
Health Assessment of Eucalyptus Trees Using 
Siamese Network from Google Street and Ground 
Truth Images

This is the Published version of the following publication

Khan, Asim, Asim, Warda, Ulhaq, Anwaar, Ghazi, Bilal and Robinson, Randall 
(2021) Health Assessment of Eucalyptus Trees Using Siamese Network from 
Google Street and Ground Truth Images. Remote Sensing, 13 (11). ISSN 
2072-4292  

The publisher’s official version can be found at 
https://www.mdpi.com/2072-4292/13/11/2194
Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/43490/ 



remote sensing  

Article

Health Assessment of Eucalyptus Trees Using Siamese Network
from Google Street and Ground Truth Images

Asim Khan 1,* , Warda Asim 1 , Anwaar Ulhaq 1,2 , Bilal Ghazi 3 and Randall W. Robinson 1,4

����������
�������

Citation: Khan, A.; Asim, W.; Ulhaq,

A.; Ghazi, B.; Robinson, R.W. Health

Assessment of Eucalyptus Trees Using

Siamese Network from Google Street

and Ground Truth Images. Remote

Sens. 2021, 13, 2194. https://doi.org/

10.3390/rs13112194

Academic Editor: Francois Girard

Received: 22 April 2021

Accepted: 28 May 2021

Published: 4 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The Institute for Sustainable Industries and Liveable Cities (ISILC), Victoria University,
Melbourne, VIC 8001, Australia; warda.asim@live.vu.edu.au (W.A.); anwaar.ulhaq@vu.edu.au (A.U.);
randall.robinson@vu.edu.au (R.W.R.)

2 School of Computing and Mathematics, Charles Sturt University, Port Macquarie, NSW 2444, Australia
3 Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi 75600, Sindh, Pakistan;

bilal.ghazi@techprobotics.com
4 Applied Ecology Research Group, Victoria University, Melbourne, VIC 8001, Australia
* Correspondence: asim.khan@vu.edu.au

Abstract: Urban greenery is an essential characteristic of the urban ecosystem, which offers various
advantages, such as improved air quality, human health facilities, storm-water run-off control, carbon
reduction, and an increase in property values. Therefore, identification and continuous monitoring
of the vegetation (trees) is of vital importance for our urban lifestyle. This paper proposes a deep
learning-based network, Siamese convolutional neural network (SCNN), combined with a modified
brute-force-based line-of-bearing (LOB) algorithm that evaluates the health of Eucalyptus trees as
healthy or unhealthy and identifies their geolocation in real time from Google Street View (GSV)
and ground truth images. Our dataset represents Eucalyptus trees’ various details from multiple
viewpoints, scales and different shapes to texture. The experiments were carried out in the Wyndham
city council area in the state of Victoria, Australia. Our approach obtained an average accuracy of
93.2% in identifying healthy and unhealthy trees after training on around 4500 images and testing on
500 images. This study helps in identifying the Eucalyptus tree with health issues or dead trees in
an automated way that can facilitate urban green management and assist the local council to make
decisions about plantation and improvements in looking after trees. Overall, this study shows that
even in a complex background, most healthy and unhealthy Eucalyptus trees can be detected by our
deep learning algorithm in real time.

Keywords: Eucalyptus trees; vegetation health; Siamese network; CNN; deep learning; Google Street
View (GSV); target object detection; image processing; geolocation; line-of-bearing (LOB)

1. Introduction

Street trees are an essential feature of urban or metropolitan areas, although relatively
ignored. Their benefits include air filtering, water interception, cooling, minimising energy
consumption, erosion reduction, pollution management, and run-off detection [1,2]. Vari-
ous trees are planted in urban areas due to street trees’ social, economic and environmental
advantages. One such tree, Eucalyptus, is a valuable asset for communities in urban areas
of Australia. Eucalyptus trees are icons of the Australian flora, often called gum trees. They
dominate the Australian landscape with more than 800 species, forming forests, wood-
lands and shrub-lands in all environments, except for the aridest deserts. Evidence from
DNA sequencing and fossil discovery shows that Eucalyptus had its evolutionary roots
in Gondwana when Australia was still linked to Antarctica [3]. Traditionally, indigenous
Australians have used almost all parts of Eucalyptus trees. Leaves and leaf oils have medic-
inal properties, and saps may be used as adhesive resins; bark and wood were used to
make vessels, tools and weapons, such as spears and clubs [4]. For the conservation of
Australia’s rich biodiversity, Eucalyptus native forests are significant.
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There are two factors that are detrimental to the health of street trees. First, urban trees
are under persistent strain, i.e., excessive soil moisture and soil mounding in nurseries
on roots that have an adverse effect on their health [5]. Secondly, urban ecosystem distin-
guished by elevated peak temperatures relative to nearby rural areas [6], soil compaction,
limited growth of roots, pollution of groundwater [7], and high air pollution concentra-
tions caused by community activities. Usually, urban soil contains a significant volume
of static building waste, contaminants, de-icing salts, low soil quality and a significant
degree of volume density, thus maintaining a low natural activity and the inferior organic
material substance provided [8,9]. Both of these reasons raise the likelihood of water and
nutrient pressure, which degrades the metabolism and development of a tree and reduces
its capacity to provide ecosystem services. Urban tree conditions are adversely affected
due to soil compaction, low hydraulic conductivity, low compaction aeration and mostly
insufficient available rooting space [9]. In addition, inadequate conditions at the site raise
the threat of insect disease and infestation [6].

The evaluation of tree health conditions is highly critical for biodiversity, forest man-
agement, global environmental monitoring and carbon dynamics. Unhealthy tree features
are identifiable and can build a detection and classification model using deep learning
to intelligently diagnose Eucalyptus in a healthy and unsanitary/dead tree. To consider
the importance of urban trees to the community, they should be adequately maintained,
including obstacle prevention, regeneration, and substitution of dead or unhealthy trees.
Ideally, skilled green managers need to monitor the precise and consistent spatial data
on tree’s health. About 60% of the riparian tree vegetation in extensive wetlands and
floodplains reported being in poor health, or extinct [10]. Chronic decreases are associated
with extreme weather conditions due to human resources management, various pathogens,
pests and various parasites. Trees are stressed [11] in the landscape, where the soil has a
poor drainage mechanism, also resulting in low growth of trees. The most common factors
such as soil erosion, nutrient deficiency, allelopathy, biodiversity, pests, and diseases affect
Eucalyptus species’ health.

Detection and recognition of Eucalyptus tree health presents a challenging task since
many trees have a few pixels across input images, and some trees are also overshadowed
by other trees and cannot be found due to weather conditions or lighting. For addressing
these challenges and achieving high accuracy and precise prediction, a large amount of
labelled training data for feature extraction of healthy and unhealthy class features is
required. For this purpose, we used GSV imagery and ground truth images were obtained
from various viewpoints and at different times. This study uses the Siamese Convolutional
Neural Network (SCNN) [12], to develop an automated model for identification and
classification and a line-of-bearing measurement approach paired with a spatial aggregation
approach is used to estimate the geolocation of the Eucalyptus tree. We concentrated on the
identification of healthy and unhealthy Eucalyptus trees along the streets and roads in the
Wyndham city council area [13]. This study aims to use a self-created ground truth and
GSV [14] imagery for finding the geolocation, identification and classification of healthy
and unhealthy Eucalyptus trees to prevent damage that can significantly reduce ecosystem
harm and financial loss. GSV is an open image series of streetwise panoramic views with
approximate precise geolocation details acquired on mobile platforms using GPS, wheel
encoder, and inertial navigation sensor (using multiple sources such as cars, trekkers and
boats) [15]. This GSV has been widely used to increase geographical information in a
variety of areas of interest, including urban greenery [16,17], land use classification [18,19]
and tree shade provision [20].

Our key contributions are (a.) classification of trees that are in a healthy or unhealthy
state and (b.) identification of geolocation of the Eucalyptus trees. All these evaluations are
done based on GSV imagery and self-gathered ground truth image data from streets. Our
experiments show that this proposed method can effectively detect and classify healthy and
unhealthy Eucalyptus trees with various dataset and complex backgrounds. Our proposed
method for geolocation identification gives us reliable results and could be applied for
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geo-identification of other objects on the roadside. Figure 1 shows the overall visual
representation of this study.

Figure 1. General workflow diagram of classifying healthy or unhealthy and geo-tagging Eucalyptus
trees from GSV and ground truth images.

2. Related Work

Numerous work has been done on detection and recognition in various areas such as
fruits and vegetable plant leaves disease detection [21], vegetation detection [22], pedes-
trian detection [23], face detection [24], object detection [25], using various deep learning
algorithms [26]. Automatic data analysis in the remote sensing (RS) [27] and computer
vision [28] field is of vital significance. RS data have been used in urban areas to assess trees
health. A large volume of the study shows various RS techniques used to determine the cur-
rent condition of trees. In contrast, on the other side, a minimal amount of research shows
interest in the identification and classification of dead trees. Milto Miltiadou et al. [29] pre-
sented a new way to detect dead Eucalyptus camaldulensis with the introduction of DASOS
(feature vector extraction). They tried to explore the probability of dead trees detection with-
out tree demidruleation from Voxel-based full-waveform (FW) LiDAR. Shendryk et al. [30]
suggested a bottom-up algorithm to detect Eucalyptus tree trunks and the demidruleation
of individual trees with complex shapes. Agnieszka Kamińska et al. [31] used remote sens-
ing techniques, including airborne laser scanner and colour infrared imagery, to classify
between living or dead trees and concluded that only airborne laser scanner detects dead
tree at the single tree level.

Martin Weinmann et al. [32] proposed a novel two-step approach to detect a single
tree in heavily sampled 3D point cloud data obtained from urban locations and tackled
semantical classification by assignment of semantic class labelling to irregularly separated
3D points and semantic segmentation by separating individual items within the named
3D points. S. Briechle et al. [33] worked on the PointNet++ 3D deep neural network with
the combination of imagery data (LiDAR and multispectral) to classify various species as
well as standing dead tree crowns. The values of laser echo pulse width and multispectral
characteristics were also introduced into the classification process, and individual tree’s 3D
segments were created in a pre-processing stage of a 3D detection system. Yousef Taghi
Mollaei et al. [34] developed an object-oriented model using high-resolution images to map
the pest-dried trees. The findings confirm that the object-oriented approach can classify
the dried surfaces with precise detail and high accuracy. W. Yao et al. [35] proposed an
approach to individual dead tree identification using LiDAR data in mountain forests.
The three-dimensional coordinates were derived from laser beam reflexes, pulse intensity
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and width using waveform breakdowns and 3D single trees were then detected by an
optimized method that describes both the dominated trees and small under-story trees
within the canopy model.

According to Xiaoling Deng et al. [36,37] machine learning has been used to set several
benchmarks in the field of agriculture. W. Yao et al. [35] and Shendryk et al. [38] published
their prior work on the identification of dead trees is performed by individual tree crown
segmentation prior to the health assessment. Meng R. et al. [39], Shendryk et al. [30], López-
López M et al. [40], Barnes et al. [41], Fassnacht et al. [42], mentioned that most of the current
tree health studies centred either on evaluating the defoliation of the tree crown or the
overall health status of the tree, although there was minimal exposure to the discolouration
of the tree crown. Dengkai et al. [43] used a group of fields assessed tree health indicators
to define tree health that was classified with a Random Forest classifier using airborne
laser scanning (ALS) data and hyperspectral imagery (HSI). They compared the outcomes
of ALS data and HIS and also their combination and then analysed the accuracy degree
of classification. Nasi et al. [44,45] reported in two different pieces of research that the
potential of UAV-based photogrammetry and HSI for mapping bark beetle in an urban
forest, damage at tree level. Degerickx et al. [46] performed tree health classification
based on chlorophyll and leaf area index derived from HSI, where for individual tree
crown segmentation, they used ALS data. Xiao et al. [47] used normalised difference
vegetation index (NDVI) to detect healthy and unhealthy trees. They found it challenging
to map tree health across various species or in places where many tree species coexist.
Goldbergs et al. [48] evaluated local maxima and watershed models for the detection of
individual trees, and they found the efficient performance of these models for dominant
and co-dominant trees. Fabian et al. [49] presented their work on random forest regression
to predict total trees using local maxima and a classification process to identify a tree, soil
and shadow. Li et al. [50] introduced a Field-Programmable Gate Array (FPGA) for tree
crown detection, significantly rapid calculations without loss of functioning.

Siamese network [12] has been used in a variety of applications, including signature
verification [51], object tracking [52], railway track switches [53], plant leaves disease
detection [54], and coronavirus diseases detection [55]. Bromley et al. [56] proposed a
neural network model for signature matching by introducing for the very first time Siamese
network. Bin Wang et al. [57] presented a few-shot learning method for leaf classification
with a small sample size based on the Siamese network. However, we are using a Siamese
convolutional neural network (SCNN) combined with a modified brute-force-based line-
of-bearing (LOB) algorithm to classify Eucalyptus trees as healthy or unhealthy and to find
their geolocation.

3. Material and Methods
3.1. Study Area and GIS Data

The Wyndham city council (VIC, Australia) area [13] was chosen as the study area,
as shown in Figure 2. It is located on Melbourne’s western outskirts and covers an area
of 542 km2 and has a coastmidrule of 27.4 km. It has an estimated resident population of
270,478, according to the 2019 census.

Wyndham is currently the third fastest-growing local council in Victoria. Wyndham’s
population is growing and diverse, and the community forecasts indicate the population
will be more than 330,000 by 2031 [13]. There are 19 suburbs (Cocoroc, Eynesbury, Hoppers
Crossing, Laverton North, Laverton RAAF, Little River, Mambourin, Mount Cottrell,
Point Cook, Quandong, Tarneit, Truganina, Werribee, Werribee South, Williams Landing,
Wyndham Vale) in Wyndham [58]. Wyndham City Council is committed to enhancing the
environment and liveability of residents. As part of this commitment, thousands of new
trees are planted each year to increase Wyndham’s tree canopy cover through the street
tree planting program.
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Figure 2. (a) Location of the study area in Victoria, Australia. (b) Suburbs in the Wyndham city council.

3.2. Google Street View (GSV) Imagery

The orientation of Eucalyptus trees (healthy and unhealthy) in a 360° GSV can be
identified by GSV images. Images of the static street view have been downloaded via the
GSV image application programming interface (API) [59] by supplying the corresponding
parameter information with uniform resource locators (URLs) [60]. The GSV API snaps the
requested coordinates automatically to the nearest GSV viewpoint. We have taken four
GSV images with the fov of 90° and headings of 0°, 90°, 180°, 270°, respectively as shown
in Figure 3.

Figure 3. GSV images were obtained from 4 different viewpoints.

The “street-view” python package [61] was used for acquiring accurate latitude and
longitude values for each GSV viewpoint to convert the coordinates requested to the
nearest available Panorama IDs (i.e., unique panorama ID with purchased date [year,
month], latitude and longitude). The latest Panorama ID was then used as the input
location parameter as shown in Figure 4.

Figure 4. Different location images of the study area with latitude, longitude values and
panorama IDs.
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We built a Python script to create the URLs and download 1000 GSV images to
cover the study field automatically. To remove the Google logos, we cropped the down-
loaded images.

3.3. Annotation Data

For deep supervised learning algorithms to be practical, large image data are essential.
From GSV images acquired with screen captures on Google Maps, we created 1000 images
data points by manually tagging Eucalyptus trees, as can be seen in Figure 5. To increase
the methodology’s transferability, random Eucalyptus trees’ around 3500 images at the
Wyndham city council, Victoria, Australia, were also taken for training, validation and
testing of the model. We used “labelling” [62] for ground truth and panorama images. It
is a tool written in Python for graphical image annotation and uses Qt for its graphical
interface. Annotations are stored in PASCAL VOC, the format used by ImageNet, as XML
files. We used the PASCAL VOC format because the Siamese network supports it. In DL,
training an algorithm requires an ample training and validation dataset to minimise and
prevent overfitting the model. At the same time, a test dataset is required to assess the
trained model’s performance. In total, 4500 images from GSV and self-gathered images
were annotated and used as a dataset for training, 500 for validation, and the other 500 for
testing (accuracy) evaluation.

Figure 5. (a) Command prompt-LabelmeImg screenshot, (b) Annotating single tree image, (c) Anno-
tating panorama image.

3.4. Training Siamese CNN

We trained a Siamese CNN based on the central idea that if we use two input images
from the same class, then their feature vectors must also be identical, and if two input im-
ages are not of the same class, then their feature vectors must also be different. Depending
on the input image types, the vector features must be very different in these situations and
the similarity score will also be different.

3.5. Siamese CNN Architecture

The word Siamese refers to twins [12]. Siamese Neural Network is a sub-class of
neural network architecture that comprises of two or more networks [63]. These networks
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must be two copies of the same network, i.e., having the same configuration with the same
parameters and weights.

We used the Siamese network, consisting of two identical convolutional neural net-
works (CNN) [64]. The network architecture is the same as in our previous work [21], where
an individual CNN is comprising of six convolutional layers and three fully connected or
Dense layers. Each convolution layer contains two feature types, input and numeral filters.
We used a 3× 3 filter size for all convolution layers. The number of the filter is transformed
into the next linked layer for each layer, which extracts the valuable features. One of the key
benefits of the convolutional network is that the input image to the network can be much
bigger than the size of the candidate image. Furthermore, in one evaluation, it will measure
the similarity in all translated sub-windows on a dense grid. We search multiple scales in
one forward-pass by assembling a mini-batch of scaled images. The output of this network
performance is a score chart. For enhancing convergence speed, batch normalization [65] is
applied to all convolutional layers except the last layer. We used five max-pooling layers
that follow each convolutional layer to minimize the computational cost. The max-pooling
has an active filter of 2 × 2 that slides on the input image and, based on the filter size; then
the maximum value is selected as an output. The first two layers of the fully connected
layers have ReLU activation [66] while the last layer (also known as the output layer) has
a SoftMax activation [67]. The SoftMax activation finds the maximum probability value
node and forwarded it as an output. A dropout of 0.5 is added to the fully connected layers
to prevent over-fitting issues in the model. The total model parameters of our model are
51,161,305. Figure 6 is the visual representation of our Siamese network.

Figure 6. Visual representation of Siamese network architecture that takes two different inputs and
provides the inference.

3.5.1. Contrastive Loss Function

Features extracted by the subnetworks are fed into the decision-making network
component, which determines the similarity. This decision-making network can be a loss
function [68], i.e., contrastive loss function [69].

We trained Siamese CNN with contrastive loss function [69]. Contrastive loss is a
distance-based loss function used to find embeddings where the Euclidean distance is small
in two related points and high in two separate points [69]. Therefore, if input images are of
same class, then loss function allows the network to output features close to feature space
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and if the input images are not similar then the output features are away. The similarity
feature function is:

Dw(x1, x2) = ‖Fw(x1)− Fw(x2)‖ (1)

where x1 and x2 are the input images that shares the parameter vector w and Fw(x1),
Fw(x2) represents the input mapping in the feature space and Dw is the Euclidean distance.
By calculating the Euclidean distance, Dw, between the feature vectors, the co-evolutionary
Siamese network can be seen as a measuring function that measures the similarity between
x1 and x2.

We use contrastive loss function defined by Chopra et al. [70,71], in Siamese network
training, defined as follows:

L(w, y, x1, x2) =
y
2

Dw(x1, x2)2 +
1− y

2
(max{0, m− Dw(x1, x2)})2 (2)

where y is a binary label assigned to input images x1 and x2, y = 1 if both the inputs are of
the same class and y = 0 if both inputs are of different class, while m > 0 is a margin value,
must be chosen experimentally depending on the application domain.

Minimizing L(w, y, x1, x2) with respect to w will then result in a small value of
Dw(x1, x2) for images of the same species and a high value of Dw(x1, x2) for images
of different species. This is visually represented in Figure 7.

Figure 7. Contrastive loss function examples of (a) Positive (similar) and (b) Negative (different),
images embedded into a vector space.

3.5.2. Mapping to Binary Function

A Siamese network takes an input of a pair of images, and the output is a similarity
score. The similarity score will be 1 if both images belong to the same class, and it will be 0
if both input images are from different classes.

3.6. Geolocation Identification

Our proposed DL-based automatic mapping method for Eucalyptus tree from GSV
includes three main steps as shown in Figure 8. They are the following.

1. Detect Eucalyptus tree in the GSV images using a trained DL network.
2. Calculate the azimuth from each viewpoint to the detected Eucalyptus tree based on

the known azimuth angles of the GSV images, relative to their view point locations,
and the horizontal positions of the target in the images as shown in Figure 8 (2)
using the mean value of two X values of the bounding box. For instance; suppose
a detected Eucalyptus tree has a bounding box that is centered on column 228 in a
GSV image that is centered at 0° azimuth relative to the image viewpoint. Each GSV
image contains 640 columns and spans a 90° horizontal field-of-view; thus, each
pixel spans 0.14. The center of the Eucalyptus tree is 130 pixels to the right of the
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image center (at column 320) and so has an azimuth of 18.2° relative to the image
viewpoint. “Azimuth is an angle formed by a reference vector in a reference plane
pointing towards (but not necessarily meeting) something of interest and a second
vector in the same plane. For instance, With the sea as your reference plane, the Sun’s
azimuth may be defined as the angle between due North and the point on the horizon
where the Sun is currently visible. A hypothetical line drawn parallel to the sea’s
surface could point in the Sun’s direction but never meet it.” [72].

3. The final step is to estimate the target locations based on the azimuths calculated
from the second step as presented in Figure 8 (3).

Figure 8. The process of using deep learning to map Eucalyptus trees from GSV.

3.6.1. LOB Measurement Method

The bounding boxes of detected Eucalyptus trees, which result from the implementa-
tion of odometry from monocular vision of GSV images, are the outputs of Eucalyptus tree
detection in GSV images using Siamese CNN, as shown in Figure 9. As a result, estimating
Eucalyptus tree positions in pure GSV images is a multiple-source localization issue based
on passive angle measurements that has been extensively studied [73,74]. One of three
major multiple-source localization methods is the LOB-based method [75]. Since detected
Eucalyptus tree are not signal sources such as propagating signal sources whose signal
intensity can be calculated, a LOB calculation was used to estimate the position of a target
Eucalyptus tree shown in Figure 9. Other methods (such as synchronization and power
transit) necessitate more stringent requirements for a LOB calculation. Azimuths from
multiple image viewpoints to a given Eucalyptus tree enable the Eucalyptus tree position to
be triangulated in LOB localization presented in Figure 9. Since the LOB move through the
target, the intersection of several LOB is ideally the exact location of the target as can be
seen in Figure 9.

When the LOB calculation is used in a dense emitter setting, however, many ghost
nodes (i.e., false targets) appear, as shown in our study for estimating Eucalyptus tree
locations in GSV images [76] as shown in Figure 10.

As a result, a modified brute-force-based three-station cross position algorithm was
used to reduce the ghost node problem of multiple-source localization using LOB measure-
ment as shown in Figure 11; source localization from viewpoints A, B, and C, based on
two assumptions:

1. Targets and sensors are in the xy plane, and
2. All LOB measurements are of equal precision [77].
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Figure 9. An example of using bearing measurements to determine a target position from three
different locations using a sensor.

Figure 10. An example of how to use the brute-force-based three-station cross position algorithm to
remove ghost nodes from four views with a 5° angle threshold.

The LOB measurement method shown in Figure 10 consists of the following steps:

1. Find the closest neighboring viewpoints for a given viewpoint; we tested the algo-
rithm’s performance using 2 to 8 of the closest neighboring viewpoints (i.e., the corre-
sponding number of views is 3 to 9).
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2. Measure the angles between each pair of LOBs from all viewpoints [78].
3. Check whether there are positive associations among LOBs (set at 50 m length) from

current viewpoint and its neighboring viewpoints.
4. Repeat the process from step 1 to step 3 for every intersection point.

Figure 11. Bounding boxes of labelled Eucalyptus tree in 4 GSV images (a–d).

To be more precise, a positive association among LOB is produced by three positive
detections from any three views within an angle threshold (β) [77]. As a result, assuming
constant detection rates, the number of predicted Eucalyptus trees increases as the number
of views increases, based on the likelihood of combination. For example, suppose the total
number of Eucalyptus trees estimation possibilities is t(t ε N); if the detection rate remains
constant, the likelihood of a positive association with seven views (i.e., C(7, 3)/t) is greater
than the probability of positive association with four views (i.e., C(4, 3)/t). To perform
cross-validation in this analysis, the closest perspectives were chosen. A list of the nearest
neighbouring perspectives (2, 3, 4, 5, 6, 7, and 8 viewpoints; that is 3, 4, 5, 6, 7, 8, and 9
views) and angle thresholds (1°, 2° and 3°) is used for testing to determine whether there
is a positive correlation and which threshold functions better. Because of the span of the
LOB and the interval between GSV acquisitions, only nine views were chosen for research
(10 m). Eight perspectives are on a line on one side of the present perspective in the extreme
case of nine views. For the intersection of two 50 m LOB, 80 m is almost the maximum
distance needed.

3.6.2. Multiple LOB Intersection Points Aggregation

If we use a modified brute-force-based three-station cross-location algorithm, the result
will be more than one LOB intersection point, and all these are possible targets for each
Eucalyptus tree. To overcome this situation, we can further apply a geospatial algorithm,
i.e., spatial aggregation (“Spatial Aggregation computes statistics in areas where an input
layer and a boundary layer overlap” [79]) to determine where a Eucalyptus tree can be
found. The primary purpose of this geospatial aggregation algorithm is to provide a central
location (expected correct target) within a range of 10 m (this 10 m distance is given to the
geospatial algorithm to apply aggregation on) of LOB intersection points. There are three
main steps of this geospatial aggregation algorithm, as shown in Figure 12.

1. Compute the Euclidean distance matrix between all LOB intersection points.
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2. The Euclidean distances between LOB intersection points are used to cluster LOB
intersection points.

3. Determine the centroid of each intersection point cluster.

Figure 12. An example of aggregating multiple LOB intersection points.

3.6.3. Spatial Aggregation and Calculation of Points

Aggregation is the process of combining several objects with similar characteristics
into a single entity, resulting in a less detailed layer than the original data. Aggregation,
like any other type of generalization, removes some information (both spatial and attribute)
but simplifies things for the consumer who is more interested in the unit as a whole rather
than each individual component within it. Spatial aggregation [80] can be applied on Line,
Points or Area; however, the calculation method is slightly different when calculating
points. For Line and area features, average statistics are determined using a weighted
mean. The following equation is used to calculate weighted mean [79].

x̄w =
∑N

i=1 wi.xi

∑N
i=1 wi

(3)

where N = number of observations, xi = observations and wi = weights.
Only the point features inside the input boundary are used to summarise point layers.

As a result, no equations are weighted. It must be ensured that all data from the same
database link is stored in the same spatial reference system while performing spatial
aggregation or spatial filtering [79,80].

4. Experiments and Results
4.1. Experiments

We implemented our experiments in Keras [81] backend TensorFlow [82]. Typically,
any state-of-the-art architecture may be used as a backbone to extract the features. We
performed our experiments with VGG-16 [83], AlexNet [84] and ResNet-34 [85] to explore
how effective the backbone network is in extracting features. Siamese network consists
of two sister/twin CNNs as both are two copies of the same network. They share the
same parameters and network weights were initialized. The initial learning rate was set
at 0.001 with an optimizer Stochastic Gradient Descent (SGD) [86], dropout was set to 0.5
and momentum 0.9. We used L2 Regularization to avoid over-fitting in the network [21].
All input images were resized into 100 × 100 before feeding into two identical networks
in the Siamese network. The two input images of Eucalyptus trees (X1 and X2) are passed
through the networks and then through a fully connected layer to generate a feature vector
for each (X1) and (X2). We added a dense layer with ReLU activation and then finally an
output layer with SoftMax activation.
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4.2. System Configuration

All our experiments were performed on Intel Core i7-9700K CPU @ 3.60 GHz (8 cores
and 8 threads), 32 GB RAM, NVidia Titan RTX 24GB VRAM GPU. For development and
implementation of methodology, we used Python 3.8 and Keras-2.2 with Tensorflow-2.2.0
backend as the deep learning framework.

4.3. Approach

The entire dataset was split into 70% training, 10% validation and 20% test set. We
applied various data augmentation techniques on the images and resized all images into
100 × 100 before feeding it into the Siamese network. The weights were initialized to avoid
the layer activation from disappearing during the forward passage through a deep neural
network [87]. We also used early stopping with a patience of 50 epochs.

4.4. Results

We used various networks such as VGG-16 [83], ResNet-34 [85], and AlexNet [84] in
our experiments. While performing experiments, first, we froze a few layers in the backbone
network and trained the network on the remaining layers that we added. The obtained
results from the experiments with various networks were not satisfactory, i.e., 85.33%,
82.67% and 79.89%, respectively. The achieved results from the frozen layers were not
satisfactory, so we unfroze all the layers and again performed the experiments to extract
features for Eucalyptus trees input images. This time the results were 93.2%, 90.43% and
86.26%, respectively. In each experiment, a total of 50 epochs were conducted, where each
epoch is the number of iterations. Finally, the Siamese network was trained at a batch size
of 32 and stopped training on epoch-50 as shown in Figure 13.

Figure 13. Validating the object detection model learning.

The initial experiments with VGG-16, ResNet-34, and AlexNet demonstrated that
VGG-16 consistently produced the best results in our scenario, so we used it as the backbone
for all of our experiments.The resulting features of VGG-16 experiments are transferred to
the decision network to identify whether or not two input images are similar. A sample
output is shown in Figure 14.
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Figure 14. Examples of identifying and classification of healthy and unhealthy Eucalyptus trees from
GSV and ground truth images.

There are many methods of performance measurement that are used to evaluate the
performance of neural networks. They include precision, recall, accuracy, and f1-score.
Precision tells us about the correct predictions made out of false-positive while recall tells
us about the correct predictions made out of false-negatives. The accuracy is the number
of correct predictions out of both false-positives and false-negatives. We calculated all of
our trained model’s performance metrics using the formulas in Equations (4)–(7) from the
confusion matrix.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Accuracy =
TP + TN

TP + TN + FN + FP
(6)

F1− Score = 2 ∗ precision ∗ recall
precision + recall

(7)

where TP is true positives, TN is true negatives, FP is false positives and FN is false
negatives. Here the TP and TN are the correct predictions while the FP and FN are the
wrong predictions made by our model. After computing values from the confusion matrix,
the results are shown in Table 1.

Table 1. Classification/Model Performance Report.

Evaluation Metrics Value in %

Precision 93.38%
Recall 92.98%

Accuracy 93.2%
F1-Score 92.17%

Location Estimation Accuracy Evaluation

The location estimation accuracy of the Eucalyptus tree is shown in Table 2 as a
percentage of the number of predicted Eucalyptus tree positions within the buffer zones of a
reference Eucalyptus tree. To assess the effects of the number of views, the angle threshold,
and the distance to the middle of a chosen road, we considered seven views (i.e., 3, 4, 5,
6, 7, 8, 9), three angle thresholds (i.e., 1°, 2°, and 3°), and three distance thresholds to the
centre of a selected road (i.e., 3 m, 4 m, and 5 m) to determine the impacts of the number
of views, the angle threshold, and the distance threshold to the centre of a selected road.
Around half of the estimated Eucalyptus tree locations were within the 6m buffer zone
of their reference locations using the method we tested, and up to 79% of the estimated
locations were within the 10 m buffer zone of their reference locations using the method
we tested. However, about 12% of the approximate Eucalyptus tree positions were inside
the 2 m reference position buffer zone.
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Table 2. Based on 1039 reference trees, the accuracy assessment of estimating position of Eucalyptus trees.

Number of Views Threshold of Angle (°)
Threshold of Distance to
Center of Selected Road (m)

Percentage of the Number of Estimated Locations of Eucalyptus Tree Being
within a Certain Buffer Zone of Reference Eucalyptus Tree (%)

Number of Estimated
Eucalyptus Tree

<1 m <2 m <3 m <4 m <5 m <6 m <7 m <8 m <9 m <10 m

3

1 3 1.75 8.04 22.38 35.66 46.85 54.9 62.59 68.18 74.83 80.07 286

1 4 1.83 8.42 23.44 36.63 47.62 55.68 64.47 70.7 76.92 82.42 273

1 5 1.92 7.69 23.08 37.31 49.23 57.69 67.31 72.69 79.23 85 260

2 3 1.71 8.05 19.51 30.98 44.88 53.41 58.78 64.63 72.93 77.8 410

2 4 1.75 8.27 19.8 31.08 45.36 53.88 60.15 66.92 74.94 79.95 399

2 5 1.85 8.71 20.32 32.72 47.76 56.73 63.59 69.66 77.31 82.32 379

3 3 2.37 8.84 20.47 31.9 43.32 50.86 57.54 64.01 71.12 75.86 464

3 4 2.68 8.95 20.36 31.77 43.18 51.23 58.17 65.55 72.93 77.18 447

3 5 2.56 9.3 20 32.79 44.88 53.02 60.23 66.98 74.65 79.53 430

4

1 3 2 7.56 19.56 30.89 40.67 51.33 58 63.11 71.11 76 450

1 4 1.87 7.26 20.37 30.91 42.62 53.86 60.89 67.45 74.71 79.16 427

1 5 2.02 7.83 20.96 32.32 44.44 55.81 63.38 70.45 77.78 83.33 396

2 3 1.31 7.86 17.84 29.13 39.44 48.12 54.99 62.52 67.76 72.83 611

2 4 1.2 7.72 18.01 29.5 41.68 51.29 58.32 65.87 71.7 76.33 583

2 5 1.09 8.56 18.58 30.78 43.53 53.37 60.47 68.12 74.32 79.05 549

3 3 1.35 7.77 16.89 29 38.42 46.79 55.31 62.78 68.76 74.14 669

3 4 1.39 8.19 18.08 30.45 40.96 49.15 57.5 65.84 71.56 76.82 647

3 5 1.47 9.61 19.06 30.94 42.51 50.98 59.45 68.4 74.43 78.99 614
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Table 2. Cont.

Number of Views Threshold of Angle (°) Threshold of Distance to
Center of Selected Road (m)

Percentage of the Number of Estimated Locations of Eucalyptus Tree Being
within a Certain Buffer Zone of Reference Eucalyptus Tree (%)

Number of Estimated
Eucalyptus Tree

<1 m <2 m <3 m <4 m <5 m <6 m <7 m <8 m <9 m <10 m

5

1 3 2.2 10.8 22.34 35.35 45.6 51.83 57.51 64.29 71.98 77.47 546

1 4 2.46 11 22.35 36.36 48.48 55.3 61.93 68.94 75.19 79.17 528

1 5 2.63 11.3 22.63 37.37 49.7 56.97 63.84 71.92 77.78 83.23 495

2 3 2.31 11 19.62 30.3 42.14 48.77 57.58 64.36 71.28 75.47 693

2 4 2.53 10.3 19.2 32.44 45.83 53.27 61.61 68.3 73.66 77.98 672

2 5 2.52 10.2 19.69 32.6 47.72 55.28 63.15 70.08 77.17 81.57 635

3 3 2.37 10.4 19.05 29.17 39.55 47.83 56.37 63.34 69.51 74.24 761

3 4 2.84 10.4 19.08 30.72 42.63 51.42 60.35 66.98 72.26 76.73 739

3 5 3.01 11.1 20.23 32.28 43.9 53.52 62.41 70.01 76.33 80.63 697

6

1 3 2.5 12.2 23.21 36.06 46.41 52.92 60.27 67.78 73.12 78.46 599

1 4 2.87 12.2 23.99 37.67 48.14 54.56 63.18 70.78 74.32 78.55 592

1 5 2.5 12.9 25.04 38.64 49.91 57.07 65.47 73.7 78 82.47 559

2 3 2.43 10.8 21.62 33.92 44.73 52.3 59.86 65.14 71.76 78.24 740

2 4 2.46 10.3 21.61 34.75 47.74 56.5 64.71 70.86 74.69 79.07 731

2 5 2.47 11.2 23.11 36.63 50.44 59.88 67.3 73.4 78.05 82.27 688

3 3 2.22 9.75 20.49 32.47 41.23 50.49 57.9 63.21 70.62 75.43 810

3 4 2.63 10.1 21.13 33.88 44.5 55.38 62.88 68.63 73.25 76.63 800

3 5 2.76 10.8 22.97 34.78 46.19 57.09 64.44 70.47 76.12 79.4 762
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Table 2. Cont.

Number of Views Threshold of Angle (°) Threshold of Distance to
Center of Selected Road (m)

Percentage of the Number of Estimated Locations of Eucalyptus Tree Being
within a Certain Buffer Zone of Reference Eucalyptus Tree (%)

Number of Estimated
Eucalyptus Tree

<1 m <2 m <3 m <4 m <5 m <6 m <7 m <8 m <9 m <10 m

7

1 3 2.7 12.4 24.01 38.31 49.92 56.6 63.28 68.68 74.72 79.81 629

1 4 2.91 12.4 25.36 41.03 52.67 58.16 65.59 72.54 77.71 82.23 619

1 5 2.74 13.2 27.05 43.15 55.65 60.96 69.01 75.34 80.65 84.93 584

2 3 2.2 9.95 21.71 34.24 44.44 52.07 59.56 65.37 70.8 76.36 774

2 4 2.61 9.52 23.21 36.64 47.72 56.19 64.15 70.01 73.14 77.84 767

2 5 2.37 10.6 23.29 38.35 51.05 59.14 67.78 73.08 77.82 82.01 717

3 3 2.75 10.2 22.04 33.53 43.95 52.22 59.28 66.35 72.1 75.57 835

3 4 3.15 10.2 23.12 35.23 46.25 55.33 62.47 68.77 72.88 76.15 826

3 5 3.31 11.5 23.92 36.01 48.6 56.87 65.14 70.99 75.95 79.64 786

8

1 3 3.08 12.2 25.08 40.92 52.92 58.77 64.77 70.46 70.46 76.77 650

1 4 3.87 12.9 26.63 43.03 55.42 60.84 66.41 73.68 78.17 82.51 646

1 5 4.08 13.7 28.22 45.02 58.4 63.62 70.47 77.16 82.54 86.79 613

2 3 3.44 11.3 23.66 36.01 47.2 54.33 61.58 65.52 70.74 75.7 786

2 4 3.68 11.3 25.51 37.44 50 57.61 64.47 69.16 72.21 76.78 788

2 5 3.49 12.1 26.71 39.19 52.62 59.46 67.65 72.89 77.18 80.54 745

3 3 3.05 11.2 23.12 34.62 45.42 52.93 60.09 66.2 71.24 75.7 852

3 4 3.51 11.2 24.09 35.79 47.6 56.02 61.99 69.36 72.4 76.02 855

3 5 3.78 13.3 25.61 38.66 49.88 57.44 65.73 71.71 76.1 79.63 820



Remote Sens. 2021, 13, 2194 18 of 24

Table 2. Cont.

Number of Views Threshold of Angle (°) Threshold of Distance to
Center of Selected Road (m)

Percentage of the Number of Estimated Locations of Eucalyptus Tree Being
within a Certain Buffer Zone of Reference Eucalyptus Tree (%)

Number of Estimated
Eucalyptus Tree

<1 m <2 m <3 m <4 m <5 m <6 m <7 m <8 m <9 m <10 m

9

1 3 2.67 11.7 24.67 41.46 52.15 58.99 65.53 71.92 76.37 82.91 673

1 4 2.85 12 26.39 42.73 54.72 61.62 66.87 73.01 77.21 82.01 667

1 5 3.14 13.8 28.57 45.84 58.87 64.52 70.8 76.77 81.16 85.71 637

2 3 3.18 11.3 22.03 36.72 47.37 54.59 61.57 65.97 70.26 75.64 817

2 4 3.04 12.2 23.45 37.3 48.97 57.23 62.33 67.8 71.08 75.7 823

2 5 3.47 12.5 25.06 40.36 51.8 59.13 66.07 71.47 75.45 78.92 778

3 3 2.95 11.4 22.05 36.36 47.16 54.77 60.91 65.8 70.11 75.34 880

3 4 2.83 12.2 23.42 36.88 49.21 56.56 62.44 67.99 71.15 75.23 884

3 5 3.4 12.9 24.74 39.98 51.11 58.15 64.95 71.04 75.38 78.55 853
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Table 2 reveals that using more views and higher angle thresholds resulted in a more
approximate Eucalyptus tree in the modified brute-force-based three-station cross-location
algorithm, which is due to the increased relaxation of the modified brute-force-based
three-station cross-location algorithm. Meanwhile, because relaxation allows more ghost
nodes to be estimated Eucalyptus trees, more estimated Eucalyptus trees may result in lower
accuracy (see Table 2).

Table 2 shows that when comparing the results of other numbers of views, the average
percentage of predicted Eucalyptus tree positions being inside all buffer zones of reference
Eucalyptus trees for the results of eight views is the highest (47.80%). Using a greater
distance to the centre of selected road thresholds, on the other hand, resulted in less
approximate Eucalyptus trees. Since the optical GSV imagery was the only data source used
to perform the localization, the precision of the position estimation for the Eucalyptus tree
is fair, and the estimated data are helpful.

It is worth noting that GSV image distortion, terrain relief, GSV position accuracy,
or limitations in the process we used may have caused location mismatches in some cases
due to the ground positions of Eucalyptus trees varying from the orthographic predicted
locations estimated from GSV images. For areas where GSV imagery is available and
a Eucalyptus tree distribution map with a 10 m accuracy is appropriate, our proposed
approach has a lot of promise. When a given Eucalyptus tree was not identified in at least
three GSV images out of a certain number of views, our method failed to estimate the
Eucalyptus tree’s location. Three is the minimum number of images needed to triangulate
a position and remove ghost nodes (as can be seen in Figure 10). This explains why the
number of projected Eucalyptus trees rises in tandem with the number of views (see Table 2).

5. Discussion

Eucalyptus trees are evergreen; however, an early sign that shows they are unhealthy is
if they turn brown, either partially or completely. Various signs/aspects can be spotted in
unhealthy Eucalyptus trees; one of the most apparent is the loss or decrease of leaf growth
in all or parts of the tree. Other symptoms include the bark of the tree becoming brittle
and peeling off, or the trunk of the tree becoming sponge-like or brittle. A tree may have
bare branches, i.e., without leaves, in any season can be a sign of dead tree or branches that
are loose and weak could indicate a dead or dying tree. Weak joints of Eucalyptus tree can
be dangerous, as it means branches can come loose during bad weather [88]. If the whole
Eucalyptus is dead, it can be left untouched for a period of maximum two years; however,
after this, it becomes unsafe and needs to be removed.

Some of the common diseases in Eucalyptus [89] trees are shown in Figure 15a–c. It
is critical to identify such unhealthy trees in order to improve the urban Eucalyptus tree’s
health and environment.

a. Canker disease that infects the bark and then goes inside of the tree,
b. Phytophthora disease goes directly under the bark by discolored leaves and dark

brown wood, and
c. The heart disease damages the tree from inside and outside.

Numerous approaches are studied in the current literature with regards to trees and
their health in urban areas. Shendryk et al. [30] worked on the trunks of Eucalyptus trees,
as well as their complex shapes. They used Euclidean distance clustering for individual
tree trunk detection. Up to 67% of trees with diameters greater than or equal to 13 cm
were successfully identified using their technique. Milto Miltiadou et al. [29] presented a
new way to detect dead Eucalyptus camaldulensis with the introduction of DASOS (feature
vector extraction). To do so, they attempted to research the odds of dead trees being
detected using Voxel-based full-waveform (FW) LiDAR without tree demidruleation. It
has been discovered that it is possible to determine tree health without outlining the trees,
but since this is a new area of research, there are still many improvements to be made.
Xiao et al. [47] presented that the trees were examined using remote sensing data and
GIS techniques to examine their health. Trees had their conditions analysed in relation to
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physiognomy on two scales: the tree itself and in terms of pixels. A pixel-by-pixel analysis
was performed in which each tree pixel within the tree crown was classified as either
healthy or unhealthy based on values of vegetation index. A quantitative raster-based
analysis was conducted on all of the trees, where they used the tree health index, which is
a quantitative value that describes the number of healthy pixels compared to the total tree
pixels on the crown. Classifying the tree as healthy if the index was greater than 70% of the
overall index indicated that a random sample of 1186 trees was used to verify the accuracy
of the tree data. When viewed at the whole tree level, approximately 86% of campus trees
were found to be healthy and approximately 88% of mapping accuracy.

Figure 15. Some common diseases (a) Heart rot and (b) Phytophthora, and (c) Canker.

In contrast to the above-discussed literature, we propose a deep learning-based net-
work, Siamese convolutional neural network (SCNN), combining a modified brute-force-
base line-of-bearing (LOB) algorithm to classify Eucalyptus trees as healthy or unhealthy
and to find their geolocation from the GSV and ground truth imagery. Our proposed
method successfully achieved an average accuracy of 93.2% in identifying healthy and
unhealthy trees and their geolocation. For training and validation of SCNN, a dataset of
approximately 4500 images was used.

The main purpose of using Google imagery is that Google imagery is available publicly
online and no privately man laboured efforts are required in order to capture the images.
Second, using of sentinel imagery would be an expensive option and time consuming
solution, as the sentinel’s imagery requires longer time period to obtain images of specific
locations and needs to subscribe to pay for receiving the service; i.e., it is not publicly
available. The sentinel imagery is also protected by copyright. Therefore, in this work, we
used GSV and ground truth image for obtaining better results and overcome the some of
the challenges as discribed in the introduction section. It is worth mentioning that “the
satellite data on Google Maps is typically between 1 to 3 years old”. According to the
Google Earth and other sources, data updates usually about once a month, but they may
not show real-time images. Google Earth gathers data from various satellite and aerial
photography sources, and it can take months to process, compare and set up the data before
it appears on a map. However, in some circumstances, Google Maps are updated in real
time to mark major events and to provide assistance in emergency situations. For example,
it updated imagery for the 2012 London Olympic Games just before the Opening Ceremony,
and it provided updated satellite crisis maps to help aid teams assess damage and target
locations in need of help shortly after the Nepal earthquake in April 2015 [90,91].

6. Conclusions, Limitations, and Future Directions

Identifying various healthy and unhealthy Eucalyptus trees using traditional and man-
ual methods is time-consuming and labor-intensive. This study is primarily an exploratory
one that employs a DL-based method for identification, classification, and geolocation
estimation. In this study, we present a Siamese CNN (SCNN) architecture trained to
identify and classify healthy and unhealthy Eucalyptus trees and their geographical loca-
tion. The SCNN uses the contrastive loss function to calculate its similarity score from
two input images (one for each CNN). With the large number of GSV images available
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online, the method could be a useful tool for automatically mapping healthy and unhealthy
Eucalyptus trees, as well as mapping their geolocation on metropolitan streets and roads.
Although the model correctly identifies the Eucalyptus tree’s health status and position,
is certainly worth mentioning some limitations to consider. First, it is still challenging to
map up-to-date GSV images with geographical location information because the changing
nature of imagery is rapid. Secondly, to achieve reasonable accuracy for geolocation with
the DL, a large amount of training data is needed. Thirdly, when Eucalyptus trees have a
big lean, the LOB method requires more attention; this is due to terrain and GSV’s visual
distortion without compensation. Finally, the method suggested that automatic tree ge-
olocation recognition can be useful, and in a future study it might be used to detect and
classify other objects along the roadside.
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