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OSTROWSKI AND TRAPEZOID TYPE INEQUALITIES FOR
RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS OF ABSOLUTELY
CONTINUOUS FUNCTIONS WITH BOUNDED DERIVATIVES

SILVESTRU SEVER DRAGOMIR

(Communicated by B. Ahmad)

Abstract. In this paper we establish some Ostrowski and trapezoid type inequalities for the
Riemann-Liouville fractional integrals of absolutely continuous functions with bounded deriva-
tives. Applications for mid-point and trapezoid inequalities are provided as well. They gener-

alize the known results holding for the classical Riemann integral. Some examples for convex
functions are also given.

1. Introduction

In 2002 [12], we proved the following Ostrowski type inequality for convex func-
tions f : [a,b] — R and x € (a,b),

S[o-2r - - )]
< [ rwa-o-arw
<5022 @) - P @) (L

In particular, we have the mid-point inequalities

e (52) (2o
< [roa-w-ar(37)

<5 17 0)~ £ @) b, (1.2)

with the constant % as best possible in both inequalities.
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In the same year [13], we also obtained the following generalized trapezoid type
inequality for convex functions f : [a,b] — R and x € (a,b),

o0t - -l )
b
<@-a)f @+b=x)r0)= [ 10
< % [(b — )21 (b)— (x—a) f, (a)] . (1.3)

In particular, we have the trapezoid inequality

) (5o

fla)+f()
<KD /f
<517 0= 1 @] (b-af, (L4)

with the constant % as best possible in both inequalities.
These results were generalized in the following manner:

THEOREM 1. (Dragomir, 2003 [14]) Let f : [a,b] — R be an absolutely contin-
uous function on [a,b] and x € [a,b]. Suppose that there exist the functions m;,
M;: [a,b] = R (i=1,2) with the properties:

my (x) < f' (1) <My (x) forae. t € [a,x] (L.5)
and
my (x) < f'(1) <Mz (x) forae.t € (x,b]. (1.6)
Then we have the inequalities:
s [ ) o= M9 -]
<@y [ r0ar
2 (bl_ a) [Ml (x) (x— a)2 —my (x) (b _x)z] . (1.7)

The constant % is sharp on both sides.

If we assume global bounds for the derivative, then we have:

COROLLARY 1. (Dragomir, 2003 [14]) If f: [a,b] — R is absolutely continuous
on |a,b] and the derivative [’ [a,b] — R is bounded above and below, that is,

—co<m< f(t) <M< forae.t€la,bl], (1.8)



OSTROWSKI AND TRAPEZOID TYPE INEQUALITIES 309

then we have the inequality

b
ﬁ m(x—a)2_M(b—x)2i| gf(x)—bia/[; f(l)dl
< ﬁ {M(x—a)z—m(b—x)z (1.9)

forall x € [a,b]. The constant % is the best in both inequalities.
In particular, we have

bia/bf(t)dt—f<a—;b)‘gé(M—m)(b—aL (1.10)

with % as the best possible constant.

In order to extend these results for fractional integrals we need the following defi-
nitions.

Let f: [a,b] — C be a complex valued Lebesgue integrable function on the real
interval [a,b]. The Riemann-Liouville fractional integrals are defined for o > 0 by

1 X
J = —/ —0* ' f(@t)ar
u+f(x) F(a) p ()C ) f( )
for a <x<b and ,
1
o . o o—1
B S (6) = gy [ =0 @
for a < x < b, where I' is the Gamma function. For o« = 0, they are defined as
IO f(x) =T f(x) = f(x) forx € (a,b).

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals
see [1]-[6], [19]-[29] and the references therein.

Motivated by the above results, we obtain in this paper some inequalities for the
Riemann-Liouville fractional integrals of absolutely continuous functions with bounded
derivatives and of convex functions. Applications for mid-point and trapezoid inequal-
ities are provided as well. Some examples for convex functions are also given.

2. Some identities
We have the following representation:

LEMMA 1. Let f: [a,b] — C be an absolutely continuous function on |a,b).
(i) Forany x € (a,b) we have

Jar f () + T f (x) 2.1
l o o
“Tlatl) [(x—a)* f(a)+ (b—x)* f (b)]

s | s - [a-x o).
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(ii) For any x € (a,b) we have

JES (@) + I S (b)
1 o o
= m [(x—a) +(b—x) ]f(x)

e | o0 rwa- [Ce-at s wal.

2.2)

Proof. (i) Since f : [a,b] — C is an absolutely continuous function on [a,b], then
the Lebesgue integrals

X b
/ (x—1)% ' (1) dr and / (=) f (1) dt
a X
exist and integrating by parts, we have

l x o o

7“(”1)/& (x—0) f (1) dr (23)
1 x o 1 o

= F L, G0 W e () f (@

IS0~ gy 6@

for a <x < b and

1 b o ol
7r(a+1)/x (=) f (1) dr (24)
1 1

for a <x<b.
From (2.3) we have

) = g W0 F @+ gy | a0 e

for a < x < b and from (2.4) we have

1 1 b
o o _ o o _ o pl
S F ) = Fry 09 FO) ~ Frgry L -0 0
for a < x < b, which by addition give (2.1).
(ii)) We have
1

b
I8 = Fa | =0 rwar
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for a <x<b and
1

* a—1
m/a (r—a)™ " f(e)dr
fora <x<b.

Since f : [a,b] — C is an absolutely continuous function [a,b], then the Lebesgue

integrals
X b
/ (t—a)® f' (1)dr and / (b—1)% f (1) dr

exist and integrating by parts, we have

l x o ol
7r(a+1)/u (t—a)* f (t)di 25)
1

1 o x o
= R W gy [ a0 a
1 . 3
= Fagn) © 0 -I @

for a <x<b and
1 b o pl
Faam ). 00T 0 20

1 b o 1 o
:W/x (b—0)" f(t)dr — o 9" @

1

TS (@) =

:Jfﬂrf(b)—m(b—x)“f(x)
fora<x<b.
From (2.5) we have
o _ o 1 x o gl
Jx_f(a)—m(x—a) f(x)—m/a (t—a)” f()dr  (2.7)
for a < x < b and from (2.6)
JE f(b) = ! b « ! ’ b—0)*f (t)d 2.8
x+f()—m( —x) f(x)+m/x(—f)f(f) 1, (2.8)

for a < x < b, which by addition produce (2.2). O

COROLLARY 2. Let f:[a,b] — C be an absolutely continuous function on [a,b].
We have the midpoint equalities

o f (““’) ey (‘lzib> 2.9)

L f@+r)
2017 (4 1) 2

1 /Q“*Z”<#_I) d— / ( a+b) f(t)dt]

I'loe+1)

+
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and

Ja f(a) + e

= =t

- 20‘—1Fta+ 0/ (a;b) (b—a)®

! ’ o ¢l %b o gl
o 00 0= [ = f(t)dz]

£(b) (2.10)

_|_

and the trapezoid equality

2 T(a+1) 2

1 b(b—1)* —(t—a)*
F(a—H)/a

J§f (@) +Jg.f () L[ +fla) e @.11)

+ f (t)dr.

Proof. Equality (2.9) follows by (2.1) for x = “%” while the equality (2.10) fol-
lows by (2.2).
For x = b in (2.7) we have

1 1

@) = g -0 O - s [ - W

IN'a+1
while from (2.8) we have for x = a that

1 1

o b o pl
(b—a)® f(a)+ )/a (b—0) f (1) dt.

Jarf (0) = 1 T(a+1)

o+1)

If we add these two equalities and divide by 2, we get (2.11). [

3. Inequalities for functions with bounded derivatives

We have the following result that provides upper and lower bounds for the Os-
trowski and trapezoid differences:

THEOREM 2. Let f :[a,b] — R be an absolutely continuous function on [a,b]. If
x € (a,b) and there exists the real numbers my (x), My (x), my(x), My (x) such that

my (x) < f'(t) < My (x) fora.e. t € (a,x) (3.1

and
my (x) < f'(t) < My (x) fora.e. t € (x,b) (3.2)
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then
F(a1+2) [mz (x) (b—x)*Tt =My (x) (x—a)aﬂ} (3.3)
< T (6@ @+ 0= )] I =TS ()
S r(a1+ 2) [M2 (0 (b =)~y (x) (x—a)a“}
and
! o+l a+l
(o +2) {mz () (b—x)""" =M (x) (x —a) ] (3.4)
ST @)+ IS )~ o (=) + (02" £
< Tt MW =9 i ) =],

Proof. We have

F(al—i- 1) [((x=a)* @)+ (b =x)"f (b)) = I\ f (x) = T f (%) (3.5)

= m Uxb(t—x)“f’(z)dt—/ax(x—t)“f’(t)dt]

forany x € (a,b).
Using the conditions (3.1) and (3.2) we have
b b b
mz(x)/ (t—x)“dzg/ (t—x)“f’(z)dngz(x)/ (1 —x)%dt
and . . .
m (x)/ (x—z)adtg/ (=) f (1) di < M, (x)/ (v—1)%di

namely

Lm0 < [ < e (99

and

(Xl+1rrz1 () (x— @)+ </ax(x—t)af’(t)dt< %_HMl () (x—a)*+

These imply that

1
o+1

< [ s wa- [[wns a

a

(2 (3) (b =) = My () (v — @)

< O{L—f—l [M2 (x) (b —x)OC+l —my ()C) (x_a)a+1:|
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that is equivalent to
ot Mm@ @0 - M W) -]
<t | -0 O [t 0
< Tz M 06— = () -],
By using the equality (3.5) we get (3.3).
From (2.2) we have
(@415 (0) = s (6= + (0= £ 0 (3.6)

1 b o g X o
~rar [ et wa- [e-ar o).
In a similar way, we have

Lm0 < [ o < M () (50

and

e () =@ < [ =@ 7 Odr < M () (- a)*

which implies that

F(a1+2) [mz () (b— ) — My (%) (x— a)‘”l]

< ﬁ [/Xb(b—o“f’(z)dz-[(:-@“f’(r)d:]

1
< m [M2 (x) (b _X)OH_I —my (x) (x — a)oH-l}
and by (3.6) we get (3.4). U

REMARK 1. If we take o = 1 in (3.3), then we get

2 [ ) (02 by () (a7

b
<(-a)f(@)+b-07®) - [ fodr

<5 [0 (69— () (x—aP]

for any x € (a,b). If we take o = 1 in (3.4), then we get (1.7).

(3.7)
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COROLLARY 3. Let f:[a,b] — R be an absolutely continuous function on [a,b].
If there exists the real numbers my, My, my, My such that

my < f (t) <M, forae. t € (a,aT—'_b> (3.8)
and
my < f(t) <M, forae. t € (#,b) (3.9
then
1 o
T ¢ 9" (m—M) (3.10)
1 fla)+f(®) o o ofa+bh o ofa+b
S (@) war s (30) s ()
1 ot 1
< 2a+11—~(a+2) (b Cl) (M2_m1)
and
1
sarTr gy 9" (M) (3.11)
o o 1 a+b o
SHap fla)+dap, f(0)— zalr(a+1)f< 2 )(b_“>

< (p_gt! _ )
\2a+1r(a+2)(b )" (Mp—m)

In particular, we have the simpler inequalities:

COROLLARY 4. Let f:[a,b] — R be an absolutely continuous function on [a,b].
If there exists the real numbers m, M, such that m < f' (1) <M fora.e. t € (a,b), then

1 fla)+f(b) o o fath o fa+b
2T (atl) 2 (b—a) —Ja+f<T)—Jb_f< 5 )‘ (3.12)
1
< 20‘+1F(O{+2)

(b—a)*™ (M —m)

and
7 J%, f(b ! aEbY (h ) 3.13
o S (@I P )~ s () o (3.13)
1 o+1
REMARK 2. If we take oo =1 in (3.12), then we get
b
’w(b—a)—/ F0)dr S%(b—a)z(M—m) (3.14)

while from (3.13) we get (1.10).
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We also have the following trapezoid type result:

THEOREM 3. Let f:[a,b] — R be an absolutely continuous function on [a,b]. If
there exists the real numbers m, M, such that m < f' (t) < M fora.e. t € (a,b), then

L fB)+f(a) Sy f(a)+Jg 1 (b)

farn 2 - 2 (3-15)
2% -1 o+l
Proof. We have by (2.11) that
L JOH@) o S @HIES D)
I'loe+1) 2 2
_ 1 Pi—a)®—(b-1)",
_r(a+1)/a 2 foar.
Observe also that
bt—a)*—(b-0)* [, m+M
/a 5 (f (t)——2 )dt
a0, mAM b (—a) — (b—1)"
—/a 5 f(t)de— 7 /a 7 dt
and since
b o o B (b_a)a-‘rl (b_a)a+l B
/a (=)= (=) dr == "H— = =77 =0,
then we have the following identity of interest
I f®)+/f(a) o Jpfla)+J3 S ()
ot 2 279~ 2 (3.16)
B 1 b(t—a)*—(b—-0)* [, m+M
_r(a+1)/a 2 (f (== )dt'
By taking the modulus in (3.16), we get
I f®)+/f(a) o Jpfla)+J3 S ()
'F(a+l) 7 brats 2 ' 3.17)
1 bl(t—a)*—b-0)*], m+M
gr(a+1)/a 2 fO) ==

1 1 b o o
gZ(M_m)m/a (b—1)" — (t —a)*| .
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The function h : [a,b] — [0,0), h(r) = |(b—1)* — (t—a)*| is symmetric on
[a,b], then

b
/a (b= 1) — (t —a)*| dr

:2/aT [(b—1)%—(t—a)*] dt

B B Gt i T Gt
N o+1 o+1
a
r atbh\ o+l 1 a+b o+1
I R A i Gt
oa+1 o—+1 o—+1
) -(b_a)(x+l (b_a)a-‘rl B 20 _q vl
= - = oo (b—a)™.
o+1 2% (a+1) 20l (a+1)

By making use of (3.17) we then obtain (3.15). [0

4. Inequalities for convex functions
We have the following result for convex functions:

THEOREM 4. Let f:[a,b] — R be a convex function and x € (a,b), then we have
the inequalities

ﬁ |:f-/'r (x) (b—x)*T — " (x) (x—a)aﬂ} 4.1)
1

ST(a+D)
1

gi
I'o+2)

[((r—=a)® f(a)+ (b =) £ ()] = JZf (x) =T f (%)

7. 0) (=0 = £ (@) (=)™

and
1
I'lae+2)
ST f(a)+IEf (D) —

1
S =5
I'loe+2)

A @G- = @) -] (42)

o+l [(x—a)*+(b—x)"] f (x)

70 0= = £ (@) =)™
where f' (-) are the lateral derivatives of f.

Proof. Since f is convex, then the derivative f’ exists almost everywhere on [a, b]
and
fi(a) < f (1) < f(x) forae. t € (a,x)
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and
fi(x) < f1 (1) < fL(b) forae. 1 € (x,b).

Now, writing the inequalities (3.3) and (3.4) for m (x) = f (a), M;(x) = f (x),
my (x) = f (x) and M5 (x) = f’ (b) we get the desired results (4.1) and (4.2). O

REMARK 3. If wetake oo =1 in (4.1) and (4.2), then we recapture (1.3) and (1.1)
that hold for convex functions.

COROLLARY 5. Let f:[a,b] — R be a convex function, then we have the inequal-

ities
/ +b / +0b a
O<2a+11" a+2)[+<a2 >_f— <a2 )} (b—a) ! (4.3)

1

(

L F@+F0) ) o o (04D ja (atD
Sy 2 009 "a+f<7>‘fhf<7)

1

(

[/ (o) f1 (@] (b—a)™*,

1 , (a+b , (a+b o+l
0S 3T 12) [f+< 2 )_f (T)}(b_a) “@4)

1 b .
U P+ SO s (50 00

l / ! o
< 20T (0 +2) /2 (b) = i (@)] (b—a) o

and

1 fb)+f(a) o o fla)+IZ2 f(D)
OSForn 2 -9~ ) T

20 1 , , o
< m(]ﬁ (b)—f+(a)) (b—a) i

(4.5)

If we take o¢ = 1 in (4.3) and (4.4), then we recapture the midpoint and trapezoid
inequalities for convex functions mentioned in the introduction.

5. Conclusion

In this paper, by making use of some fundamental identities for the Riemann-
Liouville fractional integrals, we established some Ostrowski and trapezoid type in-
equalities for these integrals of absolutely continuous functions with bounded deriva-
tives. Applications for mid-point and trapezoid inequalities were provided as well.
They generalize the known results holding for the classical Riemann integral. Some
natural applications for the important case of convex functions were also given.
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