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Abstract

Cost-efficacy of currently applied treatments is an issue in overall cancer management challenging healthcare and causing
tremendous economic burden to societies around the world. Consequently, complex treatment models presenting concepts
of predictive diagnostics followed by targeted prevention and treatments tailored to the personal patient profiles earn global
appreciation as benefiting the patient, healthcare economy, and the society at large. In this context, application of flavonoids
as a spectrum of compounds and their nano-technologically created derivatives is extensively under consideration, due to
their multi-faceted anti-cancer effects applicable to the overall cost-effective cancer management, primary, secondary, and
even tertiary prevention. This article analyzes most recently updated data focused on the potent capacity of flavonoids to
promote anti-cancer therapeutic effects and interprets all the collected research achievements in the frame-work of predic-
tive, preventive, and personalized (3P) medicine. Main pillars considered are:

- Predictable anti-neoplastic, immune-modulating, drug-sensitizing effects;

- Targeted molecular pathways to improve therapeutic outcomes by increasing sensitivity of cancer cells and reversing their
resistance towards currently applied therapeutic modalities.

Keywords Predictive preventive personalized medicine (3PM/PPPM) - Phytochemicals - Flavonoids - Flavanones -
Flavonols - Flavones - Flavanols - Isoflavonoids - Chalcones - Anthocyanidins - Anti-cancer agents - Drug-sensitizing
effect - Targeted therapy - Radiotherapy - Chemotherapy - Immunotherapy - Therapy resistance - Anti-inflammation - Anti-
bacterial - Anti-viral - COVID-19 - Signalling pathways - Therapy efficacy - Nano-carrier delivery - Disease management -
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Introduction

Flavonoids in primary, secondary, and tertiary
anti-cancer management

By evidence, a large portion of malignancies is considered
as being preventable, and a cost-effective targeted anti-can-
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effects such as anti-Warburg cell transformation and anti-
mitochondriopathic activities, anti-inflammatory, antibacte-
rial, and anti-viral, among other health-beneficiary effects
[3-5].

In tertiary care, flavonoids have been proposed to protect
patients against poor outcomes in case of COVID-19 infec-
tion, due to their evident anti-inflammatory, anti-bacterial,
and anti-viral properties [6, 7].

Protective anti-cancer application of flavonoids in the
context of 3P medicine should follow principles of the evi-
dence-based therapeutic effects, individualized prediction,
targeted prevention, and personalization of the treatment
algorithms. To this end, application of specialized analyti-
cal approaches towards a companion diagnostics is strongly
recommended such as liquid biopsy analysis, risk assess-
ment tools, multi-omics and multi-parametric analysis, and
application of artificial intelligence in medicine [8].

Radiotherapy and chemotherapy as hallmarks
of anti-cancer treatments: status quo

Radiotherapy and chemotherapy are hallmarks of the cur-
rently applied anti-cancer treatments [9]. Conventional anti-
cancer strategies pose several deficits [10, 11]. Despite recent
progress in anti-cancer strategies, the development of resist-
ance remains the leading cause of cancer-related mortality,
and many patients develop resistance towards anti-cancer
agents applied [12]. Moreover, radiotherapy, chemotherapy,
and targeted therapy require effective blood flow into the
tumor microenvironment; perfusion deficits reduce overall
therapeutic efficacy [13]. An improved understanding of car-
cinogenic processes allows for the technological innovation
creating more efficient therapeutic modalities [10]. Targeted
anti-cancer therapies are expected to leverage unique molecu-
lar changes associated with specific cancer types [14, 15].
Cancer resistance can be classified into primary and acquired.
Primary (or intrinsic) cancer resistance exists before the com-
mencement of treatment [16]. It can be caused by (a) pre-exist-
ing genetic mutations in tumors resulting in decreased respon-
siveness to therapy, such as in the case of triple-negative breast
cancer (TNBC); (b) heterogeneity of tumors with pre-existing
insensitive subpopulations such as cancer stem cells (CSCs); or
(c) activation of intrinsic pathways as defenses against chemo-
therapeutic drugs [17]. In contrast, acquired resistance develops
after the initial therapy [16] and is characterized by a gradual
reduction in anti-cancer efficacy. Acquired drug resistance can
result from the activation of newly emerged driver genes, muta-
tions/altered expression of drug targets, or changes in the tumor
microenvironment after treatment [17]. Current statistics of the
World Health Organization (WHO) indicate that one in every
six deaths worldwide is due to cancer. Therefore, in a view of
the consequent severe socio-economic burden to the society, it
is necessary to shift the paradigm of cancer management from
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reactive to predictive, preventive, and personalized medical
approaches [18, 19]. Contextually, the focus of current cancer
research on the identification of molecules could improve indi-
vidual outcomes of cancer treatments, including overcoming
resistance and increasing the sensitivity of cancer cells towards
treatments applied.

Phytochemicals, isolated or in corresponding intact
plants, are a verified source of natural anti-cancer molecules
targeting a variety of pathways associated with neoplastic
transformation and cancer progression [2, 20—41]. Indeed,
flavonoids exert significant anti-cancer effects in clinical
and preclinical studies [3, 42—47]. Therefore, we emphasize
the great evidence-based potential of bioactive flavonoids
in modulating cancer cells’ response to anti-cancer drugs
by overcoming resistance and/or sensitizing cancer cells to
currently applied therapies.

Focus of the current study: Flavonoids as a helper
in anti-cancer therapy

This review focuses on flavonoids’ capacity to modulate the
responsiveness of cancer to conventional treatment modali-
ties. Of particular interest are the helper effects against can-
cer therapy resistance by sensitizing malignant cells towards
therapies. Those properties of flavonoids clearly demon-
strated in preclinical studies are considered of particularly
great clinical utility, when applied to anti-cancer therapies
tailored to the personalized patient profile [48-59].

Source of the analyzed research data

Data were collected from the biomedical literature sources
utilizing “resistance” and “flavonoids” or “flavanones” or
“flavonols “ or “flavones” or “flavanols” or “isoflavonoids”
or “chalcones” or “anthocyanidins” and “radiotherapy”
or “chemotherapy” or “targeted therapy” or other rele-
vant items as either keywords or medical subject heading
(MeSH) terms in searches of the PubMed database. Most
recently updated research published within the time-frame
of 2018-2021 years has been taken into consideration for the
below presented data analysis and interpretation.

Anti-cancer therapy: from conventional
to advanced approaches

The development of radiotherapy to treat cancer in the early
1900s was followed by the discovery of the chemotherapy.
The breakthrough of modern oncology was introduced by
targeted therapies directed at specific tumor and molecular
alterations and immune checkpoint inhibitors to stimulate
the immune system against cancer [9]. Therefore, oncol-
ogy research in the last 20 years has yielded new anti-tumor
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strategies—including monoclonal antibodies and immuno-
therapeutic agents—that significantly increase treatment effi-
cacy and allow personalized, highly effective, and less toxic
approaches for individual patients [9]. Unfortunately, the ini-
tial favourable response to treatment is often followed by the
development of resistance that reduces therapeutic efficacy
and leads to cancer relapse and recurrence [60]. However,
further progress in precision medicine in the twenty-first
century enables an individualized approach in the context of
predictive, preventive, and personalized medicine that can
improve cancer management [18, 61-66]. Cancer treatment
can also be improved by applying natural substances, which
sensitize cancer cells to therapeutic agents [67-70].

Flavonoids: origin and classification

lavonoids are phenolic compounds widely found in vegeta-
bles, fruits, beverages, nuts, olive oil, red wine, and medici-
nal plants [3, 7, 46, 47, 71, 72]. Chemically, flavonoids have
fifteen-carbon skeletons consisting of two benzene rings
connected through a pyrane ring. The classification of flavo-
noids is based on the chemical structure, oxidation level, and
substitution pattern of the heterocyclic pyrane ring (C ring)
[7]. The classification of flavonoids is provided in Fig. 1 [3,
7,71, 73-79].

Isoflavonoids

genistein, daidzein,
glycitein, biochanin A

5-demethylnobiletin,

apigenin, luteolin, wogonin,
hispidulin, amentoflavone,

scutellarin, pectolinarigenin,
oroxylin, vicenin II, chrysin,

cirsiliol, kaempferide,
hydrate, tangeretin, morusin,

5,7-dimethoxyflavone,

baicalein, diosmin,
genkwanin

O

kaempferol, quercetin,

myricetin, fisetin, rutin,
tamarixetin, morin,
rhamnetin, icariin

Flavones Flavonols

Fig. 1 Classification of flavonoids

Chalcones

isoliquiritigenin,
xanthohumol, phloretin,
licochalcone A

Flavonoids exert numerous biological effects, including
antioxidant, anti-inflammatory, anti-mutagenic, and anti-
cancer activities, among others [46]. Although flavonoids
have demonstrated significant anti-cancer efficacy in preclin-
ical research [46, 69, 71, 75, 76], clinical studies evaluating
the anti-cancer effects of flavonoids remain sparse. Genistein
was demonstrated to be safe and tolerable in combination
with chemotherapy in a recent phase I/II pilot study [43].
Other clinical trials revealed the potential of flavonoids as
anticarcinogenic agents [80] and as complementary antitu-
mor agents in colorectal cancer patients [45]. However, the
significant capacity of flavonoids to improve therapeutic
outcomes by improving the treatment sensitivity or revers-
ing the resistance of cancer cells to anti-cancer therapeutic
agents is currently evaluated predominantly in preclinical
in vitro and in vivo research [67-70].

Radiotherapy resistance

Radiotherapy is a component of multidisciplinary treatment
regimens applicable to various cancer types [81]. Up-to-
date technologies enable the precise delivery of radiation to
tumor lesions with minimal injury to healthy tissue. How-
ever, many cancer types are associated with insensitivity to
radiotherapy due to intrinsic resistance or recurrence after
treatment due to acquired resistance [11]. Figure 2 provides

Anthocyanidins

cyanidin, delphinidin,
malvidin, pelargonidin,
apigenidin

N O 1 D S

hesperetin, hesperitin,
hesperidin, taxifolin,
2'-hydroxyflavanone,
liquiritigenin, eriodictyol,
naringenin, naringin,
bavachinin

catechin, epicatechin,
epigallocatechin,
epigallocatechin-3-galate

Flavanones Flavanols
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Fig.2 Mechanisms of radiotherapy resistance of cancer cells.
Explanatory notes: A hypoxic intratumoral microenvironment is a
leading cause of radiotherapy failure (decreased ROS formation in
irradiated cells under hypoxic conditions is associated with decreased
DNA damage and the so-called “oxygen effect”). Indeed, impaired
function of mitochondria and glycolytic pathways can be involved in
cancer cell radioresistance (anaerobic metabolism and LDH, a marker
of resistance, associated with upregulated LDHA under hypoxic
conditions). LDH is a marker of perfusion-related hypoxia. Lower
oxygen leads to reductions in radiation-induced ROS generation and
DNA damage. Upregulation of the oxidative pentose pathway that
accompanies glycolysis, activation of LDHA as a result of direct
mitochondrial dysfunction or oncogene/HIF-mediated inactivation
of mitochondrial function, and inhibition of pyruvate entry into mito-
chondria by pyruvate-dehydrogenase kinases (regulated by LDHA

a detailed overview of specific mechanisms related to can-
cer cells’ radiotherapy resistance, including a predominantly
hypoxic tumor microenvironment and the consequent mod-
ulation of mitochondrial and glycolytic pathways, Keapl/
Nrf2-related mechanisms, homologous recombination
(HRR), and non-homologous end joining (NHEJ).

Flavonoids sensitize cancer cells to radiotherapy

While flavonoids have radioprotective effects on healthy
cells, they are considered potent radiosensitizing molecules
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through HIF) are processes associated with cancer cells radioresist-
ance [13]. Also, aberrantly activated Nrf2 in tumor cells (as a result
of Keapl or Nrf2 somatic mutations or other Keapl/Nrf2-related
mechanisms) contributes to high-level resistance of cancer cells [82].
The Keapl promoter is often hypermethylated in NSCLS and leads
to decreased Keapl mRNA and protein expression; this impairs the
Nrf2-Keapl pathway (resulting in radio- and/or chemo-resistance)
[83]. The homologous recombination (HRR) and non-homologous
end joining (NHEJ) pathways enhance DNA repair activity and mod-
ulate cell sensitivity and resistance to radiotherapy [48]. The repair of
DNA damage in dormant cancer stem cells (CSCs) is predominantly
performed through NHEJ; consequently, NHEJ inhibition could over-
come CSC radioresistance [84]. Indeed, CSCs are considered the pri-
mary source of resistance to radiotherapy and chemotherapy while
tumor heterogeneity contributes to radiation resistance [11].

of cancer cells [85]. Genistein mediated selective radio-
sensitizing effects in non-small cell lung cancer (NSCLC)
A549 cells by inhibiting the methylation of the Keapl gene
promoter region; hypermethylation of the Keapl promoter
results in chemo/radioresistance mediated by the Nrf2-
Keapl pathway [83]. Also, genistein enhanced the radio-
sensitivity of NSCLC A549 cells, as demonstrated through
increased apoptosis and Beclin-1-induced autophagy by
inhibiting Bcl-xLL and Bcl-xL-Beclin-1 interactions [86].
Moreover, apigenin and the terpenoid cryptotanshinone
exerted synergistic radiosensitizing effects in the in vivo
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murine model of Ehrlich carcinoma, as demonstrated by
the downregulation of angiogenic and lymphangiogenic
regulators and the induction of apoptosis [87]. Further-
more, genistein and the tyrosine kinase inhibitor AG1024
(tyrphostin) synergistically increased the radiosensitivity of
prostate cancer PC3 and DU145 cells by suppressing the
homologous recombination (HRR) and non-homologous end
joining (NHEJ) pathways [48]. Breast safeguard (BSG) is a
commercial nutrient supplement composed of several phyto-
chemicals, including but not limited to flavonoids (genistein,
quercetin, indol-3-carbinol, resveratrol, C-phycocyanin, gal-
lic acid, and curcumin). BSG attenuated the responsiveness
of hepatocellular carcinoma (HCC) HepG2 cells to ionizing
radiation leading to the inhibition of proliferation, survival,
and migration [88]. Also, quercetin pre-treatment enhanced
colon cancer HT-29 and DLD-1 cells’ radiosensitivity
through Notch-1 and CSC targeting [89]. Moreover, Koh
et al. recently evaluated the effects of baicalein on TNBC
MDA-MB-231/IR cells obtained by irradiating the parental
MDA-MB-231 cells with 2 Gy irradiation; MDA-MB-231
cells are characterized by enhanced migration, invasion,
and stem-cell-like properties. Indeed, baicalein reduced
chemo- and radio-resistance, induced apoptosis, and sup-
pressed stem cell-like properties in MDA-MB-231/IR cells;
baicalein also reversed the expression of interferon-induced
protein with tetratricopeptide repeats 2 (IFIT2), which is
involved in cancer metastasis and recurrence. However, fur-
ther studies are needed to evaluate the mechanisms of IFIT2
in resistant breast cancer cells [49].

Table 1 provides a detailed overview of the specific mech-
anisms through which flavonoids enhance radiotherapy.

Anti-cancer chemotherapy resistance

After the accidental discovery of the first DNA alkylating
agent in the 1940s, several chemotherapeutic modalities were
developed, becoming the first revolutionary anti-cancer phar-
macological approach [9]. These include alkylating agents
(the triazene compounds dacarbazine and temozolomide and
the metal salts cisplatin, carboplatin, and oxaliplatin), antime-
tabolites (the folate analogs aminopterin and methotrexate,
the purine analog mercaptopurine, and the pyrimidine ana-
logs 5-fluorouracil, gemcitabine, and capecitabine), antimi-
totics (vincristine, the topoisomerase I inhibitors topotecan
and irinotecan, and the microtubule-stabilizing molecules
paclitaxel, docetaxel, and cabazitaxel), cytotoxic antibiotics
and related substances (daunomycin/daunorubicin, actino-
mycin D, and doxorubicin), polyamine inhibitors and iron-
modulating drugs (ciclopirox and triapine), and combination
chemotherapy regimens [9]. Chemotherapeutic agents target
cancer cells and all rapidly dividing cells [14] and are often
associated with primary or acquired resistance [9].

Cancer cells gradually develop resistance to almost all
chemotherapeutics through various mechanisms. Cancer
drug resistance is associated with increased drug efflux,
alterations in drug metabolism, transport, and signal trans-
duction molecules, elevated DNA repair capacity and apop-
totic evasion, increased mutations, reactivation of drug
targets, crosstalk with the cancer microenvironment and
cancer cell-stroma interactions, epithelial-mesenchymal
transition (EMT)-mediated chemoresistance, epigenetic
mechanisms, metabolic alteration, and the effects of CSCs
[16, 90]. Despite initial responses to therapy due to the
majority of cells being sensitive to the drug, the pre-exist-
ence of resistant cell subpopulations can result in relapse
after chemotherapy. Resistant CSCs are involved in chemo-
therapy resistance in various cancer types. Intrinsic resist-
ance can be mistaken with acquired, as resistance seems
to be acquired due to therapy [17]. Both resistance factors
interact and jointly modulate drug resistance. Indeed, 90%
of cancer progression during and after chemotherapy is
associated with drug resistance [90]. Prolonged administra-
tion of a chemotherapeutic agent can result in resistance to
multiple other structurally unrelated agents, a phenomenon
known as multidrug resistance (MDR) [16]. Therefore, it
is necessary to provide new strategies to overcome cancer
cells’ resistance to chemotherapeutic agents [90]. Figure 3
provides a detailed overview of specific mechanisms related
to cancer cell drug resistance. One key mechanism involves
increased drug efflux associated with the overexpression of
aldehyde dehydrogenase (ALDH) and the ATP-binding cas-
sette (ABC) transporter family of proteins. This is associated
with drug resistance, increased DNA repair capacity and
tolerance to DNA damage, genetic factors such as abnormal
activation of the androgen receptor (AR) signalling pathway,
PI3K/Akt signalling, epigenetic factors, increased xenobi-
otic metabolism, and other mechanisms including contribu-
tions from endoplasmatic reticulum (ER) stress, the receptor
for advanced glycation end products (RAGE), NF-kB, and
galectin-3.

Current research highlights the potential of co-adminis-
tration of natural compounds such as flavonoids with chem-
otherapeutic agents as an attractive strategy to overcome
chemotherapeutic resistance and MDR in tumors [105].

Flavonoids enhance effectiveness of conventional
chemotherapeutic agents

The resistance or insensitivity of cancer cells to chemothera-
peutics is a serious disadvantage of cytotoxic anti-cancer
therapies. However, current research highlights the potential
importance of flavonoids in increasing the sensitivity and/or
efficacy of chemotherapeutic agents.

Several flavonols, including quercetin, kaempferol,
or morin, exert potent capacities to modulate cancer cell
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chemoresistance [50-53, 98, 103, 106, 107]. Abnormal acti-
vation of AR and PI3K/Akt signaling is considered a signifi-
cant cause of docetaxel resistance. Interestingly, quercetin
revealed docetaxel resistance-reversing effects in docetaxel-
resistant prostate cancer (LNCaP/R, PC-3/R) cells in vitro
and in a prostate cancer xenograft model in vivo by reversing
the upregulation of P-gp, the development of mesenchymal
and stem-like cell phenotypes, and the activation of andro-
gen receptor and PI3K/Akt signaling pathways; moreover,
the combinatory treatment of quercetin and docetaxel slowed
tumor growth and robustly inhibited proliferation in vivo
[98]. Similarly, quercetin enhanced the therapeutic efficiency
of paclitaxel in prostate cancer PC-3 cells in vitro through
the induction of ER stress and ROS production; this com-
binatory treatment also exerted beneficial effects in a PC-3
cancer-bearing murine model in vivo [107]. Also, quercetin
promoted cell death and gemcitabine sensitivity in human
pancreatic cancer MIA Paca-2 and MIA Paca-2 (GEM-
resistant) cells through the receptor for advanced glycation
end products (RAGE)/PI3K/AKT/mTOR axis, especially
through RAGE inhibition [103]. Quercetin also enhanced
doxorubicin, paclitaxel, and vincristine activity and thus
reversed MDR in breast cancer MCF-7 and doxorubicin-
resistant MCF-7 (MCF-7/Dox) cells by downregulating P-gp
and eliminating CSCs through YB-1 nuclear translocation
[50].

Kaempferol combined with 5-FU exerted a synergistic
inhibitory effect on cell viability, enhanced apoptosis, and
induced cell cycle arrest in both chemo-resistant and sen-
sitive colon cancer LS174 cells. Kaempferol also blocked
the production of reactive oxygen species (ROS) and modu-
lated the expression of JAK/STAT3, MAPK, PI3K/AKT,
and NF-kB signaling in these cells [52]. As discussed above,
MDR, a state of certain cancers becoming cross-resistant to
structurally diverse antineoplastic agents, is associated with
the overexpression of ABC transporters [108]. However,
kaempferol exerted an ability to inhibit MDR by downregu-
lating ABCB1, ABCC1, Akt, and BCL2 in leukemia HL-60
and NB4 cells [53].

Co-treatment with morin and cisplatin led to the syner-
gistic sensitization of ovarian cancer SK-OV-3 (cisplatin-
resistant) cells to cisplatin. Further, the sensitization of
ovarian cancer cells to cisplatin is suggested to be achieved
through the downregulation of galectin-3 (essential for vari-
ous cellular processes such as apoptosis) by morin [106].
Moreover, morin hydrate reversed the acquired resistance of
cisplatin-resistant hepatocellular cancer HepG2PR cells by
impairing PARP-1/HMGB 1-dependent autophagy; indeed,
PARP-1 autophagy appears to be regulated by the PARyla-
tion of HMGBI1 [51].

In addition to flavonols, the flavanone hesperetin sen-
sitized cisplatin (DDP)-resistant human lung cancer cells
(A549/DDP) to cisplatin in vivo and in vitro, mechanistically

through decreased expression of P-gp and increased intra-
cellular accumulation of the P-gp substrate, rhodamine 123
[109]. Similarly, poncirin, a flavanone glycoside with a bit-
ter taste, enhanced sensitivity to cisplatin by decreasing
the expression of MDR-1, MRP1, and BCRP and inhibit-
ing PI3K/Akt signaling in cisplatin-resistant osteosarcoma
(OS) cells [110].

Moreover, other classes of flavonoids such as chalcones
also exhibit potent chemosensitizing capacities in cancer
models. The combination of xanthohumol, a prenylated fla-
vonoid from hops, and the chemotherapeutic agent SN38,
the active metabolite of irinotecan, in resistant colon can-
cer SW480 cells decreased cell viability compared with
SN38 alone. Therefore, xanthohumol can be potentially
utilized as a chemosensitizer of SN38 [111]. Another chal-
cone, flavokawain-B, showed potent anti-cancer abilities in
gemcitabine-resistant NSCLC cells by inducing apoptosis
and ROS production and blocking the PI3K/Akt signalling
pathway [112].

Furthermore, Fan et al. recently evaluated the inhibitory
effects of flavonoids on breast cancer resistance protein
(BCRP) in vitro and in vivo. Eleven flavonoids (amentof-
lavone, apigenin, biochanin A, chrysin, diosmin, genkwa-
nin, hypericin, kaempferol, kaempferide, licochalcone A,
and naringenin) significantly inhibited BCRP in BCRP-
overexpressing (BCRP-MDCKII) cells. Simultaneously,
these effects were associated with reduced BCRP-mediated
doxorubicin and temozolomide efflux and increases in the
drugs’ cytotoxicity. Also, mitoxantrone’s co-administration
with the above-mentioned flavonoids promoted the AUCy,
of mitoxantrone to different extents in a Sprague—Dawley
rat model [113].

Moreover, dihydromyricetin, a natural flavonoid from
the leaves of Vitis heyneana, reversed MRP2-induced MDR
by preventing NF-xB-Nrf2 signaling in colorectal cancer
HCT116/0XA and HCT8/VCR cell lines [114]. Also, bava-
chinin, tephrosin, and candidone sensitized MDR MCF7/
MX and EPG85.257RDB cells to daunorubicin and mitox-
antrone [115].

Table 2 provides a detailed overview of specific mecha-
nisms through which flavonoids enhance the therapeutic effi-
cacy of conventional chemotherapeutic agents. These results
suggest a significant potential of increased therapeutic effi-
cacy through a combination of flavonoids and conventional
chemotherapeutic agents.

Nanotechnologic approch to facilitate
flavonoid-conducted chemotherapeutic anti-cancer
toxicity

Although flavonoids demonstrate significant anti-cancer

and chemosensitizing efficacy in preclinical research, their
poor solubility and bioavailability are associated with
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lesser effectiveness in vivo. However, as discussed below,
current research highlights the potential enhancement of
flavonoid-chemotherapy interaction through nanotechnol-
ogy. Khonkarn et al. demonstrated that polymeric micelles
of benzoylated methoxy-poly (ethylene glycol)-b-oligo(e-
caprolactone) or mPEG-b-OCL-Bz loaded with quercetin
could represent an attractive tool to overcome MDR in can-
cer cells. Eventually, the combination of polymeric micelles
(inhibiting P-gp efflux) and quercetin (interfering with the
mitochondrial membrane potential) may represent crucial
factors for the reversal of MDR in K562/ADR cells; querce-
tin also enhanced the cytotoxicity of doxorubicin and dauno-
rubicin [116]. Also, the co-encapsulation of paclitaxel and
naringin in mixed polymeric micelles improved the intracel-
lular uptake and in vitro cytotoxicity of paclitaxel against
breast cancer cells [117]. Further, the double-targeted nano-
carrier, Quercetin-3'3-dithiodipropionic acid-Astragalus pol-
ysaccharides-Folic acid (QDAF), was synthesized and self-
assembled into a neoteric nano-targeted delivery strategy,
named nano-pomegranates, to effectively suppress MDR in
estrogen receptor o (ERa)-positive breast cancer. Indeed,
nano-pomegranates enhanced cellular uptake, apoptosis, and
necrosis in MCF-7 cells in vitro and showed improved anti-
cancer efficacy and lower systemic toxicity in vivo [118].
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In conclusion, the co-delivery of conventional chemothera-
peutic agents with flavonoids in nanocarrier systems could
improve chemotherapeutics’ efficacy and enhance the chemo-
sensitivity of cancer cells, inhibit chemoresistance, and reduce
the cytotoxicity of chemotherapeutics in healthy tissues.

Resistance to anti-cancer treatments

Conventional chemotherapy often fails due to resistance.
Therefore, it was necessary to develop new strategies to
improve the individual therapeutic efficacy of specific
cancer types [119]. Molecular biology offers ideas for
the development of selective drugs specifically targeted
against certain tumors [9]. Similar to traditional chemo-
therapy, targeted anti-cancer agents modulate specific
cellular processes (such as growth inhibition, apoptotic
induction, and metastatic restriction). Unlike traditional
chemotherapy, targeted cancer therapy also targets unique
molecular changes associated with specific cancer types
[14]. Thus, targeted cancer therapies focus on mutant
proteins and signalling pathways essential for cancer cell
survival and progression [120]. The term “targeted ther-
apy” describes all treatment approaches affecting specific
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«Fig. 3 Mechanisms of resistance to chemotherapeutic drugs. Explan-
atory notes: A) increased drug efflux — proteins in the ATP-bind-
ing cassette (ABC) transporter family contain nucleotide-binding
domains (NBD) and two transmembrane domains (TMDs); ATP
hydrolysis-driven conformational changes of TMD result in unidirec-
tional transport across the lipid bilayer [91]. ABC transporter over-
expression is observed in several cancer types and is more predomi-
nant in cancer stem cells (CSCs) [92]. ABC transporters, including
multidrug resistance protein 1 (MDR-1, ABCBI, P-gp), multidrug
resistance-associated protein 1 (MRP1, ABCCI), and breast cancer
resistance protein (BCRP, ABCG2), are implicated in drug-resistant
cancers [93]. Also, aldehyde dehydrogenase (ALDH) promotes drug
resistance. ABC transporters and ALDH are upregulated in normal
stem cells, CSCs, and drug-resistant cancer cells [94]. B) Increased
DNA repair capacity [95] or tolerance of DNA damage [96] induced
by therapeutic agents [95, 96]—base excision repair (BER) involves
different proteins (UDG, HAPI, Polf, XRCC1, and DNA ligase I or
IIT) [96] and nucleotide excision repair (NER) mechanisms involve
damage recognition/excision proteins and helicase proteins (DNA
damage is recognized by the NER protein XPC-RAD23B, which
binds to DNA strand, an oligonucleotide containing the lesion is then
excised from the DNA strand, a repair patch is synthesized, and DNA
ligases join the patch to the DNA) [96]. NER-induced resistance to
platinum-based agents [12, 96] includes the DNA repair endonucle-
ase XPF and the DNA excision repair protein ERCC1. Replication
protein A (RPA) is involved in the DNA-damage response (DDR),
HR, and NER [12]. Decreased mismatch repair (MMR) promotes
damage tolerance and enhanced mutagenicity and chemoresist-
ance in cancer cells (hypermethylation of the hMLHI gene promoter
results in decreased expression of the MLHI protein involved in the
MMR pathway) [12]. C) Genetic and epigenetic factors—TP53 loss
results in continued replication and resistance to genotoxic drugs
[12]. Abnormal activation of the androgen receptor (AR) signaling
pathway (AR over-expression, AR gene amplification, mutations,
alterations in coregulators, and continuous androgen release from
the tumor tissue or adrenal glands) and abnormal activation of PI3K/
Akt or PI3K/Akt/mTOR signaling can lead to the overexpression
of ABC transporters and the upregulation of oncogenes and growth
factors such as VEGF and c-myc. The acidified tumor micro-envi-
ronment promotes aerobic glycolysis and MDR (by reducing drug
absorption and efficiency). PI3K/Akt regulates aerobic glycolysis
to increase energy supply and enhance ABC transporter-mediated
drug excretion [97]. The transcription of specific genes essential for
resistance is enhanced (e.g. ABCB amplification) [12, 98, 99]. Epi-
genetic alterations (genome-wide DNA hypomethylation, regional
hypermethylation, changes in histone modifications, and alterations
in miRNA expression) [12] — carboplatin-induced methylation of
the MLHI CpG island (important for the MMR DNA repair system)
is associated with chemoresistance in ovarian cancer; ABCBI dem-
ethylation decreases the accumulation of anti-cancer drugs and pro-
motes the acquisition of the multidrug phenotype [12]. D) Growth
factors—cytokine (IL-1, IL-6) production is increased in multidrug
cancer cells when compared with drug-sensitive cancer cells [12].
Specific chemotherapeutic agents were ineffective against cancers
with increased levels of extracellular fibroblast growth factors (eFGF)
[12]. E) Increased metabolism of xenobiotics—altered expression of
isoforms of cytochrome (CYPs)—overexpressed CYP1B1, CP4Z1,
CYPI1BI1, and CYP2A7 and phase II enzymes, such as glutathione-
S-transferases (GSTs), uridine diphospho-glucuronosyltransferases
(UGTs), gamma-glutamyl transferases (yGTs), thiopurine meth-
yltransferases (TPMTs), and dihydropyrimidine dehydrogenases
(DPDs) promote the development of multidrug resistance (MDR)
[12]. F) CSCs—targeted less by chemotherapeutic drugs (due to slow
cell cycle kinetics, high expression of ABC transporters, ALDHs,
epithelial-mesenchymal transition, and factors affecting the tumor
microenvironment, such as hypoxia, and epigenetic modifications)

[100]. F) Other mechanisms include endoplasmatic reticulum (ER)
stress—perturbation of ER quality control (ERQC) causes the accu-
mulation of unfolded or misfolded proteins in the ER lumen, resulting
in ER stress. The ER stress response (ERSR) is produced to restore
homeostasis or activate cell death. ERS is critical for chemo-thera-
peutic resistance, following the initiation of an ERSR [101]. ROS is
increased by the activation of ER stress. Cancer cells induce fluctua-
tions of redox homeostasis through the variation of ROS-regulated
machinery, leading to increased tumorigenesis and chemoresistance
[102]. The receptor for advanced glycation end products (RAGE)
activation leads to drug resistance (pancreatic cancer) [103]. P-gp
overexpression and CSCs are closely associated with the nuclear
localization of ¥B-1 in cancer cells [50]. NF-kB activation rescues
cancer cells from cell death [104]. Galectin-3 is transported from the
nucleus to the cytoplasm to stimulate the phosphorylation of Bcl-2
associated death (Bad) protein and the downregulation of Bad; this
results in the maintenance of mitochondrial membrane integrity.
Consequent effects, including the blockade of cytochrome c release
and caspase-3 activation, inhibition of apoptosis, and activation of
PARPI, induce chemoresistance through the cytosolic translocation
of HMGBI via PARylation, which is known to induce autophagy by
disrupting the interaction between Beclin-1 and Bcl-2 [51]

molecular targets and involves small selective inhibitory
molecules and biological drugs such as monoclonal anti-
bodies targeted against specific cellular receptors and
proteins of neoplastic processes. Examples of monoclonal
antibodies include bevacizumab, cetuximab, pertuzumab,
and trastuzumab [9]. The targets of selective tyrosine
kinase and serine/threonine-protein kinase small mol-
ecule inhibitors include growth factors, cell-cycle proteins,
apoptotic modulators, signalling molecules, and molecules
promoting angiogenesis. Imatinib, dasatinib, and nilotinib
are selective tyrosine kinase inhibitors (TKIs). Small mol-
ecules targeting tyrosine kinase proteins include gefitinib
and erlotinib. Further, lapatinib is a potent HER1/2 inhibi-
tor. VEGF inhibitors are another class of TKIs, including
sunitinib and sorafenib. Another class of selective small
molecules includes mTOR inhibitors (temsirolimus and
everolimus), BRAF inhibitors (vemurafenib and dab-
rafenib), MEK inhibitors (trametinib and cobimetinib),
and inhibitors of proteasome machinery (bortezomib)
[9]. In addition, abivertinib is a novel third generation
epidermal growth factor receptor (EGFR) TKI [121] that
inhibits Bruton’s tyrosine kinase (BTK), which exerts an
oncogenic role in the proliferation and survival of many
B cell malignancies [122]. Figure 4 provides an overview
of mechanisms related to the resistance of cancer cells to
targeted anti-cancer agents.

The resistance to single-agent targeted therapy is related
to the occurrence of many cancer mutations, making such
tumors less dependent on a single oncogenic event and
more reliant on dynamic interconnected signalling path-
ways and tumor heterogeneity, especially in an advanced
and metastatic stage [126]. Compared with the mode of
resistance to cytotoxic agents associated with deregu-
lated pharmacokinetics such as drug efflux, resistance to
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targeted therapy is usually a result of target gene muta-
tions or the activation of pro-survival signaling. Therefore,
combination therapy with next-generation agents, such as
flavonoids, could target mutations and pathways associ-
ated with resistance as part of a personalized approach to
mitigate targeted drug resistance in cancer patients [127].

Reference
[113]
[114]
[115]

Flavonoids enhance effectiveness of targeted
anti-cancer therapy

Targeted therapy tremendously enhances cancer manage-
ment; however, acquired and intrinsic resistance are major
limitations of targeted anti-cancer treatment [126]. Never-
theless, as discussed below, current research highlights the
potential importance of flavonoids in increasing the sensitiv-
ity to and/or efficacy of current targeted anti-cancer agents.

Trastuzumab is a recombinant humanized monoclonal
antibody targeted against the human epidermal growth factor
receptor 2 (HER?2) tyrosine kinase receptor and is used for
the treatment of HER2-positive breast cancer. The anthocya-
nins cyanidin-3-glucoside and peonidin-3-glucoside inhib-
ited trastuzumab-resistant breast cancer MDA-MB-453R
and BT474R cells in vitro and in a murine xenograft model
in vivo [128].

TKIs are novel target-specific anti-cancer drugs. Nev-
ertheless, the disadvantage of TKIs usage is the develop-
ment of resistance [54]. The existence of EGFR mutations
in NSCLC led to changes in the traditional lung cancer
regimen from traditional cytotoxic chemotherapy to
molecularly targeted agents. Superior to traditional chem-
otherapy, EGFR TKIs are considered a standard first-line
treatment modality for advanced NSCLC [129]. However,
patients receiving EGFR TKIs usually develop resistance.
Hydroxygenkwanin HGK, a novel flavonoid, exerted potent
antitumor activity against TKI-resistant NSCLC cells by
promoting the degradation of EGFR [55]. Similarly, the
combination of apigenin and gefitinib [56], an orally active
anilinoquinazoline that selectively and reversibly inhibits
intracellular EGFR TKIs activity [130], could represent a
strategy for acquired resistance to EGFR-TKIs in NSCLS
as it blocked autophagy flux and induced apoptosis in lung
cancer EGFR L858R-T790M-mutated H1975 cells [56].
The flavone apigenin synergized with abivertinib [122],
a novel third-generation EGFR TKI [121] targeting BTK,
inhibits diffuse large B-cell lymphoma in vitro (U2932,
LY10, OCI-LY10 cells) and in a murine xenograft model
through the inhibition of p-GS3K-f and its downstream
targets; therefore, the ability of apigenin to synergize with
BTK inhibitors is important for the improvement of tar-
geted therapy, especially to overcome developed resistance
[122]. Moreover, resistance mediated by BCR-ABL lim-
its the utilization of TKIs in leukemia. Nevertheless, the
chalcone xanthohumol attenuated the autophagy induced

rubicin and temozolomide and increased

cytotoxicity;
Promoted AUC,,, of mitoxantrone to differ-

ent extents in vivo
Prevented NF-kB-Nrf2 signalling

Reduced BCRP-mediated efflux of doxo-

Mechanisms

and mitoxantrone

zolomide
Sensitization of MDR cells daunorubicin

Reversed MRP-2-induced MDR

Effect

rat model
HCT8/VCR cell lines
MDR MCF7/MX and EPG85.257RDB

cells

Colorectal cancer HCT116/0OXA and

Study details

nin, hypericin, kaempferol, kaempferide,
licochalcone A, naringenin (+ doxoru-

biochanin A, chrysin, diosimin, genkwa-
bicin/temozolomide/mitoxantrone)

5-FU 5-Fluorouracil; BCRP breast cancer resistance protein (ABCG2); BCRP-MDCKII BCRP-overexpressing; MDR multidrug resistance; MDR-I multidrug resistance protein 1 (P-gp,

ABCB1); MRP-1 multidrug resistance-associated protein 1 (ABCC1); RAGE the receptor for advanced glycation end products; ROS reactive oxygen species

Eleven flavonoids: amentoflavone, apigenin, BCRP-MDCKII cells and Sprague-Dawley Reduced efflux of doxorubicin and temo-

Bavachinin, tephrosin, and candidone

Table 2 (continued)
Flavonoid
Dihydromyricetin
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Activation of compensatory
signaling pathways

T

Fig.4 Mechanisms of cancer cells resistance to targeted therapy.
Explanatory notes: Resistance to targeted therapy often results from
reactivation of pathways inhibited by the drug (acquisition of drug-
resistant mutations/amplification of the target, re-activation of down-
stream signalling proteins via activation mechanisms or activating
mutations, or activation of compensatory signalling pathways) [123].
Due to commonly observed gene mutations, cancer cells can perform
modifications as a response to targeted molecules and thus induce
resistance to specific agents [12]. The mutation, amplification, down-

by imatinib, a small molecule TKI used to treat chronic
myelogenous leukemia and enhanced its therapeutic effi-
cacy in myelogenous leukemia K562 cells [111]. Further,
Trifolium flavonoids showed a capacity to overcome resist-
ance to gefitinib, EGFR-TKI, through suppressing ERK and
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regulation, and alternative RNA splicing of drug targets all contribute
to the resistance of cancer cells to targeted therapy [124]. Moreover,
direct restoration of biologic function that was disrupted by a drug
[125], activation of compensatory pathways parallel to or downstream
of the inhibited pathway (such as pro-angiogenic signalling through
PDGFR), activation of pro-survival signalling, and epigenetic altera-
tions (like DNA methylation, histone modifications, and microRNA)
also contribute to resistance to targeted treatment [124]

STATS3 signaling in NSCLC cell line PC-9R [131]. A novel
EGCG (flavonol) derivative isolated from Anhua dark tea
sensitized NSCLC gefitinib-resistant cells HCC827-Gef to
gefitinib through the suppression of PI3K/mTOR signalling
and EMT [132].



EPMA Journal (2021) 12:155-176

167

Sorafenib is a multikinase angiogenesis inhibitor [9]
used as first-line therapy in HCC. However, patients who
initially benefit from sorafenib usually develop resistance
within 6 months [133]. A proposed mechanism of this
resistance is the expression of the pregnane X recep-
tor (PXR) or MDR-1, which is related to the elimina-
tion of sorafenib in HCC cells. Interestingly, the flavone
rhamnetin is an inhibitor of sirtuin (Sirt) 1 and could
inhibit the downstream (PXR) gene—MDR-1, via the
miR-148a/PXR axis. Therefore, rhamentin decelerated
the metabolic clearance of sorafenib and also sensitized
HCC cells to the drug [134]. Similarly, the combina-
tory treatment with apigenin potentiated the cytotoxic-
ity of sorafenib in HCC HepG?2 cells, as demonstrated
through decreased cell viability, decreased migration and
invasion, and increased apoptosis compared with single
treatment groups [135]. Also, Saraswati et al. demon-
strated the capability of a chalcone phloretin to overcome
sorafenib resistance in HCC as demonstrated through Src
homology region 2 domain-containing phosphatase-1
(SHP-1)-mediated inhibition of STAT3 and Akt/VEGFR2
[136]. As stated above, the disadvantage of TKIs usage
is resistance; important mechanisms of the development
of resistance include enhanced TKI efflux through efflux
transporters such as BCRP [54]. 5,7-dimethoxyflavone
effectively inhibited BCRP-1-mediated sorafenib efflux
in Madin-Darby Canine Kidney Type II wild-type cell
subclones that were transfected with murine Bcerpl
(MDCK/Becrpl); these results highlight an essential
potential of 5,7-dimethoxyflavone as a chemosensitizing
agent in BCRP-mediated drug resistance [54]. Further,
the flavonol kaempferol enhanced the chemotherapeutic
efficacy of sorafenib against HCC demonstrated in silico
and in vitro (liver cancer HepG2 and N1S1 cells); also,
kaempferol reversed MDR by decreasing P-gp overex-
pression [137].

Moreover, the flavonoid derivative WYC02009 is a poten-
tial adjuvant agent against CD133-driven urothelial car-
cinoma (UC) CSCs and could serve as a potent strategy
against UC therapeutic resistance; among others, WYC0209
declined EMT-CSCs markers such as MDR-1 or ABCG2
in vitro [138].

Furthermore, the flavone scutellarin potentiated the activ-
ity of bortezomib (a proteasome inhibitor), circumvented
chemoresistance, promoted apoptosis, and repressed tumor
growth in a murine xenograft model of multiple myeloma
through the HDAC/miR-34a-mediated down-modulation of
Akt/mTOR and NF-kB signaling [139].

Also, histone deacetylase inhibitors (HDACi) and
tumor necrosis factor-associated apoptosis-inducing ligand
(TRAIL) represent other targeted anti-cancer therapeutic
strategies [140, 141]. HDAC: is a novel class of small-
molecular therapeutics that target the regulation of histone

and non-histone proteins [142]. The flavonol fisetin is a
potential complementary agent in HDAC:i resistance, as it
improves the chemosensitivity of HA22T, apicidin-resist-
ant, and suberoylanilide hydroxamic acid-resistant (SAHA-
R) HCC cells. Fisetin synergistically interacted with
HDAC: in parental cells and also resistant cell lines. Fisetin
also promoted therapeutic potential in the xenograft model
generated from HDAC inhibitor-resistant cells [141]. Fur-
ther, TRAIL is an immune cytokine of the TNF family that
received attention as a targeted anti-cancer agent through
the selective induction of apoptosis in cancer cells [143,
144]. Despite tumor TRAIL’s potential as a potent anti-
cancer agent inducing apoptosis of cancer but not normal
cells, colon cancer is often TRAIL-resistant. Mutations in
DR4 and DRS, domains of death receptors associated with
TRAIL-induced apoptosis, induce cancer cell resistance to
TRAIL. However, icariin (a prenylated flavonol glycoside
derived from Epimedium sagittatum) sensitized HCT116
colon cancer cells to TRAIL-induced apoptosis through the
upregulation of DR5 and DR4 (mediated by ROS, ERK,
and transcription factor CCAAT enhancer-binding protein
homologous protein/CHOPY/) in vitro and in vivo (xenograft
mouse model) [140].

Table 3 provides a summary of the mechanisms through
which flavonoids enhance the therapeutic efficacy of targeted
anti-cancer agents.

Nanotechnological and combinatorial approaches
enhance effectiveness of the flavonoids-conducted
therapy

Combinatorial and nanoparticulate approaches are sug-
gested to overcome the challenges of resistance and severe
side effects posed by monotherapies. Currently, the com-
binatory therapy of a chemotherapeutic agent and phy-
tochemicals or chemotherapy and targeted therapy is an
important tool to improved cancer patient management.
Chemotherapy combined with targeted therapy is suggested
to be effective especially for advanced NSCLC while EGFR
is an essential target in NSCLC patients. Cetuximab, a mon-
oclonal antibody targeting EGFR, is a first-line treatment
for NSCLC, advanced colorectal cancer, and head and neck
cancers. Indeed, cetuximab-functionalized nanostructured
lipid carriers were developed for the co-delivery of pacli-
taxel and 5-demethylnobiletin (a hydroxylated polymeth-
oxyflavone from citrus) and to avert dose-related adverse
effects of anti-cancer agents. These nanostructured lipid
carriers effectively inhibited tumor growth in a model of
A549 paclitaxel-resistant cell-bearing mice [145].

In conclusion, flavonoids represent an effective tool to
improve the therapeutic outcomes of targeted anti-cancer
strategies facing evident disadvantages such as insensitivity
and resistance.
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3 Anti-cancer immunotherapy
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an immune-competent environment. However, acquired resist-
ance to immunotherapy can result from pre-existing genetic and
epigenetic traits or de novo alterations of cancer cells or other
tumor microenvironmental components. Thus, cancer cells can
evade the immune response intrinsically (loss or downregula-
tion of target antigen expression, defective antigen presenta-
tion, insensitivity to immune effector molecules, upregulation
of alternative immune checkpoints, and epigenetic alterations)
or via extrinsic mechanisms, which are mediated by non-cancer
cells of the tumor microenvironment including tumor-associated
macrophages (TAMs), regulatory T cells (Tregs), and myeloid-
derived suppressor cells (MDSCs) [146].

Programmed death ligand 1 (PD-L1) is an essential immune
checkpoint protein that binds to programmed death 1 (PD-1)
on T lymphocytes. Indeed, T cells exert an essential role in
the eradication of cancer cells. However, cancer cells escape
the immune response through PD-L1 expression. The binding
of PD-L1 to PD-1 results in the inhibition of T-cell prolifera-
tion and activity, leading to tumor immunosuppression [147].
Although PD-L1/PD-1 checkpoint inhibition revolutionized the
treatment of various malignancies, such therapy is still ineffec-
tive in a significant percentage of patients due to primary or
acquired resistance [148].

Due to the ineffectiveness of immunotherapy and the experi-
ence of resistance in some cases, the antitumor efficacy of can-
cer immunotherapy needs to be increased. Thus, immunothera-
peutic agents are often administered in combination with each
other or with chemotherapeutic agents, radiotherapy, or surgery.

hydroxamic acid resistant (SAHA-R) cells and xenograft

model generated from HDAC inhibitor-resistant cells

(HA22T and HDAC:s-R cells in nude mice)
Colon cancer HCT116 cells in vitro and murine xenograft

HCC cells (HA22T, apicidin-R, and suberoylanilide
model

Targeted anti-cancer agent Study details

tor; EMT epithelial-mesenchymal transition; HCC hepatocellular carcinoma; HDACi histone deacetylase inhibitors; HDACis-R histone deacetylase inhibitors-resistant; HER2 human epidermal

growth factor receptor 2; MDCK-1I/Bcrpl Madin-Darby Canine Kidney Type II (MDCK-II) wild type cells subclone transfected with murine Berpl; MDR multidrug resistance; MDR-1 mul-
tidrug resistance protein 1; NSCLC non-small cell lung cancer; PXR pregnane X receptor; ROS reactive oxygen species; SHP-1 Src homology region 2 domain-containing phosphatase-1;

ABCG?2 breast cancer resistance protein (BCRP); BCRP-1 Breast Cancer Resistance Protein; BTK Bruton’s tyrosine kinase; CSC cancer stem cells; EGFR epidermal growth factor recep-
TKI tyrosine kinase inhibitors; UC urothelial carcinoma

=) Also, the combination of immunotherapy with antiangiogenic
E drugs yields promising outcomes [9, 149]. It is also essential to
g emphasize the potential of phytochemicals and their derivatives
;’ é - - to improve cancer immunotherapy responses in the development
2153 = of novel immunotherapeutic strategies [150, 151].
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Flavonoids enhance effectiveness of anti-cancer
immunotherapy

As discussed below, the anti-cancer effects of flavonoids are
also applicable in cancer immunotherapy either in combina-
tion with other agents or single agents [57, 59, 152-155].

Due to the frequent development of resistance to sorafenib,
the first-line therapy for HCC, immune checkpoint inhibitors
(ICT) such as nivolumab are studied as alternatives. However,
due to the often unsuccessful outcomes of immunotherapy,
the combinatorial approach seems to be a better choice to
improve the treatment and to block immunosuppressive
signals in the tumor microenvironment. Although the co-
administration of VEGF inhibitors and ICI is associated
with synergistic anti-cancer effects, it exerts several adverse
effects. However, phytochemicals including flavonoids could
improve the plant-based antiangiogenic-immunotherapy
combination in HCC when compared with single compounds
that are often associated with therapeutic failure [152].

Furthermore, flavopiridol is a synthetic flavonoid that
inhibits cyclin-dependent kinases [156]. Although most
chronic lymphocytic leukemia (CLL) patients receiving
chemoimmunotherapy achieve complete remission, patients
with significantly shortened progression-free intervals still
represent an important obstacle. Also, minimal residual
disease (MRD) occurs in a majority of CLL patients who
relapse. Moreover, a phase I clinical trial demonstrated fla-
vopiridol to be safe and efficient as consolidation therapy
after chemoimmunotherapy in CLL patients [153].

As discussed above, the immune escape of cancer cells is
associated with PD-L1 expression [147]. Also, the chemore-
sistance of nasopharyngeal carcinoma is associated with the
upregulation of checkpoint inhibitor PD-L1, which is linked to
enhanced aerobic glycolysis promoted by HIF1-a deregulation
and LDH-A activity. However, silibinin downregulated PD-L1
expression by modulating HIF-1o/LDH-A-mediated metabolism
in nasopharyngeal carcinoma C666-1 cells and thus provided a
potential avenue to overcome PD-L1-mediated resistance [57].

Moreover, checkpoint blockade is an effective treatment of
lung cancer; however, it often leads to resistance. Therefore,
Tang et al. aimed to develop a new strategy to improve check-
point blockade therapy. Eventually, dual inhibition of COX-2 and
EGFR by melafolone improved PD-1 immunotherapy against
Lewis lung carcinoma and CMT167 tumors; these results high-
light its important role as a combinatory strategy against lung
cancer by affecting vessels and immune cells [59]. Further, the
prenylated flavonoid icaritin exerts potent anti-cancer activity by
modulating multiple biochemical and cellular responses [58].
Advanced HCC is associated with limited treatment options.
It is suggested that icaritin has the potential as an oral immu-
notherapeutic agent used alongside immune-checkpoint inhibi-
tors (antibody-based PD-1/PD-L1 blockade therapies). As the

@ Springer

authors demonstrated in a phase I trial, the preliminary durable
survival benefits of icaritin in advanced HCC patients correlated
with its immuno-modulatory activities and immune biomark-
ers [154]. Similarly, apigenin also suppressed PD-L1 in vitro in
melanoma cells and in host dendritic cells; this potentiated the
cytotoxicity of cocultured cytokine-induced killer cells against
melanoma cells [155].

In conclusion, flavonoids improve cancer immunothera-
peutic effects either through increased efficacy of other
anti-cancer agents or as potent single molecules modulat-
ing immune responses of cancer cells.

Conclusions and expert recommendations
in context of predictive, preventive
and personalized (3P) medicine

Cost-efficacy of currently applied treatments is an issue in
overall cancer management challenging healthcare and caus-
ing tremendous economic burden to societies around the
world. Consequently, complex treatment models presenting
concepts of predictive diagnostics followed by the targeted
prevention and treatments tailored to the individualized
patient profiles earn global appreciation as benefitting the
patient, healthcare economy, and the society at large.

In this context, application of flavonoids as a spectrum of
compounds and their nano-technologically created derivatives
is extensively under consideration, due to their multi-faceted
anti-cancer effects applicable to the overall cost-effective can-
cer management, primary, secondary, and tertiary prevention.

Conventional anti-cancer strategies demonstrate evident
deficits. Despite recent progress in anti-cancer strategies,
the development of a therapy resistance remains the leading
cause of the cancer-related mortality. An improved under-
standing of carcinogenic processes allows for the technologi-
cal innovation creating more efficient therapeutic modalities.
Targeted anti-cancer therapies leverage unique molecular
changes associated with specific cancer types.

Anti-cancer protective application of flavonoids in the
context of 3P medicine should follow principles of the evi-
dence-based therapeutic effects, individualized prediction,
targeted prevention and personalization of the treatment
algorithms. To this end, application of specialized analytical
approaches is strongly recommended such as liquid biopsy
analysis, risk assessment tools, predictive and companion
diagnostics, multi-omics and multi-parametric analysis, and
application of artificial intelligence in medicine.
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