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Abstract

With the increasing popularity of information systems and digital devices, data

leakage has become a serious threat on a global scale. Access control is recognised

as the first defence to guarantee that only authorised users can access sensitive

data and thus prevent data leakage. However, currently widely used attribute-

based access control (ABAC) is costly to configure and manage for large-scale

information systems. Furthermore, misconfiguration and policy explosion are

two significant challenges for ABAC strategies.

In recent years, machine learning technologies have been more applied in ac-

cess control decision-making to improve the automation and performance of ac-

cess control decisions. Nevertheless, existing studies usually fail to consider the

dynamic class imbalance problem in access control and thus achieve poor perfor-

mance on minority classes. In addition, the concept drift problem caused by the

evolving user and resource attributes, user behaviours, and access environments

is also challenging to tackle.

This thesis focuses on leveraging machine learning algorithms to make more

accurate and adaptive access control decisions. Specifically, a minority class

boosted framework is proposed to address the possible concept drifts caused by

evolving users’ behaviours and system environments. Its basic idea is to adopt an

incremental batch learning strategy to update the classifier continuously. Within

this framework, a boosting window (BW) algorithm is specially designed to boost

the performance of the minority class since the minority class is fatal for data

protection in access control problems. Furthermore, to improve the overall per-

formance of access control, this study adopts a knowledge graph to mine the

interlinked relationships between users and resources. A knowledge graph con-
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Abstract

struction algorithm is designed to build a domain-specific knowledge graph. The

constructed knowledge graph is also adopted into an online learning framework

for access control decision-making.

The proposed frameworks and algorithms are evaluated and verified through

two open-source real-world Amazon datasets. Experimental results show that the

proposed BW algorithm effectively boosts the performance of the minority class.

Furthermore, using topological features extracted from our constructed access

control knowledge graph can improve access control performance in both offline

and online learning scenarios.
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Chapter 1

Introduction

1.1 Motivation

The digital era has brought people not only a wonderful and convenient life but

also increasing concerns and anxieties about personal privacy and data security

[1, 2]. Groups and organisations that hold valuable data also suffer from data

breaches, causing tremendous financial and reputational loss. After surveying

700 IT security professionals from different countries, a report [3] from McAfee

in 2019 revealed that most of them have experienced at least one time of data

breach during their careers. At the same time, an endless stream of data leakage

incidents is constantly stirring the public’s nerves, and therefore people are more

and more concerned about data security. According to the Australian Commu-

nity Attitudes to Privacy Survey 2020 [4], most Australians are highly worried

about protecting their personal information in their lives. Data security and data

breaches (61%) behind identity theft and fraud (76%) are the second most sig-

nificant privacy risks identified by Australians in 2020 [4]. Therefore, with the

rapid development of information software and hardware technology today, data

protection technology has always been a research hotspot.

Among various technologies to protect data security, access control systems

are typically employed as the first line of defence [5, 6]. They guarantee that

only authorised users can gain access to sensitive resources [7]. This thesis aims
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1.2 Research Problems

to build an adaptive machine learning-based access control model to make access

control decisions in an automatic, adaptive, accurate and efficient way. The

research results of this work will significantly improve data security in modern

information systems, reduce the human working intensity, and save the cost of

system security management.

1.2 Research Problems

Upon in-depth analysis of existing machine learning-based access control algo-

rithms, three problems are waiting for better solutions. (1) the possible concept

drifts caused by the evolving user and resource attributes, user behaviours and

environment in an information system; (2) the dynamic class imbalance problem

existing in a real-world access control request steam; (3) high cardinality categor-

ical data in users’ or resources’ attributes. In order to build an adaptive machine

learning-based access control model with high performance, this work aims to fill

in the gaps and provide feasible solutions for these three research problems. The

detailed literature survey on machine learning-based access control is presented

in Chapter 2. Below are further descriptions of the research problems.

1.2.1 Concept Drift Problem

Concept drift refers to the phenomenon that the statistical distribution of the

data that the machine learning algorithm tries to describe and mine changes over

time in arbitrary ways. Concept drift often exists in data streams, which is a

sequence of data, usually organised in chronological order. Given a data stream

denoted as S = {d1, d2, · · · , dt, dt+1, · · ·}, where di = {xi, yi} is a labelled sample

observed at time step i. Let S(0,t) = {d1, d2, · · · , dt} follow a certain relationship

denoted as fΘ(0,t)(·) , if fΘ(0,t)(·) ̸= fΘ(t+1,t+a)(·), concept drift occurs at time step

t+ 1, where a is an arbitrary positive number [8].

If concept drift exists, using traditional batch learning methods to train ma-

chine learning algorithms will cause a performance decrease as time passes. There

are generally two categories of techniques for avoiding concept drift. One is the

2
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so-called lazy strategy, which means a machine learning model’s parameter Θ

will not be updated until a concept drift is detected. Obviously, the perfor-

mance of lazy strategies is subject to the accuracy of drift detection. Researchers

further proposed active strategies to cope with concept drift to avoid inaction

caused by detection failure when concept drift occurs. Machine learning models

are updated through concept drift adaption algorithms once new labelled data is

available when active learning strategies are adopted. Compared with batching

learning methods, active strategies are essentially online learning methods.

Lazy strategies can be divided into two stages, i.e., concept drift detection

and concept drift adaptation. Concept drift detection algorithms include data-

based methods and error-based methods. Among them, data-based methods use

a distance function/metric to quantify the dissimilarity between the distribution

of historical data and the new data [9, 10]. In contrast, error-based methods

focus on tracking changes in the online error rate of the base model [10, 11, 12].

Concept drift adaption algorithms have four strategies, namely, (1) base learner

evolving, such as configuration of decision tree nodes or neural network struc-

tures; (2) base learner parametrization, which means updating the parameters of

learners by retraining or fine-tuning; (3) adaptive training set formation, which

means adjusting the training set via different algorithms, such as sliding window,

instance selection and weighting samples [13, 14]; (4) model ensembles, which

means combining the outputs of multiple learners through different fusion rules

to get a final decision [15, 16]. These concept drift adaption algorithms also can

be used in active learning strategies.

Access control requests and responses are a time-series data stream. Concept

drifts widely exist in access control applications because user and resource at-

tributes, user behaviours, and access environment change over time [17]. Over an

extended period, user access permissions and user behaviour may change. There-

fore, the distribution of access control data and the decision-making pattern may

also drift over time. For example, a particular user, Bob, had an employee privi-

lege last year, but this year, he had a manager privilege due to a promotion. In

this case, the statistical distribution of his access pattern has changed.

However, existing machine learning-based access control studies did not treat

access control data in a data stream manner. They still use traditional batch-

3
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ing learning methods to train and evaluate models. This research will design an

adaptive machine learning framework, take the concept drift problem into ac-

count, adopt active learning strategy and drift adaption algorithms to handle the

concept drift in access control problems.

1.2.2 Dynamic Data Imbalance Problem

Data imbalance is another problem that may cause severe performance decrease

apart from concept drift problems for machine learning-based access control.

From the perspective of machine learning, access control decision-making is a

binary classification problem whose purpose is to establish a machine learning

model to predict giving permission or not when a user requests a resource.

For a classification problem, if the number of samples belonging to each class

is not equivalent, the dataset is imbalanced or skewed [18]. The class distribution

can vary from a slight bias status to a very severe imbalance status. In some

extreme cases, the ratio of the minority class to the majority class can be 1:100,

1:1000 or even worse.

Generally speaking, an appropriate machine learning algorithm and a large

amount of balanced labelled data can ensure the performance of a predictive

classification model. However, the historical data of a real-world access control

system is severely imbalanced because most resource requests are permitted, but

only very few proportions (less than 5%) are denied[19]. Since machine learning

models are trained based on the cumulative loss of all samples, the models tend to

pay more attention to the majority class. Therefore, when a dataset is imbalanced

or skewed, the performance of the majority class will be exaggerated while the

performance of the minority will be unacceptably poor.

For access control problems, the minority class (the permission denied cases)

is more crucial than the majority class because incorrectly permitting an illegal

request may cause critical data breaches and substantial economic losses. Thus,

it is essential to apply practical algorithms to boost the performance of minority

classes.

Existing data imbalance coping algorithms, including majority class down-

sampling, minority class up-sampling, setting class weights or sample weights,

4
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are trying to keep the samples in two classes or the loss from two classes balanced

[20, 21]. These algorithms work well in offline learning scenarios, where the

degree of data imbalance is definite and static. For example, it is easy to decide

the sampling proportion or the class weight if we know the ratio of two classes is

2:5.

Considering the online learning scenarios, the degree of data imbalance (the

proportion of permission deny cases) is dynamically changing over time. There-

fore, how to deal with the data imbalance problem is still an open question in this

area. This research tries to design an adaptive class imbalance coping algorithm

and thus improve the machine learning model’s performance in the minority class.

1.2.3 High-cardinality Categorical Data

Access control data is highly confidential to organisations because it relates to

their core data and information security. Therefore, the available user and re-

source attributes are very limited in these open-source access control datasets

compared to the real-world scenarios. Furthermore, the available attributes are

also encrypted or desensitised before release. General practice for attribute de-

sensitisation is replacing the values with unique integers. For example, in an

Amazon employee access dataset 1, users’ business titles are represented by ti-

tle ID, and there are 4,979 unique ID numbers in this dataset. Similarly, users’

department names are also represented by 405 unique ID numbers. In this case,

no useful semantic meanings can be extracted from these desensitised attributes.

Only high cardinality categorical attributes can be used to extract features to

represent the corresponding users or resources, which is very challenging.

Generally speaking, there are two kinds of categorical data, i.e., nominal and

ordinal. Nominal data is a group of values without order, such as the aforemen-

tioned department names and business titles. By contrast, ordinal data is a group

of values with an order, such as users’ length of service in years.

The general practice for nominal categorical data encoding is the well-known

one-hot encoding. However, it only works for low cardinality features. Otherwise,

the encoded feature will be too high dimensional to perform well in machine

1http://archive.ics.uci.edu/ml/datasets/Amazon+Access+Samples
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learning, also known as the ‘curse of dimensionality’. Although the label encoding

method, which maps the values in the category group into integers, can solve the

high dimension problem, the drawback is that it will introduce artificial ordinal

relationships between different values. For example, the department encoded

in 1 is not necessarily ‘smaller’ than a department encoded in 10,000. Binary

encoding, which encodes the integer results of label encoding into binary digits

and then spits the binary digits into multiple columns by bit, is a compromise

between one-hot encoding and label encoding.

However, the aforementioned encoding methods are still unsatisfactory for the

access control problem. None of them can reflect the interrelationships between

different users or attributes who share the same attributes. This thesis will try to

adopt the advanced data structure knowledge graph to store and represent high

cardinality categorical data. Further, extract topological features from the access

control knowledge graph to represent the interrelated relationships between users

and resources.

1.3 Contributions

To partly solve the aforementioned problems, this thesis leverages advanced ar-

tificial intelligence techniques, including but not limited to machine learning and

knowledge graphs, to provide feasible solutions for effective and accurate access

control decision-making. The contributions of this thesis are summarised below.

• This thesis proposes an adaptive machine learning framework for access

control problems, which adopts consecutive incremental batch learning to

adjust the parameters of a machine learning classifier. The framework can

capture and adapt to possible concept drifts and real-time changes in access

control patterns. As far as we know, this is the first work discussing the

machine learning-based access control problem from a data stream perspec-

tive.

• This thesis designs a boosting window (BW) algorithm within each consecu-

tive batch to tackle the severe data imbalance problem. The BW algorithm

6



1.4 Thesis Outline

sets a fixed-size window to hold the samples used to update the classifier

parameters. The BW only selects the misclassified samples and controls

the class ratio within the window with a preset rate between 0 to 1. The

BW algorithm is demonstrated effective in boosting the performance of the

minority class (access deny) in access control problems.

• To improve the model’s overall performance, this thesis further proposes a

knowledge graph empowered online learning framework for access control

decision-making. First, an algorithm is designed to construct a knowledge

graph from the existing user and resource attributes. Further, this the-

sis demonstrates how to extract topological features from the established

knowledge graph to represent users and resources. To the best of our knowl-

edge, this study is the first try to leverage knowledge graph to extract graph

topological features to improve the performance of the access control model.

• This thesis evaluates the proposed frameworks and algorithms and demon-

strates their effectiveness and flexibility on two real-world Amazon employee

access datasets. The influence of the hyper-parameters of BW on the per-

formance of the minority class is also discussed. Furthermore, the effective-

ness of knowledge graph-based topological features is discussed on different

imbalance degrees in both online and offline scenarios.

1.4 Thesis Outline

The overall flowchart of the thesis is illustrated in Fig. 1.1. This thesis consists

of five chapters in total, and the remaining four chapters are organised as follows.

Chapter 2 introduces the background knowledge of access control, along

with the literature survey and the latest research progress. This chapter also

presents some fundamental concepts and algorithms of machine learning, which

will be used in chapters 3 and 4. For example, chapter 2 formulates classification

problems and introduces a gradient descent learning strategy for model param-

eter optimisation. Other model parameter learning strategies, such as regulari-

sation, offline learning and online learning, are also covered. Furthermore, five

7
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Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Progression 

of thesis
Content

Framing the research

Research Background and Foundations

Access Control Machine Learning

Minority Class Boosted  OnLine Learning Framework

Knowledge Graph Empowered Online Learning Framework

Conclusion

Access Control Knowledge 
Graph Construction

 Topological Feature 
Extraction

Incremental Batch 
learning Strategy for 

Access Control

Offline Learning for 
Access Control

Online Learning for 
Access Control

 Boosting Window 
Algorithm for 

Access Control

Fig. 1.1. Thesis overall flowchart

well-known classic machine learning algorithms are introduced: Gaussian Naive

Bayes, Logistic Regression, Neural Networks, Support Vector Machine, and Ran-

dom Forest. Finally, Chapter 2 presents some data prepossessing techniques and

evaluation metrics for classification problems.

Chapter 3 presents a minority class boosted framework for adaptive access

control decision-making. Specifically, this framework employs a continuous incre-

mental batch learning strategy to adapt the concept drift problem instead of a

batch learning approach. Furthermore, a boosting window algorithm within the

framework is specially designed to boost the performance of the minority class,
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1.4 Thesis Outline

thus, decreasing false positive decisions. The proposed framework is evaluated

on a well-known Amazon employee access dataset, and results demonstrate the

effectiveness and flexibility of the proposed framework and BW algorithm.

Chapter 4 proposes an algorithm to construct an access control knowledge

graph from user and resource attributes. Furthermore, an online learning frame-

work for access control decision-making is proposed based on the constructed

knowledge graph. Within the framework, topological features are extracted to

represent high-cardinality categorical attributes of users and resources. Experi-

mental results show that topological features extracted from the knowledge graph

can improve access control performance in both offline and online learning sce-

narios.

Chapter 5 concludes the findings and contributions of this thesis and dis-

cusses possible challenges and potential for future work.

9



Chapter 2

Background and Foundations

This chapter firstly reviews literature related to data security and access con-

trol. Then presents the fundamental concepts and core techniques on machine

learning-based access control, including but not limited to: classification problem

formulation, model parameter optimisation, classic classification algorithms, data

preprocessing techniques and model evaluation metrics.

2.1 Access Control

Data exfiltration refers to carrying out an unauthorised data transfer from an in-

formation system by malware, or a malicious actor [22]. It occurs in various ways,

including database leakages, network traffic, file shares, corporate emails, etc [23].

Since 2000, a large number of data exfiltration incidents have severely damaged

the privacy, security, confidentiality and intellectual property of individuals, busi-

nesses and governments across the world. Moreover, the situation will become

more complicated when threats come from insiders, such as current employees,

former employees, contractors, business associates, etc. Although multiple tech-

niques have been employed to prevent information leakage [22], the situation is

still not optimistic. According to a report [3] from McAfee, more than half of

security professionals claimed that they experienced a data breach.
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2.1 Access Control

Access control systems are typically employed as the first line of defence for

the protection of data security [24, 25]. The two main components of access

control systems are authentication, which is used to verify users’ identity, and

authorisation, which grants access requests. Access control systems guarantee

that only authorised users can access sensitive resources. There are three main-

stream access control strategies: role-based access control (RBAC), attribute-

based access control (ABAC) and machine learning-based access control. The

following subsections will introduce the advantages and disadvantages of these

three strategies in combination with Fig. 2.1.

Name Age Role …

Kate 34 Nurse …

Name Age Role …

Mason 59 Doctor …

Name Age Role …

Michele 43 Doctor …

Users Resources

Name Age Doctor Nurse …

Tom 22 Michele Kate …

Name Age Doctor Nurse …

Peyton 43 Mason Jim …

Name Age Doctor Nurse …

Brooks 82 Michele Jim …

Access Control Logs

User Action Resource Authorization

User 1 Read resource 1 yes

User 1 Delete resource 4 no

user 2 modifiy resource 3 yes

user 9 read resource 9 yes

user 20 read resource 1 no

… … … …

Feature 

Extraction

Feature 

Extraction

Ground 

Truth

…

…

Input

Input
Output

User 1

User 2

User n

Resource 1

Resource 2

Resource m

Machine Learning 

Model 

Fig. 2.1. Access control strategy demonstration

2.1.1 Role-based Access Control

Role-based access control (RBAC) strategy is a basic but efficient way to prevent

insiders from disclosing sensitive and private information [26]. Within an organ-

isation, roles are assigned to its staff or members based on their job functions.

When a user requests a resource, permission is granted only based on the user’s

role.

As shown in Fig. 2.1, taking a hospital information system as an example,

User 1 has been assigned a Nurse role, and User 2 has been assigned a Doctor
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2.1 Access Control

role. The system can allow users who have a Doctor role to access all patients’

medical records. In this case, all Doctors have access to whole patients’ health

records, just because they have the same role — Doctor. However, there may

be millions of patients in a system, but each Doctor may be only responsible

for hundreds of patients. Obviously, the role-based access control strategy is

unnecessary enlarged Doctor’s permissions to make every Doctor have access to

all patients’ records.

To summarise, the role-based access control strategy is simple to implement

and efficient to operate. Therefore, it has been widely used in early information

systems. However, as the scale of information systems increases, the coarse-

grained RBAC strategy has the risk of amplifying users permissions [27]. There-

fore, more fine-grained access control policies are demanded.

2.1.2 Attribute-based Access Control

Attribute-based access control, also known as policy-based access control, is be-

coming more and more popular in modern information systems because of its

flexibility and expressiveness. It is a technique that allows the specification of

fine-grained and context-aware access control policies.

Access policies are Boolean logic statements generated from the attributes of

users, resources and other related objects. Here is an example of Boolean logic

statement of an attribute-based policy, ‘user.age >= 18 OR resource.owner ==

user.id’ or ‘TIME > 8:00 AM AND TIME < 5:00 PM’.

Section 2.1.1 discussed that RBAC strategies can give users enlarged permis-

sions, taking a hospital information system as an example, as shown in Fig. 2.1.

ABAC strategies can solve the problem by specifying the attributes of users and

resources in a Boolean statement. For example, a policy, ‘if User.role == Doc-

tor and User.Name == Resource.Doctor, then give the user permission to access

the Resource’, can narrow Doctors’ permission to the medical records of patients

under their name only. In this case, as shown in Fig. 2.1, User 2 have access to

Resource 2 but have no access to Resource 1 and m because their Doctor’s name

is Michele instead of Mason.
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2.1 Access Control

Since ABAC can limit access to specific resources according to delicately de-

signed Boolean statements, it can adapt to new changes in modern information

systems over time, such as the increasing diversity of roles, variety of data access

environments and diversity of access devices. So far, many attribute-Based algo-

rithms are proposed to generate Access Control Policies [28, 29? ]. ABAC has

been widely adopted by modern information systems.

However, the ever-changing information technology, evolving lifestyles and

habits, the emergence of new technologies such as the Internet of Things (IoT) and

distributed information systems have brought new challenges [30, 31]. One is the

ever-increasing scale of policies, also known as policy explosion. The considerable

policy scale makes it challenging to generate and manage policies manually. The

huge policy scale not only reduces the efficiency of the system but also leads to

frequent misconfiguration of policies and many other issues. The 2020 Verizon

Data Breach Investigations Report shows that among nearly 4,000 investigated

data breaches, incidents caused by misconfiguration have risen to fourth place

in 2020. Especially from 2019 to 2020, the proportion of incidents caused by

misconfiguration has increased substantially by about 5%. Most of the existing

ABAC algorithms are incapable of dealing with large scale attributes or dynamic

changing attributes.

2.1.3 Machine Learning-Based Access Control

Machine learning is a branch of artificial intelligence (AI), containing multiple

data analytical algorithms, such as linear regression, logistic regression, neural

networks, support vector machine, decision tree, etc. Machine learning algo-

rithms can learn latent data distribution and patterns and build mathematical

decision-making models by automatically learning from data [32, 33]. In the last

decades, machine learning algorithms have achieved great progress in some tra-

ditional areas like information retrieval, machine translation, automatic speech

recognition and computer vision [34, 35, 36, 37, 38]. Recently, researchers have

begun to explore adopting advanced machine learning algorithms to build high-

performance access control classifiers to overcome the problems of attribute-based

access control strategies.
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2.1 Access Control

For an access control problem, the system log files record a large amount of

historical resource access requests and system responses data, which is a perfect

resource of labelled data for machine learning model training [39]. The basic idea

of machine learning-based access control is to transform the access control task

into a binary classification problem [40]. Machine learning algorithms can work

as a classifier to identify patterns behind the historical permission operations by

training mathematical decision-making models from data recorded in log files.

Specifically, as demonstrated in Fig. 2.1, samples’ features can be extracted

from user attributes and resource attributes, borrowing the idea from attribute-

based access control. The extracted user features, denoted as Xu and resource

features, represented as xr, work as the inputs of a machine learning model,

denoted as fθ(·). The samples’ ground truth, marked as y, working as the output

of a machine learning algorithm, can be extracted from the log files of an access

control system. The extracted sample features and corresponding ground truth

finally form a labelled dataset, which can be used to train the machine learning

model. Once a model is well-trained, it can be used to make decisions for new

access control requests. For example, when User 1 sends a new access request to

Resource 2, the trained model can predict whether to permit or deny this access.

Researchers have reported promising work applying machine learning algo-

rithms in access control decision-making. For example, Jabal et al. [41] used

random forest (RF) and k-nearest neighbours (KNN) algorithms to improve their

access control model’s performance significantly. Outchakoucht et al. [42] pro-

posed a machine learning-based access control framework for access control in an

IoT system. Liu et al. [40] proposed a permission decision algorithm based on

random forest, which can achieve a permission decision accuracy of around 93%

on a test dataset.

Although some of the works mentioned above have successfully mined decision

patterns from log data using machine learning techniques, some problems still

exist due to the unique application characteristics of access control: They did

not treat this issue from the time series perspective and failed to consider the

concept drift problems caused by the evolving user and resource attributes, user

behaviours and environment [43, 44]. The studies mentioned above usually failed

to consider the dynamic class imbalance problem. When reporting performance,
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they focused on the performance of the majority classes and ignored the minority

classes.

Simple algorithm transplants without proper tailoring or improvement may

lead to severe performance degradation if these problems are not taken seriously.

Therefore, this research designs algorithms to deal with the abovementioned prob-

lems and proposes an adaptive machine learning framework for access control

decision-making.

2.2 Classification Problem

A typical machine learning algorithm can be formulated as Equation (2.1), where

x ∈ Rn is a n-dimensional input feature vector extracted form raw data; fΘ(·)
is a mathematical mapping function from input to output, which is decided by

the specific machine learning algorithm; fΘ(·) is also known as the hypothesis

of the research problem; Θ = [θ1, θ2, · · · , θu] is the list of trainable parameters

of function fΘ(·) and u is the total number of parameters in Theta; ŷ is the

predictive output of the machine learning model.

ŷ(t) = fΘ(x) (2.1)

To describe the learning (training) process of a supervised machine learning

model, denote a labelled dataset as D = {X, Y }, where X = [x1, x2, · · · , xm] is

the input matrix containing m input vectors and X ∈ Rm×n; Y = [y1, y2, · · · , ym]
is the corresponding output vectors, and Y ∈ Rm×1; yi (i = 1, 2, · · · ,m) is also

called the ground truth label of input xi(i = 1, 2, · · · ,m); {xi, yi} is the i-th

labelled sample. If yi is a real number, the machine learning model is a regression

model and the predictive problem is a regression problem. For example, the

housing price prediction problem is a regression problem. By contrast, if yi is a

discrete value, fΘ(x) is a classification model and the corresponding predictive

task is a classification problem. Specifically, When a label yi is a member of

a finite set of classes and the size of the set of classes is two, it is a binary

classification problem. For example, for a spam email recognition system, yi ∈
{spam, non-spam} and the model used for spam email recognition is also called a
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spam classifier. When the size of the class set is larger than two, it is a multiclass

classification problem. For example, in a traffic light recognition system, yi ∈
{red, green, yellow}.

2.2.1 Cost Function

To train a classifier fΘ(·) is to find out the optimised value of its parameters Θ

= [θ1, θ2, · · · , θu]. To learn the parameters from a given a labelled dataset as

D = {X, Y }, a cost function used to measure the differences between the output

of the model ŷ and the ground truth y needs to be defined. Equation 2.2 is the

widely used cross-entropy cost function [45].

L(X,Y )(Θ) = − 1

m

m∑
j=1

[yilog(ŷi) + (1− yi)log(1− ŷi)] (2.2)

Then, the classifier training problem turns into an optimisation problem, de-

scribed in (2.3). Algorithms like gradient descent can be used to solve this opti-

misation problem.

optimisation goal: min
Θ

L(X,Y )(Θ) (2.3)

2.2.2 Gradient Decent

Gradient descent is a general, maybe most widely used, algorithm in machine

learning for minimising the cost function L(X,Y )(Θ) and finding out the optimal

model parameters Θ.

The basic process of gradient descent is described as follows: (1) randomly

initialise the parameters in Θ with a combination of parameters; (2) compute

the cost on the dataset {X, Y } with the initialised parameters; (3) simultaneous

update the parameters in Θ with Equation (2.4) to ensure the value of cost

function L(X,Y )(Θ) decreases; (4) Keep doing step (3) until reach convergence.

Because it is impossible to traverse all parameter combinations, it is uncertain

that the local minimum is the global minimum. Therefore, when choosing a
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different initial parameter combination, a different local minimum may be found.

This is actually an inherent limitation of the gradient descent algorithm.

θj := θj − α
∂

∂θj
L(X,Y )(Θ), (j = 1, 2, · · · , u) (2.4)

In Equation (2.4), ∂
∂θj

L(X,Y )(Θ) is the gradient of θj and α is the learning

rate, which determines step size that walking along the direction of gradient. It

is carried out that the direction of the gradient can ensure the fastest descent, and

the local minimum will be finally obtained. It is worth mentioning that gradient

descent can actually be used to minimise other forms of cost functions in machine

learning.

2.3 Model Learning Strategies

2.3.1 Regularisation

When learning parameter Θ from training set, it may turn out to be over-fitting

on the training set and therefore have a very poor generalisation performance

on the test set. Regularisation is one of the most widely used approaches to

prevent over-fitting. In practice, regularisation often leads to slightly higher bias

but significantly reduces the variance. This problem is also known in literature

as the bias-variance trade-off. The two most widely used types of regularisation

are L1 and L2 regularisation, as shown in Equation (2.5) and (2.6), respectively.

L(X,Y )(Θ) = − 1

m

m∑
j=1

[yilog(ŷi) + (1− yi)log(1− ŷi)] + λ

u∑
j=1

|θj| (2.5)

L(X,Y )(Θ) = − 1

m

m∑
j=1

[yilog(ŷi) + (1− yi)log(1− ŷi)] +
λ

2m

u∑
j=1

θ2j (2.6)

The basic idea of regularisation is to add a penalising term to the cost function.

L1 regularisation penalises the sum of absolute values of the parameters in Θ,

whereas L2 regularisation penalises the sum of squares of the parameters. When
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the model is more complex, the value of the penalising term is higher. Therefore,

the regularisation term will force the learning algorithm to build a less complex

model.

2.3.2 Offline Machine Learning

Offline learning, also known as batch learning, is the standard learning strategy

for machine learning. Basically, this method sources a dataset and builds a model

on the whole dataset at once. Once the model needs to be partially changed, the

only way is retraining, which is time-consuming. In addition, this method stores

all data on the server or terminal, which requires high memory.

2.3.3 Online Machine Learning

In contrast to offline learning, online learning is a machine learning method in

which data is available sequentially and used to update the best predictor for

future data at each step [46]. It is a common technique used in areas of machine

learning where it is computationally infeasible to train over the entire dataset. It

is also used in situations where it is necessary for the algorithm to dynamically

adapt to new patterns in the data, or when the data itself is generated as a

function of time, e.g., stock price prediction.

Online learning is data-efficient because once data has been consumed it is

no longer required. Technically, this means that storing data is not necessary.

This method is also adaptable as it makes no assumption about the distribution

of your data. Due to changes or drifts in data distribution, such as changes in

customer behaviour, the model can adjust in real-time to keep up with real-time

trends.

2.4 Classic Classification Algorithms

Some of the classification algorithms involved in the experiments in this thesis,

such as Gaussian Naive Bayes, Logistic Regression, Neural Networks, etc., are

briefly discussed below.

18



2.4 Classic Classification Algorithms

2.4.1 Gaussian Naive Bayes

One of the simplest yet most effective algorithms for solving classification prob-

lems is the Naive Bayes algorithm. It is a probabilistic method based on Bayes’

theorem with the assumption of naive independence between input attributes.

Gaussian Naive Bayes is a variant of the Naive Bayes algorithm. It follows Gaus-

sian normal distribution and supports continuous data.

2.4.2 Logistic Regression

Logistic regression is a method for binary classification and it is based on the

logistic function (also called sigmoid). The two characteristic features of that

function make it particularly convenient for modelling probabilities. These are:

1) it is monotonically increasing 2) its range is between 0-1. As stated before,

logistic regression is a probabilistic function, which means that the conditional

probability of a data point belonging to a class of interest using the sigmoid

function must be fit. The probability of assignment to the opposite class is simply

its complement. There are many ways for fitting the best coefficients. In the

logistic regression model, the coefficient vector that maximises the joint likelihood

of the input data points in the training set having their corresponding label is

favoured. As an optimisation technique, gradient descent is most frequently used.

What makes logistic regression classifier convenient in text-related tasks is the

inspection of its coefficients generated from the training set. Given the high level

of ambiguity present in all natural language processing tasks (short messages

such as tweets in particular), the insight into the classification criteria allows for

further algorithm refinement to better fit its purpose. This feature is especially

advantageous when the goal is the extraction of relevant data on a particular topic

given user-defined criteria (e.g. posts using specified key-words). In that case,

both features determination as well as classifier selection and tuning contribute

towards the overall system’s sensitivity.
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2.4.3 Neural Networks

A neural network is a series of algorithms that endeavour to recognise underlying

relationships in a set of data through a process that mimics the way the human

brain operates. It contains layers of interconnected nodes. Each node is known

as a perceptron and is similar to multiple linear regression. The perceptron feeds

the signal produced by a multiple linear regression into an activation function

that may be nonlinear. A neural network has three main components: an input

layer, a processing layer, and an output layer. The inputs may be weighted based

on various criteria. Within the processing layer, which is hidden from view, there

are nodes and connections between these nodes, meant to be analogous to the

neurons and synapses in an animal brain. Neural networks are broadly used, with

applications for financial operations, enterprise planning, trading, business ana-

lytics, and product maintenance. Neural networks have also gained widespread

adoption in business applications such as forecasting and marketing research so-

lutions, fraud detection, and risk assessment.

2.4.4 Support Vector Machines

Support vector machines are commonly recognised for their high predictive ac-

curacy [47]. The support vector machines classification method is based on the

Structural Risk Minimisation principle from computational learning theory. In

contrast to other classification methods, support vector machines need both posi-

tive and negative training sets, which are uncommon for other classification meth-

ods. These sets are required for the support vector machines to find the decision

surface that best separates positive from negative instances of data through a

linear hyperplane, which maximises the margin. The document representatives,

which are closest to the decision surface, are called the Support. The performance

of the support vector machines classifier remains unchanged if documents that

do not belong to the support vectors are removed from the training set.
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2.4.5 Random Forests

Random forests or random decision forests are an ensemble learning method for

classification, regression and other tasks that operate by constructing a multitude

of decision trees at training time. For classification tasks, the output of the ran-

dom forest is the class selected by most trees. Random decision forests correct for

decision trees habit of overfitting to their training set. Random forests generally

outperform decision trees, but their accuracy is lower than gradient boosted trees.

However, data characteristics can affect their performance. Random forests are

frequently used as ‘blackbox’ models in businesses, as they generate reasonable

predictions across a wide range of data while requiring little configuration.

2.5 Data Preprocessing Techniques

2.5.1 One-hot Encoding

One-hot encoding can solve the problem of unequal class weights given to cate-

gories within a feature. Its basic strategy is to convert each category value into a

new column and assign a 1 or 0 (True/False) value to that column. This has the

advantage of not inappropriately weighing a value and thus potentially improving

the performance of the classifier. However, it is not very practical when there

are many categories. Because encoding like this will result in the formation of as

many new columns, this can lead to the “curse of dimensionality” and thus make

the model not work properly.

2.5.2 Binary Encoding

Binary encoding is a type of code used primarily to program computers at the

most basic level. It consists of a system of ones and zeros, designed to represent

either a ”true” or a ”false” value in logical operations. This technique first encodes

the categories as ordinal numbers, then converts these integers to binary codes,

and finally splits the numbers in the binary string into separate columns. It is not
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as intuitive as one-hot encoding. Its advantage is that it encodes data in fewer

dimensions than one-hot encoding.

2.5.3 Outlier Remove

Outliers are values in the data that are significantly different from the main sam-

ple of the data. The presence of outliers can significantly degrade the performance

of a classification model. Generally, outlier processing includes the following three

methods: Flooring and Capping, Trimming and Replacing.

• Flooring and Capping is a quantile-based technique that partially discards

some data at the experimenter’s request. For example, implementing the

flooring (e.g. 25th percentile) for the lower values and capping(e.g. for the

75th percentile) for the higher values means that values outside the range

of 25% to 75% will be removed.

• Trimming removes and completely drops all the outliers. It excludes outlier

values from the analysis. By applying this technique, the data becomes thin

when more outliers are present in the dataset.

• Replacing refers to replacing outliers with a specific value, for example, the

mean, median, mode (the value that appears most frequently in a series of

numbers), or other values.

2.5.4 Normalisation

Keeping these features on a similar scale is necessary when solving multi-dimensional

feature problems because it will help the gradient descent algorithm converge

faster. Mean normalisation is a way to implement feature scaling, the process

of bringing all the features of a machine learning problem into a similar scale or

range. There are usually two methods of normalisation: Min-Max Normalisation

and Z-score Normalisation.
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• Min-max Normalisation, also known as deviation normalisation, is a lin-

ear transformation of the original data such that the resulting values are

mapped between [0,1]. The conversion function is as follows:

x∗ =
x− µ

max−min
, (2.7)

where x and x∗ is the original and transformed sample value, respectively.

max and min are the maximum and minimum value of sample data, re-

spectively. µ is the mean of samples.

• Z-score Normalisation standardises the data based on the mean and stan-

dard deviation of the original data. The processed data conforms to the

standard normal distribution, that is, the mean value is 0, the standard

deviation is 1. The transformation function is as follows:

x∗ =
x− µ

σ
, (2.8)

where σ is the standard deviation of the sample.

2.6 Evaluation Metrics

This section will briefly introduce the evaluation indexes involved in this study.

2.6.1 Confusion Matrix

A confusion matrix visualises the performance of an algorithm. It is an essential

tool for evaluating classification models. It helps to comprehend the classification

model’s performance on a set of test data to understand the valid values and false

by determining how many times the model has given correct and wrong output.

As shown in table 2.1, in a binary classification problem, there are four possible

outcome types for each class.

• TP: True Positive means that predicted values are correctly predicted as

actual positive.
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Table 2.1: Confusion matrix

Total population
Predicted condition

Positive (PP) Negative (NN)

Actual condition
Positive (P) True positive (TP) False negative (FN)

Negative (N) False positive (FP) True negative (TN)

• FP: False Positive means that predicted values are incorrectly predicted as

an actual positive. i.e., negative values predicted as positive.

• FN: False Negative means that positive values are predicted as negative.

• TN: True Negative means that predicted values are correctly predicted as

an actual negative.

2.6.2 Accuracy

Accuracy, or Acc for short, is the percentage of true results from the total number

of cases reviewed as shown in 2.9. It is an effective evaluation option for classi-

fication problems that are balanced, unbiased, or do not have a class imbalance.

But it does not work well when the target class of the model is very sparse.

Acc =
TP + TN

TP + FP + TN + FN
(2.9)

2.6.3 Precision

As shown in 2.10, Precision (or Pre for short) answers the question of what

proportion of the predicted positives are true positives. Precision is a valid choice

of evaluation metric when we want to be very sure of our prediction.

Pre =
TP

TP + FP
(2.10)

2.6.4 Recall

As shown in Equation 2.11, Recall (or Rec for short) represents the percentage of

actual positives in the sample whose prediction is positive. Recall is a valid choice
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of evaluation metric when we want to capture as many positives as possible.

Rec =
TP

TP + FN
(2.11)

2.6.5 F1 Score

As shown in Equation 2.12, the F1 Score (or F1 for short) is a comprehensive

indicator which is the harmonic mean of precision and recall. Simply stated the

F1 score sort of maintains a balance between the precision and recall for your

classifier.

F1 = 2× Precision×Recall

Precision+Recall
(2.12)
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Chapter 3

A Minority Class Boosted Online

Learning Framework

This chapter proposes a minority class boosted framework for adaptive access

control methods in response to the concept drift and dynamic data imbalance

problems. The main content of this chapter is organised as follows. Section 3.1

briefly introduces the background and contributions of this chapter, followed by

related works on learning strategy and multiclass imbalanced learning in Section

3.2. Then a detailed description of the proposed framework and boosting window

algorithm is presented in Section 3.3. The datasets, evaluation metrics and ex-

periment results are presented in Section 3.4. Finally, Section 3.5 concludes this

chapter with a discussion on limitations.

3.1 Introduction

Data exfiltration has in recent years been becoming a top concern across most

security-conscious communities, such as governments, armies and other organisa-

tions with high-value data [25]. It is also known as data breach or data theft, and

many other names. But in essence, it refers to carrying out an unauthorised data

transfer from an information system by malware or a malicious actor. Accord-

ing to a report [3] from McAfee in 2019, they found that most IT professionals
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have experienced at least one data breach during their career after surveying 700

IT security professionals from different industry and country. On average, they

have dealt with six breaches over the course of their professional lives. Data

breaches come in different forms, but many of them are related to insider threats.

According to the 2020 Verizon Data Breach Investigations Report [48], 30% of

data breaches involve internal actors. So, how to prevent data exfiltration from

insiders has now become a research hotspot.

Access control is a technology that is typically employed as the first line of

defence for the protection of data[24, 25, 49, 50], guaranteeing that only au-

thorised users can gain access to sensitive resources. The latest access control

strategy, attribute-based access control (ABAC), grants or denies an operation

request based on assigned attributes of the subject and object, environmen-

tal conditions and a set of policies specified in terms of those attributes and

conditions[25, 51, 52]. As ABAC can create different policies in accordance with

administrative requirements, it is more flexible than traditional role-based access

control systems [53, 54]. However, the size of the policy increases dramatically as

the increasing diversity of roles, data access environments (e.g., homes and cars)

and access devices (e.g., smartphones and tablets). The huge policy scale not

only reduces the efficiency of the system, but also leads to frequent misconfigu-

ration of policies [55, 56]. Therefore, more and more researchers are beginning to

employ machine learning (ML) methods to develop access control strategies.

From the perspective of machine learning, access control decision-making is a

binary classification problem. For an access control system, log files record a large

number of historical data of resource requests and system responses, which is a

perfect labelled data resource for machine learning algorithms to learn potential

data distribution and decision patterns [57, 58]. However, due to the unique

features of access control, simple algorithm transplants without proper tailoring

or improvement may lead to severe performance degradation.

Specifically, there are two main challenges when building a high-performance

machine learning based access control decision-making model. The first challenge

is the concept drift problem [8]. Access control patterns are changing over time

due to the evolving user and resource attributes, user behaviours and environ-

ments. Thus, traditional batch learning strategies are not suitable for access
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control problems. One possible solution is to adjust the learning strategy on-

line to capture new decision-making patterns, and modify the parameters of the

model based on the latest label data over time. Data imbalance is another prob-

lem which may cause severe performance decrease besides concept drift for ML

algorithms. For access control tasks, there are two classes, access approved (class

1) and access denied (class 0). In most cases, resource access applications are

routine working requests and should be approved. Only a very few applications

are due to misoperation or illegal access initiated by malicious users. Therefore,

the datasets collected from log files are usually imbalanced and lack negative sam-

ples. To make matters worse, in terms of security protection systems, negative

samples are often more important than the positive sample. It needs more effort

to boost the ML models’ performance on negative samples (minority class).

To tackle the above-mentioned problems, this chapter proposes a minority-

based adaptive access control decision-making framework. In brief, our main

contributions are as follows:

(1) We propose an online machine learning framework for access control prob-

lems, which adopts consecutive incremental batch learning to adjust the param-

eters of the ML classifier. The framework is capable of capturing and adapting

to possible concept drift and real-time changes in system pattern.

(2) We design a boosting window (BW) algorithm within each consecutive

batch to tackle the severe data imbalance problem. BW algorithm sets a fixed-

size window to hold the samples used to update the classifier parameters. The

boosting window selects only the misclassified samples and controls the class

ratio within the window with a preset sample rate of 0 to 1. The designed BW

algorithm can effectively boost the performance of the minority class, the more

important class in access control problems.

(3) We evaluate the proposed framework and BW algorithm on a real-world

Amazon employee access dataset and the results demonstrate their effectiveness

and flexibility. We also discuss the influence of the hyper-parameters of BW

algorithm on the performance of the minority class.
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3.2 Related Work

This section reviews the related works from the perspective of access control and

machine learning. Past and recent research progress and gaps between existing

research and real-world applications will be presented.

Role-based access control (RBAC) and attribute based access control (ABAC)

are two widely used access control methods. The former assigns permissions of

systems, resources and networks based on a user’s role within an organisation[59].

Due to its simple implementation, RBAC has long been one of the main access

control methods. E. Bertino et al. proposed a temporary RBAC model, em-

ploying a role triggers strategy to deal with periodic role activations or other

temporary roles[60]. To better suit the complicated system environment and pro-

vide more fine-grained access control policies, M. J. Moyer designed a generalised

ABAC paradigm to create and maintain rich access control policies, which in-

corporates traditional user roles with subject roles, object roles and environment

roles into access control decisions [61]. However, with the development of infor-

mation system, the permissions of roles are gradually refined and RBAC tends

to give users unnecessarily enlarged permissions. Besides, RBAC allows multiple

users to share the same permissions, with no restrictions other than roles, which

may lead to malicious use of this vulnerability for unauthorised access [62, 63].

In recent years, attribute-based access control has gradually become a main-

stream access control strategy because it takes into account additional attributes

from both users and requested resources[64]. ABAC is a policy-based method

which generate fine-grained context-aware access control policies rather than role-

based static permissions [25]. A series of general or domain-specific policy-based

ABAC models have been successfully used in cloud computing, real-time systems,

collaborative environments, mobile environments, grid computing, web services

etc [65, 66, 67, 68].

However, the policy scale has become larger and more complex due to the

increase in attributes and the pursuit of system flexibility and versatility. Policy-

based ABAC models also caused a number of issues, such as policy misconfig-

uration and slow response[25, 69]. Therefore, some researchers have started to
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explore hybrid ABAC models based on policy generating rules and ML algo-

rithms. For example, S. Dutta et al. proposed a privacy via anomaly-detection

system (PALS) to leverage machine learning algorithms to capture physical con-

text collected from attributes and generate context-driven policies[70].

Besides, pure ML approaches have attracted more and more attention in var-

ious applications and domains [71, 72, 73, 74]. The main problems for pure ML

access control decision models are concept drift and data imbalance. Concept

drift is a phenomenon that the statistical distributions of what an ML algorithm

tries to describe and predict change over time in an arbitrary way, which often

exists in data streams or sequences of data organised in chronological order [8].

Data imbalance refers to that the number of samples belonging to each class in

a labelled dataset is not at an equivalent level[75]. This chapter is a practice

of trying to deal with both concept drift and data imbalance problems in pure

ABAC ML models.

3.3 Methodology

This section first presents the workflow of the proposed consecutive incremental

batch learning framework, aiming to tackle the possible concept drift for access

control decision-making. Then, we illustrate the principle and implementation

details of the boosting window algorithm, which is designed to improve the per-

formance of the minority class, thereby reducing false positives.

3.3.1 Workflow of the Proposed Framework

The proposed framework is essentially a classifier-agnostic consecutive incremen-

tal batch learning process for access control applications. Data is divided into a

sequence of consecutive batches and a ML classifier working as an ABAC model in

this framework would be pretrained and updated according to these data batches.

Figure 3.1 shows the main processes in time step t, which includes two stages,

the predicting stage and the adaptation stage.
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Fig. 3.1. Workflow of the proposed consecutive incremental batch learning frame-

work

At the predicting stage, when a new access request from a user to a resource

happens, the trained model can give a predictive result for downstream applica-

tions. Take time step t (t ≥ 0) as an example. Firstly, features are extracted

and encoded from user and resource attributes separately, denoted as x
(t)
u and

x
(t)
r . The available user attributes may include, for example, user name, age,

department, group, position, service years, etc. Resource attributes may include,

for example, resource id, name, owner, date created and modified, text descrip-

tion, etc. For non-numeric attributes, appropriate feature extraction or encoding

methods are applied to extract features. Then, feature reduction and fusion al-

gorithms are applied to generate the final feature set x(t) from x
(t)
u and x

(t)
r . Let

fΘ(·) is a randomly initialised binary ML classifier applied in this framework, Θ

is the parameter set of f(·), f (t)
Θ (·) (t ≥ 1) is the status at time step t, which is

actually the classifier updated from f
(t−1)
Θ at time step t− 1. The access control

decision for the data batch at time step t would be made according the result of

equation(3.1), which will be used to guide downstream applications.
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ŷ(t) = f
(t)
Θ (x(t)), (t ≥ 1). (3.1)

At the adaptation stage, the ground truth y(t) corresponding to x(t) would be

extracted from the verified access control logs. If using BW algorithm to deal

with the data imbalance problem, the labelled dataset D(t) = {x(t), y(t)} as well as

the predicted result ŷ(t) calculated by equation (3.1) are fed as the inputs of BW

algorithm. The detailed implementation of BW algorithm will be presented in

the following subsection. The output of BW algorithm is a deliberately tailored

dataset D
(t)
w = {x(t)

w , y
(t)
w }. Finally, the parameters of classifier f

(t)
Θ (x·) would

be fine-tuned based on the tailored dataset D
(t)
w and turns into a new status,

f
(t+1)
Θ (x·), which would be used by the predicting stage of time step t+ 1. If the

BW algorithm is not used, f
(t)
Θ (x·) would be fine-tuned on the original labelled

dataset D(t) = {x(t), y(t)} directly. No matter if BW algorithm is applied, f
(t)
Θ (x·)

can adapt to any possible concept drifts existing in D(t), because it can be fine-

tuned by the latest data batch D(t).

As shown in Fig. 3.1, the classifier, f
(t+1)
θ (·), which is used by the window at

time step t +1 is actually updated from f
(t)
θ (·) using the data collected at time

step t, {x(t)
w , y

(t)
w }. In other words, the information from the previous window is

used to help decision making for the next window.

3.3.2 Boosting Window Algorithm

BW algorithm is the key component of the proposed framework, aiming to boost

the performance of the minority class, especially to decrease the false positive

rate. The main idea of BW algorithm is to deliberately select a fixed size of

samples as the boosting window samples to update the classifier at each time

step. Algorithm 3.1 demonstrates how boosting window is implemented at time

step t (t ⩾ 1).

The number of samples within the boosting window is called boosting window

size, denoted as Nw, where Nw should be bigger than the step batch size Ns. The

negative sample rate within the boosting window is denoted as r (0 < r < 1),

which can be used to adjust the boosting strength of the negative samples. The
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Algorithm 3.1 Boosting Window Algorithm

Input: D(t)={x(t), y(t)}, ŷ(t), Nw, r, Fr.

Output: D
(t)
w ={x(t)

w , y
(t)
w }.

1: if t=1 then

2: xold=∅; yold=∅

3: end if

4: find out the indexes of all samples idx which satisfy that y(t) == ŷ(t)

5: x(t)=x(t)[idx], y(t) = y(t)[idx]

6: x
(t)
w =concatenate(xold, x

(t))

7: y
(t)
w =concatenate(yold, y

(t))

8: D
(t)
w ={x(t)

w , y
(t)
w }

9: if Fr==True then

10: find out the indexes of all negative samples idx0 in D
(t)
w

11: if len(idx0)> r ∗Nw then

12: idx0 = idx0[-r ∗Nw : -1]

13: end if

14: find out the indexes of all positive samples idx1 in D
(t)
w

15: if len(idx1)>(1-r) ∗Nw then

16: idx1=idx1[-(1-r) ∗Nw:-1]

17: end if

18: idx=idx0 ∪ idx1

19: x
(t)
w =x

(t)
w [idx,:]; y

(t)
w =y

(t)
w [idx]

20: else

21: if len(x
(t)
w )> Nw then

22: x
(t)
w =x

(t)
w [-NW :,:]; y

(t)
w =y

(t)
w [-NW :]

23: end if

24: end if

25: xold=x
(t)
w ; yold=y

(t)
w

26: return D
(t)
w ={x(t)

w , y
(t)
w }
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higher r is, the stronger boosting strength would be. The total number of negative

samples within the boosting window is r ∗Nw and the rest are positive samples.

The boosting window size is a preset fixed value. Based on the data distribu-

tion, the window size is big enough to run an algorithm. Furthermore, as time

goes by, the number of minority class samples is accumulated based on the sample

rate. Regarding the impact on performance, if the window size is too small, the

classifier will be fine-tuned more frequently, and the computing cost is relatively

high. By contrast, if the window size is too big, the classifier will be too dull to

possible concept drifts of the new data.

The inputs of BW algorithm include the labelled dataset D(t) = {x(t), y(t)}
at time step t, the corresponding predicted output ŷ(t) calculated by f

(t)
Θ (·), the

boosting window size Nw and the negative sample rate r. The output is the

selected dataset D
(t)
w ={x(t)

w , y
(t)
w } to boost the negative (minority) samples. Fr is

a Boolean variable to indicate if applying the negative sample rate strategy in

BW algorithm.

Steps 1 - 3 in Algorithm 3.1 show how to initialise the boosting window, where

xold and yold denotes the old samples in the boosting window before the time step

t.

Steps 4 - 8 show that the algorithm only picks the misclassified samples in

time step t and put them into the boosting window.

If Fr is set to True, BW algorithm will apply a negative sample rate strategy as

shown in steps 10 - 19. Specifically, steps 10 - 13 show how to crop the negative

sample indexes so that the total number of negative samples in the boosting

window is less than or equal to r ∗ Nw. Similarly, steps 14 - 17 are to tailor the

indexes of positive samples to make the number of positive samples less than or

equal to (1− r) ∗Nw. Steps 18 - 19 set the final samples in the boosting window,

{x(t)
w , y

(t)
w }.

Otherwise, if Fr is set to False, the BW algorithm will only keep the total

number of samples in the boosting window equals Nw regardless of the ratio of

negative samples, as shown in steps 21 - 23.

Step 25 is to prepare data for the following time step t + 1. The current

samples in the boosting windows will be the old samples for the next time step.
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To conclude, the boosting window algorithm boosts the minority class via

(1) focusing on and boosting the misclassified samples as shown in steps 4-8, (2)

adjusting the negative sample rate in the boosting window as shown in steps

10-19.

3.4 Experiment Results

This section reports the experimental methodology and the evaluation results in

detail.

3.4.1 Dataset

This research uses a real-world Amazon employee access dataset1 to conduct

experiments and evaluate the performance of the proposed framework and BW

algorithm. It contains 32,769 extremely imbalanced labelled samples, including

30,872 positive samples (access approval) and 1,897 negative samples (access re-

jection). Each sample contains eight user attributes and one resource attribute.

Fig. 3.2 shows the data imbalance status over time, using a sliding window im-

balance factor (SWIF) [75] as the indicator, where the sliding window size equals

to 100.

3.4.2 Evaluation Metrics

Accuracy, Precision, Recall and F1 Score are in general four basic metrics widely

employed in classification model evaluation. Among them, Accuracy, the per-

centage of correct predictions, is usually the most important metric to evaluate

a model’s performance. However, it becomes less instructive when data is ex-

tremely imbalanced. Taking the dataset used in this chapter as an example, the

positive samples are almost count for 95% of the total dataset. Even if the model

just directly make all predictions equal 1, its accuracy can reach 95%. Therefore,

1https://www.kaggle.com/c/amazon-employee-access-challenge
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Fig. 3.2. Data imbalance status over time

Precision and Recall, which separately indicate a model’s exactness and com-

pleteness in each class, are used as a supplement. F1 Score is the harmonic mean

of Precision and Recall, thus it is usually considered as the decisive measure to

decide which classier is better.

For some special applications, such as access control decision-making and

biomedical event extraction[76], Recall is a more significant metric to evaluate

the performance of a model. For example, for the access control problem, a false

negative result (access request should be approved but refused) only leads to a

re-application or manual review. However, a false positive result (access request

should be refused but approved) may cause severe consequences, such as data

breaches, privacy theft or cyber attacks.

Considering the specificity of the access control problem, we calculate Pre-

cision, Recall and F1 Score on class 0 instead of class 1 to show the classifier’s

performance on negative samples. Besides, we define a relative model cost C as

equation (3.2) to represent the total misclassification cost of an access control

model.

C = NFN × 1 +NFP × p, (3.2)

where NFN and NFP represent the total number of false negative samples and

false positive samples accordingly. Penalty factor p is the ratio of cost caused by

a false positive sample and cost of a false negative sample. For access control
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problems penalty factor p ⩾ 1.

To facilitate comparing the model cost of a series of access control models

under different penalty factor settings, we define a normalised relative model cost

Ĉi for the i-th model as equation (3.3).

Ĉi =
Ci

max(C1, C2, · · · , Cn)
, i = {1, 2, · · · , n}, (3.3)

where n is the total number of compared access control models.

3.4.3 Experimental Setting

The step batch size is a hyperparameter of the proposed framework. A larger

step batch size means a lower model update frequency. Therefore, the access

control decision model will have a slower response to existing concept drift. On

the other hand, a smaller step batch size means more frequent model updates,

which means a higher computational cost. Information systems can set different

step batch sizes according to their own preference. In this chapter, for definiteness

and without loss of generality, we set the step batch size to 100.

As the proposed framework is classifier-agnostic, the classifier fΘ(·) could be

any binary ML classifiers, such as Neural Networks [45, 77], Logistic Regression,

Support Vector Machine and Random Forest. Considering the verified universal

approximation property, we adopt a full-connected three-layer neural network

with ten hidden nodes as the classifier used in this framework.

3.4.4 Performance of Boosting Misclassified Samples

To demonstrate the performance of boosting misclassified sample strategy alone,

we set Fr to False, as shown in Algorithm 3.1.

Fig. 3.3 shows the real-time performance on the minority class (class 0) when

BW algorithm adopts boosting misclassified sample strategy alone. Baseline is

the proposed framework shown in Fig. 3.1 without applying the BW algorithm.

Data sequence starts from 1000 because the first 1000 samples are used to pretrain

the classifier at time step t = 1 and are not used for evaluation.
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Fig. 3.3. Real-time performance comparison on different boosting window size

(class 0)

Unsurprisingly, Baseline achieves the best Accuracy, but gets the worst Preci-

sion, Recall and F1 Score. Because there are much more positive samples in the

data sequence, if no action is taken to boost the minority class, the classifier will

tend to overfit on class 1 and underfit on class 0.

When applying BW algorithm and boosting the misclassified samples, we can

see a significant increase in Recall and F1 Score, which are much more important

metrics for access control problems with all boosting window size settings. There-

fore, the strategy of boosting misclassified samples alone is effective to boost the

performance of the minority class and decrease the false positive rate. Among all

boosting window size settings, when Nw=300, the access control decision-making

model records the best Recall and when Nw=100, it achieves the best F1 Score.

Accordingly, Table 3.1 summarises the overall performance among the whole

dataset on the minority class when BW algorithm adopts boosting misclassified

samples strategy alone. The window size is the total number of samples kept in a

boosting window. We set the window size by grid searching a possible interval and

choose the best value for the evaluation set. As shown in Table 3.1, we searched
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the window size Nw ∈ {100, 200, 300, 400, 500, 600} and the experimental results

show that Nw =300 performs best on the dataset.

Table 3.1: Overall performance comparison on different boosting window size

(class 0)

Metrics Acc(%) Pre(%) Rec(%) F1(%)
Ĉ (when p = )(%)

1 10 100 1000

Baseline 89.64 6.91 6.38 6.64 42.56 89.99 100 100

Nw = 100 78.72 6.33 19.47 9.55 87.38 96.27 88.29 86.25

Nw = 200 78.32 5.76 17.94 8.72 89.04 98.09 89.96 87.89

Nw = 300 76.36 6.05 21.32 9.43 97.09 98.40 86.78 84.32

Nw = 400 77.20 5.80 19.36 8.93 93.64 98.67 88.68 86.40

Nw = 500 75.65 5.69 20.67 8.92 100 100 87.59 85.03

Nw = 600 76.15 5.61 19.79 8.74 97.97 99.94 88.42 85.95

As shown in Table 3.1, Baseline achieves the best overall Accuracy at 89.64%,

which has an obvious advantage compared with others. However, models with

all settings have very poor Precision performance, ranging from 5.61% to 6.91%,

which means that there are only about 5 - 7 truly negative samples within every

100 predicted negative samples. The good thing is that with BW algorithm, the

Recall on the minority class significantly increases from 6.38% to 21.31% when

Nw = 300 and the F1 Score has also increased from 6.64% to 9.43%.

Apart from the above-mentioned four metrics, Table 3.1 also analyses the

normalised relative model cost Ĉ with different penalty factors. Ĉ is a much

more straightforward metric for decision-makers to choose the best access control

decision-making model. When the penalty factor p = 1 or p =10, the baseline

achieves the best normalised relative model cost. In this case, the cost of false

negative samples equals to or slightly less than the cost of false positive samples.

Therefore, the most important thing for a classifier is to increase the overall ac-

curacy instead of improving the performance of the minority class. As p increases

to 100 or even 1000, the false positive samples cost hundreds of or even thousands

of times more than the false negative samples. Accordingly, the models achieving
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the best Recall can get the lowest Ĉ, when Nw=300. The BW algorithm pro-

vides the flexibility for decision-makers to choose the best parameter based on

their actual penalty factors.

Although both Fig. 3.3 and Table 3.1 have shown the effectiveness of boosting

misclassified samples in boosting the minority class, the performance of Recall is

far from enough to meet the actual requirements of the access control problem.

Therefore, BW algorithm further designed a negative sample rate to adjust the

sample ratio in the boosting window. The results with different negative sample

rates are discussed in the following section.

3.4.5 Performance Comparison with Different Negative

Sample Rates

When setting Fr=True, as shown in Algorithm 3.1, BW algorithm applies a

negative sample rate to adjust the sample ratio in the boosting window. We set

Nw=300, negative sample rate r = {0.2, 0.4, 0.6, 0.8, 0.9, 0.95}. Baseline is still

the consecutive incremental batch learning framework shown in Fig. 3.1 without

applying the BW algorithm.

Fig. 3.4 shows the real-time performance comparison on different negative

sample rates on the minority class. Obviously, with the increase of negative

sample rate r, the Accuracy of the access control decision-making models decrease

monotonically, while their recall increases monotonically. All of the Precisions are

at an equivalent low level. Baseline gets the worst F1 Score, followed by the model

when r = 0.2. Others’ F1 Scores are at a similar level.

Fig. 3.4 demonstrates the capability of BW algorithm to boost the Recall

of the minority class to a very high level. Table 3.2 gives more details and

quantity analyses on the overall performance comparison on different negative

sample rates.

As shown in Table 3.2, as the negative sample rates used to update the classi-

fier at each time step increases from around 0.05 (Baseline) to 0.95, the Accuracy

decreases from 89.99% to 7.26%. Because with r increases, fewer positive samples
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Fig. 3.4. Real-time performance comparison on different negative sample rates

(class 0)

are selected to update the classifier and the model will perform worse on the ma-

jority class, which would lead to a decrease in Accuracy. On the other hand, as

the negative sample rate r increases, the model can identify more negative sam-

ples. Thus, the Recall on the negative class dramatically increases from 6.38% to

98.91%. This demonstrates the capability of BW algorithm to control the Recall

of the minority class. The F1 Score also increases from 6.64% to 10.96%.

As for normalised relative model cost Ĉ, when penalty factor p=1 or 10,

Baseline with a high positive sample rate achieves the best while the model with

r = 0.95 gets the worst performance. By contrast, when p ≥ 100, models with

r = 0.95 achieves the best Ĉ while Baseline gets the worst.

One capability of the BW algorithm is to increase the performance of the

minority class by adjusting the sample rate r of the boosting window. If no BW

algorithm applies, the original sample rate of the dataset is 0.05, and the F1 score

of the minority class is 6.64%, as shown in the Baseline line. When applying the

BW algorithm and gradually increasing the sample rate to r =0.95, the F1 score

of the minority class has increased from 6.64% to 10.96%. The results on Ĉ also
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Table 3.2: Sample rate comparison on the minority class

Metrics Acc(%) Pre(%) Rec(%) F1(%)
Ĉ (when p = )(%)

1 10 100 1000

Baseline 89.64 6.91 6.38 6.64 10.95 63.95 100 100

r = 0.2 79.40 5.68 16.47 8.45 22.21 68.58 89.75 87.86

r = 0.4 57.98 6.01 42.86 10.54 45.31 76.85 66.43 60.61

r = 0.6 43.75 6.03 59.98 10.96 60.65 82.57 51.36 42.93

r = 0.8 27.42 5.69 74.32 10.57 78.25 92.08 39.53 28.21

r = 0.9 19.02 5.77 84.90 10.80 87.31 95.19 30.15 17.29

r = 0.95 7.26 5.80 98.91 10.96 100 100 17.84 2.83

demonstrate that the BW algorithm can decrease the over normalised relative

model cost when p =100 and 1000.

For a real-world application, it is hard to say which setting is the best. A rec-

ommended practice is to calculate the Ĉ of different models according to equation

(3.2) and (3.3) based on actual penalty factors.

3.4.6 Discussion

As shown in Table 3.1 and Table 3.2, the performance on class 1 and class 0 are

conflicting. In other words, the performance improvement in class 0 will hurt the

performance of class 1. In real applications, trade-offs must be made to choose

the most appropriate model for a particular application. In this case, specially

designed domain-dependent metrics, such as normalised relative model cost Ĉ,

could act as a better decisive metric for model selection.

3.5 Conclusion

In conclusion, there is an urgent need for technology to deal with various forms

of internal data breaches due to concerns about data security and confidential-

ity. An accurate access control model based on machine learning can effectively

prevent data leakage in companies or organisations around the world. To lead an
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intelligent ML-based access control decision-making model, this chapter proposes

a consecutive incremental batch learning framework to tackle the possible con-

cept drift in real-world applications. Within the framework, a BW algorithm is

specifically designed to deal with the severe data imbalance problem in the access

control problem. As the minority class is much more important for the systems

data security and privacy protection, BW algorithm focuses on the misclassified

sample and designs a boosting window to boost the performance of the minority

class. Experimental results on a real-world dataset demonstrate the effectiveness

and flexibility of the proposed framework and BW algorithm.
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Chapter 4

Knowledge Graph Empowered

Online Learning Framework

Although experimental results demonstrated the framework proposed in Chapter

3 can enhance the performance of the minority class, the overall performance

is still unsatisfactory because of the limited available attributes and the poor

encoding and feature representing methods for high-cardinality categorical data.

This chapter constructs an access control domain-specific knowledge graph to

better represent user and resource and illustrate relationships between them to

assist decision-making.

4.1 Introduction

With the popularisation of information systems and digital devices, enterprises

and organisations accumulate a large amount of valuable or sensitive data locally

or in the cloud [78, 79]. Once these data are leaked or used maliciously, it will

cause significant economic losses or pose a great threat to users’ privacy [25, 48,

80]. Secure sensitive information is an important issue to protect customers and

then attract users [81, 82]. Access control is recognised as the first defence to

guarantee that only authorised users can gain access to sensitive data and thus

prevent data leakage [24, 25, 49, 50].
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The two main categories of the most widely used access control strategies are

role-based access control (RBAC) strategies and attribute-based access control

(ABAC) strategies [25, 51, 52]. The former assigns permissions only based on

user’s roles, which makes it simple to implement and thus widely used in the

past [59, 60]. However, with the expansion of the information system scale and

the proliferation of users, RBAC strategies are too coarse-grained to meet the

needs of sensitive data protection [53, 54]. By contrast, ABAC strategies adopt

carefully crafted policies based on multiple attributes from users, environment

and resources to assign data access permission. ABAC strategies have become

more popular nowadays because they are more fine-grained and flexible than

RBAC strategies [83, 84]. For example, the work in [85] proposed an ABAC

mining algorithm named Rhapsody to mine ABAC rules from sparse logs.

However, the evolving new information technologies and changes in users’ be-

haviours bring new challenges. One of the biggest problems is the policy explo-

sion, which means the scale of the policy has increased dramatically [55, 56, 86].

The main reason for the policy explosion is that users’ roles in organisations

are becoming more diverse and people are using more different devices to access

data in different places. Policy explosion brings two consequences directly, i.e.,

decreased efficiency of the system and increased misconfiguration [87, 88].

To overcome these problems, more and more researchers are beginning to ex-

plore machine learning based access control strategies, which treat access control

decision-making as a binary classification problem. Sample features for machine

learning classifier training come from available users, environment and resource

attributes etc. The corresponding sample labels come from verified access control

log files. Some works have successfully classified access control historical records

using machine learning methods with high accuracy. But there is no related work

that discusses machine learning based access control from the perspective of a

data stream. In reality, access control requests form a data stream to feed into

the decision-making models. Therefore, the work in our previous chapter [89]

proposed a consecutive batch learning framework to tackle the possible concept

drifts by periodically updating the machine learning classifier with new samples.

Furthermore, dynamic class imbalance problems exist in real-world access

control applications [77, 90]. In other words, most requests are legitimate and
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valid, but there will be a very small number of samples that are denied access

due to mishandling or malicious attacks. For access control, a rejected access

request usually means a malicious access request, which is the minority class.

Misclassification of the minority class will cause severe data leakage. Therefore,

improving the classification performance of the minority class (access deny) is

vital for an access control problem.

To boost the performance of the minority class for access control, Chapter 3

[89] proposed a Boosting Window (BW) algorithm within an adaptive incremen-

tal batch learning framework. Although experimental results demonstrated the

work in Chapter 3 can enhance the performance of the minority class, the overall

performance is still unsatisfactory because of the limited available attributes and

the poor encoding and feature representing methods for high-cardinality categor-

ical data. For example, the manager ID is an essential user attribute related to

the possible access permission to a specific system resource. However, in a large

organisation, such as Amazon, there will be millions of different manager IDs. In

this case, the values of the manager ID are high-cardinality nominal categorical

data.

In general practice, one-hot encoding, binary encoding and label encoding are

the most popular methods for categorical data encoding [45]. When encoding

high-cardinality nominal categorical data, all of them have fatal disadvantages.

Label encoding can mislead the classifier because of the big differences between

numerical values. For example, the classifier can falsely give more weight to a

manager with an ID of 100,000 than 1. One-hot encoding can address this problem

but it will result in another serious problem, the curse of dimensionality. Binary

encoding adopts binary code to represent ordinal values, working as a compromise

between label encoding and one-hot encoding. However, binary encoding fails to

represent relationships between different samples with the same attribute value.

In recent years, knowledge graphs have been increasingly used to represent

complex data points and relationships in the real world. Existing knowledge

graph application areas include question-answering systems, storing research, rec-

ommendation systems and supply chain management. Studies show that bringing

knowledge graph and machine learning technology can improve the accuracy and

performance of machine learning approaches, because knowledge graph provides
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a logical way to capture data relationships and drive intelligence into the data

itself in a more explainable, accurate and repeatable way. The performance of

machine learning algorithms depends on the quality of data. Knowledge graphs

capture, persist and make rich contextual information usable to enhance every

step of the machine learning processes, from training machine learning models

and extracting topological and non-topological features to making predicting de-

cisions.

To better represent user and resource and illustrate relationships between

them, this chapter constructs an access control domain-specific knowledge graph

to assist decision-making. As an extension of Chapter 3, we leverage knowledge

graph to handle user and resource attributes with high-cardinality values to fur-

ther boost the performance of the minority class. Compared with the work in

[89], our main contributions are as follows.

(1) We proposed a knowledge graph empowered online learning framework

for access control decision-making. To the best of our knowledge, this study is

the first try to leverage knowledge graph to extract graph topological features to

improve the performance of the access control model.

(2) We proposed an algorithm to construct a knowledge graph from the exist-

ing user and resource attributes. We further demonstrate how to extract features

from the established knowledge graph to represent users and resources. The ex-

tracted features are fed to a machine learning classifier to make access control

decisions based on records in log files.

(3) We evaluate and verify the proposed knowledge graph empowered online

learning framework on a much larger open-sourced real-word dataset and dis-

cussed the performance on different imbalance degrees in both online and offline

scenarios.

The rest of the chapter is organised as follows. Section 4.2 briefly introduces

knowledge graph basics, typical graph topological features and link prediction

solutions. Section 4.3 presents the workflow of the proposed framework, followed

by an access control domain-specific knowledge graph construction algorithm and

feature extraction details in section 4.4. Section 4.5 displays the experimental

results and concludes the chapter with a discussion on future work.
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4.2 Related Work

A knowledge Graph (KG) is a complex data structure consisting of entities, also

known as nodes from the perspective of graph theory, and the relationships be-

tween them. Apart from the graph-structured data model, both entities and

relationships can have multidimensional properties to further describe complex

data. KG is often used to represent interlinked facts, allowing both humans and

computers to extract useful knowledge and further to do reasoning and predic-

tion based on its contents. Typical ways to analyse a knowledge graph include

but are not limited to (1) node classification to predict the type of a given node;

(2) link prediction to predict whether two entities are linked or not; (3) commu-

nity detection to identify densely linked entity clusters and (4) network similarity

measurement to evaluate the similarity between two nodes or two networks.

The access control problem can be formulated as a link prediction problem

between user entities and resource entities, which is essentially a binary classifica-

tion problem. Specifically, if an access approve link exists between a user entity u

and a resource entity r, the access request (u → r) will be approve. Otherwise, it

will be refused. Once a knowledge graph has been constructed, a variety of graph

topological features can be extracted to describe the local or global connections

between entities based on homogeneous or heterogeneous subgraphs within the

knowledge graph.

A basic solution for link prediction is structural similarity-based unsupervised

learning methods, which determine the likelihood of linkage between two nodes

based on some similarity or closeness indices deduced from the graph structure.

When an index between two nodes exceeds a predefined threshold, they are con-

sidered to have a link between them. Common Neighbours (CN) [91] measuring

the number of shared nodes between two nodes is the most intuitionistic index

to indicate the linkage possibility of them. Similar indices, to name a few, in-

clude Adamic Adar (AA) [92], Preferential Attachment (PA) [93] and Resource

Allocation (RA) [94]. Their definitions are listed as (4.1)-(4.3) for reference.

CN(u, v) = |N(u) ∩N(v)|, (4.1)
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AA(u, v) =
∑

w∈N(u)∩N(v)

1

log |N(w)|
, (4.2)

PA(u, v) = |N(u)| ∗ |N(v)|, (4.3)

RA(u, v) =
∑

w∈N(u)∩N(v)

1

|N(w)|
, (4.4)

where u, v, w are nodes in the target graph, N(·) denotes the set of nodes adjacent
to the specified node in the brackets, | · | denotes the number of distinct nodes

in the specified set. These indices are widely used in various domains because of

their simplicity and reasonable performance. However, they only considered the

node pair’s local connectivity and ignored the global structure of a graph.

By contrast, global connectivity indices can provide more overall graph topol-

ogy information. A well-known index for taking global connectivity into account

is the Katz Index (KI), which leverage the length of paths between a pair of nodes

to measure their similarity. KI can be calculated as (4.5) [95].

KI(u, v) =
lmax=∞∑

l=1

βl ·
∣∣pathl

u,v

∣∣ , (4.5)

where l is the length of a path between nodes u and v,
∣∣pathl

u,v

∣∣ is the total

number of distinct paths between node u and v with length l, β is a coefficient

between 0 and 1 used to adjust the contribution of paths to KI.

Another popular global connectivity index is Average Commute Time (ACT),

which calculates the average number of steps required by a random walker starting

from node u to reach v and vice versa [96]. The ACT between nodes u and v can

be calculated as (4.6) [97].

SACT (u, v) =
1

l+uu + l+vv − 2l+uv
(4.6)

where l+uu, l
+
vv and l+uv are the corresponding entries in Laplacian Matrix, L+.

Obviously, a common drawback for global connectivity indices is relatively

higher computation cost compared with local connectivity indices. Decentralized

approaches or parallel computing are also incapable of dealing with global graph
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computation, because the structural connectivity would be damaged by splitting

the graph for decentralized or parallel computing. Therefore, these measures are

not suitable for large-scale connected graphs.

Generally speaking, the common advantages of structural similarity-based

unsupervised learning methods algorithms include that (1) they do not need

labelled data to train a classifier; (2) the link prediction result is explainable based

on the definition of the corresponding indices; (3) they often take less computation

effort for costly feature engineering and classifier training procedures.

However, there is still no universal feasible method to determine the appro-

priate threshold for different indices and application domains. Besides, these

methods are also criticised for poor performance due to only taking topological

features into account and neglecting the attributes of nodes and relationships,

which contain rich domain knowledge and play critical roles for most domain-

specific link prediction tasks. Therefore, in most cases, when labelled data is

available, supervised learning methods are more preferable due to superior per-

formance and the flexibility of feature extraction.

When applying supervised learning methods, both non-topological features

and topological features can be used to feed into a machine learning classifier to

support link prediction. Non-topological features refer to the attributes of enti-

ties and relationships, which contain rich multi-modality domain knowledge. For

example, in an access control knowledge graph, the non-topological features of a

user entity include sector, department name, job title, job description, etc. By

contrast, topological features refer to graph structural features for node represent-

ing. In addition to aforementioned local and global connectivity indices, common

traditional node topological feature extraction methods in graph theory include

Pang Rank [98], Article Rank [99], Betweenness Centrality [100], Harmonic Cen-

trality [101], etc.The performance of supervised machine learning methods for

link prediction is determined by the capability of the extracted non-topological

and graph topological features as well as the capability of the applied classifier.
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4.3 Methodology

We propose a general knowledge graph empowered online learning framework for

access control in this section. Firstly, we introduce the workflow of the framework.

Then we detail the construction algorithm of an access control domain-specific

knowledge graph and the KG-based topological feature extraction method.

4.3.1 Workflow of the Proposed Framework

The supporting information for the access control decision-making problem stud-

ied in this chapter includes user attributes, resource attributes and a verified

access control log file in chronological order. According to the cardinality of cat-

egory user attributes and resource attributes, an access control knowledge graph

is constructed. The specific knowledge graph construction and refactoring al-

gorithm is given in Section 4.3.2 and a real-world use case is demonstrated in

Section 4.4.

Similar to our previous work [89], the proposed framework is essentially a

classifier-agnostic consecutive incremental batch learning process for access con-

trol decision-making. Within this framework, a randomly initialized binary ma-

chine learning classifier works as the access control decision-maker, denoted as

f
(0)
Θ (·), where Θ is the trainable parameter set of f(·) and (0) means the initial-

ization status of the time step. The classifier f
(0)
Θ (·) is constantly updated at each

time step as new samples are available for classifier training. We demonstrate the

main process of a typical time step t (t > 0) in Fig. 4.1, which consists of two

stages, namely, the predicting stage and the adaptation stage.

At the predicting stage of the t-th time step, when user u request a resource

r, denoted as (u → v)(t), the classifier f
(t)
Θ (·), which is updated at time step t− 1,

will make decision on the access control request (u → v)(t). Firstly, six feature

sets related to this access control request will be extracted from the constructed

access control knowledge graph, i.e., x
(t)
uN , x

(t)
uT , x

(t)
rN , x

(t)
rT , x

(t)
(u→r)N

and x
(t)
(u→r)T

.

Among them, x
(t)
uN , x

(t)
rN and x

(t)
(u→r)N

are the non-topological feature sets extracted

form the user entity, the resource entity and the existing relationships between

them. Similarly, x
(t)
uT , x

(t)
rT and x

(t)
(u→r)T

are the corresponding topological feature
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Fig. 4.1. Workflow of the proposed consecutive incremental batch learning frame-

work

sets. The details of the feature extraction process are described in Section 4.3.3.

These six feature sets are then preprocessed (outlier replacing and normalization)

and integrated into one feature set x(t). Finally, the classifier f
(t)
Θ (·) will make

decision on the request (u → v)(t) according to the result of equation (4.7).

ŷ(t) = f
(t)
Θ (x(t)), (t > 0). (4.7)

At the adaptation stage of the t-th time step, the verified ground truth y(t)

corresponding to the request (u → v)(t) is available and can be extracted from the

verified access control log file. Then, the labelled samples x(t), y(t) can be used

to finetune the classifier f
(t)
Θ (·). The fine-tuned classifier, denoted as f

(t+1)
Θ (x·),

will be used at the predicting stage of the t+ 1-th time step. Since the classifier

keeps updating with the latest verified samples {x(t), y(t)} at each time step t, it

can learn possible new concepts emerging at time step t.
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4.3.2 Access Control Knowledge Graph Construction

A knowledge graph consists of a set of entities (with multiple entity labels) and

relationships between entities (with multiple relationship types). Each entity or

relationship has its identification number and some of them have one or more

properties. To construct an access control knowledge graph is to identify all

entities including their labels and properties, and all relationships including their

relationship types.

4.3.2.1 Attribute Type

We construct an access control knowledge graph G from existing user attributes

and resource attributes information. Apart from the ID attribute, from the per-

spective of constructing KGs, there are three kinds of attributes in Attu and Attr,

i.e., Type 1, attributes showing the relationships between users and resources;

Type 2, high-cardinality categorical attributes; Type 3, the rest attributes. Let

θ be a preset cardinality threshold. If the cardinality of a categorical attribute is

larger than θ, it is a Type 2 attribute; otherwise, Type 3. The attribute types

work as a guideline for step by step knowledge graph construction, seeing details

at Section 4.3.2.2.

4.3.2.2 Algorithm Pseudocode

Let Attu be the list of users’ attribute names, in which an attribute name‘userID’

is included. Xu denotes the attributes’ values according to Attu. xuid ∈ Xu is a

vector containing all users’ ID. Similarly, Attr is the list of resources’ attribute

names containing a ‘resourceID’. Xr is the attributes’ values according to Attr

and xrid ∈ Xr is a vector containing all resources’ ID. We elaborate on the

construction process of an access control knowledge graph in Algorithm 4.1.

Algorithm 4.1 Access Control Knowledge Graph Construction

Input: Attu, Xu, Attr, Xr, θ.

Output: G.

1: \\ Step1: create User and Resource entities.

2: for uid in unique(xuid) do
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3: CREATE (u:User {u.userID=uid})
4: end for

5: for rid in unique(xrid) do

6: CREATE (r:Resource {r.resourceID=rid})
7: end for

8: \\ Step2: create properties or relationships for User entities from user

attributes.

9: for attn, xu in zip(Attu, Xu-xuid) do

10: \\ Step2.1: create relationships from User entities to Resource entities

from Type 1 attributes.

11: if xu shows a relationship between users and resources then

12: for uid, attv in zip(xuid, xu) do

13: Let the set of resourceIDs indicated by attv be denoted as Ridt.

14: for ridt in Ridt do

15: MATCH (u:User userID:uid)

16: MATCH (r:Resource resoureID:ridt)

17: CREATE (u)-[ref:HASattn (ref.attnProperty=attv)]->(r)

18: end for

19: end for

20: \\ Step2.2: create new types of entities from the Type 2 attributes.

21: else if xu is a category feature AND cardinality(xu) > θ then

22: for uid, attv in zip(xuid, xu) do

23: CREATE (a:attn {a.attnProperty=attv})
24: CREATE (u)-[ref:HASattn]->(a)

25: end for

26: \\ Step2.3: create new properties for User entities from the Type 3

attributes.

27: else

28: for uid, attv in zip(xuid, xu) do

29: MATCH (u:User userID:uid)

30: SET u.attnProperty=attv

31: end for

32: end if
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33: end for

34: \\ Step3: create properties or relationships for Resource entities from

Resource attributes.

35: for attn, xr in zip(Attr, Xr-xrid) do

36: \\ Step3.1: create relationships from Resource entities to User entities

from Type 1 attributes.

37: if xr shows a relationship between resources and users then

38: for rid, attv in zip(xrid, xr) do

39: Let the set of userIDs indicated by attv be denoted as Uidt.

40: for uidt in Uidt do

41: MATCH (r:Resource resoureID:rid)

42: MATCH (u:User userID:uidt)

43: CREATE (r)-[ref:HASattn (ref.attnProperty=attv)]->(u)

44: end for

45: end for

46: \\ Step3.2: create new types of entities from the Type 2 attributes.

47: else if xr is a category feature AND cardinality(xr) > θ then

48: for rid, attv in zip(xrid, xr) do

49: CREATE (a:attn {a.attnProperty=attv})
50: CREATE (r)-[ref:HASattn]->(a)

51: end for

52: \\ Step3.3: create new properties for Resource entities from the Type 3

attributes.

53: else

54: for rid, attv in zip(xrid, xu) do

55: MATCH (r:Resource resourceID:rid)

56: SET r.attnProperty=attv

57: end for

58: end if

59: end for

60: \\ Step4: refactor the above-established access control knowledge graph.

61: for rel in Rel do

62: MATCH (u1:User)-[:rel]->()<-[:rel]-(u2:User)
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63: CREATE (u1)-[:SHARErel]-(u2)

64: MATCH (r1:Resource)-[:rel]->()<-[:rel]-(r2:Resource)

65: CREATE (r1)-[:SHARErel]-(r2)

66: end for

67: return an access control knowledge graph G

Some executive statements of the pseudocode in Algorithm 4.1 are written in

Cypher query language, which is the graph query language for the Neo4j graph

database. The naming convention thus follows the Cypher coding standards,

where entity labels are in CamelCase; property keys are in camelCase and rela-

tionship types are in upper-case, such as FOLLOWS in a social media knowledge

graph. As listed below, the process of access control knowledge graph construc-

tion can be divided into four main steps:

Step 1: create User and Resource entities as shown in lines 2-7. According

to the userID and resourceID attributes, we create two entity types with a User

label and Resource label respectively. For each unique userID uid in xuid, we

create a User entity with a userID property as shown in lines 2-4. Similarly, we

create Resource entities with a resouceID property based on the rid in xrid as

shown in lines 5-7.

Step 2: create properties or relationships for User entities from user attributes

as shown in lines 9-32. In line 9, attn refers to the attribute name traversing

Attu; xu is the corresponding attribute values and Xu-xuid means the relative

complement of xuid in Xu. In other words, Xu-xuid means all attributes’ values

except xuid. Steps 2.1-2.3 give details on how to create properties or relationships

for User entities based on three attribute types defined in Section 4.3.2.1.

Step 2.1: create relationships from User entities to Resource entities based on

Type 1 attributes as shown in lines 11-19. When a user attribute attn indicates

a relationship between users and resources, we search the particular User entity

and Resource entity based on the attribute value attv and create a HASattn rela-

tionship between, where HASattn is the relationship type in upper-case format.

We further record the import attribute information in attv as a property of the

created relationship, named attnProperty. In line 12, attv means the attribute

value of attn corresponding to the user with userID=uid. In line 13, Ridt means

a temporary resourceID set to distinguish it from xrid line 5.
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Step 2.2: create new types of entities for high-cardinality categorical user

attributes as shown in lines 21-25. To better represent high-cardinality categorical

features, we create new entities with a label named attn and a property named

attnProperty to record the value of the high-cardinality categorical user attribute.

Then, we create a relationship with a type of HASattn to indicate that the user

with userID=uid has a relation with the newly created entity.

Step 2.3: create new properties for User entities from the Type 3 attributes.

The rest of user attributes are all added as the properties of the User entities as

shown in lines 28-31.

Step 3: create properties or relationships for Resource entities from resource

attributes as shown in lines 34-57. The process of Step 3 is similar to Step2. To

avoid redundancy, we no longer describe the detailed process in words.

Step 4: refactor the above-established access control knowledge graph as

shown in lines 61-61. We add a SHAREref relationship between User Enti-

ties who share the same attn entities created in line 23. The subgraph consisting

of SHAREref relationships and User entities can be used to extract topologi-

cal features to represent the original user attribute attn ∈ Attu. Similarly, we

also add a SHAREref relationship between Resource Entities who share the same

attn entities created in line 49 to facilitate the topological feature extraction from

information provided by the original user attribute attn ∈ Attr.

After the aforementioned four steps, an access control knowledge graph G is

established for topological feature extraction.

4.3.3 Feature Extraction for Access Control

To train the classifier fΘ(·) for access control, we use the log file containing access

control requests and their corresponding verified decision (approval or refuse) to

form labelled samples. Specifically, for each request from user u to resource r at

time step t, denoted as (u → v)(t), six sets of features can be exacted from the

access control knowledge graph G constructed with Algorithm 4.1, namely, x
(t)
uN ,

x
(t)
uT , x

(t)
rN , x

(t)
rT , x

(t)
(u→r)N

and x
(t)
(u→r)T

, as shown in Fig. 4.1.

Among them, x
(t)
uN , x

(t)
rN and x

(t)
(u→r)N

are the non-topological feature sets ex-

tracted form the User entity u, the Resource entity r and the existing relationships
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between them u → v. These three non-topological feature sets can be exported

from the properties of entities u, r and relationships u → r.

By contrast, x
(t)
uT , x

(t)
rT and x

(t)
(u→r)T

are the corresponding topological feature

sets. x
(t)
uT is extracted from a subgraph of the constructed access control knowledge

graph G which consists of User entities and relationships between them. Similarly,

x
(t)
rT is extracted from a subgraph containing Resource entities and relationships

between them. Both x
(t)
uT and x

(t)
rT are the topological features extracted to present

the entities. The extracted topological features include but are not limited to (1)

centrality scores which determine the importance of distinct nodes in a graph,

such as page rank scores and betweenness scores; (2) community detection scores

which indicate how groups of nodes are clustered or partitioned, as well as their

tendency to strengthen or break apart, such as the weakly connected component

id and triangle count of an entity. x
(t)
(u→r)T

is extracted from a subgraph containing

User entities, Resource entities and relationships between User and Resource

entities. x
(t)
(u→r)T

is used to present the closeness of entities u and r based on

the graph with relationships between u and t. The possible features of x
(t)
(u→r)T

include but are not limited to Adamic Adar scores and common neighbours.

4.4 Experiment Results

This section introduces a real-world access control dataset. Then provides a use

case of the access control knowledge graph construction algorithm described in

Algorithm 4.1 on this dataset. Finally, we compare the access control perfor-

mance on topological features extracted from the established knowledge graph

and nontopological features. Results show that the proposed knowledge graph

empowered method outperforms nontopological methods in both offline and on-

line scenarios.
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4.4.1 Dataset

The experiments of this chapter are conducted on an open-source real-world Ama-

zon employee access dataset1. The dataset contains a file listing all user and

resource attributes and a time-series log file containing 684,374 user to resource

access control requests and the corresponding permission records. The dataset is

extremely imbalanced with 10,911 (1.59%) access rejection and 673,463 (98.41%)

access approval. The dynamic data imbalance status is shown in Fig. 4.2. Sub-

plot (a) shows the overall imbalance factor of the refused requests and approved

requests. The overall imbalance factor of the refused requests gradually converges

to 1.59% after a fluctuation at the early stages and the approved requests con-

verge to 98.41%. Subplot (b) shows the sliding window imbalance factor [75] of

the two classes when the sliding window size is set to 100.
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Fig. 4.2. Dynamic data imbalance statuses over time

Table 4.1 lists the basic information of the attribute file. means Not Appli-

cable As shown in Table 4.1, there are 36,063 unique users and 33,252 unique

resources. We set the cardinality threshold θ=300. Based on the three attribute

types defined in Section 4.3.2.1, the corresponding attribute type is listed in the

Type column. The type information can be used to guide the knowledge graph

1http://archive.ics.uci.edu/ml/datasets/Amazon+Access+Samples
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construction, which is described in Section 4.4.2. For the Type 1 attribute, the

cardinality is not applicable (NP).

Table 4.1: Dataset information

Attribute file Attribute name Type Cardinality Description

User

PERSON ID userID 36,063 ID of the user

RESOURCE LIST Type 1 NP

list of resource ID that

a users can possibly

have access to

MGR ID Type 2 3,207 manager ID

DEPTNAME Type 2 405 department description ID

BUSINESS TITLE Type 2 4,979 title ID

TITLE DETAIL Type 3 56 title description ID

COMPANY Type 3 49 company ID

JOB CODE Type 3 13 job code ID

JOB FAMILY Type 3 70 job family ID

ROLLUP 1 Type 3 12 user grouping ID

ROLLUP 2 Type 3 111 user grouping ID

ROLLUP 3 Type 3 12 user grouping ID

Resource
RESOURCE ID resourceID 33,252 ID of the resource

RESOURCE TYPE Type 3 3 group, system or host

4.4.2 Access Control Knowledge Graph Construction

According to the dataset introduced in Section 4.4.1, we construct an access

control knowledge graph following the steps in Algorithm 4.1. The main process

and intermediate knowledge graph construction results are summarised in Table

4.2.

In Step 1, based on the user attribute PERSIN ID, 36,063 User entities with

a userID property are created and 33,252 Resource entities with a resourceID

property are created using the RESOURCE ID attribute.
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Table 4.2: Usecase of Algorithm 4.1

Step Used information Created entity Created relationship Created property

Step 1

PERSON ID,

RESOURCE ID

User entities,

Resourc entities none

u.userID,

r.resourceID

Step 2.1 RESOURCE LIST none HAS P ACCESS none

Step 2.2

MGR ID,

DEPTNAME,

BUSINESS TITLE

Manager,

Department,

Title

HAS MANAGER,

HAS DEPT,

HAS TITLE

m.managerID,

d.deptID,

t.titleID

Step 2.3

TITLE DETAIL,

COMPANY,

JOB CODE,

JOB FAMILY,

ROLLUP 1,

ROLLUP 2,

ROLLUP 3 none none

u.titleDetail,

u.company,

u.jobCode,

u.jobFamily,

u.rollup1,

u.rollup2,

u.rollup3

Step 3.1 none none none none

Step 3.2 none none none none

Step 3.3 RESOURCE TYPE none none r.resourceType

Step 4

HAS P ACCESS,

HAS MANAGER,

HAS DEPT,

HAS TITLE none

SHARE P USER,

SHARE MANAGER,

SHARE DEPT,

SHARE TITLE none

In Step 2, more entities, relationships and properties are created based on

the three types of user attributes. Specifically, in Step 2.1, a HAS P ACCESS

relationship is created between User and Resource entities to show the possibility

of access requests based on Type 1 RESOURCE LIST attributes. In step 2.2,

three Type 2 attributes, namely, MGR ID, DEPTNAME and BUSINESS TITLE,

are used to create three types of entities. The newly created entity labels are

Manager, Department and Title respectively. The attribute values are added as

the entity properties as shown in Table 4.2. The m.managerID means we created
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a manageID property for Manager entities. Similarly, d.deptID and t.titleID are

properties added to Department and Title entities respectively. Furthermore,

a HAS MANAGER relationship is created between User and Manager entities.

Similarly, a HAS DEPT and a HAS TITLE relationship is also created between

User and Department entities as well as User and Title entities. Finally, in Step

2.3, 7 Type 3 attributes are added as the properties of User Entities, as shown in

Table 4.2.

In Step 3, only a Type 3 attribute, RESOURCE TYPE, is available and we

add a resourceType property to Resource entities.

In Step 4, a SHARE P USER relationship is created between two Resource

entities who have HAS P ACCESS relationship with the same User Entity. Sim-

ilarly, three relationships, namely, SHARE MANAGER, SHARE TITLE and

SHARE DEPT, are created respectively between two User entities who have

HAS MANAGER/ HAS TITLE/ HAS DEPT relationships with the same Man-

ager/ Title/ Department entity.

Finally, an access control knowledge graph G is constructed based on the

Amazon access control dataset. The data model (schema) of G is illustrated as

Fig. 4.3. A circle presents a type of entity with a bold label inside. Below

the label is the total number of entities with that label. The properties of the

corresponding entities are also listed inside the circle. An arrow represents a

directed relationship. We also specify the relationship type and the total number

of relationships along the arrow.

4.4.3 Feature extraction

We implement the access control knowledge graph G on the Neo4j 1 graph data

platform, which provides a convenient way for both topological and nontopolog-

ical feature extraction from existing entities, relationships and subgraphs of a

knowledge graph. The topological features adopted in this chapter are imple-

mented with the Neo4j Graph Data Science Library 2.

1https://neo4j.com/
2https://neo4j.com/docs/graph-data-science/current/algorithms/
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User

userID
titleDetail
Company
jobCode
jobFamily
Rollup1
Rollup2
rollup3

36,063

Resource

resourceID
resourceType

33,252

Department

deptID

405

Title

titleID

4,979

Manager

managerID

3,207

SHARE_DEPT
1,460,251

SHARE_TITLE
1,179,537

SHARE_MANAGER
1,238,253

SHARE_P_USER
1,950,367

Fig. 4.3. The data model of the constructed access control knowledge graph G

For an access control request from a user u to a resource r, six feature sets,

i.e., xuN
, xuT

, xrN , xrT , x(u→r)N , x(u→r)T are extracted from the User entities, Re-

source entities and their relationships. Table 4.3 presents our feature extraction

strategies in detail. As shown in the first row, xuN
is extracted from the prop-

erties of the User entity u. xuT
presents the topological features extracted from

subgraphs containing User entities and the relationships between them, as shown

in the second row. The listed features are extracted to represent the importance

or connectivity characteristics in the subgraphs. Similarly, xrN and xrT are the

nontopological and topological features of Resource entity r. In this usecase, no

properties are added to the relationship SHARE P USER, therefore, x(u→r)N is

none. We select two link prediction topological features, i.e., preferentialAttach-

ment 1 and totalNeighbor 2, to present x(u→r)T in this chapter.

1https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/preferential-

attachment/
2https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/total-neighbors/
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Table 4.3: Feature extraction details

Feature Source Features

xuN
User entity

u.userID, u.titleDetail,

u.Company, u.jobCode,

u.jobFamily, u.Rollup1,

u.Rollup2, u.rollup3

xuT

subgraphs:

(u1:User)-[rel:SHARE MANAGER]-(u2:User),

(u1:User)-[rel:SHARE DEPT]-(u2:User),

(u1:User)-[rel:SHARE TITLE]-(u2:User)

PageRank, ArticleRank,

Betweenness, Degree,

Closeness, Louvain,

HarmonicCloseness,

LabelPropagation, WCC,

triangleCount, Modularity

xrN Resource entity

r.resourceID,

r.resourceType

xrT

subgraph:

(r1:Resource)-[rel:SHARE P USER]-(u2:User)

PageRank, ArticleRank,

Betweenness, Degree,

Closeness, Louvain,

HarmonicCloseness,

LabelPropagation, WCC,

triangleCount, Modularity

x(u→r)N relationship: SHARE P USER none

x(u→r)T

subgraph:

(u:User)-[rel:HAS P ACCESS]-(r:Resource)

preferentialAttachment,

totalNeighbor

4.4.4 Offline Learning Performance Comparison

To verify the effectiveness of the proposed knowledge graph empowered frame-

work, we compared the access control decision-making performance of using topo-

logical features extracted from established knowledge graph and nontopological

features from original user and resource attributes on both online and offline
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scenarios.

Firstly, we verify the performance improvement of topological features on five

different classifiers, i.e., naive Bayes (GNB), logistic regression (LR), neural net-

work (NN), random forest(RF), and support vector machine (SVM). We use the

scikit-learn 1 library to implement these classifiers. Considering the importance

of class 0 (request rejection) in access control problems, results on both class 0

and the macro average on class 1 and class 0 are reported in Table 4.4. The

results in Table 4.4 are conducted on a balanced dataset consisting of all negative

samples of the original Amazon dataset introduced in Section 4.4.1 and the same

number of positive samples randomly selected from the original dataset. Both

the negative and positive samples keep the same order as the original dataset.

Although accuracy (Acc) is the most-used metric for evaluating classification

models, it only works on balanced datasets. For severe imbalanced datasets, the

results of accuracy (Acc) can be misleading and unreliable. Since the F1 score is

an evaluation metrics combining two competing metrics, i.e. precision (Pre) and

recall (Rec), we mainly discuss the F1 score when comparing the performance of

topological and nontopological features. ∆ F1 is the growth rate between the F1

score achieved on topological and nontopological features, calculated by Equation

(4.8).

∆F1 =
F1Topo − F1Nontopo

F1Nontopo

× 100%, (t > 0). (4.8)

As shown in Table 4.4, RF classifier achieves the best performance on all

metrics with topological features, highlighted with bold fonts. Using topological

features extracted from the access control knowledge graph increases the F1 score

on class 0 from 70.08% to 73.51%, which achieves an increase of 4.89%. Actually,

an improvement of 4.21% also achieved on macro average F1 score by using

topological features.

The performance on NN and LR classifiers are also boosted on both macro

average and class 0 with topological features. However, for the GNB classifier,

the macro average F1 score is improved from 45.43% to 60.43% with a cost of the

decrease of F1 score of class 0 from 66.49% to 58.59%. It means that topological

1https://scikit-learn.org/stable/

65



4.4 Experiment Results

features increase the performance on class 1 but decrease on class 0 when using

the GNB classifier. By contrast, the SVM classifier increases the F1 score of class

0 from 59.92% to 66.69% but the macro average f1 score decreases from 61.04%

to 35.21%. Generally speaking, it is fair to say that the topological feature can

improve access control performance in the offline learning scenario.

Table 4.4: Performance comparison of different classifiers on offline scenario

Classifier Feature Acc(%)
Macro average Class 0

Pre(%) Rec(%) F1(%) ∆ F1 Pre(%) Rec(%) F1(%) ∆ F1

GNB
Nontopo 53.56 57.10 53.02 45.43 52.43 90.87 66.49

Topo 60.51 60.71 60.59 60.43 ↑33.01% 62.57 55.09 58.59 ↓11.89%

LR
Nontopo 61.04 61.14 61.09 61.02 62.61 57.55 59.97

Topo 62.89 63.08 62.96 62.83 ↑2.97% 65.05 57.97 61.31 ↑2.23%

NN
Nontopo 60.63 61.07 60.75 60.38 63.68 52.04 57.27

Topo 61.46 61.65 61.53 61.39 ↑1.66% 63.51 56.39 59.74 ↑4.31%

RF
Nontopo 70.65 70.74 70.69 70.64 72.52 67.81 70.08

Topo 73.61 73.64 73.63 73.61 ↑4.21% 74.86 72.22 73.51 ↑4.89%

SVM
Nontopo 61.07 61.18 61.13 61.04 62.69 57.38 59.92

Topo 50.51 47.95 49.83 35.21 ↓42.31% 50.62 97.71 66.69 ↑11.31%

To further verify the improvement effectiveness of topology features in differ-

ent data imbalance statuses, we use an RF classifier, which performs the best in

Table 4.4, to conduct experiments on different class proportions in an offline sce-

nario, as shown in Table 4.5. Consistent with Table 4.4, topological features can

improve the access control performance of both macro average and the minority

class (class 0) on different degrees of imbalanced datasets. However, with the

increase of data imbalance, the performance of the algorithm gradually deterio-

rates, but the results are still much better than a random decision. Specifically,

topological features improve the macro average f1 score by 4.60%, 1.30% and

1.29% respectively when the class 0 accounts for 30%, 10%, 1.59% (the original

dataset) in the dataset. Furthermore, topological features are superior in improv-

ing the performance on class 0, which records an increase of 10.30%, 5.28% and

33.83% accordingly.
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Table 4.5: Offline learning performance comparison on different data imbalance

statuses

Class 0 Feature Acc(%)
Macro average Class 0

Pre(%) Rec(%) F1(%) ∆ F1 Pre(%) Rec(%) F1(%) ∆ F1

30%
Nontopo 76.87 73.72 66.87 68.41 68.75 41.90 52.07

Topo 78.57 75.76 69.89 71.56 ↑4.60% 71.02 48.21 57.43 ↑10.30%

10%
Nontopo 89.41 67.70 59.16 61.49 43.63 21.38 28.69

Topo 89.56 68.58 59.82 62.28 ↑1.30% 45.26 22.67 30.21 ↑5.28%

1.59%
Nontopo 98.01 53.29 51.08 51.48 8.10 2.63 3.97

Topo 97.98 54.24 51.55 52.15 ↑1.29% 9.99 3.62 5.32 ↑33.83%

4.4.5 Online Learning Performance Comparison

We also conduct online learning experiments on different degrees of imbalance

statuses to verify the effectiveness of topology features in improving access control

performance. Table 4.6 shows the overall performance comparison results. The

time step size is set as 1/1000 of the dataset size. Topological features improve the

macro average f1 score by 2.37%, 2.7% and 1.45% respectively when the class 0

accounts for 30%, 10%, 1.59% (the original dataset) in the dataset. In particular,

topological features are superior in improving the performance on class 0, which

records an increase of 7.28%, 17.10% and 24.31% accordingly.

Table 4.6: Overall performance comparison of online learning

Class 0 Feature Acc(%)
Macro average Class 0

Pre(%) Rec(%) F1(%) ∆ F1 Pre(%) Rec(%) F1(%) ∆ F1

30%
Nontopo 73.41 67.72 61.06 61.78 59.51 30.94 40.71

Topo 73.68 67.97 62.31 63.25 ↑2.37% 59.26 34.58 43.68 ↑7.28%

10%
Nontopo 90.50 74.46 55.09 56.76 57.80 11.06 18.57

Topo 90.33 71.83 56.18 58.29 ↑2.70% 52.32 13.72 21.74 ↑17.10%

1.59%
Nontopo 98.39 64.77 51.70 52.76 31.03 3.53 6.33

Topo 98.38 65.14 52.17 53.53 ↑1.45% 31.75 4.49 7.87 ↑24.31%
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Fig. 4.4 shows the real-time macro average performance comparison of online

learning. The red lines show access control performance comparison when using

topological and nontopological features on a dataset with class 0: class 1 = 3:7.

Similarly, the brown lines and blue lines present the results of the original dataset

and a dataset with class 0: class 1 = 1:9. Fig. 4.4 demonstrates that topological

features can improve the overall f1 score without decreasing the accuracy.
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Fig. 4.4. The real-time macro average performance comparison of online learning

Similarly, Fig. 4.5 shows the real-time performance comparison of online

learning on class 0 (the minority class). Though the trends are the same with

Fig. 4.4, the degree of improvements are larger in Fig. 4.5 .

4.4.6 Discussion

Results shown in Tables 4.5 and 4.6 demonstrated the effectiveness of topological

features in improving the access control performance in both offline and online

scenarios. However, for privacy and security reasons, the Amazon access control

dataset only provides 12 categorical user attributes and 2 resource attributes.

These attributes use ID numbers to distinguish different values to prevent sensi-

tive data leakage. It is very challenging to achieve high predictive performance

68



4.4 Experiment Results

Data sequence 0%

20%

40%

60%

80%

100%
Ac

cu
ra

cy

Nontopo_3:7
Topo_3:7
Nontopo_1:9
Topo_1:9
Nontopo_original
Topo_original

Data sequence 0%

20%

40%

60%

Pr
ec

isi
on

Nontopo_3:7
Topo_3:7
Nontopo_1:9
Topo_1:9
Nontopo_original
Topo_original

Data sequence 0%

20%

40%

60%

80%

100%

Re
ca

ll

Nontopo_3:7
Topo_3:7
Nontopo_1:9
Topo_1:9
Nontopo_original
Topo_original

Data sequence 0%

10%

20%

30%

40%

50%

F1
 S

co
re

Nontopo_3:7
Topo_3:7
Nontopo_1:9
Topo_1:9
Nontopo_original
Topo_original

Fig. 4.5. The real-time performance comparison of online learning on class 0

without more text attributes to provide rich semantic information for mining.

Therefore, the overall performance and the minority class performance is still

unsatisfactory.

In fact, the problem of data insufficiency, especially the lack of attributes

information, is common for access control. ABAC rule mining algorithms also

suffer from severe overall performance deficiency caused by the poor quality of

available real-world access control datasets. For example, the work in [85] pro-

posed an iterative rule mining algorithm, named Rhapsody, to automatically mine

ABAC rules from sparse logs and prevent over-permissiveness. They reported the

F1 scores of five ABAC rule-based algorithms including Rhapsody on the same

Amazon dataset with us. The range of the reported F1 scores is from 0.01 to

0.35, which is equivalent to our method. However, they only choose the top eight

most requested resources and their corresponding requests to form eight instances

for algorithm evaluation instead of evaluating the algorithm on the whole log file

as we do. Therefore, the generalisation performance of their algorithm is not

guaranteed.
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4.5 Conclusion

To better encode high-cardinality categorical user and resource attributes and

improve the machine learning-based access control performance, we proposed a

knowledge graph empowered online learning framework for access control decision-

making. As a combination of machine learning and knowledge graph, the pro-

posed framework incorporates machine learning algorithms in both online and

offline learning modes. It explores latent topological hierarchies and dependen-

cies between users and resources. Through transferring tabular user and resource

attributes into a comprehensive knowledge graph, the topological features from

the established knowledge graph were extracted to represent uses and resources.

Experimental results show that topological features outperform nontopogical fea-

tures encoded by binary encoding method in both online and offline settings.
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Chapter 5

Conclusion and Future Works

This chapter summarises the main work and contributions of this study in Section

5.1 and points out the limitations of this work and some promising research topics

for future work in Section 5.2.

5.1 Summary

Data leakage is one of the public’s most significant concerns in this era and also

a bottleneck that restricts the continued vigorous development of information

technology. Motivated by the problem of how to prevent internal personnel data

leakage, this thesis locates the critical technology of data protection – Access

Control. This research explores machine learning-based access control, one of the

technologies that may replace manual access control decisions in the era of big

data.

To provide feasible solutions to the concept drift and data imbalance prob-

lems existing in MLAC algorithms, this thesis adopts incremental batch learning

into access control decision-making and proposes an adaptive machine learning

framework to update classifiers periodically in Chapter 3. Furthermore, a boost-

ing window algorithm is designed to specially enhance the performance of the

minority class (access deny). The proposed framework and BW algorithm were

evaluated on a real-world Amazon access control dataset. Experimental results
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showed that the F1 score of the minority class was improved from 6.64% to 10.96%

when increasing the sample rate from 0.05 to 0.95.

In Chapter 4, this thesis leverages a knowledge graph to extract topological

features from high cardinality categorical attributes to improve the overall per-

formance of both the minority and the majority classes. Experimental results on

real-world Amazon access control dataset demonstrated that using topological

features extracted from knowledge graph significantly improved the F1 score the

minority class and the macro average results in both online and offline learning

modes at different imbalance statuses.

This research is significant to academia, the industry and the public:

• This research is a pioneer study to use machine learning methods in the

Access control decision-making field. This research provides a more accurate

and effective access-control decision-making mechanism for open distributed

information systems. Additionally, feasible solutions are also offered for the

problems of data imbalance and concept drifts.

• The novel framework proposed in this research can help the industry develop

a new access control system to overcome the challenge caused by policy mis-

configurations, massive policy scales, and enormous access-control entities.

In this way, it can help the industry significantly improve decision-making

efficiency, reduce human’s working intensity, and save the cost of system

management.

• This work is also an effective response to the public’s concern about data

security as it helps reduce the risk of a data breach.

5.2 Future Work

Although the efforts made in this thesis, the overall performance is still not satis-

factory. One of the main reasons is that the open-source datasets applied in this

study are desensitised. All textual attributes of users and resources have been

encoded as integers. Therefore, no meaningful semantic features can be extracted

by advanced deep learning techniques.
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Therefore, this study can be further extended and improved from the following

aspects in the future.

(1) Build a standard open-source large scale practical access control dataset

with rich original user and resource attributes. As one of the three pillars of

AI technology development, high-quality data is essential for machine learning

and deep learning algorithms to achieve acceptable performance. However, few

organisations are willing to disclose their data because of the importance and

sensitivity of access control data to information systems. There should be some

way in the future to find a balance between keeping data secure and providing

more possibilities for researchers. In the same way that Imagenet [102, 103] has

significantly advanced computer vision, we believe that a large scale standard

access control dataset with rich user and resource attributes information can also

lead to the flourishing and advancement of the MLAC field.

(2) Apply graph embedding techniques to extract more abstract interlinked

relationships between user and resource attributes. Chapter 4 just get the feet

wet on leveraging graph connectivity features to improve the performance of

machine learning models. The results are very promising in both online and offline

scenarios. In future, more deep learning-based graph embedding algorithms, such

as Deepwalk [104], node2vec [105], Graph Convolutional Networks (GCN) [106],

GraphSAGE [107] and Graph Attention Networks (GAT) [108], can be explored

to extract high-level entity and relationship features to further improve the access

control performance.
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