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ABSTRACT 31 

The growing rate of plastic waste generation is becoming a global concern due to the adverse 32 

impacts of plastics on the environment. Recycling and reusing plastic waste has been identified 33 

as a sustainable approach to mitigate the environmental concerns associated with landfilling of 34 

plastics. This study aims to evaluate the effect of the addition of waste polyethylene 35 

terephthalate (PET) on the thermal conductivity, resilient modulus, and strength properties of 36 

recycled concrete aggregate (RCA) as an alternative pavement construction material. A suite 37 

of laboratory tests including thermal conductivity, repeated load triaxial, unconfined 38 

compressive strength, and triaxial shear tests were undertaken to evaluate the effect of up to 39 

10% waste PET on the performance of RCA as a pavement material. A relatively simple, yet 40 

robust, resilient modulus constitutive model was developed for RCA/PET blends using the 41 

multivariate adaptive regression spline (MARS) approach. The proposed model incorporated 42 

thermal conductivity, unconfined compressive strength, confining stress, and deviator stress 43 

for modeling the resilient modulus response of the RCA/PET blends. A unique feature of the 44 

developed model is the incorporation of thermal conductivity as model input. Several 45 

verification phases were conducted to validate the accuracy and reliability of the MARS model. 46 

The performance of the MARS model was compared with a neural network model to further 47 

evaluate the predictive capability of the developed model. The results indicated that the MARS 48 

model was an efficient and accurate tool in predicting the resilient modulus of recycled material 49 

blends. The experimental and numerical investigations aimed to provide novel insight into the 50 

thermal and mechanical properties of recycled materials to expand their usage in pavement and 51 

geotechnical applications.  52 

 53 

Keywords: Thermal conductivity; Pavement geotechnics, Recycled waste materials; Waste 54 

plastic; Machine learning.  55 

 56 
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 59 
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1.  Introduction 61 

The thermal conductivity of geo-materials is a key parameter in the design of energy geo-62 

structures such as energy foundations, energy piles, shallow geothermal systems, and 63 

geothermal pavements [1-4]. Thermal conductivity controls the rate of heat flow in geo-64 

materials and their responses under thermal loads. Knowledge of the thermal conductivity of 65 

geo-materials is essential for the understanding and analysis of heat transfer problems. Several 66 

transient and steady-state methods have been utilized for measuring the thermal conductivity 67 

of soils and rocks [1, 5, 6]. Divided bar [7, 8] is a reliable and accurate method that uses steady-68 

state thermal equilibrium for determining thermal conductivity [9-11], and hence is used in the 69 

current study 70 

Plastics have become an inseparable part of human lives due to their low cost, high durability, 71 

favorable physical and mechanical properties [12]. These merits have led to the rapid growth 72 

in production and use of plastics for household and industrial purposes. The increasing 73 

tendency in using plastics has gathered global attention recently, particularly due to the severe 74 

environmental consequences of plastic wastes. Plastics are non-biodegradable materials that 75 

are often destined to landfills. In Australia, approximately 2.5 million tons of plastic waste is 76 

produced annually, with a recycling rate of around 13% [13]. One sustainable alternative to 77 

landfilling is recycling or reusing waste plastics in high material-consuming industries, such as 78 

construction and earthworks. Accordingly, many researchers have attempted to investigate the 79 

reuse of several types of waste plastics, including polyethylene terephthalate (PET), high-80 

density polyethylene, and low-density polyethylene plastics in civil engineering construction 81 

activities [14-17].  82 

Construction and demolition (C&D) wastes have emerged as sustainable construction materials 83 

with numerous economic and environmental benefits [18]. Recycled concrete aggregate (RCA) 84 

is produced by the demolition of concrete structures and crushing concrete elements. RCA is 85 

the predominant stream of C&D materials that has superior strength and stiffness properties 86 

compared to other C&D types, such as crushed brick and waste excavation rock. RCA has been 87 

used in various civil engineering applications, particularly for the construction of pavement 88 

base and subbase layers [19, 20]. The favorable properties of RCA, such as high durability and 89 

resilient modulus comparable to high-quality virgin crushed rock make it a suitable candidate 90 

to be used in combination with other waste types with inferior mechanical properties.  91 
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Resilient modulus (Mr) is a fundamental material property that is being widely used in 92 

pavement design and analysis [21]. The most common approach for the determination of the 93 

Mr of pavement materials is by carrying out the repeated load triaxial (RLT) test. The RLT test 94 

simulates the response of pavement material under repeated loads of moving vehicles by 95 

applying various combinations of vertical and confining stresses to the sample. Several 96 

standards and specifications have been proposed for evaluating the Mr of unbound pavement 97 

materials [22-24]. Current specifications adopt varied loading magnitudes and pulse properties 98 

for determining the Mr of pavement base and subbase materials. The Mr of pavement 99 

base/subbase materials is affected by several parameters including aggregate characteristics, 100 

gradation, compaction characteristics, and applied stress levels [25-27]. While performing 101 

laboratory tests is one of the most accurate and reliable methods for determining the Mr, it is a 102 

time-consuming and costly procedure that requires advanced testing equipment and 103 

experienced laboratory operators. Therefore, several constitutive models have been proposed 104 

for the prediction of the Mr response of pavement materials. Such models include simple 105 

correlations with strength tests such as unconfined compressive strength (UCS) and California 106 

bearing ratio (CBR) [28], models incorporating stress-state parameters [29-31], and more 107 

advanced models incorporating a combination of physical properties, strength parameters, and 108 

stress state parameters [32-34].  109 

In the last decades, advancements in computer software and hardware technology have led to 110 

novel methods for solving engineering problems. Machine learning methods are algorithm-111 

based approaches that identify the trends and patterns in data. These algorithms are capable of 112 

extracting the knowledge from data quickly and do not require any prior assumption about the 113 

investigated problem. Machine learning methods have been applied for solving several 114 

problems in various fields of civil and geotechnical engineering, such as mechanical behavior 115 

of soils and recycled materials [26, 35, 36], permeability prediction of rocks [37, 38], and 116 

thermal conductivity of soils [39, 40]. In recent years, machine learning methods have been 117 

utilized for constitutive modeling of the Mr for pavement materials [41, 42]. While extensive 118 

research has been conducted on the laboratory characterization of C&D materials in 119 

transportation infrastructure applications, Mr constitutive modeling for C&D materials using 120 

machine learning methods is still lacking.  121 

The current research study has two main objectives. The first objective is to investigate the 122 

effect of using waste PET on the thermal and mechanical properties of RCA as a widely 123 

accepted recycled pavement material. An extensive experimental study was conducted to 124 



 

 5 

evaluate the effect of plastic waste on the thermal conductivity, Mr, UCS, and shear strength 125 

(qpeak) of the RCA. The Mr of RCA/PET blends was examined in various ranges of confining 126 

and deviator stresses to understand their stiffness response under different loading conditions. 127 

The second objective of this research is to develop a mathematical expression between the Mr 128 

and thermal conductivity, UCS, confining stress, and deviator stress of RCA/PET blends using 129 

a robust machine learning method. This research explains how simple testing parameters such 130 

as UCS and unconventional material properties such as thermal conductivity can be used for 131 

Mr constitutive modeling of recycled materials. The outcomes of this research aim to advance 132 

the application of recycled materials in geotechnical and pavement structures by providing 133 

user-friendly, yet reliable numerical models backed up with robust laboratory test results.   134 

2. Materials and methods 135 

2.1. Experimental characterization 136 

The materials used for experimental tests comprised RCA and waste PET. RCA was collected 137 

from a recycling site and PET was sourced by shredding the plastic bottles from the municipal 138 

waste stream in Victoria, Australia. RCA was blended with 1%, 3%, 5%, 7%, and 10% PET, 139 

by weight, to understand the effect of waste plastic on thermal and mechanical responses of 140 

RCA as the predominant type of demolition wastes. Fig. 1 presents the particle size distribution 141 

of RCA and PET. RCA and PET were classified as well-graded gravel and poorly (or 142 

uniformly)-graded sand, respectively, according to the USCS classification system. The 143 

physical appearance and scanning electron microscopy images of materials are presented in 144 

Fig. 2. RCA had a uniform micro-structure with bulky-shaped aggregates while PET 145 

aggregates had lamellar and flaky shapes. Fig. 3 shows the optimum moisture content (OMC), 146 

maximum dry density, and void ratio (e) of the blends at their maximum dry densities. The 147 

addition of PET increased both OMC and the void ratio. The increase in OMC could be due to 148 

the need for more moisture to facilitate the movements of PET particles for achieving the 149 

desired workability, and hence reaching the maximum dry density. The increase in the void 150 

ratio by adding a greater percentage of plastic particles could be because a portion of the 151 

compaction energy was absorbed by the PET particles, which influences the packing properties 152 

of the blends.  153 

 154 

 155 
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 156 

Fig. 1 Particle size distribution curves of RCA and PET  157 

 158 

Fig. 2 SEM images and physical appearance of the materials: (a) RCA (b) PET 159 
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160 
Fig. 3 Physical properties of the RCA/PET blends 161 

The thermal conductivity of the RCA/PET blends was determined using the divided bar method. 162 

For this, cylindrical samples with the diameter and height of 100 mm and 50 mm, respectively, 163 

were prepared using the modified compaction energy as per ASTM D1557 [43]. The divided 164 

bar equipment is illustrated in Fig. 4. The apparatus comprised of copper disks with a standard 165 

material in between at both ends of the sample. Temperature sensors were inserted into the 166 

copper plates to monitor the temperature variations across the sample and the standard material. 167 

Constant temperatures were maintained on the top and bottom of the system using a 168 

temperature-controlled system. The thermal conductivity of the sample was obtained once the 169 

system reached steady-state thermal equilibrium, i.e., when no further variations in the logged 170 

temperatures were observed. The thermal conductivity of samples was determined at different 171 

PET contents and moisture levels.  172 

Unconfined compressive strength (UCS) tests were carried out at a constant loading rate of 1 173 

mm/min, to examine the effect of percentage of PET on the strength and stress-strain response 174 

of the RCA. The UCS samples were prepared in cylindrical molds with internal height and 175 

diameter of 115.5 mm and 105 mm, respectively, using the modified compaction energy [43].  176 
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 177 

Fig. 4 Schematic presentation of the divide bar equipment 178 

The Mr of blends was assessed according to the stress combinations summarized in Table 1, 179 

following a user-defined scheme by modifying the stress levels of  AASHTO [22] and CEN 180 

EN 13286-7 [44]. The range of the adopted confining stress (σc) and deviator stress (σd) were 181 

15 – 120 kPa and 35 – 410 kPa, respectively. Higher stress ratios (σd/ σc) than 10 were applied 182 

in lower confinement levels to capture the response of the samples under extreme conditions. 183 

Lower stress ratios were applied to the sample in the initial stages, followed by more 184 

demanding stress ratios in subsequent stages. A harmonized loading approach similar to 185 

NCHRP 1-28A [23] was adopted in which the σc and σd increased simultaneously in each stage 186 

of the test, to avoid the failure of samples in the initial loading stages. After the completion of 187 

the repeated loading procedure, the shear strength of blends was determined in a constant σc of 188 

40 kPa by applying a deformation rate of 1 mm/min. 189 

 190 

 191 

 192 

 193 

 194 

 195 
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Table 1 Stress combinations of the RLT test 196 

Sequence Contact 

stress, 

0.2c 

Confining 

stress, c 

(kPa) 

Deviator 

stress, d 

(kPa)  

Sequence Contact 

stress, 

0.2c 

Confining 

stress, c 

(kPa) 

Deviator 

stress, d 

(kPa)  

Conditioning 20 100 80 18 12 60 205 

1 3 15 35 19 16 80 245 

2 6 30 65 20 20 100 280 

3 9 45 90 21 24 120 300 

4 12 60 115 22 3 15 125 

5 16 80 145 23 6 30 170 

6 20 100 170 24 9 45 210 

7 24 120 190 25 12 60 250 

8 3 15 65 26 16 80 295 

9 6 30 100 27 20 100 335 

10 9 45 130 28 24 120 355 

11 12 60 160 29 3 15 155 

12 16 80 195 30 6 30 205 

13 20 100 225 31 9 45 250 

14 24 120 245 32 12 60 295 

15 3 15 95 33 16 80 345 

16 6 30 135 34 20 100 390 

17 9 45 170 35 24 120 410 

 197 

2.2. Multivariate adaptive regression spline  198 

Multivariate adaptive regression spline (MARS) is a nonparametric statistical approach 199 

proposed by Friedman [45]. MARS uses piecewise linear splines with different gradients for 200 

the function approximation. The main advantage of the MARS model lies in partitioning the 201 

data into small regions and fitting linear splines in each region, which gives it the flexibility to 202 

handle nonlinearities and complex interactions between variables/ high-dimensional problems 203 

[46, 47].   204 

Two main components of the MARS algorithm are the knots and basis functions (BFs). A knot 205 

defines the location at which two splines with different slops coincide, and specifies the 206 

boundary between two regions of data [48, 49]. The resulting piecewise curves are referred to 207 

as BFs. The general form of the MARS model is as follows [45]: 208 

𝑓(𝑥) = 𝑎0 + ∑ 𝑎𝑖𝐵𝐹𝑖 (𝑥)

𝑚

𝑖=1

 (1) 
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where a0 is the bias, ai are the coefficients of the BFs, and BFi (x) denote the basis function that 209 

can be a constant, hinge function, or the product of two or more hinge functions. The piecewise 210 

linear BFs of the MARS model can be defined as follows [45, 50]: 211 

(𝑥 − 𝑡)+ = max(0, 𝑥 − 𝑡) = {
𝑥 − 𝑡     𝑖𝑓 𝑥 > 𝑡

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

(𝑡 − 𝑥)+ = max(0, 𝑡 − 𝑥) = {
𝑡 − 𝑥     𝑖𝑓 𝑥 < 𝑡

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

 212 

where t is the knot.  213 

Fig. 5 presents a simple MARS model with two knots for fitting the synthetic data. The knots 214 

are located at x = 2.1 and x = 6.1. The mathematical expression of the MARS is expressed as: 215 

𝑓(𝑥) = −36.4 + 9.81 ∗ 𝐵𝐹1 + 9.9 ∗ 𝐵𝐹2 

𝐵𝐹1 = 𝑚𝑎𝑥(0, 𝑥 − 2.1) 

𝐵𝐹2 = 𝑚𝑎𝑥(0,6.1 − 𝑥) 

(4) 

 216 

 217 

Fig. 5 A simple example of the MARS model for fitting the data 218 

 219 
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The MARS model development procedure initiates with the forward phase in which the knot 220 

locations and BFs are added to the model based on the minimization of the training error. This 221 

results in a model with a high probability of overfitting. In the second phase, a backward 222 

pruning algorithm is implemented to remove the BFs with the least contribution to the model 223 

[45, 47]. The performance of the model subsets are calculated and compared using generalized 224 

cross-validation (GCV), which makes a balance between the predictive capability and 225 

complexity of the developed model [45]: 226 

𝐺𝐶𝑉 =

1
𝑁

∑ [𝑦𝑖 − 𝑓(𝑥𝑖)]2𝑁
𝑖=1

[1 −
𝑚 + 𝑑 × (𝑚 − 1)/2

𝑁 ]
2 (5) 

 227 

where N is the number of datasets, m is the number of BFs, and f(xi) denotes the predicted 228 

values by MARS. Further details on the MARS parameters can be found in Friedman [45].  229 

3. Results and discussion 230 

3.1.Experimental results 231 

The thermal conductivity test results of RCA/PET blends using the divided bar method are 232 

summarized in Table 2. An increase in the thermal conductivity of the blends was observed as 233 

the moisture content increased. The increase rate of the thermal conductivity was greater in 234 

lower moisture contents and became slower in higher moisture contents close to the optimum 235 

moisture content. In the dry state, the voids are filled with air having low thermal conductivity 236 

(0.024 W/m.K). As the water content increased, a thin film was formed around the aggregates, 237 

in particular at contact points, and hence a further increase in the moisture content rapidly 238 

increased the thermal conductivity due to the higher thermal conductivity of water (0.598 239 

W/m·K) compared to air. The increase in thermal conductivity was maintained at a slower rate 240 

as the sample reaches higher levels of saturation, possibly due to the fact that further addition 241 

of water had an insignificant effect on facilitating the heat transfer [1, 51, 52]. The thermal 242 

conductivity of RCA/PET blends tended to decrease when increasing the PET content. This 243 

decrease was attributed to the transition in the fabric of the sample from the RCA matrix to the 244 

RCA/PET matrix and the fact that PET particles exhibited low thermal conductivity values. 245 

The thermal conductivity of RCA varied between 1.14 – 1.69 W/m.K in the investigated 246 

moisture levels. On average, the thermal conductivity values for blends with 1%, 3%, 5%, 7%, 247 
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and 10% PET decreased by approximately 5.5%, 12.5%, 20%, 27%, and 35% compared to 248 

those of pure RCA. 249 

Table 2 Thermal conductivity of RCA/PET blends 250 

Case w (%)  (W/m.K) Case w (%)  (W/m.K) 

RCA 

  

  

  

13 1.692 RCA + 5%PET 

  

  

  

13 1.383 

11 1.626 11 1.279 

9 1.430 9 1.143 

7 1.140 7 0.897 

RCA + 1%PET 

  

  

  

13 1.610 RCA + 7%PET 

  

  

  

13 1.269 

11 1.520 11 1.180 

9 1.351 9 1.032 

7 1.075 7 0.831 

RCA + 3%PET 

  

  

  

13 1.525 RCA + 10%PET 

  

  

  

13 1.106 

11 1.395 11 1.038 

9 1.248 9 0.931 

7 0.981 7 0.765 

 251 

The stress-strain responses of the RCA/PET blends obtained from UCS tests are presented in 252 

Fig. 6. The addition of PET had a significant effect on the UCS values of the blends. The UCS 253 

values of the RCA containing 1% and 3% PET was 335 kPa and 263 kPa, respectively, which 254 

exhibited a reduction of approximately 13% and 32% compared to the UCS value of RCA. A 255 

closer look into Fig. 6(a) indicates that for RCA, the axial stress consistently increased with 256 

the axial strain up to the peak failure point and then dropped rapidly, indicating a relatively 257 

brittle response. The shape of the stress-strain graph considerably changed with the addition of 258 

PET and a significant increase in the ductility of the blends and reduction in the UCS values 259 

were noted when the PET content was more than 3%. The addition of 5%, 7%, and 10% PET 260 

resulted in a decrease of approximately 57%, 62%, and 82% in the UCS of RCA. The blends’ 261 

axial strain at failure points and secant modulus at 50% of the UCS (E50) are illustrated in Fig. 262 

6(b). The E50 values were obtained using the Axial Stress- Axial Strain plots and by measuring 263 

the slope of the line drawn from the origin to the stress corresponding to half of the UCS peak. 264 

As evident, the addition of PET led to a rapid increase in the axial strain of the blends at failure 265 

and formed a monotonically-decreasing trend with E50, indicating the enhanced ductility and 266 

reduced strength. This enhanced ductility can be attributed to the relatively smooth surface of 267 

PET in contrast to the rough surface of RCA which dominated the bearing capacity of the 268 

blends, particularly in higher PET contents [15].  269 
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The Mr is a key parameter in the design of pavement layers and provides information on the 270 

response of the material under various loading combinations. Fig. 7 presents the Mr values of 271 

the RCA/PET blends obtained through the RLT testing. Increasing the confining and deviator 272 

stresses increased the Mr of blends. Higher confining stresses enhanced the interlock between 273 

the aggregates and increased the Mr. The stress-hardening response of the blends under the 274 

axial cyclic stresses also resulted in the increase of the Mr. Fig. 7 also illustrates that the Mr of 275 

the blends was affected by the PET content, whereby inclusion of 1% PET reduced the Mr of 276 

the RCA by approximately 13%. This decrease in the Mr was maintained when increasing the 277 

PET content as the load-bearing mechanism of the blends was transferred from the rigid RCA 278 

aggregates to the PET contents. The Mr of the RCA was reduced to less than half once the PET 279 

content was more than 5%. This response can be related to the smooth surface, high 280 

compressibility, and lamellar shape of the PET particles that contribute to the reduction of 281 

inter-particle friction and consequently the stiffness of the blend [14, 15]. The recoverable 282 

strain (εr) and the Mr values are summarized in Table 3.  283 

 284 

Fig. 6 Plots of (a) stress-strain response of the RCA/PET blends from UCS testing (b) E50 and 285 

axial strain at failure 286 
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 289 

Fig. 7 Mr values of the RCA/PET blends 290 

Fig. 8 shows the coupling effects of σc and σd on the Mr responses of the blends. One of the 291 

advantages of the adopted stress levels in Table 1 was investigating the Mr of bends in high 292 

stress ratios at low confinement levels, which is the actual case in pavements. In Fig. 8, an 293 

evident drop was observed in the Mr when transitioning from 3% PET to 5%PET. This drop in 294 

the Mr values was more notable in results achieved under confining stress levels less than 45 295 

kPa. These results highlight the effect of PET content on the Mr of RCA/PET blends which is 296 

more pronounced in low confinement levels. In addition, as the σc increased, the Mr values 297 

were less affected by the σd potentially due to the enhanced lateral support and hardening under 298 

applied cyclic loads. 299 

 300 

Fig. 8 The coupling effects of σc and σd on the Mr 301 
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Table 3. The εr and Mr values obtained from the RLT testing 302 

Sequence 

RCA RCA + 1%PET RCA + 3%PET RCA + 5%PET RCA + 7%PET RCA + 10%PET 

εr 
× 10−4 

Mr 

(MPa)  
εr 

× 10−4 
Mr 

(MPa) 
εr 

× 10−4 
Mr 

(MPa) 
εr 

× 10−4 
Mr 

(MPa) 
εr 

× 10−4 
Mr 

(MPa) 
εr 

× 10−4 
Mr 

(MPa) 

1 1.58 222.2 1.87 187.6 2.76 126.7 5.64 62.1 9.38 37.3 15.70 22.3 

2 2.05 316.7 2.35 276.1 3.21 202.6 6.47 100.4 10.40 62.5 15.74 41.3 

3 2.39 377 2.61 345.1 3.42 263.3 6.39 140.8 9.05 99.4 13.91 64.7 

4 2.75 418.9 2.94 390.7 3.76 305.5 6.17 186.3 8.52 135 12.86 89.4 

5 3.14 461.2 3.45 419.8 4.14 350.1 5.86 247.6 8.11 178.7 11.97 121.1 

6 3.48 487.9 3.82 445.1 4.37 389.2 5.91 287.5 7.97 213.4 11.36 149.7 

7 3.68 516.1 4.12 461.4 4.63 410.6 5.91 321.6 7.73 245.8 10.64 178.5 

8 2.24 290.5 2.87 226.7 4.17 155.8 9.75 66.7 16.71 38.9 26.97 24.1 

9 2.74 364.9 3.15 317.1 4.70 212.8 9.10 109.9 14.79 67.6 22.73 44 

10 3.12 416.6 3.51 370.8 4.85 268 8.06 161.3 12.48 104.2 19.43 66.9 

11 3.49 458.5 3.94 406.3 5.13 311.6 7.79 205.4 11.45 139.7 17.45 91.7 

12 3.99 489.1 4.39 443.8 5.54 352.1 7.53 258.9 10.61 183.8 15.71 124.1 

13 4.37 514.8 4.82 467.2 5.83 386.1 7.37 305.2 10.13 222.1 14.59 154.2 

14 4.56 537.3 5.05 485.6 6.02 407 7.29 336.1 9.69 252.8 13.52 181.2 

15 2.88 330.1 3.78 251.5 5.58 170.2 12.50 76 21.64 43.9 34.93 27.2 

16 3.38 399.1 4.14 325.7 5.81 232.5 10.93 123.5 18.02 74.9 27.78 48.6 

17 3.83 444.3 4.49 379 5.96 285.2 9.55 178 15.04 113 23.38 72.7 

18 4.32 474.2 4.89 418.8 6.23 329 9.25 221.7 13.85 148 20.98 97.7 

19 4.83 507.5 5.45 449.4 6.69 366.4 8.98 272.7 12.92 189.7 18.98 129.1 

20 5.31 527.3 5.91 473.6 7.03 398.3 8.94 313.2 12.36 226.5 17.76 157.7 

21 5.50 545.7 6.17 485.9 7.12 421.2 8.88 337.9 11.74 255.5 16.38 183.2 

22 3.48 359.6 4.74 263.6 6.67 187.3 14.60 85.6 25.41 49.2 40.85 30.6 

23 4.06 418.3 5.07 335.1 6.81 249.6 12.54 135.6 20.66 82.3 31.84 53.4 

24 4.55 461.9 5.40 388.7 6.96 301.7 11.09 189.3 17.36 121 26.68 78.7 

25 5.06 494.5 5.90 423.5 7.39 338.2 10.71 233.4 16.13 155 24.15 103.5 

26 5.69 518.7 6.47 455.8 7.82 377.1 10.57 279.1 15.17 194.5 22.03 133.9 

27 6.27 534.5 7.08 473.3 8.39 399.5 10.70 313 14.68 228.2 20.82 160.9 

28 6.52 544.6 7.29 487 8.48 418.4 10.59 335.2 13.90 255.4 19.32 183.7 

29 4.13 375.4 5.67 273.2 7.78 199.3 16.65 93.1 28.55 54.3 45.45 34.1 

30 4.74 432.8 6.02 340.6 7.78 263.6 14.30 143.4 23.06 88.9 35.34 58 

31 5.27 474.4 6.36 392.9 8.06 310.1 12.74 196.3 19.69 127 29.73 84.1 

32 5.90 500.1 6.97 423.2 8.52 346.1 12.34 239 18.35 160.8 27.21 108.4 

33 6.61 522.2 7.59 454.3 9.22 374 12.41 277.9 17.46 197.6 25.18 137 

34 7.32 532.7 8.33 468.1 10.01 389.6 12.78 305.1 17.02 229.2 24.06 162.1 

35 7.58 541.1 8.53 480.9 10.22 401.1 12.59 325.7 16.15 253.9 22.37 183.3 

εr: recoverable strain, Mr: resilient modulus in MPa. 

* Please refer to Table 1 for c and d values corresponding to each sequence of the RLT test. 

 303 

The effect of PET on the shear strength (qpeak) and energy absorption capacity of the blends is 304 

presented in Fig. 9. The addition of 1%, 3%, 5%, 7%, and 10% of PET decreased the qpeak from 305 

1050 kPa to 939 kPa, 759 kPa, 702 kPa, 654 kPa, and 608 kPa, resulting in approximately 11%, 306 
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28%, 33%, 37%, and 42% decrease in the qpeak due to the reduction in inter-particle friction. 307 

Despite the decrease in the strength and stiffness of the blends, the energy absorption capacity 308 

of the blends was enhanced with the addition of PET. The energy absorption capacity of the 309 

blends during the shear test was defined as the area under the stress-strain curve up to the peak 310 

shear strength as demonstrated in Fig. 9. The high compressibility and ductile fabric of the PET 311 

aggregates increased the energy absorption capacity of the blends. The increase in the energy 312 

absorption capacity was relatively rapid when the PET content was less than 3% and then 313 

became slower in higher PET contents.   314 

 315 

Fig. 9 (a) Shear strength (b) Energy absorption capacity of RCA/PET blends 316 

The addition of PET to RCA resulted in the decrease in the UCS, Mr, and qpeak; however, with 317 

different rates, as illustrated in Fig. 10. In this figure, prepared following the approach 318 

undertaken by Gu et al. [53], P refers to the parameter in question (UCS, Mr or qpeak), P0 is the 319 

parameter corresponding to the benchmark material (RCA) and Pn is the parameter 320 

corresponding to the blend with n% of PET. A closer inspection of the results reveals that qpeak 321 

decreased gradually with the increase in PET content, while the UCS and Mr exhibited a 322 

sharper drop. The qpeak value of the blends experienced initial drops of approximately 11% and 323 

an additional 17% with the addition of 1% and 3%PET, respectively, and then slightly reduced, 324 

emphasizing the beneficial effects of σc in higher PET contents under monotonic stress. Unlike 325 
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the shear strength results, the UCS and Mr values decreased considerably with the increase in 326 

PET contents and both at relatively similar rates. Comparing the UCS and qpeak trends signifies 327 

the importance of σc on the strength properties of blends when PET is added to the RCA. The 328 

Mr of the blends was more affected by the variation of the PET content compared to the qpeak. 329 

This could be attributed to the repeated loading and unloading cycles which caused sudden 330 

particle movements due to the reduced surface friction at particles’ contact points. The reduced 331 

shear strength as well as the increased ductility of the blends, i.e., higher recoverable strains, 332 

resulted in significant reductions in Mr. 333 

 334 

Fig. 10. Variations in the normalized strength and stiffness parameters with the PET content  335 

 MARS model development  336 

Based on the results of the experimental tests, a multivariate adaptive regression spline model 337 

was developed for predicting the Mr of RCA/PET blends. The Mr of unbound pavement 338 

materials is generally obtained through empirical equations relating the Mr to stress state 339 

parameters through regression analysis. Some of the widely-used Mr constitutive models are 340 

summarized in Table 4. As noted in Table 4, such models have a predefined structure which 341 

might not represent the optimal structures of the investigated problem. In addition, a time-342 

consuming regression analysis procedure is required to obtain the model coefficients. Herein, 343 

σc and σd were incorporated in the model as stress-state parameters. Both σc and σd have been 344 

found to be highly influential parameters on the Mr as evidenced in the experiments, Mr 345 

constitutive model, and the results reported in several studies [54-57]. These parameters were 346 
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separately added to evaluate their independent impact on the Mr. In addition, UCS and λ were 347 

incorporated in the model as additional parameters to represent strength and physical properties 348 

of the blends. The parameter λ has been rarely used for developing Mr predictive models. 349 

Accordingly, it was believed that the combination of parameters adopted in the current study 350 

was suitable for developing a reliable Mr model.  351 

Therefore, the Mr was formulated as a function of the thermal conductivity (λ) in W/m.K, UCS 352 

in kPa, confining stress (σc) in kPa, and deviator stress (σd) in kPa as follows: 353 

𝑀𝑟 (𝑀𝑃𝑎) = 𝑓(𝜆, 𝑈𝐶𝑆, 𝜎𝑐, 𝜎𝑑)   (6) 

 354 

Table 4 General forms of Mr constitutive models 355 

Reference  Model 

Hicks [55] 
𝑀𝑟 = 𝑘1 (

𝜃

𝑃𝑎
)

𝑘2

 

Puppala et al. [29] 
𝑀𝑟 = 𝑘1𝑃𝑎 (

𝜎𝑐

𝑃𝑎
)

𝑘2

(
𝜎𝑑

𝑃𝑎
)

𝑘3

 

Uzan [58] 
𝑀𝑟 = 𝑘1𝑃𝑎 (

𝜃

𝑃𝑎
)

𝑘2

(
𝜎𝑑

𝑃𝑎
)

𝑘3

 

AASHTO [34] 
𝑀𝑟 = 𝑘1𝑃𝑎 (

𝜃

𝑃𝑎
)

𝑘2

(
𝜏𝑜𝑐𝑡

𝑃𝑎
+ 1)

𝑘3

 

θ: bulk stress, τoct: octahedral shear stress, Pa: atmospheric pressure, k1-k3: model coefficients 

 356 

The database for model development comprised of 210 observations. One of the major 357 

concerns in the model development is overfitting. Overfitting occurs when the error of the 358 

model is low on the training data, however, the error values become large as new data is 359 

introduced to the model. To resolve this issue, it is suggested to divide the database into training 360 

and testing subsets before developing the model [11]. The database was randomly divided into 361 

training (80%) and testing (20%) subsets. A range of 15-30% of the data is typically taken for 362 

testing the machine learning algorithms [59-61]. The training subset (Ntrain = 168) was utilized 363 

for developing the MARS model, while the testing data (Ntest = 42) was used to evaluate the 364 

predictive capability of the model on unseen data.  365 
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The performance of the developed model was assessed using statistical metrics including 366 

coefficient of determination (R2), mean absolute error (MAE), and root mean square error 367 

(RMSE). The mathematical expressions of the statistical metrics are as follows: 368 

𝑅2 = 1 −
∑ (𝑝𝑖 − 𝑒𝑖)

𝑛
𝑖=1

∑ (𝑝 − 𝑒̅)2𝑛
𝑖=1

 (7) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑝𝑖 − 𝑒𝑖|

𝑛

𝑖=1

 (8) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑝𝑖 − 𝑒𝑖)2𝑛

𝑖=1

𝑛
 (9) 

 369 

where 𝑝𝑖 and 𝑒𝑖 are the predicted and experimental values of the ith output, respectively, 𝑒̅ is 370 

the average of experimental outputs, and n is the number of datasets. MAE measures the 371 

average of the residuals and gives equal weights to small and large errors, while RMSE gives 372 

higher weights to larger error values. The closer the R2 value to 1 and the MAE and RMSE 373 

values to 0, the better the predictive capability of the developed model.  374 

Table 5 summarizes the BFs of the MARS model. The optimal MARS model for predicting 375 

the Mr of RCA/PET blends consists of 9 BFs as follows: 376 

Mr (MPa) = 86.3 + 0.414 ∗ BF1 + 1.64 ∗ BF2 − 2.61 ∗ BF3 + 0.000465

∗ BF4 − 0.00259 ∗ BF5 + 563 ∗ BF6 − 174 ∗ BF7 − 3.93

∗ BF8 + 5.71 ∗ BF9 

(10) 

 377 

Table 5 BFs of the optimal MARS model 378 

BF Equation BF Equation 

BF1 UCS BF6 max(0,  - 1.24) 

BF2 max(0, c - 60) BF7 max(0, 1.24 - ) 

BF3 max(0, 60 - c) BF8 BF2 * max(0,  - 1.35) 

BF4 BF1 * max(0, d -145) BF9 BF3 * max(0, 1.35 - ) 

BF5 BF1 * max(0, 145 - d)   

 379 
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The importance of the input variables on the performance of the MARS model was evaluated 380 

using analysis of variance (ANOVA) decomposition. The results of the ANOVA 381 

decomposition of the MARS model are summarized in Table 6. The first column denotes the 382 

ANOVA function number and the last column presents the variables associated with the 383 

ANOVA function. The values of the GCV and R2
GCV in the second and third columns of the 384 

table correspond to the MARS model with that function removed. A function with a larger 385 

GCV value and lower R2
GCV value has a higher effect on the performance of the MARS model. 386 

As noted, c had a higher impact on the Mr of RCA/PET blends compared to other contributing 387 

parameters. In addition to the ANOVA decomposition data presented in Table 6, the relative 388 

importance of the input variables on the Mr is illustrated in Fig. 11. The Mr of the RCA/PET 389 

blends was mostly affected by the σc and other input variables had relatively similar amount of 390 

influences, which coincided with the results presented in Table 6. This was in agreement with 391 

the experimental results which highlighted the beneficial effects of σc on the Mr and qpeak of 392 

the RCA/PET blends, as discussed in Section 3.1 regarding Figure 10.  393 

Table 6 ANOVA decomposition of the MARS model 394 

Function GCV R2
GCV Variable 

1 161.331 0.993 UCS 

2 370.885 0.983  

3 2035.354 0.908 c 

4 455.232 0.979 UCS, d 

5 268.033 0.988 , c 

 395 

Fig. 11. The relative importance of the input variables on the Mr 396 
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Fig. 12 presents the predicted Mr values of the MARS model versus experimental values. For 397 

both training and testing data, a high coefficient of determination (R2) of 0.99 was obtained. 398 

MAERMSE values for training data were 7.16 and 9.34, respectively. These values were 8.14 399 

and 10.62, respectively, for testing data. The results exhibited the acceptable performance of 400 

the MARS model in predicting the Mr values. The close values of the statistical measures (R2, 401 

MAE, and RMSE) for training and testing data show that the developed MARS model is well-402 

trained and has a high level of predictive accuracy.  403 

The advantage of the MARS model over other machine learning methods such as artificial 404 

neural networks (ANNs) is in its transparent structure and ability to provide a mathematical 405 

formulation as given in Equation 10. In spite of this, the predictive capability of the MARS 406 

model was compared with an ANN model to additionally evaluate the developed model. The 407 

ANN model was developed using the same datasets utilized for developing the MARS model. 408 

The accurate performance of the ANN models highly depends on the structure of the model 409 

and tuning parameters, such as the number of hidden layers, number of hidden neurons, and 410 

the activation function type. After constructing several models with different combinations of 411 

parameters, the ANN model with one hidden layer, 3 hidden neurons, and tan-sigmoid 412 

activation function was found to yield the best results. The statistical performance of the ANN 413 

model is summarized in Table 7. The comparison of the statistical metrics of the ANN (Table 414 

7) and MARS methods (Fig. 12) showed that both models were highly efficient for predicting 415 

the Mr; however, the MARS model outperformed the ANN model on test data, indicating its 416 

superior performance for predicting unseen data. In addition, the capability of the MARS 417 

approach in providing relatively simple and easy to understand formulations without requiring 418 

any data scaling and normalization processes makes it a reliable and robust tool as reported in 419 

several studies [46, 62-64].   420 
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 421 

Fig. 12 Predicted values of the Mr by MARS model vs experimental values for (a) train data 422 

(b) test data 423 

Table 7. Statistical evaluation of the ANN model 424 

 R2 MAE RMSE 

Train Test Train Test Train Test 

ANN model 0.99 0.99 6.45 10.47 9.19 15.25 

 425 

To more accurately assess the error values of the MARS model for each dataset, the residual 426 

error (RE) was examined which is the difference between the experimental values and those 427 

predicted by the MARS model. Based on Fig. 13, the RE values were almost equally distributed 428 

on both sides of the horizontal axis. Approximately 95% of the datasets had RE values between 429 

-20 and 20, with a max |RE| value of 29.3.  430 

The cumulative probability is another important indicator for evaluating the predictive 431 

performance of the model [65, 66]. Fig. 14 presents the cumulative probability of the ratio of 432 

the predicted resilient modulus (MrP) and the experimental resilient modulus (MrE) for the test 433 

datasets. The MrP/MrE = 1 line which indicates the perfect prediction is also presented in this 434 

figure. It should be noted that MrP/MrE > 1 shows the over-prediction while MrP/MrE < 1 435 

demonstrates the under-prediction. The values of the cumulative probabilities P50 and P90 for 436 

test datasets were 1.01 and 1.07, respectively, indicating the acceptable performance of the 437 

developed MARS model. While a few large erroneous values were observed, the trends of the 438 
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error and statistical evaluation of the results demonstrated the acceptable and reliable 439 

performance of the developed model. The obtained errors for the MARS model (MAE, RMSE, 440 

and RE) were relatively small compared to the average Mr value of 269.9 MPa in the database. 441 

These results further verify the robustness of the MARS model for predicting the Mr values of 442 

RCA/PET blends.  443 

 444 

Fig. 13 Residual error values for training and testing data 445 

 446 

Fig. 14 The cumulative probability of MrP/MrE for testing datasets 447 

Further to the above-mentioned validation methods, a parametric study was conducted to 448 

examine the responses of the MARS model to variations of input parameters. The parametric 449 

study evaluated the impact of the input variables on the Mr by varying each input variable over 450 

its range in the database. The results of the parametric study should match reasonably with 451 

experimental results to ensure the effectiveness of the MARS model. Fig. 15 presents the 452 

response of the MARS model to variations in λ, UCS, σc, and σd. An increasing trend was 453 

observed in the Mr with increasing the UCS and λ. This was in agreement with experimental 454 

results which indicated that UCS and λ values were positively proportional to Mr. Increasing 455 
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the PET content reduced the UCS and λ by decreasing the frictional resistance at particles’ 456 

contact points and preventing proper heat transfer because of the low thermal conductivity of 457 

PET, respectively. An upward trend was also noted for the σc and σd due to the enhancement 458 

in the interlocking of aggregates stress hardening. It was also noted that the rise in the σd 459 

resulted in an increase in the Mr up to a point, after which σd had almost no impact on the Mr. 460 

This was because at high cyclic stresses values, samples were in the packed and densified state 461 

and increasing the cyclic stress had little influence on the Mr. The results of the parametric 462 

study were in agreement with the experimental results and the expected Mr behavior of 463 

recycled materials under the cyclic loads. This suggests that the MARS model was effective in 464 

capturing the response of variables and modeling the Mr of RCA/PET blends.  465 

 466 

Fig. 15 The responses of the MARS model to variations in affecting parameters: (a) λ and 467 

UCS (b) σc and σd 468 

4. Conclusions 469 
 470 
This research investigated the effect of waste PET on the thermal and mechanical properties of 471 

RCA. A multivariate adaptive regression spline (MARS) model was developed for predicting 472 

the Mr of RCA/PET blends incorporating thermal conductivity, unconfined compressive 473 

strength, confining stress, and deviator stress as influential parameters. Based on the 474 

experimental and modeling results, the following conclusions can be drawn: 475 

 The addition of PET reduced the thermal conductivity of RCA/PET blends. The 476 

reduction in thermal conductivity of the blends was attributed to the low thermal 477 

conductivity of PET particles as well as the increase in the void ratio of samples with 478 

increasing PET.  479 

 The PET had considerable effects on the stiffness and strength properties of RCA. A 480 

sustained decreasing trend was observed in the Mr, UCS, and shear strength of the 481 

(a)
(b)
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samples as the PET content increased. Despite the detrimental effects of PET on the 482 

strength and stiffness properties of RCA, the energy absorption capacity of blends was 483 

improved with the addition of PET.  484 

 The addition of recycled waste materials to unbound pavement layers has several 485 

environmental and economic benefits. It, however, may partially compromise the 486 

strength and stiffness properties of these materials. The UCS test results indicated an 487 

evident change in the stress-strain response at the PET content higher than 3%. In 488 

addition, the RLT test results indicated a sudden drop in the Mr of blends at lower 489 

confinement levels when the PET content transitioned from 3% to 5%. Therefore, 490 

3%PET could be proposed as the optimum PET content in the unbound pavement 491 

layers, without compromising the functionality and stability of the pavement system, 492 

while maintaining a flexible response due to the energy absorption properties of plastic 493 

waste.  494 

 The MARS approach was utilized for Mr constitutive modeling of the RCA/PET 495 

blends. The developed MARS model had excellent performance for predicting the Mr, 496 

with R2 = 0.99 for both training and testing datasets.  497 

 Several verification phases were implemented for evaluating the accuracy and 498 

reliability of the developed MARS model. The MARS model was found to be proficient 499 

in predicting the Mr and results were consistent with the underlying physical behavior 500 

of Mr in pavements.  501 

 This study also highlights the capability of machine learning methods and their 502 

robustness for predicting the Mr of recycled materials. The developed MARS model 503 

can be readily used by researchers and practitioners for predicting the Mr of RCA/PET 504 

blends.  505 
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