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yasmin@hacettepe.edu.tr (Y.G.)

2 Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia;
hiu.tin@live.vu.edu.au

3 Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne 3021,
Australia

* Correspondence: xu.yan@vu.edu.au; Tel.: +61-3-9919-4024; Fax: +61-3-9919-5615

Abstract: The prevalence of obesity continues to rise worldwide despite evidence-based public health
recommendations. The promise to adopt a healthy lifestyle is increasingly important for tackling
this global epidemic. Calorie restriction or regular exercise or a combination of the two is accepted
as an effective strategy in preventing or treating obesity. Furthermore, the benefits conferred by
regular exercise to overcome obesity are attributed not only to reduced adiposity or reduced levels
of circulating lipids but also to the proteins, peptides, enzymes, and metabolites that are released
from contracting skeletal muscle or other organs. The secretion of these molecules called cytokines in
response to exercise induces browning of white adipose tissue by increasing the expression of brown
adipocyte-specific genes within the white adipose tissue, suggesting that exercise-induced cytokines
may play a significant role in preventing obesity. In this review, we present research-based evidence
supporting the effects of exercise and various diet interventions on preventing obesity and adipose
tissue health. We also discuss the interplay between adipose tissue and the cytokines secreted from
skeletal muscle and other organs that are known to affect adipose tissue and metabolism.
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1. Introduction

According to the World Health Organization (WHO), worldwide obesity has nearly
tripled since 1975 and reached a global epidemic [1,2]. In 2016, more than 1.9 billion (about
39%) adults worldwide were overweight and, among them, about 650 million (about 13%)
were obese [2]. The increase in the prevalence of being overweight and obese has been
attributed to an imbalance between energy intake and expenditure due to an increasingly
sedentary lifestyle, and a nutritional transition to processed foods and high-calorie diets
over the last 30 years [3]. Obesity is considered a multisystem chronic relapsing progressive
disease process [4,5] adversely affecting almost all physiological functions of the body and
leading to increased morbidity and mortality [5–7]. Furthermore, obesity is associated with
many metabolic dysfunctions and comorbidities [8–15] that interfere with the quality of
life and work productivity, and increases healthcare costs [16–18].

A positive association has been found between body mass index (BMI) over 24.9 kg/m2

and overall mortality [6,7]. The associations are stronger at younger ages compared to older
ages and the hazard ratio is greater in men than women [6,7]. Additionally, a population-
based cohort study of 3.6 million adults in the UK revealed that life expectancy from age
40 years was 4.2 and 3.5 years shorter in men and women with obesity (BMI≥ 30.0 kg/m2),
respectively, than individuals with healthy weight (BMI 18.5–24.9 kg/m2) [7]. A recent
study by Dai et al. [19] revealed that, in 2017, high BMI caused 2.4 million deaths and 70.7
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disability-adjusted life years (DALYs) in females, and 2.3 million deaths and 77.0 million
DALYs in males globally, based on the data from 195 countries and territories. The study
showed that, although the age-standardized rate of high-BMI-related DALYs increased
by only 12.7% for females and 26.8% for males, the global number of high-BMI-related
DALYs has more than doubled for both sexes between 1990 and 2017 [19]. Cardiovascular
disease was the leading cause of high-BMI-related DALYs, followed by diabetes and kidney
diseases, and neoplasms, together accounting for 89.3% of all high-BMI-related DALYs [19].
In addition to morbidity and life expectancy, obesity is a major burden on the healthcare
system due to both direct and indirect costs [16].

Adipose tissue is a highly metabolically active organ that performs many functions
such as lipid storage, mechanical protection, thermal insulation, immune responses, en-
docrine functions, and non-shivering thermogenesis [20,21]. It has a substantial capacity to
control its size and function in response to several internal and external stimuli including
nutritional status and temperature, accordingly. It plays an important role in the regulation
of systemic nutrient and energy homeostasis [20]. Although WHO defines overweight
and obesity as the abnormal or excessive fat accumulation that may impair health (WHO
fact sheet 2021), BMI is preferentially used to define overweight factors (BMI ≥ 25) and
obesity (BMI ≥ 30) in epidemiological studies. However, BMI is not sensitive enough to
differentiate the level or the distribution of adipose tissue mass. Furthermore, the percent
of body fat (BF) for any given BMI value varies greatly among individuals based on age,
sex, and ethnicity. In addition, for any given amount of BF, greater cardiometabolic risk
has been associated with the localization of excess fat in the visceral adipose tissue (VAT)
and ectopic depots (such as muscle, liver, and pancreas) [1,22]. Furthermore, the balance
of hypertrophic expansion of existing adipocytes and adipogenesis within an individual
profoundly affects metabolic health. Partly due to hypoxia and mechanical stress, large
adipocytes are associated with impaired metabolic health while small adipocytes are associ-
ated with a reduced risk of metabolic decline [23]. Compared to small adipocytes, increased
lipolysis and inflammatory cytokine secretion, and reduced secretion of anti-inflammatory
adipokines have been observed in hypertrophic adipocytes [23]. Moreover, a subgroup of
individuals with obesity, named metabolically healthy obese (MHO), is protected against
cardiometabolic disturbances as compared to individuals with metabolically unhealthy
obesity (MUO) [24,25], suggesting that adipose tissue distribution and dysfunction, rather
than the amount of fat mass, are the crucial factors in the pathophysiology of obesity-
related metabolic and cardiovascular diseases [24–26]. Furthermore, lower subcutaneous
fat mass, adipocyte hypertrophy, and an impaired fat storage capacity of adipose tissue are
the common features of MUO individuals [24,25], which may lead to ectopic fat deposition
and inflammation in VAT [24,25]. On the other hand, MHO, which is more common among
young, physically active individuals with a better nutritional status, is characterized by
a lower degree of systemic inflammation and a favourable immune and liver function
profile [24,25].

Given the underlying reasons for the dramatic increase in the prevalence of being
overweight and obese during the last 40 years, population-based preventive strategies
that improve social and physical environmental contexts for healthy eating and physical
activity (PA) have been suggested. These preventive strategies require a multisectoral
joint effort, including policymakers, educators, health professionals, food producers, city
planners, etc. [27]. As a complex chronic disease, the management of obesity requires a
holistic approach. Although pharmacotherapy and bariatric surgery are indicated with
severe obesity, diet, exercise, and cognitive behavioural therapy are the primary strategies
for the lifelong management of obesity [5,28,29]. Kheniser et al. [29] stated that two years
of lifestyle interventions can facilitate a 5% weight loss and that, although a weight regain
occurs, both diet and exercise interventions have substantial effects on obesity-associated
comorbidities [5,29] and adipose tissue remodelling [30]. Moreover, both regular aerobic
exercise and the consumption of a hypocaloric diet are associated with a substantial
reduction in VAT and liver fat independent of age, biological sex, or ethnicity [31,32].
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Although diet is more effective in reducing total body weight (BW) loss, exercise is superior
at reducing VAT [32]. Furthermore, it has been reported that moderate-to-vigorous intensity
of regular exercise for 4 to 6 months combined with a balanced, healthful diet resulted in a
substantial decrease in VAT (15–20%) and that 5% to 10% of weight loss can be achieved
with reasonable reductions in caloric intake with or without exercise [31]. Additionally,
several organs secrete biochemicals in response to low caloric intake and exercise as well as
several other factors, which contributes to the browning of white adipose tissue (WAT), and
is, therefore, considered a potential therapeutic approach against obesity and associated
metabolic dysfunctions [33]. Therefore, diet and exercise are the key components of weight
loss and maintenance program.

Over the last 20 years, molecules secreted from skeletal muscle and other organs have
been the focus of much research in terms of their therapeutic role as circulatory factors
with effects on metabolically active tissue and organs. Some of these molecules released in
response to muscle contraction have been reported to mediate some of the beneficial effects
of exercise in other organs, such as the liver and the adipose tissue [34], such as browning
of WAT and increasing thermogenesis and energy expenditure (EE), which make cytokines
appealing therapeutic targets for metabolic diseases.

In this review, we provide an overview of the research-based evidence supporting
the effects of exercise and various diet interventions on preventing obesity and adipose
tissue health. The interplay between adipose tissue and the cytokines secreted from skeletal
muscle and other organs that are known to affect adipose tissue was also discussed.

2. Adipose Tissue Biology: Why Our Body Is a Fat-Storing Machine?

Adipose tissue is a connective tissue mainly composed of lipid-rich cells named
adipocytes [35]. It has long been believed that adipose tissue’s main function is to store
energy as triglycerides while energy excess, which can then be broken down into free fatty
acid and glycerol during starvation or fasting [35,36]. Since the body has a limited capacity
to store glycogen, long-term imbalances between energy intake, and EE lead to a substantial
increase in the amount of triacylglycerol stored in adipocytes, causing obesity [37]. Recent
research has unveiled that adipose tissue also functions as an endocrine organ [38,39], which
expresses and secretes factors called adipocytokines or adipokines [37,38]. Adipose tissue
is a complex and essential tissue as demonstrated by the adverse metabolic consequences
resulting from either excessive or deficient adipose tissue [38]. An excess of adipose
tissue leads to the development of obesity and metabolic syndrome, while adipose tissue
deficiency (lipodystrophy) can also cause a metabolic syndrome [40]. There are two main
types of adipose tissue: WAT and brown adipose tissue (BAT). These are briefly outlined in
the following section.

2.1. White Adipose Tissue

WAT generally stores excess energy in the form of triglycerides and makes up the
majority of the human BF percentage (BF%) [41,42]. Additionally, the main functions of
WAT are to protect organs against mechanical damage and release adipokines regulating
various biological processes, including inflammatory reactions [43]. Adipose tissue accu-
mulation around the abdominal cavity and mediastinum is referred to as VAT, whereas it
can also be found in the hypodermis layer as subcutaneous adipose tissue (SAT) [44]. At a
molecular level, WAT takes the form of single lipid droplets and has a limited number of
mitochondria. WAT is not a static form of connective tissue, as it regularly remodels and
changes its number of adipocytes depending on nutritional availability as well as hormonal
signals [44]. Additionally, WAT is an endocrine organ capable of actively secreting free
fatty acids and adipocytokines, which have autocrine, paracrine, and endocrine effects on
other organs, such as skeletal muscles, the brain, and the liver [42]. Concretely, WAT is
essential for energy homeostasis and metabolic regulation [35].
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2.2. Brown and Beige Adipose Tissue

BAT, on the other hand, is mainly utilized for insulation against a cold climate. It
achieves this by generating heat as a result of dissipating energy [41]. BAT is characterized
by a high abundance of uncoupling protein 1 (UCP1), which is the protein responsible for
non-shivering thermogenesis, along with many other genes including cell death-inducing
DNA fragmentation factor-like effector A (CIDEA), PR domain containing 16 (Prdm16),
and Type 2 Deiodinase (DIO2), which are all important in mitochondrial biogenesis [45].
BAT is also capable of mediating adaptive thermogenesis and, thus, contributes to the
maintenance of body temperature. The role of BAT in adults has yet to be fully realized,
with some studies suggesting that it may play a key role in energy homeostasis. Generally,
as the BW increases with age, the amount of total BAT decreases, showing an inverse
relationship between BAT and BW [41]. BAT can be found in small amounts in the neck,
supraclavicular, axillar, paravertebral, perirenal/adrenal, and para-ventral regions, as well
as the major vessels surrounding the heart [42]. Some studies have found that BAT can also
reside in skeletal muscle tissues and even WAT [42]. At a molecular level, BAT takes the
form of multiple small vacuoles and has large amounts of mitochondria [41].

More recently, another unique type of adipose tissue, beige adipose tissue, has been
identified in rodents and humans [46]. Beige adipocytes are found within the WAT depots,
but with similar morphology to brown adipocytes and large amounts of mitochondria [47].
In rodents, beige adipocytes can be induced by cold-exposure [48], exercise [49,50], and
hypothalamic brain-derived neurotrophic factor (BDNF) [51]. To a smaller extent, beige
adipocytes have been observed in humans [46], which is known to be induced by chronic
exposure to peroxisome proliferator-activated receptor gamma (PPARγ) agonists [52].

3. Exercise Strategies to Prevent Obesity and Improve Adipose Tissue Health

Exercise plays an important role in human health as a non-pharmacological elixir that
helps prevent obesity by increasing EE for weight loss, lower metabolic risk factors, and
enhance adipose tissue health [53,54]. Exercise can be sub-categorised into two types: acute
and chronic/training [55]. Acute exercise refers to one session of PA, while chronic/training
includes repeated exercise sessions weekly or monthly [55]. Acute exercise and chronic
training studies can demonstrate the short-term and long-term effects of exercise on the
human body, respectively. Moreover, acute exercise interventions have been used to study
the mechanistic adaptations to exercise. For instance, an acute bout of exercise increases
blood flow through adipose tissue and fat mobilization, leading to the delivery of fatty
acids to skeletal muscles, which is mainly based on the exercise intensity and metabolic
requirements [37]. Furthermore, following an acute exercise, dietary fat stored in adipose
tissue decreases as a result of the mobilization of fatty acids stimulated by β-adrenergic
activation from adipose tissue to other tissues, such as skeletal muscle [37]. In addition,
regular exercise/training is known to alter adipose tissue physiology, which results in
enhanced fat mobilization during acute exercise [37]. It is, however, not fully elucidated
whether the structural changes in adipose tissue are induced by exercise training or negative
energy balance [37,45,56] and remain an important area of investigation. The relationship
between PA and adiposity has been comprehensively investigated in longitudinal cohort
studies that have documented a strong inverse association between measures of PA and
measures of fat mass and distribution [57,58]. Thus, incorporating well-designed exercise
training routines into a weight loss program are efficient strategies. In the following section,
the effects of different types of exercise models on obesity and adipose tissue and the
underlying molecular mechanisms are reviewed. The exercise studies included in the
following sections are described in greater detail in Table 1.

3.1. Continuous Exercise and Adipose Tissue

Over the last 20 years, the effects of regular endurance training on adipose tissue have
gained momentum and have been comprehensively investigated in numerous studies. In
light of the findings of these studies, it is accepted that exercise seems to reduce fat mass,
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which significantly depends on the net energy deficit induced by exercise interventions.
It is also noteworthy that the effect of PA without a calorie restriction diet on fat loss
might be relatively small or modest [59,60]. Furthermore, a substantial energy deficit
created by increased PA results in a loss of fat mass from significant depots, such as
SAT and VAT. For example, an increase of daily steps from 7013 to 8840 decreased SAT
and VAT as well as BF% in men with obesity [61]. Similarly, one year of training at 58%
of maximal oxygen consumption (VO2max) (6 sessions/week) reduced total fat mass as
well as abdominal visceral and SAT in nonobese women and men [60]. An experiment
consisting of moderate to high-intensity aerobic training (3 sessions/week, 40 min/session,
total distance 12 miles/week at 75% VO2max) for 8 to 9 months in individuals who are
overweight and obese have reported a significant reduction in thigh SAT in both men and
women who are overweight, but VAT decreased only in men [62].

Furthermore, it is well known that training studies with shorter durations exert
profound effects on adipose tissue as well. For example, 24 weeks of moderate-intensity
training at a low amount (LAMI, 5 days/week, 31 min/session, 50% VO2max) resulted in a
decrease of waist circumference, similar to the moderate-intensity high amount (HAMI,
58 min/session) and high-intensity high amount (HAHI, 40 min/session, 75% VO2max) [63].
A follow-up study has confirmed similar reductions in total BF, SAT, and VAT among the
three training groups [64]. However, there was an individual response to training in total
and abdominal fat with a greater proportion of subjects “very likely” to decrease fat in the
HAMI (total BF) and HAHI groups (total BF and SAT) [64]. Wilmore et al. determined
the extent of changes in SAT and VAT in subjects who are overweight after 20 weeks of
chronic training (3 sessions/week, at 50–75% VO2max for 30–50 min) [65]. The findings
implied that males had a greater loss in abdominal SAT and VAT than females. A higher
rate of decline was also seen in abdominal SAT compared to VAT [65]. A study investigated
16 weeks moderate-intensity (≤lactate threshold) and high-intensity (>lactate threshold)
training in women with metabolic syndrome, but no significant changes of SAT and VAT
were observed in the moderate-intensity group [66]. The high-intensity group resulted in
reduced total abdominal fat, subcutaneous abdominal fat, and abdominal visceral fat [66],
showing that high-intensity exercise is more effective than moderate-intensity exercise
training in reducing fat storage in women with obesity and metabolic syndrome.

Furthermore, research has investigated the differences between 12 weeks of moderate-
intensity (4 to 5 sessions/week, EE of 1000 kcal/week, 50% VO2max) and high-intensity (4 to
5 sessions/week, EE of 1000 kcal/week, 75% VO2max) exercise on regional fat distribution
in elderly adults who are overweight [67]. The findings showed a remarkable reduction in
VAT in the high-intensity group exhibited, while no change was observed in the moderate
group [67]. A recent study reported that vigorous-intensity physical activities are associated
with high BAT density in humans, suggesting that long-term high-intensity physical
activities might positively influence BAT content [68]. Collectively, the intensity of exercise
training seems to play an essential role in changing adipose tissue. Another study that
aimed at revealing the effect of training on adiposity in children with obesity reported a
significant decrease in BF%, total BF, and SAT mass [69], following 4 months of moderate
intensity training (5 sessions/week, 40 min/day at 70–75% maximal heart rate (HRmax),
equivalent to 58–66% VO2max). Similarly, with the diet controlled, 12 weeks of daily
exercise (brisk walking or light jogging no more than 70% VO2max) resulted in a decrease
in both SAT and VAT in men with obesity. The reduction in total fat was greater in the
training group when compared with the diet-induced weight loss group (22% decrease in
energy intake) [59]. Even in the exercise without a weight loss group (with 23% increase
in energy intake), there was a decrease in abdominal adipose tissue and VAT [59]. Even
without changes in total BW, 13 weeks of moderate-intensity training (5 sessions/week,
60 min/session, −60% peak oxygen uptake (VO2peak)) led to significant reductions in total,
abdominal subcutaneous factors, and visceral fat in men with obesity with and without
type 2 diabetes (T2D), as well as in the lean control group [70]. The reduction in VAT was
greater in the groups with obesity and T2D when compared with the lean group [70]. Only
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8 weeks of training at moderate intensities (70% VO2peak) reduced liver fat and VAT [71].
Interestingly, 45 min of training at 50% VO2max (three sessions/week) seems to be enough
for these reductions, as an increase of volume (to 60 min/session, 4 sessions/week) or
intensity (to 70% VO2max) did not result in further reductions [71]. Moreover, Christiansen
and colleagues compared the independent and combined effects of 12 weeks of regular
exercise and diet-induced weight loss on BF distribution in subjects with obesity [72]. They
reported that there was a significant decrease in BW (3.5 kg) and VAT (18%) [72]. More
importantly, a hypocaloric-diet and exercise resulted in a markedly higher reduction in VAT
(30–37%) and BW (12.3 kg) [72], compared to the exercise group, showing a hypocaloric
diet to be more effective in reducing the VAT depot, compared to exercise only. Walhin et al.
reported that 3 weeks (5 sessions/week) of moderate-intensity (50% VO2max) and vigorous-
intensity exercise training (70% VO2max) combined with caloric restriction (5000 kcal/week)
led to similar reductions in total fat and abdominal fat mass [73]. In addition, both exercise
interventions with simultaneous restricted energy intake similarly affected the expression
of the lipogenic enzymes [73].

In summary, regular exercise, especially moderate to high-intensity exercise for eight
weeks to one year, decreases total BF, SAT, and VAT. Furthermore, exercise training com-
bined with a hypocaloric-diet is more effective compared to exercise intervention alone in
preventing and reducing BF.

Molecular Mechanisms Underlying the Reduction in Total BF, SAT, and VAT with Exercise

In vivo studies and adipose tissue biopsies following acute and chronic exercise trials
have provided mechanistic insight into the molecular mechanisms that are responsible for
the reduction in total BF, SAT, and VAT in response to exercise training. For example, a
single session of 30 min of continuous running at 65% VO2max was reported to increase
whole-body fat oxidation during the post-exercise recovery period in young men [74].
Acute moderate-intensity continuous exercise at 45–70% VO2max increased the oxidation of
total lipid and plasma fatty acid (~60%) [75] and the amount of the adipose tissue lipopro-
tein lipase (56%) in men [76] but not women, and increased the number of the adipose
tissue progenitor cell phenotype in adults with obesity [77]. Similarly, one hour of acute
exercise at 55% VO2max has been shown to modify adipose tissue mRNA and interstitial
cytokine concentration in males who are overweight [78]. In addition, an increased con-
centration of interstitial adiponectin and interleukin (IL)-6 was detected [78], while the
response at the mRNA level was different, with IL-6 mRNA increasing but adiponectin
mRNA decreasing [78]. Another similar study reported increased SAT mRNA expression
of vascular endothelial growth factor A (VEGFA), which is an important regulator of
angiogenesis and capillary growth, in adults who are overweight/obese following acute
moderate-intensity exercise at 65% VO2max [79]. Furthermore, a decrease of preadipocyte
content was shown in the stromal vascular cells fraction of SAT twelve hours after sixty
minutes of moderate-intensity endurance exercise in adults with obesity [77]. It was also
reported that a single session of 15 min exercise at 80% VO2max has induced more than
3800 genes in adipose tissue from individuals who are or are not overweight, among them
are the genes responsible for monocyte infiltration [80].

There are limited long-term training studies that have investigated the effects of exer-
cise training on molecular mechanisms involved in exercise-induced changes in adipose
tissue biology. One of these studies aimed to reveal gene expression changes in adipose
tissue following 6 months of diet-induced and/or exercise-induced weight loss in post-
menopausal women who are overweight/obese [81]. The authors showed that the mRNA
expression of candidate genes in the SAT did not change in the intervention groups [81]. On
the other hand, those participants with greater weight loss showed decreased expression
of the leptin gene [81]. Finally, microarray analyses revealed the association of weight
loss with adipose tissue gene expression involved in the synthesis of sex hormones in
adipose tissue, whereas there was no impact of weight reduction with diet or diet plus
exercise on genes related to inflammation in SAT in obese people [81], indicating that
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changes in energy balance following diet and/or exercise factors can have a limited impact
on adipose tissue inflammation [82]. This field remains a fertile area of research in the
near future. Furthermore, 12 weeks of endurance training (2 sessions/week supervised,
3 times/week home-based exercise at 50% VO2max) did not change genes involved in
the control of SAT lipolysis [83] or gene expression of adipocytokines in women with
obesity [84], while a decrease of plasma leptin was detected [84]. Eight weeks of exercise
training (3 sessions/week, 30 min/session at 70% VO2max) reduced adipose tissue IL-18
mRNA content by 20% in obese individuals [85]. In addition, the mRNA expression of
adipose tissue adiponectin and adiponectin receptors increased significantly after 12 weeks
of training (3 sessions/week, 60 to 75 min/session at 70% of heart rate reserve) in obese
men and women [86].

Findings on the browning of WAT in response to exercise come from both rodent and
human studies. As reviewed comprehensively by Stanford and Goodyear [87] in rodents, it
is well documented that exercise training can induce browning of WAT and the recruitment
of brown-like adipocytes within WAT via exercise-induced cytokines such as irisin and
IL-6, which triggered the interest in investigating WAT browning in humans. Current
evidence has shown that eleven days of voluntary running resulted in increased expression
of many beige adipocyte marker genes in rodent SAT [49]. Moreover, 30 days of swimming
(90 min daily) increased expression of UCP1 and Prdm16 in mice SAT, suggesting browning
of SAT by training in rodents [88]. While evidence from rodents seems promising, the
reports of human studies are not very conclusive. First, it seems that the existence of
brown/beige adipose tissue in adult humans is not very common and decreases with
age [89]. Second, it was shown that endurance-trained athletes had a lower metabolic
activity of BAT compared to lean sedentary individuals [90]. Furthermore, gene expression
of classical brown and beige adipocyte markers in subcutaneous WAT, plasma irisin, and
Il-6 levels during mild cold exposure were similar in trained and sedentary individuals [90].
Conversely, 12 weeks of cycling (3 sessions/week, 60 min/session at 43% to 70% VO2max)
induced the mRNA expression of beige/BAT markers of UCP1, T-box transcription factor
1 (TBX1), and carnitine palmitoyltransferase-1B (CPT1B) in SAT of sedentary subjects,
suggesting browning of SAT by training [91].

In summary, acute exercise interventions have shown that low-moderate-intensity
exercise can increase whole-body fat oxidation, possibly by regulating adipose tissue lipol-
ysis, gene expression of adipocytokines, or changing the cell composition of adipose tissue.
However, exercise intervention may not be associated with brown and beige adipocyte
recruitment in humans. Rather, endurance training can lead to the lower metabolic activity
of BAT in humans. More work is needed to reveal whether particular groups or populations
experience beneficial changes in adipose tissue from exercise training.

3.2. High-Intensity Interval Training and Adipose Tissue

For the management of obesity, it is recommended to be physically active such as 150
to 250 min/week or up to 60 min/day [92]. However, current epidemiological data indicate
that the majority of the adult population does not meet the recommended PA guidelines
mainly due to lack of time [93], and there is, therefore, a need to establish the efficacy of
time-efficient doses of exercise that overcome the health risks associated with obesity with
less time commitment. High-intensity interval training (HIIT) is characterized as a short
period that must be performed over the lactate threshold, near VO2max, and interspersed
with light exercise or rest so that extra high-intensity bouts can be performed [53,55]. HIIT is
based on the Wingate test, which consists of “supra-maximal power output” [94]. A typical
HIIT protocol is considered as sprint interval training (SIT), in which individuals will have
to complete “all-out” several times (≥100% maximal workload capacity) performance
with recovery time in between the intensive exercise sessions on a cycle ergometer [55].
Therefore, a customized low-volume HIIT protocol (near the maximal corresponding to
≥75% to <100% of maximal workload capacity effort) has been widely utilized by ample
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studies [95,96] and is prone to be more workable for individuals than the Wingate-based
HIIT model [55].

There is robust evidence that HIIT can reduce adiposity and abdominal visceral fat
despite the discrepancies available in the previous studies that are attributed to training
protocols, exercise protocol, obesity status, and gender. For example, a study compared the
impacts of 12 weeks (3 to 4 sessions/week) of prolonged moderate-intensity continuous
training (MICT 60% VO2max) with HIIT (90% VO2max, repeated 4 min bout with 3 min
recovery) on abdominal adipose tissue reduction in young women with obesity [97]. The
findings showed a similar reduction in abdominal SAT and VAT in both groups [97]. Ten
weeks of endurance exercise training (a combination of continuous and HIIT) improved
adipose tissue insulin sensitivity. However, changes in adipose tissue composition was not
reported [98]. Six weeks of HIIT (3 sessions/week, 7 × 1 min at 95–100% VO2max, with
1 min recovery), which resulted in increased skeletal muscle mitochondrial respiratory
capacity, did not change BF% and reduced the mitochondrial respiratory capacity in SAT
in overweight subjects [99]. Another study by Leggate et al. examined two weeks of
HIIT (3 sessions/week, 10 × 4 min at 85% VO2max, 2 min rest) in sedentary males with
overweight/obesity, and they found a decrease in waist circumference, as well as reductions
in IL6 and fatty acid synthase content in SAT biopsies [100]. A recent experiment by Islam
et al. investigated the impacts of acute high-intensity interval exercise (HIIE 10 × 4 min
at 90% of HRmax, separated by 2 min recovery) on SAT and whole-body fat oxidation in
women who are overweight [101]. They showed that, despite a significant increase in
whole-body fat oxidation, β-adrenergic and insulin signalling in subcutaneous adnominal
adipose tissue remained unchanged following acute HIIE [101], suggesting that HIIE
does not alter intracellular signalling pathways controlling fat mobilization or storage in
subcutaneous abdominal adipose tissue. Another study comparing the effects of 12 weeks
(3 sessions/week, 6 to 10 × 60 s intervals) moderate intensity interval training (60–80%
maximal workload, with 60 s of active recovery at 40 W) with HIIT (80–90% maximal
workload, with 75 s active recovery at 40 W) reported an increased fat oxidation rate in
sedentary women with normal weight, overweight, and obesity [102]. However, none
of the training intensity affected BW, BF%, or circumferences of waist and hip [102]. A
recent study by Taylor et al. compared the impacts of HIIT with MICT on VAT and liver fat
reduction in patients with coronary artery disease for 4 weeks, followed by three home-
based sessions/week for 11 months [103]. The authors documented that both exercise
interventions reduced VAT over 3 and 12 months, while HIIT resulted in a slightly greater
reduction in liver fat when compared to MICT [103]. A meta-analysis by Keating and
colleagues that reviewed 28 trials with 873 participants reported that HIIT and MICT
present similar benefits for eliciting small reductions in total BF [104]. In addition, it was
reported that 6 weeks of SIT (3 sessions/week, 5 × 60 s at ~128% of peak power, 90 s
recovery) did not alter BF% or adipose tissue mitochondrial function [105], while it resulted
in a greater loss in total BF and android fat than MICT (3 sessions/week, 45–55% HRmax, for
20–30 min) cycling in young women who are overweight [94]. Two weeks of Wingate-based
SIT (3 sessions/week) significantly reduced waist and hip circumference, and increased the
resting fat oxidation rate in sedentary men who are overweight/obese [106]. Another study
reported two weeks of Wingate-based SIT (3 sessions/week) resulted in a similar reduction
in BF%, abdominal SAT, and VAT compared to MICT (40–60 min at 60% VO2max) in healthy
subjects with insulin resistance [107]. Furthermore, both training interventions decreased
CD26 and ANGPTL4 gene expression in SAT [107]. Finally, Cooper et al. reported no
significant change in FM or abdominal VAT following 12 weeks (3 sessions/week) of SIT
interventions consisting of 4 to 10 × 30 s sprint efforts in men who are overweight [108],
raising further questions regarding if exercise training without caloric restriction could
facilitate favourable changes in body composition and abdominal VAT.

In summary, it is apparent that interval training models improve adipose tissue despite
the inconsistent and controversial findings that existed. Moreover, HIIT seems to be an
alternative to MICT for reducing visceral and liver fat. More work that combines HIIT with
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hypocaloric diets is needed. The findings of further studies can open up new time-efficient
therapeutic potential in developing new strategies for the prevention and management
of obesity.

3.3. Resistance Exercise Training and Adipose Tissue

Resistance exercise training (RT) consists of various types of physical exercise that
causes the skeletal muscles to contract against an external resistance [109,110] that develops
the strength and size of muscles, and increases bone mass [111–113]. The metabolic effects
of reduced muscle mass has been reported to result in a high prevalence of obesity, insulin
resistance, and T2D [114,115]. Therefore, RT and subsequent increases in muscle mass are
likely to reduce metabolic disease risk factors [114,116]. Although, the aerobic exercise
has traditionally been recommended for preventing and managing obesity and associated
metabolic risk factors [116,117], recently, RT has also been suggested to be a feasible and
efficacious alternative to aerobic exercise for weight control due to its multiple therapeutic
effects [114,116]. For example, the age-related decline in resting EE is closely associated
with the loss of skeletal muscle mass [118], which can be reversed by RT that leads to
increased muscle mass based on the training duration and intensity. However, despite no
clinically important change in resting EE following RT, maintenance of muscle mass with
RT helps prevent age-associated fat mass gains by promoting an active lifestyle [119].

Several studies have reported that RT can reduce FM and VAT in men [120] and
women [109,121] independent of dietary caloric restriction [122]. A study that assessed
body composition in older women reported significant decreases in visceral fat after
16 weeks of RT [123]. Similarly, another study investigated the effects of 16 weeks of RT
combined with diet interventions on FM and VAT in middle-aged men with obesity. The
findings showed that there was a 40% reduction in visceral fat in the RT combined diet
group [122]. Hunter et al. showed that 25 weeks of chronic RT resulted in an improvement
in fat-free mass and a reduction in BF in older males and females [124]. There was also
a substantial loss of intra-abdominal adipose tissue and abdominal SAT in women but
not in men who are overweight [124]. Ku and colleagues documented that 12 weeks
of RT (5 sessions/week elastic band exercise) decreased SAT, which was comparable to
12 weeks of aerobic training (5 sessions/week, walking for 60 min at moderate-intensity
[3.6–5.2 metabolic equivalents]) in individuals with T2D [110]. However, only RT decreased
subfascial adipose tissue at the mid-thigh level [110]. Rosety et al. highlighted 12 weeks
of resistance circuit training (3 sessions/week), which resulted in a reduced thickness
of epicardial adipose tissue in obese women [125]. Ross et al. reported a substantial
similar decrease in the volume ratio of VAT to SAT after 16 weeks of RT and aerobic
training (3 sessions/week) combined with caloric restriction (reduced by 1000 kcal) in
obese women [126]. Moreover, within the VAT depot, a remarkable reduction was observed
for both intraperitoneal and extraperitoneal adipose tissue [126]. Slentz et al. compared
the effects of high-intensity aerobic training (12 miles/week at 75% VO2max) and RT
(3 times/week, 3 sets of 8–12 repetitions/set) in adults who are overweight [127]. They
reported high-intensity training provided a greater reduction in VAT and total abdominal
fat than RT [127], indicating high-intensity aerobic exercise to be a more effective exercise
mode to reduce visceral fat.

The effects of acute resistance exercise (RE) on adipose tissue have also been investi-
gated by a limited number of studies that documented a transient increase in adipose tissue
lipolysis. For example, one study with trained men reported that acute RE (3 sets of 10
repetitions with a load at 85–100% of the individual’s 1 maximum repetition (1RM), 90 sec
rest periods between all sets and exercises, for a total of 40–45 min) increased SAT lipolysis
during RE, while SAT lipolysis and whole-body fat oxidation were higher immediately
post RE [128]. Another acute RE (one set of 10 repetitions at 40% 1RM and three sets of
10 repetitions at 65% 1RM) study in trained women reported an increase in post-exercise
whole-body fat oxidation and SAT lipolysis [129]. Chatzinikolaou et al. investigated the
effect of performing 30 min of acute circuit RE (3 cycles on 10 machines selected to stress
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the major muscle groups, 10–12 repetitions/set at 70–75% of 1RM with 30 s rests between
sets, and 2 min rests between cycles) on adipose tissue lipolysis in lean men and men
with obesity [130]. The authors documented that adipose tissue triacylglycerol lipase
activity was elevated by 18-fold after 5 min of exercise in lean subjects, whereas a 16-fold
increase was observed 10 min after exercise in males with obesity [130]. In summary, the
overall available body of literature indicates that RT with or without diet modification is
an effective way to reduce BF and control obesity.

3.4. Concurrent Training and Adipose Tissue

Concurrent training (CT) is a designed exercise model involving aerobic and anaer-
obic metabolic pathways so that it can enhance the effects of both aerobic and RT mod-
els [131–133]. Although CT has been used among athletes for multiple decades to enhance
performance in a variety of sports, it has recently grown in popularity [134,135]. As a
combined form of endurance and strength exercise modes, CT induces changes in the car-
diovascular and the neuromuscular systems, providing widespread disturbances occurring
in local and systemic homeostasis that, in turn, results in remarkable adaptation in human
physiology. In addition to providing traditional physiological adaptations known to be
induced by traditional endurance exercise, CT can also improve body composition and
health-related outcomes [132].

The effect of CT on FM and adiposity has been addressed in a variety of studies that
have yielded contrasting results. These discrepancies may be partially due to potential
factors known to alter one’s energy balance, such as caloric intake or EE, which were
not usually considered in previous studies. Furthermore, some studies have reported a
similar improvement in adiposity following CT or aerobic exercise [127,136,137], whereas
other studies documented that CT elicited greater improvement [138]. For example, a
one-year intervention (3 sessions/week) of aerobic (30 min of aerobic exercise at 50–70%
VO2max) plus RT (30 min of RT) induced higher changes in body composition, waist cir-
cumference, and BF in adolescents with obesity rather than aerobic exercise by itself [139].
Similarly, Dâmaso and colleagues compared the effect of aerobic exercise alone or aerobic
plus RT on visceral fat and its role on pro-inflammatory/anti-inflammatory adipokines
in obese adolescents [138]. They reported that aerobic plus RT provided a greater re-
duction in visceral fat and pro-inflammatory adipokines than an aerobic training alone
intervention [138], showing CT to be a more effective strategy to control central obesity
in adolescents. Slentz et al. reported similar significant reductions in VAT, SAT, and
total abdominal fat following aerobic plus RT (3 sessions/week, 12 miles/week at 75%
VO2max plus 3 × 8–12 repetitions/set, 3 sessions/week) and aerobic training alone (3 ses-
sions/week, 12 miles/week at 75% VO2max) in overweight adults [127]. Similarly, Monteiro
et al. reported a significant reduction in waist circumferences and BF% after 20 weeks of
CT (3 times/week, 60 min at 50% of 1RM, followed by 30 min at between 65% and 85%
VO2max aerobic training) and aerobic training (3 times/week, 50 min of continuous exercise
between 65% and 85% VO2max) [136]. Another study reported a significant reduction of
waist circumference (~3%), VAT (~10%), and SAT (~10%) in obese adolescents following
16 weeks of CT (twice/week, 30–45 min/session 70–85% HRmax plus 30–45 min, 12–14
repetitions, low-heavy weights) [140]. Conversely, Norheim et al. investigated the effect
of 12 weeks of CT on human abdominal subcutaneous fat in adults with normal weight
and overweight [141]. The CT program consisted of two aerobic exercise sessions plus
two RT exercise sessions per week. The obtained findings following the training program
showed that there was no significant change in the mRNA level of PPARγ coactivator-1α
(PGC-1α) of SAT, the brown-fat-selective gene Prdm16, or other known browning genes
TBX1, transmembrane protein 26 (TMEM26), or tumor necrosis factor receptor superfamily
member 9 (CD137) [141]. Stinkens et al. reported similar findings showing that 12 weeks
of the CT program did not change abdominal subcutaneous adipocyte size, β2-adrenergic
sensitivity of lipolysis, and adipose tissue gene expression of markers involved in brown-
ing and lipolysis in obese subjects [142]. Collectively, 12 weeks of CT does not seem to
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provide enough stimulus to induce adipocyte morphology and adipose tissue gene/protein
expression in humans [142].

Taken together, it is evident that CT is a preventative and therapeutic exercise model
capable of inducing similar or even superior improvement in adipose tissue and obesity
to traditional endurance exercise. Given that long-term CT increases fat-free mass that
results in a reduction of BF% independent of changes in fat stores, CT can be regarded as an
alternative exercise mode able to decrease BF%. Health authorities should be encouraged to
recommend the incorporation of CT into exercise routines. Furthermore, the effect of CT on
adipose tissue morphology remains equivocal and awaits determination in further studies.
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Table 1. Description of exercise studies that are presented in the exercise section.

Continuous Exercise and Adipose Tissue

Author Year
Participants

(
.

VO2max)
(mL/kg/min)

n (M/F) Duration,
Frequency, Mode Protocols Main Findings Ref

1 Ross et al. 2000 Obese males
(NR) (52/0) 12 weeks, daily, brisk walking

or light jogging

Group 1: Diet
(reducing total daily energy intake to 700

kcal/day)
Group 2: Exercise

(80% of HRmax until 700 kcal is expended)
Group 3: Exercise without weight loss

(enough calories given to compensate for the
energy expended during the daily exercise

sessions)
Group 4: Control group

Reduction in total fat was
greater in group 2

compared with group 1.
Group 2: Substantial

decreased in both SAT and
VAT

Group 3: Attenuation in
abdominal fat and

prevented further weight
gain.

[59]

2 Miyatake
et al. 2002 Obese males

(NR) (31/0) 1 year follow up study, daily,
walking An increase of daily steps from 7013 to 8840

Significantly decreased in
SAT, VAT, and body

composition.
[61]

3 Racette
et al. 2006

Healthy,
non-obese adults

(NR)
(18/30)

1 year,
6 days/wk,

running/cycling/rowing
ergometers/elliptical

machines/stairclimbers

Group 1: 20% calorically-restricted diet
Group 2: Training at 58% of VO2max

Group 3: Healthy lifestyle control group

Significant reduction in fat
mass, SAT, and VAT for

both group 1 and 2.
[60]
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Table 1. Cont.

Continuous Exercise and Adipose Tissue

Author Year
Participants

(
.

VO2max)
(mL/kg/min)

n (M/F) Duration,
Frequency, Mode Protocols Main Findings Ref

4 Durheim
et al. 2008

Sedentary,
dyslipidemic,

overweight males
(~32.8 VO2peak)

females
(~23.9 VO2peak)

(40/33)
8–9 months,
3 days/wk,

aerobic training

Group 1: ∼20 miles/wk of jogging
(65–80% VO2max)

Group 2: 12 miles/wk of jogging
(65%-80% VO2max)

Group 3: 12 miles/wk of brisk walking
(40–55% VO2max)

Significantly reduced in
thigh SAT for all three

groups, but VAT decreased
substantially in men only.

[62]

5 Ross et al. 2015
Abdominally
obese adults

(NR)
(104/196)

24 weeks,
5 days/wk,

walking/jogging/treadmill
training

Group 1: Training at a low-amount,
moderate-intensity exercise at 50% VO2max

(31 min/session)
Group 2: Training at a high-amount,

moderate-intensity exercise at 50% VO2max
(58 min/session)

Group 3: Training at a high-amount,
high-intensity exercise at 75% VO2max

(40-min/session)
Group 4: Control group

Similar reductions were
resulted in total BF, SAT,
and VAT in all training

groups.

[63]

6 Wilmore
et al. 1999 Overweight adults

(NR) (258/299)
20 weeks,

3 days/wk,
cycling

Training at 55% VO2max to at 75% VO2max
for 30 min to 50 min.

Males had a greater loss in
abdominal SAT and VAT

than females. A higher rate
of decline was also seen in
abdominal SAT compared

to VAT.

[65]

7 Irving et al. 2008
Middle-aged
obese women

(~21 VO2peak)
(0/27)

16 weeks,
5 days/wk,

aerobic training

Group 1: Moderate-intensity training (5
days per week at an intensity ≤ LT

Group 2: High-intensity training (3 days per
week at an intensity > LT and 2 days per

week ≤ LT)
Group 3: No-exercise training

No significant changes of
SAT and VAT were

observed in group 1,
whereas group 2 resulted in
reduced total abdominal fat,

SAT, and VAT.

[66]
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Table 1. Cont.

Continuous Exercise and Adipose Tissue

Author Year
Participants

(
.

VO2max)
(mL/kg/min)

n (M/F) Duration,
Frequency, Mode Protocols Main Findings Ref

8 Coker et al. 2009
Overweight

elderly adults
(NR)

(9/9)
12 weeks,

4–5 days/wk,
aerobic training

Group 1: Moderate-intensity (50% VO2peak)
Group 2: High-intensity (75% VO2peak)

A remarkable reduction in
VAT in the high-intensity
group exhibited, while no

change was observed in the
moderate group.

[67]

9 Tanaka
et al. 2020 Healthy adults

(NR) (87/145)
4 months,

NR,
walking/aerobic training

Group 1: WM
Group 2: WM + vigorous-intensity physical

(VPA) activities (VWM)

VPA activities resulted in
high BAT density,

particularly in men.
BAT-density is related to

visceral fat area and VWM
in men, and related to body
fat percentage in women.

[68]

10 Owens
et al. 1999 Obese children

(NR) (25/49)

4 months,
5 days/wk,

exercising on machines and
sports activities

Group 1: 40 min/day at 70–75% HRmax
Group 2: Control group

Significant decrease in BF%,
total BF, and SAT for group

1.
[69]

11 Lee et al. 2005

Lean and obese
male with and
without T2D

(~61.2% VO2peak)

(24/0)
13 weeks:

5 days/wk,
aerobic training

All participants trained for 60 min/day at a
moderate intensity (∼60% VO2peak)

Significant reductions in
total abdominal SAT and

VAT in all groups (lean and
obese males with and

without T2D).
Reduction in VAT was

greater in the obese and
T2D groups when

compared with the lean
group.

[70]
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Table 1. Cont.

Continuous Exercise and Adipose Tissue

Author Year
Participants

(
.

VO2max)
(mL/kg/min)

n (M/F) Duration,
Frequency, Mode Protocols Main Findings Ref

12 Keating
et al. 2015

Inactive and
overweight/obese

adults
(~22.4 VO2peak)

(17/31)
8 weeks,

3–4 days/wk,
brisk walking/cycling

Group 1: Cycling and brisk walk at 50%
VO2peak for 3 days and 1 day/wk,

respectively. (From 45 min in week one to
60 min by the 3rd week, totaling

180–240 min/wk)
Group 2: Cycling and brisk walk at 50%

VO2peak for 2 days and 1 day/wk,
respectively. (From 30 min in week one to

45 min by the 3rd week, totaling
90–135 min/wk)

Group 3: Cycling and brisk walk at 60–70%
VO2peak for 2 days and 1 day/wk,

respectively. (From 30 min in week one to
45 min at 70% VO2peak by the third week,

totaling 90–135 min/wk)
Group 4: Control group

Reduction in liver fat and
VAT for all three groups. [71]

13 Christiansen
et al. 2009 Obese adults

(NR) 79
12 weeks,

3 days/wk,
aerobic training

Group 1: exercise
(60–75 min at 70% VO2max per training

session)
Group 2: hypocaloric diet (600 kcal/day)
Group 3: hypocaloric diet and exercise

Reduction in BW 3.5 kg and
VAT 18% in group 1. Higher

reduction in BW (12.3 kg)
and VAT (30–37%) in group

2 and 3 than group 1.

[72]

14 Walhin
et al. 2016

Sedentary
overweight men

and
postmenopausal

women
(31.5 VO2max)

(24/14)
3 weeks,

5 days/wk,
treadmill

Group 1: Moderate intensity training (50%
VO2max) with caloric restriction

(5000 kcal/wk)
Group 2: Vigorous-intensity training (70%

VO2max) with caloric restriction
(5000 kcal/wk)

Both groups resulted
similar reductions in total

fat and abdominal fat mass,
as well as similarly affected

the expression of the
lipogenic enzymes.

[73]
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Table 1. Cont.

Continuous Exercise and Adipose Tissue

Author Year
Participants

(
.

VO2max)
(mL/kg/min)

n (M/F) Duration,
Frequency, Mode Protocols Main Findings Ref

15 Islam et al. 2018
Active young

males
(NR)

(8/0)
1 day,

acute session,
running

Group 1: 30 min continuous running at 65%
VO2max

Group 2: 30 min of running at 85% VO2max
Group 3: 4 × 30 s “all-out” sprints with 4

min of rest (SIT)
Group 4: No exercise

Increased whole-body fat
oxidation during the

post-exercise recovery
period in all exercise groups
and it was greatest in group

3.

[74]

16 Henderson
et al. 2007

Healthy males
(56.6% VO2peak)

and females
(48.9% VO2peak)

(10/8)
1 day,

acute session,
aerobic exercise

Group 1: 90 min of exercise at 45% VO2peak
Group 2: 60 min of exercise at 65% VO2peak

Substantial increased for
the oxidation of total lipid
and plasma fatty acid in

both groups.
Women was more

dependent on lipid during
exercise, whereas during

recovery, lipid metabolism
is accentuated to a greater

extent in men.

[75]

17 Perreault
et al. 2004

Healthy lean
males (59.4

VO2max) and
females (60

VO2max)

(10/10)
1 day,

acute session,
aerobic exercise

Exercised at 85% LT for 90 min

Significantly increased the
amount of the adipose

tissue lipoprotein lipase
(56%) in men but not

women.

[76]

18 Ludzki
et al. 2020 Obese adults

(NR) (3/7)
1 day,

acute session,
aerobic exercise

Group 1: 60 min acute session at 80%
HRpeak

Group 2: No acute exercise session

Increased the number of the
adipose tissue progenitor
cell phenotype in exercise

group, as well as decreased
of preadipocyte content was

shown in the stromal
vascular cells fraction of
SAT twelve hours after

exercise.

[77]
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Table 1. Cont.

Continuous Exercise and Adipose Tissue

Author Year
Participants

(
.

VO2max)
(mL/kg/min)

n (M/F) Duration,
Frequency, Mode Protocols Main Findings Ref

19 Hojbjerre
et al. 2007

Overweight
(54.6 VO2max) and

lean males
(57.1 VO2max)

(16/0)
1 day,

acute session,
aerobic exercise

Exercised for 1 h at 55% of VO2max

Modification of adipose
tissue mRNA and

interstitial cytokine
concentration in overweight

males.
An increased concentration
of interstitial adiponectin

and IL-6, while the response
at the mRNA level was

different, with IL-6 mRNA
increasing but adiponectin

mRNA decreasing.

[78]

20 Van et al. 2017

Overweight and
obese adults that

active
(51 VO2peak) and

sedentary
(42 VO2peak)

(8/12)
1 day,

acute session,
aerobic exercise

60 min of acute moderate-intensity exercise
at 65% VO2max

Increased SAT mRNA
expression of VEGFA. [79]

21 Fabre et al. 2018
Healthy young

males (46.88
VO2max)

(15/0)
1 day,

acute session,
aerobic exercise

A single session of 15 min exercise at 80%
VO2max

Induction of more than 3800
genes in adipose tissue

from lean and overweight
individuals. Among them
were the genes responsible
for monocyte infiltration.

[80]

22 Campbell
et al. 2013

Overweight/obese
postmenopausal

women
(24.4 VO2max)

(0/45)
12 months,
5 days/wk,

aerobic exercise

Group 1: Exercise (≥45 min of
moderate-to-vigorous intensity exercise)

Group 2: Diet (reducing total daily energy
intake to 1200–2000 kcal/day)

Group 3: Diet plus exercise
Group 4: Control

Compared to the control,
the mean percent BF loss

was: diet, −12.6%, exercise,
−3.1%, diet + exercise,

−13.2%

[81]
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Table 1. Cont.

Continuous Exercise and Adipose Tissue

Author Year
Participants

(
.

VO2max)
(mL/kg/min)

n (M/F) Duration,
Frequency, Mode Protocols Main Findings Ref

23 Richterova
et al. 2004 Obese women

(NR) (0/11)
12 weeks,

3 days/wk,
home-based training

Trained at 50% VO2peak at 40 min
No changed in genes

involved in the control of
SAT lipolysis.

[83]

24 Polak et al. 2006

Obese sedentary
premenopausal

women
(24.6 VO2max)

(0/25)
12 weeks,

5 days/wk,
aerobic training/cycling

2 sessions/wk of supervised aerobic exercise
(50% VO2max) and 3 sessions/wk of

home-based exercise (cycling)

No changes of gene
expression of

adipocytokines in obese
women, while a decrease of
plasma leptin was detected.

[84]

25 Leick et al. 2007

Obese and
non-obese

Adults
(NR)

(18/24)
8 weeks,

3 days/wk,
home-based training

30 min/session at 70% VO2max

Reduction of adipose tissue
IL-18 mRNA content by

20% in obese individuals.
[85]

26 Christiansen
et al. 2010 Obese adults

(NR) (9/10)
12 weeks,

3 days/wk,
home-based training

60–75 min/session at 70% 35–40% VO2max

Significant elevation of the
mRNA expression of

adipose tissue adiponectin
and adiponectin receptors.

[86]

27 Stanford
et al. 2015

Trained or
sedentary donor

mice
(NR)

6
11 days,

daily,
running

Running daily inside the wheel cage.

Increased expression of
many beige adipocyte

marker genes in rodent
SAT.

[49]

28 Trevellin
et al. 2014

8 weeks old male
mice
(NR)

(36/0)
30 days,

daily,
swimming

90 min of swimming
Increased expression of

UCP1 and Prdm16 in mice
SAT.

[88]

29 Otero-Diaz
et al. 2018

Non-diabetic
adults
(NR)

(14/19)
12 weeks,

3 days/wk,
cycling

60 min/session at 43–70% VO2max

Induction of the mRNA
expression of beige/BAT
makers of UCP1, TBX1,

CPT1B in SAT of sedentary
subjects.

[91]
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Table 1. Cont.

High-Intensity Exercise and Adipose Tissue

Author Year
Participants
(

.
V O2max)

(mL/kg/min)
n (M/F) Duration,

Frequency, Mode Protocols Main Findings Ref

1 Higgins
et al. 2016

Inactive
overweight/obese

young women
(NR)

(0/52)
6 weeks,

3 days/wk,
SIT/cycling

Group 1: SIT (30 s “all-out” sprints followed
by 4 min of active recovery)

Group 2: moderate-intensity continuous
training (MICT) at 45–55% HRmax, for

20–30-min

SIT resulted greater loss in
total BF and android fat

than MICT cycling.
[94]

2 Zhang
et al. 2017

Obese young
women

(NR)
(0/43)

12 weeks,
3–4 days/wk,

cycling

Group 1: prolonged MICT 60% VO2max
Group 2: HIIT (90% VO2max, 4 min bout

with 3 min recovery)

Similar reduction in
abdominal SAT and VAT in

both groups.
[97]

3 Riis et al. 2019
Healthy young

males
(43.9 VO2max)

(10/0)
10 weeks,

3 days/wk,
cycling

The first session was 40 min at 70% VO2max,
the second session 2 × 20 min at 80%−90%

VO2max (5 min easy biking in between), and
the third session was 8 × 5 min at 90–100%

(1 min easy biking in between).

Improvement in adipose
tissue insulin sensitivity. [98]

4 Dohlmann
et al. 2018

Healthy sedentary
adults

(27 VO2max)
(5/7)

6 weeks,
3 days/wk,

HIIT

7 × 1 min at 95–100% VO2max, with 1 min
recovery

No change for BF% in
overweight subjects,

whereas the mitochondrial
respiratory capacity in SAT
was reduced after training.

[99]

5 Leggate
et al. 2012

Overweight/obese
sedentary males

(NR)
(12/0)

2 weeks,
3 days/wk,

HIIT
10 × 4 min at 85% VO2max, 2 min rest

Decreased in waist
circumference, as well as

reductions in IL6 and fatty
acid synthase content in

SAT biopsies.

[100]
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Table 1. Cont.

High-Intensity Exercise and Adipose Tissue

Author Year
Participants

(
.

VO2max)
(mL/kg/min)

n (M/F) Duration,
Frequency, Mode Protocols Main Findings Ref

6 Islam et al. 2020
Overweight

women
(30.3 VO2peak)

(0/10)
1 day,

Acute session,
HIIE

HIIE: 10 × 4 min 90% HRmax, separated by
2 min recovery

β-adrenergic and insulin
signaling in subcutaneous
abdominal adipose tissue

remained unchanged
following acute HIIE, while

there was a significant
decrease in the respiratory

exchange ratio.

[101]

7 Astorino
et al. 2013 Sedentary women

(24.2 VO2max) (0/23)
12 weeks,

3 days/wk,
HIIT

Group 1: 6–10 × 60 s intervals at 80–90%
peak power output, with 75 s recovery

Group 2: 6–10 × 60 s intervals at 60–80%
peak power output, with 75 or 60 s recovery

Increased fat oxidation rate
in sedentary (including
both normal weight to

obese) women.

[102]

8 Taylor
et al. 2020

Coronary artery
disease patients

(NR)
42

12 months,
3 days/wk for 4 weeks,

followed by three home-based
sessions/wk for 11 months,

HIIT/MICT

HIIT: 4 × 4 min high-intensity interval
training

MICT: 40 min of usual care

Both exercise interventions
reduced VAT over 3 and 12

months, while HIIT
resulted in a slightly greater

reduction in liver fat
compared with MICT.

[103]

9 Larsen
et al. 2015 Overweight adults

(NR) NR
6 weeks,

3 days/wk,
HIIT

5 × 60 s at ~128% of peak power, 90 s
recovery

No alteration in BF% or
adipose tissue

mitochondrial function.
[105]

10 Whyte
et al. 2010

Overweight/obese
sedentary men

(NR)
(10/0)

2 weeks,
3 days/wk,

Wingate-based SIT

4 to 6 repeats of 30 s Wingate anaerobic
sprints on an electromagnetically braked
cycle ergometer, with 4.5 min recovery.

Significant reduction in
waist and hip circumference

in overweight/obese
sedentary men, as well as

an elevated resting fat
oxidation rate.

[106]
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Table 1. Cont.

High-Intensity Exercise and Adipose Tissue

Author Year
Participants

(
.

VO2max)
(mL/kg/min)

n (M/F) Duration,
Frequency, Mode Protocols Main Findings Ref

11 Honkala
et al. 2020

Inactive, healthy
adults with IR
(<40 VO2peak)

(28/26)
2 weeks,

3 days/wk,
Wingate-based SIT

SIT: 4–6 × 30 s at maximum effort
MICT: 40–60 min at 60% VO2max

Both groups resulted in a
similar reduction in BF%,

abdominal SAT and VAT, as
well as decreased CD26 and
ANGPTL4 gene expression

in SAT.

[107]

12 Cooper
et al. 2016 Overweight men

(NR) (30/0)
12 weeks,

3 days/wk,
SIT

SIT: 4–10 × 30 s sprint efforts with passive
or active recovery

No significant changes in
FM or abdominal VAT. [108]

Resistance Exercise and Adipose Tissue

Author Year
Participants
(

.
V O2max)

(mL/kg/min)
n (M/F) Duration,

Frequency, Mode Protocols Main Findings Ref

1 Schmitz
et al. 2003 Midlife women

(NR) (0/60)
15 weeks,

2 days/wk,
RT

The treatment group performed
twice-weekly supervised strength training

followed by 6 months of unsupervised
training.

Reduction in FM and VAT. [109]

2 Ku et al. 2010 Women with T2D
(NR) (0/44)

12 weeks,
5 days/wk,

RT/aerobic training

RT: elastic band training
Aerobic training: Walking for 60 min at
moderate-intensity (3.6–5.2 metabolic

equivalents)

RT resulted in a greater
reduction in SAT than

aerobic training, as well as
only RT, which decreased

subfascial adipose tissue at
the mid-thigh level.

[110]

3 Treuth
et al. 1994 Healthy men

(NR) (13/0) 16 weeks,
RT 16-week strength-training program Reduction in FM and VAT. [120]
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Table 1. Cont.

Resistance Exercise and Adipose Tissue

Author Year
Participants

(
.

VO2max)
(mL/kg/min)

n (M/F) Duration,
Frequency, Mode Protocols Main Findings Ref

4 Prabhakaran
et al. 1999

Healthy, sedentary,
premenopausal

women
(NR)

(0/24)
14 weeks,

3 days/wk,
RT

Group 1: 45–50 min RT sessions
(85% of 1 RM)

Group 2: no exercise

Reduction in FM and VAT
for group 1. [121]

5 Ross et al. 1996 Obese men
(NR) (33/0)

16 weeks,
5 days/wk,

RT/RT combined with diet
interventions/only diet

intervention

Group 1: RT
Group 2: RT combined with diet

interventions
Group 3: Diet intervention

RT group has shown a
decrease in FM and VAT,

whereas 40% reduction in
visceral fat only observed in

the RT combined diet
group.

[122]

6 Treuth
et al. 1995 Older women

(NR) (0/14)
16 weeks,

3 days/wk,
RT

Strength was assessed by one-repetition
maximum tests, with training intensity

gradually increased to approximately 67% of
one repetition maximum

Significant reduction in
visceral fat. [123]

7 Hunter
et al. 2002 Older adults

(NR) (14/12)
25 weeks,

3 days/wk,
RT

Training consisted of two sets of 10
repetitions at 65–80% of 1 RM

Improvement in fat-free
mass and a reduction in fat

mass in older males and
females.

Substantial loss of
intra-abdominal adipose

tissue (IAAT) and
abdominal SAT in

overweight females, but not
in overweight men.

[124]

8 Rosety
et al. 2015 Obese women

(NR) (0/48)

12 weeks,
3 days/wk,

resistance circuit training
program

This training was circularly performed in six
stations: arm curl, leg extension, seated row,

leg curl, triceps extension and leg press.

Reduced thickness of
epicardial adipose tissue. [125]
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Table 1. Cont.

Resistance Exercise and Adipose Tissue

Author Year
Participants

(
.

VO2max)
(mL/kg/min)

n (M/F) Duration,
Frequency, Mode Protocols Main Findings Ref

9 Ross and
Rissanen 1994 Obese women

(NR) (0/24)

16 weeks,
3 days/wk,

RT/aerobic training combined
with caloric restriction

Group 1: RT
Group 2: aerobic training combined with
caloric restriction (reduced by 1000 kcal)

Substantial similar decrease
in the volume ratio of VAT
to SAT after RT and aerobic

training combined with
caloric restriction.

[126]

10 Slentz et al. 2011 Overweight adults
(NR) (44/56)

8–10 weeks,
3 days/wk,

RT or high-intensity aerobic
training

Group 1: RT (3 times/wk, 3 sets of 8–12
repetitions/set)

Group 2: high-intensity aerobic training (12
miles/wk at 75% VO2max)

High-intensity training
provided a greater

reduction in VAT and total
abdominal fat than RT.

[127]

11 Ormsbee
et al. 2007 Trained men

(NR) (8/0)
1 day,

acute session,
RE

Three sets of 10 repetitions with a load at
85–100% of the individual’s one 1RM, 90 s
rest periods between all sets and exercises,

for a total of 40–45 min

Increased SAT lipolysis
during RE, while SAT

lipolysis and whole-body
fat oxidation were higher

immediately post RE.

[128]

12 Allman
et al. 2019 Trained women

(NR) (0/13)
1 day,

acute session,
RE

One set of 10 repetitions at 40% 1RM and
three sets of 10 repetitions at 65% 1RM

İncreased in post-exercise
whole-body fat oxidation

and SAT lipolysis.
[129]

13 Chatzinikolaou
et al. 2008

Lean men and
obese males

(NR)
(17/0)

1 day,
30 min session,

RE

Three cycles on 10 machines selected to
stress the major muscle groups, 10–12

repetitions/set at 70–75% of one-repetition
maximum with 30 s rests between sets and 2

min rests between cycles

Adipose tissue
triacylglycerol lipase

activity was elevated by
18-fold after 5 min of

exercise in lean subjects,
whereas a 16-fold increase
was observed 10 min after

exercise in obese males.

[130]
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Table 1. Cont.

Resistance Exercise and Adipose Tissue

Author Year
Participants

(
.

VO2max)
(mL/kg/min)

n (M/F) Duration,
Frequency, Mode Protocols Main Findings Ref

Concurrent Training and Adipose Tissue

Author Year
Participants
(

.
VO2max)

(mL/kg/min)
n (M/F) Duration,

Frequency, Mode Protocols Main Findings Ref

1 Slentz et al. 2011 Overweight adults
(NR) (41/51)

8–10 weeks,
3 days/wk,

aerobic plus RT or aerobic
training

Aerobic plus RT: 12 miles/wk at 75%
VO2max plus 3 sets of 8–12 repetitions/set

High-intensity aerobic training: 12 miles/wk
at 75% VO2max

Similar significant
reductions in VAT, SAT, and
total abdominal fat for both

groups.

[127]

2 Monteiro
et al. 2015 Obese adolescents

(NR) 32
20 weeks,

3 days/wk,
CT or aerobic training

CT: 60 min of 50 % of RM, followed by 30
min of 65 and 85% VO2max aerobic training.
Aerobic training: 50 min continuous exercise

at 65–85% VO2max

Significant reduction in
waist circumferences and
BF% after CT and aerobic

training.

[136]

3 Damaso
et al. 2014 Obese adolescents

(NR) 139

1 year,
3 days/wk,

aerobic plus RT or aerobic
training

Group 1: aerobic plus RT
Group 2: AT

Aerobic plus RT provided a
greater reduction in visceral
fat and pro-inflammatory
adipokines than AT alone

intervention.

[138]

4 de Mello
et al. 2011 Obese adolescents

(NR) (20/10)
1 year,

3 days/wk,
aerobic plus RT

Aerobic (30 min of aerobic exercise at
50–70% VO2max) plus RT (3 sets, 6–20
repetitions, 90–45 s/exercise/session)

Induced higher changes in
body composition, waist
circumference, and BF in
obese adolescents than
aerobic exercise only.

[139]

5 Davis et al. 2011 Obese adolescents
(NR) (0/38)

16 weeks,
2 days/wk,

CT

30–45 min/session 70–85% HRmax plus
30–45 min, 12–14 repetitions, low-heavy

weights

Significant reduction of
waist circumference (~3%),

VAT (~10%), and SAT
(~10%).

[140]
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Table 1. Cont.

Resistance Exercise and Adipose Tissue

Author Year
Participants

(
.

VO2max)
(mL/kg/min)

n (M/F) Duration,
Frequency, Mode Protocols Main Findings Ref

6 Norheim
et al. 2014

Overweight
males
(NR)

(26/0)
12 weeks,

4 days/wk,
aerobic plus RT

12 weeks of CT

Chronic training increased
the mRNA level of PGC-1α

of SAT by 1.2-fold and
1.6-fold in the control group
and the pre-diabetes group,

respectively, whereas no
significant changes neither
in the brown-fat-selective

gene Prdm16 or other
known browning genes

TBX1, TMEM26, and CD137
for both groups.

[141]

7 Stinkens
et al. 2018 Obese males

(NR) (21/0)
12 weeks,

3 days/wk,
CT

Aerobic exercise (30 min at 70% of maximal
power output) + resistance exercise (3 × 10
repetitions at 60% of 1 repeated maximum)

No significant changes in
abdominal subcutaneous

adipocyte size,
β2-adrenergic sensitivity of
lipolysis, and adipose tissue
gene expression of markers
involved in browning and
lipolysis in obese subjects.

[142]

BAT: brown adipose tissue. BF: body fat. BW: body weight. CD137: tumor necrosis factor receptor superfamily member 9. CPT1B: carnitine palmitoyltransferase 1B. CT: concurrent training. FM: fat mass.
HRmax: maximal heart rate. HRpeak: peak heart rate. HIIE: high-intensity interval exercise. HIIT: high-intensity interval training. IL-6: Interleukin 6. IL-18: Interleukin 18. LT: lactate threshold. MICT:
moderate-intensity continuous training. NR: not reported. PGC-1α: peroxisome proliferator-activated receptor gamma coactivator-1-alpha. Prdm16: PR domain containing 16. RE: resistance exercise. RM:
repetition maximum. RT: resistance training. 1RM: 1 maximum repetition. SAT: subcutaneous adipose tissue. SIT: sprint interval training. TBX1: T-box transcription factor 1. TMEM26: Transmembrane protein 26.
T2D: type 2 diabetes. UCP 1: uncoupling protein 1. VAT: visceral adipose tissue. VEGFA: Vascular Endothelial Growth Factor A. VO2max: maximal oxygen uptake. VO2peak: peak oxygen uptake. VPA:
vigorous-intensity physical activities. VWM: walking and moderate physical activity + vigorous-intensity physical activities. WM: walking and moderate physical activity.
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4. Diet Strategies to Prevent Obesity and Improve Adipose Tissue Health

Adipose tissue is a metabolically dynamic organ that is considered not only the
primary storage site for excess energy but also an endocrine organ capable of synthesizing
several biologically active compounds that regulate metabolic homeostasis [143]. Excess
adiposity leads to several changes in the biology, morphology, and function of adipose
tissue, such as adipocyte hypertrophy and hyperplasia, adipose tissue inflammation, and
fibrosis, and impaired secretion of adipokines, contributing to the onset of obesity-related
comorbidities [144]. Since one of the main causes of obesity is positive energy balance in
which energy intake exceeds EE, the first approach for excess BF management and obesity
prevention is the implementation of a diet combined with increased PA [145]. Although
the importance of energy intake and diet composition in metabolism and energy balance
have been emphasized in general [146], molecular adaptation of adipose tissue and the
degree of weight loss in response to a variety of diets is still a matter of debate [147].

This section summarizes the effects of various diets on adipose tissue, body composi-
tion, and metabolism under the three main headings. Manipulation of diet composition
(low-carbohydrate (CHO), low-fat, high-fat, high-protein), manipulation of timing (in-
termittent fasting (IF): periodic fasting, alternate-day fasting, time-restricted eating), and
elimination/restriction of a specific food group (plant-based diets (PBDs), Mediterranean
diet). The diet studies included in the following sections are described in greater detail in
Table 2.

4.1. Manipulation of Diet Composition

There is ample evidence that supports moderate weight loss has many beneficial
health effects [148]. Even though reducing energy intake and increasing EE are widely
recommended for weight loss and improving body composition, there is still a continuous
debate over the optimal macronutrient composition of the diet, such as low-CHO high-fat
(LCHF) diets, low-fat high-CHO (LFHC) diets, ketogenic diets (KD), and high-protein diets
(HPD).

Dietary CHO and excess secretion of insulin play a major role in the accumulation of
BF [149,150], which is referred to as the CHO-insulin model of obesity [151]. This model
suggests that a high proportion of CHO in the diet is likely to result in increased insulin
secretion, which suppresses the release of fatty acids into circulation, leading to increased
fat storage [152]. Furthermore, the reduced availability of fatty acids to metabolically
active tissues leads to a state of cellular starvation, possibly due to an increased ratio
of cellular adenosine monophosphate to adenosine triphosphate [153], resulting in an
adaptive decrease in EE and an increase in food intake [149,153]. Therefore, it is speculated
that the positive energy balance associated with the development of obesity is the result
of an insulin-driven shift toward fat storage and a decrease in fat oxidation due to an
increased proportion of dietary CHO [152]. In this context, diets that suppress the increase
in blood glucose levels after eating likely provide a metabolic advantage. Thus, one of the
possible effective methods of preventing or reducing the risk of the CHO-insulin model
of obesity is to reduce the CHO proportion of the diet [154]. Low-CHO diets (LCDs) for
decreasing BW have been known since the 1860s [155]. LCDs are based on the assumption
that decreasing dietary CHO and increasing the amount of fat may reduce insulin secretion,
increase fat mobilization from adipose tissue, and stimulate the oxidation of free fatty
acids [152,156]. As a result, these metabolic changes eventually can lead to a decrease
in hunger as well as an increase in BF loss and EE [152]. LCDs, <26% CHO of total
energy intake or <130 g CHO/day, contain an average of 20 to 120 g of CHO, which
can be planned as either high protein-normal fat or a normal protein-high fat diet. A
varying amount of weight loss has been reported after diets with altered macronutrients
composition [152,157]. A meta-analysis that included the studies with a duration of
6 months or longer dietary intervention, investigated the effects of LCDs and low-fat
diets (LFDs) on weight loss [158]. The results showed that people on LCDs experienced
greater BW loss (2.17 kg). Despite the sound theory of the CHO-insulin model of obesity,



Nutrients 2021, 13, 1459 27 of 56

conflicting results have been found in clinical trials comparing LCDs with LFDs. Studies
comparing the effectiveness of these two diets documented similar weight loss in both
groups [152,157,159], and even more increased BF loss was reported when dietary fat was
reduced rather than CHO [160]. Moreover, a meta-analysis by Hall et al. who reviewed
32 controlled studies concluded that both EE and fat loss were greater with lower fat
diets when compared with isocaloric LCDs [154]. Additionally, some systematic reviews
comparing the effects of LCHF diets and LFHC diets on weight control have concluded
that both diets have similar effects on weight loss [161–163]. The effect of LCDs on adipose
tissue metabolism is still controversial. Similarly, a recent systematic review [164] and
meta-analysis studies [165] have documented that, although it is biologically plausible
that the ingestion of dietary components can alter human BAT activity, the current level of
evidence shows human BAT activity is not significantly affected by nutrition/diet. More
work is needed to understand whether dietary components can exert a profound effect on
human BAT that will allow us to reveal effective diet interventions able to activate and
recruit human BAT.

KD is another type of LCHF diets that involves severely limiting CHO intake while
maintaining moderate protein intake and consuming a minimum of 70% of energy from
healthful fats [166]. KD was introduced in the 1920s to mimic the metabolism of fasting to
treat epilepsy [167] and has recently gained significant momentum as a diet manipulation
model for promoting weight loss and treatment of T2D [168]. Current evidence suggests
that KDs, that are considered to be a safe and effective method for weight loss and improv-
ing metabolic control [169–171], can lead to a decrease in CHO metabolism, an increase in
lipid oxidation, and an improved conversion of free fatty acids into ketone bodies [168].
In addition, it has been reported that there might be some side effects observed following
KDs, such as headache, fatigue, constipation, and muscle cramps, especially in the period
of adaptation to the diet [166,172]. Furthermore, a meta-analysis that investigated the
association between the percentage of energy from CHO intake and all-cause mortality
has reported that both low and high percentages of CHO were associated with increased
mortality, and, therefore, the authors suggested that CHO intake should be 50–55% of total
energy intake for minimal risk [173].

The success of an LCD is also attributed to its high protein content, rather than low
CHO content [174]. HPD is a diet that has a high-fat content and at least 20% of energy
derived from protein. The contribution of dietary protein to weight loss and long-term
weight maintenance is attributed to the following effects: sustainment of the feeling of
satiety despite a negative energy balance, maintenance of basal EE despite BW loss, and
prevention of the fat-free mass loss [174]. Furthermore, HPDs are suggested to be more
effective in weight loss compared to high CHO or high fat diets due to high satiating and
thermogenic effects of proteins [175–178]. In contrast, some clinical trials lasting more
than one year indicated no significant difference in weight loss following HPDs [179,180].
Furthermore, HPDs often contain high amounts of animal foods and saturated fat, which
can have detrimental effects on cardiovascular health.

In conclusion, although LCDs have several potential benefits for the treatment of
obesity, more research is required to understand their long-term effects as well as the
variable effects on the endocrine control of glucose and lipid metabolism. When evaluated
in terms of HPDs, although higher protein intake seems to provide beneficial effects on
weight control, there are some caveats, such as increased acid load on the kidneys or
higher saturated fat content of animal proteins. More research is needed to demonstrate
the long-term effects of both LCDs and HPDs.

4.2. Elimination/Restriction of a Specific Food Group: Plant-Based Diets

Excess BF is an important risk factor for cardiometabolic diseases and the associated
mortality [181]. Dietary composition and a high level of blood triglycerides are associated
with increased BF [182]. In this regard, PBDs, defined as dietary patterns that include foods
of plant origin, especially vegetables, fruits, grains, and legumes, have been suggested
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to have beneficial effects on blood lipids and adiposity [183]. PBDs including vegan and
vegetarian diets [184], Mediterranean style diet [172], and the Nordic diet [185] usually
exclude or rarely include meats, but may contain dairy products, eggs, and fish. PBDs
have been associated with a reduced risk for developing chronic diseases [183,186–189].
Additionally, there is an increasing number of research studies that indicates the use of
PBDs as an effective dietary approach for weight loss [184]. Furthermore, the diet content
of the PBDs may be of higher quality than other energy-restricted diets [183].

Several studies have reported that PBDs may lower BMI and result in an improvement
in chronic diseases [183,187]. In the Adventist Health Study-2, mean BMI was found
to be highest in meat-eaters and lowest in those who avoided all animal products [190].
Similarly, a recent study showed a decrease in BMI of 4.4 kg/m2 with a six-month of
PBD with no energy restrictions, compared with usual care (0.4 kg/m2), in overweight or
obese individuals [191]. Potential mechanisms behind this link may involve numerous
biologic pathways, including changes in satiety [192] and inflammation [186]. Furthermore,
a meta-analysis showed that PBDs are associated with an improvement in obesity-related
inflammatory profiles and could provide a cure for therapy and prevention of chronic
disease risk [186]. It is also worth noting that some of the plant-based foods include
bioactive compounds, which have anti-obesity and anti-inflammatory effects [193]. A
bioactive compound is a substance that has biological activity and can improve health
conditions. Fruits, vegetables, nuts, seeds, and spices are rich in bioactive compounds. Two
recent reviews [194,195] have reported a strong association between the health benefits
of foods containing bioactive compounds and their ability to regulate gene expression in
adipose tissue, based on the clinical studies, in vivo studies, and in vitro studies. Therefore,
dietary interventions that have limited adverse effects and include more bioactive food
compounds might be effective strategies in preventing obesity and metabolic diseases.

Compared with diets rich in animal products, PBDs contain lower amounts of total fat,
saturated fat, cholesterol, and total energy, while being rich in unsaturated fatty acids and
fiber [196]. Increased dietary fiber contributes to satiety by increasing the volume of food in
the stomach, decreases the energy density of the diet, and, thus, results in weight loss [197].
Furthermore, the increased dietary fiber has a cholesterol-lowering effect, as soluble fibers
bind bile acids in the small intestines and increase the excretion of bile salts in the feces [198].
Therefore, a high fiber consumption, accomplished with greater adherence to a PBD, has
been associated with decreased bodyweight, lower blood pressure, decreased risk of T2D,
and improved blood lipids [199]. Furthermore, PBDs are rich in antioxidants (especially
vitamin C and E) and exert anti-inflammatory effects [200]. In addition, vegetable proteins
in PBDs are known to decrease the levels of blood lipids and the risk of obesity and
cardiovascular disease, and induce hepatic fatty acid oxidation [201,202].

A study investigated whether adhering to more PBD, beyond strict vegan or vegetarian
diets could help prevent adiposity in a middle-aged and elderly population [203]. In this
population-based cohort of middle-aged and elderly participants, a higher adherence to
a more plant-based, less animal-based diet was associated with less adiposity over time,
irrespective of the general healthfulness of the specific plant and animal-based foods [203].
Similarly, Ratjen et al. [204] found that adherence to PBDs was associated with lower VAT.
Furthermore, the effects of PBDs may differ according to the plant-based dietary spectrum.
In this respect, Turner-McGrievy et al. [205] compared the effectiveness of five different
PBDs (vegan [n = 12], vegetarian [n = 13], pesco-vegetarian [n = 13], semi-vegetarian
[n = 13], or omnivorous [n = 12]) for weight loss. The results showed that the weight loss
in the vegan group was significantly higher than the omnivorous, semi-vegetarian, and
pesco-vegetarian groups. On the other hand, restricting or eliminating a food group from
the diet can result in nutrient deficiencies, especially for pregnant or lactating women,
children, and adolescents [206]. Therefore, it should be considered that some nutritional
deficiencies including protein, calcium, iron, and vitamin B12 may be due to PBDs [199].

In summary, PBDs appear to reduce the risk of metabolic syndrome and are associated
with lower BMI, lower concentrations of triglycerides, and total and low-density lipoprotein
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cholesterol. Additional research that examines the effects of PBDs on adipose tissue and
obesity management for longer periods are needed.

4.3. Manipulation of Timing: Intermittent Fasting

The negative energy balance required for weight loss may be achieved by using
20–40% daily calorie restriction [145]. In recent years, a periodic and repeated energy
restriction strategy, namely IF, have become increasingly popular as an alternative weight
loss strategy. IF consists of abstaining from food and caloric beverages for a certain period
alternated with normal eating [207]. IF strategies may differ in length and the frequency of
the fasting durations. IF can be combined with exercise interventions and other diet types.
The most common types of IF include periodic fasting or 5:2 diet, alternate-day fasting,
time-restricted feeding, and religious fasting [207]. The main aim of fasting is to promote
changes in metabolic pathways, cellular processes, and hormones [208]. The most common
physiological changes observed in response to IF include improved insulin sensitivity and
reduced levels of blood pressure, BF, fasting glucose, and inflammation [207,209].

Various reviews have compared the results of IF with continuous energy restric-
tion [210,211]. One of these reviews has reported that IF led to 3–8% reductions in BW after
3 to 24 weeks and 4–14% reductions after 6 to 24 weeks in comparison to an energy restric-
tion regimen [210]. A study comparing the effects of IF or continuous energy restriction on
weight loss and metabolic disease risk markers in young, overweight women indicated that
intermittent energy restriction is an effective intervention as continuous energy restriction
in reducing BW [212]. Another study that also compared the effects of intermittent and
continuous energy restriction on body composition and adipose tissue gene expression over
50 weeks showed that intermittent calorie restriction may be equivalent but not superior
to continuous calorie restriction for weight loss [213]. In a long-term, randomized clinical
trial, consisting of 6 months of a weight loss phase and 6 months of a weight maintenance
phase, Trepanowski et al. [214] compared the effects of alternate-day fasting vs. daily
calorie restriction on weight loss, weight maintenance, and risk indicators for cardiovas-
cular disease in adults with metabolically healthy obesity. Findings of the study [214]
revealed that alternate-day fasting and the daily calorie restriction resulted in a similar
weigh loss at month 6 (−6.8% vs. −6.8%) and at month 12 (−6.0% vs. −5.3%), and that the
risk factors for cardiovascular disease including blood pressure, heart rate, triglycerides,
fasting glucose, fasting insulin, insulin resistance, C-reactive protein, and homocysteine
concentrations at month 6 and 12 were similar in the intervention groups. However, the
dropout rate was higher in the alternate-day fasting group (38%) as compared to the daily
calorie restriction group (29%). The authors [214] concluded that alternate-day fasting did
not produce superior adherence, weight loss, weight maintenance, or cardio-protection
vs. daily calorie restriction. Results from these intervention studies concluded that these
timing manipulation patterns result in weight loss, with modest and mixed effects on
glucose metabolism and lipid levels.

Furthermore, it is worth mentioning that short-term side effects of fasting are de-
pendent on the length of the fasting period and may be similar to KD, such as fatigue,
headaches, and constipation [215]. Research also shows that IF can be beneficial in eating
behaviours and mood among subjects who are overweight and obese, but might have harm-
ful effects among normal weight individuals with unrestrained eating behaviours [212,215].
It is also important to consider that IF might have harmful effects on children and elderly
individuals.

In summary, there is growing evidence that shows the metabolic health benefits of IF,
making IF a feasible, safe, and tolerable diet model for promoting metabolic health and
weight loss. In addition, current evidence shows that IF does not lead to a higher weight
loss in comparison with continuous calorie restriction regimens and there are limited data
regarding other clinical outcomes, such as diabetes and cardiovascular diseases. Further
research is needed to determine the long-term effects of IF regimens on health in different
populations.
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Table 2. Description of diet studies that are presented in the diet section.

Effects of Diet Composition Manipulation on Body Weight and Health

Author Year Diet Participants n (M/F) Duration Main Findings Ref

1 Hall et al. 2016
Low-CHO ketogenic

isocaloric diet or high-CHO
diet

Overweight and obese
men

Mean age: 33 ± 1.8 y
BMI: 28.8 ± 0.8 kg/m2

(17/0)

4 weeks
high-CHO diet

and
4 weeks ketogenic

diet

Weight loss
KD: 2.2 ± 0.3 kg

(0.5 ± 0.2 kg from loss of body fat)
BD: 0.8 ± 0.2 kg

(0.5 ± 0.1 kg from loss of body fat)
Increase in EEchamber, sleeping EE and EEDLW,

decrease in RQ compared with baseline diet

[152]

2 Foster et al. 2010

LCD or LFD
(limiting energy intake to

1200 to 1500 kcal/d for
women and 1500 to 1800

kcal/d for men, 55% CHO,
30% fat, 15% protein)

Obese adults
45.5 ± 9.7 y

BMI: 36.1± 3.5 kg/m2
(99/208) 2 years

Weight loss
LCD: −6.34 kg
LFD: −7.37 kg
Fat mass loss

LCD: −3.99 kg
LFD: −3.84 kg

Higher increase in HDL in LCD group
Similar reductions in TG, LDL, VLDL, systolic

blood pressure

[157]

3 Ebbeling
et al. 2012

Isocaloric LFD (60% CHO
20% fat, 20% protein) or

low-glycemic index diet (40%
CHO, 40% fat, 20% protein),

or VLCD (10% CHO, 60% fat,
30% protein)

Overweight and obese
young adults

Mean age: 30.3 ± 5.7 y
BMI: 34.4 ± 4.9 kg/m2

(13/8) Crossover design;
12 weeks

Highest decreases in REE and TEE with LFD.
Leptin level was highest in the LFD and lowest
in the VLCD. HDL was highest in VLCD and

lowest in LFD.

[159]

4 Hall et al. 2015 Isocaloric reduced fat diet or
reduced CHO diet

Obese adults
Mean age: 35.4 ± 1.74 y
BMI: 35.9 ± 1.1 kg/m2

(10/9) 5 to 7 weeks

Greater weight loss and increased fat oxidation
in RC diet than RF diet at the 6th day and
greater fat loss (463 ± 37 g) in the RF diet

compared to the RC diet (245 ± 21 g).

[160]

5 Dyson
et al. 2007 LCD (≤40 g CHO/day)

or healthy-eating diet

Overweight or obese with
T2DM or non-diabetic

Mean age: 52 ± 9 y
BMI: 35.1 ± 7.0 kg/m2

(8/18) 3 months

Weight loss
LCD: −6.9 kg

Healthy eating diet: −2.1 kg
No difference in changes in HbA1c, ketone, or

lipid levels.

[169]
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Table 2. Cont.

Effects of Diet Composition Manipulation on Body Weight and Health

Author Year Diet Participants n (M/F) Duration Main Findings Ref

6 Goday
et al. 2016 Very low-calorie-ketogenic

(VLCK) or low-calorie diet

Obese adults with T2DM
Mean age: 54.5 ± 8.4 y

BMI: 33.07 ± 1.56 kg/m2
(31/58) 4 months

Weight loss
VLCK: −14.7 kg

LC: −5 kg
The reduction in HbA1c and glycemic control

was greater in the VLCK group.

[170]

7 Harvey
et al. 2019

VLCKD (5% CHO)
or LCD (15% CHO)

or moderate-low CHO diet
(MCD) (25% CHO)

Healthy adults
Mean age: 38.9 ± 7.1 y

BMI: 27.0 ± 3.96 kg/m2
(14/25) 12 weeks

Weight loss
VLCKD: −4.12 kg

LCD: −3.93 kg
MCD: −2.97 kg

Similar reductions in total cholesterol, LDL, TG,
and increase in HDL

[171]

8 Dalle
Grave et al. 2013

HPD (34% protein, 46% CHO)
or HCD

(17% proteins, 64% CHO)

Obese adults
Mean age: 46.7 ± 11.1 y
BMI: 45.6 ± 6.7 kg/m2

(37/51) 1 year

Weight loss
HPD: −18.1 kg (15.0%)

HCD: −15.9 (13.3%)
Similar reductions in TG, LDL, total cholesterol,
glucose, and insulin levels and increase in HDL.

[179]

Effects of Plant-Based Diets on Body Weight and Health

Author Year Diet Participants n (M/F) Duration Main Findings Ref

1 Wright
et al. 2017

Low-fat plant-based diet
(7–15% total energy from fat)

or control

Obese, overweight, and
diagnosed with at least
one of T2DM, ischaemic

heart disease,
hypertension or

hypercholesterolaemia
Mean age: 56 ± 9.7 y

BMI: 34.3 ± 1.9 kg/m2

(26/39) 6 to 12 months Significant reduction in BMI (4.2 kg/m2) in diet
group

[191]
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Table 2. Cont.

Effects of Diet Composition Manipulation on Body Weight and Health

Author Year Diet Participants n (M/F) Duration Main Findings Ref

2 Thompson
et al. 2005

Standard diet or
high-dairy diet or

high-fiber and high-dairy diet

Obese adults
Mean age: 41.4 ± 8.9 y
BMI: 34.8 ± 3.1 kg/m2

(72/0) 48 weeks

Similar weight loss in all diet groups
Standard diet: 10.1 kg

High-dairy diet: 11.7 kg
High fiber and high dairy diet: 10.4

Similar fat mass loss in all diet groups
Standard diet: −7.5 kg

High-dairy diet: −9.0 kg
High fiber and high dairy diet: −8.5 kg

Similar increase in HDL and reductions in total
cholesterol, LDL, fasting glucose and insulin,

leptin, hs-CRP

[197]

3
Turner-

McGrievy
et al.

2015

Vegan
Vegetarian

Pesco-vegetarian
Semi-vegetarian

Omnivorous

Overweight or obese
adults

Mean age: 48.74 ± 7.5 y
BMI: 34.96 ± 5.2 kg/m2

(17/46) 6 months

Weight loss
Vegan: −7.5%

Vegetarian: −6.3%
Pesco-vegetarian: −3.2%
Semi-vegetarian: −3.2%

Omnivorous: −3.1%

[205]

Effects of Intermittent Fasting on Body Weight and Health

Author Year Diet Participants n (M/F) Duration Main Findings Ref

1 Varady
et al. 2009

Alternate day fasting
(Fast day: 25% of energy
needs, alternated day: ad

libitum food intake)

Obese adults
Mean age: 46.0 ± 2.4 y
BMI: 33.8 ± 1.0 kg/m2

(4/12) 10 weeks

Weight loss
−5.6 ± 1.0 kg

Body fat percent decreased from 45 ± 2% to 42
± 2%

Significant decreases in total cholesterol, LDL,
TG, and blood pressure

[209]
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Table 2. Cont.

Effects of Diet Composition Manipulation on Body Weight and Health

Author Year Diet Participants n (M/F) Duration Main Findings Ref

2 Harvie
et al. 2011

IER
(∼2710 kJ/day for 2

days/week) or
CER (∼6276 kJ/day for 7

days/week)

Overweight or obese
premenopausal women
Mean age: 40.05 y BMI:

30.6 ± 5.1 kg/m2

(0/107) 6 months

Weight loss
IER: −6.4 kg
CER: −5.6 kg

Similar reductions in hs-CRP, leptin, total
cholesterol, LDL, TG, and blood pressure.
Reductions in fasting insulin and insulin

resistance in both groups greater in the IER
group.

[212]

3 Schübel
et al. 2018

ICR (5:2, weekly energy
deficit ∼20%) or CCR

(daily energy deficit ∼20%)
or control group

Overweight and obese
adults

Mean age: 50.2 ± 8 y
BMI: 31.4 ± 3.8 kg/m2

ICR: n: 49
CCR: n: 49

Control: n:52
50 weeks

Weight loss
ICR: −5.2% ± 1.2%,
CCR: −4.9% ± 1.1%

Control: −1.7% ± 0.8%
Similar reductions LDL, HDL, cholesterol, TG,

insulin, HOMA-IR levels, and adipokines
(adiponectin, leptin)

[213]

BMI, body mass index. CER, continuous energy restriction. CCR, continuous calorie restriction. CHO, carbohydrate. EE, energy expenditure. EEDLW, energy expenditure measured by doubly labeled water.
HCD, high-carbohydrate diet. HDL, high-density lipoprotein. hs-CRP, high sensitivity C-reactive protein. HPD, high-protein diet. ICR, intermittent calorie restriction. IER, intermittent energy restriction. LCD,
low-carbohydrate diet. LDL, low-density lipoprotein. LFD, low-fat diet. REE, resting energy expenditure. TEE, total energy expenditure. TG, triglyceride. T2D, type 2 diabetes. VLCD, very low-carbohydrate
diet. VLCK, very low-calorie-ketogenic. VLCKD, very low-carbohydrate ketogenic diet. VLDL, very low-density lipoprotein.
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5. Cytokines That Burn Our Fire: Are They the Cornerstones of Obesity Treatment for
the Foreseeable Future?

PA has been the cure for a healthy life and longevity since ~450 BC [216]. In the 1960s,
with the technological advancements, the first scientific papers began publishing and pro-
vided mechanistic insight into how acute or chronic exercise could make a remarkable and
paradigm shift in human physiology [217–219]. Although the existing literature attributes
the health benefits of PA to reduced adiposity, increased cardiorespiratory fitness, reduced
levels of circulating lipids, and the maintenance of muscle mass [220], the exact molecu-
lar mechanisms by which PA promotes human health is not fully elucidated. Moreover,
over the last 20 years, considerable attention has been given to the interaction between
skeletal muscle and the beneficial effects of exercise on health and compelling scientific
evidence has proven that skeletal muscle is an endocrine organ in which various cytokines
and peptides termed “myokines” are secreted. These molecules play a major role in the
disease-preventative effects of regular PA [34]. Furthermore, it is well documented that
proteins, peptides, enzymes, and metabolites released from other organs exert profound
effects on several tissues including adipose tissue and skeletal muscle, and physiological
functions, such as insulin sensitivity and glucose disposal. In this section, we will discuss
some of these cytokines that have an important role in the therapeutic effects of exercise
in the prevention of obesity. Potential role of exercise-induced myokines on browning
of white adipocytes, energy expenditure, fat mass, mitochondrial biogenesis, and insulin
sensitivity are presented schematically in Figure 1.
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5.1. Brain-Derived Neurotrophic Factor

As a member of the neuro-trophin family, BDNF is a small, basic protein expressed
in the brain [221] and, to a lesser extent, in skeletal muscle [222]. BDNF plays a primary
role in the regulation of neuronal development, growth, and maintenance of neurons and
modulates synaptic plasticity in the central nervous system (CNS) [223]. In addition to
the essential role of BDNF in the CNS, it is involved in the control of BW, energy home-
ostasis, and EE in mice [224]. For example, obesity phenotypes, hyper-insulinaemia, and
hyperglycemia were observed in mice with the BDNF gene deleted in excitatory neurons
in the brain [225] and reduction in BDNF activity was shown to lead to abnormalities
in eating behaviour [226], indicating a novel function of BDNF for energy homeostasis.
In agreement with this finding, Lyons et al. reported that mice with global deletion of
BDNF gene had, on average, 34% higher BW due to increased BF content as the primary
cause and consuming 25% more food than their wild-type littermates [227]. Similarly,
Yong et al. revealed that deleting the BDNF gene in the adult ventromedial hypothalamus
resulted in significant hyperphagia and obesity in mice [228]. In support of this, Wang
et al. showed that administration of BDNF in the hypothalamic paraventricular nucleus
(PVN) plays an essential role in the regulation of energy metabolism, reduces BW due to
a decrease in food intake, and an increase in EE [229], showing a novel role for BDNF in
the PVN and the components of energy balance. Collectively, ample evidence suggests
the key role of the BDNF gene in obesity. Furthermore, similar to exercise [230–233],
central and peripheral exogenous BDNF treatments are known to decrease food intake,
increase EE, reduce body weight, ameliorate hyper-insulinaemia, and hyperglycemia in
mice [226,227], partly by inducing UCP1 gene expression reported to increase in BAT by
53.3% following administration of BDNF [229]. In addition, Cheng et al. reported that
BDNF stimulated PGC-1α-dependent mitochondrial biogenesis, as indicated by increases
in mitochondrial mass and upregulation of PGC-1α promoter activity and transcription
and expression of PGC-1α [234]. These findings show that BDNF seems to be a therapeutic
adjunct in the treatment of obesity. In humans, evidence-based research has revealed that
the systemic level of BDNF is lower in obese people and T2D when compared to healthy
individuals [235,236]. This case was also reported to impair glucose metabolism [235].

There has been growing interest in the effects of exercise on BDNF and in the role of
BDNF in therapeutic effects of exercise since the elegant study of Neeper et al. reported for
the first time that exercise increased BDNF gene expression in specific brain regions [237].
In the following years, it was reported that exercise can increase BDNF levels in rats [238]
and humans [222]. A meta-analysis that reviewed 29 published papers showed that
aerobic but not RT can increase resting BDNF concentration in peripheral blood in humans
independent of exercise duration, intensity, and session time [239]. Another meta-analysis
by Szuhany et al. showed that a single session of exercise can result in increased BNDF
concentration in humans [240], suggesting acute exercise-induced upregulation of BDNF
through which exercise is likely to improve cognitive function. Importantly, considering
the lack of central function of BDNF leads to obesity [225], exercise intervention that results
in increased BDNF should be encouraged to prevent obesity for all age groups. A study by
Matthews et al. aimed to determine the signalling processes of BDNF following exercise
intervention in humans, and reported that BDNF is an exercise-inducible protein that
increases lipid oxidation in skeletal muscle by activating AMP-activated protein kinase
(AMPK) [222], which is an important molecule in energy homeostasis [241]. However, since
significant amounts of muscle-derived BDNF was not released into the circulation following
exercise [222], it is tempting to speculate that there must be other sources responsible for
the increased BDNF following exercise. For example, it has recently been shown that an
exercise-induced increase in BDNF in the mouse brain is mediated by PGC-1α known to
increase in response to exercise [242]. Moreover, platelets that are known to store BDNF
and release it upon agonist stimulation are another alternative source of enhanced BDNF
in the periphery following exercise, as shown in humans [243].
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In summary, when BDNF was first discovered, its role in cognitive functions was
emphasized in particular. In the following years, it was shown that BDNF is also an
important regulator of metabolism. Although there has been some encouraging progress
to unravel the mechanism through which BDNF affects energy metabolism, we are still far
from a complete understanding of the role of BDNF in metabolism. Therefore, the essential
function of BDNF in metabolism and exercise-induced changes in BDNF in the brain and
skeletal muscle seem to be a fertile area of research for preventing and treating obesity.
Further studies that reveal the relationship between BDNF and other molecules involved
in metabolism and adipose tissue are also warranted.

5.2. β-Aminoisobutyric Acid

β-aminoisobutyric acid (BAIBA) is a nonprotein β-amino acid identified for the first
time in human urine in 1951 [244], which is a recently discovered small myokine produced
and secreted by skeletal muscle, as shown both in mice and human [245], and exerts either
paracrine or endocrine effects to alter the physiological functions of target tissues [246].
BAIBA has two enantiomers in biological systems as R-BAIBA (D-BAIBA) and S-BAIBA
(L-BAIBA) [247] and the total amount of BAIBA in human plasma was shown to consist
of 98% R-BAIBA and only 2% S-BAIBA [248]. Studies that aimed to reveal the effects of
BAIBA on metabolism showed that BAIBA is a myokine controlled by PGC-1α and acts
in a myokine-specific manner [245], explaining lower plasma BAIBA in individuals with
advanced age than young subjects [249].

Both animal and human studies suggest that BAIBA increases fat oxidation, reduces
fat mass, improves glucose homeostasis, and prevents diet-induced obesity. In this regard,
Begriche and colleagues showed that BAIBA significantly prevented diet-induced obesity,
glucose intolerance, and hypertriglyceridemia in mice treated with BAIBA [250]. Another
finding of this study was that BAIBA mediated its function through a leptin-dependent
stimulation of mitochondrial fat oxidation [250]. Furthermore, chronic administration of
BAIBA was reported to be an effective way to reduce fat mass [245], inducing browning of
white fat tissue by increasing the expression of brown adipocyte-specific genes [245] and fat
oxidation [251]. More recently, a pioneering study by Robert et al. documented that BAIBA
markedly induced the gene expression of the mitochondrial UCP1 and mitochondrial
biogenesis transcription coactivator PGC-1α [245] associated with BAIBA-induced fat loss.
These effects of BAIBA were mediated via peroxisome proliferator-activated receptor alpha
(PPARα), which plays a primary role in increasing fat oxidation and BAT metabolism [245].
Furthermore, BAIBA increased liver fatty acid oxidation and decreased hepatic lipogenesis
by activating the transcription factor PPARα [252], improving insulin sensitivity and
protecting against a high-fat diet-induced obesity [247,253,254]. This indicates the role of
BAIBA in hepatic lipid metabolism and reduces risk of diabetes. More work is needed to
reveal how BAIBA has a direct action on insulin signalling. Moreover, it has recently been
reported that BAIBA can function as an osteocyte protective factor against mitochondrial
degradation due to reactive oxygen species and reduce bone and muscle loss, resulting in
hindlimb unloading [255]. Emerging evidence shows that BAIBA leads to increased hepatic
fat oxidation and mRNA levels of the carnitine palmitoyltransferase 1 in hepatocytes, a
rate-limiting β-oxidation enzyme [256], which resulted in reduced fat mass in human [251],
showing a key role of BAIBA in reducing adipose tissue in humans as well.

Furthermore, BAIBA is generated by catabolism of the branched-chain amino acid
valine that is mainly used in skeletal muscle [245], and catabolism of the branched-chain
amino acids are elevated during exercise [257]. These findings are supported by research
reporting that regular exercise increases circulating levels of BAIBA in previously sedentary
and healthy subjects [245,248]. This increase is inversely associated with cardiometabolic
risk factors in humans [245,247], suggesting that exercise-induced circulating BAIBA may
play a role in the treatment of metabolic diseases. For example, Stautemas et al. investigated
how an acute session of moderate-intensity exercise would affect the enantiomers of
BAIBA [248]. They reported that R-BAIBA and S-BAIBA increased following 30 min of
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cycling, indicating BAIBA to be an acute exercise-induced molecule [248]. Similarly, Robert
et al. showed a 20% increase in plasma BAIBA concentration in mice with access to the
working wheel and a 17% chronic elevation following 20 weeks of aerobic exercise in
sedentary and healthy subjects [245]. In addition, Short et al. reported that 16 weeks
of aerobic exercise training resulted in a 29% greater increase in BAIBA levels in the
normal-weight individuals compared to the individuals with obesity [258].

In summary, BAIBA as PGC-1α-mediated and exercise-induced myokine seems to
be a mechanistic component of the well-known protective role of exercise against the
development of metabolic diseases including obesity.

5.3. Interleukin-6

IL-6 is a cytokine that is not only secreted by immune cells during inflammatory
states [259] but also released by adipose tissue and by the working skeletal muscle during
exercise [260] in the absence of inflammation. The elevated number of M1 macrophages in
WAT with obesity is accepted as the main source of IL-6 [261]. A chronic, low-level increase
in basal levels of plasma IL-6 is associated with obesity [262], physical inactivity [263],
insulin resistance [264], T2D [265], and cardiovascular diseases [266]. Furthermore, the IL-6
level was reported to elevate in individuals with obesity and positively associated with a
waist-to-hip ratio and BMI [267], and decrease with weight loss [262]. On the other hand,
muscle-derived IL-6, which is the first myokine found to be secreted into the bloodstream
in response to muscle contractions [260], is an important player implicated in the regulation
of lipid homeostasis and energy metabolism [268,269].

The concentration of circulating IL-6 can increase up to 100-fold during acute exercise
and consistently declines in the recovery period [270–272] in the absence of muscle dam-
age, depending on the intensity and duration of exercise, in particular. Evidence-based
research shows that muscle cells are the main but not the sole source of the increase in
IL-6 during exercise [273]. Despite the studies showing the internal jugular vein [272] and
adipose tissue [274] that may contribute to the IL-6 response in the circulation following
exercise, other sites are not yet fully determined. Moreover, several pieces of evidence
show that there is a negative association between the amount of PA and resting plasma
IL-6 levels [269], while physical inactivity and metabolic syndrome are associated with
high basal plasma levels of IL-6. Moreover, endurance training reduces basal levels of IL-6
and the exercise-induced increase in plasma IL-6 and muscular IL-6 mRNA levels [269].

Until the beginning of this millennium, this significant increase in IL-6 response was
first thought to involve muscle damage in the working muscles and that the macrophages
were responsible for this increase [271]. In the following years, however, it was reported
that there was a marked increase in intramuscular IL-6 mRNA expression and protein
when intramuscular glycogen levels were low, indicating that IL-6 might be an energy
sensor during exercise [34,269]. This notion was supported by numerous studies reporting
that exercise-induced increase in plasma IL-6 and release from contracting skeletal muscle
in humans attenuated during exercise following glucose ingestion [269]. IL-6 has also
been linked to obesity and glucose metabolism. An elegant study by Wallenius et al.
showed, for the first time, that IL-6-deficient mice developed mature-onset obesity and
glucose intolerance [275]. Moreover, when the transgenic mice were treated with IL-6
for ~3 weeks, BW significantly decreased [275]. In addition, acute administration of rat
L6 muscle cells in vitro with IL-6 increases basal glucose uptake, the translocation of the
glucose transporter glucose transporter 4 (GLUT4), insulin-stimulated glucose uptake in
muscle cells, lipolysis, and fatty acid oxidation [276]. Taken together, IL-6 is a therapeutic
target for the treatment and prevention of obesity.

These effects of IL-6 arose via AMPK, as the results were not evident in cells infected
with a recombinant expressing dominant-negative AMPK [276]. Furthermore, infusion of
recombinant human IL-6 into healthy individuals was reported to increase lipolysis without
changing catecholamines, glucagon, or insulin and no adverse effects were observed [277].
Several studies have also reported that IL-6 is a substance capable of increasing intramy-
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ocellular [276] or whole-body fatty acid oxidation [259] via AMPK [278]. Petersen et al.
questioned if IL-6 would exert direct effects on both lipolysis and fatty acid oxidation [277].
To address this, the authors conducted cell culture experiments and reported that infusion
of IL-6 activated lipolysis in patients with T2D and healthy individuals [277], suggesting
IL-6 as a lipolytic factor. Similarly, Khan et al. showed that infusion of IL-6 into healthy
humans at a physiological level markedly induced lipolysis in skeletal muscle, but there
was no change in adipose tissue [279]. These findings show that IL-6 exerts its profound
lipolytic effect in the muscle. Moreover, infusion of recombinant human IL-6 into healthy
individuals during a hyper-insulinaemic clamp was shown to enhance whole-body insulin
sensitivity [276].

In summary, IL-6 has beneficial effects on metabolic functions. Compelling evidence
shows that IL-6 increases EE, lipolysis, fat oxidation, and endogenous glucose output,
which are all associated with insulin action and substrate homeostasis. Furthermore,
activation of AMPK by IL-6 plays an essential role in modulating some of these metabolic
effects induced by IL-6. Considering that the increase in IL-6 level, especially observed in
response to exercise, reduces adipose tissue, IL-6 may be a target peptide in the prevention
of obesity. Taken together, it is clear that IL-6 is a cytokine that possesses great importance
for metabolic health.

5.4. Interleukin-15

IL-15 is a highly expressed cytokine in muscle cells and, to a lesser extent, in multiple
types of cells such as macrophages, fibroblasts, epithelial cells, keratinocytes, astrocytes,
and bone marrow stromal cells [280,281]. The expression of IL-15 varies depending on the
activity of the cell in which it is expressed. IL-15 expression is induced by nuclear factor
kappa B (NF-kB) activators in macrophages [282], and by exercise intervention in muscle
myotubes [283], making IL-15 an exercise-induced myokine. However, it is incompletely
understood whether circulating IL-15 is released from skeletal muscle tissue in response
to exercise or other physiological stimuli. In addition to IL-15, the IL-15 receptor-alpha
(IL-15Rα) subunit is a primary binding partner of IL-15 and has complex biochemistry
able to modulate IL-15 secretion and bioactivity. A study by Bergamaschi has documented
that IL-15 was rapidly degraded immediately after synthesis, when the expression of IL-
15Rα was blocked [284], showing the primary role of IL-15Rα in efficient IL-15 production.
Moreover, IL-15 and IL-15 receptor subunit alpha (IL15RA) that encodes IL-15Rα were
reported to be associated with increased adipocyte size and T2D [285].

Recently, IL-15 has attracted much attention from researchers due to its role in increas-
ing EE and improving insulin sensitivity. These novel roles of IL-15 are associated with the
endocrine roles of the myokines in metabolism [34]. Accumulating evidence has shown
that overexpression of IL-15 is associated with brown fat function, reduced adiposity, and
improved insulin sensitivity through weight loss and increased EE [286], suggesting IL-15
to function as a myokine able to mediate its effects on different tissues. Moreover, IL-15
is also known to enhance fat oxidation [287], glucose uptake [288], and myogenesis in
skeletal muscle. In addition, circulating IL-15 has been reported to reduce lipid synthesis
in preadipocytes in vitro and WAT in rats [289]. Furthermore, in humans, the plasma IL-15
level was shown to reduce BW [290] and be negatively associated with total fat mass, trunk
fat mass, and percent fat mass in individuals with or without obesity [290], indicating a
novel role for IL-15 in regulating fat mass and adiposity. In support of this finding, Alvarez
et al. reported that acute injection of recombinant IL-15 into rodent genetic obesity models
inhibited fat deposition in both wild-type and leptin-deficient obese mice [291]. Conversely,
mice with the IL15 gene deleted in cultured adipocytes showed higher amounts of BF
than control mice [292], whereas transgenic mice with elevated circulating levels of IL-15
had lower levels of BF and were resistant to diet-induced obesity [286]. Moreover, it was
reported that people with T2D had lower circulating IL-15 levels compared with body-
weight-matched healthy controls [293,294]. Some research, however, has documented
that IL-15 remained unchanged by insulin resistance [290] and people with T2D exhibited
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higher serum IL-15 than healthy controls [294]. It is, however, necessary to denote here
that PA, adiposity, and age that may alter circulating IL-15 levels are not controlled in these
mentioned studies, necessitating further studies able to consider confounding factors.

In recent years, there has been increasing interest in the role of IL-15 in the beneficial
effects of exercise. Numerous studies have been conducted to address this. Yet, there is
no clear consensus on whether acute or chronic exercise intervention can alter mRNA,
protein, and circulating level of IL-15. For example, circulating IL-15 levels showed a
transient increase following acute RE [295], but did not change with training [295]. Nielsen
et al. investigated the effects of an acute heavy RE session on a leg press machine and
then on a knee extensor machine [296]. They reported upregulation of IL-15 mRNA at
24 h of recovery following the exercise session and the IL-15 mRNA levels returned to
pre-exercise levels 48 h after the end of the exercise, whereas muscle IL-15 protein content
and plasma IL-15 concentrations were similar between pre-exercise and 6, 24, and 48 h
post-exercise [296]. Notably, the authors also showed, for the first time, that IL-15 mRNA
levels were higher in the triceps compared to the soleus muscle, showing that RT-induced
change in IL-15 mRNA levels may be observed specifically in type 2 fibres.

Some research has focused on the effects of acute and chronic endurance training on
IL-15 levels. For example, 30 min, 60 min, or 2 h of moderate intensity running or cycling
exercise resulted in a relatively transient increase in serum IL-15 levels measured 10, 30, and
120 min after the end of the exercise in lean individuals and those with obesity [283,297].
However, Rinnov et al. and Ostrowski et al. found no change in circulating IL-15 levels
following 2.5–3 h of aerobic exercise at ~60–75% of VO2max [298,299], but there was a 40%
increase in basal skeletal muscle’s IL-15 protein content following 12 weeks of regular
endurance training (5 days/week) [298] with no change in either muscle IL-15 mRNA
or plasma IL-15 levels. In contrast, Pérez-López et al. reported reduced IL-15 level in
individuals with or without obesity, who were engaged in regular PA (3 days/week) for
one year [294]. While it is difficult to discern the reasons for this absence of increased IL-15
following acute exercise, the timing of the blood sampling may be important in detecting
the exercise response, especially when considering that the half-life of free IL-15 is about
30–60 min [280,300]. Therefore, studies that measured IL-15 not immediately after exercise
but >60 min after exercise are likely to miss the peak of IL-15 increase.

In summary, the molecular mechanism of IL-15 action is not fully uncovered in the
regulation of energy metabolism. However, current evidence shows IL-15 to play an
essential role in adiposity and EE, making IL-15 one of the novel targets for pharmacologic
control of obesity. In addition, the effect of exercise on IL-15 is largely unresolved and
awaits determination whether it varies in different types of contractions/exercise.

5.5. Irisin

Adipose tissue and skeletal muscle are endocrine organs capable of secreting many
bioactive molecules [231]. Molecules secreted from skeletal muscle are called myokine and
molecules secreted from adipose tissue are called adipokine [301]. Accordingly, hormones
secreted from both are called adipo-myokine [302]. As an adipo-myokine, irisin secreted
from adipose tissue is only 5% of the level of irisin secreted from the skeletal muscle [141].
Irisin is also secreted from the heart muscle, liver, brain, pancreas, and kidney [303,304].
Irisin is an exercise-induced myokine derived from fibronectin type III domain-containing
5 (FNDC5) [305–307]. As a PGC-1α-dependent myokine [307], irisin drives brown-fat-like
thermogenesis in WAT in rodents [307] and humans [308] and promotes mitochondrial
biogenesis [309], and decreases oxidative stress [310]. In recent years, it has become
apparent that irisin as a cleaved fragment is also secreted into the circulation following
proteolytic cleavage from its cellular form in humans and can readily be quantified by
an enzyme-linked immunosorbent assay [311]. Evidence-based research has revealed
that irisin can reverse diet-induced obesity and diabetes by stimulating thermogenesis in
rodents [307] and humans [308] by increasing brown adipocyte-like cell abundance and
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increasing the expression of brown adipocyte-specific genes [307] within WAT that, in turn,
increases EE [312].

Adipose tissue is the second main source of irisin. Importantly, irisin was shown to
release from mature adipocytes of WAT in rats, which is mainly from those in SAT and a
lower amount from those in VAT [313]. WAT-derived FNDC5/irisin represents ~28% of
total circulating levels of the protein, with the remaining 72% likely derived from skeletal
muscle [307,313,314], indicating that adipose tissue is not an essential source of irisin. The
expression of FNDC5 in adipose tissue is about 100–200 times lower than in skeletal muscle
in humans [304,315]. It is also well documented that irisin exerts its profound effect on
adipose tissue depending on the species (rodents, humans), type of adipocytes (premature
or mature adipocytes), and location/type of the adipose tissue [316].

The effects of irisin on the browning of WAT in humans are incompletely under-
stood. Irisin decreases browning-related genes in human preadipocytes without stim-
ulating browning in human preadipocytes from SAT, whereas it stimulates browning,
indicated by an increase in UCP1 and various signalling pathways in mature human
adipocytes [308,317]. Moreover, the potential correlations between circulating irisin levels
and obesity have been investigated extensively. Studies showed a positive association be-
tween circulating irisin and BMI, BW, waist circumference, and waist-to-hip ratio [304,318],
even though some research reported a negative correlation between irisin and BMI [319].
Moreover, Zhang et al. [320] demonstrated that recombinant irisin resulted in decreased BW
and improved glucose homeostasis. They also showed that irisin stimulated UCP-1 expres-
sion and the expression of betatrophin, which is a hormone that promotes pancreatic β-cell
proliferation and improves glucose tolerance [320]. In addition, mice adipocytes treated
with intravenous injection of FNDC5/irisin exhibited multilocular lipid droplets, a higher
density of mitochondria, and increased EE, showing induction of the brown adipocyte-
like phenotype in WAT [307]. Irisin has also been shown to induce lipid metabolism
and downregulate lipid synthesis in mice [321] and is positively associated with biceps
circumference, fat-free mass, and BMI in humans [304]. Park et al. [322] also assessed if
circulating irisin was associated with macronutrients, energy intake, and dietary scores and
reported that irisin was not associated with any of the studied dietary factors including the
Alternate Healthy Eating Index and Alternate Mediterranean Diet Score [322]. Crujeiras
et al. [323] reported that, in addition to the well-studied hormones leptin and adiponectin,
irisin plasma levels were also associated with insulin resistance in weight regainers versus
non-regainers, indicating irisin to be a potential prognostic marker of T2D. Collectively,
irisin seems to have a key role in the improvement of adipocyte metabolism and can serve
as a potential therapeutic target in the future.

The molecular mechanism underpinning exercise-induced irisin concentration is that
exercise increases the expression of PGC-1α, which leads to the expression of FNDC5, the
precursor of irisin, in the brain and skeletal muscle [307]. Irisin is cleaved from FNCD5 at
the level of the cell membrane by the unknown enzyme(s) and then binds to yet undefined
receptor(s) of white adipocytes and other cells [314]. Irisin stimulates the expression of
mitochondrial UCP1 and browning of WAT [324], which is known to induce thermogenesis
and, thus, EE in the skeletal muscle and BAT [312,316]. Many studies examined the effects
of different types of exercise on circulating irisin in humans with inconsistent results. It has
been reported that chronic exercise decreases [325–329], increases [330,331], and does not
change the resting irisin concentration [141,332]. Eight weeks of RT significantly increased
circulating irisin, while there was no change in irisin following aerobic training [333].
Similarly, Tsuchiya et al. [334] showed that acute RT increased circulating irisin more than
endurance or combined resistance/endurance training in healthy individuals, showing that
RT could provide more stimulus to induce irisin in humans than any other type of exercise.
Additionally, a higher increase in irisin concentration was reported following high-intensity
acute exercise compared to low-intensity exercise [335]. Two meta-analyses conducted
on the effects of exercise on irisin concentration have shown that acute exercise [306] and
chronic RT can increase irisin level based on the exercise protocol applied [305], while
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endurance training decreases irisin concentration negligibly [306], showing that irisin
responses to exercise are acute and physiological adaptations following chronic exercise
are not sufficient to keep the resting irisin level high. Speculatively, this decrease in irisin
level following endurance training may be due to increased sensitivity of the unknown
irisin receptor in response to exercise [327].

In summary, irisin is a potential mediator of the health-promoting effects of exercise.
Due to its effects on metabolism and adipose tissue, irisin is considered a promising
therapeutic target for treating obesity and T2D.

5.6. Meteorin-Like

Meteorin-like (Metrnl) is a circulating factor, which is induced in muscle in response
to exercise and in adipose tissue upon cold exposure, and is involved with mitochondrial
biogenesis in white adipocytes [336]. The highest expression level of Metrnl is in WAT of
both rodents and humans, with expression in various tissues including omental adipose
tissue, perivascular adipose tissue, interscapular adipose tissue, liver, spleen, muscle, heart,
thymus, forebrain, midbrain, and hindbrain [337]. Metrnl is known to prevent insulin
resistance induced by a high-fat diet or leptin deletion [338], regulate immune-adipose
interactions, contribute to browning of the subcutaneous WAT [336], improve adipose
tissue function [337], promote neurite outgrowth [339], and increase systemic EE [336].
These findings indicate Metrnl plays a potential role in preventing metabolic diseases and
improving metabolism. Recently, the Spiegelman group has shown that Metrnl increased
the production of IL-4, IL-13, and catecholamines in the adipose tissue in vivo, showing
Metrnl-induced phenotypic switch in adipose tissue macrophages and production of pro-
thermogenic catecholamines [336]. Moreover, the same research group has documented
that increased Metrnl plasma concentration resulted in increased EE, and improved glucose
tolerance and anti-inflammatory cytokines [336]. In addition, the plasma Metrnl level has
been reported to be lower in people with T2D [340] and osteoarthritis [341] when compared
to healthy subjects. On the other hand, some research reported a higher level of Metrnl
in individuals with obesity [342], and a positive association of Metrnl with BMI, waist
circumference, total cholesterol, triglyceride, and low-density lipoprotein cholesterol in
individuals with T2D [342,343]. These discrepancies available in the literature remain
paradoxical and await clarification.

Supporting evidence has shown that Metrnl is regulated by acute and chronic ex-
ercise intervention. For example, Rao et al. reported a significant increase in Metrnl
mRNA expression in the triceps muscle of mice and a two-fold increase in circulating
Metrnl concentration following a single bout of downhill treadmill-running exercise [336].
The same study also showed that an acute session of CT consisting of RE followed by
endurance exercise increased Metrnl mRNA expression in human skeletal muscle [336].
Concerning the training effects on Metrnl, Bae reported that chronic treadmill running
(5 sessions/week for 8 weeks) significantly increased muscle, plasma, and adipose tissue
Metrnl in high-fat diet-induced obese mice and reduced high-fat, diet-induced BW gain in
mice without affecting caloric intake [344]. Similarly, Amano et al. reported an increased
plasma Metrnl in mice following four weeks of chronic RT administered with electrical
stimulation and this increase was associated with an increase in the expression of PGC-1α
and mitochondrial biogenesis in BAT [345]. Furthermore, Eaton et al. reported that a single
bout of high-intensity interval exercise and 20 days of HIIT significantly increased Metrnl
mRNA expression in human skeletal muscle [346], indicating Metrnl mRNA expression
is responsive to the acute and chronic high-intensity exercise intervention. However, it
remains uncertain whether acute or chronic exercise intervention would affect Metrnl at
the protein level in muscle or plasma.

In summary, Metrnl is an exercise-induced protein that promotes the expression of
genes associated with the browning of WAT. This transformation of characteristic white
adipocytes into brown/beige fat is of great therapeutic potential in developing new thera-
pies for obesity and T2D. Therefore, exercise interventions that increase circulating con-
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centration and mRNA expression of Metrnl would be novel therapeutic strategies to
overcome chronic diseases, particularly obesity. Furthermore, clarifying the roles and possi-
ble clinical applications of Metrnl in more detail may alleviate obesity and offer protection
against metabolic disorders due to the essential role of Metrnl in neurotrophic activity and
metabolism.

6. Summary and Future Perspectives

In the present study, we reviewed the therapeutic roles of various diet, exercise
interventions, and some cytokines that play a significant role in obesity prevention and
improving adipose tissue metabolism. Obesity has been an epidemic disease defined as
an excess of BF that results from a state of positive energy balance in which energy intake
exceeds the expenditure. The cause of obesity is well known to be multifactorial including
genetics, nutrition, and lack of PA. Thus, this complexity must be taken into account when
developing preventive interventions. The most important ways to reverse the increased
prevalence of obesity are dependent on the interventions that provide a sustained negative
energy balance over time. From this point of view, regular exercise seems like an elixir
capable of leading to a negative energy balance that reduces both subcutaneous and
VAT mass. Furthermore, a combined hypocaloric diet and PA intervention is likely to
be more effective in reducing BW and improving adipose tissue metabolism. Notably,
even if there is no weight loss despite exercise training, regular exercise is a cornerstone
providing numerous benefits, such as maintenance of muscle mass and RMR, inducing
anti-inflammatory markers, improving skeletal health, and more. Likewise, cytokines and
myokines secreted from various organs and tissues establish a muscle-to-organ/tissue cross-
talk communication that promotes health-related outcomes. These cytokines and myokines
known to be secreted in response to muscular contractions are promising molecules for
the prevention of obesity particularly due to their ability of browning white fat tissue by
increasing the expression of specific genes within WAT. However, the role of most myokines
is not fully elucidated. Therefore, more work is needed to provide a better understanding
of the physiological role of myokines in humans.
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