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Abstract
Knowledge graph, as an extension of graph data structure, is being used in a wide range of 
areas as it can store interrelated data and reveal interlinked relationships between different 
objects within a large system. This paper proposes an algorithm to construct an access control 
knowledge graph from user and resource attributes. Furthermore, an online learning frame-
work for access control decision-making is proposed based on the constructed knowledge 
graph. Within the framework, we extract topological features to represent high cardinality 
categorical user and resource attributes. Experimental results show that topological features 
extracted from knowledge graph can improve the access control performance in both offline 
learning and online learning scenarios with different degrees of class imbalance status.
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1  Introduction

With the popularization of information systems and digital devices, enterprises and 
organizations accumulate a large amount of valuable or sensitive data locally or in 
the cloud [14, 23, 33]. Once these data are leaked or used maliciously, it will cause 
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significant economic losses or pose a great threat to users’ privacy [7, 25, 29]. Secure 
sensitive information is an important issue to protect customers and then attract users [8, 
43]. Access control is recognised as the first defence to guarantee that only authorized 
users can gain access to sensitive data and thus prevent data leakage [22, 25, 30, 32].

The two main categories of the most widely used access control strategies are role-
based access control (RBAC) strategies and attribute-based access control (ABAC) strate-
gies [25, 28, 31]. The former assigns permissions only based on user’s roles, which makes 
it simple to implement and thus widely used in the past [4, 24]. However, with the expan-
sion of the information system scale and the proliferation of users, RBAC strategies are too 
coarse-grained to meet the needs of sensitive data protection [27, 36]. By contrast, ABAC 
strategies adopt carefully crafted policies based on multiple attributes from users, environ-
ment and resources to assign data access permission. ABAC strategies have become more 
popular nowadays because they are more fine-grained and flexible than RBAC strategies 
[17, 34]. For example, the work in [9] proposed an ABAC mining algorithm named Rhap-
sody to mine ABAC rules from sparse logs.

However, the evolving new information technologies and changes in users’ behaviours 
bring new challenges [13, 15]. One of the biggest problems is the policy explosion, which 
means the scale of the policy has increased dramatically [18, 35]. The main reason for the 
policy explosion is that users’ roles in organizations are becoming more diverse and people 
are using more different devices to access data in different places. Policy explosion brings 
two consequences directly, i.e., decreased efficiency of the system and increased miscon-
figuration [12, 16, 20].

To overcome these problems, more and more researchers are beginning to explore 
machine learning based access control strategies, which treat access control decision-
making as a binary classification problem. Sample features for machine learning classifier 
training come from available users, environment and resource attributes etc. The corre-
sponding sample labels come from verified access control log files. Some works have suc-
cessfully classified access control historical records using machine learning methods with 
high accuracy. But there is no related work that discusses machine learning based access 
control from the perspective of a data stream. In reality, access control requests form a data 
stream to feed into the decision making models. Therefore, the work in our previous paper 
[42] proposed a consecutive batch learning framework to tackle the possible concept drifts 
by periodically updating the machine learning classifier with new samples.

Furthermore, dynamic class imbalance problems exist in real-world access control 
applications [39, 41]. In other words, most requests are legitimate and valid, but there will 
be a very small number of samples that are denied access due to mishandling or malicious 
attacks. For access control, a rejected access request usually means a malicious access 
request, which is the minority class. Misclassification of the minority class will cause 
severe data leakage. Therefore, improving the classification performance of the minority 
class (access deny) is vital for an access control problem.

To boost the performance of the minority class for access control, our previous work 
[42] proposed a Boosting Window (BW) algorithm within an adaptive incremental batch 
learning framework. Although experimental results demonstrated this work can enhance 
the performance of the minority class, the overall performance is still unsatisfactory 
because of the limited available attributes and the poor encoding and feature representing 
methods for high cardinality categorical data. For example, the manager ID is an essential 
user attribute related to the possible access permission to a specific system resource. How-
ever, in a large organization, such as Amazon, there will be millions of different manager 
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IDs. In this case, the values of the manager ID are high cardinality nominal categorical 
data.

In general practice, one-hot encoding, binary encoding and label encoding are the most 
popular methods for categorical data encoding [38]. When encoding high cardinality nomi-
nal categorical data, all of them have fatal disadvantages. Label encoding can mislead the 
classifier because of the big differences between numerical values. For example, the clas-
sifier can falsely give more weight to a manager with an ID of 100,000 than 1. One-hot 
encoding can address this problem but it will result in another serious problem, the curse of 
dimensionality. Binary encoding adopts binary code to represent ordinal values, working 
as a compromise between label encoding and one-hot encoding. However, binary encoding 
fails to represent relationships between different samples with the same attribute value.

Instead of encoding the values of different attributes as non-topological features for 
access control decision making, we extract relationships between entities from attributes 
and further extract topological features from relationships to train access control classifiers. 
To better represent user and resource and illustrate relationships between them, this paper 
constructs an access control domain-specific knowledge graph to assist decision making. 
As an extension of our previous work, we leverage knowledge graph to handle user and 
resource attributes with high cardinality values to further boost the performance of the 
minority class. Compared with the work in [42], our main contributions are as follows.

(1)	 We proposed a knowledge graph empowered online learning framework for access con-
trol decision making. To the best of our knowledge, this paper is the first try to leverage 
knowledge graph to extract graph topological features to improve the performance of 
the access control model.

(2)	 We proposed an algorithm to construct a knowledge graph from the existing user and 
resource attributes. We further demonstrate how to extract features from the established 
knowledge graph to represent users and resources. The extracted features are fed to a 
machine learning classifier to make access control decisions based on records in log 
files.

(3)	 We evaluate and verify the proposed knowledge graph empowered online learning 
framework on a much larger open-sourced real-word dataset and discussed the perfor-
mance on different imbalance degrees in both online and offline scenarios.

The rest of the paper is organised as follows. Section 2 briefly introduces knowledge 
graph basics, typical graph topological features and link prediction solutions. Section  3 
presents the workflow of the proposed framework, followed by an access control domain-
specific knowledge graph construction algorithm and feature extraction details in Sec-
tion 4. Section 5 displays the experimental results and concludes the paper with a discus-
sion on future work.

2 � Related work

A knowledge graph (KG), denoted as G , is a multi-relational graph composed of entities 
as nodes and relations as different types of edges [37]. An instance of an edge is a triplet 
of fact (head entity, relation, tail entity), denoted as (h, r, t). Apart from the graph-struc-
tured data model, both entities and relationships can have multidimensional properties 
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to further describe complex data. KG is often used to represent interlinked facts, allow-
ing both humans and computers to extract useful knowledge and further to do reasoning 
and prediction based on its contents. Typical ways to analyse a knowledge graph include 
but are not limited to (1) node classification to predict the type of a given node; (2) link 
prediction to predict whether two entities are linked or not; (3) community detection to 
identify densely linked entity clusters and (4) network similarity measurement to evalu-
ate the similarity between two nodes or two networks.

The access control problem can be formulated as a link prediction problem between 
user entities and resource entities, which is essentially a binary classification problem. 
Specifically, if an access approve link exists between a user entity u and a resource 
entity r, the access request ( u → r ) will be approve. Otherwise, it will be refused. Once 
a knowledge graph has been constructed, a variety of graph topological features can be 
extracted to describe the local or global connections between entities based on homoge-
neous or heterogeneous subgraphs within the knowledge graph.

A basic solution for link prediction is structural similarity-based unsupervised learn-
ing methods, which determine the likelihood of linkage between two nodes based on 
some similarity or closeness indices deduced from the graph structure. When an index 
between two nodes exceeds a predefined threshold, they are considered to have a link 
between them. Common Neighbours (CN) [10] measuring the number of shared nodes 
between two nodes is the most intuitionistic index to indicate the linkage possibility 
of them. Similar indices, to name a few, include Adamic Adar (AA) [2], Preferential 
Attachment (PA) [3] and Resource Allocation (RA) [44]. Their definitions are listed as 
(1)-(3) for reference.

where u, v, w are nodes in the target graph, N(⋅) denotes the set of nodes adjacent to the 
specified node in the brackets, |⋅| denotes the number of distinct nodes in the specified set. 
These indices are widely used in various domains because of their simplicity and reason-
able performance. However, they only considered the node pair’s local connectivity and 
ignored the global structure of a graph.

By contrast, global connectivity indices can provide more overall graph topology 
information. A well-known index for taking global connectivity into account is the Katz 
Index (KI), which leverage the length of paths between a pair of nodes to measure their 
similarity. KI can be calculated as (5) [11].

(1)CN(u, v) = |N(u) ∩N(v)|,

(2)AA(u, v) =
∑

w∈N(u)∩N(v)

1

log |N(w)|
,

(3)PA(u, v) = |N(u)| ∗ |N(v)|,

(4)RA(u, v) =
∑

w∈N(u)∩N(v)

1

|N(w)|
,
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where l is the length of a path between nodes u and v, |||path
l
u,v

||| is the total number of dis-
tinct paths between node u and v with length l, β is a coefficient between 0 and 1 used to 
adjust the contribution of paths to KI.

Another popular global connectivity index is Average Commute Time (ACT), which 
calculates the average number of steps required by a random walker starting from node 
u to reach v and vice versa [1]. The ACT between nodes u and v can be calculated as 
(6) [26].

where l+
uu

 , l+
vv

 and l+
uv

 are the corresponding entries in Laplacian Matrix, L+.
Obviously, a common drawback for global connectivity indices is relatively higher 

computation cost compared with local connectivity indices. Decentralized approaches 
or parallel computing are also incapable of dealing with global graph computation, 
because the structural connectivity would be damaged by splitting the graph for decen-
tralized or parallel computing. Therefore, these measures are not suitable for large-
scale connected graphs.

Generally speaking, the common advantages of structural similarity-based unsuper-
vised learning methods algorithms include that (1) they do not need labelled data to 
train a classifier; (2) the link prediction result is explainable based on the definition of 
the corresponding indices; (3) they often take less computation effort for costly feature 
engineering and classifier training procedures.

However, there is still no universal feasible method to determine the appropri-
ate threshold for different indices and application domains. Besides, these methods 
are also criticised for poor performance due to only taking topological features into 
account and neglecting the attributes of nodes and relationships, which contain rich 
domain knowledge and play critical roles for most domain-specific link prediction 
tasks. Therefore, in most cases, when labelled data is available, supervised learning 
methods are more preferable due to superior performance and the flexibility of feature 
extraction.

When applying supervised learning methods, both non-topological features and topo-
logical features can be used to feed into a machine learning classifier to support link 
prediction. Non-topological features refer to the attributes of entities and relationships, 
which contain rich multi-modality domain knowledge. For example, in an access control 
knowledge graph, the non-topological features of a user entity include sector, depart-
ment name, job title, job description, etc. By contrast, topological features refer to graph 
structural features for node representing. In addition to aforementioned local and global 
connectivity indices, common traditional node topological feature extraction methods 
in graph theory include Page Rank [6], Article Rank [19], Betweenness Centrality [5], 
Harmonic Centrality [21], etc.The performance of supervised machine learning meth-
ods for link prediction is determined by the capability of the extracted non-topological 
and graph topological features as well as the capability of the applied classifier.

(5)KI(u, v) =
∑lmax=∞

l=1
� l ⋅

|||path
l
u,v

|||,

(6)SACT (u, v) =
1

l+
uu
+ l+

vv
− 2l+

uv
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3 � Methodology

We propose a general knowledge graph empowered online learning framework for 
access control in this section. Firstly, we introduce the workflow of the framework. Then 
we detail the construction algorithm of an access control domain-specific knowledge 
graph and the KG-based topological feature extraction method.

3.1 � Workflow of the proposed framework

The supporting information for the access control decision-making problem studied 
in this paper includes user attributes, resource attributes and a verified access control 
log file in chronological order. According to the cardinality of category user attributes 
and resource attributes, an access control knowledge graph is constructed. The specific 
knowledge graph construction and refactoring algorithm is given in Section 3.2 and a 
real-world use case is demonstrated in Section 4.

Similar to our previous work [42], the proposed framework is essentially a classifier-
agnostic consecutive incremental batch learning process for access control decision-
making. Within this framework, a randomly initialized binary machine learning classifier 
works as the access control decision-maker, denoted as f (0)

�
(⋅) , where Θ is the trainable 

parameter set of f(⋅) and (0) means the initialization status of the time step. The classifier 
f
(0)

�
(⋅) is constantly updated at each time step as new samples are available for classifier 

training. We demonstrate the main process of a typical time step t (t > 0) in Figure 1, 
which consists of two stages, namely, the predicting stage and the adaptation stage.

At the predicting stage of the t-th time step, when user u request a resource r, denoted as 
(u → v)(t), the classifier f (t)

�
(⋅) , which is updated at time step t − 1, will make decision on 

the access control request (u → v)(t). Firstly, six feature sets related to this access control 

Fig. 1   Workflow of the proposed consecutive incremental batch learning framework
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request will be extracted from the constructed access control knowledge graph, i.e., x(t)
uN

 , 
x(t)
uT

 , x(t)
rN

 , x(t)
rT

 , x(t)
(u→r)N

 and x(t)
(u→r)T

 . Among them, x(t)
uN

 , x(t)
rN

 and x(t)
(u→r)N

 are the non-topological 
feature sets extracted from the user entity, the resource entity and the existing relationships 
between them. Similarly, x(t)

uT
 , x(t)

rT
 and x(t)

(u→r)T
 are the corresponding topological feature sets. 

The details of the feature extraction process are described in Section 3.3. These six feature 
sets are then preprocessed (outlier replacing and normalization) and integrated into one 
feature set x(t). Finally, the classifier f (t)

�
(⋅) will make decision on the request (u → v)(t) 

according to the result of equation (7).

At the adaptation stage of the t-th time step, the verified ground truth y(t) correspond-
ing to the request (u → v)(t) is available and can be extracted from the verified access 
control log file. Then, the labelled samples x(t), y(t) can be used to finetune the classifier 
f
(t)

�
(⋅) . The fine-tuned classifier, denoted as f (t+1)

�
(x⋅) , will be used at the predicting stage 

of the t + 1-th time step. Since the classifier keeps updating with the latest verified sam-
ples {x(t), y(t)} at each time step t, it can learn possible new concepts emerging at time 
step t.

3.2 � Access control knowledge graph construction

A knowledge graph consists of a set of entities (with multiple entity labels) and relation-
ships between entities (with multiple relationship types). Each entity or relationship has 
its identification number and some of them have one or more properties. To construct an 
access control knowledge graph is to identify all entities including their labels and proper-
ties, and all relationships including their relationship types.

3.2.1 � Attribute type

We construct an access control knowledge graph G from existing user attributes and 
resource attributes information. Apart from the ID attribute, from the perspective of con-
structing KGs, there are three kinds of attributes in Attu and Attr, i.e., Type 1, attributes 
showing the relationships between users and resources; Type 2, high cardinality categorical 
attributes; Type 3, the rest attributes. Let 𝜃 be a preset cardinality threshold. If the cardinal-
ity of a categorical attribute is larger than 𝜃, it is a Type 2 attribute; otherwise, Type 3. The 
attribute types work as a guideline for step by step knowledge graph construction, seeing 
details in Section 3.2.2.

3.2.2 � Algorithm pseudocode

Let Attu be the list of users’ attribute names, in which an attribute name‘userID’ is 
included. Xu denotes the attributes’ values according to Attu. xuid ∈ Xu is a vector containing 
all users’ ID. Similarly, Attr is the list of resources’ attribute names containing a ‘resour-
ceID’. Xr is the attributes’ values according to Attr and xrid ∈ Xr is a vector containing all 
resources’ ID. We elaborate on the construction process of an access control knowledge 
graph in Algorithm 1.

(7)ŷ(t) = f
(t)

𝛩
(x(t)), (t > 0).
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Some executive statements of the pseudocode in Algorithm 1 are written in Cypher 
query language, which is the graph query language for the Neo4j graph database. The 
naming convention thus follows the Cypher coding standards, where entity labels are 
in CamelCase; property keys are in camelCase and relationship types are in upper-
case, such as FOLLOWS in a social media knowledge graph. As listed below, the pro-
cess of access control knowledge graph construction can be divided into four main 
steps:

Step 1: create User and Resource entities as shown in lines 2-7. According to the 
userID and resourceID attributes, we create two entity types with a User label and 
Resource label respectively. For each unique userID uid in xuid, we create a User entity 
with a userID property as shown in lines 2-4. Similarly, we create Resource entities 
with a resouceID property based on the rid in xrid as shown in lines 5-7.

Step 2: create properties or relationships for User entities from user attributes as 
shown in lines 9-32. In line 9, attn refers to the attribute name traversing Attu; xu is 
the corresponding attribute values and Xu-xuid means the relative complement of xuid in 
Xu. In other words, Xu-xuid means all attributes’ values except xuid. Steps 2.1-2.3 give 
details on how to create properties or relationships for User entities based on three 
attribute types defined in Section 3.2.1.

Step 2.1: create relationships from User entities to Resource entities based on Type 
1 attributes as shown in lines 11-19. When a user attribute attn indicates a relationship 
between users and resources, we search the particular User entity and Resource entity 
based on the attribute value attv and create a HASattn relationship between, where 
HASattn is the relationship type in upper-case format. We further record the import 
attribute information in attv as a property of the created relationship, named attn Prop-
erty. In line 12, attv means the attribute value of attn corresponding to the user with 
userID=uid. In line 13, Ridt means a temporary resourceID set to distinguish it from 
xrid line 5.

Step 2.2: create new types of entities for high cardinality categorical user attributes 
as shown in lines 21-25. To better represent high cardinality categorical features, we 
create new entities with a label named attn and a property named attn Property to 
record the value of the high cardinality categorical user attribute. Then, we create a 
relationship with a type of HASattn to indicate that the user with userID=uid has a 
relation with the newly created entity.

Step 2.3: create new properties for User entities from the Type 3 attributes. The rest 
of user attributes are all added as the properties of the User entities as shown in lines 
28-31.

Step 3: create properties or relationships for Resource entities from resource attrib-
utes as shown in lines 34-57. The process of Step 3 is similar to Step2. To avoid redun-
dancy, we no longer describe the detailed process in words.

Step 4: refactor the above-established access control knowledge graph as shown in 
lines 61-61. We add a SHAREref relationship between User Entities who share the 
same attn entities created in line 23. The subgraph consisting of SHAREref relation-
ships and User entities can be used to extract topological features to represent the orig-
inal user attribute attn ∈ Attu. Similarly, we also add a SHAREref relationship between 
Resource Entities who share the same attn entities created in line 49 to facilitate the 
topological feature extraction from information provided by the original user attribute 
attn ∈ Attr.

After the aforementioned four steps, an access control knowledge graph G is estab-
lished for topological feature extraction.
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3.3 � Feature extraction for access control

To train the classifier fΘ(⋅) for access control, we use the log file containing access control 
requests and their corresponding verified decision (approval or refuse) to form labelled 
samples. Specifically, for each request from user u to resource r at time step t, denoted as (u 
→ v)(t), six sets of features can be exacted from the access control knowledge graph G con-
structed with Algorithm  1, namely, x(t)

uN
 , x(t)

uT
 , x(t)

rN
 , x(t)

rT
 , x(t)

(u→r)N
 and x(t)

(u→r)T
 , as shown in 

Figure 1.
Among them, x(t)

uN
 , x(t)

rN
 and x(t)

(u→r)N
 are the non-topological feature sets extracted from the 

User entity u, the Resource entity r and the existing relationships between them u → v. 

Fig. 2   Dynamic data imbalance statuses over time

Table 1   Dataset information

Attribute file Attribute name Type Cardinality Description

User PERSON_ID userID 36,063 ID of the user
RESOURCE_LIST Type 1 NP list of resource ID that

a users can possibly
have access to

MGR_ID Type 2 3,207 manager ID
DEPTNAME Type 2 405 department description ID
BUSINESS_TITLE Type 2 4,979 title ID
TITLE_DETAIL Type 3 56 title description ID
COMPANY Type 3 49 company ID
JOB_CODE Type 3 13 job code ID
JOB_FAMILY Type 3 70 job family ID
ROLLUP_1 Type 3 12 user grouping ID
ROLLUP_2 Type 3 111 user grouping ID
ROLLUP_3 Type 3 12 user grouping ID

Resource RESOURCE_ID resourceID 33,252 ID of the resource
RESOURCE_TYPE Type 3 3 group, system or host
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These three non-topological feature sets can be exported from the properties of entities u, r 
and relationships u → r.

By contrast, x(t)
uT

 , x(t)
rT

 and x(t)
(u→r)T

 are the corresponding topological feature sets. x(t)
uT

 is 
extracted from a subgraph of the constructed access control knowledge graph G which con-
sists of User entities and relationships between them. Similarly, x(t)

rT
 is extracted from a sub-

graph containing Resource entities and relationships between them. Both x(t)
uT

 and x(t)
rT

 are 
the topological features extracted to present the entities. The extracted topological features 
include but are not limited to (1) centrality scores which determine the importance of dis-
tinct nodes in a graph, such as page rank scores and betweenness scores; (2) community 
detection scores which indicate how groups of nodes are clustered or partitioned, as well as 
their tendency to strengthen or break apart, such as the weakly connected component id 
and triangle count of an entity. x(t)

(u→r)T
 is extracted from a subgraph containing User enti-

ties, Resource entities and relationships between User and Resource entities. x(t)
(u→r)T

 is used 
to present the closeness of entities u and r based on the graph with relationships between u 
and t. The possible features of x(t)

(u→r)T
 include but are not limited to Adamic Adar scores 

and common neighbours.

Table 2   Usecase of Algorithm 1

Step Used information Created entity Created relationship Created property

Step 1 PERSON_ID, User entities, none u.userID,
RESOURCE_ID Resourc entities r.resourceID

Step 2.1 RESOURCE_LIST none HAS_P_ACCESS none
Step 2.2 MGR_ID, Manager, HAS_MANAGER, m.managerID,

DEPTNAME, Department, HAS_DEPT, d.deptID,
BUSINESS_TITLE Title HAS_TITLE t.titleID

Step 2.3 TITLE_DETAIL, u.titleDetail,
COMPANY, u.company,
JOB_CODE, u.jobCode,
JOB_FAMILY, u.jobFamily,
ROLLUP_1, u.rollup1,
ROLLUP_2, u.rollup2,
ROLLUP_3 none none u.rollup3

Step 3.1 none none none none
Step 3.2 none none none none
Step 3.3 RESOURCE_TYPE none none r.resourceType
Step 4 HAS_P_ACCESS, SHARE_P_USER,

HAS_MANAGER, SHARE_MANAGER,
HAS_DEPT, SHARE_DEPT,
HAS_TITLE none SHARE_TITLE none
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4 � Experiment results

This section introduces a real-world access control dataset. Then provides a use case of 
the access control knowledge graph construction algorithm described in Algorithm 1 on 
this dataset. Finally, we compare the access control performance on topological features 
extracted from the established knowledge graph and non-topological features. Results 
show that the proposed knowledge graph empowered method outperforms non-topological 
methods in both offline and online scenarios.

4.1 � Dataset

The experiments of this work are conducted on an open-source real-world Amazon 
employee access dataset1. The dataset contains a file listing all user and resource attrib-
utes and a time-series log file containing 684,374 user to resource access control requests 
and the corresponding permission records. The dataset is extremely imbalanced with 
10,911 (1.59%) access rejection and 673,463 (98.41%) access approval. The dynamic 
data imbalance status is shown in Figure 2. Subplot (a) shows the overall imbalance fac-
tor of the refused requests and approved requests. The overall imbalance factor of the 
refused requests gradually converges to 1.59% after a fluctuation at the early stages and 
the approved requests converge to 98.41%. Subplot (b) shows the sliding window imbal-
ance factor [40] of the two classes when the sliding window size is set to 100.

Table  1 lists the basic information of the attribute file. means Not Applicable As 
shown in Table 1, there are 36,063 unique users and 33,252 unique resources. We set the 
cardinality threshold 𝜃= 300. Based on the three attribute types defined in Section 3.2.1, 
the corresponding attribute type is listed in the Type column. The type information can 
be used to guide the knowledge graph construction, which is described in Section 4.2. 
For the Type 1 attribute, the cardinality is not applicable (NP).

User

userID
�tleDetail
Company
jobCode
jobFamily
Rollup1
Rollup2
rollup3

36,063

Resource

resourceID
resourceType

33,252

Department

deptID
405

Title

�tleID
4,979

Manager

managerID
3,207

SHARE_DEPT
1,460,251

SHARE_TITLE
1,179,537

SHARE_MANAGER
1,238,253

SHARE_P_USER
1,950,367

Fig. 3   The data model of the constructed access control knowledge graph G

1  http://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Amazon+​Access+​Sampl​es

http://archive.ics.uci.edu/ml/datasets/Amazon+Access+Samples


World Wide Web	

1 3

4.2 � Access control knowledge graph construction

According to the dataset introduced in Section 4.1, we construct an access control knowl-
edge graph following the steps in Algorithm 1. The main process and intermediate knowl-
edge graph construction results are summarised in Table 2.

In Step 1, based on the user attribute PERSIN_ID, 36,063 User entities with a userID 
property are created and 33,252 Resource entities with a resourceID property are created 
using the RESOURCE_ID attribute.

In Step 2, more entities, relationships and properties are created based on the three 
types of user attributes. Specifically, in Step 2.1, a HAS_P_ACCESS relationship is cre-
ated between User and Resource entities to show the possibility of access requests based on 
Type 1 RESOURCE_LIST attributes. In step 2.2, three Type 2 attributes, namely, MGR_
ID, DEPTNAME and BUSINESS_TITLE, are used to create three types of entities. The 
newly created entity labels are Manager, Department and Title respectively. The attribute 
values are added as the entity properties as shown in Table 2. The m.managerID means 
we created a manageID property for Manager entities. Similarly, d.deptID and t.titleID are 
properties added to Department and Title entities respectively. Furthermore, a HAS_MAN-
AGER relationship is created between User and Manager entities. Similarly, a HAS_DEPT 
and a HAS_TITLE relationship is also created between User and Department entities as 
well as User and Title entities. Finally, in Step 2.3, 7 Type 3 attributes are added as the 
properties of User Entities, as shown in Table 2.

Table 3   Feature extraction details

Feature Source Features

x
u
N
 User entity u.userID, u.titleDetail,

u.Company, u.jobCode,
u.jobFamily, u.Rollup1,
u.Rollup2, u.rollup3
PageRank, ArticleRank,
Betweenness, Degree,

x
u
T
 subgraphs: Closeness, Louvain,

(u1:User)-[rel:SHARE_MANAGER]-(u2:User), HarmonicCloseness,
(u1:User)-[rel:SHARE_DEPT]-(u2:User), LabelPropagation, WCC,
(u1:User)-[rel:SHARE_TITLE]-(u2:User) triangleCount, Modularity

r.resourceID,
x
r
N
 Resource entity r.resourceType

PageRank, ArticleRank,
Betweenness, Degree,
Closeness, Louvain,
HarmonicCloseness,

x
r
T
 subgraph: LabelPropagation, WCC,

(r1:Resource)-[rel:SHARE_P_USER]-(u2:User) triangleCount, Modularity
x(u→r)

N
 relationship: SHARE_P_USER none

subgraph: preferentialAttachment,
x(u→r)

T
 (u:User)-[rel:HAS_P_ACCESS]-(r:Resource) totalNeighbor
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In Step 3, only a Type 3 attribute, RESOURCE_TYPE, is available and we add a resour-
ceType property to Resource entities.

In Step 4, a SHARE_P_USER relationship is created between two Resource entities 
who have HAS_P_ACCESS relationship with the same User Entity. Similarly, three rela-
tionships, namely, SHARE_MANAGER, SHARE_DEPT and SHARE_TITLE, are created 
respectively between two User entities who have HAS_MANAGER/ HAS_DEPT/ HAS_
TITLE relationships with the same Manager/ Department/ Title entity.

Finally, an access control knowledge graph G is constructed based on the Amazon 
access control dataset. The data model (schema) of G is illustrated as Figure 3. A circle pre-
sents a type of entity with a bold label inside. Below the label is the total number of entities 
with that label. The properties of the corresponding entities are also listed inside the circle. 
An arrow represents a directed relationship. We also specify the relationship type and the 
total number of relationships along the arrow.

4.3 � Feature extraction

We implement the access control knowledge graph G on the Neo4j 2 graph data platform, 
which provides a convenient way for both topological and non-topological feature extrac-
tion from existing entities, relationships and subgraphs of a knowledge graph. The topo-
logical features adopted in this work are implemented with the Neo4j Graph Data Science 
Library 3.

For an access control request from a user u to a resource r, six feature sets, i.e., xuN , 
xuT , xrN , xrT , x(u→r)N

 , x(u→r)T
 are extracted from the User entities, Resource entities and their 

relationships. Table 3 presents our feature extraction strategies in detail. As shown in the 
first row, xuN is extracted from the properties of the User entity u. xuT presents the topo-
logical features extracted from subgraphs containing User entities and the relationships 
between them, as shown in the second row. The listed features are extracted to represent 
the importance or connectivity characteristics in the subgraphs. Similarly, xrN and xrT are 

Table 4   Performance comparison of different classifiers on offline scenario

Classifier Feature Acc(%) Macro average Class 0

Pre(%) Rec(%) F1(%) Δ F1 Pre(%) Rec(%) F1(%) Δ F1

GNB Nontopo 53.56 57.10 53.02 45.43 52.43 90.87 66.49
Topo 60.51 60.71 60.59 60.43 ↑33.01% 62.57 55.09 58.59 ↓11.89%

LR Nontopo 61.04 61.14 61.09 61.02 62.61 57.55 59.97
Topo 62.89 63.08 62.96 62.83 ↑2.97% 65.05 57.97 61.31 ↑2.23%

NN Nontopo 60.63 61.07 60.75 60.38 63.68 52.04 57.27
Topo 61.46 61.65 61.53 61.39 ↑1.66% 63.51 56.39 59.74 ↑4.31%

RF Nontopo 70.65 70.74 70.69 70.64 72.52 67.81 70.08
Topo 73.61 73.64 73.63 73.61 ↑4.21% 74.86 72.22 73.51 ↑4.89%

SVM Nontopo 61.07 61.18 61.13 61.04 62.69 57.38 59.92
Topo 50.51 47.95 49.83 35.21 ↓42.31% 50.62 97.71 66.69 ↑11.31%

2  https://​neo4j.​com/
3  https://​neo4j.​com/​docs/​graph-​data-​scien​ce/​curre​nt/​algor​ithms/

https://neo4j.com/
https://neo4j.com/docs/graph-data-science/current/algorithms/
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4  https://​neo4j.​com/​docs/​graph-​data-​scien​ce/​curre​nt/​alpha-​algor​ithms/​prefe​renti​al-​attac​hment/
5  https://​neo4j.​com/​docs/​graph-​data-​scien​ce/​curre​nt/​alpha-​algor​ithms/​total-​neigh​bors/

the non-topological and topological features of Resource entity r. In this usecase, no prop-
erties are added to the relationship SHARE_P_USER, therefore, x(u→r)N

 is none. We select 
two link prediction topological features, i.e., preferentialAttachment 4and totalNeighbor 5, 
to present x(u→r)T

 in this work.

4.4 � Evaluation metrics

For classification problems, based on the true labels and the predicted results, samples in 
the test set can be classified as:

–	 True Positives (TP): the correctly predicted positive samples, which means both the 
true label and the predicted result of these samples are a positive class.

–	 True Negative (TN): the correctly predicted negative samples, which means both the 
true label and the predicted result of these samples are a negative class.

–	 False Positives (FP): the incorrectly predicted positive samples, which means the true 
label is negative, but the predictive result is positive.

–	 False Negatives (FN): the incorrectly predicted negative samples, which means the true 
label is positive, but the predictive result is negative.

We evaluate the classification performance of the proposed approach on four well-
known metrics, namely, accuracy, precision, recall and F1 score. Their definition are given 
as (8) - (11).

(8)Accuracy =
TP + TN

TP + FP + FN + TN
.

(9)Precision =
TP

TP + FP
.

(10)Recall =
TP

TP + FN
.

Table 5   Offline learning performance comparison on different data imbalance statuses

Class 0 Feature Acc(%) Macro average Class 0

Pre(%) Rec(%) F1(%) Δ F1 Pre(%) Rec(%) F1(%) Δ F1

30% Nontopo 76.87 73.72 66.87 68.41 68.75 41.90 52.07
Topo 78.57 75.76 69.89 71.56 ↑4.60% 71.02 48.21 57.43 ↑10.30%

10% Nontopo 89.41 67.70 59.16 61.49 43.63 21.38 28.69
Topo 89.56 68.58 59.82 62.28 ↑1.30% 45.26 22.67 30.21 ↑5.28%

1.59% Nontopo 98.01 53.29 51.08 51.48 8.10 2.63 3.97
Topo 97.98 54.24 51.55 52.15 ↑1.29% 9.99 3.62 5.32 ↑33.83%

https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/preferential-attachment/
https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/total-neighbors/
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4.5 � Offline learning performance comparison

To verify the effectiveness of the proposed knowledge graph empowered framework, we 
compared the access control decision-making performance of using topological features 
extracted from established knowledge graph and non-topological features from original 
user and resource attributes on both online and offline scenarios.

Firstly, we verify the performance improvement of topological features on five different 
classifiers, i.e., naive Bayes (GNB), logistic regression (LR), neural network (NN), random 
forest(RF), and support vector machine (SVM). We use the scikit-learn 6 library to imple-
ment these classifiers. Considering the importance of class 0 (request rejection) in access 
control problems, results on both class 0 and the macro average on class 1 and class 0 are 
reported in Table 4. The results in Table 4 are conducted on a balanced dataset consisting 
of all negative samples of the original Amazon dataset introduced in Section 4.1 and the 
same number of positive samples randomly selected from the original dataset. Both the 
negative and positive samples keep the same order as the original dataset.

Although accuracy (Acc) is the most-used metric for evaluating classification models, 
it only works on balanced datasets. For severe imbalanced datasets, the results of accuracy 
(Acc) can be misleading and unreliable. Since the F1 score is an evaluation metrics com-
bining two competing metrics, i.e. precision (Pre) and recall (Rec), we mainly discuss the 
F1 score when comparing the performance of topological and non-topological features. Δ 
F1 is the growth rate between the F1 score achieved on topological and non-topological 
features, calculated by Equation (12).

As shown in Table  4, RF classifier achieves the best performance on all metrics 
with topological features. Using topological features extracted from the access control 

(11)F1Score = 2 ×
Recall × Precision

Recall + Precision
.

(12)ΔF1 =
F1Topo − F1Nontopo

F1Nontopo
× 100%, (t > 0).

6  https://​scikit-​learn.​org/​stable/

Table 6   Overall performance comparison of online learning

Class 0 Feature Acc(%) Macro average Class 0

Pre(%) Rec(%) F1(%) Δ F1 Pre(%) Rec(%) F1(%) Δ F1

30% Nontopo 73.41 67.72 61.06 61.78 59.51 30.94 40.71
Topo 73.68 67.97 62.31 63.25 ↑2.37% 59.26 34.58 43.68 ↑7.28%

10% Nontopo 90.50 74.46 55.09 56.76 57.80 11.06 18.57
Topo 90.33 71.83 56.18 58.29 ↑2.70% 52.32 13.72 21.74 ↑17.10%

1.59% Nontopo 98.39 64.77 51.70 52.76 31.03 3.53 6.33
Topo 98.38 65.14 52.17 53.53 ↑1.45% 31.75 4.49 7.87 ↑24.31%

https://scikit-learn.org/stable/
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knowledge graph increases the F1 score on class 0 from 70.08% to 73.51%, which achieves 
an increase of 4.89%. Actually, an improvement of 4.21% also achieved on macro aver-
age F1 score by using topological features. The performance on NN and LR classifiers are 
also boosted on both macro average and class 0 with topological features. However, for the 
GNB classifier, the macro average F1 score is improved from 45.43% to 60.43% with a cost 
of the decrease of F1 score of class 0 from 66.49% to 58.59%. It means that topological 
features increase the performance on class 1 but decrease on class 0 when using the GNB 
classifier. By contrast, the SVM classifier increases the F1 score of class 0 from 59.92% to 
66.69% but the macro average f1 score decreases from 61.04% to 35.21%. Generally speak-
ing, it is fair to say that the topological feature can improve access control performance in 
the offline learning scenario.

To further verify the improvement effectiveness of topology features in different 
data imbalance statuses, we use an RF classifier, which performs the best in Table 4, 
to conduct experiments on different class proportions in an offline scenario, as shown 
in Table 5. Consistent with Table 4, topological features can improve the access con-
trol performance of both macro average and the minority class (class 0) on different 
degrees of imbalanced datasets. However, with the increase of data imbalance, the per-
formance of the algorithm gradually deteriorates, but the results are still much better 
than a random decision. Specifically, topological features improve the macro average 
f1 score by 4.60%, 1.30% and 1.29% respectively when the class 0 accounts for 30%, 
10%, 1.59% (the original dataset) in the dataset. Furthermore, topological features 

Fig. 4   The real-time macro average performance comparison of online learning
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are superior in improving the performance on class 0, which records an increase of 
10.30%, 5.28% and 33.83% accordingly.

4.6 � Online learning performance comparison

We also conduct online learning experiments on different degrees of imbalance sta-
tuses to verify the effectiveness of topology features in improving access control per-
formance. Table  6 shows the overall performance comparison results. The time step 
size is set as 1/1000 of the dataset size. Topological features improve the macro aver-
age f1 score by 2.37%, 2.7% and 1.45% respectively when the class 0 accounts for 
30%, 10%, 1.59% (the original dataset) in the dataset. In particular, topological fea-
tures are superior in improving the performance on class 0, which records an increase 
of 7.28%, 17.10% and 24.31% accordingly.

Figure  4 shows the real-time macro average performance comparison of online 
learning. The red lines show access control performance comparison when using topo-
logical and non-topological features on a dataset with class 0: class 1 = 3:7. Similarly, 
the brown lines and blue lines present the results of the original dataset and a dataset 
with class 0: class 1 = 1:9. Figure 4 demonstrates that topological features can improve 
the overall f1 score without decreasing the accuracy.

Fig. 5   The real-time performance comparison of online learning on class 0
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Similarly, Figure  5 shows the real-time performance comparison of online learn-
ing on class 0 (the minority class). Though the trends are the same with Figure 4, the 
degree of improvements are larger in Figure 5 .

4.7 � Discussion

Results shown in Tables 5 and 6 demonstrated the effectiveness of topological features 
in improving the access control performance in both offline and online scenarios. How-
ever, for privacy and security reasons, the Amazon access control dataset only provides 
12 categorical user attributes and 2 resource attributes. These attributes use ID numbers 
to distinguish different values to prevent sensitive data leakage. It is very challenging to 
achieve high predictive performance without more text attributes to provide rich seman-
tic information for mining. Therefore, the overall performance and the minority class 
performance is still unsatisfactory.

In fact, the problem of data insufficiency, especially the lack of attributes informa-
tion, is common for access control. ABAC rule mining algorithms also suffer from 
severe overall performance deficiency caused by the poor quality of available real-world 
access control datasets. For example, the work in [9] proposed an iterative rule min-
ing algorithm, named Rhapsody, to automatically mine ABAC rules from sparse logs 
and prevent over-permissiveness. They reported the F1 scores of five ABAC rule-based 
algorithms including Rhapsody on the same Amazon dataset with us. The range of 
the reported F1 scores is from 0.01 to 0.35, which is equivalent to our method. How-
ever, they only choose the top eight most requested resources and their corresponding 
requests to form eight instances for algorithm evaluation instead of evaluating the algo-
rithm on the whole log file as we do. Therefore, the generalization performance of their 
algorithm is not guaranteed.

5 � Conclusion

To better encode high cardinality categorical user and resource attributes and improve the 
machine learning based access control performance, we proposed a knowledge graph empow-
ered online learning framework for access control decision-making. Through transferring 
tabular user and resource attributes into a comprehensive knowledge graph, we extracted topo-
logical features from the established knowledge graph to represent uses and resources. Experi-
mental results show that topological features outperform non-topological features encoded by 
binary encoding method in both online and offline settings.

In future, we will find datasets with rich user and resource attributes to further verify the 
proposed knowledge graph based online leaning framework. Furthermore, more deep learning 
based embedding algorithms will be explored to extract high level entity and relationship fea-
tures to further improve the access control performance.
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