]. Nonetheless,
anomalies usually develop when there exist anonymous activities in unknown body parts.
For instance, the heartbeat tends to be elevated when seizures occur in the brain [16]. As a
result, machine learning techniques are applied to integrate the heart rate sensor with
Raspberry Pi boards to display abnormal results via either an LCD or a serial monitor.
Due to the vast volume of data, cloud computing is applied to store the information and
enhance data analysis [17]. Various open-source cloud computing platforms are compatible
with the Raspbian Jessi and Raspberry Pi board [18]. These devices utilize machine learning
algorithms to assess the stored data to recognize the existence of any anomalies [19]. There-
fore, the application of machine learning in IoT helps in predicting anomalies resulting
from unrecognized activities in different body parts.

It is paramount to note that machine learning is an artificial intelligence (AI) discipline.
The primary objective of machine learning is to learns from experience and paradigms.
In contrast to classical techniques of simply generating code, big data are input to the
generic algorithm and analysis conducted using available data [20]. Big data allow the
IoT and machine learning systems to easily train a system by applying simple data for
predicting medical anomalies. The accuracy of predictions is directly proportional to the
quantity of big data trained [21]. Therefore, big data enhance the prediction ability of
machine learning techniques utilized in healthcare prediction platforms.

Fortunately, patient load prediction models are based on machine learning for prompt
patient load information sharing among hospitals. In a hospital, the historical data are
captured and used to forecast the future patient load to ensure adequate preparation.
IoT devices with embedded machine learning methods are used to train a classifier that can
detect specific health events such as falls among elderly patients. The clustering algorithms
can effectively identify abnormal patterns of behaviour among patients and send out alarms
to healthcare providers. Similarly, the daily activity of a patient is monitored through daily
habit modelling with IoT microchips. The information is utilised for detecting anomalies
among older adults.

This paper intends to analyse the most well-known ML algorithms for the classification
and prediction of IoT data in the healthcare sector. We have analysed their working while
comparing them based on different parameters. The study further compares existing
literature, highlights their features and shortcomings, and discusses possible gaps in each
approach in order to select appropriate algorithms for building an efficient prediction
model. From this research, we find that K-Nearest Neighbor (KNN) may be the most
popular algorithm for classification and prediction task. However, it could take a long
time to predict the output in real-time applications. Therefore, some researchers have
claimed that combining Long Short-Term Memory Neural Network (LSTM) with recurrent
neural networks (RNN) might improve the prediction performance. In this research we
are addressing the following question: How can IoT data with machine-based algorithms
develop a better healthcare prediction system?

The rest of the paper is organized as follows: Section 2 discuss the ML models and
classification. Section 3 discusses the most recognisable ML algorithms that are used
for variety and prediction application. Section 4 discusses ML algorithm applications.
Section 5 describes the use of the IoT and ML in the healthcare sector. Finally, Section 6
concludes the paper with further research directions.
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2. ML Algorithms and Classification

Machine Learning (ML) is a phenomenon associated with the field of AI. ML equips a
system with the ability to automatically analyse and understand a combination of inputs
as an experience without the need for any additional help [22]. There are two critical
phases of building an efficient ML model: training and testing. The training phase (a
highly research-intensive phase) involves providing labelled or unlabelled inputs to the
system. The system then stores these training inputs in the feature space to refer to for
future predictions. Finally, in the testing phase, the system is fed an unlabelled input for
which it must predict the correct output.

Simply put, ML uses known data in its feature space to predict outcomes for unlabelled
data. Hence, a successful ML model can refer to its experiences and understandings to
predict outputs. The accuracy of such a model depends on the accuracy of its output as
well as on model training.

In recent times, machine learning programs are widely applied in healthcare service
applications. Such machine learning algorithms are also applied in many clinical decision
support systems to establish advanced learning models to enhance healthcare service
applications. Support vector machines (SVM) and artificial neural networks are examples
of the integration of ML in healthcare service applications. These models are used in
various cancer classification applications for the accurate diagnosis of cancer type. These
algorithms work by evaluating the data obtained from sensor devices and other data
sources. These algorithms identify the behavioural patterns and clinical conditions of
a patient. For example, these algorithms identify improvements in a patient, habits,
variations in daily routine, changes in patterns of sleeping, eating, drinking, and digestion,
and changes in patient mobility. The behavioural patterns determined through these
algorithms can then be used by healthcare applications and clinical decision support
systems to suggest changes in patient lifestyle and routines and recommend various
specialised treatments and healthcare plans for patients. This enables doctors to develop a
care plan to ensure that patients introduce the recommended changes in their lives.

ML technology has three main model types: supervised learning, semi-supervised
learning, and unsupervised learning. Each ML type has several common algorithms,
as Figure 1 shows. This section introduces the most popular ML methods employed for
prediction and classification purposes. These methods are K-Nearest Neighbor, Naïve
Bayes, Decision Trees, Support Vector Machine (SVM), Neural Networks, Gradient Boosted
Regression Tree, and Random Forest in Supervised Learning. All these methods will be
discussed in Section 3. However, before discussing these methods, the paper will first
introduce the idea of data points and data labels in the context of machine learning.

2.1. Data in ML

Figure 2 clearly shows that data and datasets must be collected from many sources for
developing an analytic model using ML technology. The datasets acquired are saved in
a conventional, centralised way in the cloud. Data points, also referred to as samples or
observations, are the basic units of the dataset. These data points are representative of a
system unit. This system unit is evaluated to construct the training datasets. A data point
can indicate a patient’s information regarding a cancer tissue sample or any other thing.

Recently, there has been a huge increase in the accessibility of data points from
healthcare institutions. Such data points can be labelled or unlabelled. Labelled data have
a distinctive feature assigned to them (which is called a label), which can also be referred to
as an output or response. It is also referred to as a dependent variable as far as the classical
statistical literature is concerned. A label can be either categorical or ordinal, where the
categorical one has no set order of predefined values (e.g., male and female). In contrast,
the ordinal has a basic order of predefined values (e.g., disease stage). Moreover, a label
can be a numerical value such as real numbers.
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Although most ML models can employ both kinds of data, labelled and unlabelled, in
specific conditions, labelled data are used in supervised learning. In contrast, unlabelled
data are employed in unsupervised learning, while semi-supervised learning can use both
labelled and unlabelled data. In the next section, we will attempt to further elaborate on
each data type and their use in every ML model. Table 1 presents a list of alternative words
used in the paper to indicate the same meaning.

Table 1. Terminology used in the study.

Terminology Alternative Word

Datapoint Input, observation, and sample

Label Output, response, feature, and dependent variable

2.2. Machine Learning Algorithm Classification

The following three basic machine learning models will be analysed in the paper:
supervised learning, semi-supervised learning, and unsupervised learning.

2.2.1. Supervised Learning

The most important ML model is the supervised learning model. It is mainly used to
cater to real-world applications [23]. This model is used to predict outcomes from certain
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sets of given input and a pair of input/output examples. A pair of input objectives, an input
vector, and the desired output value called a supervisory signal are all involved in each
supervised training dataset. These examples are used to train ML algorithms to obtain an
inferred classifier function after analysing the training datasets. The objective of training
algorithms in supervised learning is to predict the value of one or many outcomes through
various input features.

A distinguishing feature of the supervised learning model is human involvement in
it. Human involvement is essential in the beginning to construct a dataset, which later
works on its own by generalising and learning from examples fed through input. For the
construction of a dataset, first pairs of inputs and preferred outputs are provided to the ML
model. This model then finds a way to work independently to generate outputs. The main
problem arises when the model has to predict the output for a new input independently
without human assistance. Hence, ensuring the accuracy of the proposed model is essential.

Despite the evident effectiveness of supervised learning, it has the drawback that it
requires numerous labelled data to develop a large-scale labelled dataset [24]. Supervised
learning models are used extensively for classification and regression purposes. This paper,
however, will merely discuss the classification approach.

Classification or prediction is the main objective of the use of machine learning
methods. These methods classify and foretell class labels by making use of a preset list
of examples. Classification samples either completely belong to a certain class or do not
belong to a class at all. They do not belong to any class partially. Missing values negatively
affect classification and prediction processes.

There are two forms of classification: binary and multiclass. Binary classification
deals with two sets of classes, and the input data are arranged in these two sets of classes.
An example is making a YES/NO prediction or classifying e-mails into two categories,
spam and no spam. These classification classes are interpreted as 0 and 1. Conversely,
multiclass classification is concerned with three or more predictable classes. An example
would be the identification of cancer stage. Here, classes are defined as 0, 1, 2, etc.

Figure 3 shows how to solve a given problem using supervised learning. There are usu-
ally particular steps that need to be followed. First, the type of training example should be
determined. Next, the training set needs to be gathered, either from human experts or from
measurements. It also needs to be representative of the real-world use of the function. Then,
the representation of the input feature must be determined. The representation should con-
tain enough information to accurately predict the output. This is followed by selecting the
learning algorithm. After completing the design, we run the learning algorithm on the gath-
ered training set. At this stage, some algorithms in supervised learning are required from
the user to determine certain control parameters, especially for prediction problems [25].
These parameters are called a validation set, which may be adjusted by optimizing per-
formance on a subset of the training set, or via cross-validation [26]. Cross-validation has
two types: exhaustive and nonexhaustive. In exhaustive cross-validation, the methods
learn and test all possible ways to divide the original sample into training and validation
sets. Examples of exhaustive cross-validation methods are leave-p-out cross-validation
and leave-one-out cross-validation. In contrast, nonexhaustive cross-validation methods
do not compute all ways of splitting the original sample. Those methods are approxi-
mations of leave-p-out cross-validation. k-fold cross-validation, 2-fold cross-validation,
and repeated random subsampling validation are examples of such methods. Finally,
the accuracy of the learned function should be evaluated. After parameter adjustment
and learning, the user uses a test set that is separate from the training set to measure the
function result performance.
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2.2.2. Unsupervised Learning

One of the functions of unsupervised machine learning is identifying hidden structures
within data that have not been marked. Several successful applications have utilised
this; however, these applications are often difficult to evaluate. This is due to a lack of
training regarding the use of unsupervised machine learning. As a result, there is a lack
of error or reward indicators for analysing prospective solutions. Here, the reward signal
serves as a distinguishing factor for supervised and unsupervised ML. In the field of
statistics, unsupervised learning is used for density approximation. The neural network
(NN) models [22], the self-organising map (SOM), [27], and adaptive resonance theory
(ART) [28] also make use of unsupervised learning.

Unsupervised learning includes the transformation of datasets and clustering. In the
transformation process, data in the dataset are altered to present them in a different,
new form so that they become easy to understand for humans and machine algorithms.
Clustering algorithms, on the other hand, separate datasets into significant groups of
related objects. The K-means clustering is the most well-known and simplest unsupervised
algorithm, and identifies clusters of similar data. There are two steps to this algorithm: the
first step is allocating each data point to the nearest cluster centre, while the second step is
fixing all cluster centres as the mean of data points that are allotted to them.

One main problem in unsupervised learning is evaluating its success. The success
of unsupervised learning tells if the algorithm has learned useful things or not. Labels or
outputs are not provided in unsupervised learning; hence, the right output is not known.
Hence, it becomes difficult to determine the performance of the algorithms. This is why
unsupervised learning is used solely in an exploratory way, e.g., for better comprehension
of data. Another critical feature of unsupervised algorithms is the preprocessing step
for supervised algorithms. Finding a new form of data representation can improve the
accuracy of supervised algorithms.

2.2.3. Semisupervised Learning

One of the ML model branches is the learning technique, which depends on marked
and unmarked data to equip the ML model. In a real-life scenario, minor marked data
must be used with a huge amount of unmarked data to obtain greater learning accuracy.
The tagging of a dataset requires human involvement. The tagging procedure is time-
consuming, which might hinder creating completely labelled training and bring about
heavy expenses. As a result, in certain instances, semisupervised learning may prove to be
a better solution.

In the case of a limited number of labelled samples, semisupervised learning is mostly
used to enhance the model’s performance. Currently, there are numerous unlabelled
samples available. These unlabelled samples can be utilised to enhance the performance of
the model. The poor model performance is more obvious than the improvement and is
caused due to the implementation of the unlabelled sample data in semisupervised learning.
As a result, semisupervised learning is not widely used in applications; supervised learning,
which shows top performance in machine learning problems, is preferred [29].
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The distinctions between the supervised, unsupervised, and semisupervised learning
models are outlined in Table 2.

Table 2. The difference between supervised learning, unsupervised learning, and semisupervised learning.

Learning
Class Data Type Usage Type

Output
Accuracy/

Performance

Affected by
Missing Data Scalable Cost

Supervised Labelled Classification
Regression High Yes

Yes, but we need to
label large volumes of

data automatically.
Expensive

Unsupervised Unlabelled Clustering
Transformations Low No

Yes, but we need to
verify the accuracy of
the predicted output.

Inexpensive

Semi-
Supervised

Both
Labelled and

unlabelled

Classification
Clustering Moderate No It is not

recommended.
Moderately

priced

3. Commonly Used Machine Learning Methods

For classification and prediction, researchers have developed and adopted several
famous machine learning models. Some of them are explained in the sections below.

3.1. K-Nearest Neighbor (K-NN)

The basic machine learning model that is popular for classifications and regression
tasks is K-Nearest Neighbor (K-NN). This model’s main focus is determining the distance
between a new unlabelled data point and the existing training datasets stored in the feature
space. It is essential for the prediction of the class [30]. In this process, the nearest data
points will be ordered according to the k-value of the new observation. The k-value is a
hyperparameter of the following model, which is also utilised to sort the new observation’s
k-nearest data points. The K-NN classifier votes and allocates the predicted class to the
new unlabelled data sample depending upon the class label’s volume in k-neighbours.
In an optimised K-NN algorithm, a neighbour has only positive relationships with the
requestor. Such algorithms are commonly used in multiple types of research [31,32].

In the mentioned method, it is essential to evaluate the weight of influence of the
adjacent neighbour. The nearest neighbour can affect more than a distant neighbour.
The K-NN algorithm uses the distance function to determine the weight of influence of
the adjacent neighbours. Euclidean Distance, Manhattan Distance, Pearson Correlation,
and Spearman Correlation are typical distance functions used for continuous variables.
However, the Hamming distance function is commonly utilised to evaluate the number
of disparities in attributes such as the characteristics of the two data points. Figure 4
illustrates how the K-NN classifier predicts the class label for the new data point by using
the Euclidean distance function. The k-value in this example is six data points, so the new
sample’s predicted class is the most repeated class within these six data points, which
means that the new data point sample might belong to the blue class in this example.

There are pros and cons to using the K-NN algorithm. A nonparametric approach is
one of the advantages of using the K-NN classifier, which implies no hypothesis for the
fundamental distribution of data. For instance, the structure of the model is established
upon the dataset. Another advantage is that it is easy to understand and easy to incorporate.
It can update its set of labelled observations to modify because K-NN is not explicitly
trained quickly.
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One of the cons is that the K-NN model requires a large amount of time to execute due
to each new observation’s comparison process with the labelled observation. This results
in inferior performance if it is used on disproportionate datasets. Additionally, K-NN is
highly dependent on its k hyperparameter. It will produce highly accurate results on the
training set using only a single neighbour for classification, but the problem is that the
model is very complicated and there is a high probability of computational complexity.

Thus, it is important to accurately choose the number of neighbours for the purpose of
classification, so that the K-NN model is neither overcomplicated nor oversimplified and
can be easily generalised. It is also necessary to apply homogenous features rather than
heterogeneous features. When the model uses the K-NN algorithm, the distance between
the samples with the heterogeneous features can be easily affected. This is due to the size
and changes in certain features, which causes loss of information from other components.
Consider the following examples. There are three features, x1, x2, and x3, of which x1
and x2 are normalised variables having values from 0 to 1. In comparison, the value of
x3 lies in the range of 1-100. The effect of x1 and x2 on any distance function, like the
Euclidean distance function, will be marginal when evaluating the distance between the
two data points.

On the other hand, x3 will be higher than the evaluated distance values. The value
of x3 is kept within the range of 0 and 1, which further highlights the evaluated distance
values. Likewise, it is possible to customise and implement the distance function, which
is not highly dependent upon heterogeneous features. In summary, it is easy and less
time-consuming to develop the K-NN model, but the set predictions can be very slow in
training if there are many features or samples involved in the learning process. There are
many real-world implementations of the K-NN algorithm [33], such as gene expression,
image recognition, video recognition, and pattern recognition.

3.2. Naïve Bayes Classification (NBC)

The naive Bayes classifier (NBC) is a basic classifier used for probabilistic classifi-
cation; it has been developed based on the Bayes theorem. The NB model is based on
the assumption that each feature is statistically independent of the other features and
irrelevant to them in the training set [34]. These assumptions are used to predict the class
of new observations through equations. The NB classifier evaluates the probability of a
new unlabelled sample B (B = b1, b2, b3, etc.) of becoming part of class A. The output of
the model is predicted on the basis of the probability with the greatest P(A|B). P(B)’s value
does not impact the selection of the class having the greatest P(A|B). Moreover, the relative
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frequency of class A helps to determine the value of P(A) with the help of the data points
given in the datasets used for training.

P(A|B) = P(B|A) ∗ P(A)

P(B)
(1)

Supervised learning is used in the NB classifiers to enhance the efficiency of learning
classification tasks. This higher efficiency is because NBC can be trained to comprehend
the parameters by extracting basic per-class statistics from features simply by performing
individual observation of these features. The NB model utilises the parameter approxima-
tion tool through the maximum likelihood approach in various applications. Hence the
functioning of the NB model may be independent of the Bayesian algorithm.

There are several real-world uses of the NBC model, including real-time predictions
as well as text classifications. The NB classifier also has some major drawbacks, although
they are characterised by simple structure and presumptions. One of these drawbacks
is that they only need a limited amount of data to estimate the necessary categorisation
parameters. Moreover, there is no need to evaluate the entire covariance matrix, but it is
important to evaluate each class’s variance.

3.3. Decision Tree (DT) Classification

The simple classification algorithm consisting of the internal node and one class-
labelled leaf node is called a DT (Decision Tree) [35]. The solution of classification issues in
the DT approach is done through constant splitting of the input space to create a tree with
pure and straightforward nodes and points related to a single class. As we move down this
tree, a new point is classified by selecting a single (side) branch of the tree at each point.
The development of decision trees is dependent on the kind of target variable in the current
model. The DTs algorithm utilises the reduction in variance approach to form a tree model
with continuous variable test points. In contrast, the Gini impurity approach is used for
categorical target variables.

The DT technique initiates at the root node and terminates at the last node, known
as the terminal or leaf node of the tree. This entire method is shown in Figure 5. The in-
ternal nodes are present amid the root and leaf nodes and are used to test the data point
characteristics. There is one potential outcome for each internal node. Consider the fol-
lowing example. There is an unlabelled new data point that begins with the root node.
It approaches the next node based on the outcome of the root test. The same strategy is
followed and the subsequent node is an internal node. After that, the new unlabelled data
point is allocated to the leaf node and the prediction of a class of the new unlabelled data
point is done based on a class label corresponding to the concerned leaf node.

There are several real-world uses of DTs in various sectors. In the healthcare sector,
DTs are used for early diagnosis of cognitive disability, which increases the efficiency of
screening positive cases; it also determines key risk factors for the potential occurrence
of various dementia types. The Sophia robot developed in Saudi Arabia is one of the DT
algorithm applications devised to interact with humans. It is also a well-known algorithm
in machine learning.

The DT model has benefits and drawbacks, just like the other ML models. The ad-
vantages offered by the DT algorithm are that it is simple to interpret. It can also deal
with continuous and categorical attributes and needs little to no information processing.
Moreover, this method is significant when it comes to classification tasks and making
predictions. However, in the case of misbalanced datasets, the DT can have an overall
negative performance. This model is also noise-sensitive and can also lead to overfitting if
there is noise in the training dataset.
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Furthermore, any rise in dataset inputs will lead to greater model complexity. Hence,
huge memory is essential for large datasets. This challenge can be overcome by restricting
the height or depth of the tree or fixing the sample quantity essential for additional
classification. Low-intensity decision trees are valuable; however, they may lead to certain
drawbacks for the model, including low variance and high partiality, while the opposite
is true for high-depth decision trees. Bagging and boosting in decision trees are common
methods to minimise high model variance or high bias.

3.4. Random Forest

One of the ensemble models is a random forest that integrates multiple models and
shows compatibility with an extensive range of datasets for classification or regression [36].
Bootstrap aggregation or bagging are examples of such models. Bagging can reduce model
variance and consequently enhance generalisation to prevent overfitting. This model can
overcome high conflict even beyond the decision trees.

There are several decision trees (DTs) present in a random forest model and each of
them shows slight disparity from the others. For a specific data point, various outcomes
obtained from each decision tree will be integrated. In the integration process, a majority
vote is obtained in the case of classification, and the average value is obtained when it
comes to regression tasks. The performance of combined decision trees is better than
a single decision tree in terms of predictions because of the separate training of all the
decision trees on random samples taken from a training dataset. This model is known
as random forest since it involves randomisation in tree building to make certain that all
trees are different from each other. There are two different ways to randomly produce
a training set for randomisation of the trees in a random forest: The first method is to
choose attributes from each test. The second method involves a selection of data points
that were involved in the development of a tree. This will be followed by the training of
a decision tree by using the developed training set and the chosen attributes. In general,
applying such a strategy lowers relationships within the decision trees and enhances the
performance of the model.

3.5. Gradient-Boosted Decision Trees

Another form of ensemble model is the gradient-boosted decision tree [37]. Gradient
boosting is similar to a random forest model since both are strong models involving
multiple decision trees. Both classification and regression task may be performed through
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this model. However, this model is different from the random forest model in that it lacks
randomisation in the process of developing model trees. Prepruning is used in this model,
i.e., trees are constructed serially, and every tree attempts to rectify the mistake associated
with the preceding tree. In the gradient-boosted model, the depth of trees is quite small,
with values of depth ranging from 1 to 5; consequently, we get smaller memory and faster
predictions. The basic concept of gradient boosting is to mix several easy models (or weak
learners). For instance, in a shallow tree, every tree can only make effective predictions
for its corresponding data, suggesting that a higher number of trees will lead to better
overall performance. The most extensive application of gradient-boosted decision trees
can be seen in supervised learning due to their robust nature. Their main disadvantage is
that they need cautious standardisation of the parameters and involve more training time.
Moreover, they fail to be effective when data points are located in high-dimensional space.

3.6. Support Vector Machines (SVMs)

Cortes and Vapnik [38] presented the support vector machine (SVM), commonly
referred to as a kernelized support vector machine (KSVM). SVMs can be defined as
a supervised machine learning methodology that develops the decision boundary (or
hyperplane) among multiple classes by performing analysis of various inputs within a
dataset; hence, it becomes possible to predict labels on the basis of single or multiple feature
vectors. Its position is such as to ensure the greatest possible distance from data points
close to each class. The name support vector machine has been derived from these closest
points, which are also known as support vectors.

The main objective of this technique is binary linear categorisation and prediction.
Numerous biological applications have made effective use of this technique [39]. SVMs
are most commonly used in biomedical practice to automatically categorise profiles for
microarray gene expression. Moreover, substances with high diversity like protein and
DNA sequences, as well as mass spectra and microarray gene expression profiles, can be
classified with the help of SVMs. The kernel method is another important application of
SVMs, which helps to model higher-dimensional and nonlinear models. In the case of a
nonlinear model, such as in Figure 6D, nonlinear prediction and classification can be done
through the kernel technique based on SVMs, which helps with the mapping or plotting
of cases within high-dimensional space. Calculations in high-dimensional space may be
time-consuming; however, the use of a kernel function results in quick calculations.

In the process of mapping, the SVM indicates the decision boundary between two
classes by determining the value of each data point, particularly the support vector points
located at the boundary between the concerned classes. The SVM learns the significance
of every data point in the course of mapping; in particular, the significance of support
vector points located at the border among the classes is evident for SVMs to indicate the
decision boundary among those classes. The distance to every support vector is measured
for the prediction of a new point. KSVMs perform classification by considering the distance
to support vectors and the significance of support vectors. It is imperative to note that
significant improvement may be brought about in the performance of KSVMs by data
scaling in the range of 0 to 1.

Figure 6A–C illustrate a case of classification task whereby a simple SVM algorithm is
employed; we assume that there are numerous cases in a dataset. Moreover, it is presumed
that single or multiple classes are associated with each case. The cases within the given
dataset are spread into a couple of classes by the SVMs by developing a model that selects
the most appropriate hyperplane linearly. In the context of SVMs, each case is shown by a
point in space such that the point plots the cases in two distinct classes with a gap between
them. Moreover, the new case’s location with reference to the gap is used to plot these
cases into space and helps with their classification into single or multiple classes.

The middle line in the gap represents the SVM decision surface. Any data point
located above the decision surface will be classified as class 1 (square); otherwise, it will
belong to the other class (star). Sometimes, real datasets cannot be separated easily when
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the dataset contains an error. Therefore, SVM can correct errors in the data if the SVM
algorithm has to be modified by adding a soft margin. Consequently, some data points
push their way through the separating hyperplane margin without affecting the final result.
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3.7. Neural Networks

Nowadays, the availability of abundant data and the power of computing, along with
advances and innovations in deep learning, have influenced the success of the current ML
model. The reason behind this success is that neural networks contain a large number of
computational units that can map the given input explicitly with the predicted output in
the case of using nonlinear functions. Therefore, neural networks are better than other
machine learning algorithms if enough time, data, and careful tuning of the parameters
can be ensured. The most widely used deep learning approaches are deep multilayer
perceptron (MLP), recurrent neural networks (RNN), and convolutional neural networks
(CNN). MLP is the most popular neural network. It is a powerful modelling tool that
uses examples of data with known outputs like supervised learning. It also generates a
nonlinear function model to predict the output from the given input [40,41].

In contrast, the CNN approach involves numerous layers, including a convolutional
layer, nonlinearity layer, pooling layer, and fully connected layer. Both convolutional
and fully connected layers have parameters, while the pooling and no-linearity layers do
not have parameters. The performance of such an approach is exceptional, especially in
machine learning problems that deal with image classification dataset (Image Net) [42],
computer vision, and natural language processing (NLP) [43].

Finally, RNN is by nature recurrent because it performs the same procedure for
every data input, while the predicted output of the current input will be learned from
the previous computation. After detecting the output, the result will be copied and sent
back into the recurrent network. However, this model has some limitations. Therefore,
a Long Short-Term Memory Neural Network (LSTM) has been combined with RNN in
order to overcome the instability of long-term predictions because of either an exploding
or a vanishing gradient [44]. Reviewing these approaches in detail is beyond the scope of
this review.

All the reviewed ML algorithms have been summarized in Table 3.
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Table 3. Summary of the reviewed ML algorithms.

Algorithm Name Learning Type Used for Commonly Used Method Positives Negatives

K-Nearest Neighbor
(K-NN) Supervised Classification,

Regression

Continuous variables
(Euclidean distance)
Categorical variables
(Hamming distance)

Nonparametric approach.
Intuitive to understand.

Easy to implement.
Does not require explicit training.
Can be easily adapted to changes

simply by updating its set of
labelled observations.

Takes a long time to calculate the
similarity between the datasets.
The performance is degraded

because of imbalanced datasets.
The performance is sensitive to the
choice of hyperparameter (K value).
The information might be lost, so we
need to use homogeneous features.

Naïve Bayes (NB) Supervised Probabilistic
classification

Continuous variables
(Maximum likelihood)

Scanning of data by looking at each
feature individually.

Collecting simple per-class statistics
from each feature helps with

increasing the
assumptions’ accuracy.

Requires only a small amount of
training data.

Determines only the variances of
the variables for each class.

Decision Trees (DTs) Supervised Prediction,
Classification

Continuous Target Variable
(Reduction in Variance)

Categorical Target Variable
(Gini Impurity)

Easy to implement.
Can handle categorical and

continuous attributes.
Requires little to no
data preprocessing.

Sensitive to the imbalanced dataset
and noise in the training dataset.

Expensive, and needs more memory.
Must select the depth of the node

carefully to avoid variance and bias.

Random Forest Supervised Classification,
Regression Bagging

Lower correlations across the
decision trees. Improves the

DT’s performance.

Does not work well on
high-dimensional, sparse data.

Gradient Boosted
Decision Trees Supervised Classification,

Regression Strong prepruning Improves the prediction
performance iteratively.

Requires careful tuning of the
parameters and may take a long

time to train.
Does not work well on

high-dimensional, sparse data.

Support Vector
Machine (SVM) Supervised

Binary classification,
Nonlinear

classification

Decision boundary, Soft
margin, Kernel trick

More effective in high-dimensional
space. Using the kernel trick is the

real strength of SVM.

Selecting the best hyperplane and
kernel trick is not easy.
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4. Machine Learning Applications

Identifying the right problem to be solved using ML is the first step in building a
machine learning product. Healthcare is a data-rich environment. Even though a model
can be created to produce understanding, it must have the potential to impact patient care.
In this section some of the applications that use the productive model are listed below.
At the end of this section, Table 4 summarizes the reviewed applications.

4.1. Medical Imaging

Machine learning finds applications in medical imaging, which refers to the processes
and methods utilized to create images of body parts for treatment and diagnostic purposes.
Some of the imaging techniques implemented today include magnetic resonance imaging
(MRI) and X-ray radiology. The current practice entails taking these images and having a
health professional examine them manually to determine abnormalities. This process is
not only time-consuming but also prone to errors. Accordingly, the utilization of machine
learning algorithms improves the accuracy and timeliness of disease prediction, detection,
and diagnosis [45]. Researchers have demonstrated how various machine learning algo-
rithms such as artificial neural networks (ANN) can be integrated into medical imaging to
enable computer-aided disease prediction, diagnosis, and detection [45]. Deep learning
approaches, particularly convolutional neural networks (CNNs), have emerged as effective
tools for image and video analysis, which is central to medical imaging [11]. The input data
type for medical imaging applications is mostly images, such as X-rays and CT scans [45,46].
The IoT devices used in a machine learning setup include X-ray machines and CT scanners,
which are readily available in healthcare settings [46]. The application of machine learning
to medical imaging largely adopts the supervised learning approach.

4.2. Diagnosis of Disease

Disease diagnosis forms a critical component of care delivery as it determines the
kind of intervention that should be attempted. Machine learning is applicable to disease
diagnosis as it enables the examination of environmental and physiological factors for
diagnosing diseases effectively. It allows for the creation of models for relating variables to a
disease. In other words, machine learning can be used to identify the risk factors associated
with a given disease, as well as the signs and symptoms, to improve diagnosis efficiency and
accuracy. Some of the diseases currently being diagnosed using machine learning include
glaucoma, age-related macular degeneration, etc. [47]. Some of the ML techniques used in
diagnosing diseases include support vector machines, deep learning systems, convolutional
neural networks, and backpropagation networks [47]. The input data type differs based on
the disease being diagnosed. In most imaging diagnosis machine learning experiments,
image data are routinely used. Similarly, time series data, including components such as
demographics, gene expression, symptoms, and patient monitoring, are used for chronic
disease diagnosis [48]. The application of ML can adopt either supervised or unsupervised
learning approaches to learn patterns from data to enable disease diagnosis. The IoT devices
and sensors utilized depend on the input data required. For imaging-based diagnosis,
scanning equipment is the main IoT device. Likewise, IoT devices can be deployed to
collect data such as weight, heart rate, and blood pressure to enable disease diagnosis.

4.3. Behavioural Modification or Treatment

Behavioural modification, as the name suggests, encompasses helping a patient change
undesirable behaviour. Behavioural modification is an example of a treatment often pre-
scribed to patients whose behaviours contribute to their bad health. The application of
machine learning to behavioural change is made possible through the IoT, which enables
the collection of vast amounts of information concerning people. Accordingly, machine
learning algorithms can be used to analyse the behaviour of individuals and recommend
suitable changes. In addition to providing people with alerts and notifications to influence
change, machine learning algorithms can give people self-knowledge and recommend re-
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sources for behavioural change. Machine learning can also be used to evaluate behavioural
change interventions to determine the most effective one for a given patient [49]. Some of
the machine learning algorithms applied in behavioural modification include the Bayes net-
work classifier, decision trees, and support vector machine (SVM) [50]. The input data for
these algorithms are obtained through feature extraction, which produces tabular data [50].
Accordingly, the applicable IoT devices are the ones that collect information that can be
deduced to define human behaviour, such as videos, images, and recordings.

4.4. Clinical Trial Research

Clinical trials are studies performed to examine the effectiveness and safety of be-
havioural, surgical, and medical interventions. As clinical trials often involve human
subjects and constitute the final step of the research process, they must be conducted
carefully to avoid harm to the participants. Machine learning can be used to improve
the clinical trial process by enabling the acquisition of knowledge concerning the effec-
tiveness of interventions from the assessment of publicly available clinical and biomedi-
cal datasets, information obtained from health records, and practical evidence from sen-
sors [51]. Machine learning algorithms allow healthcare professionals to examine vast
amounts of data to identify insights relating to the effectiveness and safety of a given inter-
vention. For example, ML can be applied to clinical research trials, targeting the creation
of medications for COVID-19 [52]. The initial step in the implementation of ML learning
algorithms in clinical trial research involves extracting features from datasets [52]. Accord-
ingly, the input data include images and tables relating to the clinical trial. The IoT devices
implemented should be able to collect data relating to the variables in the clinical trial.
The typical sensor data could include weight, heart rate, blood glucose, and blood pressure.

4.5. Smart Electronic Health Records

Electronic health records, which have replaced patient charts, provide timely access
to patient information, enabling care providers to offer quality care. Machine learning
offers a way of integrating intelligence into electronic health records. In other words, rather
than acting as storage for patient data, electronic health records can be enhanced through
machine learning to include smart functions. For example, smart electronic health records
can assess patient data, recommend the most appropriate treatment, and aid in clinical
decision-making. In fact, the integration of machine learning with electronic health records
has been shown to improve ophthalmology [53]. Additionally, smart electronic records
can evaluate vast amounts of data to quantify the quality and safety of care provided in
a facility and highlight areas requiring improvement. Machine learning models that can
be integrated in electronic health records include linear and logistic regression, artificial
neural networks, and support vector machines [53]. The input data type can include text,
images, tables, and time series. For example, time series data obtained from a patient’s
medical record can be used to predict postpartum depression [54]. Recurrent deep learning
architectures have been shown to be accurate for predicting diseases when incorporated
into electronic records [55]. The IoT sensor data that are incorporated in such ML models
include weight, heart rate, blood pressure, temperature, and blood glucose. The idea
is that the sensor data incorporated should be symptoms of the disease or condition
under consideration.

4.6. Epidemic Outbreak Prediction

Diseases that emerge and spread quickly in a community can be devastating and
difficult to manage. Consequently, stakeholders within the healthcare industry recognize
the need to implement tools and strategies to predict the outbreak of epidemics and prepare
for them. The availability of big data allows regulators, administrators, and healthcare
workers to deploy machine learning algorithms to predict epidemics. Long short-term
memory (LSTM) and deep neural network (DNN) learning models are some of the machine
learning algorithms used for predicting diseases [56]. The input data that can be fed into
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the ML algorithms include text, time series, numerical, and categorical data. For example,
time series data can be used in a machine learning setup to predict future disease trends.
When predicting diseases, some of the factors fed into machine learning algorithms include
population density, hotspots, vaccination levels, clinical case classifications, and geomap-
ping [57]. Accordingly, IoT devices that could be used include satellites and drones to
capture population densities and other forms of geography-related data. Weather-related
data and types of information relating to the environment and that influence the possibility
of epidemics can also be collected. Furthermore, clinical data obtained at the patient level,
such as temperature, blood pressure, and glucose levels, are also helpful. Overall, disease
surveillance is essential as it helps with preventing epidemics and allowing stakeholders to
prepare for epidemics that might occur.

4.7. Heart Disease Prediction

Heart disease is a leading cause of death in most parts of the world. Due to changing
lifestyles and other risk factors, the incidence of heart disease is increasing globally. In 2016,
cardiovascular diseases were responsible for 17.6 million deaths globally, a rise of 14.5% as
compared to 2006 [58]. A key component of managing heart disease entails being able to
predict the disease and implement the right protective and treatment strategies. Machine
learning offers this capability as it allows health providers to evaluate patient data and
forecast the incidence of heart disease [58]. Patients who are found to be at increased risk of
heart disease can be recommended interventions to avert the disease. The input data types
for heart disease prediction machine learning algorithms include images, time series, text,
and tabular data. For example, tabular data can be used together with algorithms such as
Naive Bayes, K-NN, SVM, decision tree, and decision tables to predict heart disease [59].
The IoT sensor data that should be fed into the system relate to the risk factors of heart
disease. As such, devices that can record blood pressure, heart rate, physical activity,
and weight should be incorporated.

4.8. Diagnostic and Prognostic Models for COVID-19

Machine learning can also be applied in the diagnosis and prognosis of COVID-19.
The idea is to develop an algorithm that accepts the predictors of prognosis and diagnosis
and provides an accurate outcome. The most reported predictors include body temperature,
age, lung imaging features, and lymphocyte count [60]. Machine learning algorithms are
particularly effective as they can examine many lung images of patients with COVID-19
and are able to differentiate between those affected by COVID-19 and those that are not
affected. Therefore, the input data type for COVID-19 prediction models include images,
tabular, text, and time series. For instance, lung images can be used with ML classifiers
to diagnose COVID-19 [60]. A study demonstrated high accuracy in the prediction of
COVID-19 by using eight binary features: being aged 60 and above, sex, contact with
an infected person, and five initial clinical symptoms [61]. Therefore, IoT sensor devices
included in this machine learning setup ought to be able to measure temperature and take
images of the lungs. Besides improving the accuracy of the diagnosis and prognosis of
COVID-19, machine learning algorithms are fast and efficient.

4.9. Personalized Care

Offering personalized services is central to patient-centred care. Patients require care
that aligns with their needs, expectations, and beliefs. In addition to improving clinical
outcomes, personalized care enhances patient satisfaction and improves the utilization
of formal health services. Machine learning algorithms can play a role in enabling the
provision of personalized care by allowing healthcare workers to examine each patient’s
data and develop personalized care plans [62]. Machine learning systems harness the
power of health records and integrate disparate data sources to discover person-specific
patterns of disease progression [63]. The obtained information supports clinical decision-
making by allowing healthcare professionals to provide personalized care. The input data
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types for enabling ML personalized care can be text, time series, and tabular data. Tabular
data obtained from the patient’s medical record can be used to determine the best course
of treatment using appropriate ML algorithms. Similarly, IoT data that can be fed into the
algorithm include blood glucose, blood pressure, heart rate, and weight.

5. IoT and Machine Learning Applications in Healthcare Systems to Predict Future Trends

As previously discussed, the IoT and machine learning AI have enhanced the health
sector in that patients can wear devices like premium jackets and smart bands that are
used to monitor their condition and send regular reports to a database accessed by doctors
and medical practitioners [64]. The devices can monitor the vital signs and organs of a
patient and send out a progress report to a specific database. The system also collects and
reports pathogen presence and manifestations [65]. This is a crucial advance that helps the
healthcare system deliver best practices.

The availability of smart pills, sensors, and wearable monitors in healthcare adds
value to the sector. These tools help with monitoring and predicting signs and future
trends in disease patterns. The essence of automating the patient and disease monitoring
tasks saves time and steps in when all doctors are occupied—for example, in a crisis [66].
The use of smart technology in this sector is vital for saving lives during pandemics like
COVID-19. The wearable monitoring devices capture and send data to a database for a
doctor can analyse and then diagnose the patient or send a prescription.

Patients can be fitted with smart pills and smart bands (IoT) that monitor and collect
specific data to feed a database during pandemics. These devices help doctors and other
machines (machine learning) to learn disease patterns and symptoms, giving doctors a
chance to understand symptoms and analyse the symptoms to develop quick and safe
diagnostics [67]. During times of quarantine, such strategies can enhance safety for both
the patient and health practitioners as machine learning technology prevents physical
contact with patients infected with deadly airborne viruses.

Cloud computing is also an efficient part of the IoT sector. It helps to connect a wide
variety of machine learning AI devices to understand data through analysis and storage.
Another important feature of cloud computing is that it can store a huge amount of data
and, therefore, sustain the needs of the healthcare system. Due to its data-sharing capabili-
ties, cloud computing can also allow different devices to access the information. On the
other hand, cloud computing currently faces some challenges that need to be addressed.
These challenges could open up new research opportunities for scientists and researchers
seeking to improve ML and IoT’s usability in the healthcare industry. One of these chal-
lenges is data privacy and security. Medical records in the healthcare industry are highly
sensitive and need to be carefully protected as they contain individuals’ protected health
information (PHI). Therefore, strict regulations, such as the Health Insurance Portability
and Accountability Act (HIPAA) [72], have been introduced to regulate the process of
accessing and analysing these data. This creates a significant challenge for modern data
mining and ML technologies, such as deep learning, which typically require a large amount
of training data. Sharing this type of sensitive information to improve quality-of-care
delivery can compromise patient privacy. Several solutions for preserving patient privacy
with ML technology have been introduced.

One solution is called federated learning (FL). This new ML paradigm uses deep
learning to train and enable mobile devices and servers to build a common, robust ML
model without sharing data [73]. FL also enables researchers to address critical issues
such as data security, data access rights, and heterogeneous data access. Storing data in a
centralised cloud computing is an additional issue for ML because using the same server
to collect shared information from different devices and maintaining a generic model
can make the server vulnerable to server malfunction and bias. This might also result
in having an inaccurately trained model that will negatively influence the accuracy of
the predicted outcome. Therefore, decentralised data storage is currently one of the best
practices. One technology that has decentralised data storage capabilities is blockchain.
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Table 4. Summary of the reviewed applications.

Reference Application
Name Brief Description ML Algorithms Issues Addressed Current Challenges Future Work Comparison with

Existing Reviews

[45] Medical imaging

Medical imaging is largely
manual today as it entails a

health professional
examining images to

determine abnormalities.
However, machine learning
algorithms can be used to
automate this process and

enhance the accuracy of the
imaging process.

Artificial neural
networks (ANNs)
and convolutional
neural networks

(CNNs)

The use of machine
learning addresses

the issues of accuracy
and efficiency when

imaging is done
manually.

High dependency on the
quality and amount of

training sets.
Ethical and legal issues

concerning the use of ML
in healthcare.

It is often difficult to
explain the outputs of deep

learning techniques
logically.

Improving the
quality of training

datasets to improve
accuracy and

patient-centredness.

Existing reviews on
medical imaging, such

as [68], published in
2019, focus on providing
a broad overview of the
advances being made in

this area of ML.
The proposed review

intends to offer an
updated assessment of
medical imaging ML

algorithms and
their application.

[47] Diagnosis of
diseases

Clinical diagnosis can
benefit from machine

learning by improving the
quality and efficiency of

decision-making.

Image-based
deep learning

Wrong patient
diagnoses result in

inappropriate
interventions and
adverse outcomes.

The lack of sound laws and
regulations defining the

utilization of ML
in healthcare.

Obtaining well-annotated
data forsupervised learning

is challenging.

Integrating ML into
electronic medical
records to support

timely and accurate
disease diagnoses.

Reviews on clinical
diagnoses tend to focus

on a specific disease
type or group.

For example, Schaefer
et al. (2020) focused on

rare diseases [52].
The proposed review

hopes to continue in this
vein but add on an

in-depth examination of
the application of these

ML algorithms in
practical environments

and the
potential benefits.
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Table 4. Cont.

Reference Application
Name Brief Description ML Algorithms Issues Addressed Current Challenges Future Work Comparison with

Existing Reviews

[49]
Behaviour

modification
or treatment

The integration of machine
learning into behavioural
change programs can help

with determining what
works and what does not.

Various machine
learning and

reasoning methods,
including natural

language processing

The inability to
synthesize and

deliver evidence on
behavioural change
interventions to user
need and context to

improve the
usefulness of

evidence.

The lack of a behavioural
change intervention
knowledge system

consisting of an ontology,
process, and resources for

annotating reports, an
automated annotator, ML
and reasoning algorithms,

and user interface.

The utilization of
evidence from

machine learning
programs to guide
behavioural change

interventions.

Based on the
researcher’s exploration,

there are no reviews
systematically

examining behavioural
modification or

treatment machine
learning algorithms.
Accordingly, these
applications of ML

ought to be assessed.

[51] Clinical trial
research

There is a need to develop
machine learning

algorithms capable for
continual learning from

clinical data.

Deep learning
techniques

The difficulty of
drawing insights

from vast amounts of
clinical data using

human capabilities.

The problem of utilizing
deep learning models on
complex medical datasets.

The need for high volumes
of well-labelled training

datasets.
Ethical issues surrounding

machine learning.

The continued
collection of training
datasets to improve
the applicability of

deep learning in
clinical research

trials.

Some review studies in
this area exist.

For example, Zame et al.
(2020) reviewed the
application of ML in
clinical trials in the
current COVID-19

setting [52].
The proposed research

will examine ML
applications in different

clinical trial efforts.
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Table 4. Cont.

Reference Application
Name Brief Description ML Algorithms Issues Addressed Current Challenges Future Work Comparison with

Existing Reviews

[53] Smart electronic
health records

The inclusion of machine
learning in electronic health

records creates smart
systems with the capability

to perform disease
diagnosis, progression

prediction, and risk
assessment.

Deep learning,
natural language
processing, and

supervised machine
learning

Current electronic
health records store
clinical data but do
not support clinical
decision-making.

Preparing data before they
are fed into a machine

learning algorithm remains
a challenging task.

Additionally, it is difficult
to incorporate

patient-specific factors in
machine learning models.

The widespread
adoption of smart
electronic health

records to support
the management of
different conditions

or diseases.

Reviews assessing the
incorporation of ML into
electronic health records
are few. Shinozaki (2020)
reviewed the inclusion

of ML in electronic
health records to aid

drug development [69].
However, additional

research is required to
determine whether ML

can help further
patient-centred care,

improve the quality of
care, and enhance

efficiency. The proposed
review hopes to address

these components.

[56]
Epidemic
outbreak

prediction

Disease surveillance can
benefit from machine

learning as it allows for the
prediction of epidemics,

hence enabling the
implementation of

appropriate safeguards.

Deep
neural network

(DNN), long
short-term memory

(LSTM) learning, and
the autoregressive
integrated moving
average (ARIMA)

The difficulty of
preparing for and

dealing with
infectious diseases

due to a lack of
knowledge or

forecasts.

The low accuracy of
predictive models.

The challenge of choosing
parameters to utilize with

the machine learning
models.

The use of predictive
models to forecast a
range of infectious

diseases.

There have been studies
reviewing the

application of ML to
disease outbreak

prediction. Philemon
et al. (2019) reviewed

the utilization of ANN
to predict outbreaks [70].

The proposed review
intends to further the

review efforts and
examine ways of

enhancing the predictive
accuracy of the ML
algorithms created.
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Table 4. Cont.

Reference Application
Name Brief Description ML Algorithms Issues Addressed Current Challenges Future Work Comparison with

Existing Reviews

[58] Heart disease
prediction

AI can be utilized to predict
heart disease, hence

enabling patients and
health providers to

implement preventive
measures.

Deep learning and
artificial neural

networks

There is a need for
accurate prediction
of cardiovascular

diseases, as well as
the implementation

of effective
treatments to

improve patient
outcomes.

The lack of ethical
guidelines to direct the

adoption of heart disease
prediction algorithms.

Machine learning
algorithms cannot solve

highly abstract reasoning
problems.

Extending the
utilization of ML in

clinical
decision-making to

include
patient-centred

predictive analytics.

In this area, current and
comprehensive reviews
have been performed

[71]. Therefore,
the objective of the

planned review is to
report the findings and

suggest areas of
further research.

[60]

Diagnostic and
prognostic
models for
COVID-19

This study examined the
prediction models for

COVID-19 and found that
they are poorly designed.

Deep learning
models

The need to review
prediction models for

the diagnosis and
prognosis of

COVID-19 to support
their use to guide
decision-making.

The developed models are
problematic due to the poor

training datasets used.

Collect high-volume
and quality datasets
to train COVID-19
prediction models.

Systematic reviews
assessing the application

of ML for COVID-19
diagnosis and prognosis

have been conducted
[60]. As knowledge of

the disease continues to
improve, better and

more effective models
can emerge, hence the

need for
continual reviews.

[63] Personalized
care

Machine learning
algorithms provide an

avenue for offering
person-centred care.

Deep neural
networks, deep

learning, supervised
and unsupervised

learning, and many
others

The inability to
provide personalized

care despite the
increasing

accumulation of
personal data.

There is a need for the
continued accumulation of

high-quality training
datasets.

Creating systems that
can be integrated into

electronic health
records to promote

personalized
medicine.

Fröhlich et al. (2018)
reviewed the

application of ML to
enable personalized care.

The study identified
some of the challenges

associated with this
endeavor. As such,

the proposed review
hopes to explore how

subsequent studies have
addressed

these challenges.
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There are devices capable of monitoring body temperature, blood pressure, and heart
rate. They are useful for collecting and storing data about patients and hence can contribute
to diagnosis. IoT and machine learning can help keep healthcare professionals abreast
of changes, which is important for a healthy society. The storage of diagnostic data and
COVID-19 symptoms is key to ensuring that a disease is wiped out or a vaccine is found
since data can be stored in a central database and accessed by scientists and medical
practitioners for cross-examination, analysis, and real-time sharing of results.

6. Conclusions

The healthcare sector is one of the most complex in terms of the level of responsibility
and strict regulations, which makes it an important and vital sector for innovations. The In-
ternet of things (IoT) has opened up a world of possibilities in the healthcare sector and
could be the solution to many problems. Applying the medical IoT will bring about great
opportunities for telemedicine, remote monitoring of patients’ condition, and much more.
This could be possible with the help of ML models. In this article, we summarised the most
powerful ML algorithms, listed some ML applications in the healthcare field, and analysed
IoT and machine learning in the healthcare system to predict future trends.
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