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Abstract. By the use of a classical result of Cartwright and Field, in this paper we
have obtained new refinements and reverses of Hölder-McCarthy operator inequality in
the case of p ∈ (0, 1). A comparison for the two upper bounds obtained showing that
neither of them is better in general, has also been performed.
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1. Introduction

Let A be a nonnegative operator on the complex Hilbert space (H, 〈·, ·〉), namely
〈Ax, x〉 ≥ 0 for any x ∈ H. We write this as A ≥ 0.

By the use of the spectral resolution of A and the Hölder inequality, C. A.
McCarthy [16] proved that

(1.1) 〈Ax, x〉p ≤ 〈Apx, x〉 , p ∈ (1,∞)

and

(1.2) 〈Apx, x〉 ≤ 〈Ax, x〉p , p ∈ (0, 1)

for any x ∈ H with ‖x‖ = 1.

Let A be a selfadjoint operator on H with

(1.3) mI ≤ A ≤MI,

where I is the identity operator and m, M are real numbers with m < M.
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In [7, Theorem 3] Fujii et al. obtained the following interesting ratio inequality
that provides a reverse of the Hölder-McCarthy inequality (1.1) for an operator A
that satisfies the condition (1.3) with m > 0

(1.4) 〈Apx, x〉 ≤

{
1

p1/pq1/q
Mp −mp

(M −m)
1/p

(mMp −Mmp)
1/q

}p
〈Ax, x〉p ,

for any x ∈ H with ‖x‖ = 1, where q = p/(p− 1), p > 1.

If A satisfies the condition (1.3) with m ≥ 0, then we also have the additive
reverse of (1.1) that has been obtained by the author in 2008, see [4]

〈Apx, x〉 − 〈Ax, x〉p ≤ 1
2p (M −m)

[∥∥Ap−1x∥∥2 − 〈Ap−1x, x〉2]1/2
≤ 1

4p (M −m)
(
Mp−1 −mp−1)

and

〈Apx, x〉 − 〈Ax, x〉p ≤ 1
2p
(
Mp−1 −mp−1) [‖Ax‖2 − 〈Ax, x〉2]1/2
≤ 1

4p (M −m)
(
Mp−1 −mp−1)

for any x ∈ H with ‖x‖ = 1, where p > 1.

We also have the alternative upper bounds [4]

〈Apx, x〉 − 〈Ax, x〉p ≤ 1
4p

(M−m)(Mp−1−mp−1)
Mp/2mp/2 〈Ax, x〉

〈
Ap−1x, x

〉
, (for m > 0),

≤ p 1
4 (M −m)

(
Mp−1 −mp−1) (M

m

)p/2
, (for m > 0)

and

〈Apx, x〉 − 〈Ax, x〉p ≤ p
(√

M −
√
m
) (
M (p−1)/2 −m(p−1)/2) [〈Ax, x〉 〈Ap−1x, x〉] 1

2

≤ p
(√

M −
√
m
) (
M (p−1)/2 −m(p−1)/2)Mp/2

for any x ∈ H with ‖x‖ = 1, where p > 1.

For various related inequalities, see [6]-[10] and [14]-[15].

We have the following inequality that provides a refinement and a reverse for
the celebrated Young’s scalar inequality

1

2
ν (1− ν)

(b− a)
2

max {a, b}
≤ (1− ν) a+ νb− a1−νbν(1.5)

≤ 1

2
ν (1− ν)

(b− a)
2

min {a, b}

for any a, b > 0 and ν ∈ [0, 1] .
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This result was obtained in 1978 by Cartwright and Field [1] who established a
more general result for n variables and gave an application for a probability measure
supported on a finite interval.

For new recent reverses and refinements of Young’s inequality see [2]-[3], [11]-
[12], [13] and [19].

By the use of (1.5). we have obtained new refinements and reverses of Hölder-
McCarthy operator inequality in the case when p ∈ (0, 1). A comparison for the
two upper bounds obtained showing that neither of them is better in general, has
also been performed.

2. Some Refinements and Reverse Results

We have:

Theorem 2.1. Let m, M be real numbers so that M > m > 0. If A is a selfadjoint
operator satisfying the condition (1.3) above, then for any p ∈ (0, 1) we have

p (1− p)
2

m

M

(〈
A2x, x

〉
〈Ax, x〉2

− 1

)
≤ p(1−p)

2M 〈Ax, x〉
(
〈A2x,x〉
〈Ax,x〉2 − 1

)
(2.1)

≤ 1− 〈A
px,x〉

〈Ax,x〉p

≤ p(1−p)
2m 〈Ax, x〉

(
〈A2x,x〉
〈Ax,x〉2 − 1

)
≤ p(1−p)

2
M
m

(
〈A2x,x〉
〈Ax,x〉2 − 1

)
for any x ∈ H with ‖x‖ = 1.

In particular,

1

8

m

M

(〈
A2x, x

〉
〈Ax, x〉2

− 1

)
≤ 〈Ax,x〉8M

(
〈A2x,x〉
〈Ax,x〉2 − 1

)
(2.2)

≤ 1− 〈A
1/2x,x〉

〈Ax,x〉1/2 ≤
〈Ax,x〉
8m

(
〈A2x,x〉
〈Ax,x〉2 − 1

)
≤ 1

8
M
m

(
〈A2x,x〉
〈Ax,x〉2 − 1

)
,

for any x ∈ H with ‖x‖ = 1.

Proof. If a, b ∈ [m,M ] , then by Cartwright-Field inequality (1.5) we have

1

2M
p (1− p) (b− a)

2 ≤ (1− p) a+ pb− a1−pbp ≤ 1

2m
p (1− p) (b− a)

2
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or, equivalently

1

2M
p (1− p) (b2 − 2ab+ a2) ≤ (1− p) a+ pb− a1−pbp(2.3)

≤ 1

2m
p (1− p) (b2 − 2ab+ a2),

for any p ∈ (0, 1) .

Fix a ∈ [m,M ] and by using the operator functional calculus for A with mI ≤
A ≤MI we have

1

2M
p (1− p) (A2 − 2aA+ a2I) ≤ (1− p) aI + pA− a1−pAp(2.4)

≤ 1

2m
p (1− p) (A2 − 2aA+ a2I).

Then for any x ∈ H with ‖x‖ = 1 we have from (2.4) that

1
2M p (1− p) (

〈
A2x, x

〉
− 2a 〈Ax, x〉+ a2)(2.5)

≤ (1− p) a+ p 〈Ax, x〉 − a1−p 〈Apx, x〉
≤ 1

2mp (1− p) (
〈
A2x, x

〉
− 2a 〈Ax, x〉+ a2),

for any a ∈ [m,M ].

If we choose in (2.5) a = 〈Ax, x〉 ∈ [m,M ] , then we get for any x ∈ H with
‖x‖ = 1 that

1

2M
p (1− p) (

〈
A2x, x

〉
− 〈Ax, x〉2) ≤ 〈Ax, x〉 − 〈Ax, x〉1−p 〈Apx, x〉

≤ 1
2mp (1− p) (

〈
A2x, x

〉
− 〈Ax, x〉2),

and by division with 〈Ax, x〉 > 0 we obtain the second and third inequalities in
(2.1).

The rest is obvious.

Remark 2.1. It is well known that, if mI ≤ A ≤MI with M > 0, then, see for instance
[17, p. 27], we have

(1 ≤)

〈
A2x, x

〉
〈Ax, x〉2

≤ (m + M)2

4mM

for any x ∈ H with ‖x‖ = 1, which implies that

(0 ≤)

〈
A2x, x

〉
〈Ax, x〉2

− 1 ≤ (M −m)2

4mM
.

Using (2.1) and by denoting h = M
m

we get

(2.6) (0 ≤) 1− 〈A
px, x〉

〈Ax, x〉p ≤
p (1− p)

8
(h− 1)2
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and, in particular,

(2.7) (0 ≤) 1−

〈
A1/2x, x

〉
〈Ax, x〉1/2

≤ 1

32
(h− 1)2 ,

for any x ∈ H with ‖x‖ = 1.

We consider the Kantorovich’s constant defined by

(2.8) K (h) :=
(h+ 1)

2

4h
, h > 0.

The function K is decreasing on (0, 1) and increasing on [1,∞) , K (h) ≥ 1 for any
h > 0 and K (h) = K

(
1
h

)
for any h > 0.

Observe that for any h > 0

K (h)− 1 =
(h− 1)

2

4h
= K

(
1

h

)
− 1.

From (2.6) we then have

(2.9) (0 ≤) 1− 〈A
px, x〉

〈Ax, x〉p
≤ p (1− p)

2
h [K (h)− 1]

and, in particular,

(2.10) (0 ≤) 1−
〈
A1/2x, x

〉
〈Ax, x〉1/2

≤ 1

8
h [K (h)− 1] ,

for any x ∈ H with ‖x‖ = 1.

Also, if a, b > 0 then

K

(
b

a

)
− 1 =

(b− a)
2

4ab
.

Since min {a, b}max {a, b} = ab if a, b > 0, then

(b− a)
2

max {a, b}
=

min {a, b} (b− a)
2

ab
= 4 min {a, b}

[
K

(
b

a

)
− 1

]
and

(b− a)
2

min {a, b}
=

max {a, b} (b− a)
2

ab
= 4 max {a, b}

[
K

(
b

a

)
− 1

]
and the inequality (1.5) can be written as

2ν (1− ν) min {a, b}
[
K

(
b

a

)
− 1

]
≤ (1− ν) a+ νb− a1−νbν

≤ 2ν (1− ν) max {a, b}
[
K
(
b
a

)
− 1
]

for any a, b > 0 and ν ∈ [0, 1] .
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Theorem 2.2. Let m, M be real numbers so that M > m > 0. If A is a selfadjoint
operator satisfying the condition (1.3) above, then for any p ∈ (0, 1) we have

(0 ≤) 1− 〈A
px,x〉

〈Ax,x〉p(2.11)

≤ p (1− p) [K (h)− 1]
(

2 + 〈|A−〈Ax,x〉I|x,x〉
〈Ax,x〉

)
≤ p (1− p) [K (h)− 1]

[
2 +

(
〈A2x,x〉
〈Ax,x〉2 − 1

)1/2
]

≤ p (1− p) [K (h)− 1]
[
2 + (K (h)− 1)

1/2
]

for any x ∈ H with ‖x‖ = 1.

In particular, we have

(0 ≤) 1− 〈A
1/2x,x〉

〈Ax,x〉1/2(2.12)

≤ 1
4 [K (h)− 1]

(
2 + 〈|A−〈Ax,x〉I|x,x〉

〈Ax,x〉

)
≤ 1

4 [K (h)− 1]

[
2 +

(
〈A2x,x〉
〈Ax,x〉2 − 1

)1/2
]

≤ 1
4 [K (h)− 1]

[
2 + (K (h)− 1)

1/2
]

for any x ∈ H with ‖x‖ = 1.

Proof. From (2.11) we have for any a, b > 0 and p ∈ [0, 1] that

(2.13) (1− p) a+ pb− a1−pbp ≤ p (1− p) (a+ b+ |b− a|)
[
K

(
b

a

)
− 1

]
since

max {a, b} =
1

2
(a+ b+ |b− a|) .

If a, b ∈ [m,M ], then b
a ∈

[
m
M , Mm

]
and by the properties of Kantorovich’s constant

K, we have

1 ≤ K
(
b

a

)
≤ K

(
M

m

)
= K (h) for any a, b ∈ [m,M ] .

Therefore, by (2.13) we have

(1− p) a+ pb− a1−pbp ≤ p (1− p) (a+ b+ |b− a|) [K (h)− 1]

for any a, b ∈ [m,M ] and p ∈ [0, 1] .

Fix a ∈ [m,M ] and by using the operator functional calculus for A with mI ≤
A ≤MI, we have

(2.14) (1− p) aI + pA− a1−pAp ≤ p (1− p) [K (h)− 1] (aI +A+ |A− aI|) .
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Then for any x ∈ H with ‖x‖ = 1 we get from (2.14) that

(1− p) a+ p 〈Ax, x〉 − a1−p 〈Apx, x〉(2.15)

≤ p (1− p) [K (h)− 1] (a+ 〈Ax, x〉+ 〈|A− aI|x, x〉) ,

for any a ∈ [m,M ] and p ∈ [0, 1] .

Now, if we take a = 〈Ax, x〉 ∈ [m,M ] , where x ∈ H with ‖x‖ = 1 in (2.15),
then we obtain

〈Ax, x〉 − 〈Ax, x〉1−p 〈Apx, x〉
≤ p (1− p) [K (h)− 1] (2 〈Ax, x〉+ 〈|A− 〈Ax, x〉 I|x, x〉) ,

which, by division with 〈Ax, x〉 > 0 provides the first inequality in (2.11).

By Schwarz inequality, we have for x ∈ H with ‖x‖ = 1 that

〈|A− 〈Ax, x〉 I|x, x〉 ≤
〈

(A− 〈Ax, x〉 I)
2
x, x

〉1/2
=

〈(
A2 − 2 〈Ax, x〉A+ 〈Ax, x〉2 I

)
x, x

〉1/2
=

(〈
A2x, x

〉
− 〈Ax, x〉2

)1/2
,

which proves the second part of (2.11).

Since 〈
A2x, x

〉
〈Ax, x〉2

− 1 ≤ (M −m)
2

4mM
= K (h)− 1

for x ∈ H with ‖x‖ = 1, then the last part of (2.11) is thus proved.

3. A Comparison for Upper Bounds

We observe that the inequality (2.9) provides for the quantity

(0 ≤) 1− 〈A
px, x〉

〈Ax, x〉p
, x ∈ H with ‖x‖ = 1,

the following upper bound

(3.1) B1 (p, h) :=
p (1− p)

2
h [K (h)− 1] ,

while the inequality (2.11) gives the upper bound

(3.2) B2 (p, h) := p (1− p) [K (h)− 1]
[
2 + (K (h)− 1)

1/2
]
,

where p ∈ (0, 1) and h > 1.



822 S. S. Dragomir

Now, if we depict the 3D plot for the difference of the bounds B1 and B2, namely

D (x, y) := B1 (y, x)−B2 (y, x)

on the box [1, 8] × [0, 1] , then we observe that it takes both positive and negative
values, showing that the bounds B1 (p, h) and B2 (p, h) can not be compared in
general, namely neither of them is better for any p ∈ (0, 1) and h > 1.
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